1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for the loop memory dependence framework that
10 // was originally developed for the Loop Vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
15 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16 
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/Analysis/LoopAnalysisManager.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/Pass.h"
22 
23 namespace llvm {
24 
25 class AAResults;
26 class DataLayout;
27 class Loop;
28 class LoopAccessInfo;
29 class OptimizationRemarkEmitter;
30 class raw_ostream;
31 class SCEV;
32 class SCEVUnionPredicate;
33 class Value;
34 
35 /// Collection of parameters shared beetween the Loop Vectorizer and the
36 /// Loop Access Analysis.
37 struct VectorizerParams {
38   /// Maximum SIMD width.
39   static const unsigned MaxVectorWidth;
40 
41   /// VF as overridden by the user.
42   static unsigned VectorizationFactor;
43   /// Interleave factor as overridden by the user.
44   static unsigned VectorizationInterleave;
45   /// True if force-vector-interleave was specified by the user.
46   static bool isInterleaveForced();
47 
48   /// \When performing memory disambiguation checks at runtime do not
49   /// make more than this number of comparisons.
50   static unsigned RuntimeMemoryCheckThreshold;
51 };
52 
53 /// Checks memory dependences among accesses to the same underlying
54 /// object to determine whether there vectorization is legal or not (and at
55 /// which vectorization factor).
56 ///
57 /// Note: This class will compute a conservative dependence for access to
58 /// different underlying pointers. Clients, such as the loop vectorizer, will
59 /// sometimes deal these potential dependencies by emitting runtime checks.
60 ///
61 /// We use the ScalarEvolution framework to symbolically evalutate access
62 /// functions pairs. Since we currently don't restructure the loop we can rely
63 /// on the program order of memory accesses to determine their safety.
64 /// At the moment we will only deem accesses as safe for:
65 ///  * A negative constant distance assuming program order.
66 ///
67 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
68 ///            a[i] = tmp;                y = a[i];
69 ///
70 ///   The latter case is safe because later checks guarantuee that there can't
71 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
72 ///   the same variable: a header phi can only be an induction or a reduction, a
73 ///   reduction can't have a memory sink, an induction can't have a memory
74 ///   source). This is important and must not be violated (or we have to
75 ///   resort to checking for cycles through memory).
76 ///
77 ///  * A positive constant distance assuming program order that is bigger
78 ///    than the biggest memory access.
79 ///
80 ///     tmp = a[i]        OR              b[i] = x
81 ///     a[i+2] = tmp                      y = b[i+2];
82 ///
83 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
84 ///
85 ///  * Zero distances and all accesses have the same size.
86 ///
87 class MemoryDepChecker {
88 public:
89   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
90   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
91   /// Set of potential dependent memory accesses.
92   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
93 
94   /// Type to keep track of the status of the dependence check. The order of
95   /// the elements is important and has to be from most permissive to least
96   /// permissive.
97   enum class VectorizationSafetyStatus {
98     // Can vectorize safely without RT checks. All dependences are known to be
99     // safe.
100     Safe,
101     // Can possibly vectorize with RT checks to overcome unknown dependencies.
102     PossiblySafeWithRtChecks,
103     // Cannot vectorize due to known unsafe dependencies.
104     Unsafe,
105   };
106 
107   /// Dependece between memory access instructions.
108   struct Dependence {
109     /// The type of the dependence.
110     enum DepType {
111       // No dependence.
112       NoDep,
113       // We couldn't determine the direction or the distance.
114       Unknown,
115       // Lexically forward.
116       //
117       // FIXME: If we only have loop-independent forward dependences (e.g. a
118       // read and write of A[i]), LAA will locally deem the dependence "safe"
119       // without querying the MemoryDepChecker.  Therefore we can miss
120       // enumerating loop-independent forward dependences in
121       // getDependences.  Note that as soon as there are different
122       // indices used to access the same array, the MemoryDepChecker *is*
123       // queried and the dependence list is complete.
124       Forward,
125       // Forward, but if vectorized, is likely to prevent store-to-load
126       // forwarding.
127       ForwardButPreventsForwarding,
128       // Lexically backward.
129       Backward,
130       // Backward, but the distance allows a vectorization factor of
131       // MaxSafeDepDistBytes.
132       BackwardVectorizable,
133       // Same, but may prevent store-to-load forwarding.
