1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is much like SSA
15 /// construction, where each DBG_VALUE instruction assigns the *value* that
16 /// a variable has, and every instruction where the variable is in scope uses
17 /// that variable. The resulting map of instruction-to-value is then translated
18 /// into a register (or spill) location for each variable over each instruction.
19 ///
20 /// This pass determines which DBG_VALUE dominates which instructions, or if
21 /// none do, where values must be merged (like PHI nodes). The added
22 /// complication is that because codegen has already finished, a PHI node may
23 /// be needed for a variable location to be correct, but no register or spill
24 /// slot merges the necessary values. In these circumstances, the variable
25 /// location is dropped.
26 ///
27 /// What makes this analysis non-trivial is loops: we cannot tell in advance
28 /// whether a variable location is live throughout a loop, or whether its
29 /// location is clobbered (or redefined by another DBG_VALUE), without
30 /// exploring all the way through.
31 ///
32 /// To make this simpler we perform two kinds of analysis. First, we identify
33 /// every value defined by every instruction (ignoring those that only move
34 /// another value), then compute a map of which values are available for each
35 /// instruction. This is stronger than a reaching-def analysis, as we create
36 /// PHI values where other values merge.
37 ///
38 /// Secondly, for each variable, we effectively re-construct SSA using each
39 /// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the
40 /// first analysis from the location they refer to. We can then compute the
41 /// dominance frontiers of where a variable has a value, and create PHI nodes
42 /// where they merge.
43 /// This isn't precisely SSA-construction though, because the function shape
44 /// is pre-defined. If a variable location requires a PHI node, but no
45 /// PHI for the relevant values is present in the function (as computed by the
46 /// first analysis), the location must be dropped.
47 ///
48 /// Once both are complete, we can pass back over all instructions knowing:
49 ///  * What _value_ each variable should contain, either defined by an
50 ///    instruction or where control flow merges
51 ///  * What the location of that value is (if any).
52 /// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when
53 /// a value moves location. After this pass runs, all variable locations within
54 /// a block should be specified by DBG_VALUEs within that block, allowing
55 /// DbgEntityHistoryCalculator to focus on individual blocks.
56 ///
57 /// This pass is able to go fast because the size of the first
58 /// reaching-definition analysis is proportional to the working-set size of
59 /// the function, which the compiler tries to keep small. (It's also
60 /// proportional to the number of blocks). Additionally, we repeatedly perform
61 /// the second reaching-definition analysis with only the variables and blocks
62 /// in a single lexical scope, exploiting their locality.
63 ///
64 /// Determining where PHIs happen is trickier with this approach, and it comes
65 /// to a head in the major problem for LiveDebugValues: is a value live-through
66 /// a loop, or not? Your garden-variety dataflow analysis aims to build a set of
67 /// facts about a function, however this analysis needs to generate new value
68 /// numbers at joins.
69 ///
70 /// To do this, consider a lattice of all definition values, from instructions
71 /// and from PHIs. Each PHI is characterised by the RPO number of the block it
72 /// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B):
73 /// with non-PHI values at the top, and any PHI value in the last block (by RPO
74 /// order) at the bottom.
75 ///
76 /// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below,
77 /// "rank" always refers to the former).
78 ///
79 /// At any join, for each register, we consider:
80 ///  * All incoming values, and
81 ///  * The PREVIOUS live-in value at this join.
82 /// If all incoming values agree: that's the live-in value. If they do not, the
83 /// incoming values are ranked according to the partial order, and the NEXT
84 /// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of
85 /// the same rank are ignored as conflicting). If there are no candidate values,
86 /// or if the rank of the live-in would be lower than the rank of the current
87 /// blocks PHIs, create a new PHI value.
88 ///
89 /// Intuitively: if it's not immediately obvious what value a join should result
90 /// in, we iteratively descend from instruction-definitions down through PHI
91 /// values, getting closer to the current block each time. If the current block
92 /// is a loop head, this ordering is effectively searching outer levels of
93 /// loops, to find a value that's live-through the current loop.
94 ///
95 /// If there is no value that's live-through this loop, a PHI is created for
96 /// this location instead. We can't use a lower-ranked PHI because by definition
97 /// it doesn't dominate the current block. We can't create a PHI value any
98 /// earlier, because we risk creating a PHI value at a location where values do
99 /// not in fact merge, thus misrepresenting the truth, and not making the true
100 /// live-through value for variable locations.
101 ///
102 /// This algorithm applies to both calculating the availability of values in
103 /// the first analysis, and the location of variables in the second. However
104 /// for the second we add an extra dimension of pain: creating a variable
105 /// location PHI is only valid if, for each incoming edge,
106 ///  * There is a value for the variable on the incoming edge, and
107 ///  * All the edges have that value in the same register.
108 /// Or put another way: we can only create a variable-location PHI if there is
109 /// a matching machine-location PHI, each input to which is the variables value
110 /// in the predecessor block.
111 ///
112 /// To accommodate this difference, each point on the lattice is split in
113 /// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately
114 /// have a location determined are "definite" PHIs, and no further work is
115 /// needed. Otherwise, a location that all non-backedge predecessors agree
116 /// on is picked and propagated as a "proposed" PHI value. If that PHI value
117 /// is truly live-through, it'll appear on the loop backedges on the next
118 /// dataflow iteration, after which the block live-in moves to be a "definite"
119 /// PHI. If it's not truly live-through, the variable value will be downgraded
120 /// further as we explore the lattice, or remains "proposed" and is considered
121 /// invalid once dataflow completes.
122 ///
123 /// ### Terminology
124 ///
125 /// A machine location is a register or spill slot, a value is something that's
126 /// defined by an instruction or PHI node, while a variable value is the value
127 /// assigned to a variable. A variable location is a machine location, that must
128 /// contain the appropriate variable value. A value that is a PHI node is
129 /// occasionally called an mphi.
130 ///
131 /// The first dataflow problem is the "machine value location" problem,
132 /// because we're determining which machine locations contain which values.
133 /// The "locations" are constant: what's unknown is what value they contain.
134 ///
135 /// The second dataflow problem (the one for variables) is the "variable value
136 /// problem", because it's determining what values a variable has, rather than
137 /// what location those values are placed in. Unfortunately, it's not that
138 /// simple, because producing a PHI value always involves picking a location.
139 /// This is an imperfection that we just have to accept, at least for now.
140 ///
141 /// TODO:
142 ///   Overlapping fragments
143 ///   Entry values
144 ///   Add back DEBUG statements for debugging this
145 ///   Collect statistics
146 ///
147 //===----------------------------------------------------------------------===//
148 
149 #include "llvm/ADT/DenseMap.h"
150 #include "llvm/ADT/PostOrderIterator.h"
151 #include "llvm/ADT/STLExtras.h"
152 #include "llvm/ADT/SmallPtrSet.h"
153 #include "llvm/ADT/SmallSet.h"
154 #include "llvm/ADT/SmallVector.h"
155 #include "llvm/ADT/Statistic.h"
156 #include "llvm/CodeGen/LexicalScopes.h"
157 #include "llvm/CodeGen/MachineBasicBlock.h"
158 #include "llvm/CodeGen/MachineFrameInfo.h"
159 #include "llvm/CodeGen/MachineFunction.h"
160 #include "llvm/CodeGen/MachineFunctionPass.h"
161 #include "llvm/CodeGen/MachineInstr.h"
162 #include "llvm/CodeGen/MachineInstrBuilder.h"
163 #include "llvm/CodeGen/MachineInstrBundle.h"
164 #include "llvm/CodeGen/MachineMemOperand.h"
165 #include "llvm/CodeGen/MachineOperand.h"
166 #include "llvm/CodeGen/PseudoSourceValue.h"
167 #include "llvm/CodeGen/RegisterScavenging.h"
168 #include "llvm/CodeGen/TargetFrameLowering.h"
169 #include "llvm/CodeGen/TargetInstrInfo.h"
170 #include "llvm/CodeGen/TargetLowering.h"
171 #include "llvm/CodeGen/TargetPassConfig.h"
172 #include "llvm/CodeGen/TargetRegisterInfo.h"
173 #include "llvm/CodeGen/TargetSubtargetInfo.h"
174 #include "llvm/Config/llvm-config.h"
175 #include "llvm/IR/DIBuilder.h"
176 #include "llvm/IR/DebugInfoMetadata.h"
177 #include "llvm/IR/DebugLoc.h"
178 #include "llvm/IR/Function.h"
179 #include "llvm/IR/Module.h"
180 #include "llvm/InitializePasses.h"
181 #include "llvm/MC/MCRegisterInfo.h"
182 #include "llvm/Pass.h"
183 #include "llvm/Support/Casting.h"
184 #include "llvm/Support/Compiler.h"
185 #include "llvm/Support/Debug.h"
186 #include "llvm/Support/TypeSize.h"
187 #include "llvm/Support/raw_ostream.h"
188 #include "llvm/Target/TargetMachine.h"
189 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
190 #include <algorithm>
191 #include <cassert>
192 #include <cstdint>
193 #include <functional>
194 #include <limits.h>
195 #include <limits>
196 #include <queue>
197 #include <tuple>
198 #include <utility>
199 #include <vector>
200 
201 #include "InstrRefBasedImpl.h"
202 #include "LiveDebugValues.h"
203 
204 using namespace llvm;
205 using namespace LiveDebugValues;
206 
207 // SSAUpdaterImple sets DEBUG_TYPE, change it.
208 #undef DEBUG_TYPE
209 #define DEBUG_TYPE "livedebugvalues"
210 
211 // Act more like the VarLoc implementation, by propagating some locations too
212 // far and ignoring some transfers.
213 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
214                                    cl::desc("Act like old LiveDebugValues did"),
215                                    cl::init(false));
216 
217 /// Thin wrapper around an integer -- designed to give more type safety to
218 /// spill location numbers.
219 class SpillLocationNo {
220 public:
SpillLocationNo(unsigned SpillNo)221   explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
222   unsigned SpillNo;
id() const223   unsigned id() const { return SpillNo; }
224 };
225 
226 /// Collection of DBG_VALUEs observed when traversing a block. Records each
227 /// variable and the value the DBG_VALUE refers to. Requires the machine value
228 /// location dataflow algorithm to have run already, so that values can be
229 /// identified.
230 class VLocTracker {
231 public:
232   /// Map DebugVariable to the latest Value it's defined to have.
233   /// Needs to be a MapVector because we determine order-in-the-input-MIR from
234   /// the order in this container.
235   /// We only retain the last DbgValue in each block for each variable, to
236   /// determine the blocks live-out variable value. The Vars container forms the
237   /// transfer function for this block, as part of the dataflow analysis. The
238   /// movement of values between locations inside of a block is handled at a
239   /// much later stage, in the TransferTracker class.
240   MapVector<DebugVariable, DbgValue> Vars;
241   DenseMap<DebugVariable, const DILocation *> Scopes;
242   MachineBasicBlock *MBB;
243 
244 public:
VLocTracker()245   VLocTracker() {}
246 
defVar(const MachineInstr & MI,const DbgValueProperties & Properties,Optional<ValueIDNum> ID)247   void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
248               Optional<ValueIDNum> ID) {
249     assert(MI.isDebugValue() || MI.isDebugRef());
250     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
251                       MI.getDebugLoc()->getInlinedAt());
252     DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
253                         : DbgValue(Properties, DbgValue::Undef);
254 
255     // Attempt insertion; overwrite if it's already mapped.
256     auto Result = Vars.insert(std::make_pair(Var, Rec));
257     if (!Result.second)
258       Result.first->second = Rec;
259     Scopes[Var] = MI.getDebugLoc().get();
260   }
261 
defVar(const MachineInstr & MI,const MachineOperand & MO)262   void defVar(const MachineInstr &MI, const MachineOperand &MO) {
263     // Only DBG_VALUEs can define constant-valued variables.
264     assert(MI.isDebugValue());
265     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
266                       MI.getDebugLoc()->getInlinedAt());
267     DbgValueProperties Properties(MI);
268     DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
269 
270     // Attempt insertion; overwrite if it's already mapped.
271     auto Result = Vars.insert(std::make_pair(Var, Rec));
272     if (!Result.second)
273       Result.first->second = Rec;
274     Scopes[Var] = MI.getDebugLoc().get();
275   }
276 };
277 
278 /// Tracker for converting machine value locations and variable values into
279 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
280 /// specifying block live-in locations and transfers within blocks.
281 ///
282 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
283 /// and must be initialized with the set of variable values that are live-in to
284 /// the block. The caller then repeatedly calls process(). TransferTracker picks
285 /// out variable locations for the live-in variable values (if there _is_ a
286 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
287 /// stepped through, transfers of values between machine locations are
288 /// identified and if profitable, a DBG_VALUE created.
289 ///
290 /// This is where debug use-before-defs would be resolved: a variable with an
291 /// unavailable value could materialize in the middle of a block, when the
292 /// value becomes available. Or, we could detect clobbers and re-specify the
293 /// variable in a backup location. (XXX these are unimplemented).
294 class TransferTracker {
295 public:
296   const TargetInstrInfo *TII;
297   const TargetLowering *TLI;
298   /// This machine location tracker is assumed to always contain the up-to-date
299   /// value mapping for all machine locations. TransferTracker only reads
300   /// information from it. (XXX make it const?)
301   MLocTracker *MTracker;
302   MachineFunction &MF;
303   bool ShouldEmitDebugEntryValues;
304 
305   /// Record of all changes in variable locations at a block position. Awkwardly
306   /// we allow inserting either before or after the point: MBB != nullptr
307   /// indicates it's before, otherwise after.
308   struct Transfer {
309     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
310     MachineBasicBlock *MBB; /// non-null if we should insert after.
311     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
312   };
313 
314   struct LocAndProperties {
315     LocIdx Loc;
316     DbgValueProperties Properties;
317   };
318 
319   /// Collection of transfers (DBG_VALUEs) to be inserted.
320   SmallVector<Transfer, 32> Transfers;
321 
322   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
323   /// between TransferTrackers view of variable locations and MLocTrackers. For
324   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
325   /// does not.
326   std::vector<ValueIDNum> VarLocs;
327 
328   /// Map from LocIdxes to which DebugVariables are based that location.
329   /// Mantained while stepping through the block. Not accurate if
330   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
331   std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
332 
333   /// Map from DebugVariable to it's current location and qualifying meta
334   /// information. To be used in conjunction with ActiveMLocs to construct
335   /// enough information for the DBG_VALUEs for a particular LocIdx.
336   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
337 
338   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
339   SmallVector<MachineInstr *, 4> PendingDbgValues;
340 
341   /// Record of a use-before-def: created when a value that's live-in to the
342   /// current block isn't available in any machine location, but it will be
343   /// defined in this block.
344   struct UseBeforeDef {
345     /// Value of this variable, def'd in block.
346     ValueIDNum ID;
347     /// Identity of this variable.
348     DebugVariable Var;
349     /// Additional variable properties.
350     DbgValueProperties Properties;
351   };
352 
353   /// Map from instruction index (within the block) to the set of UseBeforeDefs
354   /// that become defined at that instruction.
355   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
356 
357   /// The set of variables that are in UseBeforeDefs and can become a location
358   /// once the relevant value is defined. An element being erased from this
359   /// collection prevents the use-before-def materializing.
360   DenseSet<DebugVariable> UseBeforeDefVariables;
361 
362   const TargetRegisterInfo &TRI;
363   const BitVector &CalleeSavedRegs;
364 
TransferTracker(const TargetInstrInfo * TII,MLocTracker * MTracker,MachineFunction & MF,const TargetRegisterInfo & TRI,const BitVector & CalleeSavedRegs,const TargetPassConfig & TPC)365   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
366                   MachineFunction &MF, const TargetRegisterInfo &TRI,
367                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
368       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
369         CalleeSavedRegs(CalleeSavedRegs) {
370     TLI = MF.getSubtarget().getTargetLowering();
371     auto &TM = TPC.getTM<TargetMachine>();
372     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
373   }
374 
375   /// Load object with live-in variable values. \p mlocs contains the live-in
376   /// values in each machine location, while \p vlocs the live-in variable
377   /// values. This method picks variable locations for the live-in variables,
378   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
379   /// object fields to track variable locations as we step through the block.
