1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GetElementPtrTypeIterator.h"
47 #include "llvm/IR/GlobalAlias.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/IntrinsicsAArch64.h"
56 #include "llvm/IR/IntrinsicsRISCV.h"
57 #include "llvm/IR/IntrinsicsX86.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PatternMatch.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/KnownBits.h"
71 #include "llvm/Support/MathExtras.h"
72 #include <algorithm>
73 #include <array>
74 #include <cassert>
75 #include <cstdint>
76 #include <iterator>
77 #include <utility>
78 
79 using namespace llvm;
80 using namespace llvm::PatternMatch;
81 
82 // Controls the number of uses of the value searched for possible
83 // dominating comparisons.
84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
85                                               cl::Hidden, cl::init(20));
86 
87 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
88 /// returns the element type's bitwidth.
getBitWidth(Type * Ty,const DataLayout & DL)89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
90   if (unsigned BitWidth = Ty->getScalarSizeInBits())
91     return BitWidth;
92 
93   return DL.getPointerTypeSizeInBits(Ty);
94 }
95 
96 namespace {
97 
98 // Simplifying using an assume can only be done in a particular control-flow
99 // context (the context instruction provides that context). If an assume and
100 // the context instruction are not in the same block then the DT helps in
101 // figuring out if we can use it.
102 struct Query {
103   const DataLayout &DL;
104   AssumptionCache *AC;
105   const Instruction *CxtI;
106   const DominatorTree *DT;
107 
108   // Unlike the other analyses, this may be a nullptr because not all clients
109   // provide it currently.
110   OptimizationRemarkEmitter *ORE;
111 
112   /// If true, it is safe to use metadata during simplification.
113   InstrInfoQuery IIQ;
114 
Query__anon6905156c0111::Query115   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
116         const DominatorTree *DT, bool UseInstrInfo,
117         OptimizationRemarkEmitter *ORE = nullptr)
118       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
119 };
120 
121 } // end anonymous namespace
122 
123 // Given the provided Value and, potentially, a context instruction, return
124 // the preferred context instruction (if any).
safeCxtI(const Value * V,const Instruction * CxtI)125 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
126   // If we've been provided with a context instruction, then use that (provided
127   // it has been inserted).
128   if (CxtI && CxtI->getParent())
129     return CxtI;
130 
131   // If the value is really an already-inserted instruction, then use that.
132   CxtI = dyn_cast<Instruction>(V);
133   if (CxtI && CxtI->getParent())
134     return CxtI;
135 
136   return nullptr;
137 }
138 
safeCxtI(const Value * V1,const Value * V2,const Instruction * CxtI)139 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
140   // If we've been provided with a context instruction, then use that (provided
141   // it has been inserted).
142   if (CxtI && CxtI->getParent())
143     return CxtI;
144 
145   // If the value is really an already-inserted instruction, then use that.
146   CxtI = dyn_cast<Instruction>(V1);
147   if (CxtI && CxtI->getParent())
148     return CxtI;
149 
150   CxtI = dyn_cast<Instruction>(V2);
151   if (CxtI && CxtI->getParent())
152     return CxtI;
153 
154   return nullptr;
155 }
156 
getShuffleDemandedElts(const ShuffleVectorInst * Shuf,const APInt & DemandedElts,APInt & DemandedLHS,APInt & DemandedRHS)157 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
158                                    const APInt &DemandedElts,
159                                    APInt &DemandedLHS, APInt &DemandedRHS) {
160   // The length of scalable vectors is unknown at compile time, thus we
161   // cannot check their values
162   if (isa<ScalableVectorType>(Shuf->getType()))
163     return false;
164 
165   int NumElts =
166       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
167   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
168   DemandedLHS = DemandedRHS = APInt::getZero(NumElts);
169   if (DemandedElts.isZero())
170     return true;
171   // Simple case of a shuffle with zeroinitializer.
172   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
173     DemandedLHS.setBit(0);
174     return true;
175   }
176   for (int i = 0; i != NumMaskElts; ++i) {
177     if (!DemandedElts[i])
178       continue;
179     int M = Shuf->getMaskValue(i);
180     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
181 
182     // For undef elements, we don't know anything about the common state of
183     // the shuffle result.
184     if (M == -1)
185       return false;
186     if (M < NumElts)
187       DemandedLHS.setBit(M % NumElts);
188     else
189       DemandedRHS.setBit(M % NumElts);
190   }
191 
192   return true;
193 }
194 
195 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
196                              KnownBits &Known, unsigned Depth, const Query &Q);
197 
computeKnownBits(const Value * V,KnownBits & Known,unsigned Depth,const Query & Q)198 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
199                              const Query &Q) {
200   // FIXME: We currently have no way to represent the DemandedElts of a scalable
201   // vector
202   if (isa<ScalableVectorType>(V->getType())) {
203     Known.resetAll();
204     return;
205   }
206 
207   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
208   APInt DemandedElts =
209       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
210   computeKnownBits(V, DemandedElts, Known, Depth, Q);
211 }
212 
computeKnownBits(const Value * V,KnownBits & Known,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,OptimizationRemarkEmitter * ORE,bool UseInstrInfo)213 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
214                             const DataLayout &DL, unsigned Depth,
215                             AssumptionCache *AC, const Instruction *CxtI,
216                             const DominatorTree *DT,
217                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
218   ::computeKnownBits(V, Known, Depth,
219                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
220 }
221 
computeKnownBits(const Value * V,const APInt & DemandedElts,KnownBits & Known,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,OptimizationRemarkEmitter * ORE,bool UseInstrInfo)222 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
223                             KnownBits &Known, const DataLayout &DL,
224                             unsigned Depth, AssumptionCache *AC,
225                             const Instruction *CxtI, const DominatorTree *DT,
226                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
227   ::computeKnownBits(V, DemandedElts, Known, Depth,
228                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
229 }
230 
231 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
232                                   unsigned Depth, const Query &Q);
233 
234 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
235                                   const Query &Q);
236 
computeKnownBits(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,OptimizationRemarkEmitter * ORE,bool UseInstrInfo)237 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
238                                  unsigned Depth, AssumptionCache *AC,
239                                  const Instruction *CxtI,
240                                  const DominatorTree *DT,
241                                  OptimizationRemarkEmitter *ORE,
242                                  bool UseInstrInfo) {
243   return ::computeKnownBits(
244       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
245 }
246 
computeKnownBits(const Value * V,const APInt & DemandedElts,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,OptimizationRemarkEmitter * ORE,bool UseInstrInfo)247 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
248                                  const DataLayout &DL, unsigned Depth,
249                                  AssumptionCache *AC, const Instruction *CxtI,
250                                  const DominatorTree *DT,
251                                  OptimizationRemarkEmitter *ORE,
252                                  bool UseInstrInfo) {
253   return ::computeKnownBits(
254       V, DemandedElts, Depth,
255       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
256 }
257 
haveNoCommonBitsSet(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)258 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
259                                const DataLayout &DL, AssumptionCache *AC,
260                                const Instruction *CxtI, const DominatorTree *DT,
261                                bool UseInstrInfo) {
262   assert(LHS->getType() == RHS->getType() &&
263          "LHS and RHS should have the same type");
264   assert(LHS->getType()->isIntOrIntVectorTy() &&
265          "LHS and RHS should be integers");
266   // Look for an inverted mask: (X & ~M) op (Y & M).
267   Value *M;
268   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
269       match(RHS, m_c_And(m_Specific(M), m_Value())))
270     return true;
271   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
272       match(LHS, m_c_And(m_Specific(M), m_Value())))
273     return true;
274   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
275   KnownBits LHSKnown(IT->getBitWidth());
276   KnownBits RHSKnown(IT->getBitWidth());
277   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
278   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
279   return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
280 }
281 
isOnlyUsedInZeroEqualityComparison(const Instruction * I)282 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
283   return !I->user_empty() && all_of(I->users(), [](const User *U) {
284     ICmpInst::Predicate P;
285     return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
286   });
287 }
288 
289 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
290                                    const Query &Q);
291 
isKnownToBeAPowerOfTwo(const Value * V,const DataLayout & DL,bool OrZero,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)292 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
293                                   bool OrZero, unsigned Depth,
294                                   AssumptionCache *AC, const Instruction *CxtI,
295                                   const DominatorTree *DT, bool UseInstrInfo) {
296   return ::isKnownToBeAPowerOfTwo(
297       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
298 }
299 
300 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
301                            unsigned Depth, const Query &Q);
302 
303 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
304 
isKnownNonZero(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)305 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
306                           AssumptionCache *AC, const Instruction *CxtI,
307                           const DominatorTree *DT, bool UseInstrInfo) {
308   return ::isKnownNonZero(V, Depth,
309                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
310 }
311 
isKnownNonNegative(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)312 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
313                               unsigned Depth, AssumptionCache *AC,
314                               const Instruction *CxtI, const DominatorTree *DT,
315                               bool UseInstrInfo) {
316   KnownBits Known =
317       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
318   return Known.isNonNegative();
319 }
320 
isKnownPositive(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)321 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
322                            AssumptionCache *AC, const Instruction *CxtI,
323                            const DominatorTree *DT, bool UseInstrInfo) {
324   if (auto *CI = dyn_cast<ConstantInt>(V))
325     return CI->getValue().isStrictlyPositive();
326 
327   // TODO: We'd doing two recursive queries here.  We should factor this such
328   // that only a single query is needed.
329   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
330          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
331 }
332 
isKnownNegative(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)333 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
334                            AssumptionCache *AC, const Instruction *CxtI,
335                            const DominatorTree *DT, bool UseInstrInfo) {
336   KnownBits Known =
337       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
338   return Known.isNegative();
339 }
340 
341 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
342                             const Query &Q);
343 
isKnownNonEqual(const Value * V1,const Value * V2,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)344 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
345                            const DataLayout &DL, AssumptionCache *AC,
346                            const Instruction *CxtI, const DominatorTree *DT,
347                            bool UseInstrInfo) {
348   return ::isKnownNonEqual(V1, V2, 0,
349                            Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
350                                  UseInstrInfo, /*ORE=*/nullptr));
351 }
352 
353 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
354                               const Query &Q);
355 
MaskedValueIsZero(const Value * V,const APInt & Mask,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)356 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
357                              const DataLayout &DL, unsigned Depth,
358                              AssumptionCache *AC, const Instruction *CxtI,
359                              const DominatorTree *DT, bool UseInstrInfo) {
360   return ::MaskedValueIsZero(
361       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
362 }
363 
364 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
365                                    unsigned Depth, const Query &Q);
366 
ComputeNumSignBits(const Value * V,unsigned Depth,const Query & Q)367 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
368                                    const Query &Q) {
369   // FIXME: We currently have no way to represent the DemandedElts of a scalable
370   // vector
371   if (isa<ScalableVectorType>(V->getType()))
372     return 1;
373 
374   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
375   APInt DemandedElts =
376       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
377   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
378 }
379 
ComputeNumSignBits(const Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)380 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
381                                   unsigned Depth, AssumptionCache *AC,
382                                   const Instruction *CxtI,
383                                   const DominatorTree *DT, bool UseInstrInfo) {
384   return ::ComputeNumSignBits(
385       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
386 }
387 
computeKnownBitsAddSub(bool Add,const Value * Op0,const Value * Op1,bool NSW,const APInt & DemandedElts,KnownBits & KnownOut,KnownBits & Known2,unsigned Depth,const Query & Q)388 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
389                                    bool NSW, const APInt &DemandedElts,
390                                    KnownBits &KnownOut, KnownBits &Known2,
391                                    unsigned Depth, const Query &Q) {
392   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
393 
394   // If one operand is unknown and we have no nowrap information,
395   // the result will be unknown independently of the second operand.
396   if (KnownOut.isUnknown() && !NSW)
397     return;
398 
399   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
400   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
401 }
402 
computeKnownBitsMul(const Value * Op0,const Value * Op1,bool NSW,const APInt & DemandedElts,KnownBits & Known,KnownBits & Known2,unsigned Depth,const Query & Q)403 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
404                                 const APInt &DemandedElts, KnownBits &Known,
405                                 KnownBits &Known2, unsigned Depth,
406                                 const Query &Q) {
407   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
408   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
409 
410   bool isKnownNegative = false;
411   bool isKnownNonNegative = false;
412   // If the multiplication is known not to overflow, compute the sign bit.
413   if (NSW) {
414     if (Op0 == Op1) {
415       // The product of a number with itself is non-negative.
416       isKnownNonNegative = true;
417     } else {
418       bool isKnownNonNegativeOp1 = Known.isNonNegative();
419       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
420       bool isKnownNegativeOp1 = Known.isNegative();
421       bool isKnownNegativeOp0 = Known2.isNegative();
422       // The product of two numbers with the same sign is non-negative.
423       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
424                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
425       // The product of a negative number and a non-negative number is either
426       // negative or zero.
427       if (!isKnownNonNegative)
428         isKnownNegative =
429             (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
430              Known2.isNonZero()) ||
431             (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
432     }
433   }
434 
435   Known = KnownBits::mul(Known, Known2);
436 
437   // Only make use of no-wrap flags if we failed to compute the sign bit
438   // directly.  This matters if the multiplication always overflows, in
439   // which case we prefer to follow the result of the direct computation,
440   // though as the program is invoking undefined behaviour we can choose
441   // whatever we like here.
442   if (isKnownNonNegative && !Known.isNegative())
443     Known.makeNonNegative();
444   else if (isKnownNegative && !Known.isNonNegative())
445     Known.makeNegative();
446 }
447 
computeKnownBitsFromRangeMetadata(const MDNode & Ranges,KnownBits & Known)448 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
449                                              KnownBits &Known) {
450   unsigned BitWidth = Known.getBitWidth();
451   unsigned NumRanges = Ranges.getNumOperands() / 2;
452   assert(NumRanges >= 1);
453 
454   Known.Zero.setAllBits();
455   Known.One.setAllBits();
456 
457   for (unsigned i = 0; i < NumRanges; ++i) {
458     ConstantInt *Lower =
459         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
460     ConstantInt *Upper =
461         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
462     ConstantRange Range(Lower->getValue(), Upper->getValue());
463 
464     // The first CommonPrefixBits of all values in Range are equal.
465     unsigned CommonPrefixBits =
466         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
467     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
468     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
469     Known.One &= UnsignedMax & Mask;
470     Known.Zero &= ~UnsignedMax & Mask;
471   }
472 }
473 
isEphemeralValueOf(const Instruction * I,const Value * E)474 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
475   SmallVector<const Value *, 16> WorkSet(1, I);
476   SmallPtrSet<const Value *, 32> Visited;
477   SmallPtrSet<const Value *, 16> EphValues;
478 
479   // The instruction defining an assumption's condition itself is always
480   // considered ephemeral to that assumption (even if it has other
481   // non-ephemeral users). See r246696's test case for an example.
482   if (is_contained(I->operands(), E))
483     return true;
484 
485   while (!WorkSet.empty()) {
486     const Value *V = WorkSet.pop_back_val();
487     if (!Visited.insert(V).second)
488       continue;
489 
490     // If all uses of this value are ephemeral, then so is this value.
491     if (llvm::all_of(V->users(), [&](const User *U) {
492                                    return EphValues.count(U);
493                                  })) {
494       if (V == E)
495         return true;
496 
497       if (V == I || isSafeToSpeculativelyExecute(V)) {
498        EphValues.insert(V);
499        if (const User *U = dyn_cast<User>(V))
500          append_range(WorkSet, U->operands());
501       }
502     }
503   }
504 
505   return false;
506 }
507 
508 // Is this an intrinsic that cannot be speculated but also cannot trap?
isAssumeLikeIntrinsic(const Instruction * I)509 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
510   if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
511     return CI->isAssumeLikeIntrinsic();
512 
513   return false;
514 }
515 
isValidAssumeForContext(const Instruction * Inv,const Instruction * CxtI,const DominatorTree * DT)516 bool llvm::isValidAssumeForContext(const Instruction *Inv,
517                                    const Instruction *CxtI,
518                                    const DominatorTree *DT) {
519   // There are two restrictions on the use of an assume:
520   //  1. The assume must dominate the context (or the control flow must
521   //     reach the assume whenever it reaches the context).
522   //  2. The context must not be in the assume's set of ephemeral values
523   //     (otherwise we will use the assume to prove that the condition
524   //     feeding the assume is trivially true, thus causing the removal of
525   //     the assume).
526 
527   if (Inv->getParent() == CxtI->getParent()) {
528     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
529     // in the BB.
530     if (Inv->comesBefore(CxtI))
531       return true;
532 
533     // Don't let an assume affect itself - this would cause the problems
534     // `isEphemeralValueOf` is trying to prevent, and it would also make
535     // the loop below go out of bounds.
536     if (Inv == CxtI)
537       return false;
538 
539     // The context comes first, but they're both in the same block.
540     // Make sure there is nothing in between that might interrupt
541     // the control flow, not even CxtI itself.
542     // We limit the scan distance between the assume and its context instruction
543     // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
544     // it can be adjusted if needed (could be turned into a cl::opt).
545     auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
546     if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
547       return false;
548 
549     return !isEphemeralValueOf(Inv, CxtI);
550   }
551 
552   // Inv and CxtI are in different blocks.
553   if (DT) {
554     if (DT->dominates(Inv, CxtI))
555       return true;
556   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
557     // We don't have a DT, but this trivially dominates.
558     return true;
559   }
560 
561   return false;
562 }
563 
cmpExcludesZero(CmpInst::Predicate Pred,const Value * RHS)564 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
565   // v u> y implies v != 0.
566   if (Pred == ICmpInst::ICMP_UGT)
567     return true;
568 
569   // Special-case v != 0 to also handle v != null.
570   if (Pred == ICmpInst::ICMP_NE)
571     return match(RHS, m_Zero());
572 
573   // All other predicates - rely on generic ConstantRange handling.
574   const APInt *C;
575   if (!match(RHS, m_APInt(C)))
576     return false;
577 
578   ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
579   return !TrueValues.contains(APInt::getZero(C->getBitWidth()));
580 }
581 
isKnownNonZeroFromAssume(const Value * V,const Query & Q)582 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
583   // Use of assumptions is context-sensitive. If we don't have a context, we
584   // cannot use them!
585   if (!Q.AC || !Q.CxtI)
586     return false;
587 
588   if (Q.CxtI && V->getType()->isPointerTy()) {
589     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
590     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
591                               V->getType()->getPointerAddressSpace()))
592       AttrKinds.push_back(Attribute::Dereferenceable);
593 
594     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
595       return true;
596   }
597 
598   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
599     if (!AssumeVH)
600       continue;
601     CallInst *I = cast<CallInst>(AssumeVH);
602     assert(I->getFunction() == Q.CxtI->getFunction() &&
603            "Got assumption for the wrong function!");
604 
605     // Warning: This loop can end up being somewhat performance sensitive.
606     // We're running this loop for once for each value queried resulting in a
607     // runtime of ~O(#assumes * #values).
608 
609     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
610            "must be an assume intrinsic");
611 
612     Value *RHS;
613     CmpInst::Predicate Pred;
614     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
615     if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
616       return false;
617 
618     if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
619       return true;
620   }
621 
622   return false;
623 }
624 
computeKnownBitsFromAssume(const Value * V,KnownBits & Known,unsigned Depth,const Query & Q)625 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
626                                        unsigned Depth, const Query &Q) {
627   // Use of assumptions is context-sensitive. If we don't have a context, we
628   // cannot use them!
629   if (!Q.AC || !Q.CxtI)
630     return;
631 
632   unsigned BitWidth = Known.getBitWidth();
633 
634   // Refine Known set if the pointer alignment is set by assume bundles.
635   if (V->getType()->isPointerTy()) {
636     if (RetainedKnowledge RK = getKnowledgeValidInContext(
637             V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
638       Known.Zero.setLowBits(Log2_32(RK.ArgValue));
639     }
640   }
641 
642   // Note that the patterns below need to be kept in sync with the code
643   // in AssumptionCache::updateAffectedValues.
644 
645   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
646     if (!AssumeVH)
647       continue;
648     CallInst *I = cast<CallInst>(AssumeVH);
649     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
650            "Got assumption for the wrong function!");
651 
652     // Warning: This loop can end up being somewhat performance sensitive.
653     // We're running this loop for once for each value queried resulting in a
654     // runtime of ~O(#assumes * #values).
655 
656     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
657            "must be an assume intrinsic");
658 
659     Value *Arg = I->getArgOperand(0);
660 
661     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
662       assert(BitWidth == 1 && "assume operand is not i1?");
663       Known.setAllOnes();
664       return;
665     }
666     if (match(Arg, m_Not(m_Specific(V))) &&
667         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
668       assert(BitWidth == 1 && "assume operand is not i1?");
669       Known.setAllZero();
670       return;
671     }
672 
673     // The remaining tests are all recursive, so bail out if we hit the limit.
674     if (Depth == MaxAnalysisRecursionDepth)
675       continue;
676 
677     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
678     if (!Cmp)
679       continue;
680 
681     // We are attempting to compute known bits for the operands of an assume.
682     // Do not try to use other assumptions for those recursive calls because
683     // that can lead to mutual recursion and a compile-time explosion.
684     // An example of the mutual recursion: computeKnownBits can call
685     // isKnownNonZero which calls computeKnownBitsFromAssume (this function)
686     // and so on.
687     Query QueryNoAC = Q;
688     QueryNoAC.AC = nullptr;
689 
690     // Note that ptrtoint may change the bitwidth.
691     Value *A, *B;
692     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
693 
694     CmpInst::Predicate Pred;
695     uint64_t C;
696     switch (Cmp->getPredicate()) {
697     default:
698       break;
699     case ICmpInst::ICMP_EQ:
700       // assume(v = a)
701       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
702           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
703         KnownBits RHSKnown =
704             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
705         Known.Zero |= RHSKnown.Zero;
706         Known.One  |= RHSKnown.One;
707       // assume(v & b = a)
708       } else if (match(Cmp,
709                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
710                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
711         KnownBits RHSKnown =
712             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
713         KnownBits MaskKnown =
714             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
715 
716         // For those bits in the mask that are known to be one, we can propagate
717         // known bits from the RHS to V.
718         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
719         Known.One  |= RHSKnown.One  & MaskKnown.One;
720       // assume(~(v & b) = a)
721       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
722                                      m_Value(A))) &&
723                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
724         KnownBits RHSKnown =
725             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
726         KnownBits MaskKnown =
727             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
728 
729         // For those bits in the mask that are known to be one, we can propagate
730         // inverted known bits from the RHS to V.
731         Known.Zero |= RHSKnown.One  & MaskKnown.One;
732         Known.One  |= RHSKnown.Zero & MaskKnown.One;
733       // assume(v | b = a)
734       } else if (match(Cmp,
735                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
736                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
737         KnownBits RHSKnown =
738             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
739         KnownBits BKnown =
740             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
741 
742         // For those bits in B that are known to be zero, we can propagate known
743         // bits from the RHS to V.
744         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
745         Known.One  |= RHSKnown.One  & BKnown.Zero;
746       // assume(~(v | b) = a)
747       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
748                                      m_Value(A))) &&
749                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
750         KnownBits RHSKnown =
751             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
752         KnownBits BKnown =
753             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
754 
755         // For those bits in B that are known to be zero, we can propagate
756         // inverted known bits from the RHS to V.
757         Known.Zero |= RHSKnown.One  & BKnown.Zero;
758         Known.One  |= RHSKnown.Zero & BKnown.Zero;
759       // assume(v ^ b = a)
760       } else if (match(Cmp,
761                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
762                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
763         KnownBits RHSKnown =
764             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
765         KnownBits BKnown =
766             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
767 
768         // For those bits in B that are known to be zero, we can propagate known
769         // bits from the RHS to V. For those bits in B that are known to be one,
770         // we can propagate inverted known bits from the RHS to V.
771         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
772         Known.One  |= RHSKnown.One  & BKnown.Zero;
773         Known.Zero |= RHSKnown.One  & BKnown.One;
774         Known.One  |= RHSKnown.Zero & BKnown.One;
775       // assume(~(v ^ b) = a)
776       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
777                                      m_Value(A))) &&
778                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
779         KnownBits RHSKnown =
780             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
781         KnownBits BKnown =
782             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
783 
784         // For those bits in B that are known to be zero, we can propagate
785         // inverted known bits from the RHS to V. For those bits in B that are
786         // known to be one, we can propagate known bits from the RHS to V.
787         Known.Zero |= RHSKnown.One  & BKnown.Zero;
788         Known.One  |= RHSKnown.Zero & BKnown.Zero;
789         Known.Zero |= RHSKnown.Zero & BKnown.One;
790         Known.One  |= RHSKnown.One  & BKnown.One;
791       // assume(v << c = a)
792       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
793                                      m_Value(A))) &&
794                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
795         KnownBits RHSKnown =
796             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
797 
798         // For those bits in RHS that are known, we can propagate them to known
799         // bits in V shifted to the right by C.
800         RHSKnown.Zero.lshrInPlace(C);
801         Known.Zero |= RHSKnown.Zero;
802         RHSKnown.One.lshrInPlace(C);
803         Known.One  |= RHSKnown.One;
804       // assume(~(v << c) = a)
805       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
806                                      m_Value(A))) &&
807                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
808         KnownBits RHSKnown =
809             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
810         // For those bits in RHS that are known, we can propagate them inverted
811         // to known bits in V shifted to the right by C.
812         RHSKnown.One.lshrInPlace(C);
813         Known.Zero |= RHSKnown.One;
814         RHSKnown.Zero.lshrInPlace(C);
815         Known.One  |= RHSKnown.Zero;
816       // assume(v >> c = a)
817       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
818                                      m_Value(A))) &&
819                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
820         KnownBits RHSKnown =
821             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
822         // For those bits in RHS that are known, we can propagate them to known
823         // bits in V shifted to the right by C.
824         Known.Zero |= RHSKnown.Zero << C;
825         Known.One  |= RHSKnown.One  << C;
826       // assume(~(v >> c) = a)
827       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
828                                      m_Value(A))) &&
829                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
830         KnownBits RHSKnown =
831             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
832         // For those bits in RHS that are known, we can propagate them inverted
833         // to known bits in V shifted to the right by C.
834         Known.Zero |= RHSKnown.One  << C;
835         Known.One  |= RHSKnown.Zero << C;
836       }
837       break;
838     case ICmpInst::ICMP_SGE:
839       // assume(v >=_s c) where c is non-negative
840       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
841           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
842         KnownBits RHSKnown =
843             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
844 
845         if (RHSKnown.isNonNegative()) {
846           // We know that the sign bit is zero.
847           Known.makeNonNegative();
848         }
849       }
850       break;
851     case ICmpInst::ICMP_SGT:
852       // assume(v >_s c) where c is at least -1.
853       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
854           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
855         KnownBits RHSKnown =
856             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
857 
858         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
859           // We know that the sign bit is zero.
860           Known.makeNonNegative();
861         }
862       }
863       break;
864     case ICmpInst::ICMP_SLE:
865       // assume(v <=_s c) where c is negative
866       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
867           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
868         KnownBits RHSKnown =
869             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
870 
871         if (RHSKnown.isNegative()) {
872           // We know that the sign bit is one.
873           Known.makeNegative();
874         }
875       }
876       break;
877     case ICmpInst::ICMP_SLT:
878       // assume(v <_s c) where c is non-positive
879       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
880           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
881         KnownBits RHSKnown =
882             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
883 
884         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
885           // We know that the sign bit is one.
886           Known.makeNegative();
887         }
888       }
889       break;
890     case ICmpInst::ICMP_ULE:
891       // assume(v <=_u c)
892       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
893           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
894         KnownBits RHSKnown =
895             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
896 
897         // Whatever high bits in c are zero are known to be zero.
898         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
899       }
900       break;
901     case ICmpInst::ICMP_ULT:
902       // assume(v <_u c)
903       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
904           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
905         KnownBits RHSKnown =
906             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
907 
908         // If the RHS is known zero, then this assumption must be wrong (nothing
909         // is unsigned less than zero). Signal a conflict and get out of here.
910         if (RHSKnown.isZero()) {
911           Known.Zero.setAllBits();
912           Known.One.setAllBits();
913           break;
914         }
915 
916         // Whatever high bits in c are zero are known to be zero (if c is a power
917         // of 2, then one more).
918         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
919           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
920         else
921           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
922       }
923       break;
924     }
925   }
926 
927   // If assumptions conflict with each other or previous known bits, then we
928   // have a logical fallacy. It's possible that the assumption is not reachable,
929   // so this isn't a real bug. On the other hand, the program may have undefined
930   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
931   // clear out the known bits, try to warn the user, and hope for the best.
932   if (Known.Zero.intersects(Known.One)) {
933     Known.resetAll();
934 
935     if (Q.ORE)
936       Q.ORE->emit([&]() {
937         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
938         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
939                                           CxtI)
940                << "Detected conflicting code assumptions. Program may "
941                   "have undefined behavior, or compiler may have "
942                   "internal error.";
943       });
944   }
945 }
946 
947 /// Compute known bits from a shift operator, including those with a
948 /// non-constant shift amount. Known is the output of this function. Known2 is a
949 /// pre-allocated temporary with the same bit width as Known and on return
950 /// contains the known bit of the shift value source. KF is an
951 /// operator-specific function that, given the known-bits and a shift amount,
952 /// compute the implied known-bits of the shift operator's result respectively
953 /// for that shift amount. The results from calling KF are conservatively
954 /// combined for all permitted shift amounts.
computeKnownBitsFromShiftOperator(const Operator * I,const APInt & DemandedElts,KnownBits & Known,KnownBits & Known2,unsigned Depth,const Query & Q,function_ref<KnownBits (const KnownBits &,const KnownBits &)> KF)955 static void computeKnownBitsFromShiftOperator(
956     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
957     KnownBits &Known2, unsigned Depth, const Query &Q,
958     function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
959   unsigned BitWidth = Known.getBitWidth();
960   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
961   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
962 
963   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
964   // BitWidth > 64 and any upper bits are known, we'll end up returning the
965   // limit value (which implies all bits are known).