134       BackwardVectorizableButPreventsForwarding
135     };
136 
137     /// String version of the types.
138     static const char *DepName[];
139 
140     /// Index of the source of the dependence in the InstMap vector.
141     unsigned Source;
142     /// Index of the destination of the dependence in the InstMap vector.
143     unsigned Destination;
144     /// The type of the dependence.
145     DepType Type;
146 
DependenceDependence147     Dependence(unsigned Source, unsigned Destination, DepType Type)
148         : Source(Source), Destination(Destination), Type(Type) {}
149 
150     /// Return the source instruction of the dependence.
151     Instruction *getSource(const LoopAccessInfo &LAI) const;
152     /// Return the destination instruction of the dependence.
153     Instruction *getDestination(const LoopAccessInfo &LAI) const;
154 
155     /// Dependence types that don't prevent vectorization.
156     static VectorizationSafetyStatus isSafeForVectorization(DepType Type);
157 
158     /// Lexically forward dependence.
159     bool isForward() const;
160     /// Lexically backward dependence.
161     bool isBackward() const;
162 
163     /// May be a lexically backward dependence type (includes Unknown).
164     bool isPossiblyBackward() const;
165 
166     /// Print the dependence.  \p Instr is used to map the instruction
167     /// indices to instructions.
168     void print(raw_ostream &OS, unsigned Depth,
169                const SmallVectorImpl<Instruction *> &Instrs) const;
170   };
171 
MemoryDepChecker(PredicatedScalarEvolution & PSE,const Loop * L)172   MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
173       : PSE(PSE), InnermostLoop(L), AccessIdx(0), MaxSafeDepDistBytes(0),
174         MaxSafeVectorWidthInBits(-1U),
175         FoundNonConstantDistanceDependence(false),
176         Status(VectorizationSafetyStatus::Safe), RecordDependences(true) {}
177 
178   /// Register the location (instructions are given increasing numbers)
179   /// of a write access.
180   void addAccess(StoreInst *SI);
181 
182   /// Register the location (instructions are given increasing numbers)
183   /// of a write access.
184   void addAccess(LoadInst *LI);
185 
186   /// Check whether the dependencies between the accesses are safe.
187   ///
188   /// Only checks sets with elements in \p CheckDeps.
189   bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
190                    const ValueToValueMap &Strides);
191 
192   /// No memory dependence was encountered that would inhibit
193   /// vectorization.
isSafeForVectorization()194   bool isSafeForVectorization() const {
195     return Status == VectorizationSafetyStatus::Safe;
196   }
197 
198   /// Return true if the number of elements that are safe to operate on
199   /// simultaneously is not bounded.
isSafeForAnyVectorWidth()200   bool isSafeForAnyVectorWidth() const {
201     return MaxSafeVectorWidthInBits == UINT_MAX;
202   }
203 
204   /// The maximum number of bytes of a vector register we can vectorize
205   /// the accesses safely with.
getMaxSafeDepDistBytes()206   uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
207 
208   /// Return the number of elements that are safe to operate on
209   /// simultaneously, multiplied by the size of the element in bits.
getMaxSafeVectorWidthInBits()210   uint64_t getMaxSafeVectorWidthInBits() const {
211     return MaxSafeVectorWidthInBits;
212   }
213 
214   /// In same cases when the dependency check fails we can still
215   /// vectorize the loop with a dynamic array access check.
shouldRetryWithRuntimeCheck()216   bool shouldRetryWithRuntimeCheck() const {
217     return FoundNonConstantDistanceDependence &&
218            Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks;
219   }
220 
221   /// Returns the memory dependences.  If null is returned we exceeded
222   /// the MaxDependences threshold and this information is not
223   /// available.
getDependences()224   const SmallVectorImpl<Dependence> *getDependences() const {
225     return RecordDependences ? &Dependences : nullptr;
226   }
227 
clearDependences()228   void clearDependences() { Dependences.clear(); }
229 
230   /// The vector of memory access instructions.  The indices are used as
231   /// instruction identifiers in the Dependence class.
getMemoryInstructions()232   const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
233     return InstMap;
234   }
235 
236   /// Generate a mapping between the memory instructions and their
237   /// indices according to program order.
generateInstructionOrderMap()238   DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
239     DenseMap<Instruction *, unsigned> OrderMap;
240 
241     for (unsigned I = 0; I < InstMap.size(); ++I)
242       OrderMap[InstMap[I]] = I;
243 
244     return OrderMap;
245   }
246 
247   /// Find the set of instructions that read or write via \p Ptr.