380   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
loadInlocs(MachineBasicBlock & MBB,ValueIDNum * MLocs,SmallVectorImpl<std::pair<DebugVariable,DbgValue>> & VLocs,unsigned NumLocs)381   void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
382                   SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
383                   unsigned NumLocs) {
384     ActiveMLocs.clear();
385     ActiveVLocs.clear();
386     VarLocs.clear();
387     VarLocs.reserve(NumLocs);
388     UseBeforeDefs.clear();
389     UseBeforeDefVariables.clear();
390 
391     auto isCalleeSaved = [&](LocIdx L) {
392       unsigned Reg = MTracker->LocIdxToLocID[L];
393       if (Reg >= MTracker->NumRegs)
394         return false;
395       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
396         if (CalleeSavedRegs.test(*RAI))
397           return true;
398       return false;
399     };
400 
401     // Map of the preferred location for each value.
402     std::map<ValueIDNum, LocIdx> ValueToLoc;
403 
404     // Produce a map of value numbers to the current machine locs they live
405     // in. When emulating VarLocBasedImpl, there should only be one
406     // location; when not, we get to pick.
407     for (auto Location : MTracker->locations()) {
408       LocIdx Idx = Location.Idx;
409       ValueIDNum &VNum = MLocs[Idx.asU64()];
410       VarLocs.push_back(VNum);
411       auto it = ValueToLoc.find(VNum);
412       // In order of preference, pick:
413       //  * Callee saved registers,
414       //  * Other registers,
415       //  * Spill slots.
416       if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
417           (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
418         // Insert, or overwrite if insertion failed.
419         auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
420         if (!PrefLocRes.second)
421           PrefLocRes.first->second = Idx;
422       }
423     }
424 
425     // Now map variables to their picked LocIdxes.
426     for (auto Var : VLocs) {
427       if (Var.second.Kind == DbgValue::Const) {
428         PendingDbgValues.push_back(
429             emitMOLoc(Var.second.MO, Var.first, Var.second.Properties));
430         continue;
431       }
432 
433       // If the value has no location, we can't make a variable location.
434       const ValueIDNum &Num = Var.second.ID;
435       auto ValuesPreferredLoc = ValueToLoc.find(Num);
436       if (ValuesPreferredLoc == ValueToLoc.end()) {
437         // If it's a def that occurs in this block, register it as a
438         // use-before-def to be resolved as we step through the block.
439         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
440           addUseBeforeDef(Var.first, Var.second.Properties, Num);
441         else
442           recoverAsEntryValue(Var.first, Var.second.Properties, Num);
443         continue;
444       }
445 
446       LocIdx M = ValuesPreferredLoc->second;
447       auto NewValue = LocAndProperties{M, Var.second.Properties};
448       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
449       if (!Result.second)
450         Result.first->second = NewValue;
451       ActiveMLocs[M].insert(Var.first);
452       PendingDbgValues.push_back(
453           MTracker->emitLoc(M, Var.first, Var.second.Properties));
454     }
455     flushDbgValues(MBB.begin(), &MBB);
456   }
457 
458   /// Record that \p Var has value \p ID, a value that becomes available
459   /// later in the function.
addUseBeforeDef(const DebugVariable & Var,const DbgValueProperties & Properties,ValueIDNum ID)460   void addUseBeforeDef(const DebugVariable &Var,
461                        const DbgValueProperties &Properties, ValueIDNum ID) {
462     UseBeforeDef UBD = {ID, Var, Properties};
463     UseBeforeDefs[ID.getInst()].push_back(UBD);
464     UseBeforeDefVariables.insert(Var);
465   }
466 
467   /// After the instruction at index \p Inst and position \p pos has been
468   /// processed, check whether it defines a variable value in a use-before-def.
469   /// If so, and the variable value hasn't changed since the start of the
470   /// block, create a DBG_VALUE.
checkInstForNewValues(unsigned Inst,MachineBasicBlock::iterator pos)471   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
472     auto MIt = UseBeforeDefs.find(Inst);
473     if (MIt == UseBeforeDefs.end())
474       return;
475 
476     for (auto &Use : MIt->second) {
477       LocIdx L = Use.ID.getLoc();
478 
479       // If something goes very wrong, we might end up labelling a COPY
480       // instruction or similar with an instruction number, where it doesn't
481       // actually define a new value, instead it moves a value. In case this
482       // happens, discard.
483       if (MTracker->LocIdxToIDNum[L] != Use.ID)
484         continue;
485 
486       // If a different debug instruction defined the variable value / location
487       // since the start of the block, don't materialize this use-before-def.
488       if (!UseBeforeDefVariables.count(Use.Var))
489         continue;
490 
491       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
492     }
493     flushDbgValues(pos, nullptr);
494   }
495 
496   /// Helper to move created DBG_VALUEs into Transfers collection.
flushDbgValues(MachineBasicBlock::iterator Pos,MachineBasicBlock * MBB)497   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
498     if (PendingDbgValues.size() == 0)
499       return;
500 
501     // Pick out the instruction start position.
502     MachineBasicBlock::instr_iterator BundleStart;
503     if (MBB && Pos == MBB->begin())
504       BundleStart = MBB->instr_begin();
505     else
506       BundleStart = getBundleStart(Pos->getIterator());
507 
508     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
509     PendingDbgValues.clear();
510   }
511 
isEntryValueVariable(const DebugVariable & Var,const DIExpression * Expr) const512   bool isEntryValueVariable(const DebugVariable &Var,
513                             const DIExpression *Expr) const {
514     if (!Var.getVariable()->isParameter())
515       return false;
516 
517     if (Var.getInlinedAt())
518       return false;
519 
520     if (Expr->getNumElements() > 0)
521       return false;
522 
523     return true;
524   }
525 
isEntryValueValue(const ValueIDNum & Val) const526   bool isEntryValueValue(const ValueIDNum &Val) const {
527     // Must be in entry block (block number zero), and be a PHI / live-in value.
528     if (Val.getBlock() || !Val.isPHI())
529       return false;
530 
531     // Entry values must enter in a register.
532     if (MTracker->isSpill(Val.getLoc()))
533       return false;
534 
535     Register SP = TLI->getStackPointerRegisterToSaveRestore();
536     Register FP = TRI.getFrameRegister(MF);
537     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
538     return Reg != SP && Reg != FP;
539   }
540 
recoverAsEntryValue(const DebugVariable & Var,DbgValueProperties & Prop,const ValueIDNum & Num)541   bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop,
542                            const ValueIDNum &Num) {
543     // Is this variable location a candidate to be an entry value. First,
544     // should we be trying this at all?
545     if (!ShouldEmitDebugEntryValues)
546       return false;
547 
548     // Is the variable appropriate for entry values (i.e., is a parameter).
549     if (!isEntryValueVariable(Var, Prop.DIExpr))
550       return false;
551 
552     // Is the value assigned to this variable still the entry value?
553     if (!isEntryValueValue(Num))
554       return false;
555 
556     // Emit a variable location using an entry value expression.
557     DIExpression *NewExpr =
558         DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
559     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
560     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
561 
562     PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
563     return true;
564   }
565 
566   /// Change a variable value after encountering a DBG_VALUE inside a block.
redefVar(const MachineInstr & MI)567   void redefVar(const MachineInstr &MI) {
568     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
569                       MI.getDebugLoc()->getInlinedAt());
570     DbgValueProperties Properties(MI);
571 
572     const MachineOperand &MO = MI.getOperand(0);
573 
574     // Ignore non-register locations, we don't transfer those.
575     if (!MO.isReg() || MO.getReg() == 0) {
576       auto It = ActiveVLocs.find(Var);
577       if (It != ActiveVLocs.end()) {
578         ActiveMLocs[It->second.Loc].erase(Var);
579         ActiveVLocs.erase(It);
580      }
581       // Any use-before-defs no longer apply.
582       UseBeforeDefVariables.erase(Var);
583       return;
584     }
585 
586     Register Reg = MO.getReg();
587     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
588     redefVar(MI, Properties, NewLoc);
589   }
590 
591   /// Handle a change in variable location within a block. Terminate the
592   /// variables current location, and record the value it now refers to, so
593   /// that we can detect location transfers later on.
redefVar(const MachineInstr & MI,const DbgValueProperties & Properties,Optional<LocIdx> OptNewLoc)594   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
595                 Optional<LocIdx> OptNewLoc) {
596     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
597                       MI.getDebugLoc()->getInlinedAt());
598     // Any use-before-defs no longer apply.
599     UseBeforeDefVariables.erase(Var);
600 
601     // Erase any previous location,
602     auto It = ActiveVLocs.find(Var);
603     if (It != ActiveVLocs.end())
604       ActiveMLocs[It->second.Loc].erase(Var);
605 
606     // If there _is_ no new location, all we had to do was erase.
607     if (!OptNewLoc)
608       return;
609     LocIdx NewLoc = *OptNewLoc;
610 
611     // Check whether our local copy of values-by-location in #VarLocs is out of
612     // date. Wipe old tracking data for the location if it's been clobbered in
613     // the meantime.
614     if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) {
615       for (auto &P : ActiveMLocs[NewLoc]) {
616         ActiveVLocs.erase(P);
617       }
618       ActiveMLocs[NewLoc.asU64()].clear();
619       VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc);
620     }
621 
622     ActiveMLocs[NewLoc].insert(Var);
623     if (It == ActiveVLocs.end()) {
624       ActiveVLocs.insert(
625           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
626     } else {
627       It->second.Loc = NewLoc;
628       It->second.Properties = Properties;
629     }
630   }
631 
632   /// Account for a location \p mloc being clobbered. Examine the variable
633   /// locations that will be terminated: and try to recover them by using
634   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
635   /// explicitly terminate a location if it can't be recovered.
clobberMloc(LocIdx MLoc,MachineBasicBlock::iterator Pos,bool MakeUndef=true)636   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
637                    bool MakeUndef = true) {
638     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
639     if (ActiveMLocIt == ActiveMLocs.end())
640       return;
641 
642     // What was the old variable value?
643     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
644     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
645 
646     // Examine the remaining variable locations: if we can find the same value
647     // again, we can recover the location.
648     Optional<LocIdx> NewLoc = None;
649     for (auto Loc : MTracker->locations())
650       if (Loc.Value == OldValue)
651         NewLoc = Loc.Idx;
652 
653     // If there is no location, and we weren't asked to make the variable
654     // explicitly undef, then stop here.
655     if (!NewLoc && !MakeUndef) {
656       // Try and recover a few more locations with entry values.
657       for (auto &Var : ActiveMLocIt->second) {
658         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
659         recoverAsEntryValue(Var, Prop, OldValue);
660       }
661       flushDbgValues(Pos, nullptr);
662       return;
663     }
664 
665     // Examine all the variables based on this location.
666     DenseSet<DebugVariable> NewMLocs;
667     for (auto &Var : ActiveMLocIt->second) {
668       auto ActiveVLocIt = ActiveVLocs.find(Var);
669       // Re-state the variable location: if there's no replacement then NewLoc
670       // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
671       // identifying the alternative location will be emitted.
672       const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
673       DbgValueProperties Properties(Expr, false);
674       PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
675 
676       // Update machine locations <=> variable locations maps. Defer updating
677       // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
678       if (!NewLoc) {
679         ActiveVLocs.erase(ActiveVLocIt);
680       } else {
681         ActiveVLocIt->second.Loc = *NewLoc;
682         NewMLocs.insert(Var);
683       }
684     }
685 
686     // Commit any deferred ActiveMLoc changes.
687     if (!NewMLocs.empty())
688       for (auto &Var : NewMLocs)
689         ActiveMLocs[*NewLoc].insert(Var);
690 
691     // We lazily track what locations have which values; if we've found a new
692     // location for the clobbered value, remember it.
693     if (NewLoc)
694       VarLocs[NewLoc->asU64()] = OldValue;
695 
696     flushDbgValues(Pos, nullptr);
697 
698     ActiveMLocIt->second.clear();
699   }
700 
701   /// Transfer variables based on \p Src to be based on \p Dst. This handles
702   /// both register copies as well as spills and restores. Creates DBG_VALUEs
703   /// describing the movement.
transferMlocs(LocIdx Src,LocIdx Dst,MachineBasicBlock::iterator Pos)704   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
705     // Does Src still contain the value num we expect? If not, it's been
706     // clobbered in the meantime, and our variable locations are stale.
707     if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src))
708       return;
709 
710     // assert(ActiveMLocs[Dst].size() == 0);
711     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
712     ActiveMLocs[Dst] = ActiveMLocs[Src];
713     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
714 
715     // For each variable based on Src; create a location at Dst.
716     for (auto &Var : ActiveMLocs[Src]) {
717       auto ActiveVLocIt = ActiveVLocs.find(Var);
718       assert(ActiveVLocIt != ActiveVLocs.end());
719       ActiveVLocIt->second.Loc = Dst;
720 
721       MachineInstr *MI =
722           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
723       PendingDbgValues.push_back(MI);
724     }
725     ActiveMLocs[Src].clear();
726     flushDbgValues(Pos, nullptr);
727 
728     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
729     // about the old location.
730     if (EmulateOldLDV)
731       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
732   }
733 
emitMOLoc(const MachineOperand & MO,const DebugVariable & Var,const DbgValueProperties & Properties)734   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
735                                 const DebugVariable &Var,
736                                 const DbgValueProperties &Properties) {
737     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
738                                   Var.getVariable()->getScope(),
739                                   const_cast<DILocation *>(Var.getInlinedAt()));
740     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
741     MIB.add(MO);
742     if (Properties.Indirect)
743       MIB.addImm(0);
744     else
745       MIB.addReg(0);
746     MIB.addMetadata(Var.getVariable());
747     MIB.addMetadata(Properties.DIExpr);
748     return MIB;
749   }
750 };
751 
752 //===----------------------------------------------------------------------===//
753 //            Implementation
754 //===----------------------------------------------------------------------===//
755 
756 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
757 
758 #ifndef NDEBUG
dump(const MLocTracker * MTrack) const759 void DbgValue::dump(const MLocTracker *MTrack) const {
760   if (Kind == Const) {
761     MO.dump();
762   } else if (Kind == NoVal) {
763     dbgs() << "NoVal(" << BlockNo << ")";
764   } else if (Kind == Proposed) {
765     dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")";
766   } else {
767     assert(Kind == Def);
768     dbgs() << MTrack->IDAsString(ID);
769   }
770   if (Properties.Indirect)
771     dbgs() << " indir";
772   if (Properties.DIExpr)
773     dbgs() << " " << *Properties.DIExpr;
774 }
775 #endif
776 
MLocTracker(MachineFunction & MF,const TargetInstrInfo & TII,const TargetRegisterInfo & TRI,const TargetLowering & TLI)777 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
778                          const TargetRegisterInfo &TRI,
779                          const TargetLowering &TLI)
780     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
781       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
782   NumRegs = TRI.getNumRegs();
783   reset();
784   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
785   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
786 
787   // Always track SP. This avoids the implicit clobbering caused by regmasks
788   // from affectings its values. (LiveDebugValues disbelieves calls and
789   // regmasks that claim to clobber SP).
790   Register SP = TLI.getStackPointerRegisterToSaveRestore();
791   if (SP) {
792     unsigned ID = getLocID(SP, false);
793     (void)lookupOrTrackRegister(ID);
794   }
795 }
796 
trackRegister(unsigned ID)797 LocIdx MLocTracker::trackRegister(unsigned ID) {
798   assert(ID != 0);
799   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
800   LocIdxToIDNum.grow(NewIdx);
801   LocIdxToLocID.grow(NewIdx);
802 
803   // Default: it's an mphi.
