1 #include "llvm/ADT/APFloat.h"
2 #include "llvm/ADT/STLExtras.h"
3 #include "llvm/IR/BasicBlock.h"
4 #include "llvm/IR/Constants.h"
5 #include "llvm/IR/DerivedTypes.h"
6 #include "llvm/IR/Function.h"
7 #include "llvm/IR/Instructions.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/Module.h"
11 #include "llvm/IR/Type.h"
12 #include "llvm/IR/Verifier.h"
13 #include "llvm/Support/TargetSelect.h"
14 #include "llvm/Target/TargetMachine.h"
15 #include "KaleidoscopeJIT.h"
16 #include <algorithm>
17 #include <cassert>
18 #include <cctype>
19 #include <cstdint>
20 #include <cstdio>
21 #include <cstdlib>
22 #include <map>
23 #include <memory>
24 #include <string>
25 #include <utility>
26 #include <vector>
27 
28 using namespace llvm;
29 using namespace llvm::orc;
30 
31 //===----------------------------------------------------------------------===//
32 // Lexer
33 //===----------------------------------------------------------------------===//
34 
35 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
36 // of these for known things.
37 enum Token {
38   tok_eof = -1,
39 
40   // commands
41   tok_def = -2,
42   tok_extern = -3,
43 
44   // primary
45   tok_identifier = -4,
46   tok_number = -5,
47 
48   // control
49   tok_if = -6,
50   tok_then = -7,
51   tok_else = -8,
52   tok_for = -9,
53   tok_in = -10,
54 
55   // operators
56   tok_binary = -11,
57   tok_unary = -12,
58 
59   // var definition
60   tok_var = -13
61 };
62 
63 static std::string IdentifierStr; // Filled in if tok_identifier
64 static double NumVal;             // Filled in if tok_number
65 
66 /// gettok - Return the next token from standard input.
gettok()67 static int gettok() {
68   static int LastChar = ' ';
69 
70   // Skip any whitespace.
71   while (isspace(LastChar))
72     LastChar = getchar();
73 
74   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
75     IdentifierStr = LastChar;
76     while (isalnum((LastChar = getchar())))
77       IdentifierStr += LastChar;
78 
79     if (IdentifierStr == "def")
80       return tok_def;
81     if (IdentifierStr == "extern")
82       return tok_extern;
83     if (IdentifierStr == "if")
84       return tok_if;
85     if (IdentifierStr == "then")
86       return tok_then;
87     if (IdentifierStr == "else")
88       return tok_else;
89     if (IdentifierStr == "for")
90       return tok_for;
91     if (IdentifierStr == "in")
92       return tok_in;
93     if (IdentifierStr == "binary")
94       return tok_binary;
95     if (IdentifierStr == "unary")
96       return tok_unary;
97     if (IdentifierStr == "var")
98       return tok_var;
99     return tok_identifier;
100   }
101 
102   if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
103     std::string NumStr;
104     do {
105       NumStr += LastChar;
106       LastChar = getchar();
107     } while (isdigit(LastChar) || LastChar == '.');
108 
109     NumVal = strtod(NumStr.c_str(), nullptr);
110     return tok_number;
111   }
112 
113   if (LastChar == '#') {
114     // Comment until end of line.
115     do
116       LastChar = getchar();
117     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
118 
119     if (LastChar != EOF)
120       return gettok();
121   }
122 
123   // Check for end of file.  Don't eat the EOF.
124   if (LastChar == EOF)
125     return tok_eof;
126 
127   // Otherwise, just return the character as its ascii value.
128   int ThisChar = LastChar;
129   LastChar = getchar();
130   return ThisChar;
131 }
132 
133 //===----------------------------------------------------------------------===//
134 // Abstract Syntax Tree (aka Parse Tree)
135 //===----------------------------------------------------------------------===//
136 
137 /// ExprAST - Base class for all expression nodes.
138 class ExprAST {
139 public:
140   virtual ~ExprAST() = default;
141 
142   virtual Value *codegen() = 0;
143 };
144 
145 /// NumberExprAST - Expression class for numeric literals like "1.0".
146 class NumberExprAST : public ExprAST {
147   double Val;
148 
149 public:
NumberExprAST(double Val)150   NumberExprAST(double Val) : Val(Val) {}
151 
152   Value *codegen() override;
153 };
154 
155 /// VariableExprAST - Expression class for referencing a variable, like "a".
156 class VariableExprAST : public ExprAST {
157   std::string Name;
158 
159 public:
VariableExprAST(const std::string & Name)160   VariableExprAST(const std::string &Name) : Name(Name) {}
161 
162   Value *codegen() override;
getName() const163   const std::string &getName() const { return Name; }
164 };
165 
166 /// UnaryExprAST - Expression class for a unary operator.
167 class UnaryExprAST : public ExprAST {
168   char Opcode;
169   std::unique_ptr<ExprAST> Operand;
170 
171 public:
UnaryExprAST(char Opcode,std::unique_ptr<ExprAST> Operand)172   UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
173       : Opcode(Opcode), Operand(std::move(Operand)) {}
174 
175   Value *codegen() override;
176 };
177 
178 /// BinaryExprAST - Expression class for a binary operator.