966   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
967   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
968   bool ShiftAmtIsConstant = Known.isConstant();
969   bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
970 
971   if (ShiftAmtIsConstant) {
972     Known = KF(Known2, Known);
973 
974     // If the known bits conflict, this must be an overflowing left shift, so
975     // the shift result is poison. We can return anything we want. Choose 0 for
976     // the best folding opportunity.
977     if (Known.hasConflict())
978       Known.setAllZero();
979 
980     return;
981   }
982 
983   // If the shift amount could be greater than or equal to the bit-width of the
984   // LHS, the value could be poison, but bail out because the check below is
985   // expensive.
986   // TODO: Should we just carry on?
987   if (MaxShiftAmtIsOutOfRange) {
988     Known.resetAll();
989     return;
990   }
991 
992   // It would be more-clearly correct to use the two temporaries for this
993   // calculation. Reusing the APInts here to prevent unnecessary allocations.
994   Known.resetAll();
995 
996   // If we know the shifter operand is nonzero, we can sometimes infer more
997   // known bits. However this is expensive to compute, so be lazy about it and
998   // only compute it when absolutely necessary.
999   Optional<bool> ShifterOperandIsNonZero;
1000 
1001   // Early exit if we can't constrain any well-defined shift amount.
1002   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1003       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1004     ShifterOperandIsNonZero =
1005         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1006     if (!*ShifterOperandIsNonZero)
1007       return;
1008   }
1009 
1010   Known.Zero.setAllBits();
1011   Known.One.setAllBits();
1012   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1013     // Combine the shifted known input bits only for those shift amounts
1014     // compatible with its known constraints.
1015     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1016       continue;
1017     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1018       continue;
1019     // If we know the shifter is nonzero, we may be able to infer more known
1020     // bits. This check is sunk down as far as possible to avoid the expensive
1021     // call to isKnownNonZero if the cheaper checks above fail.
1022     if (ShiftAmt == 0) {
1023       if (!ShifterOperandIsNonZero.hasValue())
1024         ShifterOperandIsNonZero =
1025             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1026       if (*ShifterOperandIsNonZero)
1027         continue;
1028     }
1029 
1030     Known = KnownBits::commonBits(
1031         Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1032   }
1033 
1034   // If the known bits conflict, the result is poison. Return a 0 and hope the
1035   // caller can further optimize that.
1036   if (Known.hasConflict())
1037     Known.setAllZero();
1038 }
1039 
computeKnownBitsFromOperator(const Operator * I,const APInt & DemandedElts,KnownBits & Known,unsigned Depth,const Query & Q)1040 static void computeKnownBitsFromOperator(const Operator *I,
1041                                          const APInt &DemandedElts,
1042                                          KnownBits &Known, unsigned Depth,
1043                                          const Query &Q) {
1044   unsigned BitWidth = Known.getBitWidth();
1045 
1046   KnownBits Known2(BitWidth);
1047   switch (I->getOpcode()) {
1048   default: break;
1049   case Instruction::Load:
1050     if (MDNode *MD =
1051             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1052       computeKnownBitsFromRangeMetadata(*MD, Known);
1053     break;
1054   case Instruction::And: {
1055     // If either the LHS or the RHS are Zero, the result is zero.
1056     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1057     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1058 
1059     Known &= Known2;
1060 
1061     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1062     // here we handle the more general case of adding any odd number by
1063     // matching the form add(x, add(x, y)) where y is odd.
1064     // TODO: This could be generalized to clearing any bit set in y where the
1065     // following bit is known to be unset in y.
1066     Value *X = nullptr, *Y = nullptr;
1067     if (!Known.Zero[0] && !Known.One[0] &&
1068         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1069       Known2.resetAll();
1070       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1071       if (Known2.countMinTrailingOnes() > 0)
1072         Known.Zero.setBit(0);
1073     }
1074     break;
1075   }
1076   case Instruction::Or:
1077     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1078     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1079 
1080     Known |= Known2;
1081     break;
1082   case Instruction::Xor:
1083     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1084     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1085 
1086     Known ^= Known2;
1087     break;
1088   case Instruction::Mul: {
1089     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1090     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1091                         Known, Known2, Depth, Q);
1092     break;
1093   }
1094   case Instruction::UDiv: {
1095     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1096     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1097     Known = KnownBits::udiv(Known, Known2);
1098     break;
1099   }
1100   case Instruction::Select: {
1101     const Value *LHS = nullptr, *RHS = nullptr;
1102     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1103     if (SelectPatternResult::isMinOrMax(SPF)) {
1104       computeKnownBits(RHS, Known, Depth + 1, Q);
1105       computeKnownBits(LHS, Known2, Depth + 1, Q);
1106       switch (SPF) {
1107       default:
1108         llvm_unreachable("Unhandled select pattern flavor!");
1109       case SPF_SMAX:
1110         Known = KnownBits::smax(Known, Known2);
1111         break;
1112       case SPF_SMIN:
1113         Known = KnownBits::smin(Known, Known2);
1114         break;
1115       case SPF_UMAX:
1116         Known = KnownBits::umax(Known, Known2);
1117         break;
1118       case SPF_UMIN:
1119         Known = KnownBits::umin(Known, Known2);
1120         break;
1121       }
1122       break;
1123     }
1124 
1125     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1126     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1127 
1128     // Only known if known in both the LHS and RHS.
1129     Known = KnownBits::commonBits(Known, Known2);
1130 
1131     if (SPF == SPF_ABS) {
1132       // RHS from matchSelectPattern returns the negation part of abs pattern.
1133       // If the negate has an NSW flag we can assume the sign bit of the result
1134       // will be 0 because that makes abs(INT_MIN) undefined.
1135       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1136           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1137         Known.Zero.setSignBit();
1138     }
1139 
1140     break;
1141   }
1142   case Instruction::FPTrunc:
1143   case Instruction::FPExt:
1144   case Instruction::FPToUI:
1145   case Instruction::FPToSI:
1146   case Instruction::SIToFP:
1147   case Instruction::UIToFP:
1148     break; // Can't work with floating point.
1149   case Instruction::PtrToInt:
1150   case Instruction::IntToPtr:
1151     // Fall through and handle them the same as zext/trunc.
1152     LLVM_FALLTHROUGH;
1153   case Instruction::ZExt:
1154   case Instruction::Trunc: {
1155     Type *SrcTy = I->getOperand(0)->getType();
1156 
1157     unsigned SrcBitWidth;
1158     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1159     // which fall through here.
1160     Type *ScalarTy = SrcTy->getScalarType();
1161     SrcBitWidth = ScalarTy->isPointerTy() ?
1162       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1163       Q.DL.getTypeSizeInBits(ScalarTy);
1164 
1165     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1166     Known = Known.anyextOrTrunc(SrcBitWidth);
1167     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1168     Known = Known.zextOrTrunc(BitWidth);
1169     break;
1170   }
1171   case Instruction::BitCast: {
1172     Type *SrcTy = I->getOperand(0)->getType();
1173     if (SrcTy->isIntOrPtrTy() &&
1174         // TODO: For now, not handling conversions like:
1175         // (bitcast i64 %x to <2 x i32>)
1176         !I->getType()->isVectorTy()) {
1177       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1178       break;
1179     }
1180 
1181     // Handle cast from vector integer type to scalar or vector integer.
1182     auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
1183     if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1184         !I->getType()->isIntOrIntVectorTy())
1185       break;
1186 
1187     // Look through a cast from narrow vector elements to wider type.
1188     // Examples: v4i32 -> v2i64, v3i8 -> v24
1189     unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1190     if (BitWidth % SubBitWidth == 0) {
1191       // Known bits are automatically intersected across demanded elements of a
1192       // vector. So for example, if a bit is computed as known zero, it must be
1193       // zero across all demanded elements of the vector.
1194       //
1195       // For this bitcast, each demanded element of the output is sub-divided
1196       // across a set of smaller vector elements in the source vector. To get
1197       // the known bits for an entire element of the output, compute the known
1198       // bits for each sub-element sequentially. This is done by shifting the
1199       // one-set-bit demanded elements parameter across the sub-elements for
1200       // consecutive calls to computeKnownBits. We are using the demanded
1201       // elements parameter as a mask operator.
1202       //
1203       // The known bits of each sub-element are then inserted into place
1204       // (dependent on endian) to form the full result of known bits.
1205       unsigned NumElts = DemandedElts.getBitWidth();
1206       unsigned SubScale = BitWidth / SubBitWidth;
1207       APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
1208       for (unsigned i = 0; i != NumElts; ++i) {
1209         if (DemandedElts[i])
1210           SubDemandedElts.setBit(i * SubScale);
1211       }
1212 
1213       KnownBits KnownSrc(SubBitWidth);
1214       for (unsigned i = 0; i != SubScale; ++i) {
1215         computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
1216                          Depth + 1, Q);
1217         unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
1218         Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
1219       }
1220     }
1221     break;
1222   }
1223   case Instruction::SExt: {
1224     // Compute the bits in the result that are not present in the input.
1225     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1226 
1227     Known = Known.trunc(SrcBitWidth);
1228     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1229     // If the sign bit of the input is known set or clear, then we know the
1230     // top bits of the result.
1231     Known = Known.sext(BitWidth);
1232     break;
1233   }
1234   case Instruction::Shl: {
1235     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1236     auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1237       KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1238       // If this shift has "nsw" keyword, then the result is either a poison
1239       // value or has the same sign bit as the first operand.
1240       if (NSW) {
1241         if (KnownVal.Zero.isSignBitSet())
1242           Result.Zero.setSignBit();
1243         if (KnownVal.One.isSignBitSet())
1244           Result.One.setSignBit();
1245       }
1246       return Result;
1247     };
1248     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1249                                       KF);
1250     // Trailing zeros of a right-shifted constant never decrease.
1251     const APInt *C;
1252     if (match(I->getOperand(0), m_APInt(C)))
1253       Known.Zero.setLowBits(C->countTrailingZeros());
1254     break;
1255   }
1256   case Instruction::LShr: {
1257     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1258       return KnownBits::lshr(KnownVal, KnownAmt);
1259     };
1260     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1261                                       KF);
1262     // Leading zeros of a left-shifted constant never decrease.
1263     const APInt *C;
1264     if (match(I->getOperand(0), m_APInt(C)))
1265       Known.Zero.setHighBits(C->countLeadingZeros());
1266     break;
1267   }
1268   case Instruction::AShr: {
1269     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1270       return KnownBits::ashr(KnownVal, KnownAmt);
1271     };
1272     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1273                                       KF);
1274     break;
1275   }
1276   case Instruction::Sub: {
1277     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1278     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1279                            DemandedElts, Known, Known2, Depth, Q);
1280     break;
1281   }
1282   case Instruction::Add: {
1283     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1284     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1285                            DemandedElts, Known, Known2, Depth, Q);
1286     break;
1287   }
1288   case Instruction::SRem:
1289     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1290     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1291     Known = KnownBits::srem(Known, Known2);
1292     break;
1293 
1294   case Instruction::URem:
1295     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1296     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1297     Known = KnownBits::urem(Known, Known2);
1298     break;
1299   case Instruction::Alloca:
1300     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1301     break;
1302   case Instruction::GetElementPtr: {
1303     // Analyze all of the subscripts of this getelementptr instruction
1304     // to determine if we can prove known low zero bits.
1305     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1306     // Accumulate the constant indices in a separate variable
1307     // to minimize the number of calls to computeForAddSub.
1308     APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1309 
1310     gep_type_iterator GTI = gep_type_begin(I);
1311     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1312       // TrailZ can only become smaller, short-circuit if we hit zero.
1313       if (Known.isUnknown())
1314         break;
1315 
1316       Value *Index = I->getOperand(i);
1317 
1318       // Handle case when index is zero.
1319       Constant *CIndex = dyn_cast<Constant>(Index);
1320       if (CIndex && CIndex->isZeroValue())
1321         continue;
1322 
1323       if (StructType *STy = GTI.getStructTypeOrNull()) {
1324         // Handle struct member offset arithmetic.
1325 
1326         assert(CIndex &&
1327                "Access to structure field must be known at compile time");
1328 
1329         if (CIndex->getType()->isVectorTy())
1330           Index = CIndex->getSplatValue();
1331 
1332         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1333         const StructLayout *SL = Q.DL.getStructLayout(STy);
1334         uint64_t Offset = SL->getElementOffset(Idx);
1335         AccConstIndices += Offset;
1336         continue;
1337       }
1338 
1339       // Handle array index arithmetic.
1340       Type *IndexedTy = GTI.getIndexedType();
1341       if (!IndexedTy->isSized()) {
1342         Known.resetAll();
1343         break;
1344       }
1345 
1346       unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1347       KnownBits IndexBits(IndexBitWidth);
1348       computeKnownBits(Index, IndexBits, Depth + 1, Q);
1349       TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1350       uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
1351       KnownBits ScalingFactor(IndexBitWidth);
1352       // Multiply by current sizeof type.
1353       // &A[i] == A + i * sizeof(*A[i]).
1354       if (IndexTypeSize.isScalable()) {
1355         // For scalable types the only thing we know about sizeof is
1356         // that this is a multiple of the minimum size.
1357         ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1358       } else if (IndexBits.isConstant()) {
1359         APInt IndexConst = IndexBits.getConstant();
1360         APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1361         IndexConst *= ScalingFactor;
1362         AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1363         continue;
1364       } else {
1365         ScalingFactor =
1366             KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1367       }
1368       IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1369 
1370       // If the offsets have a different width from the pointer, according
1371       // to the language reference we need to sign-extend or truncate them
1372       // to the width of the pointer.
1373       IndexBits = IndexBits.sextOrTrunc(BitWidth);
1374 
1375       // Note that inbounds does *not* guarantee nsw for the addition, as only
1376       // the offset is signed, while the base address is unsigned.
1377       Known = KnownBits::computeForAddSub(
1378           /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1379     }
1380     if (!Known.isUnknown() && !AccConstIndices.isZero()) {
1381       KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1382       Known = KnownBits::computeForAddSub(
1383           /*Add=*/true, /*NSW=*/false, Known, Index);
1384     }
1385     break;
1386   }
1387   case Instruction::PHI: {
1388     const PHINode *P = cast<PHINode>(I);
1389     BinaryOperator *BO = nullptr;
1390     Value *R = nullptr, *L = nullptr;
1391     if (matchSimpleRecurrence(P, BO, R, L)) {
1392       // Handle the case of a simple two-predecessor recurrence PHI.
1393       // There's a lot more that could theoretically be done here, but
1394       // this is sufficient to catch some interesting cases.
1395       unsigned Opcode = BO->getOpcode();
1396 
1397       // If this is a shift recurrence, we know the bits being shifted in.
1398       // We can combine that with information about the start value of the
1399       // recurrence to conclude facts about the result.
1400       if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1401            Opcode == Instruction::Shl) &&
1402           BO->getOperand(0) == I) {
1403 
1404         // We have matched a recurrence of the form:
1405         // %iv = [R, %entry], [%iv.next, %backedge]
1406         // %iv.next = shift_op %iv, L
1407 
1408         // Recurse with the phi context to avoid concern about whether facts
1409         // inferred hold at original context instruction.  TODO: It may be
1410         // correct to use the original context.  IF warranted, explore and
1411         // add sufficient tests to cover.
1412         Query RecQ = Q;
1413         RecQ.CxtI = P;
1414         computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1415         switch (Opcode) {
1416         case Instruction::Shl:
1417           // A shl recurrence will only increase the tailing zeros
1418           Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1419           break;
1420         case Instruction::LShr:
1421           // A lshr recurrence will preserve the leading zeros of the
1422           // start value
1423           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1424           break;
1425         case Instruction::AShr:
1426           // An ashr recurrence will extend the initial sign bit
1427           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1428           Known.One.setHighBits(Known2.countMinLeadingOnes());
1429           break;
1430         };
1431       }
1432 
1433       // Check for operations that have the property that if
1434       // both their operands have low zero bits, the result
1435       // will have low zero bits.
1436       if (Opcode == Instruction::Add ||
1437           Opcode == Instruction::Sub ||
1438           Opcode == Instruction::And ||
1439           Opcode == Instruction::Or ||
1440           Opcode == Instruction::Mul) {
1441         // Change the context instruction to the "edge" that flows into the
1442         // phi. This is important because that is where the value is actually
1443         // "evaluated" even though it is used later somewhere else. (see also
1444         // D69571).
1445         Query RecQ = Q;
1446 
1447         unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1448         Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1449         Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1450 
1451         // Ok, we have a PHI of the form L op= R. Check for low
1452         // zero bits.
1453         RecQ.CxtI = RInst;
1454         computeKnownBits(R, Known2, Depth + 1, RecQ);
1455 
1456         // We need to take the minimum number of known bits
1457         KnownBits Known3(BitWidth);
1458         RecQ.CxtI = LInst;
1459         computeKnownBits(L, Known3, Depth + 1, RecQ);
1460 
1461         Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1462                                        Known3.countMinTrailingZeros()));
1463 
1464         auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1465         if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1466           // If initial value of recurrence is nonnegative, and we are adding
1467           // a nonnegative number with nsw, the result can only be nonnegative
1468           // or poison value regardless of the number of times we execute the
1469           // add in phi recurrence. If initial value is negative and we are
1470           // adding a negative number with nsw, the result can only be
1471           // negative or poison value. Similar arguments apply to sub and mul.
1472           //
1473           // (add non-negative, non-negative) --> non-negative
1474           // (add negative, negative) --> negative
1475           if (Opcode == Instruction::Add) {
1476             if (Known2.isNonNegative() && Known3.isNonNegative())
1477               Known.makeNonNegative();
1478             else if (Known2.isNegative() && Known3.isNegative())
1479               Known.makeNegative();
1480           }
1481 
1482           // (sub nsw non-negative, negative) --> non-negative
1483           // (sub nsw negative, non-negative) --> negative
1484           else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1485             if (Known2.isNonNegative() && Known3.isNegative())
1486               Known.makeNonNegative();
1487             else if (Known2.isNegative() && Known3.isNonNegative())
1488               Known.makeNegative();
1489           }
1490 
1491           // (mul nsw non-negative, non-negative) --> non-negative
1492           else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1493                    Known3.isNonNegative())
1494             Known.makeNonNegative();
1495         }
1496 
1497         break;
1498       }
1499     }
1500 
1501     // Unreachable blocks may have zero-operand PHI nodes.
1502     if (P->getNumIncomingValues() == 0)
1503       break;
1504 
1505     // Otherwise take the unions of the known bit sets of the operands,
1506     // taking conservative care to avoid excessive recursion.
1507     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1508       // Skip if every incoming value references to ourself.
1509       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1510         break;
1511 
1512       Known.Zero.setAllBits();
1513       Known.One.setAllBits();
1514       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1515         Value *IncValue = P->getIncomingValue(u);
1516         // Skip direct self references.
1517         if (IncValue == P) continue;
1518 
1519         // Change the context instruction to the "edge" that flows into the
1520         // phi. This is important because that is where the value is actually
1521         // "evaluated" even though it is used later somewhere else. (see also
1522         // D69571).
1523         Query RecQ = Q;
1524         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1525 
1526         Known2 = KnownBits(BitWidth);
1527         // Recurse, but cap the recursion to one level, because we don't
1528         // want to waste time spinning around in loops.
1529         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1530         Known = KnownBits::commonBits(Known, Known2);
1531         // If all bits have been ruled out, there's no need to check
1532         // more operands.
1533         if (Known.isUnknown())
1534           break;
1535       }
1536     }
1537     break;
1538   }
1539   case Instruction::Call:
1540   case Instruction::Invoke:
1541     // If range metadata is attached to this call, set known bits from that,
1542     // and then intersect with known bits based on other properties of the
1543     // function.
1544     if (MDNode *MD =
1545             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1546       computeKnownBitsFromRangeMetadata(*MD, Known);
1547     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1548       computeKnownBits(RV, Known2, Depth + 1, Q);
1549       Known.Zero |= Known2.Zero;
1550       Known.One |= Known2.One;
1551     }
1552     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1553       switch (II->getIntrinsicID()) {
1554       default: break;
1555       case Intrinsic::abs: {
1556         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1557         bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1558         Known = Known2.abs(IntMinIsPoison);
1559         break;
1560       }
1561       case Intrinsic::bitreverse:
1562         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1563         Known.Zero |= Known2.Zero.reverseBits();
1564         Known.One |= Known2.One.reverseBits();
1565         break;
1566       case Intrinsic::bswap:
1567         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1568         Known.Zero |= Known2.Zero.byteSwap();
1569         Known.One |= Known2.One.byteSwap();
1570         break;
1571       case Intrinsic::ctlz: {
1572         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1573         // If we have a known 1, its position is our upper bound.
1574         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1575         // If this call is undefined for 0, the result will be less than 2^n.
1576         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1577           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1578         unsigned LowBits = Log2_32(PossibleLZ)+1;
1579         Known.Zero.setBitsFrom(LowBits);
1580         break;
1581       }
1582       case Intrinsic::cttz: {
1583         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1584         // If we have a known 1, its position is our upper bound.
1585         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1586         // If this call is undefined for 0, the result will be less than 2^n.
1587         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1588           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1589         unsigned LowBits = Log2_32(PossibleTZ)+1;
1590         Known.Zero.setBitsFrom(LowBits);
1591         break;
1592       }
1593       case Intrinsic::ctpop: {
1594         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1595         // We can bound the space the count needs.  Also, bits known to be zero
1596         // can't contribute to the population.
1597         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1598         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1599         Known.Zero.setBitsFrom(LowBits);
1600         // TODO: we could bound KnownOne using the lower bound on the number
1601         // of bits which might be set provided by popcnt KnownOne2.
1602         break;
1603       }
1604       case Intrinsic::fshr:
1605       case Intrinsic::fshl: {
1606         const APInt *SA;
1607         if (!match(I->getOperand(2), m_APInt(SA)))
1608           break;
1609 
1610         // Normalize to funnel shift left.
1611         uint64_t ShiftAmt = SA->urem(BitWidth);
1612         if (II->getIntrinsicID() == Intrinsic::fshr)
1613           ShiftAmt = BitWidth - ShiftAmt;
1614 
1615         KnownBits Known3(BitWidth);
1616         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1617         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1618 
1619         Known.Zero =
1620             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1621         Known.One =
1622             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1623         break;
1624       }
1625       case Intrinsic::uadd_sat:
1626       case Intrinsic::usub_sat: {
1627         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1628         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1629         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1630 
1631         // Add: Leading ones of either operand are preserved.
1632         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1633         // as leading zeros in the result.
1634         unsigned LeadingKnown;
1635         if (IsAdd)
1636           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1637                                   Known2.countMinLeadingOnes());
1638         else
1639           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1640                                   Known2.countMinLeadingOnes());
1641 
1642         Known = KnownBits::computeForAddSub(
1643             IsAdd, /* NSW */ false, Known, Known2);
1644 
1645         // We select between the operation result and all-ones/zero
1646         // respectively, so we can preserve known ones/zeros.
1647         if (IsAdd) {
1648           Known.One.setHighBits(LeadingKnown);
1649           Known.Zero.clearAllBits();
1650         } else {
1651           Known.Zero.setHighBits(LeadingKnown);
1652           Known.One.clearAllBits();
1653         }
1654         break;
1655       }
1656       case Intrinsic::umin:
1657         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1658         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1659         Known = KnownBits::umin(Known, Known2);
1660         break;
1661       case Intrinsic::umax:
1662         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1663         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1664         Known = KnownBits::umax(Known, Known2);
1665         break;
1666       case Intrinsic::smin:
1667         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1668         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1669         Known = KnownBits::smin(Known, Known2);
1670         break;
1671       case Intrinsic::smax:
1672         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1673         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1674         Known = KnownBits::smax(Known, Known2);
1675         break;
1676       case Intrinsic::x86_sse42_crc32_64_64:
1677         Known.Zero.setBitsFrom(32);
1678         break;
1679       case Intrinsic::riscv_vsetvli:
1680       case Intrinsic::riscv_vsetvlimax:
1681         // Assume that VL output is positive and would fit in an int32_t.
1682         // TODO: VLEN might be capped at 16 bits in a future V spec update.
1683         if (BitWidth >= 32)
1684           Known.Zero.setBitsFrom(31);
1685         break;
1686       case Intrinsic::vscale: {
1687         if (!II->getParent() || !II->getFunction() ||
1688             !II->getFunction()->hasFnAttribute(Attribute::VScaleRange))
1689           break;
1690 
1691         auto VScaleRange = II->getFunction()
1692                                ->getFnAttribute(Attribute::VScaleRange)
1693                                .getVScaleRangeArgs();
1694 
1695         if (VScaleRange.second == 0)
1696           break;
1697 
1698         // If vscale min = max then we know the exact value at compile time
1699         // and hence we know the exact bits.
1700         if (VScaleRange.first == VScaleRange.second) {
1701           Known.One = VScaleRange.first;
1702           Known.Zero = VScaleRange.first;
1703           Known.Zero.flipAllBits();
1704           break;
1705         }
1706 
1707         unsigned FirstZeroHighBit = 32 - countLeadingZeros(VScaleRange.second);
1708         if (FirstZeroHighBit < BitWidth)
1709           Known.Zero.setBitsFrom(FirstZeroHighBit);
1710 
1711         break;
1712       }
1713       }
1714     }
1715     break;
1716   case Instruction::ShuffleVector: {
1717     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1718     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1719     if (!Shuf) {
1720       Known.resetAll();
1721       return;
1722     }
1723     // For undef elements, we don't know anything about the common state of
1724     // the shuffle result.
1725     APInt DemandedLHS, DemandedRHS;
1726     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1727       Known.resetAll();
1728       return;
1729     }
1730     Known.One.setAllBits();
1731     Known.Zero.setAllBits();
1732     if (!!DemandedLHS) {
1733       const Value *LHS = Shuf->getOperand(0);
1734       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1735       // If we don't know any bits, early out.
1736       if (Known.isUnknown())
1737         break;
1738     }
1739     if (!!DemandedRHS) {
1740       const Value *RHS = Shuf->getOperand(1);
1741       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1742       Known = KnownBits::commonBits(Known, Known2);
1743     }
1744     break;
1745   }
1746   case Instruction::InsertElement: {
1747     const Value *Vec = I->getOperand(0);
1748     const Value *Elt = I->getOperand(1);
1749     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1750     // Early out if the index is non-constant or out-of-range.
1751     unsigned NumElts = DemandedElts.getBitWidth();
1752     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1753       Known.resetAll();
1754       return;
1755     }
1756     Known.One.setAllBits();
1757     Known.Zero.setAllBits();
1758     unsigned EltIdx = CIdx->getZExtValue();
1759     // Do we demand the inserted element?
1760     if (DemandedElts[EltIdx]) {
1761       computeKnownBits(Elt, Known, Depth + 1, Q);
1762       // If we don't know any bits, early out.
1763       if (Known.isUnknown())
1764         break;
1765     }
1766     // We don't need the base vector element that has been inserted.
1767     APInt DemandedVecElts = DemandedElts;
1768     DemandedVecElts.clearBit(EltIdx);
1769     if (!!DemandedVecElts) {
1770       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1771       Known = KnownBits::commonBits(Known, Known2);
1772     }
1773     break;
1774   }
1775   case Instruction::ExtractElement: {
1776     // Look through extract element. If the index is non-constant or
1777     // out-of-range demand all elements, otherwise just the extracted element.
1778     const Value *Vec = I->getOperand(0);
1779     const Value *Idx = I->getOperand(1);
1780     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1781     if (isa<ScalableVectorType>(Vec->getType())) {
1782       // FIXME: there's probably *something* we can do with scalable vectors
1783       Known.resetAll();
1784       break;
1785     }
1786     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1787     APInt DemandedVecElts = APInt::getAllOnes(NumElts);
1788     if (CIdx && CIdx->getValue().ult(NumElts))
1789       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1790     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1791     break;
1792   }
1793   case Instruction::ExtractValue:
1794     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1795       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1796       if (EVI->getNumIndices() != 1) break;
1797       if (EVI->getIndices()[0] == 0) {
1798         switch (II->getIntrinsicID()) {
1799         default: break;
1800         case Intrinsic::uadd_with_overflow:
1801         case Intrinsic::sadd_with_overflow:
1802           computeKnownBitsAddSub(true, II->getArgOperand(0),
1803                                  II->getArgOperand(1), false, DemandedElts,
1804                                  Known, Known2, Depth, Q);
1805           break;
1806         case Intrinsic::usub_with_overflow:
1807         case Intrinsic::ssub_with_overflow:
1808           computeKnownBitsAddSub(false, II->getArgOperand(0),
1809                                  II->getArgOperand(1), false, DemandedElts,
1810                                  Known, Known2, Depth, Q);
1811           break;
1812         case Intrinsic::umul_with_overflow:
1813         case Intrinsic::smul_with_overflow:
1814           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1815                               DemandedElts, Known, Known2, Depth, Q);
1816           break;
1817         }
1818       }
1819     }
1820     break;
1821   case Instruction::Freeze:
1822     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1823                                   Depth + 1))
1824       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1825     break;
1826   }
1827 }
1828 
1829 /// Determine which bits of V are known to be either zero or one and return
1830 /// them.
computeKnownBits(const Value * V,const APInt & DemandedElts,unsigned Depth,const Query & Q)1831 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1832                            unsigned Depth, const Query &Q) {
1833   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1834   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1835   return Known;
1836 }
1837 
1838 /// Determine which bits of V are known to be either zero or one and return
1839 /// them.
computeKnownBits(const Value * V,unsigned Depth,const Query & Q)1840 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1841   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1842   computeKnownBits(V, Known, Depth, Q);
1843   return Known;
1844 }
1845 
1846 /// Determine which bits of V are known to be either zero or one and return
1847 /// them in the Known bit set.