804   ValueIDNum ValNum = {CurBB, 0, NewIdx};
805   // Was this reg ever touched by a regmask?
806   for (const auto &MaskPair : reverse(Masks)) {
807     if (MaskPair.first->clobbersPhysReg(ID)) {
808       // There was an earlier def we skipped.
809       ValNum = {CurBB, MaskPair.second, NewIdx};
810       break;
811     }
812   }
813 
814   LocIdxToIDNum[NewIdx] = ValNum;
815   LocIdxToLocID[NewIdx] = ID;
816   return NewIdx;
817 }
818 
writeRegMask(const MachineOperand * MO,unsigned CurBB,unsigned InstID)819 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
820                                unsigned InstID) {
821   // Ensure SP exists, so that we don't override it later.
822   Register SP = TLI.getStackPointerRegisterToSaveRestore();
823 
824   // Def any register we track have that isn't preserved. The regmask
825   // terminates the liveness of a register, meaning its value can't be
826   // relied upon -- we represent this by giving it a new value.
827   for (auto Location : locations()) {
828     unsigned ID = LocIdxToLocID[Location.Idx];
829     // Don't clobber SP, even if the mask says it's clobbered.
830     if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID))
831       defReg(ID, CurBB, InstID);
832   }
833   Masks.push_back(std::make_pair(MO, InstID));
834 }
835 
getOrTrackSpillLoc(SpillLoc L)836 LocIdx MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
837   unsigned SpillID = SpillLocs.idFor(L);
838   if (SpillID == 0) {
839     SpillID = SpillLocs.insert(L);
840     unsigned L = getLocID(SpillID, true);
841     LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
842     LocIdxToIDNum.grow(Idx);
843     LocIdxToLocID.grow(Idx);
844     LocIDToLocIdx.push_back(Idx);
845     LocIdxToLocID[Idx] = L;
846     return Idx;
847   } else {
848     unsigned L = getLocID(SpillID, true);
849     LocIdx Idx = LocIDToLocIdx[L];
850     return Idx;
851   }
852 }
853 
LocIdxToName(LocIdx Idx) const854 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
855   unsigned ID = LocIdxToLocID[Idx];
856   if (ID >= NumRegs)
857     return Twine("slot ").concat(Twine(ID - NumRegs)).str();
858   else
859     return TRI.getRegAsmName(ID).str();
860 }
861 
IDAsString(const ValueIDNum & Num) const862 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
863   std::string DefName = LocIdxToName(Num.getLoc());
864   return Num.asString(DefName);
865 }
866 
867 #ifndef NDEBUG
dump()868 LLVM_DUMP_METHOD void MLocTracker::dump() {
869   for (auto Location : locations()) {
870     std::string MLocName = LocIdxToName(Location.Value.getLoc());
871     std::string DefName = Location.Value.asString(MLocName);
872     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
873   }
874 }
875 
dump_mloc_map()876 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
877   for (auto Location : locations()) {
878     std::string foo = LocIdxToName(Location.Idx);
879     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
880   }
881 }
882 #endif
883 
emitLoc(Optional<LocIdx> MLoc,const DebugVariable & Var,const DbgValueProperties & Properties)884 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
885                                          const DebugVariable &Var,
886                                          const DbgValueProperties &Properties) {
887   DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
888                                 Var.getVariable()->getScope(),
889                                 const_cast<DILocation *>(Var.getInlinedAt()));
890   auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
891 
892   const DIExpression *Expr = Properties.DIExpr;
893   if (!MLoc) {
894     // No location -> DBG_VALUE $noreg
895     MIB.addReg(0);
896     MIB.addReg(0);
897   } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
898     unsigned LocID = LocIdxToLocID[*MLoc];
899     const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1];
900 
901     auto *TRI = MF.getSubtarget().getRegisterInfo();
902     Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset,
903                                         Spill.SpillOffset);
904     unsigned Base = Spill.SpillBase;
905     MIB.addReg(Base);
906     MIB.addImm(0);
907   } else {
908     unsigned LocID = LocIdxToLocID[*MLoc];
909     MIB.addReg(LocID);
910     if (Properties.Indirect)
911       MIB.addImm(0);
912     else
913       MIB.addReg(0);
914   }
915 
916   MIB.addMetadata(Var.getVariable());
917   MIB.addMetadata(Expr);
918   return MIB;
919 }
920 
921 /// Default construct and initialize the pass.
InstrRefBasedLDV()922 InstrRefBasedLDV::InstrRefBasedLDV() {}
923 
isCalleeSaved(LocIdx L) const924 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
925   unsigned Reg = MTracker->LocIdxToLocID[L];
926   for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
927     if (CalleeSavedRegs.test(*RAI))
928       return true;
929   return false;
930 }
931 
932 //===----------------------------------------------------------------------===//
933 //            Debug Range Extension Implementation
934 //===----------------------------------------------------------------------===//
935 
936 #ifndef NDEBUG
937 // Something to restore in the future.
938 // void InstrRefBasedLDV::printVarLocInMBB(..)
939 #endif
940 
941 SpillLoc
extractSpillBaseRegAndOffset(const MachineInstr & MI)942 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
943   assert(MI.hasOneMemOperand() &&
944          "Spill instruction does not have exactly one memory operand?");
945   auto MMOI = MI.memoperands_begin();
946   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
947   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
948          "Inconsistent memory operand in spill instruction");
949   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
950   const MachineBasicBlock *MBB = MI.getParent();
951   Register Reg;
952   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
953   return {Reg, Offset};
954 }
955 
956 /// End all previous ranges related to @MI and start a new range from @MI
957 /// if it is a DBG_VALUE instr.
transferDebugValue(const MachineInstr & MI)958 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
959   if (!MI.isDebugValue())
960     return false;
961 
962   const DILocalVariable *Var = MI.getDebugVariable();
963   const DIExpression *Expr = MI.getDebugExpression();
964   const DILocation *DebugLoc = MI.getDebugLoc();
965   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
966   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
967          "Expected inlined-at fields to agree");
968 
969   DebugVariable V(Var, Expr, InlinedAt);
970   DbgValueProperties Properties(MI);
971 
972   // If there are no instructions in this lexical scope, do no location tracking
973   // at all, this variable shouldn't get a legitimate location range.
974   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
975   if (Scope == nullptr)
976     return true; // handled it; by doing nothing
977 
978   // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
979   // contribute to locations in this block, but don't propagate further.
980   // Interpret it like a DBG_VALUE $noreg.
981   if (MI.isDebugValueList()) {
982     if (VTracker)
983       VTracker->defVar(MI, Properties, None);
984     if (TTracker)
985       TTracker->redefVar(MI, Properties, None);
986     return true;
987   }
988 
989   const MachineOperand &MO = MI.getOperand(0);
990 
991   // MLocTracker needs to know that this register is read, even if it's only
992   // read by a debug inst.
993   if (MO.isReg() && MO.getReg() != 0)
994     (void)MTracker->readReg(MO.getReg());
995 
996   // If we're preparing for the second analysis (variables), the machine value
997   // locations are already solved, and we report this DBG_VALUE and the value
998   // it refers to to VLocTracker.
999   if (VTracker) {
1000     if (MO.isReg()) {
1001       // Feed defVar the new variable location, or if this is a
1002       // DBG_VALUE $noreg, feed defVar None.
1003       if (MO.getReg())
1004         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
1005       else
1006         VTracker->defVar(MI, Properties, None);
1007     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
1008                MI.getOperand(0).isCImm()) {
1009       VTracker->defVar(MI, MI.getOperand(0));
1010     }
1011   }
1012 
1013   // If performing final tracking of transfers, report this variable definition
1014   // to the TransferTracker too.
1015   if (TTracker)
1016     TTracker->redefVar(MI);
1017   return true;
1018 }
1019 
transferDebugInstrRef(MachineInstr & MI,ValueIDNum ** MLiveOuts,ValueIDNum ** MLiveIns)1020 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
1021                                              ValueIDNum **MLiveOuts,
1022                                              ValueIDNum **MLiveIns) {
1023   if (!MI.isDebugRef())
1024     return false;
1025 
1026   // Only handle this instruction when we are building the variable value
1027   // transfer function.
1028   if (!VTracker)
1029     return false;
1030 
1031   unsigned InstNo = MI.getOperand(0).getImm();
1032   unsigned OpNo = MI.getOperand(1).getImm();
1033 
1034   const DILocalVariable *Var = MI.getDebugVariable();
1035   const DIExpression *Expr = MI.getDebugExpression();
1036   const DILocation *DebugLoc = MI.getDebugLoc();
1037   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1038   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1039          "Expected inlined-at fields to agree");
1040 
1041   DebugVariable V(Var, Expr, InlinedAt);
1042 
1043   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1044   if (Scope == nullptr)
1045     return true; // Handled by doing nothing. This variable is never in scope.
1046 
1047   const MachineFunction &MF = *MI.getParent()->getParent();
1048 
1049   // Various optimizations may have happened to the value during codegen,
1050   // recorded in the value substitution table. Apply any substitutions to
1051   // the instruction / operand number in this DBG_INSTR_REF, and collect
1052   // any subregister extractions performed during optimization.
1053 
1054   // Create dummy substitution with Src set, for lookup.
1055   auto SoughtSub =
1056       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1057 
1058   SmallVector<unsigned, 4> SeenSubregs;
1059   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1060   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1061          LowerBoundIt->Src == SoughtSub.Src) {
1062     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1063     SoughtSub.Src = LowerBoundIt->Dest;
1064     if (unsigned Subreg = LowerBoundIt->Subreg)
1065       SeenSubregs.push_back(Subreg);
1066     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1067   }
1068 
1069   // Default machine value number is <None> -- if no instruction defines
1070   // the corresponding value, it must have been optimized out.
1071   Optional<ValueIDNum> NewID = None;
1072 
1073   // Try to lookup the instruction number, and find the machine value number
1074   // that it defines. It could be an instruction, or a PHI.
1075   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1076   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1077                                 DebugPHINumToValue.end(), InstNo);
1078   if (InstrIt != DebugInstrNumToInstr.end()) {
1079     const MachineInstr &TargetInstr = *InstrIt->second.first;
1080     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1081 
1082     // Pick out the designated operand.
1083     assert(OpNo < TargetInstr.getNumOperands());
1084     const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1085 
1086     // Today, this can only be a register.
1087     assert(MO.isReg() && MO.isDef());
1088 
1089     unsigned LocID = MTracker->getLocID(MO.getReg(), false);
1090     LocIdx L = MTracker->LocIDToLocIdx[LocID];
1091     NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1092   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1093     // It's actually a PHI value. Which value it is might not be obvious, use
1094     // the resolver helper to find out.
1095     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1096                            MI, InstNo);
1097   }
1098 
1099   // Apply any subregister extractions, in reverse. We might have seen code
1100   // like this:
1101   //    CALL64 @foo, implicit-def $rax
1102   //    %0:gr64 = COPY $rax
1103   //    %1:gr32 = COPY %0.sub_32bit
1104   //    %2:gr16 = COPY %1.sub_16bit
1105   //    %3:gr8  = COPY %2.sub_8bit
1106   // In which case each copy would have been recorded as a substitution with
1107   // a subregister qualifier. Apply those qualifiers now.
1108   if (NewID && !SeenSubregs.empty()) {
1109     unsigned Offset = 0;
1110     unsigned Size = 0;
1111 
1112     // Look at each subregister that we passed through, and progressively
1113     // narrow in, accumulating any offsets that occur. Substitutions should
1114     // only ever be the same or narrower width than what they read from;
1115     // iterate in reverse order so that we go from wide to small.
1116     for (unsigned Subreg : reverse(SeenSubregs)) {
1117       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1118       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1119       Offset += ThisOffset;
1120       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1121     }
1122 
1123     // If that worked, look for an appropriate subregister with the register
1124     // where the define happens. Don't look at values that were defined during
1125     // a stack write: we can't currently express register locations within
1126     // spills.
1127     LocIdx L = NewID->getLoc();
1128     if (NewID && !MTracker->isSpill(L)) {
1129       // Find the register class for the register where this def happened.
1130       // FIXME: no index for this?
1131       Register Reg = MTracker->LocIdxToLocID[L];
1132       const TargetRegisterClass *TRC = nullptr;
1133       for (auto *TRCI : TRI->regclasses())
1134         if (TRCI->contains(Reg))
1135           TRC = TRCI;
1136       assert(TRC && "Couldn't find target register class?");
1137 
1138       // If the register we have isn't the right size or in the right place,
1139       // Try to find a subregister inside it.
1140       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1141       if (Size != MainRegSize || Offset) {
1142         // Enumerate all subregisters, searching.
1143         Register NewReg = 0;
1144         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1145           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1146           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1147           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1148           if (SubregSize == Size && SubregOffset == Offset) {
1149             NewReg = *SRI;
1150             break;
1151           }
1152         }
1153 
1154         // If we didn't find anything: there's no way to express our value.
1155         if (!NewReg) {
1156           NewID = None;
1157         } else {
1158           // Re-state the value as being defined within the subregister
1159           // that we found.
1160           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1161           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1162         }
1163       }
1164     } else {
1165       // If we can't handle subregisters, unset the new value.
1166       NewID = None;
1167     }
1168   }
1169 
1170   // We, we have a value number or None. Tell the variable value tracker about
1171   // it. The rest of this LiveDebugValues implementation acts exactly the same
1172   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1173   // aren't immediately available).
1174   DbgValueProperties Properties(Expr, false);
1175   VTracker->defVar(MI, Properties, NewID);
1176 
1177   // If we're on the final pass through the function, decompose this INSTR_REF
1178   // into a plain DBG_VALUE.
1179   if (!TTracker)
1180     return true;
1181 
1182   // Pick a location for the machine value number, if such a location exists.
1183   // (This information could be stored in TransferTracker to make it faster).
1184   Optional<LocIdx> FoundLoc = None;
1185   for (auto Location : MTracker->locations()) {
1186     LocIdx CurL = Location.Idx;
1187     ValueIDNum ID = MTracker->LocIdxToIDNum[CurL];
1188     if (NewID && ID == NewID) {
1189       // If this is the first location with that value, pick it. Otherwise,
1190       // consider whether it's a "longer term" location.
1191       if (!FoundLoc) {
1192         FoundLoc = CurL;
1193         continue;
1194       }
1195 
1196       if (MTracker->isSpill(CurL))
1197         FoundLoc = CurL; // Spills are a longer term location.
1198       else if (!MTracker->isSpill(*FoundLoc) &&
1199                !MTracker->isSpill(CurL) &&
1200                !isCalleeSaved(*FoundLoc) &&
1201                isCalleeSaved(CurL))
1202         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1203     }
1204   }
1205 
1206   // Tell transfer tracker that the variable value has changed.
1207   TTracker->redefVar(MI, Properties, FoundLoc);
1208 
1209   // If there was a value with no location; but the value is defined in a
1210   // later instruction in this block, this is a block-local use-before-def.
1211   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1212       NewID->getInst() > CurInst)
1213     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1214 
1215   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1216   // This DBG_VALUE is potentially a $noreg / undefined location, if
1217   // FoundLoc is None.
1218   // (XXX -- could morph the DBG_INSTR_REF in the future).
1219   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1220   TTracker->PendingDbgValues.push_back(DbgMI);
1221   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1222   return true;
1223 }
1224 
transferDebugPHI(MachineInstr & MI)1225 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1226   if (!MI.isDebugPHI())
1227     return false;
1228 
1229   // Analyse these only when solving the machine value location problem.
1230   if (VTracker || TTracker)
1231     return true;
1232 
1233   // First operand is the value location, either a stack slot or register.
1234   // Second is the debug instruction number of the original PHI.
1235   const MachineOperand &MO = MI.getOperand(0);
1236   unsigned InstrNum = MI.getOperand(1).getImm();
1237 
1238   if (MO.isReg()) {
1239     // The value is whatever's currently in the register. Read and record it,
1240     // to be analysed later.