179 class BinaryExprAST : public ExprAST {
180   char Op;
181   std::unique_ptr<ExprAST> LHS, RHS;
182 
183 public:
BinaryExprAST(char Op,std::unique_ptr<ExprAST> LHS,std::unique_ptr<ExprAST> RHS)184   BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
185                 std::unique_ptr<ExprAST> RHS)
186       : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
187 
188   Value *codegen() override;
189 };
190 
191 /// CallExprAST - Expression class for function calls.
192 class CallExprAST : public ExprAST {
193   std::string Callee;
194   std::vector<std::unique_ptr<ExprAST>> Args;
195 
196 public:
CallExprAST(const std::string & Callee,std::vector<std::unique_ptr<ExprAST>> Args)197   CallExprAST(const std::string &Callee,
198               std::vector<std::unique_ptr<ExprAST>> Args)
199       : Callee(Callee), Args(std::move(Args)) {}
200 
201   Value *codegen() override;
202 };
203 
204 /// IfExprAST - Expression class for if/then/else.
205 class IfExprAST : public ExprAST {
206   std::unique_ptr<ExprAST> Cond, Then, Else;
207 
208 public:
IfExprAST(std::unique_ptr<ExprAST> Cond,std::unique_ptr<ExprAST> Then,std::unique_ptr<ExprAST> Else)209   IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
210             std::unique_ptr<ExprAST> Else)
211       : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
212 
213   Value *codegen() override;
214 };
215 
216 /// ForExprAST - Expression class for for/in.
217 class ForExprAST : public ExprAST {
218   std::string VarName;
219   std::unique_ptr<ExprAST> Start, End, Step, Body;
220 
221 public:
ForExprAST(const std::string & VarName,std::unique_ptr<ExprAST> Start,std::unique_ptr<ExprAST> End,std::unique_ptr<ExprAST> Step,std::unique_ptr<ExprAST> Body)222   ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
223              std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
224              std::unique_ptr<ExprAST> Body)
225       : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
226         Step(std::move(Step)), Body(std::move(Body)) {}
227 
228   Value *codegen() override;
229 };
230 
231 /// VarExprAST - Expression class for var/in
232 class VarExprAST : public ExprAST {
233   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
234   std::unique_ptr<ExprAST> Body;
235 
236 public:
VarExprAST(std::vector<std::pair<std::string,std::unique_ptr<ExprAST>>> VarNames,std::unique_ptr<ExprAST> Body)237   VarExprAST(
238       std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
239       std::unique_ptr<ExprAST> Body)
240       : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
241 
242   Value *codegen() override;
243 };
244 
245 /// PrototypeAST - This class represents the "prototype" for a function,
246 /// which captures its name, and its argument names (thus implicitly the number
247 /// of arguments the function takes), as well as if it is an operator.
248 class PrototypeAST {
249   std::string Name;
250   std::vector<std::string> Args;
251   bool IsOperator;
252   unsigned Precedence; // Precedence if a binary op.
253 
254 public:
PrototypeAST(const std::string & Name,std::vector<std::string> Args,bool IsOperator=false,unsigned Prec=0)255   PrototypeAST(const std::string &Name, std::vector<std::string> Args,
256                bool IsOperator = false, unsigned Prec = 0)
257       : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
258         Precedence(Prec) {}
259 
260   Function *codegen();
getName() const261   const std::string &getName() const { return Name; }
262 
isUnaryOp() const263   bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
isBinaryOp() const264   bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
265 
getOperatorName() const266   char getOperatorName() const {
267     assert(isUnaryOp() || isBinaryOp());
268     return Name[Name.size() - 1];
269   }
270 
getBinaryPrecedence() const271   unsigned getBinaryPrecedence() const { return Precedence; }
272 };
273 
274 //===----------------------------------------------------------------------===//
275 // Parser
276 //===----------------------------------------------------------------------===//
277 
278 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
279 /// token the parser is looking at.  getNextToken reads another token from the
280 /// lexer and updates CurTok with its results.
281 static int CurTok;
getNextToken()282 static int getNextToken() { return CurTok = gettok(); }
283 
284 /// BinopPrecedence - This holds the precedence for each binary operator that is
285 /// defined.
286 static std::map<char, int> BinopPrecedence;
287 
288 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()289 static int GetTokPrecedence() {
290   if (!isascii(CurTok))
291     return -1;
292 
293   // Make sure it's a declared binop.
294   int TokPrec = BinopPrecedence[CurTok];
295   if (TokPrec <= 0)
296     return -1;
297   return TokPrec;
298 }
299 
300 /// LogError* - These are little helper functions for error handling.
