1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/BinaryFormat/ELF.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/ObjectFile.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/MemoryBuffer.h"
24
25 using namespace llvm;
26 using namespace llvm::object;
27 using namespace llvm::support::endian;
28
29 #define DEBUG_TYPE "dyld"
30
or32le(void * P,int32_t V)31 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
32
or32AArch64Imm(void * L,uint64_t Imm)33 static void or32AArch64Imm(void *L, uint64_t Imm) {
34 or32le(L, (Imm & 0xFFF) << 10);
35 }
36
write(bool isBE,void * P,T V)37 template <class T> static void write(bool isBE, void *P, T V) {
38 isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
39 }
40
write32AArch64Addr(void * L,uint64_t Imm)41 static void write32AArch64Addr(void *L, uint64_t Imm) {
42 uint32_t ImmLo = (Imm & 0x3) << 29;
43 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
44 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
45 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
46 }
47
48 // Return the bits [Start, End] from Val shifted Start bits.
49 // For instance, getBits(0xF0, 4, 8) returns 0xF.
getBits(uint64_t Val,int Start,int End)50 static uint64_t getBits(uint64_t Val, int Start, int End) {
51 uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
52 return (Val >> Start) & Mask;
53 }
54
55 namespace {
56
57 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
58 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
59
60 typedef typename ELFT::uint addr_type;
61
62 DyldELFObject(ELFObjectFile<ELFT> &&Obj);
63
64 public:
65 static Expected<std::unique_ptr<DyldELFObject>>
66 create(MemoryBufferRef Wrapper);
67
68 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
69
70 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
71
72 // Methods for type inquiry through isa, cast and dyn_cast
classof(const Binary * v)73 static bool classof(const Binary *v) {
74 return (isa<ELFObjectFile<ELFT>>(v) &&
75 classof(cast<ELFObjectFile<ELFT>>(v)));
76 }
classof(const ELFObjectFile<ELFT> * v)77 static bool classof(const ELFObjectFile<ELFT> *v) {
78 return v->isDyldType();
79 }
80 };
81
82
83
84 // The MemoryBuffer passed into this constructor is just a wrapper around the
85 // actual memory. Ultimately, the Binary parent class will take ownership of
86 // this MemoryBuffer object but not the underlying memory.
87 template <class ELFT>
DyldELFObject(ELFObjectFile<ELFT> && Obj)88 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
89 : ELFObjectFile<ELFT>(std::move(Obj)) {
90 this->isDyldELFObject = true;
91 }
92
93 template <class ELFT>
94 Expected<std::unique_ptr<DyldELFObject<ELFT>>>
create(MemoryBufferRef Wrapper)95 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
96 auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
97 if (auto E = Obj.takeError())
98 return std::move(E);
99 std::unique_ptr<DyldELFObject<ELFT>> Ret(
100 new DyldELFObject<ELFT>(std::move(*Obj)));
101 return std::move(Ret);
102 }
103
104 template <class ELFT>
updateSectionAddress(const SectionRef & Sec,uint64_t Addr)105 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
106 uint64_t Addr) {
107 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
108 Elf_Shdr *shdr =
109 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
110
111 // This assumes the address passed in matches the target address bitness
112 // The template-based type cast handles everything else.
113 shdr->sh_addr = static_cast<addr_type>(Addr);
114 }
115
116 template <class ELFT>
updateSymbolAddress(const SymbolRef & SymRef,uint64_t Addr)117 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
118 uint64_t Addr) {
119
120 Elf_Sym *sym = const_cast<Elf_Sym *>(
121 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
122
123 // This assumes the address passed in matches the target address bitness
124 // The template-based type cast handles everything else.
125 sym->st_value = static_cast<addr_type>(Addr);
126 }
127
128 class LoadedELFObjectInfo final
129 : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
130 RuntimeDyld::LoadedObjectInfo> {
131 public:
LoadedELFObjectInfo(RuntimeDyldImpl & RTDyld,ObjSectionToIDMap ObjSecToIDMap)132 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
133 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
134
135 OwningBinary<ObjectFile>
136 getObjectForDebug(const ObjectFile &Obj) const override;
137 };
138
139 template <typename ELFT>
140 static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
createRTDyldELFObject(MemoryBufferRef Buffer,const ObjectFile & SourceObject,const LoadedELFObjectInfo & L)141 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
142 const LoadedELFObjectInfo &L) {
143 typedef typename ELFT::Shdr Elf_Shdr;
144 typedef typename ELFT::uint addr_type;
145
146 Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
147 DyldELFObject<ELFT>::create(Buffer);
148 if (Error E = ObjOrErr.takeError())
149 return std::move(E);
150
151 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
152
153 // Iterate over all sections in the object.
154 auto SI = SourceObject.section_begin();
155 for (const auto &Sec : Obj->sections()) {
156 Expected<StringRef> NameOrErr = Sec.getName();
157 if (!NameOrErr) {
158 consumeError(NameOrErr.takeError());
159 continue;
160 }
161
162 if (*NameOrErr != "") {
163 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
164 Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
165 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
166
167 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
168 // This assumes that the address passed in matches the target address
169 // bitness. The template-based type cast handles everything else.
170 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
171 }
172 }
173 ++SI;
174 }
175
176 return std::move(Obj);
177 }
178
179 static OwningBinary<ObjectFile>
createELFDebugObject(const ObjectFile & Obj,const LoadedELFObjectInfo & L)180 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
181 assert(Obj.isELF() && "Not an ELF object file.");
182
183 std::unique_ptr<MemoryBuffer> Buffer =
184 MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
185
186 Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
187 handleAllErrors(DebugObj.takeError());
188 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
189 DebugObj =
190 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
191 else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
192 DebugObj =
193 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
194 else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
195 DebugObj =
196 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
197 else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
198 DebugObj =
199 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
200 else
201 llvm_unreachable("Unexpected ELF format");
202
203 handleAllErrors(DebugObj.takeError());
204 return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
205 }
206
207 OwningBinary<ObjectFile>
getObjectForDebug(const ObjectFile & Obj) const208 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
209 return createELFDebugObject(Obj, *this);
210 }
211
212 } // anonymous namespace
213
214 namespace llvm {
215
RuntimeDyldELF(RuntimeDyld::MemoryManager & MemMgr,JITSymbolResolver & Resolver)216 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
217 JITSymbolResolver &Resolver)
218 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
~RuntimeDyldELF()219 RuntimeDyldELF::~RuntimeDyldELF() {}
220
registerEHFrames()221 void RuntimeDyldELF::registerEHFrames() {
222 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
223 SID EHFrameSID = UnregisteredEHFrameSections[i];
224 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
225 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
226 size_t EHFrameSize = Sections[EHFrameSID].getSize();
227 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
228 }
229 UnregisteredEHFrameSections.clear();
230 }
231
232 std::unique_ptr<RuntimeDyldELF>
create(Triple::ArchType Arch,RuntimeDyld::MemoryManager & MemMgr,JITSymbolResolver & Resolver)233 llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
234 RuntimeDyld::MemoryManager &MemMgr,
235 JITSymbolResolver &Resolver) {
236 switch (Arch) {
237 default:
238 return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
239 case Triple::mips:
240 case Triple::mipsel:
241 case Triple::mips64:
242 case Triple::mips64el:
243 return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
244 }
245 }
246
247 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
loadObject(const object::ObjectFile & O)248 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
249 if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
250 return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
251 else {
252 HasError = true;
253 raw_string_ostream ErrStream(ErrorStr);
254 logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
255 return nullptr;
256 }
257 }
258
resolveX86_64Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend,uint64_t SymOffset)259 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
260 uint64_t Offset, uint64_t Value,
261 uint32_t Type, int64_t Addend,
262 uint64_t SymOffset) {
263 switch (Type) {
264 default:
265 report_fatal_error("Relocation type not implemented yet!");
266 break;
267 case ELF::R_X86_64_NONE:
268 break;
269 case ELF::R_X86_64_8: {
270 Value += Addend;
271 assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN);
272 uint8_t TruncatedAddr = (Value & 0xFF);
273 *Section.getAddressWithOffset(Offset) = TruncatedAddr;
274 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
275 << format("%p\n", Section.getAddressWithOffset(Offset)));
276 break;
277 }
278 case ELF::R_X86_64_16: {
279 Value += Addend;
280 assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN);
281 uint16_t TruncatedAddr = (Value & 0xFFFF);
282 support::ulittle16_t::ref(Section.getAddressWithOffset(Offset)) =
283 TruncatedAddr;
284 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
285 << format("%p\n", Section.getAddressWithOffset(Offset)));
286 break;
287 }
288 case ELF::R_X86_64_64: {
289 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
290 Value + Addend;
291 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
292 << format("%p\n", Section.getAddressWithOffset(Offset)));
293 break;
294 }
295 case ELF::R_X86_64_32:
296 case ELF::R_X86_64_32S: {
297 Value += Addend;
298 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
299 (Type == ELF::R_X86_64_32S &&
300 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
301 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
302 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
303 TruncatedAddr;
304 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
305 << format("%p\n", Section.getAddressWithOffset(Offset)));
306 break;
307 }
308 case ELF::R_X86_64_PC8: {
309 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
310 int64_t RealOffset = Value + Addend - FinalAddress;
311 assert(isInt<8>(RealOffset));
312 int8_t TruncOffset = (RealOffset & 0xFF);
313 Section.getAddress()[Offset] = TruncOffset;
314 break;
315 }
316 case ELF::R_X86_64_PC32: {
317 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
318 int64_t RealOffset = Value + Addend - FinalAddress;
319 assert(isInt<32>(RealOffset));
320 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
321 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
322 TruncOffset;
323 break;
324 }
325 case ELF::R_X86_64_PC64: {
326 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
327 int64_t RealOffset = Value + Addend - FinalAddress;
328 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
329 RealOffset;
330 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
331 << format("%p\n", FinalAddress));
332 break;
333 }
334 case ELF::R_X86_64_GOTOFF64: {
335 // Compute Value - GOTBase.
336 uint64_t GOTBase = 0;
337 for (const auto &Section : Sections) {
338 if (Section.getName() == ".got") {
339 GOTBase = Section.getLoadAddressWithOffset(0);
340 break;
341 }
342 }
343 assert(GOTBase != 0 && "missing GOT");
344 int64_t GOTOffset = Value - GOTBase + Addend;
345 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
346 break;
347 }
348 case ELF::R_X86_64_DTPMOD64: {
349 // We only have one DSO, so the module id is always 1.