248   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
249                                                          bool isWrite) const;
250 
251 private:
252   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
253   /// applies dynamic knowledge to simplify SCEV expressions and convert them
254   /// to a more usable form. We need this in case assumptions about SCEV
255   /// expressions need to be made in order to avoid unknown dependences. For
256   /// example we might assume a unit stride for a pointer in order to prove
257   /// that a memory access is strided and doesn't wrap.
258   PredicatedScalarEvolution &PSE;
259   const Loop *InnermostLoop;
260 
261   /// Maps access locations (ptr, read/write) to program order.
262   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
263 
264   /// Memory access instructions in program order.
265   SmallVector<Instruction *, 16> InstMap;
266 
267   /// The program order index to be used for the next instruction.
268   unsigned AccessIdx;
269 
270   // We can access this many bytes in parallel safely.
271   uint64_t MaxSafeDepDistBytes;
272 
273   /// Number of elements (from consecutive iterations) that are safe to
274   /// operate on simultaneously, multiplied by the size of the element in bits.
275   /// The size of the element is taken from the memory access that is most
276   /// restrictive.
277   uint64_t MaxSafeVectorWidthInBits;
278 
279   /// If we see a non-constant dependence distance we can still try to
280   /// vectorize this loop with runtime checks.
281   bool FoundNonConstantDistanceDependence;
282 
283   /// Result of the dependence checks, indicating whether the checked
284   /// dependences are safe for vectorization, require RT checks or are known to
285   /// be unsafe.
286   VectorizationSafetyStatus Status;
287 
288   //// True if Dependences reflects the dependences in the
289   //// loop.  If false we exceeded MaxDependences and
290   //// Dependences is invalid.
291   bool RecordDependences;
292 
293   /// Memory dependences collected during the analysis.  Only valid if
294   /// RecordDependences is true.
295   SmallVector<Dependence, 8> Dependences;
296 
297   /// Check whether there is a plausible dependence between the two
298   /// accesses.
299   ///
300   /// Access \p A must happen before \p B in program order. The two indices
301   /// identify the index into the program order map.
302   ///
303   /// This function checks  whether there is a plausible dependence (or the
304   /// absence of such can't be proved) between the two accesses. If there is a
305   /// plausible dependence but the dependence distance is bigger than one
306   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
307   /// distance is smaller than any other distance encountered so far).
308   /// Otherwise, this function returns true signaling a possible dependence.
309   Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
310                                   const MemAccessInfo &B, unsigned BIdx,
311                                   const ValueToValueMap &Strides);
312 
313   /// Check whether the data dependence could prevent store-load
314   /// forwarding.
315   ///
316   /// \return false if we shouldn't vectorize at all or avoid larger
317   /// vectorization factors by limiting MaxSafeDepDistBytes.
318   bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
319 
320   /// Updates the current safety status with \p S. We can go from Safe to
321   /// either PossiblySafeWithRtChecks or Unsafe and from
322   /// PossiblySafeWithRtChecks to Unsafe.
323   void mergeInStatus(VectorizationSafetyStatus S);
324 };
325 
326 class RuntimePointerChecking;
327 /// A grouping of pointers. A single memcheck is required between
328 /// two groups.
329 struct RuntimeCheckingPtrGroup {
330   /// Create a new pointer checking group containing a single
331   /// pointer, with index \p Index in RtCheck.
332   RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck);
333 
RuntimeCheckingPtrGroupRuntimeCheckingPtrGroup334   RuntimeCheckingPtrGroup(unsigned Index, const SCEV *Start, const SCEV *End,
335                           unsigned AS)
336       : High(End), Low(Start), AddressSpace(AS) {
337     Members.push_back(Index);
338   }
339 
340   /// Tries to add the pointer recorded in RtCheck at index
341   /// \p Index to this pointer checking group. We can only add a pointer
342   /// to a checking group if we will still be able to get
343   /// the upper and lower bounds of the check. Returns true in case
344   /// of success, false otherwise.
345   bool addPointer(unsigned Index, RuntimePointerChecking &RtCheck);
346   bool addPointer(unsigned Index, const SCEV *Start, const SCEV *End,
347                   unsigned AS, ScalarEvolution &SE);
348 
349   /// The SCEV expression which represents the upper bound of all the
350   /// pointers in this group.