1848 ///
1849 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1850 /// we cannot optimize based on the assumption that it is zero without changing
1851 /// it to be an explicit zero.  If we don't change it to zero, other code could
1852 /// optimized based on the contradictory assumption that it is non-zero.
1853 /// Because instcombine aggressively folds operations with undef args anyway,
1854 /// this won't lose us code quality.
1855 ///
1856 /// This function is defined on values with integer type, values with pointer
1857 /// type, and vectors of integers.  In the case
1858 /// where V is a vector, known zero, and known one values are the
1859 /// same width as the vector element, and the bit is set only if it is true
1860 /// for all of the demanded elements in the vector specified by DemandedElts.
computeKnownBits(const Value * V,const APInt & DemandedElts,KnownBits & Known,unsigned Depth,const Query & Q)1861 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1862                       KnownBits &Known, unsigned Depth, const Query &Q) {
1863   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1864     // No demanded elts or V is a scalable vector, better to assume we don't
1865     // know anything.
1866     Known.resetAll();
1867     return;
1868   }
1869 
1870   assert(V && "No Value?");
1871   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1872 
1873 #ifndef NDEBUG
1874   Type *Ty = V->getType();
1875   unsigned BitWidth = Known.getBitWidth();
1876 
1877   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1878          "Not integer or pointer type!");
1879 
1880   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1881     assert(
1882         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1883         "DemandedElt width should equal the fixed vector number of elements");
1884   } else {
1885     assert(DemandedElts == APInt(1, 1) &&
1886            "DemandedElt width should be 1 for scalars");
1887   }
1888 
1889   Type *ScalarTy = Ty->getScalarType();
1890   if (ScalarTy->isPointerTy()) {
1891     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1892            "V and Known should have same BitWidth");
1893   } else {
1894     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1895            "V and Known should have same BitWidth");
1896   }
1897 #endif
1898 
1899   const APInt *C;
1900   if (match(V, m_APInt(C))) {
1901     // We know all of the bits for a scalar constant or a splat vector constant!
1902     Known = KnownBits::makeConstant(*C);
1903     return;
1904   }
1905   // Null and aggregate-zero are all-zeros.
1906   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1907     Known.setAllZero();
1908     return;
1909   }
1910   // Handle a constant vector by taking the intersection of the known bits of
1911   // each element.
1912   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1913     // We know that CDV must be a vector of integers. Take the intersection of
1914     // each element.
1915     Known.Zero.setAllBits(); Known.One.setAllBits();
1916     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1917       if (!DemandedElts[i])
1918         continue;
1919       APInt Elt = CDV->getElementAsAPInt(i);
1920       Known.Zero &= ~Elt;
1921       Known.One &= Elt;
1922     }
1923     return;
1924   }
1925 
1926   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1927     // We know that CV must be a vector of integers. Take the intersection of
1928     // each element.
1929     Known.Zero.setAllBits(); Known.One.setAllBits();
1930     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1931       if (!DemandedElts[i])
1932         continue;
1933       Constant *Element = CV->getAggregateElement(i);
1934       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1935       if (!ElementCI) {
1936         Known.resetAll();
1937         return;
1938       }
1939       const APInt &Elt = ElementCI->getValue();
1940       Known.Zero &= ~Elt;
1941       Known.One &= Elt;
1942     }
1943     return;
1944   }
1945 
1946   // Start out not knowing anything.
1947   Known.resetAll();
1948 
1949   // We can't imply anything about undefs.
1950   if (isa<UndefValue>(V))
1951     return;
1952 
1953   // There's no point in looking through other users of ConstantData for
1954   // assumptions.  Confirm that we've handled them all.
1955   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1956 
1957   // All recursive calls that increase depth must come after this.
1958   if (Depth == MaxAnalysisRecursionDepth)
1959     return;
1960 
1961   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1962   // the bits of its aliasee.
1963   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1964     if (!GA->isInterposable())
1965       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1966     return;
1967   }
1968 
1969   if (const Operator *I = dyn_cast<Operator>(V))
1970     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
1971 
1972   // Aligned pointers have trailing zeros - refine Known.Zero set
1973   if (isa<PointerType>(V->getType())) {
1974     Align Alignment = V->getPointerAlignment(Q.DL);
1975     Known.Zero.setLowBits(Log2(Alignment));
1976   }
1977 
1978   // computeKnownBitsFromAssume strictly refines Known.
1979   // Therefore, we run them after computeKnownBitsFromOperator.
1980 
1981   // Check whether a nearby assume intrinsic can determine some known bits.
1982   computeKnownBitsFromAssume(V, Known, Depth, Q);
1983 
1984   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1985 }
1986 
1987 /// Return true if the given value is known to have exactly one
1988 /// bit set when defined. For vectors return true if every element is known to
1989 /// be a power of two when defined. Supports values with integer or pointer
1990 /// types and vectors of integers.
isKnownToBeAPowerOfTwo(const Value * V,bool OrZero,unsigned Depth,const Query & Q)1991 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1992                             const Query &Q) {
1993   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1994 
1995   // Attempt to match against constants.
1996   if (OrZero && match(V, m_Power2OrZero()))
1997       return true;
1998   if (match(V, m_Power2()))
1999       return true;
2000 
2001   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2002   // it is shifted off the end then the result is undefined.
2003   if (match(V, m_Shl(m_One(), m_Value())))
2004     return true;
2005 
2006   // (signmask) >>l X is clearly a power of two if the one is not shifted off
2007   // the bottom.  If it is shifted off the bottom then the result is undefined.
2008   if (match(V, m_LShr(m_SignMask(), m_Value())))
2009     return true;
2010 
2011   // The remaining tests are all recursive, so bail out if we hit the limit.
2012   if (Depth++ == MaxAnalysisRecursionDepth)
2013     return false;
2014 
2015   Value *X = nullptr, *Y = nullptr;
2016   // A shift left or a logical shift right of a power of two is a power of two
2017   // or zero.
2018   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2019                  match(V, m_LShr(m_Value(X), m_Value()))))
2020     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2021 
2022   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2023     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2024 
2025   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2026     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2027            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2028 
2029   // Peek through min/max.
2030   if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
2031     return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
2032            isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
2033   }
2034 
2035   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2036     // A power of two and'd with anything is a power of two or zero.
2037     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2038         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2039       return true;
2040     // X & (-X) is always a power of two or zero.
2041     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2042       return true;
2043     return false;
2044   }
2045 
2046   // Adding a power-of-two or zero to the same power-of-two or zero yields
2047   // either the original power-of-two, a larger power-of-two or zero.
2048   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2049     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2050     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2051         Q.IIQ.hasNoSignedWrap(VOBO)) {
2052       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2053           match(X, m_And(m_Value(), m_Specific(Y))))
2054         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2055           return true;
2056       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2057           match(Y, m_And(m_Value(), m_Specific(X))))
2058         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2059           return true;
2060 
2061       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2062       KnownBits LHSBits(BitWidth);
2063       computeKnownBits(X, LHSBits, Depth, Q);
2064 
2065       KnownBits RHSBits(BitWidth);
2066       computeKnownBits(Y, RHSBits, Depth, Q);
2067       // If i8 V is a power of two or zero:
2068       //  ZeroBits: 1 1 1 0 1 1 1 1
2069       // ~ZeroBits: 0 0 0 1 0 0 0 0
2070       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2071         // If OrZero isn't set, we cannot give back a zero result.
2072         // Make sure either the LHS or RHS has a bit set.
2073         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2074           return true;
2075     }
2076   }
2077 
2078   // An exact divide or right shift can only shift off zero bits, so the result
2079   // is a power of two only if the first operand is a power of two and not
2080   // copying a sign bit (sdiv int_min, 2).
2081   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2082       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2083     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2084                                   Depth, Q);
2085   }
2086 
2087   return false;
2088 }
2089 
2090 /// Test whether a GEP's result is known to be non-null.
2091 ///
2092 /// Uses properties inherent in a GEP to try to determine whether it is known
2093 /// to be non-null.
2094 ///
2095 /// Currently this routine does not support vector GEPs.
isGEPKnownNonNull(const GEPOperator * GEP,unsigned Depth,const Query & Q)2096 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2097                               const Query &Q) {
2098   const Function *F = nullptr;
2099   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2100     F = I->getFunction();
2101 
2102   if (!GEP->isInBounds() ||
2103       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2104     return false;
2105 
2106   // FIXME: Support vector-GEPs.
2107   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2108 
2109   // If the base pointer is non-null, we cannot walk to a null address with an
2110   // inbounds GEP in address space zero.
2111   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2112     return true;
2113 
2114   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2115   // If so, then the GEP cannot produce a null pointer, as doing so would
2116   // inherently violate the inbounds contract within address space zero.
2117   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2118        GTI != GTE; ++GTI) {
2119     // Struct types are easy -- they must always be indexed by a constant.
2120     if (StructType *STy = GTI.getStructTypeOrNull()) {
2121       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2122       unsigned ElementIdx = OpC->getZExtValue();
2123       const StructLayout *SL = Q.DL.getStructLayout(STy);
2124       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2125       if (ElementOffset > 0)
2126         return true;
2127       continue;
2128     }
2129 
2130     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2131     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2132       continue;
2133 
2134     // Fast path the constant operand case both for efficiency and so we don't
2135     // increment Depth when just zipping down an all-constant GEP.
2136     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2137       if (!OpC->isZero())
2138         return true;
2139       continue;
2140     }
2141 
2142     // We post-increment Depth here because while isKnownNonZero increments it
2143     // as well, when we pop back up that increment won't persist. We don't want
2144     // to recurse 10k times just because we have 10k GEP operands. We don't
2145     // bail completely out because we want to handle constant GEPs regardless
2146     // of depth.
2147     if (Depth++ >= MaxAnalysisRecursionDepth)
2148       continue;
2149 
2150     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2151       return true;
2152   }
2153 
2154   return false;
2155 }
2156 
isKnownNonNullFromDominatingCondition(const Value * V,const Instruction * CtxI,const DominatorTree * DT)2157 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2158                                                   const Instruction *CtxI,
2159                                                   const DominatorTree *DT) {
2160   if (isa<Constant>(V))
2161     return false;
2162 
2163   if (!CtxI || !DT)
2164     return false;
2165 
2166   unsigned NumUsesExplored = 0;
2167   for (auto *U : V->users()) {
2168     // Avoid massive lists
2169     if (NumUsesExplored >= DomConditionsMaxUses)
2170       break;
2171     NumUsesExplored++;
2172 
2173     // If the value is used as an argument to a call or invoke, then argument
2174     // attributes may provide an answer about null-ness.
2175     if (const auto *CB = dyn_cast<CallBase>(U))
2176       if (auto *CalledFunc = CB->getCalledFunction())
2177         for (const Argument &Arg : CalledFunc->args())
2178           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2179               Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2180               DT->dominates(CB, CtxI))
2181             return true;
2182 
2183     // If the value is used as a load/store, then the pointer must be non null.
2184     if (V == getLoadStorePointerOperand(U)) {
2185       const Instruction *I = cast<Instruction>(U);
2186       if (!NullPointerIsDefined(I->getFunction(),
2187                                 V->getType()->getPointerAddressSpace()) &&
2188           DT->dominates(I, CtxI))
2189         return true;
2190     }
2191 
2192     // Consider only compare instructions uniquely controlling a branch
2193     Value *RHS;
2194     CmpInst::Predicate Pred;
2195     if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2196       continue;
2197 
2198     bool NonNullIfTrue;
2199     if (cmpExcludesZero(Pred, RHS))
2200       NonNullIfTrue = true;
2201     else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2202       NonNullIfTrue = false;
2203     else
2204       continue;
2205 
2206     SmallVector<const User *, 4> WorkList;
2207     SmallPtrSet<const User *, 4> Visited;
2208     for (auto *CmpU : U->users()) {
2209       assert(WorkList.empty() && "Should be!");
2210       if (Visited.insert(CmpU).second)
2211         WorkList.push_back(CmpU);
2212 
2213       while (!WorkList.empty()) {
2214         auto *Curr = WorkList.pop_back_val();
2215 
2216         // If a user is an AND, add all its users to the work list. We only
2217         // propagate "pred != null" condition through AND because it is only
2218         // correct to assume that all conditions of AND are met in true branch.
2219         // TODO: Support similar logic of OR and EQ predicate?
2220         if (NonNullIfTrue)
2221           if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2222             for (auto *CurrU : Curr->users())
2223               if (Visited.insert(CurrU).second)
2224                 WorkList.push_back(CurrU);
2225             continue;
2226           }
2227 
2228         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2229           assert(BI->isConditional() && "uses a comparison!");
2230 
2231           BasicBlock *NonNullSuccessor =
2232               BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2233           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2234           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2235             return true;
2236         } else if (NonNullIfTrue && isGuard(Curr) &&
2237                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2238           return true;
2239         }
2240       }
2241     }
2242   }
2243 
2244   return false;
2245 }
2246 
2247 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2248 /// ensure that the value it's attached to is never Value?  'RangeType' is
2249 /// is the type of the value described by the range.
rangeMetadataExcludesValue(const MDNode * Ranges,const APInt & Value)2250 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2251   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2252   assert(NumRanges >= 1);
2253   for (unsigned i = 0; i < NumRanges; ++i) {
2254     ConstantInt *Lower =
2255         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2256     ConstantInt *Upper =
2257         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2258     ConstantRange Range(Lower->getValue(), Upper->getValue());
2259     if (Range.contains(Value))
2260       return false;
2261   }
2262   return true;
2263 }
2264 
2265 /// Try to detect a recurrence that monotonically increases/decreases from a
2266 /// non-zero starting value. These are common as induction variables.
isNonZeroRecurrence(const PHINode * PN)2267 static bool isNonZeroRecurrence(const PHINode *PN) {
2268   BinaryOperator *BO = nullptr;
2269   Value *Start = nullptr, *Step = nullptr;
2270   const APInt *StartC, *StepC;
2271   if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2272       !match(Start, m_APInt(StartC)) || StartC->isZero())
2273     return false;
2274 
2275   switch (BO->getOpcode()) {
2276   case Instruction::Add:
2277     // Starting from non-zero and stepping away from zero can never wrap back
2278     // to zero.
2279     return BO->hasNoUnsignedWrap() ||
2280            (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2281             StartC->isNegative() == StepC->isNegative());
2282   case Instruction::Mul:
2283     return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2284            match(Step, m_APInt(StepC)) && !StepC->isZero();
2285   case Instruction::Shl:
2286     return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2287   case Instruction::AShr:
2288   case Instruction::LShr:
2289     return BO->isExact();
2290   default:
2291     return false;
2292   }
2293 }
2294 
2295 /// Return true if the given value is known to be non-zero when defined. For
2296 /// vectors, return true if every demanded element is known to be non-zero when
2297 /// defined. For pointers, if the context instruction and dominator tree are
2298 /// specified, perform context-sensitive analysis and return true if the
2299 /// pointer couldn't possibly be null at the specified instruction.
2300 /// Supports values with integer or pointer type and vectors of integers.
isKnownNonZero(const Value * V,const APInt & DemandedElts,unsigned Depth,const Query & Q)2301 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2302                     const Query &Q) {
2303   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2304   // vector
2305   if (isa<ScalableVectorType>(V->getType()))
2306     return false;
2307 
2308   if (auto *C = dyn_cast<Constant>(V)) {
2309     if (C->isNullValue())
2310       return false;
2311     if (isa<ConstantInt>(C))
2312       // Must be non-zero due to null test above.
2313       return true;
2314 
2315     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2316       // See the comment for IntToPtr/PtrToInt instructions below.
2317       if (CE->getOpcode() == Instruction::IntToPtr ||
2318           CE->getOpcode() == Instruction::PtrToInt)
2319         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
2320                 .getFixedSize() <=
2321             Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
2322           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2323     }
2324 
2325     // For constant vectors, check that all elements are undefined or known
2326     // non-zero to determine that the whole vector is known non-zero.
2327     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2328       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2329         if (!DemandedElts[i])
2330           continue;
2331         Constant *Elt = C->getAggregateElement(i);
2332         if (!Elt || Elt->isNullValue())
2333           return false;
2334         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2335           return false;
2336       }
2337       return true;
2338     }
2339 
2340     // A global variable in address space 0 is non null unless extern weak
2341     // or an absolute symbol reference. Other address spaces may have null as a
2342     // valid address for a global, so we can't assume anything.
2343     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2344       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2345           GV->getType()->getAddressSpace() == 0)
2346         return true;
2347     } else
2348       return false;
2349   }
2350 
2351   if (auto *I = dyn_cast<Instruction>(V)) {
2352     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2353       // If the possible ranges don't contain zero, then the value is
2354       // definitely non-zero.
2355       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2356         const APInt ZeroValue(Ty->getBitWidth(), 0);
2357         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2358           return true;
2359       }
2360     }
2361   }
2362 
2363   if (isKnownNonZeroFromAssume(V, Q))
2364     return true;
2365 
2366   // Some of the tests below are recursive, so bail out if we hit the limit.
2367   if (Depth++ >= MaxAnalysisRecursionDepth)
2368     return false;
2369 
2370   // Check for pointer simplifications.
2371 
2372   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2373     // Alloca never returns null, malloc might.
2374     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2375       return true;
2376 
2377     // A byval, inalloca may not be null in a non-default addres space. A
2378     // nonnull argument is assumed never 0.
2379     if (const Argument *A = dyn_cast<Argument>(V)) {
2380       if (((A->hasPassPointeeByValueCopyAttr() &&
2381             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2382            A->hasNonNullAttr()))
2383         return true;
2384     }
2385 
2386     // A Load tagged with nonnull metadata is never null.
2387     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2388       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2389         return true;
2390 
2391     if (const auto *Call = dyn_cast<CallBase>(V)) {
2392       if (Call->isReturnNonNull())
2393         return true;
2394       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2395         return isKnownNonZero(RP, Depth, Q);
2396     }
2397   }
2398 
2399   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2400     return true;
2401 
2402   // Check for recursive pointer simplifications.
2403   if (V->getType()->isPointerTy()) {
2404     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2405     // do not alter the value, or at least not the nullness property of the
2406     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2407     //
2408     // Note that we have to take special care to avoid looking through
2409     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2410     // as casts that can alter the value, e.g., AddrSpaceCasts.
2411     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2412       return isGEPKnownNonNull(GEP, Depth, Q);
2413 
2414     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2415       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2416 
2417     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2418       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
2419           Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
2420         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2421   }
2422 
2423   // Similar to int2ptr above, we can look through ptr2int here if the cast
2424   // is a no-op or an extend and not a truncate.
2425   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2426     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
2427         Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
2428       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2429 
2430   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2431 
2432   // X | Y != 0 if X != 0 or Y != 0.
2433   Value *X = nullptr, *Y = nullptr;
2434   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2435     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2436            isKnownNonZero(Y, DemandedElts, Depth, Q);
2437 
2438   // ext X != 0 if X != 0.
2439   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2440     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2441 
2442   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2443   // if the lowest bit is shifted off the end.
2444   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2445     // shl nuw can't remove any non-zero bits.
2446     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2447     if (Q.IIQ.hasNoUnsignedWrap(BO))
2448       return isKnownNonZero(X, Depth, Q);
2449 
2450     KnownBits Known(BitWidth);
2451     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2452     if (Known.One[0])
2453       return true;
2454   }
2455   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2456   // defined if the sign bit is shifted off the end.
2457   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2458     // shr exact can only shift out zero bits.
2459     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2460     if (BO->isExact())
2461       return isKnownNonZero(X, Depth, Q);
2462 
2463     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2464     if (Known.isNegative())
2465       return true;
2466 
2467     // If the shifter operand is a constant, and all of the bits shifted
2468     // out are known to be zero, and X is known non-zero then at least one
2469     // non-zero bit must remain.
2470     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2471       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2472       // Is there a known one in the portion not shifted out?
2473       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2474         return true;
2475       // Are all the bits to be shifted out known zero?
2476       if (Known.countMinTrailingZeros() >= ShiftVal)
2477         return isKnownNonZero(X, DemandedElts, Depth, Q);
2478     }
2479   }
2480   // div exact can only produce a zero if the dividend is zero.
2481   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2482     return isKnownNonZero(X, DemandedElts, Depth, Q);
2483   }
2484   // X + Y.
2485   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2486     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2487     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2488 
2489     // If X and Y are both non-negative (as signed values) then their sum is not
2490     // zero unless both X and Y are zero.
2491     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2492       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2493           isKnownNonZero(Y, DemandedElts, Depth, Q))
2494         return true;
2495 
2496     // If X and Y are both negative (as signed values) then their sum is not
2497     // zero unless both X and Y equal INT_MIN.
2498     if (XKnown.isNegative() && YKnown.isNegative()) {
2499       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2500       // The sign bit of X is set.  If some other bit is set then X is not equal
2501       // to INT_MIN.
2502       if (XKnown.One.intersects(Mask))
2503         return true;
2504       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2505       // to INT_MIN.
2506       if (YKnown.One.intersects(Mask))
2507         return true;
2508     }
2509 
2510     // The sum of a non-negative number and a power of two is not zero.
2511     if (XKnown.isNonNegative() &&
2512         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2513       return true;
2514     if (YKnown.isNonNegative() &&
2515         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2516       return true;
2517   }
2518   // X * Y.
2519   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2520     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2521     // If X and Y are non-zero then so is X * Y as long as the multiplication
2522     // does not overflow.
2523     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2524         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2525         isKnownNonZero(Y, DemandedElts, Depth, Q))
2526       return true;
2527   }
2528   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2529   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2530     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2531         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2532       return true;
2533   }
2534   // PHI
2535   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2536     if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2537       return true;
2538 
2539     // Check if all incoming values are non-zero using recursion.
2540     Query RecQ = Q;
2541     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2542     return llvm::all_of(PN->operands(), [&](const Use &U) {
2543       if (U.get() == PN)
2544         return true;
2545       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2546       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2547     });
2548   }
2549   // ExtractElement
2550   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2551     const Value *Vec = EEI->getVectorOperand();
2552     const Value *Idx = EEI->getIndexOperand();
2553     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2554     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2555       unsigned NumElts = VecTy->getNumElements();
2556       APInt DemandedVecElts = APInt::getAllOnes(NumElts);
2557       if (CIdx && CIdx->getValue().ult(NumElts))
2558         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2559       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2560     }
2561   }
2562   // Freeze
2563   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2564     auto *Op = FI->getOperand(0);
2565     if (isKnownNonZero(Op, Depth, Q) &&
2566         isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2567       return true;
2568   }
2569 
2570   KnownBits Known(BitWidth);
2571   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2572   return Known.One != 0;
2573 }
2574 
isKnownNonZero(const Value * V,unsigned Depth,const Query & Q)2575 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2576   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2577   // vector
2578   if (isa<ScalableVectorType>(V->getType()))
2579     return false;
2580 
2581   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2582   APInt DemandedElts =
2583       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
2584   return isKnownNonZero(V, DemandedElts, Depth, Q);
2585 }
2586 
2587 /// If the pair of operators are the same invertible function, return the
2588 /// the operands of the function corresponding to each input. Otherwise,
2589 /// return None.  An invertible function is one that is 1-to-1 and maps
2590 /// every input value to exactly one output value.  This is equivalent to
2591 /// saying that Op1 and Op2 are equal exactly when the specified pair of
2592 /// operands are equal, (except that Op1 and Op2 may be poison more often.)
2593 static Optional<std::pair<Value*, Value*>>
getInvertibleOperands(const Operator * Op1,const Operator * Op2)2594 getInvertibleOperands(const Operator *Op1,
2595                       const Operator *Op2) {
2596   if (Op1->getOpcode() != Op2->getOpcode())
2597     return None;
2598 
2599   auto getOperands = [&](unsigned OpNum) -> auto {
2600     return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
2601   };
2602 
2603   switch (Op1->getOpcode()) {
2604   default:
2605     break;
2606   case Instruction::Add:
2607   case Instruction::Sub:
2608     if (Op1->getOperand(0) == Op2->getOperand(0))
2609       return getOperands(1);
2610     if (Op1->getOperand(1) == Op2->getOperand(1))
2611       return getOperands(0);
2612     break;
2613   case Instruction::Mul: {
2614     // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2615     // and N is the bitwdith.  The nsw case is non-obvious, but proven by
2616     // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2617     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2618     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2619     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2620         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2621       break;
2622 
2623     // Assume operand order has been canonicalized
2624     if (Op1->getOperand(1) == Op2->getOperand(1) &&
2625         isa<ConstantInt>(Op1->getOperand(1)) &&
2626         !cast<ConstantInt>(Op1->getOperand(1))->isZero())
2627       return getOperands(0);
2628     break;
2629   }
2630   case Instruction::Shl: {
2631     // Same as multiplies, with the difference that we don't need to check
2632     // for a non-zero multiply. Shifts always multiply by non-zero.
2633     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2634     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2635     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2636         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2637       break;
2638 
2639     if (Op1->getOperand(1) == Op2->getOperand(1))
2640       return getOperands(0);
2641     break;
2642   }
2643   case Instruction::AShr:
2644   case Instruction::LShr: {
2645     auto *PEO1 = cast<PossiblyExactOperator>(Op1);
2646     auto *PEO2 = cast<PossiblyExactOperator>(Op2);
2647     if (!PEO1->isExact() || !PEO2->isExact())
2648       break;
2649 
2650     if (Op1->getOperand(1) == Op2->getOperand(1))
2651       return getOperands(0);
2652     break;
2653   }
2654   case Instruction::SExt:
2655   case Instruction::ZExt:
2656     if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
2657       return getOperands(0);
2658     break;
2659   case Instruction::PHI: {
2660     const PHINode *PN1 = cast<PHINode>(Op1);
2661     const PHINode *PN2 = cast<PHINode>(Op2);
2662 
2663     // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
2664     // are a single invertible function of the start values? Note that repeated
2665     // application of an invertible function is also invertible
2666     BinaryOperator *BO1 = nullptr;
2667     Value *Start1 = nullptr, *Step1 = nullptr;
2668     BinaryOperator *BO2 = nullptr;
2669     Value *Start2 = nullptr, *Step2 = nullptr;
2670     if (PN1->getParent() != PN2->getParent() ||
2671         !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
2672         !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
2673       break;
2674 
2675     auto Values = getInvertibleOperands(cast<Operator>(BO1),
2676                                         cast<Operator>(BO2));
2677     if (!Values)
2678        break;
2679 
2680     // We have to be careful of mutually defined recurrences here.  Ex:
2681     // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
2682     // * X_i = Y_i = X_(i-1) OP Y_(i-1)
2683     // The invertibility of these is complicated, and not worth reasoning
2684     // about (yet?).
2685     if (Values->first != PN1 || Values->second != PN2)
2686       break;
2687 
2688     return std::make_pair(Start1, Start2);
2689   }
2690   }
2691   return None;
2692 }
2693 
2694 /// Return true if V2 == V1 + X, where X is known non-zero.
isAddOfNonZero(const Value * V1,const Value * V2,unsigned Depth,const Query & Q)2695 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2696                            const Query &Q) {
2697   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2698   if (!BO || BO->getOpcode() != Instruction::Add)
2699     return false;
2700   Value *Op = nullptr;
2701   if (V2 == BO->getOperand(0))
2702     Op = BO->getOperand(1);
2703   else if (V2 == BO->getOperand(1))
2704     Op = BO->getOperand(0);
2705   else
2706     return false;
2707   return isKnownNonZero(Op, Depth + 1, Q);
2708 }
2709 
2710 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2711 /// the multiplication is nuw or nsw.
isNonEqualMul(const Value * V1,const Value * V2,unsigned Depth,const Query & Q)2712 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2713                           const Query &Q) {
2714   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2715     const APInt *C;
2716     return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2717            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2718            !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q);
2719   }
2720   return false;
2721 }
2722 
2723 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
2724 /// the shift is nuw or nsw.
isNonEqualShl(const Value * V1,const Value * V2,unsigned Depth,const Query & Q)2725 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
2726                           const Query &Q) {
2727   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2728     const APInt *C;
2729     return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
2730            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2731            !C->isZero() && isKnownNonZero(V1, Depth + 1, Q);
2732   }
2733   return false;
2734 }
2735 
isNonEqualPHIs(const PHINode * PN1,const PHINode * PN2,unsigned Depth,const Query & Q)2736 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
2737                            unsigned Depth, const Query &Q) {
2738   // Check two PHIs are in same block.
2739   if (PN1->getParent() != PN2->getParent())
2740     return false;
2741 
2742   SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
2743   bool UsedFullRecursion = false;
2744   for (const BasicBlock *IncomBB : PN1->blocks()) {
2745     if (!VisitedBBs.insert(IncomBB).second)
2746       continue; // Don't reprocess blocks that we have dealt with already.
2747     const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
2748     const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
2749     const APInt *C1, *C2;
2750     if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
2751       continue;
2752 
2753     // Only one pair of phi operands is allowed for full recursion.
2754     if (UsedFullRecursion)
2755       return false;
2756 
2757     Query RecQ = Q;
2758     RecQ.CxtI = IncomBB->getTerminator();
2759     if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
2760       return false;
2761     UsedFullRecursion = true;
2762   }
2763   return true;
2764 }
2765 
2766 /// Return true if it is known that V1 != V2.
isKnownNonEqual(const Value * V1,const Value * V2,unsigned Depth,const Query & Q)2767 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2768                             const Query &Q) {
2769   if (V1 == V2)
2770     return false;
2771   if (V1->getType() != V2->getType())
2772     // We can't look through casts yet.