LogError(const char * Str)301 std::unique_ptr<ExprAST> LogError(const char *Str) {
302   fprintf(stderr, "Error: %s\n", Str);
303   return nullptr;
304 }
305 
LogErrorP(const char * Str)306 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
307   LogError(Str);
308   return nullptr;
309 }
310 
311 static std::unique_ptr<ExprAST> ParseExpression();
312 
313 /// numberexpr ::= number
ParseNumberExpr()314 static std::unique_ptr<ExprAST> ParseNumberExpr() {
315   auto Result = std::make_unique<NumberExprAST>(NumVal);
316   getNextToken(); // consume the number
317   return std::move(Result);
318 }
319 
320 /// parenexpr ::= '(' expression ')'
ParseParenExpr()321 static std::unique_ptr<ExprAST> ParseParenExpr() {
322   getNextToken(); // eat (.
323   auto V = ParseExpression();
324   if (!V)
325     return nullptr;
326 
327   if (CurTok != ')')
328     return LogError("expected ')'");
329   getNextToken(); // eat ).
330   return V;
331 }
332 
333 /// identifierexpr
334 ///   ::= identifier
335 ///   ::= identifier '(' expression* ')'
ParseIdentifierExpr()336 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
337   std::string IdName = IdentifierStr;
338 
339   getNextToken(); // eat identifier.
340 
341   if (CurTok != '(') // Simple variable ref.
342     return std::make_unique<VariableExprAST>(IdName);
343 
344   // Call.
345   getNextToken(); // eat (
346   std::vector<std::unique_ptr<ExprAST>> Args;
347   if (CurTok != ')') {
348     while (true) {
349       if (auto Arg = ParseExpression())
350         Args.push_back(std::move(Arg));
351       else
352         return nullptr;
353 
354       if (CurTok == ')')
355         break;
356 
357       if (CurTok != ',')
358         return LogError("Expected ')' or ',' in argument list");
359       getNextToken();
360     }
361   }
362 
363   // Eat the ')'.
364   getNextToken();
365 
366   return std::make_unique<CallExprAST>(IdName, std::move(Args));
367 }
368 
369 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()370 static std::unique_ptr<ExprAST> ParseIfExpr() {
371   getNextToken(); // eat the if.
372 
373   // condition.
374   auto Cond = ParseExpression();
375   if (!Cond)
376     return nullptr;
377 
378   if (CurTok != tok_then)
379     return LogError("expected then");
380   getNextToken(); // eat the then
381 
382   auto Then = ParseExpression();
383   if (!Then)
384     return nullptr;
385 
386   if (CurTok != tok_else)
387     return LogError("expected else");
388 
389   getNextToken();
390 
391   auto Else = ParseExpression();
392   if (!Else)
393     return nullptr;
394 
395   return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
396                                       std::move(Else));
397 }
398 
399 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()400 static std::unique_ptr<ExprAST> ParseForExpr() {
401   getNextToken(); // eat the for.
402 
403   if (CurTok != tok_identifier)
404     return LogError("expected identifier after for");
405 
406   std::string IdName = IdentifierStr;
407   getNextToken(); // eat identifier.
408 
409   if (CurTok != '=')
410     return LogError("expected '=' after for");
411   getNextToken(); // eat '='.
412 
413   auto Start = ParseExpression();
414   if (!Start)
415     return nullptr;
416   if (CurTok != ',')
417     return LogError("expected ',' after for start value");
418   getNextToken();
419 
420   auto End = ParseExpression();
421   if (!End)
422     return nullptr;
423 
424   // The step value is optional.
425   std::unique_ptr<ExprAST> Step;
426   if (CurTok == ',') {
427     getNextToken();
428     Step = ParseExpression();
429     if (!Step)
430       return nullptr;
431   }
432 
433   if (CurTok != tok_in)
434     return LogError("expected 'in' after for");
435   getNextToken(); // eat 'in'.
436 
437   auto Body = ParseExpression();
438   if (!Body)
439     return nullptr;
440 
441   return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
442                                        std::move(Step), std::move(Body));
443 }
444 
445 /// varexpr ::= 'var' identifier ('=' expression)?
446 //                    (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()447 static std::unique_ptr<ExprAST> ParseVarExpr() {
448   getNextToken(); // eat the var.
449 
450   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
451 
452   // At least one variable name is required.
453   if (CurTok != tok_identifier)
454     return LogError("expected identifier after var");
455 
456   while (true) {
457     std::string Name = IdentifierStr;
458     getNextToken(); // eat identifier.
459 
460     // Read the optional initializer.
461     std::unique_ptr<ExprAST> Init = nullptr;
462     if (CurTok == '=') {
463       getNextToken(); // eat the '='.
464 
465       Init = ParseExpression();
466       if (!Init)
467         return nullptr;
468     }
469 
470     VarNames.push_back(std::make_pair(Name, std::move(Init)));
471 
472     // End of var list, exit loop.
473     if (CurTok != ',')
474       break;
475     getNextToken(); // eat the ','.
476 
477     if (CurTok != tok_identifier)
478       return LogError("expected identifier list after var");
479   }
480 
481   // At this point, we have to have 'in'.
482   if (CurTok != tok_in)
483     return LogError("expected 'in' keyword after 'var'");
484   getNextToken(); // eat 'in'.