351   const SCEV *High;
352   /// The SCEV expression which represents the lower bound of all the
353   /// pointers in this group.
354   const SCEV *Low;
355   /// Indices of all the pointers that constitute this grouping.
356   SmallVector<unsigned, 2> Members;
357   /// Address space of the involved pointers.
358   unsigned AddressSpace;
359 };
360 
361 /// A memcheck which made up of a pair of grouped pointers.
362 typedef std::pair<const RuntimeCheckingPtrGroup *,
363                   const RuntimeCheckingPtrGroup *>
364     RuntimePointerCheck;
365 
366 /// Holds information about the memory runtime legality checks to verify
367 /// that a group of pointers do not overlap.
368 class RuntimePointerChecking {
369   friend struct RuntimeCheckingPtrGroup;
370 
371 public:
372   struct PointerInfo {
373     /// Holds the pointer value that we need to check.
374     TrackingVH<Value> PointerValue;
375     /// Holds the smallest byte address accessed by the pointer throughout all
376     /// iterations of the loop.
377     const SCEV *Start;
378     /// Holds the largest byte address accessed by the pointer throughout all
379     /// iterations of the loop, plus 1.
380     const SCEV *End;
381     /// Holds the information if this pointer is used for writing to memory.
382     bool IsWritePtr;
383     /// Holds the id of the set of pointers that could be dependent because of a
384     /// shared underlying object.
385     unsigned DependencySetId;
386     /// Holds the id of the disjoint alias set to which this pointer belongs.
387     unsigned AliasSetId;
388     /// SCEV for the access.
389     const SCEV *Expr;
390 
PointerInfoPointerInfo391     PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
392                 bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
393                 const SCEV *Expr)
394         : PointerValue(PointerValue), Start(Start), End(End),
395           IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
396           AliasSetId(AliasSetId), Expr(Expr) {}
397   };
398 
RuntimePointerChecking(ScalarEvolution * SE)399   RuntimePointerChecking(ScalarEvolution *SE) : Need(false), SE(SE) {}
400 
401   /// Reset the state of the pointer runtime information.
reset()402   void reset() {
403     Need = false;
404     Pointers.clear();
405     Checks.clear();
406   }
407 
408   /// Insert a pointer and calculate the start and end SCEVs.
409   /// We need \p PSE in order to compute the SCEV expression of the pointer
410   /// according to the assumptions that we've made during the analysis.
411   /// The method might also version the pointer stride according to \p Strides,
412   /// and add new predicates to \p PSE.
413   void insert(Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
414               unsigned ASId, const ValueToValueMap &Strides,
415               PredicatedScalarEvolution &PSE);
416 
417   /// No run-time memory checking is necessary.
empty()418   bool empty() const { return Pointers.empty(); }
419 
420   /// Generate the checks and store it.  This also performs the grouping
421   /// of pointers to reduce the number of memchecks necessary.
422   void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
423                       bool UseDependencies);
424 
425   /// Returns the checks that generateChecks created.
getChecks()426   const SmallVectorImpl<RuntimePointerCheck> &getChecks() const {
427     return Checks;
428   }
429 
430   /// Decide if we need to add a check between two groups of pointers,
431   /// according to needsChecking.
432   bool needsChecking(const RuntimeCheckingPtrGroup &M,
433                      const RuntimeCheckingPtrGroup &N) const;
434 
435   /// Returns the number of run-time checks required according to
436   /// needsChecking.
getNumberOfChecks()437   unsigned getNumberOfChecks() const { return Checks.size(); }
438 
439   /// Print the list run-time memory checks necessary.
440   void print(raw_ostream &OS, unsigned Depth = 0) const;
441 
442   /// Print \p Checks.
443   void printChecks(raw_ostream &OS,
444                    const SmallVectorImpl<RuntimePointerCheck> &Checks,
445                    unsigned Depth = 0) const;
446 
447   /// This flag indicates if we need to add the runtime check.
448   bool Need;
449 
450   /// Information about the pointers that may require checking.
451   SmallVector<PointerInfo, 2> Pointers;
452 
453   /// Holds a partitioning of pointers into "check groups".
454   SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups;
455 
456   /// Check if pointers are in the same partition
457   ///
458   /// \p PtrToPartition contains the partition number for pointers (-1 if the
459   /// pointer belongs to multiple partitions).