350 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 1;
351 break;
352 }
353 case ELF::R_X86_64_DTPOFF64:
354 case ELF::R_X86_64_TPOFF64: {
355 // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
356 // offset in the *initial* TLS block. Since we are statically linking, all
357 // TLS blocks already exist in the initial block, so resolve both
358 // relocations equally.
359 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
360 Value + Addend;
361 break;
362 }
363 case ELF::R_X86_64_DTPOFF32:
364 case ELF::R_X86_64_TPOFF32: {
365 // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
366 // be resolved equally.
367 int64_t RealValue = Value + Addend;
368 assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX);
369 int32_t TruncValue = RealValue;
370 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
371 TruncValue;
372 break;
373 }
374 }
375 }
376
resolveX86Relocation(const SectionEntry & Section,uint64_t Offset,uint32_t Value,uint32_t Type,int32_t Addend)377 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
378 uint64_t Offset, uint32_t Value,
379 uint32_t Type, int32_t Addend) {
380 switch (Type) {
381 case ELF::R_386_32: {
382 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
383 Value + Addend;
384 break;
385 }
386 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
387 // reach any 32 bit address.
388 case ELF::R_386_PLT32:
389 case ELF::R_386_PC32: {
390 uint32_t FinalAddress =
391 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
392 uint32_t RealOffset = Value + Addend - FinalAddress;
393 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
394 RealOffset;
395 break;
396 }
397 default:
398 // There are other relocation types, but it appears these are the
399 // only ones currently used by the LLVM ELF object writer
400 report_fatal_error("Relocation type not implemented yet!");
401 break;
402 }
403 }
404
resolveAArch64Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)405 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
406 uint64_t Offset, uint64_t Value,
407 uint32_t Type, int64_t Addend) {
408 uint32_t *TargetPtr =
409 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
410 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
411 // Data should use target endian. Code should always use little endian.
412 bool isBE = Arch == Triple::aarch64_be;
413
414 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
415 << format("%llx", Section.getAddressWithOffset(Offset))
416 << " FinalAddress: 0x" << format("%llx", FinalAddress)
417 << " Value: 0x" << format("%llx", Value) << " Type: 0x"
418 << format("%x", Type) << " Addend: 0x"
419 << format("%llx", Addend) << "\n");
420
421 switch (Type) {
422 default:
423 report_fatal_error("Relocation type not implemented yet!");
424 break;
425 case ELF::R_AARCH64_ABS16: {
426 uint64_t Result = Value + Addend;
427 assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
428 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
429 break;
430 }
431 case ELF::R_AARCH64_ABS32: {
432 uint64_t Result = Value + Addend;
433 assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
434 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
435 break;
436 }
437 case ELF::R_AARCH64_ABS64:
438 write(isBE, TargetPtr, Value + Addend);
439 break;
440 case ELF::R_AARCH64_PLT32: {
441 uint64_t Result = Value + Addend - FinalAddress;
442 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
443 static_cast<int64_t>(Result) <= INT32_MAX);
444 write(isBE, TargetPtr, static_cast<uint32_t>(Result));
445 break;
446 }
447 case ELF::R_AARCH64_PREL32: {
448 uint64_t Result = Value + Addend - FinalAddress;
449 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
450 static_cast<int64_t>(Result) <= UINT32_MAX);
451 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
452 break;
453 }
454 case ELF::R_AARCH64_PREL64:
455 write(isBE, TargetPtr, Value + Addend - FinalAddress);
456 break;
457 case ELF::R_AARCH64_CONDBR19: {
458 uint64_t BranchImm = Value + Addend - FinalAddress;
459
460 assert(isInt<21>(BranchImm));
461 *TargetPtr &= 0xff00001fU;
462 // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
463 or32le(TargetPtr, (BranchImm & 0x001FFFFC) << 3);
464 break;
465 }
466 case ELF::R_AARCH64_TSTBR14: {
467 uint64_t BranchImm = Value + Addend - FinalAddress;
468
469 assert(isInt<16>(BranchImm));
470
471 *TargetPtr &= 0xfff8001fU;
472 // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
473 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) << 3);
474 break;
475 }
476 case ELF::R_AARCH64_CALL26: // fallthrough
477 case ELF::R_AARCH64_JUMP26: {
478 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
479 // calculation.
480 uint64_t BranchImm = Value + Addend - FinalAddress;
481
482 // "Check that -2^27 <= result < 2^27".
483 assert(isInt<28>(BranchImm));
484 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
485 break;
486 }
487 case ELF::R_AARCH64_MOVW_UABS_G3:
488 or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
489 break;
490 case ELF::R_AARCH64_MOVW_UABS_G2_NC:
491 or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
492 break;
493 case ELF::R_AARCH64_MOVW_UABS_G1_NC:
494 or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
495 break;
496 case ELF::R_AARCH64_MOVW_UABS_G0_NC:
497 or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
498 break;
499 case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
500 // Operation: Page(S+A) - Page(P)
501 uint64_t Result =
502 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
503
504 // Check that -2^32 <= X < 2^32
505 assert(isInt<33>(Result) && "overflow check failed for relocation");
506
507 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
508 // from bits 32:12 of X.
509 write32AArch64Addr(TargetPtr, Result >> 12);
510 break;
511 }
512 case ELF::R_AARCH64_ADD_ABS_LO12_NC:
513 // Operation: S + A
514 // Immediate goes in bits 21:10 of LD/ST instruction, taken
515 // from bits 11:0 of X
516 or32AArch64Imm(TargetPtr, Value + Addend);
517 break;
518 case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
519 // Operation: S + A
520 // Immediate goes in bits 21:10 of LD/ST instruction, taken
521 // from bits 11:0 of X
522 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
523 break;
524 case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
525 // Operation: S + A
526 // Immediate goes in bits 21:10 of LD/ST instruction, taken
527 // from bits 11:1 of X
528 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
529 break;
530 case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
531 // Operation: S + A
532 // Immediate goes in bits 21:10 of LD/ST instruction, taken
533 // from bits 11:2 of X
534 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
535 break;
536 case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
537 // Operation: S + A
538 // Immediate goes in bits 21:10 of LD/ST instruction, taken
539 // from bits 11:3 of X
540 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
541 break;
542 case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
543 // Operation: S + A
544 // Immediate goes in bits 21:10 of LD/ST instruction, taken
545 // from bits 11:4 of X
546 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
547 break;
548 case ELF::R_AARCH64_LD_PREL_LO19: {
549 // Operation: S + A - P
550 uint64_t Result = Value + Addend - FinalAddress;
551
552 // "Check that -2^20 <= result < 2^20".
553 assert(isInt<21>(Result));
554
555 *TargetPtr &= 0xff00001fU;
556 // Immediate goes in bits 23:5 of LD imm instruction, taken
557 // from bits 20:2 of X
558 *TargetPtr |= ((Result & 0xffc) << (5 - 2));
559 break;
560 }
561 case ELF::R_AARCH64_ADR_PREL_LO21: {
562 // Operation: S + A - P
563 uint64_t Result = Value + Addend - FinalAddress;
564
565 // "Check that -2^20 <= result < 2^20".
566 assert(isInt<21>(Result));
567
568 *TargetPtr &= 0x9f00001fU;
569 // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
570 // from bits 20:0 of X
571 *TargetPtr |= ((Result & 0xffc) << (5 - 2));
572 *TargetPtr |= (Result & 0x3) << 29;
573 break;
574 }
575 }
576 }
577
resolveARMRelocation(const SectionEntry & Section,uint64_t Offset,uint32_t Value,uint32_t Type,int32_t Addend)578 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
579 uint64_t Offset, uint32_t Value,
580 uint32_t Type, int32_t Addend) {
581 // TODO: Add Thumb relocations.
582 uint32_t *TargetPtr =
583 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
584 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
585 Value += Addend;
586
587 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
588 << Section.getAddressWithOffset(Offset)
589 << " FinalAddress: " << format("%p", FinalAddress)
590 << " Value: " << format("%x", Value)
591 << " Type: " << format("%x", Type)
592 << " Addend: " << format("%x", Addend) << "\n");
593
594 switch (Type) {
595 default:
596 llvm_unreachable("Not implemented relocation type!");
597
598 case ELF::R_ARM_NONE:
599 break;
600 // Write a 31bit signed offset
601 case ELF::R_ARM_PREL31:
602 support::ulittle32_t::ref{TargetPtr} =
603 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
604 ((Value - FinalAddress) & ~0x80000000);
605 break;
606 case ELF::R_ARM_TARGET1:
607 case ELF::R_ARM_ABS32:
608 support::ulittle32_t::ref{TargetPtr} = Value;
609 break;
610 // Write first 16 bit of 32 bit value to the mov instruction.
611 // Last 4 bit should be shifted.
612 case ELF::R_ARM_MOVW_ABS_NC:
613 case ELF::R_ARM_MOVT_ABS:
614 if (Type == ELF::R_ARM_MOVW_ABS_NC)
615 Value = Value & 0xFFFF;
616 else if (Type == ELF::R_ARM_MOVT_ABS)
617 Value = (Value >> 16) & 0xFFFF;
618 support::ulittle32_t::ref{TargetPtr} =
619 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
620 (((Value >> 12) & 0xF) << 16);
621 break;
622 // Write 24 bit relative value to the branch instruction.
623 case ELF::R_ARM_PC24: // Fall through.
624 case ELF::R_ARM_CALL: // Fall through.
625 case ELF::R_ARM_JUMP24:
626 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
627 RelValue = (RelValue & 0x03FFFFFC) >> 2;
628 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
629 support::ulittle32_t::ref{TargetPtr} =
630 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
631 break;
632 }
633 }
634
setMipsABI(const ObjectFile & Obj)635 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
636 if (Arch == Triple::UnknownArch ||
637 !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
638 IsMipsO32ABI = false;
639 IsMipsN32ABI = false;
640 IsMipsN64ABI = false;
641 return;
642 }
643 if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
644 unsigned AbiVariant = E->getPlatformFlags();
645 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
646 IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
647 }
648 IsMipsN64ABI = Obj.getFileFormatName().equals("elf64-mips");
649 }
650
651 // Return the .TOC. section and offset.
findPPC64TOCSection(const ELFObjectFileBase & Obj,ObjSectionToIDMap & LocalSections,RelocationValueRef & Rel)652 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
653 ObjSectionToIDMap &LocalSections,
654 RelocationValueRef &Rel) {
655 // Set a default SectionID in case we do not find a TOC section below.
656 // This may happen for references to TOC base base (sym@toc, .odp
657 // relocation) without a .toc directive. In this case just use the
658 // first section (which is usually the .odp) since the code won't
659 // reference the .toc base directly.