1241     Register Reg = MO.getReg();
1242     ValueIDNum Num = MTracker->readReg(Reg);
1243     auto PHIRec = DebugPHIRecord(
1244         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1245     DebugPHINumToValue.push_back(PHIRec);
1246 
1247     // Subsequent register operations, or variable locations, might occur for
1248     // any of the subregisters of this DBG_PHIs operand. Ensure that all
1249     // registers aliasing this register are tracked.
1250     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1251       MTracker->lookupOrTrackRegister(*RAI);
1252   } else {
1253     // The value is whatever's in this stack slot.
1254     assert(MO.isFI());
1255     unsigned FI = MO.getIndex();
1256 
1257     // If the stack slot is dead, then this was optimized away.
1258     // FIXME: stack slot colouring should account for slots that get merged.
1259     if (MFI->isDeadObjectIndex(FI))
1260       return true;
1261 
1262     // Identify this spill slot.
1263     Register Base;
1264     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1265     SpillLoc SL = {Base, Offs};
1266     Optional<ValueIDNum> Num = MTracker->readSpill(SL);
1267 
1268     if (!Num)
1269       // Nothing ever writes to this slot. Curious, but nothing we can do.
1270       return true;
1271 
1272     // Record this DBG_PHI for later analysis.
1273     auto DbgPHI = DebugPHIRecord(
1274         {InstrNum, MI.getParent(), *Num, *MTracker->getSpillMLoc(SL)});
1275     DebugPHINumToValue.push_back(DbgPHI);
1276   }
1277 
1278   return true;
1279 }
1280 
transferRegisterDef(MachineInstr & MI)1281 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1282   // Meta Instructions do not affect the debug liveness of any register they
1283   // define.
1284   if (MI.isImplicitDef()) {
1285     // Except when there's an implicit def, and the location it's defining has
1286     // no value number. The whole point of an implicit def is to announce that
1287     // the register is live, without be specific about it's value. So define
1288     // a value if there isn't one already.
1289     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1290     // Has a legitimate value -> ignore the implicit def.
1291     if (Num.getLoc() != 0)
1292       return;
1293     // Otherwise, def it here.
1294   } else if (MI.isMetaInstruction())
1295     return;
1296 
1297   MachineFunction *MF = MI.getMF();
1298   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1299   Register SP = TLI->getStackPointerRegisterToSaveRestore();
1300 
1301   // Find the regs killed by MI, and find regmasks of preserved regs.
1302   // Max out the number of statically allocated elements in `DeadRegs`, as this
1303   // prevents fallback to std::set::count() operations.
1304   SmallSet<uint32_t, 32> DeadRegs;
1305   SmallVector<const uint32_t *, 4> RegMasks;
1306   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1307   for (const MachineOperand &MO : MI.operands()) {
1308     // Determine whether the operand is a register def.
1309     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1310         Register::isPhysicalRegister(MO.getReg()) &&
1311         !(MI.isCall() && MO.getReg() == SP)) {
1312       // Remove ranges of all aliased registers.
1313       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1314         // FIXME: Can we break out of this loop early if no insertion occurs?
1315         DeadRegs.insert(*RAI);
1316     } else if (MO.isRegMask()) {
1317       RegMasks.push_back(MO.getRegMask());
1318       RegMaskPtrs.push_back(&MO);
1319     }
1320   }
1321 
1322   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1323   for (uint32_t DeadReg : DeadRegs)
1324     MTracker->defReg(DeadReg, CurBB, CurInst);
1325 
1326   for (auto *MO : RegMaskPtrs)
1327     MTracker->writeRegMask(MO, CurBB, CurInst);
1328 
1329   if (!TTracker)
1330     return;
1331 
1332   // When committing variable values to locations: tell transfer tracker that
1333   // we've clobbered things. It may be able to recover the variable from a
1334   // different location.
1335 
1336   // Inform TTracker about any direct clobbers.
1337   for (uint32_t DeadReg : DeadRegs) {
1338     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1339     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1340   }
1341 
1342   // Look for any clobbers performed by a register mask. Only test locations
1343   // that are actually being tracked.
1344   for (auto L : MTracker->locations()) {
1345     // Stack locations can't be clobbered by regmasks.
1346     if (MTracker->isSpill(L.Idx))
1347       continue;
1348 
1349     Register Reg = MTracker->LocIdxToLocID[L.Idx];
1350     for (auto *MO : RegMaskPtrs)
1351       if (MO->clobbersPhysReg(Reg))
1352         TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1353   }
1354 }
1355 
performCopy(Register SrcRegNum,Register DstRegNum)1356 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1357   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1358 
1359   MTracker->setReg(DstRegNum, SrcValue);
1360 
1361   // In all circumstances, re-def the super registers. It's definitely a new
1362   // value now. This doesn't uniquely identify the composition of subregs, for
1363   // example, two identical values in subregisters composed in different
1364   // places would not get equal value numbers.
1365   for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI)
1366     MTracker->defReg(*SRI, CurBB, CurInst);
1367 
1368   // If we're emulating VarLocBasedImpl, just define all the subregisters.
1369   // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not
1370   // through prior copies.
1371   if (EmulateOldLDV) {
1372     for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI)
1373       MTracker->defReg(DRI.getSubReg(), CurBB, CurInst);
1374     return;
1375   }
1376 
1377   // Otherwise, actually copy subregisters from one location to another.
1378   // XXX: in addition, any subregisters of DstRegNum that don't line up with
1379   // the source register should be def'd.
1380   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1381     unsigned SrcSubReg = SRI.getSubReg();
1382     unsigned SubRegIdx = SRI.getSubRegIndex();
1383     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1384     if (!DstSubReg)
1385       continue;
1386 
1387     // Do copy. There are two matching subregisters, the source value should
1388     // have been def'd when the super-reg was, the latter might not be tracked
1389     // yet.
1390     // This will force SrcSubReg to be tracked, if it isn't yet.
1391     (void)MTracker->readReg(SrcSubReg);
1392     LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg);
1393     assert(SrcL.asU64());
1394     (void)MTracker->readReg(DstSubReg);
1395     LocIdx DstL = MTracker->getRegMLoc(DstSubReg);
1396     assert(DstL.asU64());
1397     (void)DstL;
1398     ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL};
1399 
1400     MTracker->setReg(DstSubReg, CpyValue);
1401   }
1402 }
1403 
isSpillInstruction(const MachineInstr & MI,MachineFunction * MF)1404 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1405                                           MachineFunction *MF) {
1406   // TODO: Handle multiple stores folded into one.
1407   if (!MI.hasOneMemOperand())
1408     return false;
1409 
1410   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1411     return false; // This is not a spill instruction, since no valid size was
1412                   // returned from either function.
1413 
1414   return true;
1415 }
1416 
isLocationSpill(const MachineInstr & MI,MachineFunction * MF,unsigned & Reg)1417 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1418                                        MachineFunction *MF, unsigned &Reg) {
1419   if (!isSpillInstruction(MI, MF))
1420     return false;
1421 
1422   int FI;
1423   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1424   return Reg != 0;
1425 }
1426 
1427 Optional<SpillLoc>
isRestoreInstruction(const MachineInstr & MI,MachineFunction * MF,unsigned & Reg)1428 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1429                                        MachineFunction *MF, unsigned &Reg) {
1430   if (!MI.hasOneMemOperand())
1431     return None;
1432 
1433   // FIXME: Handle folded restore instructions with more than one memory
1434   // operand.
1435   if (MI.getRestoreSize(TII)) {
1436     Reg = MI.getOperand(0).getReg();
1437     return extractSpillBaseRegAndOffset(MI);
1438   }
1439   return None;
1440 }
1441 
transferSpillOrRestoreInst(MachineInstr & MI)1442 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1443   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
1444   // limitations under the new model. Therefore, when comparing them, compare
1445   // versions that don't attempt spills or restores at all.
1446   if (EmulateOldLDV)
1447     return false;
1448 
1449   MachineFunction *MF = MI.getMF();
1450   unsigned Reg;
1451   Optional<SpillLoc> Loc;
1452 
1453   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1454 
1455   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1456   // written to, terminate that variable location. The value in memory
1457   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
1458   if (isSpillInstruction(MI, MF)) {
1459     Loc = extractSpillBaseRegAndOffset(MI);
1460 
1461     if (TTracker) {
1462       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc);
1463       if (MLoc) {
1464         // Un-set this location before clobbering, so that we don't salvage
1465         // the variable location back to the same place.
1466         MTracker->setMLoc(*MLoc, ValueIDNum::EmptyValue);
1467         TTracker->clobberMloc(*MLoc, MI.getIterator());
1468       }
1469     }
1470   }
1471 
1472   // Try to recognise spill and restore instructions that may transfer a value.
1473   if (isLocationSpill(MI, MF, Reg)) {
1474     Loc = extractSpillBaseRegAndOffset(MI);
1475     auto ValueID = MTracker->readReg(Reg);
1476 
1477     // If the location is empty, produce a phi, signify it's the live-in value.
1478     if (ValueID.getLoc() == 0)
1479       ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)};
1480 
1481     MTracker->setSpill(*Loc, ValueID);
1482     auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc);
1483     assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?");
1484     LocIdx SpillLocIdx = *OptSpillLocIdx;
1485 
1486     // Tell TransferTracker about this spill, produce DBG_VALUEs for it.
1487     if (TTracker)
1488       TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx,
1489                               MI.getIterator());
1490   } else {
1491     if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
1492       return false;
1493 
1494     // Is there a value to be restored?
1495     auto OptValueID = MTracker->readSpill(*Loc);
1496     if (OptValueID) {
1497       ValueIDNum ValueID = *OptValueID;
1498       LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc);
1499       // XXX -- can we recover sub-registers of this value? Until we can, first
1500       // overwrite all defs of the register being restored to.
1501       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1502         MTracker->defReg(*RAI, CurBB, CurInst);
1503 
1504       // Now override the reg we're restoring to.
1505       MTracker->setReg(Reg, ValueID);
1506 
1507       // Report this restore to the transfer tracker too.
1508       if (TTracker)
1509         TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg),
1510                                 MI.getIterator());
1511     } else {
1512       // There isn't anything in the location; not clear if this is a code path
1513       // that still runs. Def this register anyway just in case.
1514       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1515         MTracker->defReg(*RAI, CurBB, CurInst);
1516 
1517       // Force the spill slot to be tracked.
1518       LocIdx L = MTracker->getOrTrackSpillLoc(*Loc);
1519 
1520       // Set the restored value to be a machine phi number, signifying that it's
1521       // whatever the spills live-in value is in this block. Definitely has
1522       // a LocIdx due to the setSpill above.
1523       ValueIDNum ValueID = {CurBB, 0, L};
1524       MTracker->setReg(Reg, ValueID);
1525       MTracker->setSpill(*Loc, ValueID);
1526     }
1527   }
1528   return true;
1529 }
1530 
transferRegisterCopy(MachineInstr & MI)1531 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
1532   auto DestSrc = TII->isCopyInstr(MI);
1533   if (!DestSrc)
1534     return false;
1535 
1536   const MachineOperand *DestRegOp = DestSrc->Destination;
1537   const MachineOperand *SrcRegOp = DestSrc->Source;
1538 
1539   auto isCalleeSavedReg = [&](unsigned Reg) {
1540     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1541       if (CalleeSavedRegs.test(*RAI))
1542         return true;
1543     return false;
1544   };
1545 
1546   Register SrcReg = SrcRegOp->getReg();
1547   Register DestReg = DestRegOp->getReg();
1548 
1549   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
1550   if (SrcReg == DestReg)
1551     return true;
1552 
1553   // For emulating VarLocBasedImpl:
1554   // We want to recognize instructions where destination register is callee
1555   // saved register. If register that could be clobbered by the call is
1556   // included, there would be a great chance that it is going to be clobbered
1557   // soon. It is more likely that previous register, which is callee saved, is
1558   // going to stay unclobbered longer, even if it is killed.
1559   //
1560   // For InstrRefBasedImpl, we can track multiple locations per value, so
1561   // ignore this condition.
1562   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
1563     return false;
1564 
1565   // InstrRefBasedImpl only followed killing copies.
1566   if (EmulateOldLDV && !SrcRegOp->isKill())
1567     return false;
1568 
1569   // Copy MTracker info, including subregs if available.
1570   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
1571 
1572   // Only produce a transfer of DBG_VALUE within a block where old LDV
1573   // would have. We might make use of the additional value tracking in some
1574   // other way, later.
1575   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
1576     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
1577                             MTracker->getRegMLoc(DestReg), MI.getIterator());
1578 
1579   // VarLocBasedImpl would quit tracking the old location after copying.
1580   if (EmulateOldLDV && SrcReg != DestReg)
1581     MTracker->defReg(SrcReg, CurBB, CurInst);
1582 
1583   // Finally, the copy might have clobbered variables based on the destination
1584   // register. Tell TTracker about it, in case a backup location exists.
1585   if (TTracker) {
1586     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
1587       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
1588       TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
1589     }
1590   }
1591 
1592   return true;
1593 }
1594 
1595 /// Accumulate a mapping between each DILocalVariable fragment and other
1596 /// fragments of that DILocalVariable which overlap. This reduces work during
1597 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1598 /// known-to-overlap fragments are present".
1599 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1600 ///           fragment usage.
accumulateFragmentMap(MachineInstr & MI)1601 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
1602   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1603                       MI.getDebugLoc()->getInlinedAt());
1604   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1605 
1606   // If this is the first sighting of this variable, then we are guaranteed
1607   // there are currently no overlapping fragments either. Initialize the set
1608   // of seen fragments, record no overlaps for the current one, and return.
1609   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1610   if (SeenIt == SeenFragments.end()) {
1611     SmallSet<FragmentInfo, 4> OneFragment;
1612     OneFragment.insert(ThisFragment);
1613     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1614 
1615     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1616     return;
1617   }
1618 
1619   // If this particular Variable/Fragment pair already exists in the overlap
1620   // map, it has already been accounted for.
1621   auto IsInOLapMap =
1622       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1623   if (!IsInOLapMap.second)
1624     return;
1625 
1626   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1627   auto &AllSeenFragments = SeenIt->second;
1628 
1629   // Otherwise, examine all other seen fragments for this variable, with "this"
1630   // fragment being a previously unseen fragment. Record any pair of
1631   // overlapping fragments.
1632   for (auto &ASeenFragment : AllSeenFragments) {
1633     // Does this previously seen fragment overlap?
1634     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1635       // Yes: Mark the current fragment as being overlapped.
1636       ThisFragmentsOverlaps.push_back(ASeenFragment);
1637       // Mark the previously seen fragment as being overlapped by the current
1638       // one.
1639       auto ASeenFragmentsOverlaps =
1640           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
1641       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
1642              "Previously seen var fragment has no vector of overlaps");
1643       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1644     }
1645   }
1646 
1647   AllSeenFragments.insert(ThisFragment);
1648 }
1649 
process(MachineInstr & MI,ValueIDNum ** MLiveOuts,ValueIDNum ** MLiveIns)1650 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
1651                                ValueIDNum **MLiveIns) {
1652   // Try to interpret an MI as a debug or transfer instruction. Only if it's
1653   // none of these should we interpret it's register defs as new value
1654   // definitions.
1655   if (transferDebugValue(MI))
1656     return;
1657   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
1658     return;
1659   if (transferDebugPHI(MI))
1660     return;
1661   if (transferRegisterCopy(MI))
1662     return;
1663   if (transferSpillOrRestoreInst(MI))
1664     return;
1665   transferRegisterDef(MI);
1666 }
1667 
produceMLocTransferFunction(MachineFunction & MF,SmallVectorImpl<MLocTransferMap> & MLocTransfer,unsigned MaxNumBlocks)1668 void InstrRefBasedLDV::produceMLocTransferFunction(
1669     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1670     unsigned MaxNumBlocks) {
1671   // Because we try to optimize around register mask operands by ignoring regs
1672   // that aren't currently tracked, we set up something ugly for later: RegMask
1673   // operands that are seen earlier than the first use of a register, still need
1674   // to clobber that register in the transfer function. But this information
1675   // isn't actively recorded. Instead, we track each RegMask used in each block,
1676   // and accumulated the clobbered but untracked registers in each block into
1677   // the following bitvector. Later, if new values are tracked, we can add
1678   // appropriate clobbers.
