1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86InstrInfo.h"
14 #include "X86.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/IR/DebugInfoMetadata.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCExpr.h"
36 #include "llvm/MC/MCInst.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
42 
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "x86-instr-info"
46 
47 #define GET_INSTRINFO_CTOR_DTOR
48 #include "X86GenInstrInfo.inc"
49 
50 static cl::opt<bool>
51     NoFusing("disable-spill-fusing",
52              cl::desc("Disable fusing of spill code into instructions"),
53              cl::Hidden);
54 static cl::opt<bool>
55 PrintFailedFusing("print-failed-fuse-candidates",
56                   cl::desc("Print instructions that the allocator wants to"
57                            " fuse, but the X86 backend currently can't"),
58                   cl::Hidden);
59 static cl::opt<bool>
60 ReMatPICStubLoad("remat-pic-stub-load",
61                  cl::desc("Re-materialize load from stub in PIC mode"),
62                  cl::init(false), cl::Hidden);
63 static cl::opt<unsigned>
64 PartialRegUpdateClearance("partial-reg-update-clearance",
65                           cl::desc("Clearance between two register writes "
66                                    "for inserting XOR to avoid partial "
67                                    "register update"),
68                           cl::init(64), cl::Hidden);
69 static cl::opt<unsigned>
70 UndefRegClearance("undef-reg-clearance",
71                   cl::desc("How many idle instructions we would like before "
72                            "certain undef register reads"),
73                   cl::init(128), cl::Hidden);
74 
75 
76 // Pin the vtable to this file.
anchor()77 void X86InstrInfo::anchor() {}
78 
X86InstrInfo(X86Subtarget & STI)79 X86InstrInfo::X86InstrInfo(X86Subtarget &STI)
80     : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
81                                                : X86::ADJCALLSTACKDOWN32),
82                       (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
83                                                : X86::ADJCALLSTACKUP32),
84                       X86::CATCHRET,
85                       (STI.is64Bit() ? X86::RETQ : X86::RETL)),
86       Subtarget(STI), RI(STI.getTargetTriple()) {
87 }
88 
89 bool
isCoalescableExtInstr(const MachineInstr & MI,Register & SrcReg,Register & DstReg,unsigned & SubIdx) const90 X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
91                                     Register &SrcReg, Register &DstReg,
92                                     unsigned &SubIdx) const {
93   switch (MI.getOpcode()) {
94   default: break;
95   case X86::MOVSX16rr8:
96   case X86::MOVZX16rr8:
97   case X86::MOVSX32rr8:
98   case X86::MOVZX32rr8:
99   case X86::MOVSX64rr8:
100     if (!Subtarget.is64Bit())
101       // It's not always legal to reference the low 8-bit of the larger
102       // register in 32-bit mode.
103       return false;
104     LLVM_FALLTHROUGH;
105   case X86::MOVSX32rr16:
106   case X86::MOVZX32rr16:
107   case X86::MOVSX64rr16:
108   case X86::MOVSX64rr32: {
109     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
110       // Be conservative.
111       return false;
112     SrcReg = MI.getOperand(1).getReg();
113     DstReg = MI.getOperand(0).getReg();
114     switch (MI.getOpcode()) {
115     default: llvm_unreachable("Unreachable!");
116     case X86::MOVSX16rr8:
117     case X86::MOVZX16rr8:
118     case X86::MOVSX32rr8:
119     case X86::MOVZX32rr8:
120     case X86::MOVSX64rr8:
121       SubIdx = X86::sub_8bit;
122       break;
123     case X86::MOVSX32rr16:
124     case X86::MOVZX32rr16:
125     case X86::MOVSX64rr16:
126       SubIdx = X86::sub_16bit;
127       break;
128     case X86::MOVSX64rr32:
129       SubIdx = X86::sub_32bit;
130       break;
131     }
132     return true;
133   }
134   }
135   return false;
136 }
137 
isDataInvariant(MachineInstr & MI)138 bool X86InstrInfo::isDataInvariant(MachineInstr &MI) {
139   switch (MI.getOpcode()) {
140   default:
141     // By default, assume that the instruction is not data invariant.
142     return false;
143 
144     // Some target-independent operations that trivially lower to data-invariant
145     // instructions.
146   case TargetOpcode::COPY:
147   case TargetOpcode::INSERT_SUBREG:
148   case TargetOpcode::SUBREG_TO_REG:
149     return true;
150 
151   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
152   // However, they set flags and are perhaps the most surprisingly constant
153   // time operations so we call them out here separately.
154   case X86::IMUL16rr:
155   case X86::IMUL16rri8:
156   case X86::IMUL16rri:
157   case X86::IMUL32rr:
158   case X86::IMUL32rri8:
159   case X86::IMUL32rri:
160   case X86::IMUL64rr:
161   case X86::IMUL64rri32:
162   case X86::IMUL64rri8:
163 
164   // Bit scanning and counting instructions that are somewhat surprisingly
165   // constant time as they scan across bits and do other fairly complex
166   // operations like popcnt, but are believed to be constant time on x86.
167   // However, these set flags.
168   case X86::BSF16rr:
169   case X86::BSF32rr:
170   case X86::BSF64rr:
171   case X86::BSR16rr:
172   case X86::BSR32rr:
173   case X86::BSR64rr:
174   case X86::LZCNT16rr:
175   case X86::LZCNT32rr:
176   case X86::LZCNT64rr:
177   case X86::POPCNT16rr:
178   case X86::POPCNT32rr:
179   case X86::POPCNT64rr:
180   case X86::TZCNT16rr:
181   case X86::TZCNT32rr:
182   case X86::TZCNT64rr:
183 
184   // Bit manipulation instructions are effectively combinations of basic
185   // arithmetic ops, and should still execute in constant time. These also
186   // set flags.
187   case X86::BLCFILL32rr:
188   case X86::BLCFILL64rr:
189   case X86::BLCI32rr:
190   case X86::BLCI64rr:
191   case X86::BLCIC32rr:
192   case X86::BLCIC64rr:
193   case X86::BLCMSK32rr:
194   case X86::BLCMSK64rr:
195   case X86::BLCS32rr:
196   case X86::BLCS64rr:
197   case X86::BLSFILL32rr:
198   case X86::BLSFILL64rr:
199   case X86::BLSI32rr:
200   case X86::BLSI64rr:
201   case X86::BLSIC32rr:
202   case X86::BLSIC64rr:
203   case X86::BLSMSK32rr:
204   case X86::BLSMSK64rr:
205   case X86::BLSR32rr:
206   case X86::BLSR64rr:
207   case X86::TZMSK32rr:
208   case X86::TZMSK64rr:
209 
210   // Bit extracting and clearing instructions should execute in constant time,
211   // and set flags.
212   case X86::BEXTR32rr:
213   case X86::BEXTR64rr:
214   case X86::BEXTRI32ri:
215   case X86::BEXTRI64ri:
216   case X86::BZHI32rr:
217   case X86::BZHI64rr:
218 
219   // Shift and rotate.
220   case X86::ROL8r1:
221   case X86::ROL16r1:
222   case X86::ROL32r1:
223   case X86::ROL64r1:
224   case X86::ROL8rCL:
225   case X86::ROL16rCL:
226   case X86::ROL32rCL:
227   case X86::ROL64rCL:
228   case X86::ROL8ri:
229   case X86::ROL16ri:
230   case X86::ROL32ri:
231   case X86::ROL64ri:
232   case X86::ROR8r1:
233   case X86::ROR16r1:
234   case X86::ROR32r1:
235   case X86::ROR64r1:
236   case X86::ROR8rCL:
237   case X86::ROR16rCL:
238   case X86::ROR32rCL:
239   case X86::ROR64rCL:
240   case X86::ROR8ri:
241   case X86::ROR16ri:
242   case X86::ROR32ri:
243   case X86::ROR64ri:
244   case X86::SAR8r1:
245   case X86::SAR16r1:
246   case X86::SAR32r1:
247   case X86::SAR64r1:
248   case X86::SAR8rCL:
249   case X86::SAR16rCL:
250   case X86::SAR32rCL:
251   case X86::SAR64rCL:
252   case X86::SAR8ri:
253   case X86::SAR16ri:
254   case X86::SAR32ri:
255   case X86::SAR64ri:
256   case X86::SHL8r1:
257   case X86::SHL16r1:
258   case X86::SHL32r1:
259   case X86::SHL64r1:
260   case X86::SHL8rCL:
261   case X86::SHL16rCL:
262   case X86::SHL32rCL:
263   case X86::SHL64rCL:
264   case X86::SHL8ri:
265   case X86::SHL16ri:
266   case X86::SHL32ri:
267   case X86::SHL64ri:
268   case X86::SHR8r1:
269   case X86::SHR16r1:
270   case X86::SHR32r1:
271   case X86::SHR64r1:
272   case X86::SHR8rCL:
273   case X86::SHR16rCL:
274   case X86::SHR32rCL:
275   case X86::SHR64rCL:
276   case X86::SHR8ri:
277   case X86::SHR16ri:
278   case X86::SHR32ri:
279   case X86::SHR64ri:
280   case X86::SHLD16rrCL:
281   case X86::SHLD32rrCL:
282   case X86::SHLD64rrCL:
283   case X86::SHLD16rri8:
284   case X86::SHLD32rri8:
285   case X86::SHLD64rri8:
286   case X86::SHRD16rrCL:
287   case X86::SHRD32rrCL:
288   case X86::SHRD64rrCL:
289   case X86::SHRD16rri8:
290   case X86::SHRD32rri8:
291   case X86::SHRD64rri8:
292 
293   // Basic arithmetic is constant time on the input but does set flags.