660 Rel.SymbolName = nullptr;
661 Rel.SectionID = 0;
662
663 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
664 // order. The TOC starts where the first of these sections starts.
665 for (auto &Section : Obj.sections()) {
666 Expected<StringRef> NameOrErr = Section.getName();
667 if (!NameOrErr)
668 return NameOrErr.takeError();
669 StringRef SectionName = *NameOrErr;
670
671 if (SectionName == ".got"
672 || SectionName == ".toc"
673 || SectionName == ".tocbss"
674 || SectionName == ".plt") {
675 if (auto SectionIDOrErr =
676 findOrEmitSection(Obj, Section, false, LocalSections))
677 Rel.SectionID = *SectionIDOrErr;
678 else
679 return SectionIDOrErr.takeError();
680 break;
681 }
682 }
683
684 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
685 // thus permitting a full 64 Kbytes segment.
686 Rel.Addend = 0x8000;
687
688 return Error::success();
689 }
690
691 // Returns the sections and offset associated with the ODP entry referenced
692 // by Symbol.
findOPDEntrySection(const ELFObjectFileBase & Obj,ObjSectionToIDMap & LocalSections,RelocationValueRef & Rel)693 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
694 ObjSectionToIDMap &LocalSections,
695 RelocationValueRef &Rel) {
696 // Get the ELF symbol value (st_value) to compare with Relocation offset in
697 // .opd entries
698 for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
699 si != se; ++si) {
700
701 Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
702 if (!RelSecOrErr)
703 report_fatal_error(Twine(toString(RelSecOrErr.takeError())));
704
705 section_iterator RelSecI = *RelSecOrErr;
706 if (RelSecI == Obj.section_end())
707 continue;
708
709 Expected<StringRef> NameOrErr = RelSecI->getName();
710 if (!NameOrErr)
711 return NameOrErr.takeError();
712 StringRef RelSectionName = *NameOrErr;
713
714 if (RelSectionName != ".opd")
715 continue;
716
717 for (elf_relocation_iterator i = si->relocation_begin(),
718 e = si->relocation_end();
719 i != e;) {
720 // The R_PPC64_ADDR64 relocation indicates the first field
721 // of a .opd entry
722 uint64_t TypeFunc = i->getType();
723 if (TypeFunc != ELF::R_PPC64_ADDR64) {
724 ++i;
725 continue;
726 }
727
728 uint64_t TargetSymbolOffset = i->getOffset();
729 symbol_iterator TargetSymbol = i->getSymbol();
730 int64_t Addend;
731 if (auto AddendOrErr = i->getAddend())
732 Addend = *AddendOrErr;
733 else
734 return AddendOrErr.takeError();
735
736 ++i;
737 if (i == e)
738 break;
739
740 // Just check if following relocation is a R_PPC64_TOC
741 uint64_t TypeTOC = i->getType();
742 if (TypeTOC != ELF::R_PPC64_TOC)
743 continue;
744
745 // Finally compares the Symbol value and the target symbol offset
746 // to check if this .opd entry refers to the symbol the relocation
747 // points to.
748 if (Rel.Addend != (int64_t)TargetSymbolOffset)
749 continue;
750
751 section_iterator TSI = Obj.section_end();
752 if (auto TSIOrErr = TargetSymbol->getSection())
753 TSI = *TSIOrErr;
754 else
755 return TSIOrErr.takeError();
756 assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
757
758 bool IsCode = TSI->isText();
759 if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
760 LocalSections))
761 Rel.SectionID = *SectionIDOrErr;
762 else
763 return SectionIDOrErr.takeError();
764 Rel.Addend = (intptr_t)Addend;
765 return Error::success();
766 }
767 }
768 llvm_unreachable("Attempting to get address of ODP entry!");
769 }
770
771 // Relocation masks following the #lo(value), #hi(value), #ha(value),
772 // #higher(value), #highera(value), #highest(value), and #highesta(value)
773 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
774 // document.
775
applyPPClo(uint64_t value)776 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
777
applyPPChi(uint64_t value)778 static inline uint16_t applyPPChi(uint64_t value) {
779 return (value >> 16) & 0xffff;
780 }
781
applyPPCha(uint64_t value)782 static inline uint16_t applyPPCha (uint64_t value) {
783 return ((value + 0x8000) >> 16) & 0xffff;
784 }
785
applyPPChigher(uint64_t value)786 static inline uint16_t applyPPChigher(uint64_t value) {
787 return (value >> 32) & 0xffff;
788 }
789
applyPPChighera(uint64_t value)790 static inline uint16_t applyPPChighera (uint64_t value) {
791 return ((value + 0x8000) >> 32) & 0xffff;
792 }
793
applyPPChighest(uint64_t value)794 static inline uint16_t applyPPChighest(uint64_t value) {
795 return (value >> 48) & 0xffff;
796 }
797
applyPPChighesta(uint64_t value)798 static inline uint16_t applyPPChighesta (uint64_t value) {
799 return ((value + 0x8000) >> 48) & 0xffff;
800 }
801
resolvePPC32Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)802 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
803 uint64_t Offset, uint64_t Value,
804 uint32_t Type, int64_t Addend) {
805 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
806 switch (Type) {
807 default:
808 report_fatal_error("Relocation type not implemented yet!");
809 break;
810 case ELF::R_PPC_ADDR16_LO:
811 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
812 break;
813 case ELF::R_PPC_ADDR16_HI:
814 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
815 break;
816 case ELF::R_PPC_ADDR16_HA:
817 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
818 break;
819 }
820 }
821
resolvePPC64Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)822 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
823 uint64_t Offset, uint64_t Value,
824 uint32_t Type, int64_t Addend) {
825 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
826 switch (Type) {
827 default:
828 report_fatal_error("Relocation type not implemented yet!");
829 break;
830 case ELF::R_PPC64_ADDR16:
831 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
832 break;
833 case ELF::R_PPC64_ADDR16_DS:
834 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
835 break;
836 case ELF::R_PPC64_ADDR16_LO:
837 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
838 break;
839 case ELF::R_PPC64_ADDR16_LO_DS:
840 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
841 break;
842 case ELF::R_PPC64_ADDR16_HI:
843 case ELF::R_PPC64_ADDR16_HIGH:
844 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
845 break;
846 case ELF::R_PPC64_ADDR16_HA:
847 case ELF::R_PPC64_ADDR16_HIGHA:
848 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
849 break;
850 case ELF::R_PPC64_ADDR16_HIGHER:
851 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
852 break;
853 case ELF::R_PPC64_ADDR16_HIGHERA:
854 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
855 break;
856 case ELF::R_PPC64_ADDR16_HIGHEST:
857 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
858 break;
859 case ELF::R_PPC64_ADDR16_HIGHESTA:
860 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
861 break;
862 case ELF::R_PPC64_ADDR14: {
863 assert(((Value + Addend) & 3) == 0);
864 // Preserve the AA/LK bits in the branch instruction
865 uint8_t aalk = *(LocalAddress + 3);
866 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
867 } break;
868 case ELF::R_PPC64_REL16_LO: {
869 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
870 uint64_t Delta = Value - FinalAddress + Addend;
871 writeInt16BE(LocalAddress, applyPPClo(Delta));
872 } break;
873 case ELF::R_PPC64_REL16_HI: {
874 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
875 uint64_t Delta = Value - FinalAddress + Addend;
876 writeInt16BE(LocalAddress, applyPPChi(Delta));
877 } break;
878 case ELF::R_PPC64_REL16_HA: {
879 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
880 uint64_t Delta = Value - FinalAddress + Addend;
881 writeInt16BE(LocalAddress, applyPPCha(Delta));
882 } break;
883 case ELF::R_PPC64_ADDR32: {
884 int64_t Result = static_cast<int64_t>(Value + Addend);
885 if (SignExtend64<32>(Result) != Result)
886 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
887 writeInt32BE(LocalAddress, Result);
888 } break;
889 case ELF::R_PPC64_REL24: {
890 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
891 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
892 if (SignExtend64<26>(delta) != delta)
893 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
894 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
895 uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
896 writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
897 } break;
898 case ELF::R_PPC64_REL32: {
899 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
900 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
901 if (SignExtend64<32>(delta) != delta)
902 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
903 writeInt32BE(LocalAddress, delta);
904 } break;
905 case ELF::R_PPC64_REL64: {
906 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
907 uint64_t Delta = Value - FinalAddress + Addend;
908 writeInt64BE(LocalAddress, Delta);
909 } break;
910 case ELF::R_PPC64_ADDR64:
911 writeInt64BE(LocalAddress, Value + Addend);
912 break;
913 }
914 }
915
resolveSystemZRelocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)916 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
917 uint64_t Offset, uint64_t Value,
918 uint32_t Type, int64_t Addend) {
919 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
920 switch (Type) {
921 default:
922 report_fatal_error("Relocation type not implemented yet!");
923 break;
924 case ELF::R_390_PC16DBL:
925 case ELF::R_390_PLT16DBL: {
926 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
927 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
928 writeInt16BE(LocalAddress, Delta / 2);
929 break;
930 }
931 case ELF::R_390_PC32DBL:
932 case ELF::R_390_PLT32DBL: {
933 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
934 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
935 writeInt32BE(LocalAddress, Delta / 2);
936 break;
937 }
938 case ELF::R_390_PC16: {
939 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
940 assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
941 writeInt16BE(LocalAddress, Delta);
942 break;
943 }
944 case ELF::R_390_PC32: {
945 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
946 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
947 writeInt32BE(LocalAddress, Delta);
948 break;
949 }
950 case ELF::R_390_PC64: {
951 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
952 writeInt64BE(LocalAddress, Delta);
953 break;
954 }
955 case ELF::R_390_8:
956 *LocalAddress = (uint8_t)(Value + Addend);
957 break;
958 case ELF::R_390_16:
959 writeInt16BE(LocalAddress, Value + Addend);
960 break;
961 case ELF::R_390_32:
962 writeInt32BE(LocalAddress, Value + Addend);
963 break;
964 case ELF::R_390_64:
965 writeInt64BE(LocalAddress, Value + Addend);
966 break;
967 }
968 }
969
resolveBPFRelocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)970 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
971 uint64_t Offset, uint64_t Value,
972 uint32_t Type, int64_t Addend) {
973 bool isBE = Arch == Triple::bpfeb;
974
975 switch (Type) {
976 default:
977 report_fatal_error("Relocation type not implemented yet!");
978 break;
979 case ELF::R_BPF_NONE:
980 case ELF::R_BPF_64_64:
981 case ELF::R_BPF_64_32:
982 case ELF::R_BPF_64_NODYLD32:
983 break;
984 case ELF::R_BPF_64_ABS64: {
985 write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
986 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
987 << format("%p\n", Section.getAddressWithOffset(Offset)));
988 break;
989 }
990 case ELF::R_BPF_64_ABS32: {
991 Value += Addend;
992 assert(Value <= UINT32_MAX);
993 write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
994 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
995 << format("%p\n", Section.getAddressWithOffset(Offset)));
996 break;
997 }
998 }
999 }
1000
1001 // The target location for the relocation is described by RE.SectionID and
1002 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
1003 // SectionEntry has three members describing its location.