1679   SmallVector<BitVector, 32> BlockMasks;
1680   BlockMasks.resize(MaxNumBlocks);
1681 
1682   // Reserve one bit per register for the masks described above.
1683   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
1684   for (auto &BV : BlockMasks)
1685     BV.resize(TRI->getNumRegs(), true);
1686 
1687   // Step through all instructions and inhale the transfer function.
1688   for (auto &MBB : MF) {
1689     // Object fields that are read by trackers to know where we are in the
1690     // function.
1691     CurBB = MBB.getNumber();
1692     CurInst = 1;
1693 
1694     // Set all machine locations to a PHI value. For transfer function
1695     // production only, this signifies the live-in value to the block.
1696     MTracker->reset();
1697     MTracker->setMPhis(CurBB);
1698 
1699     // Step through each instruction in this block.
1700     for (auto &MI : MBB) {
1701       process(MI);
1702       // Also accumulate fragment map.
1703       if (MI.isDebugValue())
1704         accumulateFragmentMap(MI);
1705 
1706       // Create a map from the instruction number (if present) to the
1707       // MachineInstr and its position.
1708       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
1709         auto InstrAndPos = std::make_pair(&MI, CurInst);
1710         auto InsertResult =
1711             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
1712 
1713         // There should never be duplicate instruction numbers.
1714         assert(InsertResult.second);
1715         (void)InsertResult;
1716       }
1717 
1718       ++CurInst;
1719     }
1720 
1721     // Produce the transfer function, a map of machine location to new value. If
1722     // any machine location has the live-in phi value from the start of the
1723     // block, it's live-through and doesn't need recording in the transfer
1724     // function.
1725     for (auto Location : MTracker->locations()) {
1726       LocIdx Idx = Location.Idx;
1727       ValueIDNum &P = Location.Value;
1728       if (P.isPHI() && P.getLoc() == Idx.asU64())
1729         continue;
1730 
1731       // Insert-or-update.
1732       auto &TransferMap = MLocTransfer[CurBB];
1733       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
1734       if (!Result.second)
1735         Result.first->second = P;
1736     }
1737 
1738     // Accumulate any bitmask operands into the clobberred reg mask for this
1739     // block.
1740     for (auto &P : MTracker->Masks) {
1741       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
1742     }
1743   }
1744 
1745   // Compute a bitvector of all the registers that are tracked in this block.
1746   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
1747   Register SP = TLI->getStackPointerRegisterToSaveRestore();
1748   BitVector UsedRegs(TRI->getNumRegs());
1749   for (auto Location : MTracker->locations()) {
1750     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
1751     if (ID >= TRI->getNumRegs() || ID == SP)
1752       continue;
1753     UsedRegs.set(ID);
1754   }
1755 
1756   // Check that any regmask-clobber of a register that gets tracked, is not
1757   // live-through in the transfer function. It needs to be clobbered at the
1758   // very least.
1759   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
1760     BitVector &BV = BlockMasks[I];
1761     BV.flip();
1762     BV &= UsedRegs;
1763     // This produces all the bits that we clobber, but also use. Check that
1764     // they're all clobbered or at least set in the designated transfer
1765     // elem.
1766     for (unsigned Bit : BV.set_bits()) {
1767       unsigned ID = MTracker->getLocID(Bit, false);
1768       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
1769       auto &TransferMap = MLocTransfer[I];
1770 
1771       // Install a value representing the fact that this location is effectively
1772       // written to in this block. As there's no reserved value, instead use
1773       // a value number that is never generated. Pick the value number for the
1774       // first instruction in the block, def'ing this location, which we know
1775       // this block never used anyway.
1776       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
1777       auto Result =
1778         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
1779       if (!Result.second) {
1780         ValueIDNum &ValueID = Result.first->second;
1781         if (ValueID.getBlock() == I && ValueID.isPHI())
1782           // It was left as live-through. Set it to clobbered.
1783           ValueID = NotGeneratedNum;
1784       }
1785     }
1786   }
1787 }
1788 
1789 std::tuple<bool, bool>
mlocJoin(MachineBasicBlock & MBB,SmallPtrSet<const MachineBasicBlock *,16> & Visited,ValueIDNum ** OutLocs,ValueIDNum * InLocs)1790 InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB,
1791                            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1792                            ValueIDNum **OutLocs, ValueIDNum *InLocs) {
1793   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1794   bool Changed = false;
1795   bool DowngradeOccurred = false;
1796 
1797   // Collect predecessors that have been visited. Anything that hasn't been
1798   // visited yet is a backedge on the first iteration, and the meet of it's
1799   // lattice value for all locations will be unaffected.
1800   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
1801   for (auto Pred : MBB.predecessors()) {
1802     if (Visited.count(Pred)) {
1803       BlockOrders.push_back(Pred);
1804     }
1805   }
1806 
1807   // Visit predecessors in RPOT order.
1808   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
1809     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
1810   };
1811   llvm::sort(BlockOrders, Cmp);
1812 
1813   // Skip entry block.
1814   if (BlockOrders.size() == 0)
1815     return std::tuple<bool, bool>(false, false);
1816 
1817   // Step through all machine locations, then look at each predecessor and
1818   // detect disagreements.
1819   unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second;
1820   for (auto Location : MTracker->locations()) {
1821     LocIdx Idx = Location.Idx;
1822     // Pick out the first predecessors live-out value for this location. It's
1823     // guaranteed to be not a backedge, as we order by RPO.
1824     ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
1825 
1826     // Some flags for whether there's a disagreement, and whether it's a
1827     // disagreement with a backedge or not.
1828     bool Disagree = false;
1829     bool NonBackEdgeDisagree = false;
1830 
1831     // Loop around everything that wasn't 'base'.
1832     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
1833       auto *MBB = BlockOrders[I];
1834       if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) {
1835         // Live-out of a predecessor disagrees with the first predecessor.
1836         Disagree = true;
1837 
1838         // Test whether it's a disagreemnt in the backedges or not.
1839         if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e
1840           NonBackEdgeDisagree = true;
1841       }
1842     }
1843 
1844     bool OverRide = false;
1845     if (Disagree && !NonBackEdgeDisagree) {
1846       // Only the backedges disagree. Consider demoting the livein
1847       // lattice value, as per the file level comment. The value we consider
1848       // demoting to is the value that the non-backedge predecessors agree on.
1849       // The order of values is that non-PHIs are \top, a PHI at this block
1850       // \bot, and phis between the two are ordered by their RPO number.
1851       // If there's no agreement, or we've already demoted to this PHI value
1852       // before, replace with a PHI value at this block.
1853 
1854       // Calculate order numbers: zero means normal def, nonzero means RPO
1855       // number.
1856       unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1;
1857       if (!BaseVal.isPHI())
1858         BaseBlockRPONum = 0;
1859 
1860       ValueIDNum &InLocID = InLocs[Idx.asU64()];
1861       unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1;
1862       if (!InLocID.isPHI())
1863         InLocRPONum = 0;
1864 
1865       // Should we ignore the disagreeing backedges, and override with the
1866       // value the other predecessors agree on (in "base")?
1867       unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1;
1868       if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) {
1869         // Override.
1870         OverRide = true;
1871         DowngradeOccurred = true;
1872       }
1873     }
1874     // else: if we disagree in the non-backedges, then this is definitely
1875     // a control flow merge where different values merge. Make it a PHI.
1876 
1877     // Generate a phi...
1878     ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx};
1879     ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal;
1880     if (InLocs[Idx.asU64()] != NewVal) {
1881       Changed |= true;
1882       InLocs[Idx.asU64()] = NewVal;
1883     }
1884   }
1885 
1886   // TODO: Reimplement NumInserted and NumRemoved.
1887   return std::tuple<bool, bool>(Changed, DowngradeOccurred);
1888 }
1889 
mlocDataflow(ValueIDNum ** MInLocs,ValueIDNum ** MOutLocs,SmallVectorImpl<MLocTransferMap> & MLocTransfer)1890 void InstrRefBasedLDV::mlocDataflow(
1891     ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
1892     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
1893   std::priority_queue<unsigned int, std::vector<unsigned int>,
1894                       std::greater<unsigned int>>
1895       Worklist, Pending;
1896 
1897   // We track what is on the current and pending worklist to avoid inserting
1898   // the same thing twice. We could avoid this with a custom priority queue,
1899   // but this is probably not worth it.
1900   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
1901 
1902   // Initialize worklist with every block to be visited.
1903   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
1904     Worklist.push(I);
1905     OnWorklist.insert(OrderToBB[I]);
1906   }
1907 
1908   MTracker->reset();
1909 
1910   // Set inlocs for entry block -- each as a PHI at the entry block. Represents
1911   // the incoming value to the function.
1912   MTracker->setMPhis(0);
1913   for (auto Location : MTracker->locations())
1914     MInLocs[0][Location.Idx.asU64()] = Location.Value;
1915 
1916   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
1917   while (!Worklist.empty() || !Pending.empty()) {
1918     // Vector for storing the evaluated block transfer function.
1919     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
1920 
1921     while (!Worklist.empty()) {
1922       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
1923       CurBB = MBB->getNumber();
1924       Worklist.pop();
1925 
1926       // Join the values in all predecessor blocks.
1927       bool InLocsChanged, DowngradeOccurred;
1928       std::tie(InLocsChanged, DowngradeOccurred) =
1929           mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
1930       InLocsChanged |= Visited.insert(MBB).second;
1931 
1932       // If a downgrade occurred, book us in for re-examination on the next
1933       // iteration.
1934       if (DowngradeOccurred && OnPending.insert(MBB).second)
1935         Pending.push(BBToOrder[MBB]);
1936 
1937       // Don't examine transfer function if we've visited this loc at least
1938       // once, and inlocs haven't changed.
1939       if (!InLocsChanged)
1940         continue;
1941 
1942       // Load the current set of live-ins into MLocTracker.
1943       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
1944 
1945       // Each element of the transfer function can be a new def, or a read of
1946       // a live-in value. Evaluate each element, and store to "ToRemap".
1947       ToRemap.clear();
1948       for (auto &P : MLocTransfer[CurBB]) {
1949         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
1950           // This is a movement of whatever was live in. Read it.
1951           ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc());
1952           ToRemap.push_back(std::make_pair(P.first, NewID));
1953         } else {
1954           // It's a def. Just set it.
1955           assert(P.second.getBlock() == CurBB);
1956           ToRemap.push_back(std::make_pair(P.first, P.second));
1957         }
1958       }
1959 
1960       // Commit the transfer function changes into mloc tracker, which
1961       // transforms the contents of the MLocTracker into the live-outs.
1962       for (auto &P : ToRemap)
1963         MTracker->setMLoc(P.first, P.second);
1964 
1965       // Now copy out-locs from mloc tracker into out-loc vector, checking
1966       // whether changes have occurred. These changes can have come from both
1967       // the transfer function, and mlocJoin.
1968       bool OLChanged = false;
1969       for (auto Location : MTracker->locations()) {
1970         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
1971         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
1972       }
1973 
1974       MTracker->reset();
1975 
1976       // No need to examine successors again if out-locs didn't change.
1977       if (!OLChanged)
1978         continue;
1979 
1980       // All successors should be visited: put any back-edges on the pending
1981       // list for the next dataflow iteration, and any other successors to be
1982       // visited this iteration, if they're not going to be already.
1983       for (auto s : MBB->successors()) {
1984         // Does branching to this successor represent a back-edge?
1985         if (BBToOrder[s] > BBToOrder[MBB]) {
1986           // No: visit it during this dataflow iteration.
1987           if (OnWorklist.insert(s).second)
1988             Worklist.push(BBToOrder[s]);
1989         } else {
1990           // Yes: visit it on the next iteration.
1991           if (OnPending.insert(s).second)
1992             Pending.push(BBToOrder[s]);
1993         }
1994       }
1995     }
1996 
1997     Worklist.swap(Pending);
1998     std::swap(OnPending, OnWorklist);
1999     OnPending.clear();
2000     // At this point, pending must be empty, since it was just the empty
2001     // worklist
2002     assert(Pending.empty() && "Pending should be empty");
2003   }
2004 
2005   // Once all the live-ins don't change on mlocJoin(), we've reached a
2006   // fixedpoint.
2007 }
2008 
vlocDowngradeLattice(const MachineBasicBlock & MBB,const DbgValue & OldLiveInLocation,const SmallVectorImpl<InValueT> & Values,unsigned CurBlockRPONum)2009 bool InstrRefBasedLDV::vlocDowngradeLattice(
2010     const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation,
2011     const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) {
2012   // Ranking value preference: see file level comment, the highest rank is
2013   // a plain def, followed by PHI values in reverse post-order. Numerically,
2014   // we assign all defs the rank '0', all PHIs their blocks RPO number plus
2015   // one, and consider the lowest value the highest ranked.
2016   int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1;
2017   if (!OldLiveInLocation.ID.isPHI())
2018     OldLiveInRank = 0;
2019 
2020   // Allow any unresolvable conflict to be over-ridden.
2021   if (OldLiveInLocation.Kind == DbgValue::NoVal) {
2022     // Although if it was an unresolvable conflict from _this_ block, then
2023     // all other seeking of downgrades and PHIs must have failed before hand.
2024     if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber())
2025       return false;
2026     OldLiveInRank = INT_MIN;
2027   }
2028 
2029   auto &InValue = *Values[0].second;
2030 
2031   if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal)
2032     return false;
2033 
2034   unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()];
2035   int ThisRank = ThisRPO + 1;
2036   if (!InValue.ID.isPHI())
2037     ThisRank = 0;
2038 
2039   // Too far down the lattice?
2040   if (ThisRPO >= CurBlockRPONum)
2041     return false;
2042 
2043   // Higher in the lattice than what we've already explored?
2044   if (ThisRank <= OldLiveInRank)
2045     return false;
2046 
2047   return true;
2048 }
2049 
pickVPHILoc(MachineBasicBlock & MBB,const DebugVariable & Var,const LiveIdxT & LiveOuts,ValueIDNum ** MOutLocs,ValueIDNum ** MInLocs,const SmallVectorImpl<MachineBasicBlock * > & BlockOrders)2050 std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc(
2051     MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts,
2052     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2053     const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) {
2054   // Collect a set of locations from predecessor where its live-out value can
2055   // be found.
2056   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2057   unsigned NumLocs = MTracker->getNumLocs();
2058   unsigned BackEdgesStart = 0;
2059 
2060   for (auto p : BlockOrders) {
2061     // Pick out where backedges start in the list of predecessors. Relies on
2062     // BlockOrders being sorted by RPO.
2063     if (BBToOrder[p] < BBToOrder[&MBB])
2064       ++BackEdgesStart;
2065 
2066     // For each predecessor, create a new set of locations.
2067     Locs.resize(Locs.size() + 1);
2068     unsigned ThisBBNum = p->getNumber();
2069     auto LiveOutMap = LiveOuts.find(p);
2070     if (LiveOutMap == LiveOuts.end())
2071       // This predecessor isn't in scope, it must have no live-in/live-out
2072       // locations.
2073       continue;
2074 
2075     auto It = LiveOutMap->second->find(Var);
2076     if (It == LiveOutMap->second->end())
2077       // There's no value recorded for this variable in this predecessor,
2078       // leave an empty set of locations.
2079       continue;
2080 
2081     const DbgValue &OutVal = It->second;
2082 
2083     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2084       // Consts and no-values cannot have locations we can join on.
2085       continue;
2086 
2087     assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def);
2088     ValueIDNum ValToLookFor = OutVal.ID;
2089 
2090     // Search the live-outs of the predecessor for the specified value.