2773     return false;
2774 
2775   if (Depth >= MaxAnalysisRecursionDepth)
2776     return false;
2777 
2778   // See if we can recurse through (exactly one of) our operands.  This
2779   // requires our operation be 1-to-1 and map every input value to exactly
2780   // one output value.  Such an operation is invertible.
2781   auto *O1 = dyn_cast<Operator>(V1);
2782   auto *O2 = dyn_cast<Operator>(V2);
2783   if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2784     if (auto Values = getInvertibleOperands(O1, O2))
2785       return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q);
2786 
2787     if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
2788       const PHINode *PN2 = cast<PHINode>(V2);
2789       // FIXME: This is missing a generalization to handle the case where one is
2790       // a PHI and another one isn't.
2791       if (isNonEqualPHIs(PN1, PN2, Depth, Q))
2792         return true;
2793     };
2794   }
2795 
2796   if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2797     return true;
2798 
2799   if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
2800     return true;
2801 
2802   if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
2803     return true;
2804 
2805   if (V1->getType()->isIntOrIntVectorTy()) {
2806     // Are any known bits in V1 contradictory to known bits in V2? If V1
2807     // has a known zero where V2 has a known one, they must not be equal.
2808     KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2809     KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2810 
2811     if (Known1.Zero.intersects(Known2.One) ||
2812         Known2.Zero.intersects(Known1.One))
2813       return true;
2814   }
2815   return false;
2816 }
2817 
2818 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2819 /// simplify operations downstream. Mask is known to be zero for bits that V
2820 /// cannot have.
2821 ///
2822 /// This function is defined on values with integer type, values with pointer
2823 /// type, and vectors of integers.  In the case
2824 /// where V is a vector, the mask, known zero, and known one values are the
2825 /// same width as the vector element, and the bit is set only if it is true
2826 /// for all of the elements in the vector.
MaskedValueIsZero(const Value * V,const APInt & Mask,unsigned Depth,const Query & Q)2827 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2828                        const Query &Q) {
2829   KnownBits Known(Mask.getBitWidth());
2830   computeKnownBits(V, Known, Depth, Q);
2831   return Mask.isSubsetOf(Known.Zero);
2832 }
2833 
2834 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2835 // Returns the input and lower/upper bounds.
isSignedMinMaxClamp(const Value * Select,const Value * & In,const APInt * & CLow,const APInt * & CHigh)2836 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2837                                 const APInt *&CLow, const APInt *&CHigh) {
2838   assert(isa<Operator>(Select) &&
2839          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2840          "Input should be a Select!");
2841 
2842   const Value *LHS = nullptr, *RHS = nullptr;
2843   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2844   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2845     return false;
2846 
2847   if (!match(RHS, m_APInt(CLow)))
2848     return false;
2849 
2850   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2851   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2852   if (getInverseMinMaxFlavor(SPF) != SPF2)
2853     return false;
2854 
2855   if (!match(RHS2, m_APInt(CHigh)))
2856     return false;
2857 
2858   if (SPF == SPF_SMIN)
2859     std::swap(CLow, CHigh);
2860 
2861   In = LHS2;
2862   return CLow->sle(*CHigh);
2863 }
2864 
2865 /// For vector constants, loop over the elements and find the constant with the
2866 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2867 /// or if any element was not analyzed; otherwise, return the count for the
2868 /// element with the minimum number of sign bits.
computeNumSignBitsVectorConstant(const Value * V,const APInt & DemandedElts,unsigned TyBits)2869 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2870                                                  const APInt &DemandedElts,
2871                                                  unsigned TyBits) {
2872   const auto *CV = dyn_cast<Constant>(V);
2873   if (!CV || !isa<FixedVectorType>(CV->getType()))
2874     return 0;
2875 
2876   unsigned MinSignBits = TyBits;
2877   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2878   for (unsigned i = 0; i != NumElts; ++i) {
2879     if (!DemandedElts[i])
2880       continue;
2881     // If we find a non-ConstantInt, bail out.
2882     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2883     if (!Elt)
2884       return 0;
2885 
2886     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2887   }
2888 
2889   return MinSignBits;
2890 }
2891 
2892 static unsigned ComputeNumSignBitsImpl(const Value *V,
2893                                        const APInt &DemandedElts,
2894                                        unsigned Depth, const Query &Q);
2895 
ComputeNumSignBits(const Value * V,const APInt & DemandedElts,unsigned Depth,const Query & Q)2896 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2897                                    unsigned Depth, const Query &Q) {
2898   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2899   assert(Result > 0 && "At least one sign bit needs to be present!");
2900   return Result;
2901 }
2902 
2903 /// Return the number of times the sign bit of the register is replicated into
2904 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2905 /// (itself), but other cases can give us information. For example, immediately
2906 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2907 /// other, so we return 3. For vectors, return the number of sign bits for the
2908 /// vector element with the minimum number of known sign bits of the demanded
2909 /// elements in the vector specified by DemandedElts.
ComputeNumSignBitsImpl(const Value * V,const APInt & DemandedElts,unsigned Depth,const Query & Q)2910 static unsigned ComputeNumSignBitsImpl(const Value *V,
2911                                        const APInt &DemandedElts,
2912                                        unsigned Depth, const Query &Q) {
2913   Type *Ty = V->getType();
2914 
2915   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2916   // vector
2917   if (isa<ScalableVectorType>(Ty))
2918     return 1;
2919 
2920 #ifndef NDEBUG
2921   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2922 
2923   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2924     assert(
2925         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2926         "DemandedElt width should equal the fixed vector number of elements");
2927   } else {
2928     assert(DemandedElts == APInt(1, 1) &&
2929            "DemandedElt width should be 1 for scalars");
2930   }
2931 #endif
2932 
2933   // We return the minimum number of sign bits that are guaranteed to be present
2934   // in V, so for undef we have to conservatively return 1.  We don't have the
2935   // same behavior for poison though -- that's a FIXME today.
2936 
2937   Type *ScalarTy = Ty->getScalarType();
2938   unsigned TyBits = ScalarTy->isPointerTy() ?
2939     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2940     Q.DL.getTypeSizeInBits(ScalarTy);
2941 
2942   unsigned Tmp, Tmp2;
2943   unsigned FirstAnswer = 1;
2944 
2945   // Note that ConstantInt is handled by the general computeKnownBits case
2946   // below.
2947 
2948   if (Depth == MaxAnalysisRecursionDepth)
2949     return 1;
2950 
2951   if (auto *U = dyn_cast<Operator>(V)) {
2952     switch (Operator::getOpcode(V)) {
2953     default: break;
2954     case Instruction::SExt:
2955       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2956       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2957 
2958     case Instruction::SDiv: {
2959       const APInt *Denominator;
2960       // sdiv X, C -> adds log(C) sign bits.
2961       if (match(U->getOperand(1), m_APInt(Denominator))) {
2962 
2963         // Ignore non-positive denominator.
2964         if (!Denominator->isStrictlyPositive())
2965           break;
2966 
2967         // Calculate the incoming numerator bits.
2968         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2969 
2970         // Add floor(log(C)) bits to the numerator bits.
2971         return std::min(TyBits, NumBits + Denominator->logBase2());
2972       }
2973       break;
2974     }
2975 
2976     case Instruction::SRem: {
2977       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2978 
2979       const APInt *Denominator;
2980       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2981       // positive constant.  This let us put a lower bound on the number of sign
2982       // bits.
2983       if (match(U->getOperand(1), m_APInt(Denominator))) {
2984 
2985         // Ignore non-positive denominator.
2986         if (Denominator->isStrictlyPositive()) {
2987           // Calculate the leading sign bit constraints by examining the
2988           // denominator.  Given that the denominator is positive, there are two
2989           // cases:
2990           //
2991           //  1. The numerator is positive. The result range is [0,C) and
2992           //     [0,C) u< (1 << ceilLogBase2(C)).
2993           //
2994           //  2. The numerator is negative. Then the result range is (-C,0] and
2995           //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2996           //
2997           // Thus a lower bound on the number of sign bits is `TyBits -
2998           // ceilLogBase2(C)`.
2999 
3000           unsigned ResBits = TyBits - Denominator->ceilLogBase2();
3001           Tmp = std::max(Tmp, ResBits);
3002         }
3003       }
3004       return Tmp;
3005     }
3006 
3007     case Instruction::AShr: {
3008       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3009       // ashr X, C   -> adds C sign bits.  Vectors too.
3010       const APInt *ShAmt;
3011       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3012         if (ShAmt->uge(TyBits))
3013           break; // Bad shift.
3014         unsigned ShAmtLimited = ShAmt->getZExtValue();
3015         Tmp += ShAmtLimited;
3016         if (Tmp > TyBits) Tmp = TyBits;
3017       }
3018       return Tmp;
3019     }
3020     case Instruction::Shl: {
3021       const APInt *ShAmt;
3022       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3023         // shl destroys sign bits.
3024         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3025         if (ShAmt->uge(TyBits) ||   // Bad shift.
3026             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
3027         Tmp2 = ShAmt->getZExtValue();
3028         return Tmp - Tmp2;
3029       }
3030       break;
3031     }
3032     case Instruction::And:
3033     case Instruction::Or:
3034     case Instruction::Xor: // NOT is handled here.
3035       // Logical binary ops preserve the number of sign bits at the worst.
3036       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3037       if (Tmp != 1) {
3038         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3039         FirstAnswer = std::min(Tmp, Tmp2);
3040         // We computed what we know about the sign bits as our first
3041         // answer. Now proceed to the generic code that uses
3042         // computeKnownBits, and pick whichever answer is better.
3043       }
3044       break;
3045 
3046     case Instruction::Select: {
3047       // If we have a clamp pattern, we know that the number of sign bits will
3048       // be the minimum of the clamp min/max range.
3049       const Value *X;
3050       const APInt *CLow, *CHigh;
3051       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
3052         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3053 
3054       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3055       if (Tmp == 1) break;
3056       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
3057       return std::min(Tmp, Tmp2);
3058     }
3059 
3060     case Instruction::Add:
3061       // Add can have at most one carry bit.  Thus we know that the output
3062       // is, at worst, one more bit than the inputs.
3063       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3064       if (Tmp == 1) break;
3065 
3066       // Special case decrementing a value (ADD X, -1):
3067       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
3068         if (CRHS->isAllOnesValue()) {
3069           KnownBits Known(TyBits);
3070           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
3071 
3072           // If the input is known to be 0 or 1, the output is 0/-1, which is
3073           // all sign bits set.
3074           if ((Known.Zero | 1).isAllOnes())
3075             return TyBits;
3076 
3077           // If we are subtracting one from a positive number, there is no carry
3078           // out of the result.
3079           if (Known.isNonNegative())
3080             return Tmp;
3081         }
3082 
3083       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3084       if (Tmp2 == 1) break;
3085       return std::min(Tmp, Tmp2) - 1;
3086 
3087     case Instruction::Sub:
3088       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3089       if (Tmp2 == 1) break;
3090 
3091       // Handle NEG.
3092       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3093         if (CLHS->isNullValue()) {
3094           KnownBits Known(TyBits);
3095           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
3096           // If the input is known to be 0 or 1, the output is 0/-1, which is
3097           // all sign bits set.
3098           if ((Known.Zero | 1).isAllOnes())
3099             return TyBits;
3100 
3101           // If the input is known to be positive (the sign bit is known clear),
3102           // the output of the NEG has the same number of sign bits as the
3103           // input.
3104           if (Known.isNonNegative())
3105             return Tmp2;
3106 
3107           // Otherwise, we treat this like a SUB.
3108         }
3109 
3110       // Sub can have at most one carry bit.  Thus we know that the output
3111       // is, at worst, one more bit than the inputs.
3112       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3113       if (Tmp == 1) break;
3114       return std::min(Tmp, Tmp2) - 1;
3115 
3116     case Instruction::Mul: {
3117       // The output of the Mul can be at most twice the valid bits in the
3118       // inputs.
3119       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3120       if (SignBitsOp0 == 1) break;
3121       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3122       if (SignBitsOp1 == 1) break;
3123       unsigned OutValidBits =
3124           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3125       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3126     }
3127 
3128     case Instruction::PHI: {
3129       const PHINode *PN = cast<PHINode>(U);
3130       unsigned NumIncomingValues = PN->getNumIncomingValues();
3131       // Don't analyze large in-degree PHIs.
3132       if (NumIncomingValues > 4) break;
3133       // Unreachable blocks may have zero-operand PHI nodes.
3134       if (NumIncomingValues == 0) break;
3135 
3136       // Take the minimum of all incoming values.  This can't infinitely loop
3137       // because of our depth threshold.
3138       Query RecQ = Q;
3139       Tmp = TyBits;
3140       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3141         if (Tmp == 1) return Tmp;
3142         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3143         Tmp = std::min(
3144             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3145       }
3146       return Tmp;
3147     }
3148 
3149     case Instruction::Trunc:
3150       // FIXME: it's tricky to do anything useful for this, but it is an
3151       // important case for targets like X86.
3152       break;
3153 
3154     case Instruction::ExtractElement:
3155       // Look through extract element. At the moment we keep this simple and
3156       // skip tracking the specific element. But at least we might find
3157       // information valid for all elements of the vector (for example if vector
3158       // is sign extended, shifted, etc).
3159       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3160 
3161     case Instruction::ShuffleVector: {
3162       // Collect the minimum number of sign bits that are shared by every vector
3163       // element referenced by the shuffle.
3164       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3165       if (!Shuf) {
3166         // FIXME: Add support for shufflevector constant expressions.
3167         return 1;
3168       }
3169       APInt DemandedLHS, DemandedRHS;
3170       // For undef elements, we don't know anything about the common state of
3171       // the shuffle result.
3172       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3173         return 1;
3174       Tmp = std::numeric_limits<unsigned>::max();
3175       if (!!DemandedLHS) {
3176         const Value *LHS = Shuf->getOperand(0);
3177         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3178       }
3179       // If we don't know anything, early out and try computeKnownBits
3180       // fall-back.
3181       if (Tmp == 1)
3182         break;
3183       if (!!DemandedRHS) {
3184         const Value *RHS = Shuf->getOperand(1);
3185         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3186         Tmp = std::min(Tmp, Tmp2);
3187       }
3188       // If we don't know anything, early out and try computeKnownBits
3189       // fall-back.
3190       if (Tmp == 1)
3191         break;
3192       assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
3193       return Tmp;
3194     }
3195     case Instruction::Call: {
3196       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3197         switch (II->getIntrinsicID()) {
3198         default: break;
3199         case Intrinsic::abs:
3200           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3201           if (Tmp == 1) break;
3202 
3203           // Absolute value reduces number of sign bits by at most 1.
3204           return Tmp - 1;
3205         }
3206       }
3207     }
3208     }
3209   }
3210 
3211   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3212   // use this information.
3213 
3214   // If we can examine all elements of a vector constant successfully, we're
3215   // done (we can't do any better than that). If not, keep trying.
3216   if (unsigned VecSignBits =
3217           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3218     return VecSignBits;
3219 
3220   KnownBits Known(TyBits);
3221   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3222 
3223   // If we know that the sign bit is either zero or one, determine the number of
3224   // identical bits in the top of the input value.
3225   return std::max(FirstAnswer, Known.countMinSignBits());
3226 }
3227 
3228 /// This function computes the integer multiple of Base that equals V.
3229 /// If successful, it returns true and returns the multiple in
3230 /// Multiple. If unsuccessful, it returns false. It looks
3231 /// through SExt instructions only if LookThroughSExt is true.
ComputeMultiple(Value * V,unsigned Base,Value * & Multiple,bool LookThroughSExt,unsigned Depth)3232 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
3233                            bool LookThroughSExt, unsigned Depth) {
3234   assert(V && "No Value?");
3235   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3236   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3237 
3238   Type *T = V->getType();
3239 
3240   ConstantInt *CI = dyn_cast<ConstantInt>(V);
3241 
3242   if (Base == 0)
3243     return false;
3244 
3245   if (Base == 1) {
3246     Multiple = V;
3247     return true;
3248   }
3249 
3250   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3251   Constant *BaseVal = ConstantInt::get(T, Base);
3252   if (CO && CO == BaseVal) {
3253     // Multiple is 1.
3254     Multiple = ConstantInt::get(T, 1);
3255     return true;
3256   }
3257 
3258   if (CI && CI->getZExtValue() % Base == 0) {
3259     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3260     return true;
3261   }
3262 
3263   if (Depth == MaxAnalysisRecursionDepth) return false;
3264 
3265   Operator *I = dyn_cast<Operator>(V);
3266   if (!I) return false;
3267 
3268   switch (I->getOpcode()) {
3269   default: break;
3270   case Instruction::SExt:
3271     if (!LookThroughSExt) return false;
3272     // otherwise fall through to ZExt
3273     LLVM_FALLTHROUGH;
3274   case Instruction::ZExt:
3275     return ComputeMultiple(I->getOperand(0), Base, Multiple,
3276                            LookThroughSExt, Depth+1);
3277   case Instruction::Shl:
3278   case Instruction::Mul: {
3279     Value *Op0 = I->getOperand(0);
3280     Value *Op1 = I->getOperand(1);
3281 
3282     if (I->getOpcode() == Instruction::Shl) {
3283       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3284       if (!Op1CI) return false;
3285       // Turn Op0 << Op1 into Op0 * 2^Op1
3286       APInt Op1Int = Op1CI->getValue();
3287       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3288       APInt API(Op1Int.getBitWidth(), 0);
3289       API.setBit(BitToSet);
3290       Op1 = ConstantInt::get(V->getContext(), API);
3291     }
3292 
3293     Value *Mul0 = nullptr;
3294     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3295       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3296         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3297           if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3298               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3299             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3300           if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3301               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3302             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3303 
3304           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3305           Multiple = ConstantExpr::getMul(MulC, Op1C);
3306           return true;
3307         }
3308 
3309       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3310         if (Mul0CI->getValue() == 1) {
3311           // V == Base * Op1, so return Op1
3312           Multiple = Op1;
3313           return true;
3314         }
3315     }
3316 
3317     Value *Mul1 = nullptr;
3318     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3319       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3320         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3321           if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() <
3322               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3323             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3324           if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() >
3325               MulC->getType()->getPrimitiveSizeInBits().getFixedSize())
3326             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3327 
3328           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3329           Multiple = ConstantExpr::getMul(MulC, Op0C);
3330           return true;
3331         }
3332 
3333       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3334         if (Mul1CI->getValue() == 1) {
3335           // V == Base * Op0, so return Op0
3336           Multiple = Op0;
3337           return true;
3338         }
3339     }
3340   }
3341   }
3342 
3343   // We could not determine if V is a multiple of Base.
3344   return false;
3345 }
3346 
getIntrinsicForCallSite(const CallBase & CB,const TargetLibraryInfo * TLI)3347 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3348                                             const TargetLibraryInfo *TLI) {
3349   const Function *F = CB.getCalledFunction();
3350   if (!F)
3351     return Intrinsic::not_intrinsic;
3352 
3353   if (F->isIntrinsic())
3354     return F->getIntrinsicID();
3355 
3356   // We are going to infer semantics of a library function based on mapping it
3357   // to an LLVM intrinsic. Check that the library function is available from
3358   // this callbase and in this environment.
3359   LibFunc Func;
3360   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3361       !CB.onlyReadsMemory())
3362     return Intrinsic::not_intrinsic;
3363 
3364   switch (Func) {
3365   default:
3366     break;
3367   case LibFunc_sin:
3368   case LibFunc_sinf:
3369   case LibFunc_sinl:
3370     return Intrinsic::sin;
3371   case LibFunc_cos:
3372   case LibFunc_cosf:
3373   case LibFunc_cosl:
3374     return Intrinsic::cos;
3375   case LibFunc_exp:
3376   case LibFunc_expf:
3377   case LibFunc_expl:
3378     return Intrinsic::exp;
3379   case LibFunc_exp2:
3380   case LibFunc_exp2f:
3381   case LibFunc_exp2l:
3382     return Intrinsic::exp2;
3383   case LibFunc_log:
3384   case LibFunc_logf:
3385   case LibFunc_logl:
3386     return Intrinsic::log;
3387   case LibFunc_log10:
3388   case LibFunc_log10f:
3389   case LibFunc_log10l:
3390     return Intrinsic::log10;
3391   case LibFunc_log2:
3392   case LibFunc_log2f:
3393   case LibFunc_log2l:
3394     return Intrinsic::log2;
3395   case LibFunc_fabs:
3396   case LibFunc_fabsf:
3397   case LibFunc_fabsl:
3398     return Intrinsic::fabs;
3399   case LibFunc_fmin:
3400   case LibFunc_fminf:
3401   case LibFunc_fminl:
3402     return Intrinsic::minnum;
3403   case LibFunc_fmax:
3404   case LibFunc_fmaxf:
3405   case LibFunc_fmaxl:
3406     return Intrinsic::maxnum;
3407   case LibFunc_copysign:
3408   case LibFunc_copysignf:
3409   case LibFunc_copysignl:
3410     return Intrinsic::copysign;
3411   case LibFunc_floor:
3412   case LibFunc_floorf:
3413   case LibFunc_floorl:
3414     return Intrinsic::floor;
3415   case LibFunc_ceil:
3416   case LibFunc_ceilf:
3417   case LibFunc_ceill:
3418     return Intrinsic::ceil;
3419   case LibFunc_trunc:
3420   case LibFunc_truncf:
3421   case LibFunc_truncl:
3422     return Intrinsic::trunc;
3423   case LibFunc_rint:
3424   case LibFunc_rintf:
3425   case LibFunc_rintl:
3426     return Intrinsic::rint;
3427   case LibFunc_nearbyint:
3428   case LibFunc_nearbyintf:
3429   case LibFunc_nearbyintl:
3430     return Intrinsic::nearbyint;
3431   case LibFunc_round:
3432   case LibFunc_roundf:
3433   case LibFunc_roundl:
3434     return Intrinsic::round;
3435   case LibFunc_roundeven:
3436   case LibFunc_roundevenf:
3437   case LibFunc_roundevenl:
3438     return Intrinsic::roundeven;
3439   case LibFunc_pow:
3440   case LibFunc_powf:
3441   case LibFunc_powl:
3442     return Intrinsic::pow;
3443   case LibFunc_sqrt:
3444   case LibFunc_sqrtf:
3445   case LibFunc_sqrtl:
3446     return Intrinsic::sqrt;
3447   }
3448 
3449   return Intrinsic::not_intrinsic;
3450 }
3451 
3452 /// Return true if we can prove that the specified FP value is never equal to
3453 /// -0.0.
3454 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3455 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3456 ///       the same as +0.0 in floating-point ops.
3457 ///
3458 /// NOTE: this function will need to be revisited when we support non-default
3459 /// rounding modes!
CannotBeNegativeZero(const Value * V,const TargetLibraryInfo * TLI,unsigned Depth)3460 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3461                                 unsigned Depth) {
3462   if (auto *CFP = dyn_cast<ConstantFP>(V))
3463     return !CFP->getValueAPF().isNegZero();
3464 
3465   if (Depth == MaxAnalysisRecursionDepth)
3466     return false;
3467 
3468   auto *Op = dyn_cast<Operator>(V);
3469   if (!Op)
3470     return false;
3471 
3472   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3473   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3474     return true;
3475 
3476   // sitofp and uitofp turn into +0.0 for zero.
3477   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3478     return true;
3479 
3480   if (auto *Call = dyn_cast<CallInst>(Op)) {
3481     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3482     switch (IID) {
3483     default:
3484       break;
3485     // sqrt(-0.0) = -0.0, no other negative results are possible.
3486     case Intrinsic::sqrt:
3487     case Intrinsic::canonicalize:
3488       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3489     // fabs(x) != -0.0
3490     case Intrinsic::fabs:
3491       return true;
3492     }
3493   }
3494 
3495   return false;
3496 }
3497 
3498 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3499 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3500 /// bit despite comparing equal.
cannotBeOrderedLessThanZeroImpl(const Value * V,const TargetLibraryInfo * TLI,bool SignBitOnly,unsigned Depth)3501 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3502                                             const TargetLibraryInfo *TLI,
3503                                             bool SignBitOnly,
3504                                             unsigned Depth) {
3505   // TODO: This function does not do the right thing when SignBitOnly is true
3506   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3507   // which flips the sign bits of NaNs.  See
3508   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3509 
3510   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3511     return !CFP->getValueAPF().isNegative() ||
3512            (!SignBitOnly && CFP->getValueAPF().isZero());
3513   }
3514 
3515   // Handle vector of constants.
3516   if (auto *CV = dyn_cast<Constant>(V)) {
3517     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3518       unsigned NumElts = CVFVTy->getNumElements();
3519       for (unsigned i = 0; i != NumElts; ++i) {
3520         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3521         if (!CFP)
3522           return false;
3523         if (CFP->getValueAPF().isNegative() &&
3524             (SignBitOnly || !CFP->getValueAPF().isZero()))
3525           return false;
3526       }
3527 
3528       // All non-negative ConstantFPs.
3529       return true;
3530     }
3531   }
3532 
3533   if (Depth == MaxAnalysisRecursionDepth)
3534     return false;
3535 
3536   const Operator *I = dyn_cast<Operator>(V);
3537   if (!I)
3538     return false;
3539 
3540   switch (I->getOpcode()) {
3541   default:
3542     break;
3543   // Unsigned integers are always nonnegative.
3544   case Instruction::UIToFP:
3545     return true;
3546   case Instruction::FMul:
3547   case Instruction::FDiv:
3548     // X * X is always non-negative or a NaN.
3549     // X / X is always exactly 1.0 or a NaN.
3550     if (I->getOperand(0) == I->getOperand(1) &&
3551         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3552       return true;
3553 
3554     LLVM_FALLTHROUGH;
3555   case Instruction::FAdd:
3556   case Instruction::FRem:
3557     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3558                                            Depth + 1) &&
3559            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3560                                            Depth + 1);
3561   case Instruction::Select:
3562     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3563                                            Depth + 1) &&
3564            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3565                                            Depth + 1);
3566   case Instruction::FPExt:
3567   case Instruction::FPTrunc:
3568     // Widening/narrowing never change sign.
3569     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3570                                            Depth + 1);
3571   case Instruction::ExtractElement:
3572     // Look through extract element. At the moment we keep this simple and skip
3573     // tracking the specific element. But at least we might find information
3574     // valid for all elements of the vector.
3575     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3576                                            Depth + 1);
3577   case Instruction::Call:
3578     const auto *CI = cast<CallInst>(I);
3579     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3580     switch (IID) {
3581     default:
3582       break;
3583     case Intrinsic::maxnum: {
3584       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3585       auto isPositiveNum = [&](Value *V) {
3586         if (SignBitOnly) {
3587           // With SignBitOnly, this is tricky because the result of
3588           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3589           // a constant strictly greater than 0.0.
3590           const APFloat *C;
3591           return match(V, m_APFloat(C)) &&
3592                  *C > APFloat::getZero(C->getSemantics());
3593         }
3594 
3595         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3596         // maxnum can't be ordered-less-than-zero.
3597         return isKnownNeverNaN(V, TLI) &&
3598                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3599       };
3600 
3601       // TODO: This could be improved. We could also check that neither operand
3602       //       has its sign bit set (and at least 1 is not-NAN?).
3603       return isPositiveNum(V0) || isPositiveNum(V1);
3604     }
3605 
3606     case Intrinsic::maximum:
3607       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3608                                              Depth + 1) ||
3609              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3610                                              Depth + 1);
3611     case Intrinsic::minnum:
3612     case Intrinsic::minimum:
3613       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3614                                              Depth + 1) &&
3615              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3616                                              Depth + 1);
3617     case Intrinsic::exp:
3618     case Intrinsic::exp2:
3619     case Intrinsic::fabs:
3620       return true;
3621 
3622     case Intrinsic::sqrt:
3623       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3624       if (!SignBitOnly)
3625         return true;
3626       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3627                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3628 
3629     case Intrinsic::powi:
3630       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3631         // powi(x,n) is non-negative if n is even.
3632         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3633           return true;
3634       }
3635       // TODO: This is not correct.  Given that exp is an integer, here are the
3636       // ways that pow can return a negative value:
3637       //
3638       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3639       //   pow(-0, exp)   --> -inf if exp is negative odd.
3640       //   pow(-0, exp)   --> -0 if exp is positive odd.
3641       //   pow(-inf, exp) --> -0 if exp is negative odd.
3642       //   pow(-inf, exp) --> -inf if exp is positive odd.
3643       //
3644       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3645       // but we must return false if x == -0.  Unfortunately we do not currently
3646       // have a way of expressing this constraint.  See details in
3647       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3648       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3649                                              Depth + 1);
3650 
3651     case Intrinsic::fma:
3652     case Intrinsic::fmuladd:
3653       // x*x+y is non-negative if y is non-negative.
3654       return I->getOperand(0) == I->getOperand(1) &&
3655              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3656              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3657                                              Depth + 1);
3658     }
3659     break;
3660   }
3661   return false;
3662 }
3663 
CannotBeOrderedLessThanZero(const Value * V,const TargetLibraryInfo * TLI)3664 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3665                                        const TargetLibraryInfo *TLI) {
3666   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3667 }
3668 
SignBitMustBeZero(const Value * V,const TargetLibraryInfo * TLI)3669 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3670   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3671 }
3672 
isKnownNeverInfinity(const Value * V,const TargetLibraryInfo * TLI,unsigned Depth)3673 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3674                                 unsigned Depth) {
3675   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3676 
3677   // If we're told that infinities won't happen, assume they won't.
3678   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3679     if (FPMathOp->hasNoInfs())
3680       return true;
3681 
3682   // Handle scalar constants.
3683   if (auto *CFP = dyn_cast<ConstantFP>(V))
3684     return !CFP->isInfinity();
3685 
3686   if (Depth == MaxAnalysisRecursionDepth)
3687     return false;
3688 
3689   if (auto *Inst = dyn_cast<Instruction>(V)) {
3690     switch (Inst->getOpcode()) {
3691     case Instruction::Select: {
3692       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3693              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3694     }
3695     case Instruction::SIToFP:
3696     case Instruction::UIToFP: {
3697       // Get width of largest magnitude integer (remove a bit if signed).