485 
486   auto Body = ParseExpression();
487   if (!Body)
488     return nullptr;
489 
490   return std::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
491 }
492 
493 /// primary
494 ///   ::= identifierexpr
495 ///   ::= numberexpr
496 ///   ::= parenexpr
497 ///   ::= ifexpr
498 ///   ::= forexpr
499 ///   ::= varexpr
ParsePrimary()500 static std::unique_ptr<ExprAST> ParsePrimary() {
501   switch (CurTok) {
502   default:
503     return LogError("unknown token when expecting an expression");
504   case tok_identifier:
505     return ParseIdentifierExpr();
506   case tok_number:
507     return ParseNumberExpr();
508   case '(':
509     return ParseParenExpr();
510   case tok_if:
511     return ParseIfExpr();
512   case tok_for:
513     return ParseForExpr();
514   case tok_var:
515     return ParseVarExpr();
516   }
517 }
518 
519 /// unary
520 ///   ::= primary
521 ///   ::= '!' unary
ParseUnary()522 static std::unique_ptr<ExprAST> ParseUnary() {
523   // If the current token is not an operator, it must be a primary expr.
524   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
525     return ParsePrimary();
526 
527   // If this is a unary operator, read it.
528   int Opc = CurTok;
529   getNextToken();
530   if (auto Operand = ParseUnary())
531     return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
532   return nullptr;
533 }
534 
535 /// binoprhs
536 ///   ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)537 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
538                                               std::unique_ptr<ExprAST> LHS) {
539   // If this is a binop, find its precedence.
540   while (true) {
541     int TokPrec = GetTokPrecedence();
542 
543     // If this is a binop that binds at least as tightly as the current binop,
544     // consume it, otherwise we are done.
545     if (TokPrec < ExprPrec)
546       return LHS;
547 
548     // Okay, we know this is a binop.
549     int BinOp = CurTok;
550     getNextToken(); // eat binop
551 
552     // Parse the unary expression after the binary operator.
553     auto RHS = ParseUnary();
554     if (!RHS)
555       return nullptr;
556 
557     // If BinOp binds less tightly with RHS than the operator after RHS, let
558     // the pending operator take RHS as its LHS.
559     int NextPrec = GetTokPrecedence();
560     if (TokPrec < NextPrec) {
561       RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
562       if (!RHS)
563         return nullptr;
564     }
565 
566     // Merge LHS/RHS.
567     LHS =
568         std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
569   }
570 }
571 
572 /// expression
573 ///   ::= unary binoprhs
574 ///
ParseExpression()575 static std::unique_ptr<ExprAST> ParseExpression() {
576   auto LHS = ParseUnary();
577   if (!LHS)
578     return nullptr;
579 
580   return ParseBinOpRHS(0, std::move(LHS));
581 }
582 
583 /// prototype
584 ///   ::= id '(' id* ')'
585 ///   ::= binary LETTER number? (id, id)
586 ///   ::= unary LETTER (id)
ParsePrototype()587 static std::unique_ptr<PrototypeAST> ParsePrototype() {
588   std::string FnName;
589 
590   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
591   unsigned BinaryPrecedence = 30;
592 
593   switch (CurTok) {
594   default:
595     return LogErrorP("Expected function name in prototype");
596   case tok_identifier:
597     FnName = IdentifierStr;
598     Kind = 0;
599     getNextToken();
600     break;
601   case tok_unary:
602     getNextToken();
603     if (!isascii(CurTok))
604       return LogErrorP("Expected unary operator");
605     FnName = "unary";
606     FnName += (char)CurTok;
607     Kind = 1;
608     getNextToken();
609     break;
610   case tok_binary:
611     getNextToken();
612     if (!isascii(CurTok))
613       return LogErrorP("Expected binary operator");
614     FnName = "binary";
615     FnName += (char)CurTok;
616     Kind = 2;
617     getNextToken();
618 
619     // Read the precedence if present.
620     if (CurTok == tok_number) {
621       if (NumVal < 1 || NumVal > 100)
622         return LogErrorP("Invalid precedecnce: must be 1..100");
623       BinaryPrecedence = (unsigned)NumVal;
624       getNextToken();
625     }
626     break;
627   }
628 
629   if (CurTok != '(')
630     return LogErrorP("Expected '(' in prototype");
631 
632   std::vector<std::string> ArgNames;
633   while (getNextToken() == tok_identifier)
634     ArgNames.push_back(IdentifierStr);
635   if (CurTok != ')')
636     return LogErrorP("Expected ')' in prototype");
637 
638   // success.
639   getNextToken(); // eat ')'.
640 
641   // Verify right number of names for operator.
642   if (Kind && ArgNames.size() != Kind)
643     return LogErrorP("Invalid number of operands for operator");
644 
645   return std::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
646                                          BinaryPrecedence);
647 }
648 
649 /// definition ::= 'def' prototype expression
ParseDefinition()650 static std::unique_ptr<FunctionAST> ParseDefinition() {
651   getNextToken(); // eat def.