1004 // SectionEntry::Address is the address at which the section has been loaded
1005 // into memory in the current (host) process. SectionEntry::LoadAddress is the
1006 // address that the section will have in the target process.
1007 // SectionEntry::ObjAddress is the address of the bits for this section in the
1008 // original emitted object image (also in the current address space).
1009 //
1010 // Relocations will be applied as if the section were loaded at
1011 // SectionEntry::LoadAddress, but they will be applied at an address based
1012 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
1013 // Target memory contents if they are required for value calculations.
1014 //
1015 // The Value parameter here is the load address of the symbol for the
1016 // relocation to be applied. For relocations which refer to symbols in the
1017 // current object Value will be the LoadAddress of the section in which
1018 // the symbol resides (RE.Addend provides additional information about the
1019 // symbol location). For external symbols, Value will be the address of the
1020 // symbol in the target address space.
resolveRelocation(const RelocationEntry & RE,uint64_t Value)1021 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1022 uint64_t Value) {
1023 const SectionEntry &Section = Sections[RE.SectionID];
1024 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1025 RE.SymOffset, RE.SectionID);
1026 }
1027
resolveRelocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend,uint64_t SymOffset,SID SectionID)1028 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1029 uint64_t Offset, uint64_t Value,
1030 uint32_t Type, int64_t Addend,
1031 uint64_t SymOffset, SID SectionID) {
1032 switch (Arch) {
1033 case Triple::x86_64:
1034 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1035 break;
1036 case Triple::x86:
1037 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1038 (uint32_t)(Addend & 0xffffffffL));
1039 break;
1040 case Triple::aarch64:
1041 case Triple::aarch64_be:
1042 resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1043 break;
1044 case Triple::arm: // Fall through.
1045 case Triple::armeb:
1046 case Triple::thumb:
1047 case Triple::thumbeb:
1048 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1049 (uint32_t)(Addend & 0xffffffffL));
1050 break;
1051 case Triple::ppc: // Fall through.
1052 case Triple::ppcle:
1053 resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1054 break;
1055 case Triple::ppc64: // Fall through.
1056 case Triple::ppc64le:
1057 resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1058 break;
1059 case Triple::systemz:
1060 resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1061 break;
1062 case Triple::bpfel:
1063 case Triple::bpfeb:
1064 resolveBPFRelocation(Section, Offset, Value, Type, Addend);
1065 break;
1066 default:
1067 llvm_unreachable("Unsupported CPU type!");
1068 }
1069 }
1070
computePlaceholderAddress(unsigned SectionID,uint64_t Offset) const1071 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
1072 return (void *)(Sections[SectionID].getObjAddress() + Offset);
1073 }
1074
processSimpleRelocation(unsigned SectionID,uint64_t Offset,unsigned RelType,RelocationValueRef Value)1075 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1076 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1077 if (Value.SymbolName)
1078 addRelocationForSymbol(RE, Value.SymbolName);
1079 else
1080 addRelocationForSection(RE, Value.SectionID);
1081 }
1082
getMatchingLoRelocation(uint32_t RelType,bool IsLocal) const1083 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1084 bool IsLocal) const {
1085 switch (RelType) {
1086 case ELF::R_MICROMIPS_GOT16:
1087 if (IsLocal)
1088 return ELF::R_MICROMIPS_LO16;
1089 break;
1090 case ELF::R_MICROMIPS_HI16:
1091 return ELF::R_MICROMIPS_LO16;
1092 case ELF::R_MIPS_GOT16:
1093 if (IsLocal)
1094 return ELF::R_MIPS_LO16;
1095 break;
1096 case ELF::R_MIPS_HI16:
1097 return ELF::R_MIPS_LO16;
1098 case ELF::R_MIPS_PCHI16:
1099 return ELF::R_MIPS_PCLO16;
1100 default:
1101 break;
1102 }
1103 return ELF::R_MIPS_NONE;
1104 }
1105
1106 // Sometimes we don't need to create thunk for a branch.
1107 // This typically happens when branch target is located
1108 // in the same object file. In such case target is either
1109 // a weak symbol or symbol in a different executable section.
1110 // This function checks if branch target is located in the
1111 // same object file and if distance between source and target
1112 // fits R_AARCH64_CALL26 relocation. If both conditions are
1113 // met, it emits direct jump to the target and returns true.
1114 // Otherwise false is returned and thunk is created.
resolveAArch64ShortBranch(unsigned SectionID,relocation_iterator RelI,const RelocationValueRef & Value)1115 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1116 unsigned SectionID, relocation_iterator RelI,
1117 const RelocationValueRef &Value) {
1118 uint64_t Address;
1119 if (Value.SymbolName) {
1120 auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1121
1122 // Don't create direct branch for external symbols.
1123 if (Loc == GlobalSymbolTable.end())
1124 return false;
1125
1126 const auto &SymInfo = Loc->second;
1127 Address =
1128 uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1129 SymInfo.getOffset()));
1130 } else {
1131 Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1132 }
1133 uint64_t Offset = RelI->getOffset();
1134 uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1135
1136 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1137 // If distance between source and target is out of range then we should
1138 // create thunk.
1139 if (!isInt<28>(Address + Value.Addend - SourceAddress))
1140 return false;
1141
1142 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1143 Value.Addend);
1144
1145 return true;
1146 }
1147
resolveAArch64Branch(unsigned SectionID,const RelocationValueRef & Value,relocation_iterator RelI,StubMap & Stubs)1148 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1149 const RelocationValueRef &Value,
1150 relocation_iterator RelI,
1151 StubMap &Stubs) {
1152
1153 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1154 SectionEntry &Section = Sections[SectionID];
1155
1156 uint64_t Offset = RelI->getOffset();
1157 unsigned RelType = RelI->getType();
1158 // Look for an existing stub.
1159 StubMap::const_iterator i = Stubs.find(Value);
1160 if (i != Stubs.end()) {
1161 resolveRelocation(Section, Offset,
1162 (uint64_t)Section.getAddressWithOffset(i->second),
1163 RelType, 0);
1164 LLVM_DEBUG(dbgs() << " Stub function found\n");
1165 } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1166 // Create a new stub function.
1167 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1168 Stubs[Value] = Section.getStubOffset();
1169 uint8_t *StubTargetAddr = createStubFunction(
1170 Section.getAddressWithOffset(Section.getStubOffset()));
1171
1172 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1173 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1174 RelocationEntry REmovk_g2(SectionID,
1175 StubTargetAddr - Section.getAddress() + 4,
1176 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1177 RelocationEntry REmovk_g1(SectionID,
1178 StubTargetAddr - Section.getAddress() + 8,
1179 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1180 RelocationEntry REmovk_g0(SectionID,
1181 StubTargetAddr - Section.getAddress() + 12,
1182 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1183
1184 if (Value.SymbolName) {
1185 addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1186 addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1187 addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1188 addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1189 } else {
1190 addRelocationForSection(REmovz_g3, Value.SectionID);
1191 addRelocationForSection(REmovk_g2, Value.SectionID);
1192 addRelocationForSection(REmovk_g1, Value.SectionID);
1193 addRelocationForSection(REmovk_g0, Value.SectionID);
1194 }
1195 resolveRelocation(Section, Offset,
1196 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1197 Section.getStubOffset())),
1198 RelType, 0);
1199 Section.advanceStubOffset(getMaxStubSize());
1200 }
1201 }
1202
1203 Expected<relocation_iterator>
processRelocationRef(unsigned SectionID,relocation_iterator RelI,const ObjectFile & O,ObjSectionToIDMap & ObjSectionToID,StubMap & Stubs)1204 RuntimeDyldELF::processRelocationRef(
1205 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1206 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1207 const auto &Obj = cast<ELFObjectFileBase>(O);
1208 uint64_t RelType = RelI->getType();
1209 int64_t Addend = 0;
1210 if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1211 Addend = *AddendOrErr;
1212 else
1213 consumeError(AddendOrErr.takeError());
1214 elf_symbol_iterator Symbol = RelI->getSymbol();
1215
1216 // Obtain the symbol name which is referenced in the relocation
1217 StringRef TargetName;
1218 if (Symbol != Obj.symbol_end()) {
1219 if (auto TargetNameOrErr = Symbol->getName())
1220 TargetName = *TargetNameOrErr;
1221 else
1222 return TargetNameOrErr.takeError();
1223 }
1224 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1225 << " TargetName: " << TargetName << "\n");
1226 RelocationValueRef Value;
1227 // First search for the symbol in the local symbol table
1228 SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1229
1230 // Search for the symbol in the global symbol table
1231 RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1232 if (Symbol != Obj.symbol_end()) {
1233 gsi = GlobalSymbolTable.find(TargetName.data());
1234 Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1235 if (!SymTypeOrErr) {
1236 std::string Buf;
1237 raw_string_ostream OS(Buf);
1238 logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1239 report_fatal_error(Twine(OS.str()));
1240 }
1241 SymType = *SymTypeOrErr;
1242 }
1243 if (gsi != GlobalSymbolTable.end()) {
1244 const auto &SymInfo = gsi->second;
1245 Value.SectionID = SymInfo.getSectionID();
1246 Value.Offset = SymInfo.getOffset();
1247 Value.Addend = SymInfo.getOffset() + Addend;
1248 } else {
1249 switch (SymType) {
1250 case SymbolRef::ST_Debug: {
1251 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1252 // and can be changed by another developers. Maybe best way is add
1253 // a new symbol type ST_Section to SymbolRef and use it.
1254 auto SectionOrErr = Symbol->getSection();
1255 if (!SectionOrErr) {
1256 std::string Buf;
1257 raw_string_ostream OS(Buf);
1258 logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1259 report_fatal_error(Twine(OS.str()));
1260 }
1261 section_iterator si = *SectionOrErr;
1262 if (si == Obj.section_end())
1263 llvm_unreachable("Symbol section not found, bad object file format!");
1264 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1265 bool isCode = si->isText();
1266 if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1267 ObjSectionToID))
1268 Value.SectionID = *SectionIDOrErr;
1269 else
1270 return SectionIDOrErr.takeError();
1271 Value.Addend = Addend;
1272 break;
1273 }
1274 case SymbolRef::ST_Data:
1275 case SymbolRef::ST_Function:
1276 case SymbolRef::ST_Unknown: {
1277 Value.SymbolName = TargetName.data();
1278 Value.Addend = Addend;
1279
1280 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1281 // will manifest here as a NULL symbol name.