460   static bool
461   arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
462                              unsigned PtrIdx1, unsigned PtrIdx2);
463 
464   /// Decide whether we need to issue a run-time check for pointer at
465   /// index \p I and \p J to prove their independence.
466   bool needsChecking(unsigned I, unsigned J) const;
467 
468   /// Return PointerInfo for pointer at index \p PtrIdx.
getPointerInfo(unsigned PtrIdx)469   const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
470     return Pointers[PtrIdx];
471   }
472 
getSE()473   ScalarEvolution *getSE() const { return SE; }
474 
475 private:
476   /// Groups pointers such that a single memcheck is required
477   /// between two different groups. This will clear the CheckingGroups vector
478   /// and re-compute it. We will only group dependecies if \p UseDependencies
479   /// is true, otherwise we will create a separate group for each pointer.
480   void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
481                    bool UseDependencies);
482 
483   /// Generate the checks and return them.
484   SmallVector<RuntimePointerCheck, 4> generateChecks() const;
485 
486   /// Holds a pointer to the ScalarEvolution analysis.
487   ScalarEvolution *SE;
488 
489   /// Set of run-time checks required to establish independence of
490   /// otherwise may-aliasing pointers in the loop.
491   SmallVector<RuntimePointerCheck, 4> Checks;
492 };
493 
494 /// Drive the analysis of memory accesses in the loop
495 ///
496 /// This class is responsible for analyzing the memory accesses of a loop.  It
497 /// collects the accesses and then its main helper the AccessAnalysis class
498 /// finds and categorizes the dependences in buildDependenceSets.
499 ///
500 /// For memory dependences that can be analyzed at compile time, it determines
501 /// whether the dependence is part of cycle inhibiting vectorization.  This work
502 /// is delegated to the MemoryDepChecker class.
503 ///
504 /// For memory dependences that cannot be determined at compile time, it
505 /// generates run-time checks to prove independence.  This is done by
506 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
507 /// RuntimePointerCheck class.
508 ///
509 /// If pointers can wrap or can't be expressed as affine AddRec expressions by
510 /// ScalarEvolution, we will generate run-time checks by emitting a
511 /// SCEVUnionPredicate.
512 ///
513 /// Checks for both memory dependences and the SCEV predicates contained in the
514 /// PSE must be emitted in order for the results of this analysis to be valid.
515 class LoopAccessInfo {
516 public:
517   LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
518                  AAResults *AA, DominatorTree *DT, LoopInfo *LI);
519 
520   /// Return true we can analyze the memory accesses in the loop and there are
521   /// no memory dependence cycles.
canVectorizeMemory()522   bool canVectorizeMemory() const { return CanVecMem; }
523 
524   /// Return true if there is a convergent operation in the loop. There may
525   /// still be reported runtime pointer checks that would be required, but it is
526   /// not legal to insert them.
hasConvergentOp()527   bool hasConvergentOp() const { return HasConvergentOp; }
528 
getRuntimePointerChecking()529   const RuntimePointerChecking *getRuntimePointerChecking() const {
530     return PtrRtChecking.get();
531   }
532 
533   /// Number of memchecks required to prove independence of otherwise
534   /// may-alias pointers.
getNumRuntimePointerChecks()535   unsigned getNumRuntimePointerChecks() const {
536     return PtrRtChecking->getNumberOfChecks();
537   }
538 
539   /// Return true if the block BB needs to be predicated in order for the loop
540   /// to be vectorized.
541   static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
542                                     DominatorTree *DT);
543 
544   /// Returns true if the value V is uniform within the loop.
545   bool isUniform(Value *V) const;
546 
getMaxSafeDepDistBytes()547   uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
getNumStores()548   unsigned getNumStores() const { return NumStores; }
getNumLoads()549   unsigned getNumLoads() const { return NumLoads;}
550 
551   /// The diagnostics report generated for the analysis.  E.g. why we
552   /// couldn't analyze the loop.
getReport()553   const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
554 
555   /// the Memory Dependence Checker which can determine the
556   /// loop-independent and loop-carried dependences between memory accesses.
getDepChecker()557   const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
558 
559   /// Return the list of instructions that use \p Ptr to read or write
560   /// memory.
getInstructionsForAccess(Value * Ptr,bool isWrite)561   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
562                                                          bool isWrite) const {
563     return DepChecker->getInstructionsForAccess(Ptr, isWrite);
564   }
565 
566   /// If an access has a symbolic strides, this maps the pointer value to
567   /// the stride symbol.
getSymbolicStrides()568   const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }
569 
570   /// Pointer has a symbolic stride.
hasStride(Value * V)571   bool hasStride(Value *V) const { return StrideSet.count(V); }
572 
573   /// Print the information about the memory accesses in the loop.