2091     for (unsigned int I = 0; I < NumLocs; ++I) {
2092       if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2093         Locs.back().push_back(LocIdx(I));
2094     }
2095   }
2096 
2097   // If there were no locations at all, return an empty result.
2098   if (Locs.empty())
2099     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2100 
2101   // Lambda for seeking a common location within a range of location-sets.
2102   using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator;
2103   auto SeekLocation =
2104       [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> {
2105     // Starting with the first set of locations, take the intersection with
2106     // subsequent sets.
2107     SmallVector<LocIdx, 4> base = Locs[0];
2108     for (auto &S : SearchRange) {
2109       SmallVector<LocIdx, 4> new_base;
2110       std::set_intersection(base.begin(), base.end(), S.begin(), S.end(),
2111                             std::inserter(new_base, new_base.begin()));
2112       base = new_base;
2113     }
2114     if (base.empty())
2115       return None;
2116 
2117     // We now have a set of LocIdxes that contain the right output value in
2118     // each of the predecessors. Pick the lowest; if there's a register loc,
2119     // that'll be it.
2120     return *base.begin();
2121   };
2122 
2123   // Search for a common location for all predecessors. If we can't, then fall
2124   // back to only finding a common location between non-backedge predecessors.
2125   bool ValidForAllLocs = true;
2126   auto TheLoc = SeekLocation(Locs);
2127   if (!TheLoc) {
2128     ValidForAllLocs = false;
2129     TheLoc =
2130         SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart));
2131   }
2132 
2133   if (!TheLoc)
2134     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2135 
2136   // Return a PHI-value-number for the found location.
2137   LocIdx L = *TheLoc;
2138   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2139   return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs);
2140 }
2141 
vlocJoin(MachineBasicBlock & MBB,LiveIdxT & VLOCOutLocs,LiveIdxT & VLOCInLocs,SmallPtrSet<const MachineBasicBlock *,16> * VLOCVisited,unsigned BBNum,const SmallSet<DebugVariable,4> & AllVars,ValueIDNum ** MOutLocs,ValueIDNum ** MInLocs,SmallPtrSet<const MachineBasicBlock *,8> & InScopeBlocks,SmallPtrSet<const MachineBasicBlock *,8> & BlocksToExplore,DenseMap<DebugVariable,DbgValue> & InLocsT)2142 std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin(
2143     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
2144     SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum,
2145     const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs,
2146     ValueIDNum **MInLocs,
2147     SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
2148     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2149     DenseMap<DebugVariable, DbgValue> &InLocsT) {
2150   bool DowngradeOccurred = false;
2151 
2152   // To emulate VarLocBasedImpl, process this block if it's not in scope but
2153   // _does_ assign a variable value. No live-ins for this scope are transferred
2154   // in though, so we can return immediately.
2155   if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) {
2156     if (VLOCVisited)
2157       return std::tuple<bool, bool>(true, false);
2158     return std::tuple<bool, bool>(false, false);
2159   }
2160 
2161   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2162   bool Changed = false;
2163 
2164   // Find any live-ins computed in a prior iteration.
2165   auto ILSIt = VLOCInLocs.find(&MBB);
2166   assert(ILSIt != VLOCInLocs.end());
2167   auto &ILS = *ILSIt->second;
2168 
2169   // Order predecessors by RPOT order, for exploring them in that order.
2170   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2171 
2172   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2173     return BBToOrder[A] < BBToOrder[B];
2174   };
2175 
2176   llvm::sort(BlockOrders, Cmp);
2177 
2178   unsigned CurBlockRPONum = BBToOrder[&MBB];
2179 
2180   // Force a re-visit to loop heads in the first dataflow iteration.
2181   // FIXME: if we could "propose" Const values this wouldn't be needed,
2182   // because they'd need to be confirmed before being emitted.
2183   if (!BlockOrders.empty() &&
2184       BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum &&
2185       VLOCVisited)
2186     DowngradeOccurred = true;
2187 
2188   auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) {
2189     auto Result = InLocsT.insert(std::make_pair(DV, VR));
2190     (void)Result;
2191     assert(Result.second);
2192   };
2193 
2194   auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) {
2195     DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal);
2196 
2197     ConfirmValue(Var, NoLocPHIVal);
2198   };
2199 
2200   // Attempt to join the values for each variable.
2201   for (auto &Var : AllVars) {
2202     // Collect all the DbgValues for this variable.
2203     SmallVector<InValueT, 8> Values;
2204     bool Bail = false;
2205     unsigned BackEdgesStart = 0;
2206     for (auto p : BlockOrders) {
2207       // If the predecessor isn't in scope / to be explored, we'll never be
2208       // able to join any locations.
2209       if (!BlocksToExplore.contains(p)) {
2210         Bail = true;
2211         break;
2212       }
2213 
2214       // Don't attempt to handle unvisited predecessors: they're implicitly
2215       // "unknown"s in the lattice.
2216       if (VLOCVisited && !VLOCVisited->count(p))
2217         continue;
2218 
2219       // If the predecessors OutLocs is absent, there's not much we can do.
2220       auto OL = VLOCOutLocs.find(p);
2221       if (OL == VLOCOutLocs.end()) {
2222         Bail = true;
2223         break;
2224       }
2225 
2226       // No live-out value for this predecessor also means we can't produce
2227       // a joined value.
2228       auto VIt = OL->second->find(Var);
2229       if (VIt == OL->second->end()) {
2230         Bail = true;
2231         break;
2232       }
2233 
2234       // Keep track of where back-edges begin in the Values vector. Relies on
2235       // BlockOrders being sorted by RPO.
2236       unsigned ThisBBRPONum = BBToOrder[p];
2237       if (ThisBBRPONum < CurBlockRPONum)
2238         ++BackEdgesStart;
2239 
2240       Values.push_back(std::make_pair(p, &VIt->second));
2241     }
2242 
2243     // If there were no values, or one of the predecessors couldn't have a
2244     // value, then give up immediately. It's not safe to produce a live-in
2245     // value.
2246     if (Bail || Values.size() == 0)
2247       continue;
2248 
2249     // Enumeration identifying the current state of the predecessors values.
2250     enum {
2251       Unset = 0,
2252       Agreed,       // All preds agree on the variable value.
2253       PropDisagree, // All preds agree, but the value kind is Proposed in some.
2254       BEDisagree,   // Only back-edges disagree on variable value.
2255       PHINeeded,    // Non-back-edge predecessors have conflicing values.
2256       NoSolution    // Conflicting Value metadata makes solution impossible.
2257     } OurState = Unset;
2258 
2259     // All (non-entry) blocks have at least one non-backedge predecessor.
2260     // Pick the variable value from the first of these, to compare against
2261     // all others.
2262     const DbgValue &FirstVal = *Values[0].second;
2263     const ValueIDNum &FirstID = FirstVal.ID;
2264 
2265     // Scan for variable values that can't be resolved: if they have different
2266     // DIExpressions, different indirectness, or are mixed constants /
2267     // non-constants.
2268     for (auto &V : Values) {
2269       if (V.second->Properties != FirstVal.Properties)
2270         OurState = NoSolution;
2271       if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2272         OurState = NoSolution;
2273     }
2274 
2275     // Flags diagnosing _how_ the values disagree.
2276     bool NonBackEdgeDisagree = false;
2277     bool DisagreeOnPHINess = false;
2278     bool IDDisagree = false;
2279     bool Disagree = false;
2280     if (OurState == Unset) {
2281       for (auto &V : Values) {
2282         if (*V.second == FirstVal)
2283           continue; // No disagreement.
2284 
2285         Disagree = true;
2286 
2287         // Flag whether the value number actually diagrees.
2288         if (V.second->ID != FirstID)
2289           IDDisagree = true;
2290 
2291         // Distinguish whether disagreement happens in backedges or not.
2292         // Relies on Values (and BlockOrders) being sorted by RPO.
2293         unsigned ThisBBRPONum = BBToOrder[V.first];
2294         if (ThisBBRPONum < CurBlockRPONum)
2295           NonBackEdgeDisagree = true;
2296 
2297         // Is there a difference in whether the value is definite or only
2298         // proposed?
2299         if (V.second->Kind != FirstVal.Kind &&
2300             (V.second->Kind == DbgValue::Proposed ||
2301              V.second->Kind == DbgValue::Def) &&
2302             (FirstVal.Kind == DbgValue::Proposed ||
2303              FirstVal.Kind == DbgValue::Def))
2304           DisagreeOnPHINess = true;
2305       }
2306 
2307       // Collect those flags together and determine an overall state for
2308       // what extend the predecessors agree on a live-in value.
2309       if (!Disagree)
2310         OurState = Agreed;
2311       else if (!IDDisagree && DisagreeOnPHINess)
2312         OurState = PropDisagree;
2313       else if (!NonBackEdgeDisagree)
2314         OurState = BEDisagree;
2315       else
2316         OurState = PHINeeded;
2317     }
2318 
2319     // An extra indicator: if we only disagree on whether the value is a
2320     // Def, or proposed, then also flag whether that disagreement happens
2321     // in backedges only.
2322     bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess &&
2323                          !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def;
2324 
2325     const auto &Properties = FirstVal.Properties;
2326 
2327     auto OldLiveInIt = ILS.find(Var);
2328     const DbgValue *OldLiveInLocation =
2329         (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr;
2330 
2331     bool OverRide = false;
2332     if (OurState == BEDisagree && OldLiveInLocation) {
2333       // Only backedges disagree: we can consider downgrading. If there was a
2334       // previous live-in value, use it to work out whether the current
2335       // incoming value represents a lattice downgrade or not.
2336       OverRide =
2337           vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum);
2338     }
2339 
2340     // Use the current state of predecessor agreement and other flags to work
2341     // out what to do next. Possibilities include:
2342     //  * Accept a value all predecessors agree on, or accept one that
2343     //    represents a step down the exploration lattice,
2344     //  * Use a PHI value number, if one can be found,
2345     //  * Propose a PHI value number, and see if it gets confirmed later,
2346     //  * Emit a 'NoVal' value, indicating we couldn't resolve anything.
2347     if (OurState == Agreed) {
2348       // Easiest solution: all predecessors agree on the variable value.
2349       ConfirmValue(Var, FirstVal);
2350     } else if (OurState == BEDisagree && OverRide) {
2351       // Only backedges disagree, and the other predecessors have produced
2352       // a new live-in value further down the exploration lattice.
2353       DowngradeOccurred = true;
2354       ConfirmValue(Var, FirstVal);
2355     } else if (OurState == PropDisagree) {
2356       // Predecessors agree on value, but some say it's only a proposed value.
2357       // Propagate it as proposed: unless it was proposed in this block, in
2358       // which case we're able to confirm the value.
2359       if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) {
2360         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
2361       } else if (PropOnlyInBEs) {
2362         // If only backedges disagree, a higher (in RPO) block confirmed this
2363         // location, and we need to propagate it into this loop.
2364         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
2365       } else {
2366         // Otherwise; a Def meeting a Proposed is still a Proposed.
2367         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed));
2368       }
2369     } else if ((OurState == PHINeeded || OurState == BEDisagree)) {
2370       // Predecessors disagree and can't be downgraded: this can only be
2371       // solved with a PHI. Use pickVPHILoc to go look for one.
2372       Optional<ValueIDNum> VPHI;
2373       bool AllEdgesVPHI = false;
2374       std::tie(VPHI, AllEdgesVPHI) =
2375           pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders);
2376 
2377       if (VPHI && AllEdgesVPHI) {
2378         // There's a PHI value that's valid for all predecessors -- we can use
2379         // it. If any of the non-backedge predecessors have proposed values
2380         // though, this PHI is also only proposed, until the predecessors are
2381         // confirmed.
2382         DbgValue::KindT K = DbgValue::Def;
2383         for (unsigned int I = 0; I < BackEdgesStart; ++I)
2384           if (Values[I].second->Kind == DbgValue::Proposed)
2385             K = DbgValue::Proposed;
2386 
2387         ConfirmValue(Var, DbgValue(*VPHI, Properties, K));
2388       } else if (VPHI) {
2389         // There's a PHI value, but it's only legal for backedges. Leave this
2390         // as a proposed PHI value: it might come back on the backedges,
2391         // and allow us to confirm it in the future.
2392         DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed);
2393         ConfirmValue(Var, NoBEValue);
2394       } else {
2395         ConfirmNoVal(Var, Properties);
2396       }
2397     } else {
2398       // Otherwise: we don't know. Emit a "phi but no real loc" phi.
2399       ConfirmNoVal(Var, Properties);
2400     }
2401   }
2402 
2403   // Store newly calculated in-locs into VLOCInLocs, if they've changed.
2404   Changed = ILS != InLocsT;
2405   if (Changed)
2406     ILS = InLocsT;
2407 
2408   return std::tuple<bool, bool>(Changed, DowngradeOccurred);
2409 }
2410 
vlocDataflow(const LexicalScope * Scope,const DILocation * DILoc,const SmallSet<DebugVariable,4> & VarsWeCareAbout,SmallPtrSetImpl<MachineBasicBlock * > & AssignBlocks,LiveInsT & Output,ValueIDNum ** MOutLocs,ValueIDNum ** MInLocs,SmallVectorImpl<VLocTracker> & AllTheVLocs)2411 void InstrRefBasedLDV::vlocDataflow(
2412     const LexicalScope *Scope, const DILocation *DILoc,
2413     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2414     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2415     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2416     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2417   // This method is much like mlocDataflow: but focuses on a single
2418   // LexicalScope at a time. Pick out a set of blocks and variables that are
2419   // to have their value assignments solved, then run our dataflow algorithm
2420   // until a fixedpoint is reached.
2421   std::priority_queue<unsigned int, std::vector<unsigned int>,
2422                       std::greater<unsigned int>>
2423       Worklist, Pending;
2424   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2425 
2426   // The set of blocks we'll be examining.
2427   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2428 
2429   // The order in which to examine them (RPO).
2430   SmallVector<MachineBasicBlock *, 8> BlockOrders;
2431 
2432   // RPO ordering function.
2433   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2434     return BBToOrder[A] < BBToOrder[B];
2435   };
2436 
2437   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
2438 
2439   // A separate container to distinguish "blocks we're exploring" versus
2440   // "blocks that are potentially in scope. See comment at start of vlocJoin.
2441   SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
2442 
2443   // Old LiveDebugValues tracks variable locations that come out of blocks
2444   // not in scope, where DBG_VALUEs occur. This is something we could
2445   // legitimately ignore, but lets allow it for now.
2446   if (EmulateOldLDV)
2447     BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
2448 
2449   // We also need to propagate variable values through any artificial blocks
2450   // that immediately follow blocks in scope.
2451   DenseSet<const MachineBasicBlock *> ToAdd;
2452 
2453   // Helper lambda: For a given block in scope, perform a depth first search
2454   // of all the artificial successors, adding them to the ToAdd collection.
2455   auto AccumulateArtificialBlocks =
2456       [this, &ToAdd, &BlocksToExplore,
2457        &InScopeBlocks](const MachineBasicBlock *MBB) {
2458         // Depth-first-search state: each node is a block and which successor
2459         // we're currently exploring.
2460         SmallVector<std::pair<const MachineBasicBlock *,
2461                               MachineBasicBlock::const_succ_iterator>,
2462                     8>
2463             DFS;
2464 
2465         // Find any artificial successors not already tracked.
2466         for (auto *succ : MBB->successors()) {
2467           if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
2468             continue;
2469           if (!ArtificialBlocks.count(succ))
2470             continue;
2471           DFS.push_back(std::make_pair(succ, succ->succ_begin()));
2472           ToAdd.insert(succ);
2473         }
2474 
2475         // Search all those blocks, depth first.
2476         while (!DFS.empty()) {
2477           const MachineBasicBlock *CurBB = DFS.back().first;
2478           MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
2479           // Walk back if we've explored this blocks successors to the end.
2480           if (CurSucc == CurBB->succ_end()) {
2481             DFS.pop_back();
2482             continue;
2483           }
2484 
2485           // If the current successor is artificial and unexplored, descend into
2486           // it.