1282 // We can set this as a valid (but empty) symbol name, and rely
1283 // on addRelocationForSymbol to handle this.
1284 if (!Value.SymbolName)
1285 Value.SymbolName = "";
1286 break;
1287 }
1288 default:
1289 llvm_unreachable("Unresolved symbol type!");
1290 break;
1291 }
1292 }
1293
1294 uint64_t Offset = RelI->getOffset();
1295
1296 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1297 << "\n");
1298 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1299 if ((RelType == ELF::R_AARCH64_CALL26 ||
1300 RelType == ELF::R_AARCH64_JUMP26) &&
1301 MemMgr.allowStubAllocation()) {
1302 resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1303 } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1304 // Craete new GOT entry or find existing one. If GOT entry is
1305 // to be created, then we also emit ABS64 relocation for it.
1306 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1307 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1308 ELF::R_AARCH64_ADR_PREL_PG_HI21);
1309
1310 } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1311 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1312 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1313 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1314 } else {
1315 processSimpleRelocation(SectionID, Offset, RelType, Value);
1316 }
1317 } else if (Arch == Triple::arm) {
1318 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1319 RelType == ELF::R_ARM_JUMP24) {
1320 // This is an ARM branch relocation, need to use a stub function.
1321 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1322 SectionEntry &Section = Sections[SectionID];
1323
1324 // Look for an existing stub.
1325 StubMap::const_iterator i = Stubs.find(Value);
1326 if (i != Stubs.end()) {
1327 resolveRelocation(
1328 Section, Offset,
1329 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1330 RelType, 0);
1331 LLVM_DEBUG(dbgs() << " Stub function found\n");
1332 } else {
1333 // Create a new stub function.
1334 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1335 Stubs[Value] = Section.getStubOffset();
1336 uint8_t *StubTargetAddr = createStubFunction(
1337 Section.getAddressWithOffset(Section.getStubOffset()));
1338 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1339 ELF::R_ARM_ABS32, Value.Addend);
1340 if (Value.SymbolName)
1341 addRelocationForSymbol(RE, Value.SymbolName);
1342 else
1343 addRelocationForSection(RE, Value.SectionID);
1344
1345 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1346 Section.getAddressWithOffset(
1347 Section.getStubOffset())),
1348 RelType, 0);
1349 Section.advanceStubOffset(getMaxStubSize());
1350 }
1351 } else {
1352 uint32_t *Placeholder =
1353 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1354 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1355 RelType == ELF::R_ARM_ABS32) {
1356 Value.Addend += *Placeholder;
1357 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1358 // See ELF for ARM documentation
1359 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1360 }
1361 processSimpleRelocation(SectionID, Offset, RelType, Value);
1362 }
1363 } else if (IsMipsO32ABI) {
1364 uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1365 computePlaceholderAddress(SectionID, Offset));
1366 uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1367 if (RelType == ELF::R_MIPS_26) {
1368 // This is an Mips branch relocation, need to use a stub function.
1369 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1370 SectionEntry &Section = Sections[SectionID];
1371
1372 // Extract the addend from the instruction.
1373 // We shift up by two since the Value will be down shifted again
1374 // when applying the relocation.
1375 uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1376
1377 Value.Addend += Addend;
1378
1379 // Look up for existing stub.
1380 StubMap::const_iterator i = Stubs.find(Value);
1381 if (i != Stubs.end()) {
1382 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1383 addRelocationForSection(RE, SectionID);
1384 LLVM_DEBUG(dbgs() << " Stub function found\n");
1385 } else {
1386 // Create a new stub function.
1387 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1388 Stubs[Value] = Section.getStubOffset();
1389
1390 unsigned AbiVariant = Obj.getPlatformFlags();
1391
1392 uint8_t *StubTargetAddr = createStubFunction(
1393 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1394
1395 // Creating Hi and Lo relocations for the filled stub instructions.
1396 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1397 ELF::R_MIPS_HI16, Value.Addend);
1398 RelocationEntry RELo(SectionID,
1399 StubTargetAddr - Section.getAddress() + 4,
1400 ELF::R_MIPS_LO16, Value.Addend);
1401
1402 if (Value.SymbolName) {
1403 addRelocationForSymbol(REHi, Value.SymbolName);
1404 addRelocationForSymbol(RELo, Value.SymbolName);
1405 } else {
1406 addRelocationForSection(REHi, Value.SectionID);
1407 addRelocationForSection(RELo, Value.SectionID);
1408 }
1409
1410 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1411 addRelocationForSection(RE, SectionID);
1412 Section.advanceStubOffset(getMaxStubSize());
1413 }
1414 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1415 int64_t Addend = (Opcode & 0x0000ffff) << 16;
1416 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1417 PendingRelocs.push_back(std::make_pair(Value, RE));
1418 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1419 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1420 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1421 const RelocationValueRef &MatchingValue = I->first;
1422 RelocationEntry &Reloc = I->second;
1423 if (MatchingValue == Value &&
1424 RelType == getMatchingLoRelocation(Reloc.RelType) &&
1425 SectionID == Reloc.SectionID) {
1426 Reloc.Addend += Addend;
1427 if (Value.SymbolName)
1428 addRelocationForSymbol(Reloc, Value.SymbolName);
1429 else
1430 addRelocationForSection(Reloc, Value.SectionID);
1431 I = PendingRelocs.erase(I);
1432 } else
1433 ++I;
1434 }
1435 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1436 if (Value.SymbolName)
1437 addRelocationForSymbol(RE, Value.SymbolName);
1438 else
1439 addRelocationForSection(RE, Value.SectionID);
1440 } else {
1441 if (RelType == ELF::R_MIPS_32)
1442 Value.Addend += Opcode;
1443 else if (RelType == ELF::R_MIPS_PC16)
1444 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1445 else if (RelType == ELF::R_MIPS_PC19_S2)
1446 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1447 else if (RelType == ELF::R_MIPS_PC21_S2)
1448 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1449 else if (RelType == ELF::R_MIPS_PC26_S2)
1450 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1451 processSimpleRelocation(SectionID, Offset, RelType, Value);
1452 }
1453 } else if (IsMipsN32ABI || IsMipsN64ABI) {
1454 uint32_t r_type = RelType & 0xff;
1455 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1456 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1457 || r_type == ELF::R_MIPS_GOT_DISP) {
1458 StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1459 if (i != GOTSymbolOffsets.end())
1460 RE.SymOffset = i->second;
1461 else {
1462 RE.SymOffset = allocateGOTEntries(1);
1463 GOTSymbolOffsets[TargetName] = RE.SymOffset;
1464 }
1465 if (Value.SymbolName)
1466 addRelocationForSymbol(RE, Value.SymbolName);
1467 else
1468 addRelocationForSection(RE, Value.SectionID);
1469 } else if (RelType == ELF::R_MIPS_26) {
1470 // This is an Mips branch relocation, need to use a stub function.
1471 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1472 SectionEntry &Section = Sections[SectionID];
1473
1474 // Look up for existing stub.
1475 StubMap::const_iterator i = Stubs.find(Value);
1476 if (i != Stubs.end()) {
1477 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1478 addRelocationForSection(RE, SectionID);
1479 LLVM_DEBUG(dbgs() << " Stub function found\n");
1480 } else {
1481 // Create a new stub function.
1482 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1483 Stubs[Value] = Section.getStubOffset();
1484
1485 unsigned AbiVariant = Obj.getPlatformFlags();
1486
1487 uint8_t *StubTargetAddr = createStubFunction(
1488 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1489
1490 if (IsMipsN32ABI) {
1491 // Creating Hi and Lo relocations for the filled stub instructions.
1492 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1493 ELF::R_MIPS_HI16, Value.Addend);
1494 RelocationEntry RELo(SectionID,
1495 StubTargetAddr - Section.getAddress() + 4,
1496 ELF::R_MIPS_LO16, Value.Addend);
1497 if (Value.SymbolName) {
1498 addRelocationForSymbol(REHi, Value.SymbolName);
1499 addRelocationForSymbol(RELo, Value.SymbolName);
1500 } else {
1501 addRelocationForSection(REHi, Value.SectionID);
1502 addRelocationForSection(RELo, Value.SectionID);
1503 }
1504 } else {
1505 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1506 // instructions.
1507 RelocationEntry REHighest(SectionID,
1508 StubTargetAddr - Section.getAddress(),
1509 ELF::R_MIPS_HIGHEST, Value.Addend);
1510 RelocationEntry REHigher(SectionID,
1511 StubTargetAddr - Section.getAddress() + 4,
1512 ELF::R_MIPS_HIGHER, Value.Addend);
1513 RelocationEntry REHi(SectionID,
1514 StubTargetAddr - Section.getAddress() + 12,
1515 ELF::R_MIPS_HI16, Value.Addend);
1516 RelocationEntry RELo(SectionID,
1517 StubTargetAddr - Section.getAddress() + 20,
1518 ELF::R_MIPS_LO16, Value.Addend);
1519 if (Value.SymbolName) {
1520 addRelocationForSymbol(REHighest, Value.SymbolName);
1521 addRelocationForSymbol(REHigher, Value.SymbolName);
1522 addRelocationForSymbol(REHi, Value.SymbolName);
1523 addRelocationForSymbol(RELo, Value.SymbolName);
1524 } else {
1525 addRelocationForSection(REHighest, Value.SectionID);
1526 addRelocationForSection(REHigher, Value.SectionID);
1527 addRelocationForSection(REHi, Value.SectionID);
1528 addRelocationForSection(RELo, Value.SectionID);
1529 }
1530 }
1531 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1532 addRelocationForSection(RE, SectionID);
1533 Section.advanceStubOffset(getMaxStubSize());
1534 }
1535 } else {
1536 processSimpleRelocation(SectionID, Offset, RelType, Value);
1537 }
1538
1539 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1540 if (RelType == ELF::R_PPC64_REL24) {
1541 // Determine ABI variant in use for this object.
1542 unsigned AbiVariant = Obj.getPlatformFlags();
1543 AbiVariant &= ELF::EF_PPC64_ABI;
1544 // A PPC branch relocation will need a stub function if the target is
1545 // an external symbol (either Value.SymbolName is set, or SymType is
1546 // Symbol::ST_Unknown) or if the target address is not within the
1547 // signed 24-bits branch address.