574   void print(raw_ostream &OS, unsigned Depth = 0) const;
575 
576   /// If the loop has memory dependence involving an invariant address, i.e. two
577   /// stores or a store and a load, then return true, else return false.
hasDependenceInvolvingLoopInvariantAddress()578   bool hasDependenceInvolvingLoopInvariantAddress() const {
579     return HasDependenceInvolvingLoopInvariantAddress;
580   }
581 
582   /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
583   /// them to a more usable form.  All SCEV expressions during the analysis
584   /// should be re-written (and therefore simplified) according to PSE.
585   /// A user of LoopAccessAnalysis will need to emit the runtime checks
586   /// associated with this predicate.
getPSE()587   const PredicatedScalarEvolution &getPSE() const { return *PSE; }
588 
589 private:
590   /// Analyze the loop.
591   void analyzeLoop(AAResults *AA, LoopInfo *LI,
592                    const TargetLibraryInfo *TLI, DominatorTree *DT);
593 
594   /// Check if the structure of the loop allows it to be analyzed by this
595   /// pass.
596   bool canAnalyzeLoop();
597 
598   /// Save the analysis remark.
599   ///
600   /// LAA does not directly emits the remarks.  Instead it stores it which the
601   /// client can retrieve and presents as its own analysis
602   /// (e.g. -Rpass-analysis=loop-vectorize).
603   OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
604                                              Instruction *Instr = nullptr);
605 
606   /// Collect memory access with loop invariant strides.
607   ///
608   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
609   /// invariant.
610   void collectStridedAccess(Value *LoadOrStoreInst);
611 
612   std::unique_ptr<PredicatedScalarEvolution> PSE;
613 
614   /// We need to check that all of the pointers in this list are disjoint
615   /// at runtime. Using std::unique_ptr to make using move ctor simpler.
616   std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
617 
618   /// the Memory Dependence Checker which can determine the
619   /// loop-independent and loop-carried dependences between memory accesses.
620   std::unique_ptr<MemoryDepChecker> DepChecker;
621 
622   Loop *TheLoop;
623 
624   unsigned NumLoads;
625   unsigned NumStores;
626 
627   uint64_t MaxSafeDepDistBytes;
628 
629   /// Cache the result of analyzeLoop.
630   bool CanVecMem;
631   bool HasConvergentOp;
632 
633   /// Indicator that there are non vectorizable stores to a uniform address.
634   bool HasDependenceInvolvingLoopInvariantAddress;
635 
636   /// The diagnostics report generated for the analysis.  E.g. why we
637   /// couldn't analyze the loop.
638   std::unique_ptr<OptimizationRemarkAnalysis> Report;
639 
640   /// If an access has a symbolic strides, this maps the pointer value to
641   /// the stride symbol.
642   ValueToValueMap SymbolicStrides;
643 
644   /// Set of symbolic strides values.
645   SmallPtrSet<Value *, 8> StrideSet;
646 };
647 
648 Value *stripIntegerCast(Value *V);
649 
650 /// Return the SCEV corresponding to a pointer with the symbolic stride
651 /// replaced with constant one, assuming the SCEV predicate associated with
652 /// \p PSE is true.
653 ///
654 /// If necessary this method will version the stride of the pointer according
655 /// to \p PtrToStride and therefore add further predicates to \p PSE.
656 ///
657 /// \p PtrToStride provides the mapping between the pointer value and its
658 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
659 const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
660                                       const ValueToValueMap &PtrToStride,
661                                       Value *Ptr);
662 
663 /// If the pointer has a constant stride return it in units of the access type
664 /// size.  Otherwise return zero.
665 ///
666 /// Ensure that it does not wrap in the address space, assuming the predicate
667 /// associated with \p PSE is true.
668 ///
669 /// If necessary this method will version the stride of the pointer according
670 /// to \p PtrToStride and therefore add further predicates to \p PSE.