2487           if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
2488             DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
2489             ToAdd.insert(*CurSucc);
2490             continue;
2491           }
2492 
2493           ++CurSucc;
2494         }
2495       };
2496 
2497   // Search in-scope blocks and those containing a DBG_VALUE from this scope
2498   // for artificial successors.
2499   for (auto *MBB : BlocksToExplore)
2500     AccumulateArtificialBlocks(MBB);
2501   for (auto *MBB : InScopeBlocks)
2502     AccumulateArtificialBlocks(MBB);
2503 
2504   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
2505   InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
2506 
2507   // Single block scope: not interesting! No propagation at all. Note that
2508   // this could probably go above ArtificialBlocks without damage, but
2509   // that then produces output differences from original-live-debug-values,
2510   // which propagates from a single block into many artificial ones.
2511   if (BlocksToExplore.size() == 1)
2512     return;
2513 
2514   // Picks out relevants blocks RPO order and sort them.
2515   for (auto *MBB : BlocksToExplore)
2516     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
2517 
2518   llvm::sort(BlockOrders, Cmp);
2519   unsigned NumBlocks = BlockOrders.size();
2520 
2521   // Allocate some vectors for storing the live ins and live outs. Large.
2522   SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts;
2523   LiveIns.resize(NumBlocks);
2524   LiveOuts.resize(NumBlocks);
2525 
2526   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
2527   // vlocJoin.
2528   LiveIdxT LiveOutIdx, LiveInIdx;
2529   LiveOutIdx.reserve(NumBlocks);
2530   LiveInIdx.reserve(NumBlocks);
2531   for (unsigned I = 0; I < NumBlocks; ++I) {
2532     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
2533     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
2534   }
2535 
2536   for (auto *MBB : BlockOrders) {
2537     Worklist.push(BBToOrder[MBB]);
2538     OnWorklist.insert(MBB);
2539   }
2540 
2541   // Iterate over all the blocks we selected, propagating variable values.
2542   bool FirstTrip = true;
2543   SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited;
2544   while (!Worklist.empty() || !Pending.empty()) {
2545     while (!Worklist.empty()) {
2546       auto *MBB = OrderToBB[Worklist.top()];
2547       CurBB = MBB->getNumber();
2548       Worklist.pop();
2549 
2550       DenseMap<DebugVariable, DbgValue> JoinedInLocs;
2551 
2552       // Join values from predecessors. Updates LiveInIdx, and writes output
2553       // into JoinedInLocs.
2554       bool InLocsChanged, DowngradeOccurred;
2555       std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin(
2556           *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr,
2557           CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks,
2558           BlocksToExplore, JoinedInLocs);
2559 
2560       bool FirstVisit = VLOCVisited.insert(MBB).second;
2561 
2562       // Always explore transfer function if inlocs changed, or if we've not
2563       // visited this block before.
2564       InLocsChanged |= FirstVisit;
2565 
2566       // If a downgrade occurred, book us in for re-examination on the next
2567       // iteration.
2568       if (DowngradeOccurred && OnPending.insert(MBB).second)
2569         Pending.push(BBToOrder[MBB]);
2570 
2571       if (!InLocsChanged)
2572         continue;
2573 
2574       // Do transfer function.
2575       auto &VTracker = AllTheVLocs[MBB->getNumber()];
2576       for (auto &Transfer : VTracker.Vars) {
2577         // Is this var we're mangling in this scope?
2578         if (VarsWeCareAbout.count(Transfer.first)) {
2579           // Erase on empty transfer (DBG_VALUE $noreg).
2580           if (Transfer.second.Kind == DbgValue::Undef) {
2581             JoinedInLocs.erase(Transfer.first);
2582           } else {
2583             // Insert new variable value; or overwrite.
2584             auto NewValuePair = std::make_pair(Transfer.first, Transfer.second);
2585             auto Result = JoinedInLocs.insert(NewValuePair);
2586             if (!Result.second)
2587               Result.first->second = Transfer.second;
2588           }
2589         }
2590       }
2591 
2592       // Did the live-out locations change?
2593       bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB];
2594 
2595       // If they haven't changed, there's no need to explore further.
2596       if (!OLChanged)
2597         continue;
2598 
2599       // Commit to the live-out record.
2600       *LiveOutIdx[MBB] = JoinedInLocs;
2601 
2602       // We should visit all successors. Ensure we'll visit any non-backedge
2603       // successors during this dataflow iteration; book backedge successors
2604       // to be visited next time around.
2605       for (auto s : MBB->successors()) {
2606         // Ignore out of scope / not-to-be-explored successors.
2607         if (LiveInIdx.find(s) == LiveInIdx.end())
2608           continue;
2609 
2610         if (BBToOrder[s] > BBToOrder[MBB]) {
2611           if (OnWorklist.insert(s).second)
2612             Worklist.push(BBToOrder[s]);
2613         } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
2614           Pending.push(BBToOrder[s]);
2615         }
2616       }
2617     }
2618     Worklist.swap(Pending);
2619     std::swap(OnWorklist, OnPending);
2620     OnPending.clear();
2621     assert(Pending.empty());
2622     FirstTrip = false;
2623   }
2624 
2625   // Dataflow done. Now what? Save live-ins. Ignore any that are still marked
2626   // as being variable-PHIs, because those did not have their machine-PHI
2627   // value confirmed. Such variable values are places that could have been
2628   // PHIs, but are not.
2629   for (auto *MBB : BlockOrders) {
2630     auto &VarMap = *LiveInIdx[MBB];
2631     for (auto &P : VarMap) {
2632       if (P.second.Kind == DbgValue::Proposed ||
2633           P.second.Kind == DbgValue::NoVal)
2634         continue;
2635       Output[MBB->getNumber()].push_back(P);
2636     }
2637   }
2638 
2639   BlockOrders.clear();
2640   BlocksToExplore.clear();
2641 }
2642 
2643 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump_mloc_transfer(const MLocTransferMap & mloc_transfer) const2644 void InstrRefBasedLDV::dump_mloc_transfer(
2645     const MLocTransferMap &mloc_transfer) const {
2646   for (auto &P : mloc_transfer) {
2647     std::string foo = MTracker->LocIdxToName(P.first);
2648     std::string bar = MTracker->IDAsString(P.second);
2649     dbgs() << "Loc " << foo << " --> " << bar << "\n";
2650   }
2651 }
2652 #endif
2653 
emitLocations(MachineFunction & MF,LiveInsT SavedLiveIns,ValueIDNum ** MOutLocs,ValueIDNum ** MInLocs,DenseMap<DebugVariable,unsigned> & AllVarsNumbering,const TargetPassConfig & TPC)2654 void InstrRefBasedLDV::emitLocations(
2655     MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs,
2656     ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
2657     const TargetPassConfig &TPC) {
2658   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
2659   unsigned NumLocs = MTracker->getNumLocs();
2660 
2661   // For each block, load in the machine value locations and variable value
2662   // live-ins, then step through each instruction in the block. New DBG_VALUEs
2663   // to be inserted will be created along the way.
2664   for (MachineBasicBlock &MBB : MF) {
2665     unsigned bbnum = MBB.getNumber();
2666     MTracker->reset();
2667     MTracker->loadFromArray(MInLocs[bbnum], bbnum);
2668     TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
2669                          NumLocs);
2670 
2671     CurBB = bbnum;
2672     CurInst = 1;
2673     for (auto &MI : MBB) {
2674       process(MI, MOutLocs, MInLocs);
2675       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
2676       ++CurInst;
2677     }
2678   }
2679 
2680   // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
2681   // in DWARF in different orders. Use the order that they appear when walking
2682   // through each block / each instruction, stored in AllVarsNumbering.
2683   auto OrderDbgValues = [&](const MachineInstr *A,
2684                             const MachineInstr *B) -> bool {
2685     DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
2686                        A->getDebugLoc()->getInlinedAt());
2687     DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
2688                        B->getDebugLoc()->getInlinedAt());
2689     return AllVarsNumbering.find(VarA)->second <
2690            AllVarsNumbering.find(VarB)->second;
2691   };
2692 
2693   // Go through all the transfers recorded in the TransferTracker -- this is
2694   // both the live-ins to a block, and any movements of values that happen
2695   // in the middle.
2696   for (auto &P : TTracker->Transfers) {
2697     // Sort them according to appearance order.
2698     llvm::sort(P.Insts, OrderDbgValues);
2699     // Insert either before or after the designated point...
2700     if (P.MBB) {
2701       MachineBasicBlock &MBB = *P.MBB;
2702       for (auto *MI : P.Insts) {
2703         MBB.insert(P.Pos, MI);
2704       }
2705     } else {
2706       // Terminators, like tail calls, can clobber things. Don't try and place
2707       // transfers after them.
2708       if (P.Pos->isTerminator())
2709         continue;
2710 
2711       MachineBasicBlock &MBB = *P.Pos->getParent();
2712       for (auto *MI : P.Insts) {
2713         MBB.insertAfterBundle(P.Pos, MI);
2714       }
2715     }
2716   }
2717 }
2718 
initialSetup(MachineFunction & MF)2719 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
2720   // Build some useful data structures.
2721   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2722     if (const DebugLoc &DL = MI.getDebugLoc())
2723       return DL.getLine() != 0;
2724     return false;
2725   };
2726   // Collect a set of all the artificial blocks.
2727   for (auto &MBB : MF)
2728     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2729       ArtificialBlocks.insert(&MBB);
2730 
2731   // Compute mappings of block <=> RPO order.
2732   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2733   unsigned int RPONumber = 0;
2734   for (MachineBasicBlock *MBB : RPOT) {
2735     OrderToBB[RPONumber] = MBB;
2736     BBToOrder[MBB] = RPONumber;
2737     BBNumToRPO[MBB->getNumber()] = RPONumber;
2738     ++RPONumber;
2739   }
2740 
2741   // Order value substitutions by their "source" operand pair, for quick lookup.
2742   llvm::sort(MF.DebugValueSubstitutions);
2743 
2744 #ifdef EXPENSIVE_CHECKS
2745   // As an expensive check, test whether there are any duplicate substitution
2746   // sources in the collection.
2747   if (MF.DebugValueSubstitutions.size() > 2) {
2748     for (auto It = MF.DebugValueSubstitutions.begin();
2749          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
2750       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
2751                                               "substitution seen");
2752     }
2753   }
2754 #endif
2755 }
2756 
2757 /// Calculate the liveness information for the given machine function and
2758 /// extend ranges across basic blocks.
ExtendRanges(MachineFunction & MF,TargetPassConfig * TPC,unsigned InputBBLimit,unsigned InputDbgValLimit)2759 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC,
2760                                     unsigned InputBBLimit,
2761                                     unsigned InputDbgValLimit) {
2762   // No subprogram means this function contains no debuginfo.
2763   if (!MF.getFunction().getSubprogram())
2764     return false;
2765 
2766   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
2767   this->TPC = TPC;
2768 
2769   TRI = MF.getSubtarget().getRegisterInfo();
2770   TII = MF.getSubtarget().getInstrInfo();
2771   TFI = MF.getSubtarget().getFrameLowering();
2772   TFI->getCalleeSaves(MF, CalleeSavedRegs);
2773   MFI = &MF.getFrameInfo();
2774   LS.initialize(MF);
2775 
2776   MTracker =
2777       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
2778   VTracker = nullptr;
2779   TTracker = nullptr;
2780 
2781   SmallVector<MLocTransferMap, 32> MLocTransfer;
2782   SmallVector<VLocTracker, 8> vlocs;
2783   LiveInsT SavedLiveIns;
2784 
2785   int MaxNumBlocks = -1;
2786   for (auto &MBB : MF)
2787     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
2788   assert(MaxNumBlocks >= 0);
2789   ++MaxNumBlocks;
2790 
2791   MLocTransfer.resize(MaxNumBlocks);
2792   vlocs.resize(MaxNumBlocks);
2793   SavedLiveIns.resize(MaxNumBlocks);
2794 
2795   initialSetup(MF);
2796 
2797   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
2798 
2799   // Allocate and initialize two array-of-arrays for the live-in and live-out
2800   // machine values. The outer dimension is the block number; while the inner
2801   // dimension is a LocIdx from MLocTracker.
2802   ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
2803   ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
2804   unsigned NumLocs = MTracker->getNumLocs();
2805   for (int i = 0; i < MaxNumBlocks; ++i) {
2806     MOutLocs[i] = new ValueIDNum[NumLocs];
2807     MInLocs[i] = new ValueIDNum[NumLocs];
2808   }
2809 
2810   // Solve the machine value dataflow problem using the MLocTransfer function,
2811   // storing the computed live-ins / live-outs into the array-of-arrays. We use
2812   // both live-ins and live-outs for decision making in the variable value
2813   // dataflow problem.
2814   mlocDataflow(MInLocs, MOutLocs, MLocTransfer);
2815 
2816   // Patch up debug phi numbers, turning unknown block-live-in values into
2817   // either live-through machine values, or PHIs.
2818   for (auto &DBG_PHI : DebugPHINumToValue) {
2819     // Identify unresolved block-live-ins.
2820     ValueIDNum &Num = DBG_PHI.ValueRead;
2821     if (!Num.isPHI())
2822       continue;
2823 
2824     unsigned BlockNo = Num.getBlock();
2825     LocIdx LocNo = Num.getLoc();
2826     Num = MInLocs[BlockNo][LocNo.asU64()];
2827   }
2828   // Later, we'll be looking up ranges of instruction numbers.
2829   llvm::sort(DebugPHINumToValue);
2830 
2831   // Walk back through each block / instruction, collecting DBG_VALUE
2832   // instructions and recording what machine value their operands refer to.
2833   for (auto &OrderPair : OrderToBB) {
2834     MachineBasicBlock &MBB = *OrderPair.second;
2835     CurBB = MBB.getNumber();
2836     VTracker = &vlocs[CurBB];
2837     VTracker->MBB = &MBB;
2838     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2839     CurInst = 1;
2840     for (auto &MI : MBB) {
2841       process(MI, MOutLocs, MInLocs);
2842       ++CurInst;
2843     }
2844     MTracker->reset();
2845   }
2846 
2847   // Number all variables in the order that they appear, to be used as a stable
2848   // insertion order later.
2849   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
2850 
2851   // Map from one LexicalScope to all the variables in that scope.
2852   DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
2853 
2854   // Map from One lexical scope to all blocks in that scope.
2855   DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
2856       ScopeToBlocks;
2857 
2858   // Store a DILocation that describes a scope.
2859   DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
2860 
2861   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
2862   // the order is unimportant, it just has to be stable.
2863   unsigned VarAssignCount = 0;
2864   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2865     auto *MBB = OrderToBB[I];
2866     auto *VTracker = &vlocs[MBB->getNumber()];
2867     // Collect each variable with a DBG_VALUE in this block.
2868     for (auto &idx : VTracker->Vars) {
2869       const auto &Var = idx.first;
2870       const DILocation *ScopeLoc = VTracker->Scopes[Var];
2871       assert(ScopeLoc != nullptr);
2872       auto *Scope = LS.findLexicalScope(ScopeLoc);
2873 
2874       // No insts in scope -> shouldn't have been recorded.
2875       assert(Scope != nullptr);
2876 
2877       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
2878       ScopeToVars[Scope].insert(Var);
2879       ScopeToBlocks[Scope].insert(VTracker->MBB);
2880       ScopeToDILocation[Scope] = ScopeLoc;
2881       ++VarAssignCount;
2882     }
2883   }
2884 
2885   bool Changed = false;
2886 
2887   // If we have an extremely large number of variable assignments and blocks,
2888   // bail out at this point. We've burnt some time doing analysis already,
2889   // however we should cut our losses.