294   case X86::ADC8rr:
295   case X86::ADC8ri:
296   case X86::ADC16rr:
297   case X86::ADC16ri:
298   case X86::ADC16ri8:
299   case X86::ADC32rr:
300   case X86::ADC32ri:
301   case X86::ADC32ri8:
302   case X86::ADC64rr:
303   case X86::ADC64ri8:
304   case X86::ADC64ri32:
305   case X86::ADD8rr:
306   case X86::ADD8ri:
307   case X86::ADD16rr:
308   case X86::ADD16ri:
309   case X86::ADD16ri8:
310   case X86::ADD32rr:
311   case X86::ADD32ri:
312   case X86::ADD32ri8:
313   case X86::ADD64rr:
314   case X86::ADD64ri8:
315   case X86::ADD64ri32:
316   case X86::AND8rr:
317   case X86::AND8ri:
318   case X86::AND16rr:
319   case X86::AND16ri:
320   case X86::AND16ri8:
321   case X86::AND32rr:
322   case X86::AND32ri:
323   case X86::AND32ri8:
324   case X86::AND64rr:
325   case X86::AND64ri8:
326   case X86::AND64ri32:
327   case X86::OR8rr:
328   case X86::OR8ri:
329   case X86::OR16rr:
330   case X86::OR16ri:
331   case X86::OR16ri8:
332   case X86::OR32rr:
333   case X86::OR32ri:
334   case X86::OR32ri8:
335   case X86::OR64rr:
336   case X86::OR64ri8:
337   case X86::OR64ri32:
338   case X86::SBB8rr:
339   case X86::SBB8ri:
340   case X86::SBB16rr:
341   case X86::SBB16ri:
342   case X86::SBB16ri8:
343   case X86::SBB32rr:
344   case X86::SBB32ri:
345   case X86::SBB32ri8:
346   case X86::SBB64rr:
347   case X86::SBB64ri8:
348   case X86::SBB64ri32:
349   case X86::SUB8rr:
350   case X86::SUB8ri:
351   case X86::SUB16rr:
352   case X86::SUB16ri:
353   case X86::SUB16ri8:
354   case X86::SUB32rr:
355   case X86::SUB32ri:
356   case X86::SUB32ri8:
357   case X86::SUB64rr:
358   case X86::SUB64ri8:
359   case X86::SUB64ri32:
360   case X86::XOR8rr:
361   case X86::XOR8ri:
362   case X86::XOR16rr:
363   case X86::XOR16ri:
364   case X86::XOR16ri8:
365   case X86::XOR32rr:
366   case X86::XOR32ri:
367   case X86::XOR32ri8:
368   case X86::XOR64rr:
369   case X86::XOR64ri8:
370   case X86::XOR64ri32:
371   // Arithmetic with just 32-bit and 64-bit variants and no immediates.
372   case X86::ADCX32rr:
373   case X86::ADCX64rr:
374   case X86::ADOX32rr:
375   case X86::ADOX64rr:
376   case X86::ANDN32rr:
377   case X86::ANDN64rr:
378   // Unary arithmetic operations.
379   case X86::DEC8r:
380   case X86::DEC16r:
381   case X86::DEC32r:
382   case X86::DEC64r:
383   case X86::INC8r:
384   case X86::INC16r:
385   case X86::INC32r:
386   case X86::INC64r:
387   case X86::NEG8r:
388   case X86::NEG16r:
389   case X86::NEG32r:
390   case X86::NEG64r:
391 
392   // Unlike other arithmetic, NOT doesn't set EFLAGS.
393   case X86::NOT8r:
394   case X86::NOT16r:
395   case X86::NOT32r:
396   case X86::NOT64r:
397 
398   // Various move instructions used to zero or sign extend things. Note that we
399   // intentionally don't support the _NOREX variants as we can't handle that
400   // register constraint anyways.
401   case X86::MOVSX16rr8:
402   case X86::MOVSX32rr8:
403   case X86::MOVSX32rr16:
404   case X86::MOVSX64rr8:
405   case X86::MOVSX64rr16:
406   case X86::MOVSX64rr32:
407   case X86::MOVZX16rr8:
408   case X86::MOVZX32rr8:
409   case X86::MOVZX32rr16:
410   case X86::MOVZX64rr8:
411   case X86::MOVZX64rr16:
412   case X86::MOV32rr:
413 
414   // Arithmetic instructions that are both constant time and don't set flags.
415   case X86::RORX32ri:
416   case X86::RORX64ri:
417   case X86::SARX32rr:
418   case X86::SARX64rr:
419   case X86::SHLX32rr:
420   case X86::SHLX64rr:
421   case X86::SHRX32rr:
422   case X86::SHRX64rr:
423 
424   // LEA doesn't actually access memory, and its arithmetic is constant time.
425   case X86::LEA16r:
426   case X86::LEA32r:
427   case X86::LEA64_32r:
428   case X86::LEA64r:
429     return true;
430   }
431 }
432 
isDataInvariantLoad(MachineInstr & MI)433 bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) {
434   switch (MI.getOpcode()) {
435   default:
436     // By default, assume that the load will immediately leak.
437     return false;
438 
439   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
440   // However, they set flags and are perhaps the most surprisingly constant
441   // time operations so we call them out here separately.
442   case X86::IMUL16rm:
443   case X86::IMUL16rmi8:
444   case X86::IMUL16rmi:
445   case X86::IMUL32rm:
446   case X86::IMUL32rmi8:
447   case X86::IMUL32rmi:
448   case X86::IMUL64rm:
449   case X86::IMUL64rmi32:
450   case X86::IMUL64rmi8:
451 
452   // Bit scanning and counting instructions that are somewhat surprisingly
453   // constant time as they scan across bits and do other fairly complex
454   // operations like popcnt, but are believed to be constant time on x86.
455   // However, these set flags.
456   case X86::BSF16rm:
457   case X86::BSF32rm:
458   case X86::BSF64rm:
459   case X86::BSR16rm:
460   case X86::BSR32rm:
461   case X86::BSR64rm:
462   case X86::LZCNT16rm:
463   case X86::LZCNT32rm:
464   case X86::LZCNT64rm:
465   case X86::POPCNT16rm:
466   case X86::POPCNT32rm:
467   case X86::POPCNT64rm:
468   case X86::TZCNT16rm:
469   case X86::TZCNT32rm:
470   case X86::TZCNT64rm:
471 
472   // Bit manipulation instructions are effectively combinations of basic
473   // arithmetic ops, and should still execute in constant time. These also
474   // set flags.
475   case X86::BLCFILL32rm:
476   case X86::BLCFILL64rm:
477   case X86::BLCI32rm:
478   case X86::BLCI64rm:
479   case X86::BLCIC32rm:
480   case X86::BLCIC64rm:
481   case X86::BLCMSK32rm:
482   case X86::BLCMSK64rm:
483   case X86::BLCS32rm:
484   case X86::BLCS64rm:
485   case X86::BLSFILL32rm:
486   case X86::BLSFILL64rm:
487   case X86::BLSI32rm:
488   case X86::BLSI64rm:
489   case X86::BLSIC32rm:
490   case X86::BLSIC64rm:
491   case X86::BLSMSK32rm:
492   case X86::BLSMSK64rm:
493   case X86::BLSR32rm:
494   case X86::BLSR64rm:
495   case X86::TZMSK32rm:
496   case X86::TZMSK64rm:
497 
498   // Bit extracting and clearing instructions should execute in constant time,
499   // and set flags.