671 /// The \p Assume parameter indicates if we are allowed to make additional
672 /// run-time assumptions.
673 int64_t getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr,
674                      const Loop *Lp,
675                      const ValueToValueMap &StridesMap = ValueToValueMap(),
676                      bool Assume = false, bool ShouldCheckWrap = true);
677 
678 /// Returns the distance between the pointers \p PtrA and \p PtrB iff they are
679 /// compatible and it is possible to calculate the distance between them. This
680 /// is a simple API that does not depend on the analysis pass.
681 /// \param StrictCheck Ensure that the calculated distance matches the
682 /// type-based one after all the bitcasts removal in the provided pointers.
683 Optional<int> getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB,
684                               Value *PtrB, const DataLayout &DL,
685                               ScalarEvolution &SE, bool StrictCheck = false,
686                               bool CheckType = true);
687 
688 /// Attempt to sort the pointers in \p VL and return the sorted indices
689 /// in \p SortedIndices, if reordering is required.
690 ///
691 /// Returns 'true' if sorting is legal, otherwise returns 'false'.
692 ///
693 /// For example, for a given \p VL of memory accesses in program order, a[i+4],
694 /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
695 /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
696 /// saves the mask for actual memory accesses in program order in
697 /// \p SortedIndices as <1,2,0,3>
698 bool sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, const DataLayout &DL,
699                      ScalarEvolution &SE,
700                      SmallVectorImpl<unsigned> &SortedIndices);
701 
702 /// Returns true if the memory operations \p A and \p B are consecutive.
703 /// This is a simple API that does not depend on the analysis pass.
704 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
705                          ScalarEvolution &SE, bool CheckType = true);
706 
707 /// This analysis provides dependence information for the memory accesses
708 /// of a loop.
709 ///
710 /// It runs the analysis for a loop on demand.  This can be initiated by
711 /// querying the loop access info via LAA::getInfo.  getInfo return a
712 /// LoopAccessInfo object.  See this class for the specifics of what information
713 /// is provided.
714 class LoopAccessLegacyAnalysis : public FunctionPass {
715 public:
716   static char ID;
717 
718   LoopAccessLegacyAnalysis();
719 
720   bool runOnFunction(Function &F) override;
721 
722   void getAnalysisUsage(AnalysisUsage &AU) const override;
723 
724   /// Query the result of the loop access information for the loop \p L.
725   ///
726   /// If there is no cached result available run the analysis.
727   const LoopAccessInfo &getInfo(Loop *L);
728 
releaseMemory()729   void releaseMemory() override {
730     // Invalidate the cache when the pass is freed.
731     LoopAccessInfoMap.clear();
732   }
733 
734   /// Print the result of the analysis when invoked with -analyze.
735   void print(raw_ostream &OS, const Module *M = nullptr) const override;
736 
737 private:
738   /// The cache.
739   DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
740 
741   // The used analysis passes.
742   ScalarEvolution *SE = nullptr;
743   const TargetLibraryInfo *TLI = nullptr;
744   AAResults *AA = nullptr;
745   DominatorTree *DT = nullptr;
746   LoopInfo *LI = nullptr;
747 };
748 
749 /// This analysis provides dependence information for the memory
750 /// accesses of a loop.
751 ///
752 /// It runs the analysis for a loop on demand.  This can be initiated by
753 /// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
754 /// getResult return a LoopAccessInfo object.  See this class for the
755 /// specifics of what information is provided.
756 class LoopAccessAnalysis
757     : public AnalysisInfoMixin<LoopAccessAnalysis> {
758   friend AnalysisInfoMixin<LoopAccessAnalysis>;
759   static AnalysisKey Key;
760 
761 public:
762   typedef LoopAccessInfo Result;
763 
764   Result run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR);
765 };
766 
getSource(const LoopAccessInfo & LAI)767 inline Instruction *MemoryDepChecker::Dependence::getSource(
768     const LoopAccessInfo &LAI) const {
769   return LAI.getDepChecker().getMemoryInstructions()[Source];
770 }
771 
getDestination(const LoopAccessInfo & LAI)772 inline Instruction *MemoryDepChecker::Dependence::getDestination(
773     const LoopAccessInfo &LAI) const {
774   return LAI.getDepChecker().getMemoryInstructions()[Destination];
775 }
776 
777 } // End llvm namespace
778 
779 #endif
780