2890   if ((unsigned)MaxNumBlocks > InputBBLimit &&
2891       VarAssignCount > InputDbgValLimit) {
2892     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
2893                       << " has " << MaxNumBlocks << " basic blocks and "
2894                       << VarAssignCount
2895                       << " variable assignments, exceeding limits.\n");
2896   } else {
2897     // Compute the extended ranges, iterating over scopes. There might be
2898     // something to be said for ordering them by size/locality, but that's for
2899     // the future. For each scope, solve the variable value problem, producing
2900     // a map of variables to values in SavedLiveIns.
2901     for (auto &P : ScopeToVars) {
2902       vlocDataflow(P.first, ScopeToDILocation[P.first], P.second,
2903                    ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
2904                    vlocs);
2905     }
2906 
2907     // Using the computed value locations and variable values for each block,
2908     // create the DBG_VALUE instructions representing the extended variable
2909     // locations.
2910     emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC);
2911 
2912     // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
2913     Changed = TTracker->Transfers.size() != 0;
2914   }
2915 
2916   // Common clean-up of memory.
2917   for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
2918     delete[] MOutLocs[Idx];
2919     delete[] MInLocs[Idx];
2920   }
2921   delete[] MOutLocs;
2922   delete[] MInLocs;
2923 
2924   delete MTracker;
2925   delete TTracker;
2926   MTracker = nullptr;
2927   VTracker = nullptr;
2928   TTracker = nullptr;
2929 
2930   ArtificialBlocks.clear();
2931   OrderToBB.clear();
2932   BBToOrder.clear();
2933   BBNumToRPO.clear();
2934   DebugInstrNumToInstr.clear();
2935   DebugPHINumToValue.clear();
2936 
2937   return Changed;
2938 }
2939 
makeInstrRefBasedLiveDebugValues()2940 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
2941   return new InstrRefBasedLDV();
2942 }
2943 
2944 namespace {
2945 class LDVSSABlock;
2946 class LDVSSAUpdater;
2947 
2948 // Pick a type to identify incoming block values as we construct SSA. We
2949 // can't use anything more robust than an integer unfortunately, as SSAUpdater
2950 // expects to zero-initialize the type.
2951 typedef uint64_t BlockValueNum;
2952 
2953 /// Represents an SSA PHI node for the SSA updater class. Contains the block
2954 /// this PHI is in, the value number it would have, and the expected incoming
2955 /// values from parent blocks.
2956 class LDVSSAPhi {
2957 public:
2958   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
2959   LDVSSABlock *ParentBlock;
2960   BlockValueNum PHIValNum;
LDVSSAPhi(BlockValueNum PHIValNum,LDVSSABlock * ParentBlock)2961   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
2962       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
2963 
getParent()2964   LDVSSABlock *getParent() { return ParentBlock; }
2965 };
2966 
2967 /// Thin wrapper around a block predecessor iterator. Only difference from a
2968 /// normal block iterator is that it dereferences to an LDVSSABlock.
2969 class LDVSSABlockIterator {
2970 public:
2971   MachineBasicBlock::pred_iterator PredIt;
2972   LDVSSAUpdater &Updater;
2973 
LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,LDVSSAUpdater & Updater)2974   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
2975                       LDVSSAUpdater &Updater)
2976       : PredIt(PredIt), Updater(Updater) {}
2977 
operator !=(const LDVSSABlockIterator & OtherIt) const2978   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
2979     return OtherIt.PredIt != PredIt;
2980   }
2981 
operator ++()2982   LDVSSABlockIterator &operator++() {
2983     ++PredIt;
2984     return *this;
2985   }
2986 
2987   LDVSSABlock *operator*();
2988 };
2989 
2990 /// Thin wrapper around a block for SSA Updater interface. Necessary because
2991 /// we need to track the PHI value(s) that we may have observed as necessary
2992 /// in this block.
2993 class LDVSSABlock {
2994 public:
2995   MachineBasicBlock &BB;
2996   LDVSSAUpdater &Updater;
2997   using PHIListT = SmallVector<LDVSSAPhi, 1>;
2998   /// List of PHIs in this block. There should only ever be one.
2999   PHIListT PHIList;
3000 
LDVSSABlock(MachineBasicBlock & BB,LDVSSAUpdater & Updater)3001   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3002       : BB(BB), Updater(Updater) {}
3003 
succ_begin()3004   LDVSSABlockIterator succ_begin() {
3005     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3006   }
3007 
succ_end()3008   LDVSSABlockIterator succ_end() {
3009     return LDVSSABlockIterator(BB.succ_end(), Updater);
3010   }
3011 
3012   /// SSAUpdater has requested a PHI: create that within this block record.
newPHI(BlockValueNum Value)3013   LDVSSAPhi *newPHI(BlockValueNum Value) {
3014     PHIList.emplace_back(Value, this);
3015     return &PHIList.back();
3016   }
3017 
3018   /// SSAUpdater wishes to know what PHIs already exist in this block.
phis()3019   PHIListT &phis() { return PHIList; }
3020 };
3021 
3022 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3023 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3024 // SSAUpdaterTraits<LDVSSAUpdater>.
3025 class LDVSSAUpdater {
3026 public:
3027   /// Map of value numbers to PHI records.
3028   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3029   /// Map of which blocks generate Undef values -- blocks that are not
3030   /// dominated by any Def.
3031   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3032   /// Map of machine blocks to our own records of them.
3033   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3034   /// Machine location where any PHI must occur.
3035   LocIdx Loc;
3036   /// Table of live-in machine value numbers for blocks / locations.
3037   ValueIDNum **MLiveIns;
3038 
LDVSSAUpdater(LocIdx L,ValueIDNum ** MLiveIns)3039   LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
3040 
reset()3041   void reset() {
3042     for (auto &Block : BlockMap)
3043       delete Block.second;
3044 
3045     PHIs.clear();
3046     UndefMap.clear();
3047     BlockMap.clear();
3048   }
3049 
~LDVSSAUpdater()3050   ~LDVSSAUpdater() { reset(); }
3051 
3052   /// For a given MBB, create a wrapper block for it. Stores it in the
3053   /// LDVSSAUpdater block map.
getSSALDVBlock(MachineBasicBlock * BB)3054   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3055     auto it = BlockMap.find(BB);
3056     if (it == BlockMap.end()) {
3057       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3058       it = BlockMap.find(BB);
3059     }
3060     return it->second;
3061   }
3062 
3063   /// Find the live-in value number for the given block. Looks up the value at
3064   /// the PHI location on entry.
getValue(LDVSSABlock * LDVBB)3065   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3066     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3067   }
3068 };
3069 
operator *()3070 LDVSSABlock *LDVSSABlockIterator::operator*() {
3071   return Updater.getSSALDVBlock(*PredIt);
3072 }
3073 
3074 #ifndef NDEBUG
3075 
operator <<(raw_ostream & out,const LDVSSAPhi & PHI)3076 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3077   out << "SSALDVPHI " << PHI.PHIValNum;
3078   return out;
3079 }
3080 
3081 #endif
3082 
3083 } // namespace
3084 
3085 namespace llvm {
3086 
3087 /// Template specialization to give SSAUpdater access to CFG and value
3088 /// information. SSAUpdater calls methods in these traits, passing in the
3089 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3090 /// It also provides methods to create PHI nodes and track them.
3091 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3092 public:
3093   using BlkT = LDVSSABlock;
3094   using ValT = BlockValueNum;
3095   using PhiT = LDVSSAPhi;
3096   using BlkSucc_iterator = LDVSSABlockIterator;
3097 
3098   // Methods to access block successors -- dereferencing to our wrapper class.
BlkSucc_begin(BlkT * BB)3099   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
BlkSucc_end(BlkT * BB)3100   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3101 
3102   /// Iterator for PHI operands.
3103   class PHI_iterator {
3104   private:
3105     LDVSSAPhi *PHI;
3106     unsigned Idx;
3107 
3108   public:
PHI_iterator(LDVSSAPhi * P)3109     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3110         : PHI(P), Idx(0) {}
PHI_iterator(LDVSSAPhi * P,bool)3111     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3112         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3113 
operator ++()3114     PHI_iterator &operator++() {
3115       Idx++;
3116       return *this;
3117     }
operator ==(const PHI_iterator & X) const3118     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
operator !=(const PHI_iterator & X) const3119     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3120 
getIncomingValue()3121     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3122 
getIncomingBlock()3123     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3124   };
3125 
PHI_begin(PhiT * PHI)3126   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3127 
PHI_end(PhiT * PHI)3128   static inline PHI_iterator PHI_end(PhiT *PHI) {
3129     return PHI_iterator(PHI, true);
3130   }
3131 
3132   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3133   /// vector.
FindPredecessorBlocks(LDVSSABlock * BB,SmallVectorImpl<LDVSSABlock * > * Preds)3134   static void FindPredecessorBlocks(LDVSSABlock *BB,
3135                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3136     for (MachineBasicBlock::pred_iterator PI = BB->BB.pred_begin(),
3137                                           E = BB->BB.pred_end();
3138          PI != E; ++PI)
3139       Preds->push_back(BB->Updater.getSSALDVBlock(*PI));
3140   }
3141 
3142   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3143   /// register. For LiveDebugValues, represents a block identified as not having
3144   /// any DBG_PHI predecessors.
GetUndefVal(LDVSSABlock * BB,LDVSSAUpdater * Updater)3145   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3146     // Create a value number for this block -- it needs to be unique and in the
3147     // "undef" collection, so that we know it's not real. Use a number
3148     // representing a PHI into this block.
3149     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3150     Updater->UndefMap[&BB->BB] = Num;
3151     return Num;
3152   }
3153 
3154   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3155   /// SSAUpdater will populate it with information about incoming values. The
3156   /// value number of this PHI is whatever the  machine value number problem
3157   /// solution determined it to be. This includes non-phi values if SSAUpdater
3158   /// tries to create a PHI where the incoming values are identical.
CreateEmptyPHI(LDVSSABlock * BB,unsigned NumPreds,LDVSSAUpdater * Updater)3159   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3160                                    LDVSSAUpdater *Updater) {
3161     BlockValueNum PHIValNum = Updater->getValue(BB);
3162     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3163     Updater->PHIs[PHIValNum] = PHI;
3164     return PHIValNum;
3165   }
3166 
3167   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3168   /// the specified predecessor block.
AddPHIOperand(LDVSSAPhi * PHI,BlockValueNum Val,LDVSSABlock * Pred)3169   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3170     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3171   }
3172 
3173   /// ValueIsPHI - Check if the instruction that defines the specified value
3174   /// is a PHI instruction.
ValueIsPHI(BlockValueNum Val,LDVSSAUpdater * Updater)3175   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3176     auto PHIIt = Updater->PHIs.find(Val);
3177     if (PHIIt == Updater->PHIs.end())
3178       return nullptr;
3179     return PHIIt->second;
3180   }
3181 
3182   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3183   /// operands, i.e., it was just added.
ValueIsNewPHI(BlockValueNum Val,LDVSSAUpdater * Updater)3184   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3185     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3186     if (PHI && PHI->IncomingValues.size() == 0)
3187       return PHI;
3188     return nullptr;
3189   }
3190 
3191   /// GetPHIValue - For the specified PHI instruction, return the value
3192   /// that it defines.
GetPHIValue(LDVSSAPhi * PHI)3193   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3194 };
3195 
3196 } // end namespace llvm
3197 
resolveDbgPHIs(MachineFunction & MF,ValueIDNum ** MLiveOuts,ValueIDNum ** MLiveIns,MachineInstr & Here,uint64_t InstrNum)3198 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
3199                                                       ValueIDNum **MLiveOuts,
3200                                                       ValueIDNum **MLiveIns,
3201                                                       MachineInstr &Here,
3202                                                       uint64_t InstrNum) {
3203   // Pick out records of DBG_PHI instructions that have been observed. If there
3204   // are none, then we cannot compute a value number.
3205   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3206                                     DebugPHINumToValue.end(), InstrNum);
3207   auto LowerIt = RangePair.first;
3208   auto UpperIt = RangePair.second;
3209 
3210   // No DBG_PHI means there can be no location.
3211   if (LowerIt == UpperIt)
3212     return None;
3213 
3214   // If there's only one DBG_PHI, then that is our value number.
3215   if (std::distance(LowerIt, UpperIt) == 1)
3216     return LowerIt->ValueRead;
3217 
3218   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3219 
3220   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3221   // technically possible for us to merge values in different registers in each
3222   // block, but highly unlikely that LLVM will generate such code after register
3223   // allocation.
3224   LocIdx Loc = LowerIt->ReadLoc;
3225 
3226   // We have several DBG_PHIs, and a use position (the Here inst). All each
3227   // DBG_PHI does is identify a value at a program position. We can treat each
3228   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3229   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3230   // determine which Def is used at the Use, and any PHIs that happen along
3231   // the way.
3232   // Adapted LLVM SSA Updater:
3233   LDVSSAUpdater Updater(Loc, MLiveIns);
3234   // Map of which Def or PHI is the current value in each block.
3235   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
3236   // Set of PHIs that we have created along the way.
3237   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
3238 
3239   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
3240   // for the SSAUpdater.
3241   for (const auto &DBG_PHI : DBGPHIRange) {
3242     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3243     const ValueIDNum &Num = DBG_PHI.ValueRead;
3244     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
3245   }
3246 
3247   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
3248   const auto &AvailIt = AvailableValues.find(HereBlock);
3249   if (AvailIt != AvailableValues.end()) {
3250     // Actually, we already know what the value is -- the Use is in the same
3251     // block as the Def.
3252     return ValueIDNum::fromU64(AvailIt->second);
3253   }
3254 
3255   // Otherwise, we must use the SSA Updater. It will identify the value number
3256   // that we are to use, and the PHIs that must happen along the way.
3257   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
3258   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
3259   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
3260 
3261   // We have the number for a PHI, or possibly live-through value, to be used
3262   // at this Use. There are a number of things we have to check about it though:
3263   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
3264   //    Use was not completely dominated by DBG_PHIs and we should abort.
3265   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
3266   //    we've left SSA form. Validate that the inputs to each PHI are the
3267   //    expected values.
3268   //  * Is a PHI we've created actually a merging of values, or are all the
3269   //    predecessor values the same, leading to a non-PHI machine value number?
3270   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
3271   //    the ValidatedValues collection below to sort this out.
3272   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
3273 
3274   // Define all the input DBG_PHI values in ValidatedValues.
3275   for (const auto &DBG_PHI : DBGPHIRange) {
3276     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3277     const ValueIDNum &Num = DBG_PHI.ValueRead;
3278     ValidatedValues.insert(std::make_pair(Block, Num));
3279   }
3280 
3281   // Sort PHIs to validate into RPO-order.
3282   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
3283   for (auto &PHI : CreatedPHIs)
3284     SortedPHIs.push_back(PHI);
3285 
3286   std::sort(
3287       SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
3288         return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
3289       });
3290 
3291   for (auto &PHI : SortedPHIs) {
3292     ValueIDNum ThisBlockValueNum =
3293         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
3294 
3295     // Are all these things actually defined?
3296     for (auto &PHIIt : PHI->IncomingValues) {
3297       // Any undef input means DBG_PHIs didn't dominate the use point.
3298       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
3299         return None;
3300 
3301       ValueIDNum ValueToCheck;
3302       ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
3303 
3304       auto VVal = ValidatedValues.find(PHIIt.first);
3305       if (VVal == ValidatedValues.end()) {
3306         // We cross a loop, and this is a backedge. LLVMs tail duplication
3307         // happens so late that DBG_PHI instructions should not be able to
3308         // migrate into loops -- meaning we can only be live-through this
3309         // loop.
3310         ValueToCheck = ThisBlockValueNum;
3311       } else {
3312         // Does the block have as a live-out, in the location we're examining,
3313         // the value that we expect? If not, it's been moved or clobbered.
3314         ValueToCheck = VVal->second;
3315       }
3316 
3317       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
3318         return None;
3319     }
3320 
3321     // Record this value as validated.
3322     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
3323   }
3324 
3325   // All the PHIs are valid: we can return what the SSAUpdater said our value
3326   // number was.
3327   return Result;
3328 }
3329