500   case X86::BEXTR32rm:
501   case X86::BEXTR64rm:
502   case X86::BEXTRI32mi:
503   case X86::BEXTRI64mi:
504   case X86::BZHI32rm:
505   case X86::BZHI64rm:
506 
507   // Basic arithmetic is constant time on the input but does set flags.
508   case X86::ADC8rm:
509   case X86::ADC16rm:
510   case X86::ADC32rm:
511   case X86::ADC64rm:
512   case X86::ADCX32rm:
513   case X86::ADCX64rm:
514   case X86::ADD8rm:
515   case X86::ADD16rm:
516   case X86::ADD32rm:
517   case X86::ADD64rm:
518   case X86::ADOX32rm:
519   case X86::ADOX64rm:
520   case X86::AND8rm:
521   case X86::AND16rm:
522   case X86::AND32rm:
523   case X86::AND64rm:
524   case X86::ANDN32rm:
525   case X86::ANDN64rm:
526   case X86::OR8rm:
527   case X86::OR16rm:
528   case X86::OR32rm:
529   case X86::OR64rm:
530   case X86::SBB8rm:
531   case X86::SBB16rm:
532   case X86::SBB32rm:
533   case X86::SBB64rm:
534   case X86::SUB8rm:
535   case X86::SUB16rm:
536   case X86::SUB32rm:
537   case X86::SUB64rm:
538   case X86::XOR8rm:
539   case X86::XOR16rm:
540   case X86::XOR32rm:
541   case X86::XOR64rm:
542 
543   // Integer multiply w/o affecting flags is still believed to be constant
544   // time on x86. Called out separately as this is among the most surprising
545   // instructions to exhibit that behavior.
546   case X86::MULX32rm:
547   case X86::MULX64rm:
548 
549   // Arithmetic instructions that are both constant time and don't set flags.
550   case X86::RORX32mi:
551   case X86::RORX64mi:
552   case X86::SARX32rm:
553   case X86::SARX64rm:
554   case X86::SHLX32rm:
555   case X86::SHLX64rm:
556   case X86::SHRX32rm:
557   case X86::SHRX64rm:
558 
559   // Conversions are believed to be constant time and don't set flags.
560   case X86::CVTTSD2SI64rm:
561   case X86::VCVTTSD2SI64rm:
562   case X86::VCVTTSD2SI64Zrm:
563   case X86::CVTTSD2SIrm:
564   case X86::VCVTTSD2SIrm:
565   case X86::VCVTTSD2SIZrm:
566   case X86::CVTTSS2SI64rm:
567   case X86::VCVTTSS2SI64rm:
568   case X86::VCVTTSS2SI64Zrm:
569   case X86::CVTTSS2SIrm:
570   case X86::VCVTTSS2SIrm:
571   case X86::VCVTTSS2SIZrm:
572   case X86::CVTSI2SDrm:
573   case X86::VCVTSI2SDrm:
574   case X86::VCVTSI2SDZrm:
575   case X86::CVTSI2SSrm:
576   case X86::VCVTSI2SSrm:
577   case X86::VCVTSI2SSZrm:
578   case X86::CVTSI642SDrm:
579   case X86::VCVTSI642SDrm:
580   case X86::VCVTSI642SDZrm:
581   case X86::CVTSI642SSrm:
582   case X86::VCVTSI642SSrm:
583   case X86::VCVTSI642SSZrm:
584   case X86::CVTSS2SDrm:
585   case X86::VCVTSS2SDrm:
586   case X86::VCVTSS2SDZrm:
587   case X86::CVTSD2SSrm:
588   case X86::VCVTSD2SSrm:
589   case X86::VCVTSD2SSZrm:
590   // AVX512 added unsigned integer conversions.
591   case X86::VCVTTSD2USI64Zrm:
592   case X86::VCVTTSD2USIZrm:
593   case X86::VCVTTSS2USI64Zrm:
594   case X86::VCVTTSS2USIZrm:
595   case X86::VCVTUSI2SDZrm:
596   case X86::VCVTUSI642SDZrm:
597   case X86::VCVTUSI2SSZrm:
598   case X86::VCVTUSI642SSZrm:
599 
600   // Loads to register don't set flags.
601   case X86::MOV8rm:
602   case X86::MOV8rm_NOREX:
603   case X86::MOV16rm:
604   case X86::MOV32rm:
605   case X86::MOV64rm:
606   case X86::MOVSX16rm8:
607   case X86::MOVSX32rm16:
608   case X86::MOVSX32rm8:
609   case X86::MOVSX32rm8_NOREX:
610   case X86::MOVSX64rm16:
611   case X86::MOVSX64rm32:
612   case X86::MOVSX64rm8:
613   case X86::MOVZX16rm8:
614   case X86::MOVZX32rm16:
615   case X86::MOVZX32rm8:
616   case X86::MOVZX32rm8_NOREX:
617   case X86::MOVZX64rm16:
618   case X86::MOVZX64rm8:
619     return true;
620   }
621 }
622 
getSPAdjust(const MachineInstr & MI) const623 int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const {
624   const MachineFunction *MF = MI.getParent()->getParent();
625   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
626 
627   if (isFrameInstr(MI)) {
628     int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign());
629     SPAdj -= getFrameAdjustment(MI);
630     if (!isFrameSetup(MI))
631       SPAdj = -SPAdj;
632     return SPAdj;
633   }
634 
635   // To know whether a call adjusts the stack, we need information
636   // that is bound to the following ADJCALLSTACKUP pseudo.
637   // Look for the next ADJCALLSTACKUP that follows the call.
638   if (MI.isCall()) {
639     const MachineBasicBlock *MBB = MI.getParent();
640     auto I = ++MachineBasicBlock::const_iterator(MI);
641     for (auto E = MBB->end(); I != E; ++I) {
642       if (I->getOpcode() == getCallFrameDestroyOpcode() ||
643           I->isCall())
644         break;
645     }
646 
647     // If we could not find a frame destroy opcode, then it has already
648     // been simplified, so we don't care.
649     if (I->getOpcode() != getCallFrameDestroyOpcode())
650       return 0;
651 
652     return -(I->getOperand(1).getImm());
653   }
654 
655   // Currently handle only PUSHes we can reasonably expect to see
656   // in call sequences
657   switch (MI.getOpcode()) {
658   default:
659     return 0;
660   case X86::PUSH32i8:
661   case X86::PUSH32r:
662   case X86::PUSH32rmm:
663   case X86::PUSH32rmr:
664   case X86::PUSHi32:
665     return 4;
666   case X86::PUSH64i8:
667   case X86::PUSH64r:
668   case X86::PUSH64rmm:
669   case X86::PUSH64rmr:
670   case X86::PUSH64i32:
671     return 8;
672   }
673 }
674 
675 /// Return true and the FrameIndex if the specified
676 /// operand and follow operands form a reference to the stack frame.