652   auto Proto = ParsePrototype();
653   if (!Proto)
654     return nullptr;
655 
656   if (auto E = ParseExpression())
657     return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
658   return nullptr;
659 }
660 
661 /// toplevelexpr ::= expression
ParseTopLevelExpr()662 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
663   if (auto E = ParseExpression()) {
664     // Make an anonymous proto.
665     auto Proto = std::make_unique<PrototypeAST>("__anon_expr",
666                                                 std::vector<std::string>());
667     return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
668   }
669   return nullptr;
670 }
671 
672 /// external ::= 'extern' prototype
ParseExtern()673 static std::unique_ptr<PrototypeAST> ParseExtern() {
674   getNextToken(); // eat extern.
675   return ParsePrototype();
676 }
677 
678 //===----------------------------------------------------------------------===//
679 // Code Generation
680 //===----------------------------------------------------------------------===//
681 
682 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
683 static std::unique_ptr<LLVMContext> TheContext;
684 static std::unique_ptr<IRBuilder<>> Builder;
685 static std::unique_ptr<Module> TheModule;
686 static std::map<std::string, AllocaInst *> NamedValues;
687 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
688 static ExitOnError ExitOnErr;
689 
LogErrorV(const char * Str)690 Value *LogErrorV(const char *Str) {
691   LogError(Str);
692   return nullptr;
693 }
694 
getFunction(std::string Name)695 Function *getFunction(std::string Name) {
696   // First, see if the function has already been added to the current module.
697   if (auto *F = TheModule->getFunction(Name))
698     return F;
699 
700   // If not, check whether we can codegen the declaration from some existing
701   // prototype.
702   auto FI = FunctionProtos.find(Name);
703   if (FI != FunctionProtos.end())
704     return FI->second->codegen();
705 
706   // If no existing prototype exists, return null.
707   return nullptr;
708 }
709 
710 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
711 /// the function.  This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,StringRef VarName)712 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
713                                           StringRef VarName) {
714   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
715                    TheFunction->getEntryBlock().begin());
716   return TmpB.CreateAlloca(Type::getDoubleTy(*TheContext), nullptr, VarName);
717 }
718 
codegen()719 Value *NumberExprAST::codegen() {
720   return ConstantFP::get(*TheContext, APFloat(Val));
721 }
722 
codegen()723 Value *VariableExprAST::codegen() {
724   // Look this variable up in the function.
725   Value *V = NamedValues[Name];
726   if (!V)
727     return LogErrorV("Unknown variable name");
728 
729   // Load the value.
730   return Builder->CreateLoad(Type::getDoubleTy(*TheContext), V, Name.c_str());
731 }
732 
codegen()733 Value *UnaryExprAST::codegen() {
734   Value *OperandV = Operand->codegen();
735   if (!OperandV)
736     return nullptr;
737 
738   Function *F = getFunction(std::string("unary") + Opcode);
739   if (!F)
740     return LogErrorV("Unknown unary operator");
741 
742   return Builder->CreateCall(F, OperandV, "unop");
743 }
744 
codegen()745 Value *BinaryExprAST::codegen() {
746   // Special case '=' because we don't want to emit the LHS as an expression.
747   if (Op == '=') {
748     // Assignment requires the LHS to be an identifier.
749     // This assume we're building without RTTI because LLVM builds that way by
750     // default.  If you build LLVM with RTTI this can be changed to a
751     // dynamic_cast for automatic error checking.
752     VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
753     if (!LHSE)
754       return LogErrorV("destination of '=' must be a variable");
755     // Codegen the RHS.
756     Value *Val = RHS->codegen();
757     if (!Val)
758       return nullptr;
759 
760     // Look up the name.
761     Value *Variable = NamedValues[LHSE->getName()];
762     if (!Variable)
763       return LogErrorV("Unknown variable name");
764 
765     Builder->CreateStore(Val, Variable);
766     return Val;
767   }
768 
769   Value *L = LHS->codegen();
770   Value *R = RHS->codegen();
771   if (!L || !R)
772     return nullptr;
773 
774   switch (Op) {
775   case '+':
776     return Builder->CreateFAdd(L, R, "addtmp");
777   case '-':
778     return Builder->CreateFSub(L, R, "subtmp");
779   case '*':
780     return Builder->CreateFMul(L, R, "multmp");
781   case '<':
782     L = Builder->CreateFCmpULT(L, R, "cmptmp");
783     // Convert bool 0/1 to double 0.0 or 1.0
784     return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp");
785   default:
786     break;
787   }
788 
789   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
790   // a call to it.
791   Function *F = getFunction(std::string("binary") + Op);
792   assert(F && "binary operator not found!");
793 
794   Value *Ops[] = {L, R};
795   return Builder->CreateCall(F, Ops, "binop");
796 }
797 
codegen()798 Value *CallExprAST::codegen() {
799   // Look up the name in the global module table.
800   Function *CalleeF = getFunction(Callee);
801   if (!CalleeF)
802     return LogErrorV("Unknown function referenced");
803 
804   // If argument mismatch error.