3698       // This still works for a signed minimum value because the largest FP
3699       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3700       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3701       if (Inst->getOpcode() == Instruction::SIToFP)
3702         --IntSize;
3703 
3704       // If the exponent of the largest finite FP value can hold the largest
3705       // integer, the result of the cast must be finite.
3706       Type *FPTy = Inst->getType()->getScalarType();
3707       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3708     }
3709     default:
3710       break;
3711     }
3712   }
3713 
3714   // try to handle fixed width vector constants
3715   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3716   if (VFVTy && isa<Constant>(V)) {
3717     // For vectors, verify that each element is not infinity.
3718     unsigned NumElts = VFVTy->getNumElements();
3719     for (unsigned i = 0; i != NumElts; ++i) {
3720       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3721       if (!Elt)
3722         return false;
3723       if (isa<UndefValue>(Elt))
3724         continue;
3725       auto *CElt = dyn_cast<ConstantFP>(Elt);
3726       if (!CElt || CElt->isInfinity())
3727         return false;
3728     }
3729     // All elements were confirmed non-infinity or undefined.
3730     return true;
3731   }
3732 
3733   // was not able to prove that V never contains infinity
3734   return false;
3735 }
3736 
isKnownNeverNaN(const Value * V,const TargetLibraryInfo * TLI,unsigned Depth)3737 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3738                            unsigned Depth) {
3739   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3740 
3741   // If we're told that NaNs won't happen, assume they won't.
3742   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3743     if (FPMathOp->hasNoNaNs())
3744       return true;
3745 
3746   // Handle scalar constants.
3747   if (auto *CFP = dyn_cast<ConstantFP>(V))
3748     return !CFP->isNaN();
3749 
3750   if (Depth == MaxAnalysisRecursionDepth)
3751     return false;
3752 
3753   if (auto *Inst = dyn_cast<Instruction>(V)) {
3754     switch (Inst->getOpcode()) {
3755     case Instruction::FAdd:
3756     case Instruction::FSub:
3757       // Adding positive and negative infinity produces NaN.
3758       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3759              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3760              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3761               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3762 
3763     case Instruction::FMul:
3764       // Zero multiplied with infinity produces NaN.
3765       // FIXME: If neither side can be zero fmul never produces NaN.
3766       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3767              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3768              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3769              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3770 
3771     case Instruction::FDiv:
3772     case Instruction::FRem:
3773       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3774       return false;
3775 
3776     case Instruction::Select: {
3777       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3778              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3779     }
3780     case Instruction::SIToFP:
3781     case Instruction::UIToFP:
3782       return true;
3783     case Instruction::FPTrunc:
3784     case Instruction::FPExt:
3785       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3786     default:
3787       break;
3788     }
3789   }
3790 
3791   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3792     switch (II->getIntrinsicID()) {
3793     case Intrinsic::canonicalize:
3794     case Intrinsic::fabs:
3795     case Intrinsic::copysign:
3796     case Intrinsic::exp:
3797     case Intrinsic::exp2:
3798     case Intrinsic::floor:
3799     case Intrinsic::ceil:
3800     case Intrinsic::trunc:
3801     case Intrinsic::rint:
3802     case Intrinsic::nearbyint:
3803     case Intrinsic::round:
3804     case Intrinsic::roundeven:
3805       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3806     case Intrinsic::sqrt:
3807       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3808              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3809     case Intrinsic::minnum:
3810     case Intrinsic::maxnum:
3811       // If either operand is not NaN, the result is not NaN.
3812       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3813              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3814     default:
3815       return false;
3816     }
3817   }
3818 
3819   // Try to handle fixed width vector constants
3820   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3821   if (VFVTy && isa<Constant>(V)) {
3822     // For vectors, verify that each element is not NaN.
3823     unsigned NumElts = VFVTy->getNumElements();
3824     for (unsigned i = 0; i != NumElts; ++i) {
3825       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3826       if (!Elt)
3827         return false;
3828       if (isa<UndefValue>(Elt))
3829         continue;
3830       auto *CElt = dyn_cast<ConstantFP>(Elt);
3831       if (!CElt || CElt->isNaN())
3832         return false;
3833     }
3834     // All elements were confirmed not-NaN or undefined.
3835     return true;
3836   }
3837 
3838   // Was not able to prove that V never contains NaN
3839   return false;
3840 }
3841 
isBytewiseValue(Value * V,const DataLayout & DL)3842 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3843 
3844   // All byte-wide stores are splatable, even of arbitrary variables.
3845   if (V->getType()->isIntegerTy(8))
3846     return V;
3847 
3848   LLVMContext &Ctx = V->getContext();
3849 
3850   // Undef don't care.
3851   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3852   if (isa<UndefValue>(V))
3853     return UndefInt8;
3854 
3855   // Return Undef for zero-sized type.
3856   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3857     return UndefInt8;
3858 
3859   Constant *C = dyn_cast<Constant>(V);
3860   if (!C) {
3861     // Conceptually, we could handle things like:
3862     //   %a = zext i8 %X to i16
3863     //   %b = shl i16 %a, 8
3864     //   %c = or i16 %a, %b
3865     // but until there is an example that actually needs this, it doesn't seem
3866     // worth worrying about.
3867     return nullptr;
3868   }
3869 
3870   // Handle 'null' ConstantArrayZero etc.
3871   if (C->isNullValue())
3872     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3873 
3874   // Constant floating-point values can be handled as integer values if the
3875   // corresponding integer value is "byteable".  An important case is 0.0.
3876   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3877     Type *Ty = nullptr;
3878     if (CFP->getType()->isHalfTy())
3879       Ty = Type::getInt16Ty(Ctx);
3880     else if (CFP->getType()->isFloatTy())
3881       Ty = Type::getInt32Ty(Ctx);
3882     else if (CFP->getType()->isDoubleTy())
3883       Ty = Type::getInt64Ty(Ctx);
3884     // Don't handle long double formats, which have strange constraints.
3885     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3886               : nullptr;
3887   }
3888 
3889   // We can handle constant integers that are multiple of 8 bits.
3890   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3891     if (CI->getBitWidth() % 8 == 0) {
3892       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3893       if (!CI->getValue().isSplat(8))
3894         return nullptr;
3895       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3896     }
3897   }
3898 
3899   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3900     if (CE->getOpcode() == Instruction::IntToPtr) {
3901       if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
3902         unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
3903         return isBytewiseValue(
3904             ConstantExpr::getIntegerCast(CE->getOperand(0),
3905                                          Type::getIntNTy(Ctx, BitWidth), false),
3906             DL);
3907       }
3908     }
3909   }
3910 
3911   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3912     if (LHS == RHS)
3913       return LHS;
3914     if (!LHS || !RHS)
3915       return nullptr;
3916     if (LHS == UndefInt8)
3917       return RHS;
3918     if (RHS == UndefInt8)
3919       return LHS;
3920     return nullptr;
3921   };
3922 
3923   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3924     Value *Val = UndefInt8;
3925     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3926       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3927         return nullptr;
3928     return Val;
3929   }
3930 
3931   if (isa<ConstantAggregate>(C)) {
3932     Value *Val = UndefInt8;
3933     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3934       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3935         return nullptr;
3936     return Val;
3937   }
3938 
3939   // Don't try to handle the handful of other constants.
3940   return nullptr;
3941 }
3942 
3943 // This is the recursive version of BuildSubAggregate. It takes a few different
3944 // arguments. Idxs is the index within the nested struct From that we are
3945 // looking at now (which is of type IndexedType). IdxSkip is the number of
3946 // indices from Idxs that should be left out when inserting into the resulting
3947 // struct. To is the result struct built so far, new insertvalue instructions
3948 // build on that.
BuildSubAggregate(Value * From,Value * To,Type * IndexedType,SmallVectorImpl<unsigned> & Idxs,unsigned IdxSkip,Instruction * InsertBefore)3949 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3950                                 SmallVectorImpl<unsigned> &Idxs,
3951                                 unsigned IdxSkip,
3952                                 Instruction *InsertBefore) {
3953   StructType *STy = dyn_cast<StructType>(IndexedType);
3954   if (STy) {
3955     // Save the original To argument so we can modify it
3956     Value *OrigTo = To;
3957     // General case, the type indexed by Idxs is a struct
3958     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3959       // Process each struct element recursively
3960       Idxs.push_back(i);
3961       Value *PrevTo = To;
3962       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3963                              InsertBefore);
3964       Idxs.pop_back();
3965       if (!To) {
3966         // Couldn't find any inserted value for this index? Cleanup
3967         while (PrevTo != OrigTo) {
3968           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3969           PrevTo = Del->getAggregateOperand();
3970           Del->eraseFromParent();
3971         }
3972         // Stop processing elements
3973         break;
3974       }
3975     }
3976     // If we successfully found a value for each of our subaggregates
3977     if (To)
3978       return To;
3979   }
3980   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3981   // the struct's elements had a value that was inserted directly. In the latter
3982   // case, perhaps we can't determine each of the subelements individually, but
3983   // we might be able to find the complete struct somewhere.
3984 
3985   // Find the value that is at that particular spot
3986   Value *V = FindInsertedValue(From, Idxs);
3987 
3988   if (!V)
3989     return nullptr;
3990 
3991   // Insert the value in the new (sub) aggregate
3992   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3993                                  "tmp", InsertBefore);
3994 }
3995 
3996 // This helper takes a nested struct and extracts a part of it (which is again a
3997 // struct) into a new value. For example, given the struct:
3998 // { a, { b, { c, d }, e } }
3999 // and the indices "1, 1" this returns
4000 // { c, d }.
4001 //
4002 // It does this by inserting an insertvalue for each element in the resulting
4003 // struct, as opposed to just inserting a single struct. This will only work if
4004 // each of the elements of the substruct are known (ie, inserted into From by an
4005 // insertvalue instruction somewhere).
4006 //
4007 // All inserted insertvalue instructions are inserted before InsertBefore
BuildSubAggregate(Value * From,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)4008 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
4009                                 Instruction *InsertBefore) {
4010   assert(InsertBefore && "Must have someplace to insert!");
4011   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
4012                                                              idx_range);
4013   Value *To = UndefValue::get(IndexedType);
4014   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
4015   unsigned IdxSkip = Idxs.size();
4016 
4017   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
4018 }
4019 
4020 /// Given an aggregate and a sequence of indices, see if the scalar value
4021 /// indexed is already around as a register, for example if it was inserted
4022 /// directly into the aggregate.
4023 ///
4024 /// If InsertBefore is not null, this function will duplicate (modified)
4025 /// insertvalues when a part of a nested struct is extracted.
FindInsertedValue(Value * V,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)4026 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
4027                                Instruction *InsertBefore) {
4028   // Nothing to index? Just return V then (this is useful at the end of our
4029   // recursion).
4030   if (idx_range.empty())
4031     return V;
4032   // We have indices, so V should have an indexable type.
4033   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
4034          "Not looking at a struct or array?");
4035   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
4036          "Invalid indices for type?");
4037 
4038   if (Constant *C = dyn_cast<Constant>(V)) {
4039     C = C->getAggregateElement(idx_range[0]);
4040     if (!C) return nullptr;
4041     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
4042   }
4043 
4044   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
4045     // Loop the indices for the insertvalue instruction in parallel with the
4046     // requested indices
4047     const unsigned *req_idx = idx_range.begin();
4048     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
4049          i != e; ++i, ++req_idx) {
4050       if (req_idx == idx_range.end()) {
4051         // We can't handle this without inserting insertvalues
4052         if (!InsertBefore)
4053           return nullptr;
4054 
4055         // The requested index identifies a part of a nested aggregate. Handle
4056         // this specially. For example,
4057         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
4058         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
4059         // %C = extractvalue {i32, { i32, i32 } } %B, 1
4060         // This can be changed into
4061         // %A = insertvalue {i32, i32 } undef, i32 10, 0
4062         // %C = insertvalue {i32, i32 } %A, i32 11, 1
4063         // which allows the unused 0,0 element from the nested struct to be
4064         // removed.
4065         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
4066                                  InsertBefore);
4067       }
4068 
4069       // This insert value inserts something else than what we are looking for.
4070       // See if the (aggregate) value inserted into has the value we are
4071       // looking for, then.
4072       if (*req_idx != *i)
4073         return FindInsertedValue(I->getAggregateOperand(), idx_range,
4074                                  InsertBefore);
4075     }
4076     // If we end up here, the indices of the insertvalue match with those
4077     // requested (though possibly only partially). Now we recursively look at
4078     // the inserted value, passing any remaining indices.
4079     return FindInsertedValue(I->getInsertedValueOperand(),
4080                              makeArrayRef(req_idx, idx_range.end()),
4081                              InsertBefore);
4082   }
4083 
4084   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
4085     // If we're extracting a value from an aggregate that was extracted from
4086     // something else, we can extract from that something else directly instead.
4087     // However, we will need to chain I's indices with the requested indices.
4088 
4089     // Calculate the number of indices required
4090     unsigned size = I->getNumIndices() + idx_range.size();
4091     // Allocate some space to put the new indices in
4092     SmallVector<unsigned, 5> Idxs;
4093     Idxs.reserve(size);
4094     // Add indices from the extract value instruction
4095     Idxs.append(I->idx_begin(), I->idx_end());
4096 
4097     // Add requested indices
4098     Idxs.append(idx_range.begin(), idx_range.end());
4099 
4100     assert(Idxs.size() == size
4101            && "Number of indices added not correct?");
4102 
4103     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
4104   }
4105   // Otherwise, we don't know (such as, extracting from a function return value
4106   // or load instruction)
4107   return nullptr;
4108 }
4109 
isGEPBasedOnPointerToString(const GEPOperator * GEP,unsigned CharSize)4110 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4111                                        unsigned CharSize) {
4112   // Make sure the GEP has exactly three arguments.
4113   if (GEP->getNumOperands() != 3)
4114     return false;
4115 
4116   // Make sure the index-ee is a pointer to array of \p CharSize integers.
4117   // CharSize.
4118   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4119   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4120     return false;
4121 
4122   // Check to make sure that the first operand of the GEP is an integer and
4123   // has value 0 so that we are sure we're indexing into the initializer.
4124   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4125   if (!FirstIdx || !FirstIdx->isZero())
4126     return false;
4127 
4128   return true;
4129 }
4130 
getConstantDataArrayInfo(const Value * V,ConstantDataArraySlice & Slice,unsigned ElementSize,uint64_t Offset)4131 bool llvm::getConstantDataArrayInfo(const Value *V,
4132                                     ConstantDataArraySlice &Slice,
4133                                     unsigned ElementSize, uint64_t Offset) {
4134   assert(V);
4135 
4136   // Look through bitcast instructions and geps.
4137   V = V->stripPointerCasts();
4138 
4139   // If the value is a GEP instruction or constant expression, treat it as an
4140   // offset.
4141   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4142     // The GEP operator should be based on a pointer to string constant, and is
4143     // indexing into the string constant.
4144     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
4145       return false;
4146 
4147     // If the second index isn't a ConstantInt, then this is a variable index
4148     // into the array.  If this occurs, we can't say anything meaningful about
4149     // the string.
4150     uint64_t StartIdx = 0;
4151     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
4152       StartIdx = CI->getZExtValue();
4153     else
4154       return false;
4155     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
4156                                     StartIdx + Offset);
4157   }
4158 
4159   // The GEP instruction, constant or instruction, must reference a global
4160   // variable that is a constant and is initialized. The referenced constant
4161   // initializer is the array that we'll use for optimization.
4162   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
4163   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4164     return false;
4165 
4166   const ConstantDataArray *Array;
4167   ArrayType *ArrayTy;
4168   if (GV->getInitializer()->isNullValue()) {
4169     Type *GVTy = GV->getValueType();
4170     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
4171       // A zeroinitializer for the array; there is no ConstantDataArray.
4172       Array = nullptr;
4173     } else {
4174       const DataLayout &DL = GV->getParent()->getDataLayout();
4175       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
4176       uint64_t Length = SizeInBytes / (ElementSize / 8);
4177       if (Length <= Offset)
4178         return false;
4179 
4180       Slice.Array = nullptr;
4181       Slice.Offset = 0;
4182       Slice.Length = Length - Offset;
4183       return true;
4184     }
4185   } else {
4186     // This must be a ConstantDataArray.
4187     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
4188     if (!Array)
4189       return false;
4190     ArrayTy = Array->getType();
4191   }
4192   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
4193     return false;
4194 
4195   uint64_t NumElts = ArrayTy->getArrayNumElements();
4196   if (Offset > NumElts)
4197     return false;
4198 
4199   Slice.Array = Array;
4200   Slice.Offset = Offset;
4201   Slice.Length = NumElts - Offset;
4202   return true;
4203 }
4204 
4205 /// This function computes the length of a null-terminated C string pointed to
4206 /// by V. If successful, it returns true and returns the string in Str.
4207 /// If unsuccessful, it returns false.
getConstantStringInfo(const Value * V,StringRef & Str,uint64_t Offset,bool TrimAtNul)4208 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4209                                  uint64_t Offset, bool TrimAtNul) {
4210   ConstantDataArraySlice Slice;
4211   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4212     return false;
4213 
4214   if (Slice.Array == nullptr) {
4215     if (TrimAtNul) {
4216       Str = StringRef();
4217       return true;
4218     }
4219     if (Slice.Length == 1) {
4220       Str = StringRef("", 1);
4221       return true;
4222     }
4223     // We cannot instantiate a StringRef as we do not have an appropriate string
4224     // of 0s at hand.
4225     return false;
4226   }
4227 
4228   // Start out with the entire array in the StringRef.
4229   Str = Slice.Array->getAsString();
4230   // Skip over 'offset' bytes.
4231   Str = Str.substr(Slice.Offset);
4232 
4233   if (TrimAtNul) {
4234     // Trim off the \0 and anything after it.  If the array is not nul
4235     // terminated, we just return the whole end of string.  The client may know
4236     // some other way that the string is length-bound.
4237     Str = Str.substr(0, Str.find('\0'));
4238   }
4239   return true;
4240 }
4241 
4242 // These next two are very similar to the above, but also look through PHI
4243 // nodes.
4244 // TODO: See if we can integrate these two together.
4245 
4246 /// If we can compute the length of the string pointed to by
4247 /// the specified pointer, return 'len+1'.  If we can't, return 0.
GetStringLengthH(const Value * V,SmallPtrSetImpl<const PHINode * > & PHIs,unsigned CharSize)4248 static uint64_t GetStringLengthH(const Value *V,
4249                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4250                                  unsigned CharSize) {
4251   // Look through noop bitcast instructions.
4252   V = V->stripPointerCasts();
4253 
4254   // If this is a PHI node, there are two cases: either we have already seen it
4255   // or we haven't.
4256   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4257     if (!PHIs.insert(PN).second)
4258       return ~0ULL;  // already in the set.
4259 
4260     // If it was new, see if all the input strings are the same length.
4261     uint64_t LenSoFar = ~0ULL;
4262     for (Value *IncValue : PN->incoming_values()) {
4263       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4264       if (Len == 0) return 0; // Unknown length -> unknown.
4265 
4266       if (Len == ~0ULL) continue;
4267 
4268       if (Len != LenSoFar && LenSoFar != ~0ULL)
4269         return 0;    // Disagree -> unknown.
4270       LenSoFar = Len;
4271     }
4272 
4273     // Success, all agree.
4274     return LenSoFar;
4275   }
4276 
4277   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4278   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4279     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4280     if (Len1 == 0) return 0;
4281     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4282     if (Len2 == 0) return 0;
4283     if (Len1 == ~0ULL) return Len2;
4284     if (Len2 == ~0ULL) return Len1;
4285     if (Len1 != Len2) return 0;
4286     return Len1;
4287   }
4288 
4289   // Otherwise, see if we can read the string.
4290   ConstantDataArraySlice Slice;
4291   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4292     return 0;
4293 
4294   if (Slice.Array == nullptr)
4295     return 1;
4296 
4297   // Search for nul characters
4298   unsigned NullIndex = 0;
4299   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4300     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4301       break;
4302   }
4303 
4304   return NullIndex + 1;
4305 }
4306 
4307 /// If we can compute the length of the string pointed to by
4308 /// the specified pointer, return 'len+1'.  If we can't, return 0.
GetStringLength(const Value * V,unsigned CharSize)4309 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4310   if (!V->getType()->isPointerTy())
4311     return 0;
4312 
4313   SmallPtrSet<const PHINode*, 32> PHIs;
4314   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4315   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4316   // an empty string as a length.
4317   return Len == ~0ULL ? 1 : Len;
4318 }
4319 
4320 const Value *
getArgumentAliasingToReturnedPointer(const CallBase * Call,bool MustPreserveNullness)4321 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4322                                            bool MustPreserveNullness) {
4323   assert(Call &&
4324          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4325   if (const Value *RV = Call->getReturnedArgOperand())
4326     return RV;
4327   // This can be used only as a aliasing property.
4328   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4329           Call, MustPreserveNullness))
4330     return Call->getArgOperand(0);
4331   return nullptr;
4332 }
4333 
isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(const CallBase * Call,bool MustPreserveNullness)4334 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4335     const CallBase *Call, bool MustPreserveNullness) {
4336   switch (Call->getIntrinsicID()) {
4337   case Intrinsic::launder_invariant_group:
4338   case Intrinsic::strip_invariant_group:
4339   case Intrinsic::aarch64_irg:
4340   case Intrinsic::aarch64_tagp:
4341     return true;
4342   case Intrinsic::ptrmask:
4343     return !MustPreserveNullness;
4344   default:
4345     return false;
4346   }
4347 }
4348 
4349 /// \p PN defines a loop-variant pointer to an object.  Check if the
4350 /// previous iteration of the loop was referring to the same object as \p PN.
isSameUnderlyingObjectInLoop(const PHINode * PN,const LoopInfo * LI)4351 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4352                                          const LoopInfo *LI) {
4353   // Find the loop-defined value.
4354   Loop *L = LI->getLoopFor(PN->getParent());
4355   if (PN->getNumIncomingValues() != 2)
4356     return true;
4357 
4358   // Find the value from previous iteration.
4359   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4360   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4361     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4362   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4363     return true;
4364 
4365   // If a new pointer is loaded in the loop, the pointer references a different
4366   // object in every iteration.  E.g.:
4367   //    for (i)
4368   //       int *p = a[i];
4369   //       ...
4370   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4371     if (!L->isLoopInvariant(Load->getPointerOperand()))
4372       return false;
4373   return true;
4374 }
4375 
getUnderlyingObject(const Value * V,unsigned MaxLookup)4376 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
4377   if (!V->getType()->isPointerTy())
4378     return V;
4379   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4380     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
4381       V = GEP->getPointerOperand();
4382     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4383                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4384       V = cast<Operator>(V)->getOperand(0);
4385       if (!V->getType()->isPointerTy())
4386         return V;
4387     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
4388       if (GA->isInterposable())
4389         return V;
4390       V = GA->getAliasee();
4391     } else {
4392       if (auto *PHI = dyn_cast<PHINode>(V)) {
4393         // Look through single-arg phi nodes created by LCSSA.
4394         if (PHI->getNumIncomingValues() == 1) {
4395           V = PHI->getIncomingValue(0);
4396           continue;
4397         }
4398       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4399         // CaptureTracking can know about special capturing properties of some
4400         // intrinsics like launder.invariant.group, that can't be expressed with
4401         // the attributes, but have properties like returning aliasing pointer.
4402         // Because some analysis may assume that nocaptured pointer is not
4403         // returned from some special intrinsic (because function would have to
4404         // be marked with returns attribute), it is crucial to use this function
4405         // because it should be in sync with CaptureTracking. Not using it may
4406         // cause weird miscompilations where 2 aliasing pointers are assumed to
4407         // noalias.
4408         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4409           V = RP;
4410           continue;
4411         }
4412       }
4413 
4414       return V;
4415     }
4416     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4417   }
4418   return V;
4419 }
4420 
getUnderlyingObjects(const Value * V,SmallVectorImpl<const Value * > & Objects,LoopInfo * LI,unsigned MaxLookup)4421 void llvm::getUnderlyingObjects(const Value *V,
4422                                 SmallVectorImpl<const Value *> &Objects,
4423                                 LoopInfo *LI, unsigned MaxLookup) {
4424   SmallPtrSet<const Value *, 4> Visited;
4425   SmallVector<const Value *, 4> Worklist;
4426   Worklist.push_back(V);
4427   do {
4428     const Value *P = Worklist.pop_back_val();
4429     P = getUnderlyingObject(P, MaxLookup);
4430 
4431     if (!Visited.insert(P).second)
4432       continue;
4433 
4434     if (auto *SI = dyn_cast<SelectInst>(P)) {
4435       Worklist.push_back(SI->getTrueValue());
4436       Worklist.push_back(SI->getFalseValue());
4437       continue;
4438     }
4439 
4440     if (auto *PN = dyn_cast<PHINode>(P)) {
4441       // If this PHI changes the underlying object in every iteration of the
4442       // loop, don't look through it.  Consider:
4443       //   int **A;
4444       //   for (i) {
4445       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4446       //     Curr = A[i];
4447       //     *Prev, *Curr;
4448       //
4449       // Prev is tracking Curr one iteration behind so they refer to different
4450       // underlying objects.
4451       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4452           isSameUnderlyingObjectInLoop(PN, LI))
4453         append_range(Worklist, PN->incoming_values());
4454       continue;
4455     }
4456 
4457     Objects.push_back(P);
4458   } while (!Worklist.empty());
4459 }
4460 
4461 /// This is the function that does the work of looking through basic
4462 /// ptrtoint+arithmetic+inttoptr sequences.
getUnderlyingObjectFromInt(const Value * V)4463 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4464   do {
4465     if (const Operator *U = dyn_cast<Operator>(V)) {
4466       // If we find a ptrtoint, we can transfer control back to the
4467       // regular getUnderlyingObjectFromInt.
4468       if (U->getOpcode() == Instruction::PtrToInt)
4469         return U->getOperand(0);
4470       // If we find an add of a constant, a multiplied value, or a phi, it's
4471       // likely that the other operand will lead us to the base
4472       // object. We don't have to worry about the case where the
4473       // object address is somehow being computed by the multiply,
4474       // because our callers only care when the result is an
4475       // identifiable object.
4476       if (U->getOpcode() != Instruction::Add ||
4477           (!isa<ConstantInt>(U->getOperand(1)) &&
4478            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4479            !isa<PHINode>(U->getOperand(1))))
4480         return V;
4481       V = U->getOperand(0);
4482     } else {
4483       return V;
4484     }
4485     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4486   } while (true);
4487 }
4488 
4489 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4490 /// ptrtoint+arithmetic+inttoptr sequences.
4491 /// It returns false if unidentified object is found in getUnderlyingObjects.
getUnderlyingObjectsForCodeGen(const Value * V,SmallVectorImpl<Value * > & Objects)4492 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4493                                           SmallVectorImpl<Value *> &Objects) {
4494   SmallPtrSet<const Value *, 16> Visited;
4495   SmallVector<const Value *, 4> Working(1, V);
4496   do {
4497     V = Working.pop_back_val();
4498 
4499     SmallVector<const Value *, 4> Objs;
4500     getUnderlyingObjects(V, Objs);
4501 
4502     for (const Value *V : Objs) {
4503       if (!Visited.insert(V).second)
4504         continue;
4505       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4506         const Value *O =
4507           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4508         if (O->getType()->isPointerTy()) {
4509           Working.push_back(O);
4510           continue;
4511         }
4512       }
4513       // If getUnderlyingObjects fails to find an identifiable object,
4514       // getUnderlyingObjectsForCodeGen also fails for safety.
4515       if (!isIdentifiedObject(V)) {
4516         Objects.clear();
4517         return false;
4518       }
4519       Objects.push_back(const_cast<Value *>(V));
4520     }
4521   } while (!Working.empty());
4522   return true;
4523 }
4524 
findAllocaForValue(Value * V,bool OffsetZero)4525 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4526   AllocaInst *Result = nullptr;
4527   SmallPtrSet<Value *, 4> Visited;
4528   SmallVector<Value *, 4> Worklist;
4529 
4530   auto AddWork = [&](Value *V) {
4531     if (Visited.insert(V).second)
4532       Worklist.push_back(V);
4533   };
4534 
4535   AddWork(V);
4536   do {
4537     V = Worklist.pop_back_val();
4538     assert(Visited.count(V));
4539 
4540     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4541       if (Result && Result != AI)
4542         return nullptr;
4543       Result = AI;
4544     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4545       AddWork(CI->getOperand(0));
4546     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4547       for (Value *IncValue : PN->incoming_values())
4548         AddWork(IncValue);
4549     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4550       AddWork(SI->getTrueValue());
4551       AddWork(SI->getFalseValue());
4552     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4553       if (OffsetZero && !GEP->hasAllZeroIndices())
4554         return nullptr;
4555       AddWork(GEP->getPointerOperand());
4556     } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
4557       Value *Returned = CB->getReturnedArgOperand();
4558       if (Returned)
4559         AddWork(Returned);
4560       else
4561         return nullptr;
4562     } else {
4563       return nullptr;
4564     }
4565   } while (!Worklist.empty());
4566 
4567   return Result;
4568 }
4569 
onlyUsedByLifetimeMarkersOrDroppableInstsHelper(const Value * V,bool AllowLifetime,bool AllowDroppable)4570 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4571     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4572   for (const User *U : V->users()) {
4573     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4574     if (!II)
4575       return false;
4576 
4577     if (AllowLifetime && II->isLifetimeStartOrEnd())
4578       continue;
4579 
4580     if (AllowDroppable && II->isDroppable())
4581       continue;
4582 
4583     return false;
4584   }
4585   return true;
4586 }
4587 
onlyUsedByLifetimeMarkers(const Value * V)4588 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4589   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4590       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4591 }
onlyUsedByLifetimeMarkersOrDroppableInsts(const Value * V)4592 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4593   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4594       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4595 }
4596 
mustSuppressSpeculation(const LoadInst & LI)4597 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4598   if (!LI.isUnordered())
4599     return true;
4600   const Function &F = *LI.getFunction();
4601   // Speculative load may create a race that did not exist in the source.