1548 SectionEntry &Section = Sections[SectionID];
1549 uint8_t *Target = Section.getAddressWithOffset(Offset);
1550 bool RangeOverflow = false;
1551 bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1552 if (!IsExtern) {
1553 if (AbiVariant != 2) {
1554 // In the ELFv1 ABI, a function call may point to the .opd entry,
1555 // so the final symbol value is calculated based on the relocation
1556 // values in the .opd section.
1557 if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1558 return std::move(Err);
1559 } else {
1560 // In the ELFv2 ABI, a function symbol may provide a local entry
1561 // point, which must be used for direct calls.
1562 if (Value.SectionID == SectionID){
1563 uint8_t SymOther = Symbol->getOther();
1564 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1565 }
1566 }
1567 uint8_t *RelocTarget =
1568 Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1569 int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1570 // If it is within 26-bits branch range, just set the branch target
1571 if (SignExtend64<26>(delta) != delta) {
1572 RangeOverflow = true;
1573 } else if ((AbiVariant != 2) ||
1574 (AbiVariant == 2 && Value.SectionID == SectionID)) {
1575 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1576 addRelocationForSection(RE, Value.SectionID);
1577 }
1578 }
1579 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1580 RangeOverflow) {
1581 // It is an external symbol (either Value.SymbolName is set, or
1582 // SymType is SymbolRef::ST_Unknown) or out of range.
1583 StubMap::const_iterator i = Stubs.find(Value);
1584 if (i != Stubs.end()) {
1585 // Symbol function stub already created, just relocate to it
1586 resolveRelocation(Section, Offset,
1587 reinterpret_cast<uint64_t>(
1588 Section.getAddressWithOffset(i->second)),
1589 RelType, 0);
1590 LLVM_DEBUG(dbgs() << " Stub function found\n");
1591 } else {
1592 // Create a new stub function.
1593 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1594 Stubs[Value] = Section.getStubOffset();
1595 uint8_t *StubTargetAddr = createStubFunction(
1596 Section.getAddressWithOffset(Section.getStubOffset()),
1597 AbiVariant);
1598 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1599 ELF::R_PPC64_ADDR64, Value.Addend);
1600
1601 // Generates the 64-bits address loads as exemplified in section
1602 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1603 // apply to the low part of the instructions, so we have to update
1604 // the offset according to the target endianness.
1605 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1606 if (!IsTargetLittleEndian)
1607 StubRelocOffset += 2;
1608
1609 RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1610 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1611 RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1612 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1613 RelocationEntry REh(SectionID, StubRelocOffset + 12,
1614 ELF::R_PPC64_ADDR16_HI, Value.Addend);
1615 RelocationEntry REl(SectionID, StubRelocOffset + 16,
1616 ELF::R_PPC64_ADDR16_LO, Value.Addend);
1617
1618 if (Value.SymbolName) {
1619 addRelocationForSymbol(REhst, Value.SymbolName);
1620 addRelocationForSymbol(REhr, Value.SymbolName);
1621 addRelocationForSymbol(REh, Value.SymbolName);
1622 addRelocationForSymbol(REl, Value.SymbolName);
1623 } else {
1624 addRelocationForSection(REhst, Value.SectionID);
1625 addRelocationForSection(REhr, Value.SectionID);
1626 addRelocationForSection(REh, Value.SectionID);
1627 addRelocationForSection(REl, Value.SectionID);
1628 }
1629
1630 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1631 Section.getAddressWithOffset(
1632 Section.getStubOffset())),
1633 RelType, 0);
1634 Section.advanceStubOffset(getMaxStubSize());
1635 }
1636 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1637 // Restore the TOC for external calls
1638 if (AbiVariant == 2)
1639 writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1640 else
1641 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1642 }
1643 }
1644 } else if (RelType == ELF::R_PPC64_TOC16 ||
1645 RelType == ELF::R_PPC64_TOC16_DS ||
1646 RelType == ELF::R_PPC64_TOC16_LO ||
1647 RelType == ELF::R_PPC64_TOC16_LO_DS ||
1648 RelType == ELF::R_PPC64_TOC16_HI ||
1649 RelType == ELF::R_PPC64_TOC16_HA) {
1650 // These relocations are supposed to subtract the TOC address from
1651 // the final value. This does not fit cleanly into the RuntimeDyld
1652 // scheme, since there may be *two* sections involved in determining
1653 // the relocation value (the section of the symbol referred to by the
1654 // relocation, and the TOC section associated with the current module).
1655 //
1656 // Fortunately, these relocations are currently only ever generated
1657 // referring to symbols that themselves reside in the TOC, which means
1658 // that the two sections are actually the same. Thus they cancel out
1659 // and we can immediately resolve the relocation right now.
1660 switch (RelType) {
1661 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1662 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1663 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1664 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1665 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1666 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1667 default: llvm_unreachable("Wrong relocation type.");
1668 }
1669
1670 RelocationValueRef TOCValue;
1671 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1672 return std::move(Err);
1673 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1674 llvm_unreachable("Unsupported TOC relocation.");
1675 Value.Addend -= TOCValue.Addend;
1676 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1677 } else {
1678 // There are two ways to refer to the TOC address directly: either
1679 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1680 // ignored), or via any relocation that refers to the magic ".TOC."
1681 // symbols (in which case the addend is respected).
1682 if (RelType == ELF::R_PPC64_TOC) {
1683 RelType = ELF::R_PPC64_ADDR64;
1684 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1685 return std::move(Err);
1686 } else if (TargetName == ".TOC.") {
1687 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1688 return std::move(Err);
1689 Value.Addend += Addend;
1690 }
1691
1692 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1693
1694 if (Value.SymbolName)
1695 addRelocationForSymbol(RE, Value.SymbolName);
1696 else
1697 addRelocationForSection(RE, Value.SectionID);
1698 }
1699 } else if (Arch == Triple::systemz &&
1700 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1701 // Create function stubs for both PLT and GOT references, regardless of
1702 // whether the GOT reference is to data or code. The stub contains the
1703 // full address of the symbol, as needed by GOT references, and the
1704 // executable part only adds an overhead of 8 bytes.
1705 //
1706 // We could try to conserve space by allocating the code and data
1707 // parts of the stub separately. However, as things stand, we allocate
1708 // a stub for every relocation, so using a GOT in JIT code should be
1709 // no less space efficient than using an explicit constant pool.
1710 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1711 SectionEntry &Section = Sections[SectionID];
1712
1713 // Look for an existing stub.
1714 StubMap::const_iterator i = Stubs.find(Value);
1715 uintptr_t StubAddress;
1716 if (i != Stubs.end()) {
1717 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1718 LLVM_DEBUG(dbgs() << " Stub function found\n");
1719 } else {
1720 // Create a new stub function.
1721 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1722
1723 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1724 uintptr_t StubAlignment = getStubAlignment();
1725 StubAddress =
1726 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1727 -StubAlignment;
1728 unsigned StubOffset = StubAddress - BaseAddress;
1729
1730 Stubs[Value] = StubOffset;
1731 createStubFunction((uint8_t *)StubAddress);
1732 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1733 Value.Offset);
1734 if (Value.SymbolName)
1735 addRelocationForSymbol(RE, Value.SymbolName);
1736 else
1737 addRelocationForSection(RE, Value.SectionID);
1738 Section.advanceStubOffset(getMaxStubSize());
1739 }
1740
1741 if (RelType == ELF::R_390_GOTENT)
1742 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1743 Addend);
1744 else
1745 resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1746 } else if (Arch == Triple::x86_64) {
1747 if (RelType == ELF::R_X86_64_PLT32) {
1748 // The way the PLT relocations normally work is that the linker allocates
1749 // the
1750 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1751 // entry will then jump to an address provided by the GOT. On first call,
1752 // the
1753 // GOT address will point back into PLT code that resolves the symbol. After
1754 // the first call, the GOT entry points to the actual function.
1755 //
1756 // For local functions we're ignoring all of that here and just replacing
1757 // the PLT32 relocation type with PC32, which will translate the relocation
1758 // into a PC-relative call directly to the function. For external symbols we
1759 // can't be sure the function will be within 2^32 bytes of the call site, so
1760 // we need to create a stub, which calls into the GOT. This case is
1761 // equivalent to the usual PLT implementation except that we use the stub
1762 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1763 // rather than allocating a PLT section.
1764 if (Value.SymbolName && MemMgr.allowStubAllocation()) {
1765 // This is a call to an external function.
1766 // Look for an existing stub.
1767 SectionEntry *Section = &Sections[SectionID];
1768 StubMap::const_iterator i = Stubs.find(Value);
1769 uintptr_t StubAddress;
1770 if (i != Stubs.end()) {
1771 StubAddress = uintptr_t(Section->getAddress()) + i->second;
1772 LLVM_DEBUG(dbgs() << " Stub function found\n");
1773 } else {
1774 // Create a new stub function (equivalent to a PLT entry).
1775 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1776
1777 uintptr_t BaseAddress = uintptr_t(Section->getAddress());
1778 uintptr_t StubAlignment = getStubAlignment();
1779 StubAddress =
1780 (BaseAddress + Section->getStubOffset() + StubAlignment - 1) &
1781 -StubAlignment;
1782 unsigned StubOffset = StubAddress - BaseAddress;
1783 Stubs[Value] = StubOffset;
1784 createStubFunction((uint8_t *)StubAddress);
1785
1786 // Bump our stub offset counter
1787 Section->advanceStubOffset(getMaxStubSize());
1788
1789 // Allocate a GOT Entry
1790 uint64_t GOTOffset = allocateGOTEntries(1);
1791 // This potentially creates a new Section which potentially
1792 // invalidates the Section pointer, so reload it.
1793 Section = &Sections[SectionID];
1794
1795 // The load of the GOT address has an addend of -4
1796 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1797 ELF::R_X86_64_PC32);
1798
1799 // Fill in the value of the symbol we're targeting into the GOT
1800 addRelocationForSymbol(
1801 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1802 Value.SymbolName);
1803 }
1804
1805 // Make the target call a call into the stub table.
1806 resolveRelocation(*Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1807 Addend);
1808 } else {
1809 Value.Addend += support::ulittle32_t::ref(
1810 computePlaceholderAddress(SectionID, Offset));
1811 processSimpleRelocation(SectionID, Offset, ELF::R_X86_64_PC32, Value);
1812 }
1813 } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1814 RelType == ELF::R_X86_64_GOTPCRELX ||
1815 RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1816 uint64_t GOTOffset = allocateGOTEntries(1);
1817 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1818 ELF::R_X86_64_PC32);
1819
1820 // Fill in the value of the symbol we're targeting into the GOT
1821 RelocationEntry RE =
1822 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1823 if (Value.SymbolName)
1824 addRelocationForSymbol(RE, Value.SymbolName);
1825 else
1826 addRelocationForSection(RE, Value.SectionID);
1827 } else if (RelType == ELF::R_X86_64_GOT64) {
1828 // Fill in a 64-bit GOT offset.