805   if (CalleeF->arg_size() != Args.size())
806     return LogErrorV("Incorrect # arguments passed");
807 
808   std::vector<Value *> ArgsV;
809   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
810     ArgsV.push_back(Args[i]->codegen());
811     if (!ArgsV.back())
812       return nullptr;
813   }
814 
815   return Builder->CreateCall(CalleeF, ArgsV, "calltmp");
816 }
817 
codegen()818 Value *IfExprAST::codegen() {
819   Value *CondV = Cond->codegen();
820   if (!CondV)
821     return nullptr;
822 
823   // Convert condition to a bool by comparing equal to 0.0.
824   CondV = Builder->CreateFCmpONE(
825       CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");
826 
827   Function *TheFunction = Builder->GetInsertBlock()->getParent();
828 
829   // Create blocks for the then and else cases.  Insert the 'then' block at the
830   // end of the function.
831   BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
832   BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
833   BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");
834 
835   Builder->CreateCondBr(CondV, ThenBB, ElseBB);
836 
837   // Emit then value.
838   Builder->SetInsertPoint(ThenBB);
839 
840   Value *ThenV = Then->codegen();
841   if (!ThenV)
842     return nullptr;
843 
844   Builder->CreateBr(MergeBB);
845   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
846   ThenBB = Builder->GetInsertBlock();
847 
848   // Emit else block.
849   TheFunction->getBasicBlockList().push_back(ElseBB);
850   Builder->SetInsertPoint(ElseBB);
851 
852   Value *ElseV = Else->codegen();
853   if (!ElseV)
854     return nullptr;
855 
856   Builder->CreateBr(MergeBB);
857   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
858   ElseBB = Builder->GetInsertBlock();
859 
860   // Emit merge block.
861   TheFunction->getBasicBlockList().push_back(MergeBB);
862   Builder->SetInsertPoint(MergeBB);
863   PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");
864 
865   PN->addIncoming(ThenV, ThenBB);
866   PN->addIncoming(ElseV, ElseBB);
867   return PN;
868 }
869 
870 // Output for-loop as:
871 //   var = alloca double
872 //   ...
873 //   start = startexpr
874 //   store start -> var
875 //   goto loop
876 // loop:
877 //   ...
878 //   bodyexpr
879 //   ...
880 // loopend:
881 //   step = stepexpr
882 //   endcond = endexpr
883 //
884 //   curvar = load var
885 //   nextvar = curvar + step
886 //   store nextvar -> var
887 //   br endcond, loop, endloop
888 // outloop:
codegen()889 Value *ForExprAST::codegen() {
890   Function *TheFunction = Builder->GetInsertBlock()->getParent();
891 
892   // Create an alloca for the variable in the entry block.
893   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
894 
895   // Emit the start code first, without 'variable' in scope.
896   Value *StartVal = Start->codegen();
897   if (!StartVal)
898     return nullptr;
899 
900   // Store the value into the alloca.
901   Builder->CreateStore(StartVal, Alloca);
902 
903   // Make the new basic block for the loop header, inserting after current
904   // block.
905   BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction);
906 
907   // Insert an explicit fall through from the current block to the LoopBB.
908   Builder->CreateBr(LoopBB);
909 
910   // Start insertion in LoopBB.
911   Builder->SetInsertPoint(LoopBB);
912 
913   // Within the loop, the variable is defined equal to the PHI node.  If it
914   // shadows an existing variable, we have to restore it, so save it now.
915   AllocaInst *OldVal = NamedValues[VarName];
916   NamedValues[VarName] = Alloca;
917 
918   // Emit the body of the loop.  This, like any other expr, can change the
919   // current BB.  Note that we ignore the value computed by the body, but don't
920   // allow an error.
921   if (!Body->codegen())
922     return nullptr;
923 
924   // Emit the step value.
925   Value *StepVal = nullptr;
926   if (Step) {
927     StepVal = Step->codegen();
928     if (!StepVal)
929       return nullptr;
930   } else {
931     // If not specified, use 1.0.
932     StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
933   }
934 
935   // Compute the end condition.
936   Value *EndCond = End->codegen();
937   if (!EndCond)
938     return nullptr;
939 
940   // Reload, increment, and restore the alloca.  This handles the case where
941   // the body of the loop mutates the variable.
942   Value *CurVar = Builder->CreateLoad(Type::getDoubleTy(*TheContext), Alloca,
943                                       VarName.c_str());
944   Value *NextVar = Builder->CreateFAdd(CurVar, StepVal, "nextvar");
945   Builder->CreateStore(NextVar, Alloca);
946 
947   // Convert condition to a bool by comparing equal to 0.0.
948   EndCond = Builder->CreateFCmpONE(
949       EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");
950 
951   // Create the "after loop" block and insert it.
952   BasicBlock *AfterBB =
953       BasicBlock::Create(*TheContext, "afterloop", TheFunction);
954 
955   // Insert the conditional branch into the end of LoopEndBB.