4602   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4603     // Speculative load may load data from dirty regions.
4604     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4605     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4606 }
4607 
4608 
isSafeToSpeculativelyExecute(const Value * V,const Instruction * CtxI,const DominatorTree * DT,const TargetLibraryInfo * TLI)4609 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4610                                         const Instruction *CtxI,
4611                                         const DominatorTree *DT,
4612                                         const TargetLibraryInfo *TLI) {
4613   const Operator *Inst = dyn_cast<Operator>(V);
4614   if (!Inst)
4615     return false;
4616 
4617   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4618     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4619       if (C->canTrap())
4620         return false;
4621 
4622   switch (Inst->getOpcode()) {
4623   default:
4624     return true;
4625   case Instruction::UDiv:
4626   case Instruction::URem: {
4627     // x / y is undefined if y == 0.
4628     const APInt *V;
4629     if (match(Inst->getOperand(1), m_APInt(V)))
4630       return *V != 0;
4631     return false;
4632   }
4633   case Instruction::SDiv:
4634   case Instruction::SRem: {
4635     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4636     const APInt *Numerator, *Denominator;
4637     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4638       return false;
4639     // We cannot hoist this division if the denominator is 0.
4640     if (*Denominator == 0)
4641       return false;
4642     // It's safe to hoist if the denominator is not 0 or -1.
4643     if (!Denominator->isAllOnes())
4644       return true;
4645     // At this point we know that the denominator is -1.  It is safe to hoist as
4646     // long we know that the numerator is not INT_MIN.
4647     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4648       return !Numerator->isMinSignedValue();
4649     // The numerator *might* be MinSignedValue.
4650     return false;
4651   }
4652   case Instruction::Load: {
4653     const LoadInst *LI = cast<LoadInst>(Inst);
4654     if (mustSuppressSpeculation(*LI))
4655       return false;
4656     const DataLayout &DL = LI->getModule()->getDataLayout();
4657     return isDereferenceableAndAlignedPointer(
4658         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4659         DL, CtxI, DT, TLI);
4660   }
4661   case Instruction::Call: {
4662     auto *CI = cast<const CallInst>(Inst);
4663     const Function *Callee = CI->getCalledFunction();
4664 
4665     // The called function could have undefined behavior or side-effects, even
4666     // if marked readnone nounwind.
4667     return Callee && Callee->isSpeculatable();
4668   }
4669   case Instruction::VAArg:
4670   case Instruction::Alloca:
4671   case Instruction::Invoke:
4672   case Instruction::CallBr:
4673   case Instruction::PHI:
4674   case Instruction::Store:
4675   case Instruction::Ret:
4676   case Instruction::Br:
4677   case Instruction::IndirectBr:
4678   case Instruction::Switch:
4679   case Instruction::Unreachable:
4680   case Instruction::Fence:
4681   case Instruction::AtomicRMW:
4682   case Instruction::AtomicCmpXchg:
4683   case Instruction::LandingPad:
4684   case Instruction::Resume:
4685   case Instruction::CatchSwitch:
4686   case Instruction::CatchPad:
4687   case Instruction::CatchRet:
4688   case Instruction::CleanupPad:
4689   case Instruction::CleanupRet:
4690     return false; // Misc instructions which have effects
4691   }
4692 }
4693 
mayBeMemoryDependent(const Instruction & I)4694 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4695   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4696 }
4697 
4698 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
mapOverflowResult(ConstantRange::OverflowResult OR)4699 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4700   switch (OR) {
4701     case ConstantRange::OverflowResult::MayOverflow:
4702       return OverflowResult::MayOverflow;
4703     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4704       return OverflowResult::AlwaysOverflowsLow;
4705     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4706       return OverflowResult::AlwaysOverflowsHigh;
4707     case ConstantRange::OverflowResult::NeverOverflows:
4708       return OverflowResult::NeverOverflows;
4709   }
4710   llvm_unreachable("Unknown OverflowResult");
4711 }
4712 
4713 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
computeConstantRangeIncludingKnownBits(const Value * V,bool ForSigned,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,OptimizationRemarkEmitter * ORE=nullptr,bool UseInstrInfo=true)4714 static ConstantRange computeConstantRangeIncludingKnownBits(
4715     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4716     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4717     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4718   KnownBits Known = computeKnownBits(
4719       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4720   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4721   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4722   ConstantRange::PreferredRangeType RangeType =
4723       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4724   return CR1.intersectWith(CR2, RangeType);
4725 }
4726 
computeOverflowForUnsignedMul(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)4727 OverflowResult llvm::computeOverflowForUnsignedMul(
4728     const Value *LHS, const Value *RHS, const DataLayout &DL,
4729     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4730     bool UseInstrInfo) {
4731   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4732                                         nullptr, UseInstrInfo);
4733   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4734                                         nullptr, UseInstrInfo);
4735   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4736   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4737   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4738 }
4739 
4740 OverflowResult
computeOverflowForSignedMul(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)4741 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4742                                   const DataLayout &DL, AssumptionCache *AC,
4743                                   const Instruction *CxtI,
4744                                   const DominatorTree *DT, bool UseInstrInfo) {
4745   // Multiplying n * m significant bits yields a result of n + m significant
4746   // bits. If the total number of significant bits does not exceed the
4747   // result bit width (minus 1), there is no overflow.
4748   // This means if we have enough leading sign bits in the operands
4749   // we can guarantee that the result does not overflow.
4750   // Ref: "Hacker's Delight" by Henry Warren
4751   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4752 
4753   // Note that underestimating the number of sign bits gives a more
4754   // conservative answer.
4755   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4756                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4757 
4758   // First handle the easy case: if we have enough sign bits there's
4759   // definitely no overflow.
4760   if (SignBits > BitWidth + 1)
4761     return OverflowResult::NeverOverflows;
4762 
4763   // There are two ambiguous cases where there can be no overflow:
4764   //   SignBits == BitWidth + 1    and
4765   //   SignBits == BitWidth
4766   // The second case is difficult to check, therefore we only handle the
4767   // first case.
4768   if (SignBits == BitWidth + 1) {
4769     // It overflows only when both arguments are negative and the true
4770     // product is exactly the minimum negative number.
4771     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4772     // For simplicity we just check if at least one side is not negative.
4773     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4774                                           nullptr, UseInstrInfo);
4775     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4776                                           nullptr, UseInstrInfo);
4777     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4778       return OverflowResult::NeverOverflows;
4779   }
4780   return OverflowResult::MayOverflow;
4781 }
4782 
computeOverflowForUnsignedAdd(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT,bool UseInstrInfo)4783 OverflowResult llvm::computeOverflowForUnsignedAdd(
4784     const Value *LHS, const Value *RHS, const DataLayout &DL,
4785     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4786     bool UseInstrInfo) {
4787   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4788       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4789       nullptr, UseInstrInfo);
4790   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4791       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4792       nullptr, UseInstrInfo);
4793   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4794 }
4795 
computeOverflowForSignedAdd(const Value * LHS,const Value * RHS,const AddOperator * Add,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4796 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4797                                                   const Value *RHS,
4798                                                   const AddOperator *Add,
4799                                                   const DataLayout &DL,
4800                                                   AssumptionCache *AC,
4801                                                   const Instruction *CxtI,
4802                                                   const DominatorTree *DT) {
4803   if (Add && Add->hasNoSignedWrap()) {
4804     return OverflowResult::NeverOverflows;
4805   }
4806 
4807   // If LHS and RHS each have at least two sign bits, the addition will look
4808   // like
4809   //
4810   // XX..... +
4811   // YY.....
4812   //
4813   // If the carry into the most significant position is 0, X and Y can't both
4814   // be 1 and therefore the carry out of the addition is also 0.
4815   //
4816   // If the carry into the most significant position is 1, X and Y can't both
4817   // be 0 and therefore the carry out of the addition is also 1.
4818   //
4819   // Since the carry into the most significant position is always equal to
4820   // the carry out of the addition, there is no signed overflow.
4821   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4822       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4823     return OverflowResult::NeverOverflows;
4824 
4825   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4826       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4827   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4828       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4829   OverflowResult OR =
4830       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4831   if (OR != OverflowResult::MayOverflow)
4832     return OR;
4833 
4834   // The remaining code needs Add to be available. Early returns if not so.
4835   if (!Add)
4836     return OverflowResult::MayOverflow;
4837 
4838   // If the sign of Add is the same as at least one of the operands, this add
4839   // CANNOT overflow. If this can be determined from the known bits of the
4840   // operands the above signedAddMayOverflow() check will have already done so.
4841   // The only other way to improve on the known bits is from an assumption, so
4842   // call computeKnownBitsFromAssume() directly.
4843   bool LHSOrRHSKnownNonNegative =
4844       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4845   bool LHSOrRHSKnownNegative =
4846       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4847   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4848     KnownBits AddKnown(LHSRange.getBitWidth());
4849     computeKnownBitsFromAssume(
4850         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4851     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4852         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4853       return OverflowResult::NeverOverflows;
4854   }
4855 
4856   return OverflowResult::MayOverflow;
4857 }
4858 
computeOverflowForUnsignedSub(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4859 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4860                                                    const Value *RHS,
4861                                                    const DataLayout &DL,
4862                                                    AssumptionCache *AC,
4863                                                    const Instruction *CxtI,
4864                                                    const DominatorTree *DT) {
4865   // Checking for conditions implied by dominating conditions may be expensive.
4866   // Limit it to usub_with_overflow calls for now.
4867   if (match(CxtI,
4868             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4869     if (auto C =
4870             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4871       if (*C)
4872         return OverflowResult::NeverOverflows;
4873       return OverflowResult::AlwaysOverflowsLow;
4874     }
4875   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4876       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4877   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4878       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4879   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4880 }
4881 
computeOverflowForSignedSub(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4882 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4883                                                  const Value *RHS,
4884                                                  const DataLayout &DL,
4885                                                  AssumptionCache *AC,
4886                                                  const Instruction *CxtI,
4887                                                  const DominatorTree *DT) {
4888   // If LHS and RHS each have at least two sign bits, the subtraction
4889   // cannot overflow.
4890   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4891       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4892     return OverflowResult::NeverOverflows;
4893 
4894   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4895       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4896   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4897       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4898   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4899 }
4900 
isOverflowIntrinsicNoWrap(const WithOverflowInst * WO,const DominatorTree & DT)4901 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4902                                      const DominatorTree &DT) {
4903   SmallVector<const BranchInst *, 2> GuardingBranches;
4904   SmallVector<const ExtractValueInst *, 2> Results;
4905 
4906   for (const User *U : WO->users()) {
4907     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4908       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4909 
4910       if (EVI->getIndices()[0] == 0)
4911         Results.push_back(EVI);
4912       else {
4913         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4914 
4915         for (const auto *U : EVI->users())
4916           if (const auto *B = dyn_cast<BranchInst>(U)) {
4917             assert(B->isConditional() && "How else is it using an i1?");
4918             GuardingBranches.push_back(B);
4919           }
4920       }
4921     } else {
4922       // We are using the aggregate directly in a way we don't want to analyze
4923       // here (storing it to a global, say).
4924       return false;
4925     }
4926   }
4927 
4928   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4929     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4930     if (!NoWrapEdge.isSingleEdge())
4931       return false;
4932 
4933     // Check if all users of the add are provably no-wrap.
4934     for (const auto *Result : Results) {
4935       // If the extractvalue itself is not executed on overflow, the we don't
4936       // need to check each use separately, since domination is transitive.
4937       if (DT.dominates(NoWrapEdge, Result->getParent()))
4938         continue;
4939 
4940       for (auto &RU : Result->uses())
4941         if (!DT.dominates(NoWrapEdge, RU))
4942           return false;
4943     }
4944 
4945     return true;
4946   };
4947 
4948   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4949 }
4950 
canCreateUndefOrPoison(const Operator * Op,bool PoisonOnly)4951 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
4952   // See whether I has flags that may create poison
4953   if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
4954     if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
4955       return true;
4956   }
4957   if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
4958     if (ExactOp->isExact())
4959       return true;
4960   if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
4961     auto FMF = FP->getFastMathFlags();
4962     if (FMF.noNaNs() || FMF.noInfs())
4963       return true;
4964   }
4965 
4966   unsigned Opcode = Op->getOpcode();
4967 
4968   // Check whether opcode is a poison/undef-generating operation
4969   switch (Opcode) {
4970   case Instruction::Shl:
4971   case Instruction::AShr:
4972   case Instruction::LShr: {
4973     // Shifts return poison if shiftwidth is larger than the bitwidth.
4974     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4975       SmallVector<Constant *, 4> ShiftAmounts;
4976       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4977         unsigned NumElts = FVTy->getNumElements();
4978         for (unsigned i = 0; i < NumElts; ++i)
4979           ShiftAmounts.push_back(C->getAggregateElement(i));
4980       } else if (isa<ScalableVectorType>(C->getType()))
4981         return true; // Can't tell, just return true to be safe
4982       else
4983         ShiftAmounts.push_back(C);
4984 
4985       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4986         auto *CI = dyn_cast_or_null<ConstantInt>(C);
4987         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
4988       });
4989       return !Safe;
4990     }
4991     return true;
4992   }
4993   case Instruction::FPToSI:
4994   case Instruction::FPToUI:
4995     // fptosi/ui yields poison if the resulting value does not fit in the
4996     // destination type.
4997     return true;
4998   case Instruction::Call:
4999     if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
5000       switch (II->getIntrinsicID()) {
5001       // TODO: Add more intrinsics.
5002       case Intrinsic::ctpop:
5003       case Intrinsic::sadd_with_overflow:
5004       case Intrinsic::ssub_with_overflow:
5005       case Intrinsic::smul_with_overflow:
5006       case Intrinsic::uadd_with_overflow:
5007       case Intrinsic::usub_with_overflow:
5008       case Intrinsic::umul_with_overflow:
5009         return false;
5010       }
5011     }
5012     LLVM_FALLTHROUGH;
5013   case Instruction::CallBr:
5014   case Instruction::Invoke: {
5015     const auto *CB = cast<CallBase>(Op);
5016     return !CB->hasRetAttr(Attribute::NoUndef);
5017   }
5018   case Instruction::InsertElement:
5019   case Instruction::ExtractElement: {
5020     // If index exceeds the length of the vector, it returns poison
5021     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
5022     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
5023     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
5024     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
5025       return true;
5026     return false;
5027   }
5028   case Instruction::ShuffleVector: {
5029     // shufflevector may return undef.
5030     if (PoisonOnly)
5031       return false;
5032     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
5033                              ? cast<ConstantExpr>(Op)->getShuffleMask()
5034                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
5035     return is_contained(Mask, UndefMaskElem);
5036   }
5037   case Instruction::FNeg:
5038   case Instruction::PHI:
5039   case Instruction::Select:
5040   case Instruction::URem:
5041   case Instruction::SRem:
5042   case Instruction::ExtractValue:
5043   case Instruction::InsertValue:
5044   case Instruction::Freeze:
5045   case Instruction::ICmp:
5046   case Instruction::FCmp:
5047     return false;
5048   case Instruction::GetElementPtr: {
5049     const auto *GEP = cast<GEPOperator>(Op);
5050     return GEP->isInBounds();
5051   }
5052   default: {
5053     const auto *CE = dyn_cast<ConstantExpr>(Op);
5054     if (isa<CastInst>(Op) || (CE && CE->isCast()))
5055       return false;
5056     else if (Instruction::isBinaryOp(Opcode))
5057       return false;
5058     // Be conservative and return true.
5059     return true;
5060   }
5061   }
5062 }
5063 
canCreateUndefOrPoison(const Operator * Op)5064 bool llvm::canCreateUndefOrPoison(const Operator *Op) {
5065   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
5066 }
5067 
canCreatePoison(const Operator * Op)5068 bool llvm::canCreatePoison(const Operator *Op) {
5069   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
5070 }
5071 
directlyImpliesPoison(const Value * ValAssumedPoison,const Value * V,unsigned Depth)5072 static bool directlyImpliesPoison(const Value *ValAssumedPoison,
5073                                   const Value *V, unsigned Depth) {
5074   if (ValAssumedPoison == V)
5075     return true;
5076 
5077   const unsigned MaxDepth = 2;
5078   if (Depth >= MaxDepth)
5079     return false;
5080 
5081   if (const auto *I = dyn_cast<Instruction>(V)) {
5082     if (propagatesPoison(cast<Operator>(I)))
5083       return any_of(I->operands(), [=](const Value *Op) {
5084         return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
5085       });
5086 
5087     // 'select ValAssumedPoison, _, _' is poison.
5088     if (const auto *SI = dyn_cast<SelectInst>(I))
5089       return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(),
5090                                    Depth + 1);
5091     // V  = extractvalue V0, idx
5092     // V2 = extractvalue V0, idx2
5093     // V0's elements are all poison or not. (e.g., add_with_overflow)
5094     const WithOverflowInst *II;
5095     if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
5096         (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
5097          llvm::is_contained(II->args(), ValAssumedPoison)))
5098       return true;
5099   }
5100   return false;
5101 }
5102 
impliesPoison(const Value * ValAssumedPoison,const Value * V,unsigned Depth)5103 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
5104                           unsigned Depth) {
5105   if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
5106     return true;
5107 
5108   if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
5109     return true;
5110 
5111   const unsigned MaxDepth = 2;
5112   if (Depth >= MaxDepth)
5113     return false;
5114 
5115   const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
5116   if (I && !canCreatePoison(cast<Operator>(I))) {
5117     return all_of(I->operands(), [=](const Value *Op) {
5118       return impliesPoison(Op, V, Depth + 1);
5119     });
5120   }
5121   return false;
5122 }
5123 
impliesPoison(const Value * ValAssumedPoison,const Value * V)5124 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
5125   return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
5126 }
5127 
5128 static bool programUndefinedIfUndefOrPoison(const Value *V,
5129                                             bool PoisonOnly);
5130 
isGuaranteedNotToBeUndefOrPoison(const Value * V,AssumptionCache * AC,const Instruction * CtxI,const DominatorTree * DT,unsigned Depth,bool PoisonOnly)5131 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
5132                                              AssumptionCache *AC,
5133                                              const Instruction *CtxI,
5134                                              const DominatorTree *DT,
5135                                              unsigned Depth, bool PoisonOnly) {
5136   if (Depth >= MaxAnalysisRecursionDepth)
5137     return false;
5138 
5139   if (isa<MetadataAsValue>(V))
5140     return false;
5141 
5142   if (const auto *A = dyn_cast<Argument>(V)) {
5143     if (A->hasAttribute(Attribute::NoUndef))
5144       return true;
5145   }
5146 
5147   if (auto *C = dyn_cast<Constant>(V)) {
5148     if (isa<UndefValue>(C))
5149       return PoisonOnly && !isa<PoisonValue>(C);
5150 
5151     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
5152         isa<ConstantPointerNull>(C) || isa<Function>(C))
5153       return true;
5154 
5155     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
5156       return (PoisonOnly ? !C->containsPoisonElement()
5157                          : !C->containsUndefOrPoisonElement()) &&
5158              !C->containsConstantExpression();
5159   }
5160 
5161   // Strip cast operations from a pointer value.
5162   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
5163   // inbounds with zero offset. To guarantee that the result isn't poison, the
5164   // stripped pointer is checked as it has to be pointing into an allocated
5165   // object or be null `null` to ensure `inbounds` getelement pointers with a
5166   // zero offset could not produce poison.
5167   // It can strip off addrspacecast that do not change bit representation as
5168   // well. We believe that such addrspacecast is equivalent to no-op.
5169   auto *StrippedV = V->stripPointerCastsSameRepresentation();
5170   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
5171       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
5172     return true;
5173 
5174   auto OpCheck = [&](const Value *V) {
5175     return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
5176                                             PoisonOnly);
5177   };
5178 
5179   if (auto *Opr = dyn_cast<Operator>(V)) {
5180     // If the value is a freeze instruction, then it can never
5181     // be undef or poison.
5182     if (isa<FreezeInst>(V))
5183       return true;
5184 
5185     if (const auto *CB = dyn_cast<CallBase>(V)) {
5186       if (CB->hasRetAttr(Attribute::NoUndef))
5187         return true;
5188     }
5189 
5190     if (const auto *PN = dyn_cast<PHINode>(V)) {
5191       unsigned Num = PN->getNumIncomingValues();
5192       bool IsWellDefined = true;
5193       for (unsigned i = 0; i < Num; ++i) {
5194         auto *TI = PN->getIncomingBlock(i)->getTerminator();
5195         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
5196                                               DT, Depth + 1, PoisonOnly)) {
5197           IsWellDefined = false;
5198           break;
5199         }
5200       }
5201       if (IsWellDefined)
5202         return true;
5203     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
5204       return true;
5205   }
5206 
5207   if (auto *I = dyn_cast<LoadInst>(V))
5208     if (I->getMetadata(LLVMContext::MD_noundef))
5209       return true;
5210 
5211   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
5212     return true;
5213 
5214   // CxtI may be null or a cloned instruction.
5215   if (!CtxI || !CtxI->getParent() || !DT)
5216     return false;
5217 
5218   auto *DNode = DT->getNode(CtxI->getParent());
5219   if (!DNode)
5220     // Unreachable block
5221     return false;
5222 
5223   // If V is used as a branch condition before reaching CtxI, V cannot be
5224   // undef or poison.
5225   //   br V, BB1, BB2
5226   // BB1:
5227   //   CtxI ; V cannot be undef or poison here
5228   auto *Dominator = DNode->getIDom();
5229   while (Dominator) {
5230     auto *TI = Dominator->getBlock()->getTerminator();
5231 
5232     Value *Cond = nullptr;
5233     if (auto BI = dyn_cast<BranchInst>(TI)) {
5234       if (BI->isConditional())
5235         Cond = BI->getCondition();
5236     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
5237       Cond = SI->getCondition();
5238     }
5239 
5240     if (Cond) {
5241       if (Cond == V)
5242         return true;
5243       else if (PoisonOnly && isa<Operator>(Cond)) {
5244         // For poison, we can analyze further
5245         auto *Opr = cast<Operator>(Cond);
5246         if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
5247           return true;
5248       }
5249     }
5250 
5251     Dominator = Dominator->getIDom();
5252   }
5253 
5254   SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef};
5255   if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC))
5256     return true;
5257 
5258   return false;
5259 }
5260 
isGuaranteedNotToBeUndefOrPoison(const Value * V,AssumptionCache * AC,const Instruction * CtxI,const DominatorTree * DT,unsigned Depth)5261 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
5262                                             const Instruction *CtxI,
5263                                             const DominatorTree *DT,
5264                                             unsigned Depth) {
5265   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
5266 }
5267 
isGuaranteedNotToBePoison(const Value * V,AssumptionCache * AC,const Instruction * CtxI,const DominatorTree * DT,unsigned Depth)5268 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
5269                                      const Instruction *CtxI,
5270                                      const DominatorTree *DT, unsigned Depth) {
5271   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
5272 }
5273 
computeOverflowForSignedAdd(const AddOperator * Add,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)5274 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5275                                                  const DataLayout &DL,
5276                                                  AssumptionCache *AC,
5277                                                  const Instruction *CxtI,
5278                                                  const DominatorTree *DT) {
5279   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5280                                        Add, DL, AC, CxtI, DT);
5281 }
5282 
computeOverflowForSignedAdd(const Value * LHS,const Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)5283 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5284                                                  const Value *RHS,
5285                                                  const DataLayout &DL,
5286                                                  AssumptionCache *AC,
5287                                                  const Instruction *CxtI,
5288                                                  const DominatorTree *DT) {
5289   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5290 }
5291 
isGuaranteedToTransferExecutionToSuccessor(const Instruction * I)5292 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5293   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5294   // of time because it's possible for another thread to interfere with it for an
5295   // arbitrary length of time, but programs aren't allowed to rely on that.
5296 
5297   // If there is no successor, then execution can't transfer to it.
5298   if (isa<ReturnInst>(I))
5299     return false;
5300   if (isa<UnreachableInst>(I))
5301     return false;
5302 
5303   // Note: Do not add new checks here; instead, change Instruction::mayThrow or
5304   // Instruction::willReturn.
5305   //
5306   // FIXME: Move this check into Instruction::willReturn.
5307   if (isa<CatchPadInst>(I)) {
5308     switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
5309     default:
5310       // A catchpad may invoke exception object constructors and such, which
5311       // in some languages can be arbitrary code, so be conservative by default.
5312       return false;
5313     case EHPersonality::CoreCLR:
5314       // For CoreCLR, it just involves a type test.
5315       return true;
5316     }
5317   }
5318 
5319   // An instruction that returns without throwing must transfer control flow
5320   // to a successor.
5321   return !I->mayThrow() && I->willReturn();
5322 }
5323 
isGuaranteedToTransferExecutionToSuccessor(const BasicBlock * BB)5324 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5325   // TODO: This is slightly conservative for invoke instruction since exiting
5326   // via an exception *is* normal control for them.
5327   for (const Instruction &I : *BB)
5328     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5329       return false;
5330   return true;
5331 }
5332 
isGuaranteedToTransferExecutionToSuccessor(BasicBlock::const_iterator Begin,BasicBlock::const_iterator End,unsigned ScanLimit)5333 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5334    BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
5335    unsigned ScanLimit) {
5336   return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
5337                                                     ScanLimit);
5338 }
5339 
isGuaranteedToTransferExecutionToSuccessor(iterator_range<BasicBlock::const_iterator> Range,unsigned ScanLimit)5340 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5341    iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
5342   assert(ScanLimit && "scan limit must be non-zero");
5343   for (const Instruction &I : Range) {
5344     if (isa<DbgInfoIntrinsic>(I))
5345         continue;
5346     if (--ScanLimit == 0)
5347       return false;
5348     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5349       return false;
5350   }
5351   return true;
5352 }
5353 
isGuaranteedToExecuteForEveryIteration(const Instruction * I,const Loop * L)5354 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5355                                                   const Loop *L) {
5356   // The loop header is guaranteed to be executed for every iteration.
5357   //
5358   // FIXME: Relax this constraint to cover all basic blocks that are
5359   // guaranteed to be executed at every iteration.
5360   if (I->getParent() != L->getHeader()) return false;
5361 
5362   for (const Instruction &LI : *L->getHeader()) {
5363     if (&LI == I) return true;
5364     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5365   }
5366   llvm_unreachable("Instruction not contained in its own parent basic block.");
5367 }
5368 
propagatesPoison(const Operator * I)5369 bool llvm::propagatesPoison(const Operator *I) {
5370   switch (I->getOpcode()) {
5371   case Instruction::Freeze:
5372   case Instruction::Select:
5373   case Instruction::PHI:
5374   case Instruction::Invoke:
5375     return false;
5376   case Instruction::Call:
5377     if (auto *II = dyn_cast<IntrinsicInst>(I)) {
5378       switch (II->getIntrinsicID()) {
5379       // TODO: Add more intrinsics.
5380       case Intrinsic::sadd_with_overflow:
5381       case Intrinsic::ssub_with_overflow:
5382       case Intrinsic::smul_with_overflow:
5383       case Intrinsic::uadd_with_overflow:
5384       case Intrinsic::usub_with_overflow:
5385       case Intrinsic::umul_with_overflow:
5386         // If an input is a vector containing a poison element, the
5387         // two output vectors (calculated results, overflow bits)'
5388         // corresponding lanes are poison.
5389         return true;
5390       case Intrinsic::ctpop:
5391         return true;
5392       }
5393     }
5394     return false;
5395   case Instruction::ICmp:
5396   case Instruction::FCmp:
5397   case Instruction::GetElementPtr:
5398     return true;
5399   default:
5400     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5401       return true;
5402 
5403     // Be conservative and return false.
5404     return false;
5405   }
5406 }
5407 
getGuaranteedWellDefinedOps(const Instruction * I,SmallPtrSetImpl<const Value * > & Operands)5408 void llvm::getGuaranteedWellDefinedOps(
5409     const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) {
5410   switch (I->getOpcode()) {
5411     case Instruction::Store:
5412       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5413       break;
5414 
5415     case Instruction::Load:
5416       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5417       break;
5418 
5419     // Since dereferenceable attribute imply noundef, atomic operations
5420     // also implicitly have noundef pointers too
5421     case Instruction::AtomicCmpXchg:
5422       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5423       break;
5424 
5425     case Instruction::AtomicRMW:
5426       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5427       break;
5428 
5429     case Instruction::Call:
5430     case Instruction::Invoke: {
5431       const CallBase *CB = cast<CallBase>(I);
5432       if (CB->isIndirectCall())
5433         Operands.insert(CB->getCalledOperand());
5434       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5435         if (CB->paramHasAttr(i, Attribute::NoUndef) ||
5436             CB->paramHasAttr(i, Attribute::Dereferenceable))
5437           Operands.insert(CB->getArgOperand(i));
5438       }
5439       break;
5440     }
5441     case Instruction::Ret:
5442       if (I->getFunction()->hasRetAttribute(Attribute::NoUndef))
5443         Operands.insert(I->getOperand(0));
5444       break;
5445     default:
5446       break;
5447   }
5448 }
5449 
getGuaranteedNonPoisonOps(const Instruction * I,SmallPtrSetImpl<const Value * > & Operands)5450 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5451                                      SmallPtrSetImpl<const Value *> &Operands) {
5452   getGuaranteedWellDefinedOps(I, Operands);
5453   switch (I->getOpcode()) {
5454   // Divisors of these operations are allowed to be partially undef.