isFrameOperand(const MachineInstr & MI,unsigned int Op,int & FrameIndex) const677 bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op,
678                                   int &FrameIndex) const {
679   if (MI.getOperand(Op + X86::AddrBaseReg).isFI() &&
680       MI.getOperand(Op + X86::AddrScaleAmt).isImm() &&
681       MI.getOperand(Op + X86::AddrIndexReg).isReg() &&
682       MI.getOperand(Op + X86::AddrDisp).isImm() &&
683       MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 &&
684       MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 &&
685       MI.getOperand(Op + X86::AddrDisp).getImm() == 0) {
686     FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex();
687     return true;
688   }
689   return false;
690 }
691 
isFrameLoadOpcode(int Opcode,unsigned & MemBytes)692 static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) {
693   switch (Opcode) {
694   default:
695     return false;
696   case X86::MOV8rm:
697   case X86::KMOVBkm:
698     MemBytes = 1;
699     return true;
700   case X86::MOV16rm:
701   case X86::KMOVWkm:
702   case X86::VMOVSHZrm:
703   case X86::VMOVSHZrm_alt:
704     MemBytes = 2;
705     return true;
706   case X86::MOV32rm:
707   case X86::MOVSSrm:
708   case X86::MOVSSrm_alt:
709   case X86::VMOVSSrm:
710   case X86::VMOVSSrm_alt:
711   case X86::VMOVSSZrm:
712   case X86::VMOVSSZrm_alt:
713   case X86::KMOVDkm:
714     MemBytes = 4;
715     return true;
716   case X86::MOV64rm:
717   case X86::LD_Fp64m:
718   case X86::MOVSDrm:
719   case X86::MOVSDrm_alt:
720   case X86::VMOVSDrm:
721   case X86::VMOVSDrm_alt:
722   case X86::VMOVSDZrm:
723   case X86::VMOVSDZrm_alt:
724   case X86::MMX_MOVD64rm:
725   case X86::MMX_MOVQ64rm:
726   case X86::KMOVQkm:
727     MemBytes = 8;
728     return true;
729   case X86::MOVAPSrm:
730   case X86::MOVUPSrm:
731   case X86::MOVAPDrm:
732   case X86::MOVUPDrm:
733   case X86::MOVDQArm:
734   case X86::MOVDQUrm:
735   case X86::VMOVAPSrm:
736   case X86::VMOVUPSrm:
737   case X86::VMOVAPDrm:
738   case X86::VMOVUPDrm:
739   case X86::VMOVDQArm:
740   case X86::VMOVDQUrm:
741   case X86::VMOVAPSZ128rm:
742   case X86::VMOVUPSZ128rm:
743   case X86::VMOVAPSZ128rm_NOVLX:
744   case X86::VMOVUPSZ128rm_NOVLX:
745   case X86::VMOVAPDZ128rm:
746   case X86::VMOVUPDZ128rm:
747   case X86::VMOVDQU8Z128rm:
748   case X86::VMOVDQU16Z128rm:
749   case X86::VMOVDQA32Z128rm:
750   case X86::VMOVDQU32Z128rm:
751   case X86::VMOVDQA64Z128rm:
752   case X86::VMOVDQU64Z128rm:
753     MemBytes = 16;
754     return true;
755   case X86::VMOVAPSYrm:
756   case X86::VMOVUPSYrm:
757   case X86::VMOVAPDYrm:
758   case X86::VMOVUPDYrm:
759   case X86::VMOVDQAYrm:
760   case X86::VMOVDQUYrm:
761   case X86::VMOVAPSZ256rm:
762   case X86::VMOVUPSZ256rm:
763   case X86::VMOVAPSZ256rm_NOVLX:
764   case X86::VMOVUPSZ256rm_NOVLX:
765   case X86::VMOVAPDZ256rm:
766   case X86::VMOVUPDZ256rm:
767   case X86::VMOVDQU8Z256rm:
768   case X86::VMOVDQU16Z256rm:
769   case X86::VMOVDQA32Z256rm:
770   case X86::VMOVDQU32Z256rm:
771   case X86::VMOVDQA64Z256rm:
772   case X86::VMOVDQU64Z256rm:
773     MemBytes = 32;
774     return true;
775   case X86::VMOVAPSZrm:
776   case X86::VMOVUPSZrm:
777   case X86::VMOVAPDZrm:
778   case X86::VMOVUPDZrm:
779   case X86::VMOVDQU8Zrm:
780   case X86::VMOVDQU16Zrm:
781   case X86::VMOVDQA32Zrm:
782   case X86::VMOVDQU32Zrm:
783   case X86::VMOVDQA64Zrm:
784   case X86::VMOVDQU64Zrm:
785     MemBytes = 64;
786     return true;
787   }
788 }
789 
isFrameStoreOpcode(int Opcode,unsigned & MemBytes)790 static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) {
791   switch (Opcode) {
792   default:
793     return false;
794   case X86::MOV8mr:
795   case X86::KMOVBmk:
796     MemBytes = 1;
797     return true;
798   case X86::MOV16mr:
799   case X86::KMOVWmk:
800   case X86::VMOVSHZmr:
801     MemBytes = 2;
802     return true;
803   case X86::MOV32mr:
804   case X86::MOVSSmr:
805   case X86::VMOVSSmr:
806   case X86::VMOVSSZmr:
807   case X86::KMOVDmk:
808     MemBytes = 4;
809     return true;
810   case X86::MOV64mr:
811   case X86::ST_FpP64m:
812   case X86::MOVSDmr:
813   case X86::VMOVSDmr:
814   case X86::VMOVSDZmr:
815   case X86::MMX_MOVD64mr:
816   case X86::MMX_MOVQ64mr:
817   case X86::MMX_MOVNTQmr:
818   case X86::KMOVQmk:
819     MemBytes = 8;
820     return true;
821   case X86::MOVAPSmr:
822   case X86::MOVUPSmr:
823   case X86::MOVAPDmr:
824   case X86::MOVUPDmr:
825   case X86::MOVDQAmr:
826   case X86::MOVDQUmr:
827   case X86::VMOVAPSmr:
828   case X86::VMOVUPSmr:
829   case X86::VMOVAPDmr:
830   case X86::VMOVUPDmr:
831   case X86::VMOVDQAmr:
832   case X86::VMOVDQUmr:
833   case X86::VMOVUPSZ128mr:
834   case X86::VMOVAPSZ128mr:
835   case X86::VMOVUPSZ128mr_NOVLX:
836   case X86::VMOVAPSZ128mr_NOVLX:
837   case X86::VMOVUPDZ128mr:
838   case X86::VMOVAPDZ128mr:
839   case X86::VMOVDQA32Z128mr:
840   case X86::VMOVDQU32Z128mr:
841   case X86::VMOVDQA64Z128mr:
842   case X86::VMOVDQU64Z128mr:
843   case X86::VMOVDQU8Z128mr:
844   case X86::VMOVDQU16Z128mr:
845     MemBytes = 16;
846     return true;
847   case X86::VMOVUPSYmr:
848   case X86::VMOVAPSYmr:
849   case X86::VMOVUPDYmr:
850   case X86::VMOVAPDYmr:
851   case X86::VMOVDQUYmr:
852   case X86::VMOVDQAYmr:
853   case X86::VMOVUPSZ256mr:
854   case X86::VMOVAPSZ256mr:
855   case X86::VMOVUPSZ256mr_NOVLX:
856   case X86::VMOVAPSZ256mr_NOVLX:
857   case X86::VMOVUPDZ256mr:
858   case X86::VMOVAPDZ256mr:
859   case X86::VMOVDQU8Z256mr:
860   case X86::VMOVDQU16Z256mr:
861   case X86::VMOVDQA32Z256mr:
862   case X86::VMOVDQU32Z256mr:
863   case X86::VMOVDQA64Z256mr:
864   case X86::VMOVDQU64Z256mr:
865     MemBytes = 32;
866     return true;
867   case X86::VMOVUPSZmr:
868   case X86::VMOVAPSZmr:
869   case X86::VMOVUPDZmr:
870   case X86::VMOVAPDZmr:
871   case X86::VMOVDQU8Zmr:
872   case X86::VMOVDQU16Zmr:
873   case X86::VMOVDQA32Zmr:
874   case X86::VMOVDQU32Zmr:
875   case X86::VMOVDQA64Zmr:
876   case X86::VMOVDQU64Zmr:
877     MemBytes = 64;
878     return true;
879   }
880   return false;
881 }
882 
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const883 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
884                                            int &FrameIndex) const {
885   unsigned Dummy;
886   return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy);
887 }
888 
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes) const889 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
890                                            int &FrameIndex,
891                                            unsigned &MemBytes) const {
892   if (isFrameLoadOpcode(MI.getOpcode(), MemBytes))
893     if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
894       return MI.getOperand(0).getReg();
895   return 0;
896 }
897 
isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const898 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
899                                                  int &FrameIndex) const {
900   unsigned Dummy;
901   if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) {
902     unsigned Reg;
903     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
904       return Reg;
905     // Check for post-frame index elimination operations
906     SmallVector<const MachineMemOperand *, 1> Accesses;
907     if (hasLoadFromStackSlot(MI, Accesses)) {
908       FrameIndex =
909           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
910               ->getFrameIndex();
911       return MI.getOperand(0).getReg();
912     }
913   }
914   return 0;
915 }
916 
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const917 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
918                                           int &FrameIndex) const {
919   unsigned Dummy;
920   return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy);
921 }
922 
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex,unsigned & MemBytes) const923 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI,
924                                           int &FrameIndex,
925                                           unsigned &MemBytes) const {
926   if (isFrameStoreOpcode(MI.getOpcode(), MemBytes))
927     if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
928         isFrameOperand(MI, 0, FrameIndex))
929       return MI.getOperand(X86::AddrNumOperands).getReg();
930   return 0;
931 }
932 
isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const933 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
934                                                 int &FrameIndex) const {
935   unsigned Dummy;
936   if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) {
937     unsigned Reg;
938     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
939       return Reg;
940     // Check for post-frame index elimination operations
941     SmallVector<const MachineMemOperand *, 1> Accesses;
942     if (hasStoreToStackSlot(MI, Accesses)) {
943       FrameIndex =
944           cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
945               ->getFrameIndex();
946       return MI.getOperand(X86::AddrNumOperands).getReg();
947     }
948   }
949   return 0;
950 }
951 
952 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
regIsPICBase(Register BaseReg,const MachineRegisterInfo & MRI)953 static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) {
954   // Don't waste compile time scanning use-def chains of physregs.