956   Builder->CreateCondBr(EndCond, LoopBB, AfterBB);
957 
958   // Any new code will be inserted in AfterBB.
959   Builder->SetInsertPoint(AfterBB);
960 
961   // Restore the unshadowed variable.
962   if (OldVal)
963     NamedValues[VarName] = OldVal;
964   else
965     NamedValues.erase(VarName);
966 
967   // for expr always returns 0.0.
968   return Constant::getNullValue(Type::getDoubleTy(*TheContext));
969 }
970 
codegen()971 Value *VarExprAST::codegen() {
972   std::vector<AllocaInst *> OldBindings;
973 
974   Function *TheFunction = Builder->GetInsertBlock()->getParent();
975 
976   // Register all variables and emit their initializer.
977   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
978     const std::string &VarName = VarNames[i].first;
979     ExprAST *Init = VarNames[i].second.get();
980 
981     // Emit the initializer before adding the variable to scope, this prevents
982     // the initializer from referencing the variable itself, and permits stuff
983     // like this:
984     //  var a = 1 in
985     //    var a = a in ...   # refers to outer 'a'.
986     Value *InitVal;
987     if (Init) {
988       InitVal = Init->codegen();
989       if (!InitVal)
990         return nullptr;
991     } else { // If not specified, use 0.0.
992       InitVal = ConstantFP::get(*TheContext, APFloat(0.0));
993     }
994 
995     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
996     Builder->CreateStore(InitVal, Alloca);
997 
998     // Remember the old variable binding so that we can restore the binding when
999     // we unrecurse.
1000     OldBindings.push_back(NamedValues[VarName]);
1001 
1002     // Remember this binding.
1003     NamedValues[VarName] = Alloca;
1004   }
1005 
1006   // Codegen the body, now that all vars are in scope.
1007   Value *BodyVal = Body->codegen();
1008   if (!BodyVal)
1009     return nullptr;
1010 
1011   // Pop all our variables from scope.
1012   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1013     NamedValues[VarNames[i].first] = OldBindings[i];
1014 
1015   // Return the body computation.
1016   return BodyVal;
1017 }
1018 
codegen()1019 Function *PrototypeAST::codegen() {
1020   // Make the function type:  double(double,double) etc.
1021   std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext));
1022   FunctionType *FT =
1023       FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false);
1024 
1025   Function *F =
1026       Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1027 
1028   // Set names for all arguments.
1029   unsigned Idx = 0;
1030   for (auto &Arg : F->args())
1031     Arg.setName(Args[Idx++]);
1032 
1033   return F;
1034 }
1035 
getProto() const1036 const PrototypeAST& FunctionAST::getProto() const {
1037   return *Proto;
1038 }
1039 
getName() const1040 const std::string& FunctionAST::getName() const {
1041   return Proto->getName();
1042 }
1043 
codegen()1044 Function *FunctionAST::codegen() {
1045   // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1046   // reference to it for use below.
1047   auto &P = *Proto;
1048   FunctionProtos[Proto->getName()] = std::move(Proto);
1049   Function *TheFunction = getFunction(P.getName());
1050   if (!TheFunction)
1051     return nullptr;
1052 
1053   // If this is an operator, install it.
1054   if (P.isBinaryOp())
1055     BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1056 
1057   // Create a new basic block to start insertion into.
1058   BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
1059   Builder->SetInsertPoint(BB);
1060 
1061   // Record the function arguments in the NamedValues map.
1062   NamedValues.clear();
1063   for (auto &Arg : TheFunction->args()) {
1064     // Create an alloca for this variable.
1065     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1066 
1067     // Store the initial value into the alloca.
1068     Builder->CreateStore(&Arg, Alloca);
1069 
1070     // Add arguments to variable symbol table.
1071     NamedValues[std::string(Arg.getName())] = Alloca;
1072   }
1073 
1074   if (Value *RetVal = Body->codegen()) {
1075     // Finish off the function.
1076     Builder->CreateRet(RetVal);
1077 
1078     // Validate the generated code, checking for consistency.
1079     verifyFunction(*TheFunction);
1080 
1081     return TheFunction;
1082   }
1083 
1084   // Error reading body, remove function.
1085   TheFunction->eraseFromParent();
1086 
1087   if (P.isBinaryOp())
1088     BinopPrecedence.erase(P.getOperatorName());
1089   return nullptr;
1090 }
1091 
1092 //===----------------------------------------------------------------------===//
1093 // Top-Level parsing and JIT Driver
1094 //===----------------------------------------------------------------------===//
1095 
InitializeModule()1096 static void InitializeModule() {
1097   // Open a new context and module.
1098   TheContext = std::make_unique<LLVMContext>();
1099   TheModule = std::make_unique<Module>("my cool jit", *TheContext);
1100   TheModule->setDataLayout(TheJIT->getDataLayout());
1101 
1102   // Create a new builder for the module.