1829 uint64_t GOTOffset = allocateGOTEntries(1);
1830 resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1831 ELF::R_X86_64_64, 0);
1832
1833 // Fill in the value of the symbol we're targeting into the GOT
1834 RelocationEntry RE =
1835 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1836 if (Value.SymbolName)
1837 addRelocationForSymbol(RE, Value.SymbolName);
1838 else
1839 addRelocationForSection(RE, Value.SectionID);
1840 } else if (RelType == ELF::R_X86_64_GOTPC32) {
1841 // Materialize the address of the base of the GOT relative to the PC.
1842 // This doesn't create a GOT entry, but it does mean we need a GOT
1843 // section.
1844 (void)allocateGOTEntries(0);
1845 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC32);
1846 } else if (RelType == ELF::R_X86_64_GOTPC64) {
1847 (void)allocateGOTEntries(0);
1848 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1849 } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1850 // GOTOFF relocations ultimately require a section difference relocation.
1851 (void)allocateGOTEntries(0);
1852 processSimpleRelocation(SectionID, Offset, RelType, Value);
1853 } else if (RelType == ELF::R_X86_64_PC32) {
1854 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1855 processSimpleRelocation(SectionID, Offset, RelType, Value);
1856 } else if (RelType == ELF::R_X86_64_PC64) {
1857 Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1858 processSimpleRelocation(SectionID, Offset, RelType, Value);
1859 } else if (RelType == ELF::R_X86_64_GOTTPOFF) {
1860 processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend);
1861 } else if (RelType == ELF::R_X86_64_TLSGD ||
1862 RelType == ELF::R_X86_64_TLSLD) {
1863 // The next relocation must be the relocation for __tls_get_addr.
1864 ++RelI;
1865 auto &GetAddrRelocation = *RelI;
1866 processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend,
1867 GetAddrRelocation);
1868 } else {
1869 processSimpleRelocation(SectionID, Offset, RelType, Value);
1870 }
1871 } else {
1872 if (Arch == Triple::x86) {
1873 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1874 }
1875 processSimpleRelocation(SectionID, Offset, RelType, Value);
1876 }
1877 return ++RelI;
1878 }
1879
processX86_64GOTTPOFFRelocation(unsigned SectionID,uint64_t Offset,RelocationValueRef Value,int64_t Addend)1880 void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID,
1881 uint64_t Offset,
1882 RelocationValueRef Value,
1883 int64_t Addend) {
1884 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
1885 // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
1886 // only mentions one optimization even though there are two different
1887 // code sequences for the Initial Exec TLS Model. We match the code to
1888 // find out which one was used.
1889
1890 // A possible TLS code sequence and its replacement
1891 struct CodeSequence {
1892 // The expected code sequence
1893 ArrayRef<uint8_t> ExpectedCodeSequence;
1894 // The negative offset of the GOTTPOFF relocation to the beginning of
1895 // the sequence
1896 uint64_t TLSSequenceOffset;
1897 // The new code sequence
1898 ArrayRef<uint8_t> NewCodeSequence;
1899 // The offset of the new TPOFF relocation
1900 uint64_t TpoffRelocationOffset;
1901 };
1902
1903 std::array<CodeSequence, 2> CodeSequences;
1904
1905 // Initial Exec Code Model Sequence
1906 {
1907 static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1908 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
1909 0x00, // mov %fs:0, %rax
1910 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
1911 // %rax
1912 };
1913 CodeSequences[0].ExpectedCodeSequence =
1914 ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1915 CodeSequences[0].TLSSequenceOffset = 12;
1916
1917 static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1918 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
1919 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
1920 };
1921 CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1922 CodeSequences[0].TpoffRelocationOffset = 12;
1923 }
1924
1925 // Initial Exec Code Model Sequence, II
1926 {
1927 static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1928 0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
1929 0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00 // mov %fs:(%rax), %rax
1930 };
1931 CodeSequences[1].ExpectedCodeSequence =
1932 ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1933 CodeSequences[1].TLSSequenceOffset = 3;
1934
1935 static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1936 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, // 6 byte nop
1937 0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
1938 };
1939 CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1940 CodeSequences[1].TpoffRelocationOffset = 10;
1941 }
1942
1943 bool Resolved = false;
1944 auto &Section = Sections[SectionID];
1945 for (const auto &C : CodeSequences) {
1946 assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() &&
1947 "Old and new code sequences must have the same size");
1948
1949 if (Offset < C.TLSSequenceOffset ||
1950 (Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) >
1951 Section.getSize()) {
1952 // This can't be a matching sequence as it doesn't fit in the current
1953 // section
1954 continue;
1955 }
1956
1957 auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset;
1958 auto *TLSSequence = Section.getAddressWithOffset(TLSSequenceStartOffset);
1959 if (ArrayRef<uint8_t>(TLSSequence, C.ExpectedCodeSequence.size()) !=
1960 C.ExpectedCodeSequence) {
1961 continue;
1962 }
1963
1964 memcpy(TLSSequence, C.NewCodeSequence.data(), C.NewCodeSequence.size());
1965
1966 // The original GOTTPOFF relocation has an addend as it is PC relative,
1967 // so it needs to be corrected. The TPOFF32 relocation is used as an
1968 // absolute value (which is an offset from %fs:0), so remove the addend
1969 // again.
1970 RelocationEntry RE(SectionID,
1971 TLSSequenceStartOffset + C.TpoffRelocationOffset,
1972 ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
1973
1974 if (Value.SymbolName)
1975 addRelocationForSymbol(RE, Value.SymbolName);
1976 else
1977 addRelocationForSection(RE, Value.SectionID);
1978
1979 Resolved = true;
1980 break;
1981 }
1982
1983 if (!Resolved) {
1984 // The GOTTPOFF relocation was not used in one of the sequences
1985 // described in the spec, so we can't optimize it to a TPOFF
1986 // relocation.
1987 uint64_t GOTOffset = allocateGOTEntries(1);
1988 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1989 ELF::R_X86_64_PC32);
1990 RelocationEntry RE =
1991 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_TPOFF64);
1992 if (Value.SymbolName)
1993 addRelocationForSymbol(RE, Value.SymbolName);
1994 else
1995 addRelocationForSection(RE, Value.SectionID);
1996 }
1997 }
1998
processX86_64TLSRelocation(unsigned SectionID,uint64_t Offset,uint64_t RelType,RelocationValueRef Value,int64_t Addend,const RelocationRef & GetAddrRelocation)1999 void RuntimeDyldELF::processX86_64TLSRelocation(
2000 unsigned SectionID, uint64_t Offset, uint64_t RelType,
2001 RelocationValueRef Value, int64_t Addend,
2002 const RelocationRef &GetAddrRelocation) {
2003 // Since we are statically linking and have no additional DSOs, we can resolve
2004 // the relocation directly without using __tls_get_addr.
2005 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2006 // to replace it with the Local Exec relocation variant.
2007
2008 // Find out whether the code was compiled with the large or small memory
2009 // model. For this we look at the next relocation which is the relocation
2010 // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2011 // small code model, with a 64 bit relocation it's the large code model.
2012 bool IsSmallCodeModel;
2013 // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2014 bool IsGOTPCRel = false;
2015
2016 switch (GetAddrRelocation.getType()) {
2017 case ELF::R_X86_64_GOTPCREL:
2018 case ELF::R_X86_64_REX_GOTPCRELX:
2019 case ELF::R_X86_64_GOTPCRELX:
2020 IsGOTPCRel = true;
2021 LLVM_FALLTHROUGH;
2022 case ELF::R_X86_64_PLT32:
2023 IsSmallCodeModel = true;
2024 break;
2025 case ELF::R_X86_64_PLTOFF64:
2026 IsSmallCodeModel = false;
2027 break;
2028 default:
2029 report_fatal_error(
2030 "invalid TLS relocations for General/Local Dynamic TLS Model: "
2031 "expected PLT or GOT relocation for __tls_get_addr function");
2032 }
2033
2034 // The negative offset to the start of the TLS code sequence relative to
2035 // the offset of the TLSGD/TLSLD relocation
2036 uint64_t TLSSequenceOffset;
2037 // The expected start of the code sequence
2038 ArrayRef<uint8_t> ExpectedCodeSequence;
2039 // The new TLS code sequence that will replace the existing code
2040 ArrayRef<uint8_t> NewCodeSequence;
2041
2042 if (RelType == ELF::R_X86_64_TLSGD) {
2043 // The offset of the new TPOFF32 relocation (offset starting from the
2044 // beginning of the whole TLS sequence)
2045 uint64_t TpoffRelocOffset;
2046
2047 if (IsSmallCodeModel) {
2048 if (!IsGOTPCRel) {
2049 static const std::initializer_list<uint8_t> CodeSequence = {
2050 0x66, // data16 (no-op prefix)
2051 0x48, 0x8d, 0x3d, 0x00, 0x00,
2052 0x00, 0x00, // lea <disp32>(%rip), %rdi
2053 0x66, 0x66, // two data16 prefixes
2054 0x48, // rex64 (no-op prefix)
2055 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2056 };
2057 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2058 TLSSequenceOffset = 4;
2059 } else {
2060 // This code sequence is not described in the TLS spec but gcc
2061 // generates it sometimes.
2062 static const std::initializer_list<uint8_t> CodeSequence = {
2063 0x66, // data16 (no-op prefix)
2064 0x48, 0x8d, 0x3d, 0x00, 0x00,
2065 0x00, 0x00, // lea <disp32>(%rip), %rdi
2066 0x66, // data16 prefix (no-op prefix)
2067 0x48, // rex64 (no-op prefix)
2068 0xff, 0x15, 0x00, 0x00, 0x00,
2069 0x00 // call *__tls_get_addr@gotpcrel(%rip)
2070 };
2071 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2072 TLSSequenceOffset = 4;
2073 }
2074
2075 // The replacement code for the small code model. It's the same for
2076 // both sequences.