955   if (!BaseReg.isVirtual())
956     return false;
957   bool isPICBase = false;
958   for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg),
959          E = MRI.def_instr_end(); I != E; ++I) {
960     MachineInstr *DefMI = &*I;
961     if (DefMI->getOpcode() != X86::MOVPC32r)
962       return false;
963     assert(!isPICBase && "More than one PIC base?");
964     isPICBase = true;
965   }
966   return isPICBase;
967 }
968 
isReallyTriviallyReMaterializable(const MachineInstr & MI,AAResults * AA) const969 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
970                                                      AAResults *AA) const {
971   switch (MI.getOpcode()) {
972   default:
973     // This function should only be called for opcodes with the ReMaterializable
974     // flag set.
975     llvm_unreachable("Unknown rematerializable operation!");
976     break;
977 
978   case X86::LOAD_STACK_GUARD:
979   case X86::AVX1_SETALLONES:
980   case X86::AVX2_SETALLONES:
981   case X86::AVX512_128_SET0:
982   case X86::AVX512_256_SET0:
983   case X86::AVX512_512_SET0:
984   case X86::AVX512_512_SETALLONES:
985   case X86::AVX512_FsFLD0SD:
986   case X86::AVX512_FsFLD0SH:
987   case X86::AVX512_FsFLD0SS:
988   case X86::AVX512_FsFLD0F128:
989   case X86::AVX_SET0:
990   case X86::FsFLD0SD:
991   case X86::FsFLD0SS:
992   case X86::FsFLD0F128:
993   case X86::KSET0D:
994   case X86::KSET0Q:
995   case X86::KSET0W:
996   case X86::KSET1D:
997   case X86::KSET1Q:
998   case X86::KSET1W:
999   case X86::MMX_SET0:
1000   case X86::MOV32ImmSExti8:
1001   case X86::MOV32r0:
1002   case X86::MOV32r1:
1003   case X86::MOV32r_1:
1004   case X86::MOV32ri64:
1005   case X86::MOV64ImmSExti8:
1006   case X86::V_SET0:
1007   case X86::V_SETALLONES:
1008   case X86::MOV16ri:
1009   case X86::MOV32ri:
1010   case X86::MOV64ri:
1011   case X86::MOV64ri32:
1012   case X86::MOV8ri:
1013   case X86::PTILEZEROV:
1014     return true;
1015 
1016   case X86::MOV8rm:
1017   case X86::MOV8rm_NOREX:
1018   case X86::MOV16rm:
1019   case X86::MOV32rm:
1020   case X86::MOV64rm:
1021   case X86::MOVSSrm:
1022   case X86::MOVSSrm_alt:
1023   case X86::MOVSDrm:
1024   case X86::MOVSDrm_alt:
1025   case X86::MOVAPSrm:
1026   case X86::MOVUPSrm:
1027   case X86::MOVAPDrm:
1028   case X86::MOVUPDrm:
1029   case X86::MOVDQArm:
1030   case X86::MOVDQUrm:
1031   case X86::VMOVSSrm:
1032   case X86::VMOVSSrm_alt:
1033   case X86::VMOVSDrm:
1034   case X86::VMOVSDrm_alt:
1035   case X86::VMOVAPSrm:
1036   case X86::VMOVUPSrm:
1037   case X86::VMOVAPDrm:
1038   case X86::VMOVUPDrm:
1039   case X86::VMOVDQArm:
1040   case X86::VMOVDQUrm:
1041   case X86::VMOVAPSYrm:
1042   case X86::VMOVUPSYrm:
1043   case X86::VMOVAPDYrm:
1044   case X86::VMOVUPDYrm:
1045   case X86::VMOVDQAYrm:
1046   case X86::VMOVDQUYrm:
1047   case X86::MMX_MOVD64rm:
1048   case X86::MMX_MOVQ64rm:
1049   // AVX-512
1050   case X86::VMOVSSZrm:
1051   case X86::VMOVSSZrm_alt:
1052   case X86::VMOVSDZrm:
1053   case X86::VMOVSDZrm_alt:
1054   case X86::VMOVSHZrm:
1055   case X86::VMOVSHZrm_alt:
1056   case X86::VMOVAPDZ128rm:
1057   case X86::VMOVAPDZ256rm:
1058   case X86::VMOVAPDZrm:
1059   case X86::VMOVAPSZ128rm:
1060   case X86::VMOVAPSZ256rm:
1061   case X86::VMOVAPSZ128rm_NOVLX:
1062   case X86::VMOVAPSZ256rm_NOVLX:
1063   case X86::VMOVAPSZrm:
1064   case X86::VMOVDQA32Z128rm:
1065   case X86::VMOVDQA32Z256rm:
1066   case X86::VMOVDQA32Zrm:
1067   case X86::VMOVDQA64Z128rm:
1068   case X86::VMOVDQA64Z256rm:
1069   case X86::VMOVDQA64Zrm:
1070   case X86::VMOVDQU16Z128rm:
1071   case X86::VMOVDQU16Z256rm:
1072   case X86::VMOVDQU16Zrm:
1073   case X86::VMOVDQU32Z128rm:
1074   case X86::VMOVDQU32Z256rm:
1075   case X86::VMOVDQU32Zrm:
1076   case X86::VMOVDQU64Z128rm:
1077   case X86::VMOVDQU64Z256rm:
1078   case X86::VMOVDQU64Zrm:
1079   case X86::VMOVDQU8Z128rm:
1080   case X86::VMOVDQU8Z256rm:
1081   case X86::VMOVDQU8Zrm:
1082   case X86::VMOVUPDZ128rm:
1083   case X86::VMOVUPDZ256rm:
1084   case X86::VMOVUPDZrm:
1085   case X86::VMOVUPSZ128rm:
1086   case X86::VMOVUPSZ256rm:
1087   case X86::VMOVUPSZ128rm_NOVLX:
1088   case X86::VMOVUPSZ256rm_NOVLX:
1089   case X86::VMOVUPSZrm: {
1090     // Loads from constant pools are trivially rematerializable.
1091     if (MI.getOperand(1 + X86::AddrBaseReg).isReg() &&
1092         MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
1093         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
1094         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
1095         MI.isDereferenceableInvariantLoad(AA)) {
1096       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
1097       if (BaseReg == 0 || BaseReg == X86::RIP)
1098         return true;
1099       // Allow re-materialization of PIC load.
1100       if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())
1101         return false;
1102       const MachineFunction &MF = *MI.getParent()->getParent();
1103       const MachineRegisterInfo &MRI = MF.getRegInfo();
1104       return regIsPICBase(BaseReg, MRI);
1105     }
1106     return false;
1107   }
1108 
1109   case X86::LEA32r:
1110   case X86::LEA64r: {
1111     if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() &&
1112         MI.getOperand(1 + X86::AddrIndexReg).isReg() &&
1113         MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
1114         !MI.getOperand(1 + X86::AddrDisp).isReg()) {
1115       // lea fi#, lea GV, etc. are all rematerializable.
1116       if (!MI.getOperand(1 + X86::AddrBaseReg).isReg())
1117         return true;
1118       Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg();
1119       if (BaseReg == 0)
1120         return true;
1121       // Allow re-materialization of lea PICBase + x.