1103   Builder = std::make_unique<IRBuilder<>>(*TheContext);
1104 }
1105 
irgenAndTakeOwnership(FunctionAST & FnAST,const std::string & Suffix)1106 ThreadSafeModule irgenAndTakeOwnership(FunctionAST &FnAST,
1107                                        const std::string &Suffix) {
1108   if (auto *F = FnAST.codegen()) {
1109     F->setName(F->getName() + Suffix);
1110     auto TSM = ThreadSafeModule(std::move(TheModule), std::move(TheContext));
1111     // Start a new module.
1112     InitializeModule();
1113     return TSM;
1114   } else
1115     report_fatal_error("Couldn't compile lazily JIT'd function");
1116 }
1117 
HandleDefinition()1118 static void HandleDefinition() {
1119   if (auto FnAST = ParseDefinition()) {
1120     FunctionProtos[FnAST->getProto().getName()] =
1121       std::make_unique<PrototypeAST>(FnAST->getProto());
1122     ExitOnErr(TheJIT->addAST(std::move(FnAST)));
1123   } else {
1124     // Skip token for error recovery.
1125     getNextToken();
1126   }
1127 }
1128 
HandleExtern()1129 static void HandleExtern() {
1130   if (auto ProtoAST = ParseExtern()) {
1131     if (auto *FnIR = ProtoAST->codegen()) {
1132       fprintf(stderr, "Read extern: ");
1133       FnIR->print(errs());
1134       fprintf(stderr, "\n");
1135       FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1136     }
1137   } else {
1138     // Skip token for error recovery.
1139     getNextToken();
1140   }
1141 }
1142 
HandleTopLevelExpression()1143 static void HandleTopLevelExpression() {
1144   // Evaluate a top-level expression into an anonymous function.
1145   if (auto FnAST = ParseTopLevelExpr()) {
1146     if (FnAST->codegen()) {
1147       // Create a ResourceTracker to track JIT'd memory allocated to our
1148       // anonymous expression -- that way we can free it after executing.
1149       auto RT = TheJIT->getMainJITDylib().createResourceTracker();
1150 
1151       auto TSM = ThreadSafeModule(std::move(TheModule), std::move(TheContext));
1152       ExitOnErr(TheJIT->addModule(std::move(TSM), RT));
1153       InitializeModule();
1154 
1155       // Get the anonymous expression's JITSymbol.
1156       auto Sym = ExitOnErr(TheJIT->lookup("__anon_expr"));
1157 
1158       // Get the symbol's address and cast it to the right type (takes no
1159       // arguments, returns a double) so we can call it as a native function.
1160       auto *FP = (double (*)())(intptr_t)Sym.getAddress();
1161       fprintf(stderr, "Evaluated to %f\n", FP());
1162 
1163       // Delete the anonymous expression module from the JIT.
1164       ExitOnErr(RT->remove());
1165     }
1166   } else {
1167     // Skip token for error recovery.
1168     getNextToken();
1169   }
1170 }
1171 
1172 /// top ::= definition | external | expression | ';'
MainLoop()1173 static void MainLoop() {
1174   while (true) {
1175     fprintf(stderr, "ready> ");
1176     switch (CurTok) {
1177     case tok_eof:
1178       return;
1179     case ';': // ignore top-level semicolons.
1180       getNextToken();
1181       break;
1182     case tok_def:
1183       HandleDefinition();
1184       break;
1185     case tok_extern:
1186       HandleExtern();
1187       break;
1188     default:
1189       HandleTopLevelExpression();
1190       break;
1191     }
1192   }
1193 }
1194 
1195 //===----------------------------------------------------------------------===//
1196 // "Library" functions that can be "extern'd" from user code.
1197 //===----------------------------------------------------------------------===//
1198 
1199 /// putchard - putchar that takes a double and returns 0.
putchard(double X)1200 extern "C" double putchard(double X) {
1201   fputc((char)X, stderr);
1202   return 0;
1203 }
1204 
1205 /// printd - printf that takes a double prints it as "%f\n", returning 0.
printd(double X)1206 extern "C" double printd(double X) {
1207   fprintf(stderr, "%f\n", X);
1208   return 0;
1209 }
1210 
1211 //===----------------------------------------------------------------------===//
1212 // Main driver code.
1213 //===----------------------------------------------------------------------===//
1214 
main()1215 int main() {
1216   InitializeNativeTarget();
1217   InitializeNativeTargetAsmPrinter();
1218   InitializeNativeTargetAsmParser();
1219 
1220   // Install standard binary operators.
1221   // 1 is lowest precedence.
1222   BinopPrecedence['='] = 2;
1223   BinopPrecedence['<'] = 10;
1224   BinopPrecedence['+'] = 20;
1225   BinopPrecedence['-'] = 20;
1226   BinopPrecedence['*'] = 40; // highest.
1227 
1228   // Prime the first token.
1229   fprintf(stderr, "ready> ");
1230   getNextToken();
1231 
1232   TheJIT = ExitOnErr(KaleidoscopeJIT::Create());
1233   InitializeModule();
1234 
1235   // Run the main "interpreter loop" now.
1236   MainLoop();
1237 
1238   return 0;
1239 }
1240