5455   case Instruction::UDiv:
5456   case Instruction::SDiv:
5457   case Instruction::URem:
5458   case Instruction::SRem:
5459     Operands.insert(I->getOperand(1));
5460     break;
5461 
5462   default:
5463     break;
5464   }
5465 }
5466 
mustTriggerUB(const Instruction * I,const SmallSet<const Value *,16> & KnownPoison)5467 bool llvm::mustTriggerUB(const Instruction *I,
5468                          const SmallSet<const Value *, 16>& KnownPoison) {
5469   SmallPtrSet<const Value *, 4> NonPoisonOps;
5470   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5471 
5472   for (const auto *V : NonPoisonOps)
5473     if (KnownPoison.count(V))
5474       return true;
5475 
5476   return false;
5477 }
5478 
programUndefinedIfUndefOrPoison(const Value * V,bool PoisonOnly)5479 static bool programUndefinedIfUndefOrPoison(const Value *V,
5480                                             bool PoisonOnly) {
5481   // We currently only look for uses of values within the same basic
5482   // block, as that makes it easier to guarantee that the uses will be
5483   // executed given that Inst is executed.
5484   //
5485   // FIXME: Expand this to consider uses beyond the same basic block. To do
5486   // this, look out for the distinction between post-dominance and strong
5487   // post-dominance.
5488   const BasicBlock *BB = nullptr;
5489   BasicBlock::const_iterator Begin;
5490   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5491     BB = Inst->getParent();
5492     Begin = Inst->getIterator();
5493     Begin++;
5494   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5495     BB = &Arg->getParent()->getEntryBlock();
5496     Begin = BB->begin();
5497   } else {
5498     return false;
5499   }
5500 
5501   // Limit number of instructions we look at, to avoid scanning through large
5502   // blocks. The current limit is chosen arbitrarily.
5503   unsigned ScanLimit = 32;
5504   BasicBlock::const_iterator End = BB->end();
5505 
5506   if (!PoisonOnly) {
5507     // Since undef does not propagate eagerly, be conservative & just check
5508     // whether a value is directly passed to an instruction that must take
5509     // well-defined operands.
5510 
5511     for (auto &I : make_range(Begin, End)) {
5512       if (isa<DbgInfoIntrinsic>(I))
5513         continue;
5514       if (--ScanLimit == 0)
5515         break;
5516 
5517       SmallPtrSet<const Value *, 4> WellDefinedOps;
5518       getGuaranteedWellDefinedOps(&I, WellDefinedOps);
5519       if (WellDefinedOps.contains(V))
5520         return true;
5521 
5522       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5523         break;
5524     }
5525     return false;
5526   }
5527 
5528   // Set of instructions that we have proved will yield poison if Inst
5529   // does.
5530   SmallSet<const Value *, 16> YieldsPoison;
5531   SmallSet<const BasicBlock *, 4> Visited;
5532 
5533   YieldsPoison.insert(V);
5534   auto Propagate = [&](const User *User) {
5535     if (propagatesPoison(cast<Operator>(User)))
5536       YieldsPoison.insert(User);
5537   };
5538   for_each(V->users(), Propagate);
5539   Visited.insert(BB);
5540 
5541   while (true) {
5542     for (auto &I : make_range(Begin, End)) {
5543       if (isa<DbgInfoIntrinsic>(I))
5544         continue;
5545       if (--ScanLimit == 0)
5546         return false;
5547       if (mustTriggerUB(&I, YieldsPoison))
5548         return true;
5549       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5550         return false;
5551 
5552       // Mark poison that propagates from I through uses of I.
5553       if (YieldsPoison.count(&I))
5554         for_each(I.users(), Propagate);
5555     }
5556 
5557     BB = BB->getSingleSuccessor();
5558     if (!BB || !Visited.insert(BB).second)
5559       break;
5560 
5561     Begin = BB->getFirstNonPHI()->getIterator();
5562     End = BB->end();
5563   }
5564   return false;
5565 }
5566 
programUndefinedIfUndefOrPoison(const Instruction * Inst)5567 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5568   return ::programUndefinedIfUndefOrPoison(Inst, false);
5569 }
5570 
programUndefinedIfPoison(const Instruction * Inst)5571 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5572   return ::programUndefinedIfUndefOrPoison(Inst, true);
5573 }
5574 
isKnownNonNaN(const Value * V,FastMathFlags FMF)5575 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5576   if (FMF.noNaNs())
5577     return true;
5578 
5579   if (auto *C = dyn_cast<ConstantFP>(V))
5580     return !C->isNaN();
5581 
5582   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5583     if (!C->getElementType()->isFloatingPointTy())
5584       return false;
5585     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5586       if (C->getElementAsAPFloat(I).isNaN())
5587         return false;
5588     }
5589     return true;
5590   }
5591 
5592   if (isa<ConstantAggregateZero>(V))
5593     return true;
5594 
5595   return false;
5596 }
5597 
isKnownNonZero(const Value * V)5598 static bool isKnownNonZero(const Value *V) {
5599   if (auto *C = dyn_cast<ConstantFP>(V))
5600     return !C->isZero();
5601 
5602   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5603     if (!C->getElementType()->isFloatingPointTy())
5604       return false;
5605     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5606       if (C->getElementAsAPFloat(I).isZero())
5607         return false;
5608     }
5609     return true;
5610   }
5611 
5612   return false;
5613 }
5614 
5615 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5616 /// Given non-min/max outer cmp/select from the clamp pattern this
5617 /// function recognizes if it can be substitued by a "canonical" min/max
5618 /// pattern.
matchFastFloatClamp(CmpInst::Predicate Pred,Value * CmpLHS,Value * CmpRHS,Value * TrueVal,Value * FalseVal,Value * & LHS,Value * & RHS)5619 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5620                                                Value *CmpLHS, Value *CmpRHS,
5621                                                Value *TrueVal, Value *FalseVal,
5622                                                Value *&LHS, Value *&RHS) {
5623   // Try to match
5624   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5625   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5626   // and return description of the outer Max/Min.
5627 
5628   // First, check if select has inverse order:
5629   if (CmpRHS == FalseVal) {
5630     std::swap(TrueVal, FalseVal);
5631     Pred = CmpInst::getInversePredicate(Pred);
5632   }
5633 
5634   // Assume success now. If there's no match, callers should not use these anyway.
5635   LHS = TrueVal;
5636   RHS = FalseVal;
5637 
5638   const APFloat *FC1;
5639   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5640     return {SPF_UNKNOWN, SPNB_NA, false};
5641 
5642   const APFloat *FC2;
5643   switch (Pred) {
5644   case CmpInst::FCMP_OLT:
5645   case CmpInst::FCMP_OLE:
5646   case CmpInst::FCMP_ULT:
5647   case CmpInst::FCMP_ULE:
5648     if (match(FalseVal,
5649               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5650                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5651         *FC1 < *FC2)
5652       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5653     break;
5654   case CmpInst::FCMP_OGT:
5655   case CmpInst::FCMP_OGE:
5656   case CmpInst::FCMP_UGT:
5657   case CmpInst::FCMP_UGE:
5658     if (match(FalseVal,
5659               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5660                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5661         *FC1 > *FC2)
5662       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5663     break;
5664   default:
5665     break;
5666   }
5667 
5668   return {SPF_UNKNOWN, SPNB_NA, false};
5669 }
5670 
5671 /// Recognize variations of:
5672 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
matchClamp(CmpInst::Predicate Pred,Value * CmpLHS,Value * CmpRHS,Value * TrueVal,Value * FalseVal)5673 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5674                                       Value *CmpLHS, Value *CmpRHS,
5675                                       Value *TrueVal, Value *FalseVal) {
5676   // Swap the select operands and predicate to match the patterns below.
5677   if (CmpRHS != TrueVal) {
5678     Pred = ICmpInst::getSwappedPredicate(Pred);
5679     std::swap(TrueVal, FalseVal);
5680   }
5681   const APInt *C1;
5682   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5683     const APInt *C2;
5684     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5685     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5686         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5687       return {SPF_SMAX, SPNB_NA, false};
5688 
5689     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5690     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5691         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5692       return {SPF_SMIN, SPNB_NA, false};
5693 
5694     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5695     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5696         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5697       return {SPF_UMAX, SPNB_NA, false};
5698 
5699     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5700     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5701         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5702       return {SPF_UMIN, SPNB_NA, false};
5703   }
5704   return {SPF_UNKNOWN, SPNB_NA, false};
5705 }
5706 
5707 /// Recognize variations of:
5708 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
matchMinMaxOfMinMax(CmpInst::Predicate Pred,Value * CmpLHS,Value * CmpRHS,Value * TVal,Value * FVal,unsigned Depth)5709 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5710                                                Value *CmpLHS, Value *CmpRHS,
5711                                                Value *TVal, Value *FVal,
5712                                                unsigned Depth) {
5713   // TODO: Allow FP min/max with nnan/nsz.
5714   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5715 
5716   Value *A = nullptr, *B = nullptr;
5717   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5718   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5719     return {SPF_UNKNOWN, SPNB_NA, false};
5720 
5721   Value *C = nullptr, *D = nullptr;
5722   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5723   if (L.Flavor != R.Flavor)
5724     return {SPF_UNKNOWN, SPNB_NA, false};
5725 
5726   // We have something like: x Pred y ? min(a, b) : min(c, d).
5727   // Try to match the compare to the min/max operations of the select operands.
5728   // First, make sure we have the right compare predicate.
5729   switch (L.Flavor) {
5730   case SPF_SMIN:
5731     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5732       Pred = ICmpInst::getSwappedPredicate(Pred);
5733       std::swap(CmpLHS, CmpRHS);
5734     }
5735     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5736       break;
5737     return {SPF_UNKNOWN, SPNB_NA, false};
5738   case SPF_SMAX:
5739     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5740       Pred = ICmpInst::getSwappedPredicate(Pred);
5741       std::swap(CmpLHS, CmpRHS);
5742     }
5743     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5744       break;
5745     return {SPF_UNKNOWN, SPNB_NA, false};
5746   case SPF_UMIN:
5747     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5748       Pred = ICmpInst::getSwappedPredicate(Pred);
5749       std::swap(CmpLHS, CmpRHS);
5750     }
5751     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5752       break;
5753     return {SPF_UNKNOWN, SPNB_NA, false};
5754   case SPF_UMAX:
5755     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5756       Pred = ICmpInst::getSwappedPredicate(Pred);
5757       std::swap(CmpLHS, CmpRHS);
5758     }
5759     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5760       break;
5761     return {SPF_UNKNOWN, SPNB_NA, false};
5762   default:
5763     return {SPF_UNKNOWN, SPNB_NA, false};
5764   }
5765 
5766   // If there is a common operand in the already matched min/max and the other
5767   // min/max operands match the compare operands (either directly or inverted),
5768   // then this is min/max of the same flavor.
5769 
5770   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5771   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5772   if (D == B) {
5773     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5774                                          match(A, m_Not(m_Specific(CmpRHS)))))
5775       return {L.Flavor, SPNB_NA, false};
5776   }
5777   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5778   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5779   if (C == B) {
5780     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5781                                          match(A, m_Not(m_Specific(CmpRHS)))))
5782       return {L.Flavor, SPNB_NA, false};
5783   }
5784   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5785   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5786   if (D == A) {
5787     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5788                                          match(B, m_Not(m_Specific(CmpRHS)))))
5789       return {L.Flavor, SPNB_NA, false};
5790   }
5791   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5792   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5793   if (C == A) {
5794     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5795                                          match(B, m_Not(m_Specific(CmpRHS)))))
5796       return {L.Flavor, SPNB_NA, false};
5797   }
5798 
5799   return {SPF_UNKNOWN, SPNB_NA, false};
5800 }
5801 
5802 /// If the input value is the result of a 'not' op, constant integer, or vector
5803 /// splat of a constant integer, return the bitwise-not source value.
5804 /// TODO: This could be extended to handle non-splat vector integer constants.
getNotValue(Value * V)5805 static Value *getNotValue(Value *V) {
5806   Value *NotV;
5807   if (match(V, m_Not(m_Value(NotV))))
5808     return NotV;
5809 
5810   const APInt *C;
5811   if (match(V, m_APInt(C)))
5812     return ConstantInt::get(V->getType(), ~(*C));
5813 
5814   return nullptr;
5815 }
5816 
5817 /// Match non-obvious integer minimum and maximum sequences.
matchMinMax(CmpInst::Predicate Pred,Value * CmpLHS,Value * CmpRHS,Value * TrueVal,Value * FalseVal,Value * & LHS,Value * & RHS,unsigned Depth)5818 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5819                                        Value *CmpLHS, Value *CmpRHS,
5820                                        Value *TrueVal, Value *FalseVal,
5821                                        Value *&LHS, Value *&RHS,
5822                                        unsigned Depth) {
5823   // Assume success. If there's no match, callers should not use these anyway.
5824   LHS = TrueVal;
5825   RHS = FalseVal;
5826 
5827   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5828   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5829     return SPR;
5830 
5831   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5832   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5833     return SPR;
5834 
5835   // Look through 'not' ops to find disguised min/max.
5836   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5837   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5838   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5839     switch (Pred) {
5840     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5841     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5842     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5843     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5844     default: break;
5845     }
5846   }
5847 
5848   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5849   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5850   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5851     switch (Pred) {
5852     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5853     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5854     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5855     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5856     default: break;
5857     }
5858   }
5859 
5860   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5861     return {SPF_UNKNOWN, SPNB_NA, false};
5862 
5863   // Z = X -nsw Y
5864   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5865   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5866   if (match(TrueVal, m_Zero()) &&
5867       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5868     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5869 
5870   // Z = X -nsw Y
5871   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5872   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5873   if (match(FalseVal, m_Zero()) &&
5874       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5875     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5876 
5877   const APInt *C1;
5878   if (!match(CmpRHS, m_APInt(C1)))
5879     return {SPF_UNKNOWN, SPNB_NA, false};
5880 
5881   // An unsigned min/max can be written with a signed compare.
5882   const APInt *C2;
5883   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5884       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5885     // Is the sign bit set?
5886     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5887     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5888     if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
5889       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5890 
5891     // Is the sign bit clear?
5892     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5893     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5894     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
5895       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5896   }
5897 
5898   return {SPF_UNKNOWN, SPNB_NA, false};
5899 }
5900 
isKnownNegation(const Value * X,const Value * Y,bool NeedNSW)5901 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5902   assert(X && Y && "Invalid operand");
5903 
5904   // X = sub (0, Y) || X = sub nsw (0, Y)
5905   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5906       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5907     return true;
5908 
5909   // Y = sub (0, X) || Y = sub nsw (0, X)
5910   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5911       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5912     return true;
5913 
5914   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5915   Value *A, *B;
5916   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5917                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5918          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5919                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5920 }
5921 
matchSelectPattern(CmpInst::Predicate Pred,FastMathFlags FMF,Value * CmpLHS,Value * CmpRHS,Value * TrueVal,Value * FalseVal,Value * & LHS,Value * & RHS,unsigned Depth)5922 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5923                                               FastMathFlags FMF,
5924                                               Value *CmpLHS, Value *CmpRHS,
5925                                               Value *TrueVal, Value *FalseVal,
5926                                               Value *&LHS, Value *&RHS,
5927                                               unsigned Depth) {
5928   if (CmpInst::isFPPredicate(Pred)) {
5929     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5930     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5931     // purpose of identifying min/max. Disregard vector constants with undefined
5932     // elements because those can not be back-propagated for analysis.
5933     Value *OutputZeroVal = nullptr;
5934     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5935         !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
5936       OutputZeroVal = TrueVal;
5937     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5938              !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
5939       OutputZeroVal = FalseVal;
5940 
5941     if (OutputZeroVal) {
5942       if (match(CmpLHS, m_AnyZeroFP()))
5943         CmpLHS = OutputZeroVal;
5944       if (match(CmpRHS, m_AnyZeroFP()))
5945         CmpRHS = OutputZeroVal;
5946     }
5947   }
5948 
5949   LHS = CmpLHS;
5950   RHS = CmpRHS;
5951 
5952   // Signed zero may return inconsistent results between implementations.
5953   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5954   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5955   // Therefore, we behave conservatively and only proceed if at least one of the
5956   // operands is known to not be zero or if we don't care about signed zero.
5957   switch (Pred) {
5958   default: break;
5959   // FIXME: Include OGT/OLT/UGT/ULT.
5960   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5961   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5962     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5963         !isKnownNonZero(CmpRHS))
5964       return {SPF_UNKNOWN, SPNB_NA, false};
5965   }
5966 
5967   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5968   bool Ordered = false;
5969 
5970   // When given one NaN and one non-NaN input:
5971   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5972   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5973   //     ordered comparison fails), which could be NaN or non-NaN.
5974   // so here we discover exactly what NaN behavior is required/accepted.
5975   if (CmpInst::isFPPredicate(Pred)) {
5976     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5977     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5978 
5979     if (LHSSafe && RHSSafe) {
5980       // Both operands are known non-NaN.
5981       NaNBehavior = SPNB_RETURNS_ANY;
5982     } else if (CmpInst::isOrdered(Pred)) {
5983       // An ordered comparison will return false when given a NaN, so it
5984       // returns the RHS.
5985       Ordered = true;
5986       if (LHSSafe)
5987         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5988         NaNBehavior = SPNB_RETURNS_NAN;
5989       else if (RHSSafe)
5990         NaNBehavior = SPNB_RETURNS_OTHER;
5991       else
5992         // Completely unsafe.
5993         return {SPF_UNKNOWN, SPNB_NA, false};
5994     } else {
5995       Ordered = false;
5996       // An unordered comparison will return true when given a NaN, so it
5997       // returns the LHS.
5998       if (LHSSafe)
5999         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
6000         NaNBehavior = SPNB_RETURNS_OTHER;
6001       else if (RHSSafe)
6002         NaNBehavior = SPNB_RETURNS_NAN;
6003       else
6004         // Completely unsafe.
6005         return {SPF_UNKNOWN, SPNB_NA, false};
6006     }
6007   }
6008 
6009   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
6010     std::swap(CmpLHS, CmpRHS);
6011     Pred = CmpInst::getSwappedPredicate(Pred);
6012     if (NaNBehavior == SPNB_RETURNS_NAN)
6013       NaNBehavior = SPNB_RETURNS_OTHER;
6014     else if (NaNBehavior == SPNB_RETURNS_OTHER)
6015       NaNBehavior = SPNB_RETURNS_NAN;
6016     Ordered = !Ordered;
6017   }
6018 
6019   // ([if]cmp X, Y) ? X : Y
6020   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
6021     switch (Pred) {
6022     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
6023     case ICmpInst::ICMP_UGT:
6024     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
6025     case ICmpInst::ICMP_SGT:
6026     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
6027     case ICmpInst::ICMP_ULT:
6028     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
6029     case ICmpInst::ICMP_SLT:
6030     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
6031     case FCmpInst::FCMP_UGT:
6032     case FCmpInst::FCMP_UGE:
6033     case FCmpInst::FCMP_OGT:
6034     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
6035     case FCmpInst::FCMP_ULT:
6036     case FCmpInst::FCMP_ULE:
6037     case FCmpInst::FCMP_OLT:
6038     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
6039     }
6040   }
6041 
6042   if (isKnownNegation(TrueVal, FalseVal)) {
6043     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
6044     // match against either LHS or sext(LHS).
6045     auto MaybeSExtCmpLHS =
6046         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
6047     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
6048     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
6049     if (match(TrueVal, MaybeSExtCmpLHS)) {
6050       // Set the return values. If the compare uses the negated value (-X >s 0),
6051       // swap the return values because the negated value is always 'RHS'.
6052       LHS = TrueVal;
6053       RHS = FalseVal;
6054       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
6055         std::swap(LHS, RHS);
6056 
6057       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
6058       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
6059       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6060         return {SPF_ABS, SPNB_NA, false};
6061 
6062       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
6063       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
6064         return {SPF_ABS, SPNB_NA, false};
6065 
6066       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
6067       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
6068       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6069         return {SPF_NABS, SPNB_NA, false};
6070     }
6071     else if (match(FalseVal, MaybeSExtCmpLHS)) {
6072       // Set the return values. If the compare uses the negated value (-X >s 0),
6073       // swap the return values because the negated value is always 'RHS'.
6074       LHS = FalseVal;
6075       RHS = TrueVal;
6076       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
6077         std::swap(LHS, RHS);
6078 
6079       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
6080       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
6081       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6082         return {SPF_NABS, SPNB_NA, false};
6083 
6084       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
6085       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
6086       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6087         return {SPF_ABS, SPNB_NA, false};
6088     }
6089   }
6090 
6091   if (CmpInst::isIntPredicate(Pred))
6092     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
6093 
6094   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
6095   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
6096   // semantics than minNum. Be conservative in such case.
6097   if (NaNBehavior != SPNB_RETURNS_ANY ||
6098       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
6099        !isKnownNonZero(CmpRHS)))
6100     return {SPF_UNKNOWN, SPNB_NA, false};
6101 
6102   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
6103 }
6104 
6105 /// Helps to match a select pattern in case of a type mismatch.
6106 ///
6107 /// The function processes the case when type of true and false values of a
6108 /// select instruction differs from type of the cmp instruction operands because
6109 /// of a cast instruction. The function checks if it is legal to move the cast
6110 /// operation after "select". If yes, it returns the new second value of
6111 /// "select" (with the assumption that cast is moved):
6112 /// 1. As operand of cast instruction when both values of "select" are same cast
6113 /// instructions.
6114 /// 2. As restored constant (by applying reverse cast operation) when the first
6115 /// value of the "select" is a cast operation and the second value is a
6116 /// constant.
6117 /// NOTE: We return only the new second value because the first value could be
6118 /// accessed as operand of cast instruction.
lookThroughCast(CmpInst * CmpI,Value * V1,Value * V2,Instruction::CastOps * CastOp)6119 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
6120                               Instruction::CastOps *CastOp) {
6121   auto *Cast1 = dyn_cast<CastInst>(V1);
6122   if (!Cast1)
6123     return nullptr;
6124 
6125   *CastOp = Cast1->getOpcode();
6126   Type *SrcTy = Cast1->getSrcTy();
6127   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
6128     // If V1 and V2 are both the same cast from the same type, look through V1.
6129     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
6130       return Cast2->getOperand(0);
6131     return nullptr;
6132   }
6133 
6134   auto *C = dyn_cast<Constant>(V2);
6135   if (!C)
6136     return nullptr;
6137 
6138   Constant *CastedTo = nullptr;
6139   switch (*CastOp) {
6140   case Instruction::ZExt:
6141     if (CmpI->isUnsigned())
6142       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
6143     break;
6144   case Instruction::SExt:
6145     if (CmpI->isSigned())
6146       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
6147     break;
6148   case Instruction::Trunc:
6149     Constant *CmpConst;
6150     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
6151         CmpConst->getType() == SrcTy) {
6152       // Here we have the following case:
6153       //
6154       //   %cond = cmp iN %x, CmpConst
6155       //   %tr = trunc iN %x to iK
6156       //   %narrowsel = select i1 %cond, iK %t, iK C
6157       //
6158       // We can always move trunc after select operation:
6159       //
6160       //   %cond = cmp iN %x, CmpConst
6161       //   %widesel = select i1 %cond, iN %x, iN CmpConst
6162       //   %tr = trunc iN %widesel to iK
6163       //
6164       // Note that C could be extended in any way because we don't care about
6165       // upper bits after truncation. It can't be abs pattern, because it would
6166       // look like:
6167       //
6168       //   select i1 %cond, x, -x.
6169       //
6170       // So only min/max pattern could be matched. Such match requires widened C
6171       // == CmpConst. That is why set widened C = CmpConst, condition trunc
6172       // CmpConst == C is checked below.
6173       CastedTo = CmpConst;
6174     } else {
6175       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
6176     }
6177     break;
6178   case Instruction::FPTrunc:
6179     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
6180     break;
6181   case Instruction::FPExt:
6182     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
6183     break;
6184   case Instruction::FPToUI:
6185     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
6186     break;
6187   case Instruction::FPToSI:
6188     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
6189     break;
6190   case Instruction::UIToFP:
6191     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
6192     break;
6193   case Instruction::SIToFP:
6194     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
6195     break;
6196   default:
6197     break;
6198   }
6199 
6200   if (!CastedTo)
6201     return nullptr;
6202 
6203   // Make sure the cast doesn't lose any information.
6204   Constant *CastedBack =
6205       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
6206   if (CastedBack != C)
6207     return nullptr;
6208 
6209   return CastedTo;
6210 }
6211 
matchSelectPattern(Value * V,Value * & LHS,Value * & RHS,Instruction::CastOps * CastOp,unsigned Depth)6212 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
6213                                              Instruction::CastOps *CastOp,
6214                                              unsigned Depth) {
6215   if (Depth >= MaxAnalysisRecursionDepth)
6216     return {SPF_UNKNOWN, SPNB_NA, false};
6217 
6218   SelectInst *SI = dyn_cast<SelectInst>(V);
6219   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
6220 
6221   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
6222   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
6223 
6224   Value *TrueVal = SI->getTrueValue();
6225   Value *FalseVal = SI->getFalseValue();
6226 
6227   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
6228                                             CastOp, Depth);
6229 }
6230 
matchDecomposedSelectPattern(CmpInst * CmpI,Value * TrueVal,Value * FalseVal,Value * & LHS,Value * & RHS,Instruction::CastOps * CastOp,unsigned Depth)6231 SelectPatternResult llvm::matchDecomposedSelectPattern(
6232     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
6233     Instruction::CastOps *CastOp, unsigned Depth) {
6234   CmpInst::Predicate Pred = CmpI->getPredicate();
6235   Value *CmpLHS = CmpI->getOperand(0);
6236   Value *CmpRHS = CmpI->getOperand(1);
6237   FastMathFlags FMF;
6238   if (isa<FPMathOperator>(CmpI))
6239     FMF = CmpI->getFastMathFlags();
6240 
6241   // Bail out early.
6242   if (CmpI->isEquality())
6243     return {SPF_UNKNOWN, SPNB_NA, false};
6244 
6245   // Deal with type mismatches.
6246   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
6247     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
6248       // If this is a potential fmin/fmax with a cast to integer, then ignore
6249       // -0.0 because there is no corresponding integer value.
6250       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6251         FMF.setNoSignedZeros();
6252       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6253                                   cast<CastInst>(TrueVal)->getOperand(0), C,
6254                                   LHS, RHS, Depth);
6255     }
6256     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
6257       // If this is a potential fmin/fmax with a cast to integer, then ignore
6258       // -0.0 because there is no corresponding integer value.
6259       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6260         FMF.setNoSignedZeros();
6261       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6262                                   C, cast<CastInst>(FalseVal)->getOperand(0),
6263                                   LHS, RHS, Depth);
6264     }
6265   }
6266   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
6267                               LHS, RHS, Depth);
6268 }
6269 
getMinMaxPred(SelectPatternFlavor SPF,bool Ordered)6270 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
6271   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
6272   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
6273   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
6274   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
6275   if (SPF == SPF_FMINNUM)
6276     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
6277   if (SPF == SPF_FMAXNUM)
6278     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
6279   llvm_unreachable("unhandled!");
6280 }
6281 
getInverseMinMaxFlavor(SelectPatternFlavor SPF)6282 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
6283   if (SPF == SPF_SMIN) return SPF_SMAX;
6284   if (SPF == SPF_UMIN) return SPF_UMAX;
6285   if (SPF == SPF_SMAX) return SPF_SMIN;
6286   if (SPF == SPF_UMAX) return SPF_UMIN;
6287   llvm_unreachable("unhandled!");
6288 }
6289 
getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)6290 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
6291   switch (MinMaxID) {
6292   case Intrinsic::smax: return Intrinsic::smin;
6293   case Intrinsic::smin: return Intrinsic::smax;
6294   case Intrinsic::umax: return Intrinsic::umin;
6295   case Intrinsic::umin: return Intrinsic::umax;
6296   default: llvm_unreachable("Unexpected intrinsic");
6297   }
6298 }
6299 
getInverseMinMaxPred(SelectPatternFlavor SPF)6300 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
6301   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
6302 }
6303 
getMinMaxLimit(SelectPatternFlavor SPF,unsigned BitWidth)6304 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
6305   switch (SPF) {
6306   case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
6307   case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
6308   case SPF_UMAX: return APInt::getMaxValue(BitWidth);
6309   case SPF_UMIN: return APInt::getMinValue(BitWidth);
6310   default: llvm_unreachable("Unexpected flavor");
6311   }
6312 }
6313 
6314 std::pair<Intrinsic::ID, bool>
canConvertToMinOrMaxIntrinsic(ArrayRef<Value * > VL)6315 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
6316   // Check if VL contains select instructions that can be folded into a min/max
6317   // vector intrinsic and return the intrinsic if it is possible.
6318   // TODO: Support floating point min/max.
6319   bool AllCmpSingleUse = true;
6320   SelectPatternResult SelectPattern;
6321   SelectPattern.Flavor = SPF_UNKNOWN;
6322   if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
6323         Value *LHS, *RHS;
6324         auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
6325         if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
6326             CurrentPattern.Flavor == SPF_FMINNUM ||
6327             CurrentPattern.Flavor == SPF_FMAXNUM ||
6328             !I->getType()->isIntOrIntVectorTy())
6329           return false;
6330         if (SelectPattern.Flavor != SPF_UNKNOWN &&
6331             SelectPattern.Flavor != CurrentPattern.Flavor)
6332           return false;
6333         SelectPattern = CurrentPattern;
6334         AllCmpSingleUse &=
6335             match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
6336         return true;
6337       })) {
6338     switch (SelectPattern.Flavor) {
6339     case SPF_SMIN:
6340       return {Intrinsic::smin, AllCmpSingleUse};
6341     case SPF_UMIN:
6342       return {Intrinsic::umin, AllCmpSingleUse};
6343     case SPF_SMAX:
6344       return {Intrinsic::smax, AllCmpSingleUse};
6345     case SPF_UMAX:
6346       return {Intrinsic::umax, AllCmpSingleUse};
6347     default:
6348       llvm_unreachable("unexpected select pattern flavor");
6349     }
6350   }
6351   return {Intrinsic::not_intrinsic, false};
6352 }
6353 
matchSimpleRecurrence(const PHINode * P,BinaryOperator * & BO,Value * & Start,Value * & Step)6354 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
6355                                  Value *&Start, Value *&Step) {
6356   // Handle the case of a simple two-predecessor recurrence PHI.