1122       const MachineFunction &MF = *MI.getParent()->getParent();
1123       const MachineRegisterInfo &MRI = MF.getRegInfo();
1124       return regIsPICBase(BaseReg, MRI);
1125     }
1126     return false;
1127   }
1128   }
1129 }
1130 
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,Register DestReg,unsigned SubIdx,const MachineInstr & Orig,const TargetRegisterInfo & TRI) const1131 void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1132                                  MachineBasicBlock::iterator I,
1133                                  Register DestReg, unsigned SubIdx,
1134                                  const MachineInstr &Orig,
1135                                  const TargetRegisterInfo &TRI) const {
1136   bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI);
1137   if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) !=
1138                             MachineBasicBlock::LQR_Dead) {
1139     // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
1140     // effects.
1141     int Value;
1142     switch (Orig.getOpcode()) {
1143     case X86::MOV32r0:  Value = 0; break;
1144     case X86::MOV32r1:  Value = 1; break;
1145     case X86::MOV32r_1: Value = -1; break;
1146     default:
1147       llvm_unreachable("Unexpected instruction!");
1148     }
1149 
1150     const DebugLoc &DL = Orig.getDebugLoc();
1151     BuildMI(MBB, I, DL, get(X86::MOV32ri))
1152         .add(Orig.getOperand(0))
1153         .addImm(Value);
1154   } else {
1155     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1156     MBB.insert(I, MI);
1157   }
1158 
1159   MachineInstr &NewMI = *std::prev(I);
1160   NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1161 }
1162 
1163 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
hasLiveCondCodeDef(MachineInstr & MI) const1164 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const {
1165   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1166     MachineOperand &MO = MI.getOperand(i);
1167     if (MO.isReg() && MO.isDef() &&
1168         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1169       return true;
1170     }
1171   }
1172   return false;
1173 }
1174 
1175 /// Check whether the shift count for a machine operand is non-zero.
getTruncatedShiftCount(const MachineInstr & MI,unsigned ShiftAmtOperandIdx)1176 inline static unsigned getTruncatedShiftCount(const MachineInstr &MI,
1177                                               unsigned ShiftAmtOperandIdx) {
1178   // The shift count is six bits with the REX.W prefix and five bits without.
1179   unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31;
1180   unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm();
1181   return Imm & ShiftCountMask;
1182 }
1183 
1184 /// Check whether the given shift count is appropriate
1185 /// can be represented by a LEA instruction.
isTruncatedShiftCountForLEA(unsigned ShAmt)1186 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) {
1187   // Left shift instructions can be transformed into load-effective-address
1188   // instructions if we can encode them appropriately.
1189   // A LEA instruction utilizes a SIB byte to encode its scale factor.
1190   // The SIB.scale field is two bits wide which means that we can encode any
1191   // shift amount less than 4.
1192   return ShAmt < 4 && ShAmt > 0;
1193 }
1194 
classifyLEAReg(MachineInstr & MI,const MachineOperand & Src,unsigned Opc,bool AllowSP,Register & NewSrc,bool & isKill,MachineOperand & ImplicitOp,LiveVariables * LV) const1195 bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src,
1196                                   unsigned Opc, bool AllowSP, Register &NewSrc,
1197                                   bool &isKill, MachineOperand &ImplicitOp,
1198                                   LiveVariables *LV) const {
1199   MachineFunction &MF = *MI.getParent()->getParent();
1200   const TargetRegisterClass *RC;
1201   if (AllowSP) {
1202     RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass;
1203   } else {
1204     RC = Opc != X86::LEA32r ?
1205       &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass;
1206   }
1207   Register SrcReg = Src.getReg();
1208   isKill = MI.killsRegister(SrcReg);
1209 
1210   // For both LEA64 and LEA32 the register already has essentially the right
1211   // type (32-bit or 64-bit) we may just need to forbid SP.
1212   if (Opc != X86::LEA64_32r) {
1213     NewSrc = SrcReg;
1214     assert(!Src.isUndef() && "Undef op doesn't need optimization");
1215 
1216     if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC))
1217       return false;
1218 
1219     return true;
1220   }
1221 
1222   // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1223   // another we need to add 64-bit registers to the final MI.
1224   if (SrcReg.isPhysical()) {
1225     ImplicitOp = Src;
1226     ImplicitOp.setImplicit();
1227 
1228     NewSrc = getX86SubSuperRegister(SrcReg, 64);
1229     assert(!Src.isUndef() && "Undef op doesn't need optimization");
1230   } else {
1231     // Virtual register of the wrong class, we have to create a temporary 64-bit
1232     // vreg to feed into the LEA.
1233     NewSrc = MF.getRegInfo().createVirtualRegister(RC);
1234     MachineInstr *Copy =
1235         BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1236             .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit)
1237             .addReg(SrcReg, getKillRegState(isKill));
1238 
1239     // Which is obviously going to be dead after we're done with it.
1240     isKill = true;
1241 
1242     if (LV)
1243       LV->replaceKillInstruction(SrcReg, MI, *Copy);
1244   }
1245 
1246   // We've set all the parameters without issue.
1247   return true;
1248 }
1249 
convertToThreeAddressWithLEA(unsigned MIOpc,MachineInstr & MI,LiveVariables * LV,bool Is8BitOp) const1250 MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1251                                                          MachineInstr &MI,
1252                                                          LiveVariables *LV,
1253                                                          bool Is8BitOp) const {
1254   // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1255   MachineBasicBlock &MBB = *MI.getParent();
1256   MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
1257   assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits(
1258               *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) &&
1259          "Unexpected type for LEA transform");
1260 
1261   // TODO: For a 32-bit target, we need to adjust the LEA variables with
1262   // something like this:
1263   //   Opcode = X86::LEA32r;
1264   //   InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1265   //   OutRegLEA =
1266   //       Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1267   //                : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1268   if (!Subtarget.is64Bit())
1269     return nullptr;
1270 
1271   unsigned Opcode = X86::LEA64_32r;
1272   Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1273   Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1274 
1275   // Build and insert into an implicit UNDEF value. This is OK because
1276   // we will be shifting and then extracting the lower 8/16-bits.
1277   // This has the potential to cause partial register stall. e.g.
1278   //   movw    (%rbp,%rcx,2), %dx
1279   //   leal    -65(%rdx), %esi
1280   // But testing has shown this *does* help performance in 64-bit mode (at
1281   // least on modern x86 machines).
1282   MachineBasicBlock::iterator MBBI = MI.getIterator();
1283   Register Dest = MI.getOperand(0).getReg();
1284   Register Src = MI.getOperand(1).getReg();
1285   bool IsDead = MI.getOperand(0).isDead();
1286   bool IsKill = MI.getOperand(1).isKill();
1287   unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit;
1288   assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization");
1289   BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA);
1290   MachineInstr *InsMI =
1291       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1292           .addReg(InRegLEA, RegState::Define, SubReg)
1293           .addReg(Src, getKillRegState(IsKill));
1294 
1295   MachineInstrBuilder MIB =
1296       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA);
1297   switch (MIOpc) {
1298   default: llvm_unreachable("Unreachable!");
1299   case X86::SHL8ri:
1300   case X86::SHL16ri: {
1301     unsigned ShAmt = MI.getOperand(2).getImm();
1302     MIB.addReg(0).addImm(1ULL << ShAmt)
1303        .addReg(InRegLEA, RegState::Kill).addImm(0).addReg(0);
1304     break;
1305   }
1306   case X86::INC8r:
1307   case X86::INC16r:
1308     addRegOffset(MIB, InRegLEA, true, 1);
1309     break;
1310   case X86::DEC8r:
1311   case X86::DEC16r:
1312     addRegOffset(MIB, InRegLEA, true, -1);
1313     break;
1314   case X86::ADD8ri:
1315   case X86::ADD8ri_DB:
1316   case X86::ADD16ri:
1317   case X86::ADD16ri8:
1318   case X86::ADD16ri_DB:
1319   case X86::ADD16ri8_DB:
1320     addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm());
1321     break;
1322   case X86::ADD8rr:
1323   case X86::ADD8rr_DB:
1324   case X86::ADD16rr:
1325   case X86::ADD16rr_DB: {
1326     Register Src2 = MI.getOperand(2).getReg();
1327     bool IsKill2 = MI.getOperand(2).isKill();
1328     assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization");
1329     unsigned InRegLEA2 = 0;
1330     MachineInstr *InsMI2 = nullptr;
1331     if (Src == Src2) {
1332       // ADD8rr/ADD16rr killed %reg1028, %reg1028
1333       // just a single insert_subreg.