2077 static const std::initializer_list<uint8_t> SmallSequence = {
2078 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2079 0x00, // mov %fs:0, %rax
2080 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2081 // %rax
2082 };
2083 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2084 TpoffRelocOffset = 12;
2085 } else {
2086 static const std::initializer_list<uint8_t> CodeSequence = {
2087 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2088 // %rdi
2089 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2090 0x00, // movabs $__tls_get_addr@pltoff, %rax
2091 0x48, 0x01, 0xd8, // add %rbx, %rax
2092 0xff, 0xd0 // call *%rax
2093 };
2094 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2095 TLSSequenceOffset = 3;
2096
2097 // The replacement code for the large code model
2098 static const std::initializer_list<uint8_t> LargeSequence = {
2099 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2100 0x00, // mov %fs:0, %rax
2101 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2102 // %rax
2103 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 // nopw 0x0(%rax,%rax,1)
2104 };
2105 NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2106 TpoffRelocOffset = 12;
2107 }
2108
2109 // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2110 // The new TPOFF32 relocations is used as an absolute offset from
2111 // %fs:0, so remove the TLSGD/TLSLD addend again.
2112 RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset,
2113 ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
2114 if (Value.SymbolName)
2115 addRelocationForSymbol(RE, Value.SymbolName);
2116 else
2117 addRelocationForSection(RE, Value.SectionID);
2118 } else if (RelType == ELF::R_X86_64_TLSLD) {
2119 if (IsSmallCodeModel) {
2120 if (!IsGOTPCRel) {
2121 static const std::initializer_list<uint8_t> CodeSequence = {
2122 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2123 0x00, 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2124 };
2125 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2126 TLSSequenceOffset = 3;
2127
2128 // The replacement code for the small code model
2129 static const std::initializer_list<uint8_t> SmallSequence = {
2130 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2131 0x64, 0x48, 0x8b, 0x04, 0x25,
2132 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2133 };
2134 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2135 } else {
2136 // This code sequence is not described in the TLS spec but gcc
2137 // generates it sometimes.
2138 static const std::initializer_list<uint8_t> CodeSequence = {
2139 0x48, 0x8d, 0x3d, 0x00,
2140 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2141 0xff, 0x15, 0x00, 0x00,
2142 0x00, 0x00 // call
2143 // *__tls_get_addr@gotpcrel(%rip)
2144 };
2145 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2146 TLSSequenceOffset = 3;
2147
2148 // The replacement is code is just like above but it needs to be
2149 // one byte longer.
2150 static const std::initializer_list<uint8_t> SmallSequence = {
2151 0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2152 0x64, 0x48, 0x8b, 0x04, 0x25,
2153 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2154 };
2155 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2156 }
2157 } else {
2158 // This is the same sequence as for the TLSGD sequence with the large
2159 // memory model above
2160 static const std::initializer_list<uint8_t> CodeSequence = {
2161 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2162 // %rdi
2163 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2164 0x48, // movabs $__tls_get_addr@pltoff, %rax
2165 0x01, 0xd8, // add %rbx, %rax
2166 0xff, 0xd0 // call *%rax
2167 };
2168 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2169 TLSSequenceOffset = 3;
2170
2171 // The replacement code for the large code model
2172 static const std::initializer_list<uint8_t> LargeSequence = {
2173 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2174 0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2175 0x00, // 10 byte nop
2176 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2177 };
2178 NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2179 }
2180 } else {
2181 llvm_unreachable("both TLS relocations handled above");
2182 }
2183
2184 assert(ExpectedCodeSequence.size() == NewCodeSequence.size() &&
2185 "Old and new code sequences must have the same size");
2186
2187 auto &Section = Sections[SectionID];
2188 if (Offset < TLSSequenceOffset ||
2189 (Offset - TLSSequenceOffset + NewCodeSequence.size()) >
2190 Section.getSize()) {
2191 report_fatal_error("unexpected end of section in TLS sequence");
2192 }
2193
2194 auto *TLSSequence = Section.getAddressWithOffset(Offset - TLSSequenceOffset);
2195 if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.size()) !=
2196 ExpectedCodeSequence) {
2197 report_fatal_error(
2198 "invalid TLS sequence for Global/Local Dynamic TLS Model");
2199 }
2200
2201 memcpy(TLSSequence, NewCodeSequence.data(), NewCodeSequence.size());
2202 }
2203
getGOTEntrySize()2204 size_t RuntimeDyldELF::getGOTEntrySize() {
2205 // We don't use the GOT in all of these cases, but it's essentially free
2206 // to put them all here.
2207 size_t Result = 0;
2208 switch (Arch) {
2209 case Triple::x86_64:
2210 case Triple::aarch64:
2211 case Triple::aarch64_be:
2212 case Triple::ppc64:
2213 case Triple::ppc64le:
2214 case Triple::systemz:
2215 Result = sizeof(uint64_t);
2216 break;
2217 case Triple::x86:
2218 case Triple::arm:
2219 case Triple::thumb:
2220 Result = sizeof(uint32_t);
2221 break;
2222 case Triple::mips:
2223 case Triple::mipsel:
2224 case Triple::mips64:
2225 case Triple::mips64el:
2226 if (IsMipsO32ABI || IsMipsN32ABI)
2227 Result = sizeof(uint32_t);
2228 else if (IsMipsN64ABI)
2229 Result = sizeof(uint64_t);
2230 else
2231 llvm_unreachable("Mips ABI not handled");
2232 break;
2233 default:
2234 llvm_unreachable("Unsupported CPU type!");
2235 }
2236 return Result;
2237 }
2238
allocateGOTEntries(unsigned no)2239 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
2240 if (GOTSectionID == 0) {
2241 GOTSectionID = Sections.size();
2242 // Reserve a section id. We'll allocate the section later
2243 // once we know the total size
2244 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2245 }
2246 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
2247 CurrentGOTIndex += no;
2248 return StartOffset;
2249 }
2250
findOrAllocGOTEntry(const RelocationValueRef & Value,unsigned GOTRelType)2251 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
2252 unsigned GOTRelType) {
2253 auto E = GOTOffsetMap.insert({Value, 0});
2254 if (E.second) {
2255 uint64_t GOTOffset = allocateGOTEntries(1);
2256
2257 // Create relocation for newly created GOT entry
2258 RelocationEntry RE =
2259 computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
2260 if (Value.SymbolName)
2261 addRelocationForSymbol(RE, Value.SymbolName);
2262 else
2263 addRelocationForSection(RE, Value.SectionID);
2264
2265 E.first->second = GOTOffset;
2266 }
2267
2268 return E.first->second;
2269 }
2270
resolveGOTOffsetRelocation(unsigned SectionID,uint64_t Offset,uint64_t GOTOffset,uint32_t Type)2271 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
2272 uint64_t Offset,
2273 uint64_t GOTOffset,
2274 uint32_t Type) {
2275 // Fill in the relative address of the GOT Entry into the stub
2276 RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
2277 addRelocationForSection(GOTRE, GOTSectionID);
2278 }
2279
computeGOTOffsetRE(uint64_t GOTOffset,uint64_t SymbolOffset,uint32_t Type)2280 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
2281 uint64_t SymbolOffset,
2282 uint32_t Type) {
2283 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
2284 }
2285
finalizeLoad(const ObjectFile & Obj,ObjSectionToIDMap & SectionMap)2286 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
2287 ObjSectionToIDMap &SectionMap) {
2288 if (IsMipsO32ABI)
2289 if (!PendingRelocs.empty())
2290 return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
2291
2292 // If necessary, allocate the global offset table
2293 if (GOTSectionID != 0) {
2294 // Allocate memory for the section
2295 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
2296 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
2297 GOTSectionID, ".got", false);
2298 if (!Addr)
2299 return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
2300
2301 Sections[GOTSectionID] =
2302 SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
2303
2304 // For now, initialize all GOT entries to zero. We'll fill them in as
2305 // needed when GOT-based relocations are applied.
2306 memset(Addr, 0, TotalSize);
2307 if (IsMipsN32ABI || IsMipsN64ABI) {
2308 // To correctly resolve Mips GOT relocations, we need a mapping from
2309 // object's sections to GOTs.
2310 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
2311 SI != SE; ++SI) {
2312 if (SI->relocation_begin() != SI->relocation_end()) {
2313 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
2314 if (!RelSecOrErr)
2315 return make_error<RuntimeDyldError>(
2316 toString(RelSecOrErr.takeError()));
2317
2318 section_iterator RelocatedSection = *RelSecOrErr;
2319 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
2320 assert (i != SectionMap.end());
2321 SectionToGOTMap[i->second] = GOTSectionID;
2322 }
2323 }
2324 GOTSymbolOffsets.clear();
2325 }
2326 }
2327
2328 // Look for and record the EH frame section.
2329 ObjSectionToIDMap::iterator i, e;
2330 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
2331 const SectionRef &Section = i->first;
2332
2333 StringRef Name;
2334 Expected<StringRef> NameOrErr = Section.getName();
2335 if (NameOrErr)
2336 Name = *NameOrErr;
2337 else
2338 consumeError(NameOrErr.takeError());
2339
2340 if (Name == ".eh_frame") {
2341 UnregisteredEHFrameSections.push_back(i->second);
2342 break;
2343 }
2344 }
2345
2346 GOTSectionID = 0;
2347 CurrentGOTIndex = 0;
2348
2349 return Error::success();
2350 }
2351
isCompatibleFile(const object::ObjectFile & Obj) const2352 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
2353 return Obj.isELF();
2354 }
2355
relocationNeedsGot(const RelocationRef & R) const2356 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
2357 unsigned RelTy = R.getType();
2358 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
2359 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
2360 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
2361
2362 if (Arch == Triple::x86_64)
2363 return RelTy == ELF::R_X86_64_GOTPCREL ||
2364 RelTy == ELF::R_X86_64_GOTPCRELX ||
2365 RelTy == ELF::R_X86_64_GOT64 ||
2366 RelTy == ELF::R_X86_64_REX_GOTPCRELX;
2367 return false;
2368 }
2369
relocationNeedsStub(const RelocationRef & R) const2370 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
2371 if (Arch != Triple::x86_64)
2372 return true; // Conservative answer
2373
2374 switch (R.getType()) {
2375 default:
2376 return true; // Conservative answer
2377
2378
2379 case ELF::R_X86_64_GOTPCREL:
2380 case ELF::R_X86_64_GOTPCRELX:
2381 case ELF::R_X86_64_REX_GOTPCRELX:
2382 case ELF::R_X86_64_GOTPC64:
2383 case ELF::R_X86_64_GOT64:
2384 case ELF::R_X86_64_GOTOFF64:
2385 case ELF::R_X86_64_PC32:
2386 case ELF::R_X86_64_PC64:
2387 case ELF::R_X86_64_64:
2388 // We know that these reloation types won't need a stub function. This list
2389 // can be extended as needed.
2390 return false;
2391 }
2392 }
2393
2394 } // namespace llvm
2395