6357   // There's a lot more that could theoretically be done here, but
6358   // this is sufficient to catch some interesting cases.
6359   if (P->getNumIncomingValues() != 2)
6360     return false;
6361 
6362   for (unsigned i = 0; i != 2; ++i) {
6363     Value *L = P->getIncomingValue(i);
6364     Value *R = P->getIncomingValue(!i);
6365     Operator *LU = dyn_cast<Operator>(L);
6366     if (!LU)
6367       continue;
6368     unsigned Opcode = LU->getOpcode();
6369 
6370     switch (Opcode) {
6371     default:
6372       continue;
6373     // TODO: Expand list -- xor, div, gep, uaddo, etc..
6374     case Instruction::LShr:
6375     case Instruction::AShr:
6376     case Instruction::Shl:
6377     case Instruction::Add:
6378     case Instruction::Sub:
6379     case Instruction::And:
6380     case Instruction::Or:
6381     case Instruction::Mul: {
6382       Value *LL = LU->getOperand(0);
6383       Value *LR = LU->getOperand(1);
6384       // Find a recurrence.
6385       if (LL == P)
6386         L = LR;
6387       else if (LR == P)
6388         L = LL;
6389       else
6390         continue; // Check for recurrence with L and R flipped.
6391 
6392       break; // Match!
6393     }
6394     };
6395 
6396     // We have matched a recurrence of the form:
6397     //   %iv = [R, %entry], [%iv.next, %backedge]
6398     //   %iv.next = binop %iv, L
6399     // OR
6400     //   %iv = [R, %entry], [%iv.next, %backedge]
6401     //   %iv.next = binop L, %iv
6402     BO = cast<BinaryOperator>(LU);
6403     Start = R;
6404     Step = L;
6405     return true;
6406   }
6407   return false;
6408 }
6409 
matchSimpleRecurrence(const BinaryOperator * I,PHINode * & P,Value * & Start,Value * & Step)6410 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
6411                                  Value *&Start, Value *&Step) {
6412   BinaryOperator *BO = nullptr;
6413   P = dyn_cast<PHINode>(I->getOperand(0));
6414   if (!P)
6415     P = dyn_cast<PHINode>(I->getOperand(1));
6416   return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
6417 }
6418 
6419 /// Return true if "icmp Pred LHS RHS" is always true.
isTruePredicate(CmpInst::Predicate Pred,const Value * LHS,const Value * RHS,const DataLayout & DL,unsigned Depth)6420 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6421                             const Value *RHS, const DataLayout &DL,
6422                             unsigned Depth) {
6423   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
6424   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6425     return true;
6426 
6427   switch (Pred) {
6428   default:
6429     return false;
6430 
6431   case CmpInst::ICMP_SLE: {
6432     const APInt *C;
6433 
6434     // LHS s<= LHS +_{nsw} C   if C >= 0
6435     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6436       return !C->isNegative();
6437     return false;
6438   }
6439 
6440   case CmpInst::ICMP_ULE: {
6441     const APInt *C;
6442 
6443     // LHS u<= LHS +_{nuw} C   for any C
6444     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6445       return true;
6446 
6447     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6448     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6449                                        const Value *&X,
6450                                        const APInt *&CA, const APInt *&CB) {
6451       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6452           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6453         return true;
6454 
6455       // If X & C == 0 then (X | C) == X +_{nuw} C
6456       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6457           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6458         KnownBits Known(CA->getBitWidth());
6459         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6460                          /*CxtI*/ nullptr, /*DT*/ nullptr);
6461         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6462           return true;
6463       }
6464 
6465       return false;
6466     };
6467 
6468     const Value *X;
6469     const APInt *CLHS, *CRHS;
6470     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6471       return CLHS->ule(*CRHS);
6472 
6473     return false;
6474   }
6475   }
6476 }
6477 
6478 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6479 /// ALHS ARHS" is true.  Otherwise, return None.
6480 static Optional<bool>
isImpliedCondOperands(CmpInst::Predicate Pred,const Value * ALHS,const Value * ARHS,const Value * BLHS,const Value * BRHS,const DataLayout & DL,unsigned Depth)6481 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6482                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6483                       const DataLayout &DL, unsigned Depth) {
6484   switch (Pred) {
6485   default:
6486     return None;
6487 
6488   case CmpInst::ICMP_SLT:
6489   case CmpInst::ICMP_SLE:
6490     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6491         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6492       return true;
6493     return None;
6494 
6495   case CmpInst::ICMP_ULT:
6496   case CmpInst::ICMP_ULE:
6497     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6498         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6499       return true;
6500     return None;
6501   }
6502 }
6503 
6504 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6505 /// when the operands match, but are swapped.
isMatchingOps(const Value * ALHS,const Value * ARHS,const Value * BLHS,const Value * BRHS,bool & IsSwappedOps)6506 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6507                           const Value *BLHS, const Value *BRHS,
6508                           bool &IsSwappedOps) {
6509 
6510   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6511   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6512   return IsMatchingOps || IsSwappedOps;
6513 }
6514 
6515 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6516 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6517 /// Otherwise, return None if we can't infer anything.
isImpliedCondMatchingOperands(CmpInst::Predicate APred,CmpInst::Predicate BPred,bool AreSwappedOps)6518 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6519                                                     CmpInst::Predicate BPred,
6520                                                     bool AreSwappedOps) {
6521   // Canonicalize the predicate as if the operands were not commuted.
6522   if (AreSwappedOps)
6523     BPred = ICmpInst::getSwappedPredicate(BPred);
6524 
6525   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6526     return true;
6527   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6528     return false;
6529 
6530   return None;
6531 }
6532 
6533 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6534 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6535 /// Otherwise, return None if we can't infer anything.
6536 static Optional<bool>
isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,const ConstantInt * C1,CmpInst::Predicate BPred,const ConstantInt * C2)6537 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6538                                  const ConstantInt *C1,
6539                                  CmpInst::Predicate BPred,
6540                                  const ConstantInt *C2) {
6541   ConstantRange DomCR =
6542       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6543   ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue());
6544   ConstantRange Intersection = DomCR.intersectWith(CR);
6545   ConstantRange Difference = DomCR.difference(CR);
6546   if (Intersection.isEmptySet())
6547     return false;
6548   if (Difference.isEmptySet())
6549     return true;
6550   return None;
6551 }
6552 
6553 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6554 /// false.  Otherwise, return None if we can't infer anything.
isImpliedCondICmps(const ICmpInst * LHS,CmpInst::Predicate BPred,const Value * BLHS,const Value * BRHS,const DataLayout & DL,bool LHSIsTrue,unsigned Depth)6555 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6556                                          CmpInst::Predicate BPred,
6557                                          const Value *BLHS, const Value *BRHS,
6558                                          const DataLayout &DL, bool LHSIsTrue,
6559                                          unsigned Depth) {
6560   Value *ALHS = LHS->getOperand(0);
6561   Value *ARHS = LHS->getOperand(1);
6562 
6563   // The rest of the logic assumes the LHS condition is true.  If that's not the
6564   // case, invert the predicate to make it so.
6565   CmpInst::Predicate APred =
6566       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6567 
6568   // Can we infer anything when the two compares have matching operands?
6569   bool AreSwappedOps;
6570   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6571     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6572             APred, BPred, AreSwappedOps))
6573       return Implication;
6574     // No amount of additional analysis will infer the second condition, so
6575     // early exit.
6576     return None;
6577   }
6578 
6579   // Can we infer anything when the LHS operands match and the RHS operands are
6580   // constants (not necessarily matching)?
6581   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6582     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6583             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6584       return Implication;
6585     // No amount of additional analysis will infer the second condition, so
6586     // early exit.
6587     return None;
6588   }
6589 
6590   if (APred == BPred)
6591     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6592   return None;
6593 }
6594 
6595 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6596 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6597 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction.
6598 static Optional<bool>
isImpliedCondAndOr(const Instruction * LHS,CmpInst::Predicate RHSPred,const Value * RHSOp0,const Value * RHSOp1,const DataLayout & DL,bool LHSIsTrue,unsigned Depth)6599 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
6600                    const Value *RHSOp0, const Value *RHSOp1,
6601                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6602   // The LHS must be an 'or', 'and', or a 'select' instruction.
6603   assert((LHS->getOpcode() == Instruction::And ||
6604           LHS->getOpcode() == Instruction::Or ||
6605           LHS->getOpcode() == Instruction::Select) &&
6606          "Expected LHS to be 'and', 'or', or 'select'.");
6607 
6608   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6609 
6610   // If the result of an 'or' is false, then we know both legs of the 'or' are
6611   // false.  Similarly, if the result of an 'and' is true, then we know both
6612   // legs of the 'and' are true.
6613   const Value *ALHS, *ARHS;
6614   if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
6615       (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
6616     // FIXME: Make this non-recursion.
6617     if (Optional<bool> Implication = isImpliedCondition(
6618             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6619       return Implication;
6620     if (Optional<bool> Implication = isImpliedCondition(
6621             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6622       return Implication;
6623     return None;
6624   }
6625   return None;
6626 }
6627 
6628 Optional<bool>
isImpliedCondition(const Value * LHS,CmpInst::Predicate RHSPred,const Value * RHSOp0,const Value * RHSOp1,const DataLayout & DL,bool LHSIsTrue,unsigned Depth)6629 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6630                          const Value *RHSOp0, const Value *RHSOp1,
6631                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6632   // Bail out when we hit the limit.
6633   if (Depth == MaxAnalysisRecursionDepth)
6634     return None;
6635 
6636   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6637   // example.
6638   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6639     return None;
6640 
6641   Type *OpTy = LHS->getType();
6642   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6643 
6644   // FIXME: Extending the code below to handle vectors.
6645   if (OpTy->isVectorTy())
6646     return None;
6647 
6648   assert(OpTy->isIntegerTy(1) && "implied by above");
6649 
6650   // Both LHS and RHS are icmps.
6651   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6652   if (LHSCmp)
6653     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6654                               Depth);
6655 
6656   /// The LHS should be an 'or', 'and', or a 'select' instruction.  We expect
6657   /// the RHS to be an icmp.
6658   /// FIXME: Add support for and/or/select on the RHS.
6659   if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
6660     if ((LHSI->getOpcode() == Instruction::And ||
6661          LHSI->getOpcode() == Instruction::Or ||
6662          LHSI->getOpcode() == Instruction::Select))
6663       return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6664                                 Depth);
6665   }
6666   return None;
6667 }
6668 
isImpliedCondition(const Value * LHS,const Value * RHS,const DataLayout & DL,bool LHSIsTrue,unsigned Depth)6669 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6670                                         const DataLayout &DL, bool LHSIsTrue,
6671                                         unsigned Depth) {
6672   // LHS ==> RHS by definition
6673   if (LHS == RHS)
6674     return LHSIsTrue;
6675 
6676   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6677   if (RHSCmp)
6678     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6679                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6680                               LHSIsTrue, Depth);
6681   return None;
6682 }
6683 
6684 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6685 // condition dominating ContextI or nullptr, if no condition is found.
6686 static std::pair<Value *, bool>
getDomPredecessorCondition(const Instruction * ContextI)6687 getDomPredecessorCondition(const Instruction *ContextI) {
6688   if (!ContextI || !ContextI->getParent())
6689     return {nullptr, false};
6690 
6691   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6692   // dominator tree (eg, from a SimplifyQuery) instead?
6693   const BasicBlock *ContextBB = ContextI->getParent();
6694   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6695   if (!PredBB)
6696     return {nullptr, false};
6697 
6698   // We need a conditional branch in the predecessor.
6699   Value *PredCond;
6700   BasicBlock *TrueBB, *FalseBB;
6701   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6702     return {nullptr, false};
6703 
6704   // The branch should get simplified. Don't bother simplifying this condition.
6705   if (TrueBB == FalseBB)
6706     return {nullptr, false};
6707 
6708   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6709          "Predecessor block does not point to successor?");
6710 
6711   // Is this condition implied by the predecessor condition?
6712   return {PredCond, TrueBB == ContextBB};
6713 }
6714 
isImpliedByDomCondition(const Value * Cond,const Instruction * ContextI,const DataLayout & DL)6715 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6716                                              const Instruction *ContextI,
6717                                              const DataLayout &DL) {
6718   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6719   auto PredCond = getDomPredecessorCondition(ContextI);
6720   if (PredCond.first)
6721     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6722   return None;
6723 }
6724 
isImpliedByDomCondition(CmpInst::Predicate Pred,const Value * LHS,const Value * RHS,const Instruction * ContextI,const DataLayout & DL)6725 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6726                                              const Value *LHS, const Value *RHS,
6727                                              const Instruction *ContextI,
6728                                              const DataLayout &DL) {
6729   auto PredCond = getDomPredecessorCondition(ContextI);
6730   if (PredCond.first)
6731     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6732                               PredCond.second);
6733   return None;
6734 }
6735 
setLimitsForBinOp(const BinaryOperator & BO,APInt & Lower,APInt & Upper,const InstrInfoQuery & IIQ)6736 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6737                               APInt &Upper, const InstrInfoQuery &IIQ) {
6738   unsigned Width = Lower.getBitWidth();
6739   const APInt *C;
6740   switch (BO.getOpcode()) {
6741   case Instruction::Add:
6742     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
6743       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6744       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6745         // 'add nuw x, C' produces [C, UINT_MAX].
6746         Lower = *C;
6747       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6748         if (C->isNegative()) {
6749           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6750           Lower = APInt::getSignedMinValue(Width);
6751           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6752         } else {
6753           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6754           Lower = APInt::getSignedMinValue(Width) + *C;
6755           Upper = APInt::getSignedMaxValue(Width) + 1;
6756         }
6757       }
6758     }
6759     break;
6760 
6761   case Instruction::And:
6762     if (match(BO.getOperand(1), m_APInt(C)))
6763       // 'and x, C' produces [0, C].
6764       Upper = *C + 1;
6765     break;
6766 
6767   case Instruction::Or:
6768     if (match(BO.getOperand(1), m_APInt(C)))
6769       // 'or x, C' produces [C, UINT_MAX].
6770       Lower = *C;
6771     break;
6772 
6773   case Instruction::AShr:
6774     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6775       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6776       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6777       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6778     } else if (match(BO.getOperand(0), m_APInt(C))) {
6779       unsigned ShiftAmount = Width - 1;
6780       if (!C->isZero() && IIQ.isExact(&BO))
6781         ShiftAmount = C->countTrailingZeros();
6782       if (C->isNegative()) {
6783         // 'ashr C, x' produces [C, C >> (Width-1)]
6784         Lower = *C;
6785         Upper = C->ashr(ShiftAmount) + 1;
6786       } else {
6787         // 'ashr C, x' produces [C >> (Width-1), C]
6788         Lower = C->ashr(ShiftAmount);
6789         Upper = *C + 1;
6790       }
6791     }
6792     break;
6793 
6794   case Instruction::LShr:
6795     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6796       // 'lshr x, C' produces [0, UINT_MAX >> C].
6797       Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
6798     } else if (match(BO.getOperand(0), m_APInt(C))) {
6799       // 'lshr C, x' produces [C >> (Width-1), C].
6800       unsigned ShiftAmount = Width - 1;
6801       if (!C->isZero() && IIQ.isExact(&BO))
6802         ShiftAmount = C->countTrailingZeros();
6803       Lower = C->lshr(ShiftAmount);
6804       Upper = *C + 1;
6805     }
6806     break;
6807 
6808   case Instruction::Shl:
6809     if (match(BO.getOperand(0), m_APInt(C))) {
6810       if (IIQ.hasNoUnsignedWrap(&BO)) {
6811         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6812         Lower = *C;
6813         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6814       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6815         if (C->isNegative()) {
6816           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6817           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6818           Lower = C->shl(ShiftAmount);
6819           Upper = *C + 1;
6820         } else {
6821           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6822           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6823           Lower = *C;
6824           Upper = C->shl(ShiftAmount) + 1;
6825         }
6826       }
6827     }
6828     break;
6829 
6830   case Instruction::SDiv:
6831     if (match(BO.getOperand(1), m_APInt(C))) {
6832       APInt IntMin = APInt::getSignedMinValue(Width);
6833       APInt IntMax = APInt::getSignedMaxValue(Width);
6834       if (C->isAllOnes()) {
6835         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6836         //    where C != -1 and C != 0 and C != 1
6837         Lower = IntMin + 1;
6838         Upper = IntMax + 1;
6839       } else if (C->countLeadingZeros() < Width - 1) {
6840         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6841         //    where C != -1 and C != 0 and C != 1
6842         Lower = IntMin.sdiv(*C);
6843         Upper = IntMax.sdiv(*C);
6844         if (Lower.sgt(Upper))
6845           std::swap(Lower, Upper);
6846         Upper = Upper + 1;
6847         assert(Upper != Lower && "Upper part of range has wrapped!");
6848       }
6849     } else if (match(BO.getOperand(0), m_APInt(C))) {
6850       if (C->isMinSignedValue()) {
6851         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6852         Lower = *C;
6853         Upper = Lower.lshr(1) + 1;
6854       } else {
6855         // 'sdiv C, x' produces [-|C|, |C|].
6856         Upper = C->abs() + 1;
6857         Lower = (-Upper) + 1;
6858       }
6859     }
6860     break;
6861 
6862   case Instruction::UDiv:
6863     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
6864       // 'udiv x, C' produces [0, UINT_MAX / C].
6865       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6866     } else if (match(BO.getOperand(0), m_APInt(C))) {
6867       // 'udiv C, x' produces [0, C].
6868       Upper = *C + 1;
6869     }
6870     break;
6871 
6872   case Instruction::SRem:
6873     if (match(BO.getOperand(1), m_APInt(C))) {
6874       // 'srem x, C' produces (-|C|, |C|).
6875       Upper = C->abs();
6876       Lower = (-Upper) + 1;
6877     }
6878     break;
6879 
6880   case Instruction::URem:
6881     if (match(BO.getOperand(1), m_APInt(C)))
6882       // 'urem x, C' produces [0, C).
6883       Upper = *C;
6884     break;
6885 
6886   default:
6887     break;
6888   }
6889 }
6890 
setLimitsForIntrinsic(const IntrinsicInst & II,APInt & Lower,APInt & Upper)6891 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6892                                   APInt &Upper) {
6893   unsigned Width = Lower.getBitWidth();
6894   const APInt *C;
6895   switch (II.getIntrinsicID()) {
6896   case Intrinsic::ctpop:
6897   case Intrinsic::ctlz:
6898   case Intrinsic::cttz:
6899     // Maximum of set/clear bits is the bit width.
6900     assert(Lower == 0 && "Expected lower bound to be zero");
6901     Upper = Width + 1;
6902     break;
6903   case Intrinsic::uadd_sat:
6904     // uadd.sat(x, C) produces [C, UINT_MAX].
6905     if (match(II.getOperand(0), m_APInt(C)) ||
6906         match(II.getOperand(1), m_APInt(C)))
6907       Lower = *C;
6908     break;
6909   case Intrinsic::sadd_sat:
6910     if (match(II.getOperand(0), m_APInt(C)) ||
6911         match(II.getOperand(1), m_APInt(C))) {
6912       if (C->isNegative()) {
6913         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6914         Lower = APInt::getSignedMinValue(Width);
6915         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6916       } else {
6917         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6918         Lower = APInt::getSignedMinValue(Width) + *C;
6919         Upper = APInt::getSignedMaxValue(Width) + 1;
6920       }
6921     }
6922     break;
6923   case Intrinsic::usub_sat:
6924     // usub.sat(C, x) produces [0, C].
6925     if (match(II.getOperand(0), m_APInt(C)))
6926       Upper = *C + 1;
6927     // usub.sat(x, C) produces [0, UINT_MAX - C].
6928     else if (match(II.getOperand(1), m_APInt(C)))
6929       Upper = APInt::getMaxValue(Width) - *C + 1;
6930     break;
6931   case Intrinsic::ssub_sat:
6932     if (match(II.getOperand(0), m_APInt(C))) {
6933       if (C->isNegative()) {
6934         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6935         Lower = APInt::getSignedMinValue(Width);
6936         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6937       } else {
6938         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6939         Lower = *C - APInt::getSignedMaxValue(Width);
6940         Upper = APInt::getSignedMaxValue(Width) + 1;
6941       }
6942     } else if (match(II.getOperand(1), m_APInt(C))) {
6943       if (C->isNegative()) {
6944         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6945         Lower = APInt::getSignedMinValue(Width) - *C;
6946         Upper = APInt::getSignedMaxValue(Width) + 1;
6947       } else {
6948         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6949         Lower = APInt::getSignedMinValue(Width);
6950         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6951       }
6952     }
6953     break;
6954   case Intrinsic::umin:
6955   case Intrinsic::umax:
6956   case Intrinsic::smin:
6957   case Intrinsic::smax:
6958     if (!match(II.getOperand(0), m_APInt(C)) &&
6959         !match(II.getOperand(1), m_APInt(C)))
6960       break;
6961 
6962     switch (II.getIntrinsicID()) {
6963     case Intrinsic::umin:
6964       Upper = *C + 1;
6965       break;
6966     case Intrinsic::umax:
6967       Lower = *C;
6968       break;
6969     case Intrinsic::smin:
6970       Lower = APInt::getSignedMinValue(Width);
6971       Upper = *C + 1;
6972       break;
6973     case Intrinsic::smax:
6974       Lower = *C;
6975       Upper = APInt::getSignedMaxValue(Width) + 1;
6976       break;
6977     default:
6978       llvm_unreachable("Must be min/max intrinsic");
6979     }
6980     break;
6981   case Intrinsic::abs:
6982     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6983     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6984     if (match(II.getOperand(1), m_One()))
6985       Upper = APInt::getSignedMaxValue(Width) + 1;
6986     else
6987       Upper = APInt::getSignedMinValue(Width) + 1;
6988     break;
6989   default:
6990     break;
6991   }
6992 }
6993 
setLimitsForSelectPattern(const SelectInst & SI,APInt & Lower,APInt & Upper,const InstrInfoQuery & IIQ)6994 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6995                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6996   const Value *LHS = nullptr, *RHS = nullptr;
6997   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6998   if (R.Flavor == SPF_UNKNOWN)
6999     return;
7000 
7001   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
7002 
7003   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
7004     // If the negation part of the abs (in RHS) has the NSW flag,
7005     // then the result of abs(X) is [0..SIGNED_MAX],
7006     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
7007     Lower = APInt::getZero(BitWidth);
7008     if (match(RHS, m_Neg(m_Specific(LHS))) &&
7009         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
7010       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7011     else
7012       Upper = APInt::getSignedMinValue(BitWidth) + 1;
7013     return;
7014   }
7015 
7016   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
7017     // The result of -abs(X) is <= 0.
7018     Lower = APInt::getSignedMinValue(BitWidth);
7019     Upper = APInt(BitWidth, 1);
7020     return;
7021   }
7022 
7023   const APInt *C;
7024   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
7025     return;
7026 
7027   switch (R.Flavor) {
7028     case SPF_UMIN:
7029       Upper = *C + 1;
7030       break;
7031     case SPF_UMAX:
7032       Lower = *C;
7033       break;
7034     case SPF_SMIN:
7035       Lower = APInt::getSignedMinValue(BitWidth);
7036       Upper = *C + 1;
7037       break;
7038     case SPF_SMAX:
7039       Lower = *C;
7040       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7041       break;
7042     default:
7043       break;
7044   }
7045 }
7046 
computeConstantRange(const Value * V,bool UseInstrInfo,AssumptionCache * AC,const Instruction * CtxI,const DominatorTree * DT,unsigned Depth)7047 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
7048                                          AssumptionCache *AC,
7049                                          const Instruction *CtxI,
7050                                          const DominatorTree *DT,
7051                                          unsigned Depth) {
7052   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
7053 
7054   if (Depth == MaxAnalysisRecursionDepth)
7055     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
7056 
7057   const APInt *C;
7058   if (match(V, m_APInt(C)))
7059     return ConstantRange(*C);
7060 
7061   InstrInfoQuery IIQ(UseInstrInfo);
7062   unsigned BitWidth = V->getType()->getScalarSizeInBits();
7063   APInt Lower = APInt(BitWidth, 0);
7064   APInt Upper = APInt(BitWidth, 0);
7065   if (auto *BO = dyn_cast<BinaryOperator>(V))
7066     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
7067   else if (auto *II = dyn_cast<IntrinsicInst>(V))
7068     setLimitsForIntrinsic(*II, Lower, Upper);
7069   else if (auto *SI = dyn_cast<SelectInst>(V))
7070     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
7071 
7072   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
7073 
7074   if (auto *I = dyn_cast<Instruction>(V))
7075     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
7076       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
7077 
7078   if (CtxI && AC) {
7079     // Try to restrict the range based on information from assumptions.
7080     for (auto &AssumeVH : AC->assumptionsFor(V)) {
7081       if (!AssumeVH)
7082         continue;
7083       CallInst *I = cast<CallInst>(AssumeVH);
7084       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
7085              "Got assumption for the wrong function!");
7086       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
7087              "must be an assume intrinsic");
7088 
7089       if (!isValidAssumeForContext(I, CtxI, DT))
7090         continue;
7091       Value *Arg = I->getArgOperand(0);
7092       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
7093       // Currently we just use information from comparisons.
7094       if (!Cmp || Cmp->getOperand(0) != V)
7095         continue;
7096       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
7097                                                AC, I, DT, Depth + 1);
7098       CR = CR.intersectWith(
7099           ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
7100     }
7101   }
7102 
7103   return CR;
7104 }
7105 
7106 static Optional<int64_t>
getOffsetFromIndex(const GEPOperator * GEP,unsigned Idx,const DataLayout & DL)7107 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
7108   // Skip over the first indices.
7109   gep_type_iterator GTI = gep_type_begin(GEP);
7110   for (unsigned i = 1; i != Idx; ++i, ++GTI)
7111     /*skip along*/;
7112 
7113   // Compute the offset implied by the rest of the indices.
7114   int64_t Offset = 0;
7115   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
7116     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
7117     if (!OpC)
7118       return None;
7119     if (OpC->isZero())
7120       continue; // No offset.
7121 
7122     // Handle struct indices, which add their field offset to the pointer.
7123     if (StructType *STy = GTI.getStructTypeOrNull()) {
7124       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
7125       continue;
7126     }
7127 
7128     // Otherwise, we have a sequential type like an array or fixed-length
7129     // vector. Multiply the index by the ElementSize.
7130     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
7131     if (Size.isScalable())
7132       return None;
7133     Offset += Size.getFixedSize() * OpC->getSExtValue();
7134   }
7135 
7136   return Offset;
7137 }
7138 
isPointerOffset(const Value * Ptr1,const Value * Ptr2,const DataLayout & DL)7139 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
7140                                         const DataLayout &DL) {
7141   Ptr1 = Ptr1->stripPointerCasts();
7142   Ptr2 = Ptr2->stripPointerCasts();
7143 
7144   // Handle the trivial case first.
7145   if (Ptr1 == Ptr2) {
7146     return 0;
7147   }
7148 
7149   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
7150   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
7151 
7152   // If one pointer is a GEP see if the GEP is a constant offset from the base,
7153   // as in "P" and "gep P, 1".
7154   // Also do this iteratively to handle the the following case:
7155   //   Ptr_t1 = GEP Ptr1, c1
7156   //   Ptr_t2 = GEP Ptr_t1, c2
7157   //   Ptr2 = GEP Ptr_t2, c3
7158   // where we will return c1+c2+c3.
7159   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
7160   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
7161   // are the same, and return the difference between offsets.
7162   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
7163                                  const Value *Ptr) -> Optional<int64_t> {
7164     const GEPOperator *GEP_T = GEP;
7165     int64_t OffsetVal = 0;
7166     bool HasSameBase = false;
7167     while (GEP_T) {
7168       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
7169       if (!Offset)
7170         return None;
7171       OffsetVal += *Offset;
7172       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
7173       if (Op0 == Ptr) {
7174         HasSameBase = true;
7175         break;
7176       }
7177       GEP_T = dyn_cast<GEPOperator>(Op0);
7178     }
7179     if (!HasSameBase)
7180       return None;
7181     return OffsetVal;
7182   };
7183 
7184   if (GEP1) {
7185     auto Offset = getOffsetFromBase(GEP1, Ptr2);
7186     if (Offset)
7187       return -*Offset;
7188   }
7189   if (GEP2) {
7190     auto Offset = getOffsetFromBase(GEP2, Ptr1);
7191     if (Offset)
7192       return Offset;
7193   }
7194 
7195   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
7196   // base.  After that base, they may have some number of common (and
7197   // potentially variable) indices.  After that they handle some constant
7198   // offset, which determines their offset from each other.  At this point, we
7199   // handle no other case.
7200   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
7201     return None;
7202 
7203   // Skip any common indices and track the GEP types.
7204   unsigned Idx = 1;
7205   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
7206     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
7207       break;
7208 
7209   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
7210   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
7211   if (!Offset1 || !Offset2)
7212     return None;
7213   return *Offset2 - *Offset1;
7214 }
7215