1334       addRegReg(MIB, InRegLEA, true, InRegLEA, false);
1335     } else {
1336       if (Subtarget.is64Bit())
1337         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
1338       else
1339         InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1340       // Build and insert into an implicit UNDEF value. This is OK because
1341       // we will be shifting and then extracting the lower 8/16-bits.
1342       BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2);
1343       InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY))
1344                    .addReg(InRegLEA2, RegState::Define, SubReg)
1345                    .addReg(Src2, getKillRegState(IsKill2));
1346       addRegReg(MIB, InRegLEA, true, InRegLEA2, true);
1347     }
1348     if (LV && IsKill2 && InsMI2)
1349       LV->replaceKillInstruction(Src2, MI, *InsMI2);
1350     break;
1351   }
1352   }
1353 
1354   MachineInstr *NewMI = MIB;
1355   MachineInstr *ExtMI =
1356       BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY))
1357           .addReg(Dest, RegState::Define | getDeadRegState(IsDead))
1358           .addReg(OutRegLEA, RegState::Kill, SubReg);
1359 
1360   if (LV) {
1361     // Update live variables.
1362     LV->getVarInfo(InRegLEA).Kills.push_back(NewMI);
1363     LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI);
1364     if (IsKill)
1365       LV->replaceKillInstruction(Src, MI, *InsMI);
1366     if (IsDead)
1367       LV->replaceKillInstruction(Dest, MI, *ExtMI);
1368   }
1369 
1370   return ExtMI;
1371 }
1372 
1373 /// This method must be implemented by targets that
1374 /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1375 /// may be able to convert a two-address instruction into a true
1376 /// three-address instruction on demand.  This allows the X86 target (for
1377 /// example) to convert ADD and SHL instructions into LEA instructions if they
1378 /// would require register copies due to two-addressness.
1379 ///
1380 /// This method returns a null pointer if the transformation cannot be
1381 /// performed, otherwise it returns the new instruction.
1382 ///
convertToThreeAddress(MachineInstr & MI,LiveVariables * LV) const1383 MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI,
1384                                                   LiveVariables *LV) const {
1385   // The following opcodes also sets the condition code register(s). Only
1386   // convert them to equivalent lea if the condition code register def's
1387   // are dead!
1388   if (hasLiveCondCodeDef(MI))
1389     return nullptr;
1390 
1391   MachineFunction &MF = *MI.getParent()->getParent();
1392   // All instructions input are two-addr instructions.  Get the known operands.
1393   const MachineOperand &Dest = MI.getOperand(0);
1394   const MachineOperand &Src = MI.getOperand(1);
1395 
1396   // Ideally, operations with undef should be folded before we get here, but we
1397   // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1398   // Without this, we have to forward undef state to new register operands to
1399   // avoid machine verifier errors.
1400   if (Src.isUndef())
1401     return nullptr;
1402   if (MI.getNumOperands() > 2)
1403     if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef())
1404       return nullptr;
1405 
1406   MachineInstr *NewMI = nullptr;
1407   bool Is64Bit = Subtarget.is64Bit();
1408 
1409   bool Is8BitOp = false;
1410   unsigned MIOpc = MI.getOpcode();
1411   switch (MIOpc) {
1412   default: llvm_unreachable("Unreachable!");
1413   case X86::SHL64ri: {
1414     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1415     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1416     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1417 
1418     // LEA can't handle RSP.
1419     if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass(
1420                                         Src.getReg(), &X86::GR64_NOSPRegClass))
1421       return nullptr;
1422 
1423     NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r))
1424                 .add(Dest)
1425                 .addReg(0)
1426                 .addImm(1ULL << ShAmt)
1427                 .add(Src)
1428                 .addImm(0)
1429                 .addReg(0);
1430     break;
1431   }
1432   case X86::SHL32ri: {
1433     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1434     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1435     if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr;
1436 
1437     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1438 
1439     // LEA can't handle ESP.
1440     bool isKill;
1441     Register SrcReg;
1442     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1443     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false,
1444                         SrcReg, isKill, ImplicitOp, LV))
1445       return nullptr;
1446 
1447     MachineInstrBuilder MIB =
1448         BuildMI(MF, MI.getDebugLoc(), get(Opc))
1449             .add(Dest)
1450             .addReg(0)
1451             .addImm(1ULL << ShAmt)
1452             .addReg(SrcReg, getKillRegState(isKill))
1453             .addImm(0)
1454             .addReg(0);
1455     if (ImplicitOp.getReg() != 0)
1456       MIB.add(ImplicitOp);
1457     NewMI = MIB;
1458 
1459     break;
1460   }
1461   case X86::SHL8ri:
1462     Is8BitOp = true;
1463     LLVM_FALLTHROUGH;
1464   case X86::SHL16ri: {
1465     assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!");
1466     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
1467     if (!isTruncatedShiftCountForLEA(ShAmt))
1468       return nullptr;
1469     return convertToThreeAddressWithLEA(MIOpc, MI, LV, Is8BitOp);
1470   }
1471   case X86::INC64r:
1472   case X86::INC32r: {
1473     assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!");
1474     unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r :
1475         (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1476     bool isKill;
1477     Register SrcReg;
1478     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1479     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
1480                         ImplicitOp, LV))
1481       return nullptr;
1482 
1483     MachineInstrBuilder MIB =
1484         BuildMI(MF, MI.getDebugLoc(), get(Opc))
1485             .add(Dest)
1486             .addReg(SrcReg, getKillRegState(isKill));
1487     if (ImplicitOp.getReg() != 0)
1488       MIB.add(ImplicitOp);
1489 
1490     NewMI = addOffset(MIB, 1);
1491     break;
1492   }
1493   case X86::DEC64r:
1494   case X86::DEC32r: {
1495     assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!");
1496     unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1497         : (Is64Bit ? X86::LEA64_32r : X86::LEA32r);
1498 
1499     bool isKill;
1500     Register SrcReg;
1501     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1502     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, SrcReg, isKill,
1503                         ImplicitOp, LV))
1504       return nullptr;
1505 
1506     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1507                                   .add(Dest)
1508                                   .addReg(SrcReg, getKillRegState(isKill));
1509     if (ImplicitOp.getReg() != 0)
1510       MIB.add(ImplicitOp);
1511 
1512     NewMI = addOffset(MIB, -1);
1513 
1514     break;
1515   }
1516   case X86::DEC8r:
1517   case X86::INC8r:
1518     Is8BitOp = true;
1519     LLVM_FALLTHROUGH;
1520   case X86::DEC16r:
1521   case X86::INC16r:
1522     return convertToThreeAddressWithLEA(MIOpc, MI, LV, Is8BitOp);
1523   case X86::ADD64rr:
1524   case X86::ADD64rr_DB:
1525   case X86::ADD32rr:
1526   case X86::ADD32rr_DB: {
1527     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1528     unsigned Opc;
1529     if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB)
1530       Opc = X86::LEA64r;
1531     else
1532       Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1533 
1534     const MachineOperand &Src2 = MI.getOperand(2);
1535     bool isKill2;
1536     Register SrcReg2;
1537     MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false);
1538     if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false,
1539                         SrcReg2, isKill2, ImplicitOp2, LV))
1540       return nullptr;
1541 
1542     bool isKill;
1543     Register SrcReg;
1544     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1545     if (Src.getReg() == Src2.getReg()) {
1546       // Don't call classify LEAReg a second time on the same register, in case
1547       // the first call inserted a COPY from Src2 and marked it as killed.
1548       isKill = isKill2;
1549       SrcReg = SrcReg2;
1550     } else {
1551       if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true,
1552                           SrcReg, isKill, ImplicitOp, LV))
1553         return nullptr;
1554     }
1555 
1556     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest);
1557     if (ImplicitOp.getReg() != 0)
1558       MIB.add(ImplicitOp);
1559     if (ImplicitOp2.getReg() != 0)
1560       MIB.add(ImplicitOp2);
1561 
1562     NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2);
1563     if (LV && Src2.isKill())
1564       LV->replaceKillInstruction(SrcReg2, MI, *NewMI);
1565     break;
1566   }
1567   case X86::ADD8rr:
1568   case X86::ADD8rr_DB:
1569     Is8BitOp = true;
1570     LLVM_FALLTHROUGH;
1571   case X86::ADD16rr:
1572   case X86::ADD16rr_DB:
1573     return convertToThreeAddressWithLEA(MIOpc, MI, LV, Is8BitOp);
1574   case X86::ADD64ri32:
1575   case X86::ADD64ri8:
1576   case X86::ADD64ri32_DB:
1577   case X86::ADD64ri8_DB:
1578     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1579     NewMI = addOffset(
1580         BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src),
1581         MI.getOperand(2));
1582     break;
1583   case X86::ADD32ri:
1584   case X86::ADD32ri8:
1585   case X86::ADD32ri_DB:
1586   case X86::ADD32ri8_DB: {
1587     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1588     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1589 
1590     bool isKill;
1591     Register SrcReg;
1592     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1593     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1594                         SrcReg, isKill, ImplicitOp, LV))
1595       return nullptr;
1596 
1597     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1598                                   .add(Dest)
1599                                   .addReg(SrcReg, getKillRegState(isKill));
1600     if (ImplicitOp.getReg() != 0)
1601       MIB.add(ImplicitOp);
1602 
1603     NewMI = addOffset(MIB, MI.getOperand(2));
1604     break;
1605   }
1606   case X86::ADD8ri:
1607   case X86::ADD8ri_DB:
1608     Is8BitOp = true;
1609     LLVM_FALLTHROUGH;
1610   case X86::ADD16ri:
1611   case X86::ADD16ri8:
1612   case X86::ADD16ri_DB:
1613   case X86::ADD16ri8_DB:
1614     return convertToThreeAddressWithLEA(MIOpc, MI, LV, Is8BitOp);
1615   case X86::SUB8ri:
1616   case X86::SUB16ri8:
1617   case X86::SUB16ri:
1618     /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1619     return nullptr;
1620   case X86::SUB32ri8:
1621   case X86::SUB32ri: {
1622     if (!MI.getOperand(2).isImm())
1623       return nullptr;
1624     int64_t Imm = MI.getOperand(2).getImm();
1625     if (!isInt<32>(-Imm))
1626       return nullptr;
1627 
1628     assert(MI.getNumOperands() >= 3 && "Unknown add instruction!");
1629     unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r;
1630 
1631     bool isKill;
1632     Register SrcReg;
1633     MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false);
1634     if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true,
1635                         SrcReg, isKill, ImplicitOp, LV))
1636       return nullptr;
1637 
1638     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1639                                   .add(Dest)
1640                                   .addReg(SrcReg, getKillRegState(isKill));
1641     if (ImplicitOp.getReg() != 0)
1642       MIB.add(ImplicitOp);
1643 
1644     NewMI = addOffset(MIB, -Imm);
1645     break;
1646   }
1647 
1648   case X86::SUB64ri8:
1649   case X86::SUB64ri32: {
1650     if (!MI.getOperand(2).isImm())
1651       return nullptr;
1652     int64_t Imm = MI.getOperand(2).getImm();
1653     if (!isInt<32>(-Imm))
1654       return nullptr;
1655 
1656     assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!");
1657 
1658     MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(),
1659                                       get(X86::LEA64r)).add(Dest).add(Src);
1660     NewMI = addOffset(MIB, -Imm);
1661     break;
1662   }
1663 
1664   case X86::VMOVDQU8Z128rmk:
1665   case X86::VMOVDQU8Z256rmk:
1666   case X86::VMOVDQU8Zrmk:
1667   case X86::VMOVDQU16Z128rmk:
1668   case X86::VMOVDQU16Z256rmk:
1669   case X86::VMOVDQU16Zrmk:
1670   case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk:
1671   case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk:
1672   case X86::VMOVDQU32Zrmk:    case X86::VMOVDQA32Zrmk:
1673   case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk:
1674   case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk:
1675   case X86::VMOVDQU64Zrmk:    case X86::VMOVDQA64Zrmk:
1676   case X86::VMOVUPDZ128rmk:   case X86::VMOVAPDZ128rmk:
1677   case X86::VMOVUPDZ256rmk:   case X86::VMOVAPDZ256rmk:
1678   case X86::VMOVUPDZrmk:      case X86::VMOVAPDZrmk:
1679   case X86::VMOVUPSZ128rmk:   case X86::VMOVAPSZ128rmk:
1680   case X86::VMOVUPSZ256rmk:   case X86::VMOVAPSZ256rmk:
1681   case X86::VMOVUPSZrmk:      case X86::VMOVAPSZrmk:
1682   case X86::VBROADCASTSDZ256rmk:
1683   case X86::VBROADCASTSDZrmk:
1684   case X86::VBROADCASTSSZ128rmk:
1685   case X86::VBROADCASTSSZ256rmk:
1686   case X86::VBROADCASTSSZrmk:
1687   case X86::VPBROADCASTDZ128rmk:
1688   case X86::VPBROADCASTDZ256rmk:
1689   case X86::VPBROADCASTDZrmk:
1690   case X86::VPBROADCASTQZ128rmk:
1691   case X86::VPBROADCASTQZ256rmk:
1692   case X86::VPBROADCASTQZrmk: {
1693     unsigned Opc;
1694     switch (MIOpc) {
1695     default: llvm_unreachable("Unreachable!");
1696     case X86::VMOVDQU8Z128rmk:     Opc = X86::VPBLENDMBZ128rmk; break;
1697     case X86::VMOVDQU8Z256rmk:     Opc = X86::VPBLENDMBZ256rmk; break;
1698     case X86::VMOVDQU8Zrmk:        Opc = X86::VPBLENDMBZrmk;    break;
1699     case X86::VMOVDQU16Z128rmk:    Opc = X86::VPBLENDMWZ128rmk; break;
1700     case X86::VMOVDQU16Z256rmk:    Opc = X86::VPBLENDMWZ256rmk; break;
1701     case X86::VMOVDQU16Zrmk:       Opc = X86::VPBLENDMWZrmk;    break;
1702     case X86::VMOVDQU32Z128rmk:    Opc = X86::VPBLENDMDZ128rmk; break;
1703     case X86::VMOVDQU32Z256rmk:    Opc = X86::VPBLENDMDZ256rmk; break;
1704     case X86::VMOVDQU32Zrmk:       Opc = X86::VPBLENDMDZrmk;    break;
1705     case X86::VMOVDQU64Z128rmk:    Opc = X86::VPBLENDMQZ128rmk; break;
1706     case X86::VMOVDQU64Z256rmk:    Opc = X86::VPBLENDMQZ256rmk; break;
1707     case X86::VMOVDQU64Zrmk:       Opc = X86::VPBLENDMQZrmk;    break;
1708     case X86::VMOVUPDZ128rmk:      Opc = X86::VBLENDMPDZ128rmk; break;
1709     case X86::VMOVUPDZ256rmk:      Opc = X86::VBLENDMPDZ256rmk; break;
1710     case X86::VMOVUPDZrmk:         Opc = X86::VBLENDMPDZrmk;    break;
1711     case X86::VMOVUPSZ128rmk:      Opc = X86::VBLENDMPSZ128rmk; break;
1712     case X86::VMOVUPSZ256rmk:      Opc = X86::VBLENDMPSZ256rmk; break;
1713     case X86::VMOVUPSZrmk:         Opc = X86::VBLENDMPSZrmk;    break;
1714     case X86::VMOVDQA32Z128rmk:    Opc = X86::VPBLENDMDZ128rmk; break;
1715     case X86::VMOVDQA32Z256rmk:    Opc = X86::VPBLENDMDZ256rmk; break;
1716     case X86::VMOVDQA32Zrmk:       Opc = X86::VPBLENDMDZrmk;    break;
1717     case X86::VMOVDQA64Z128rmk:    Opc = X86::VPBLENDMQZ128rmk; break;
1718     case X86::VMOVDQA64Z256rmk:    Opc = X86::VPBLENDMQZ256rmk; break;
1719     case X86::VMOVDQA64Zrmk:       Opc = X86::VPBLENDMQZrmk;    break;
1720     case X86::VMOVAPDZ128rmk:      Opc = X86::VBLENDMPDZ128rmk; break;
1721     case X86::VMOVAPDZ256rmk:      Opc = X86::VBLENDMPDZ256rmk; break;
1722     case X86::VMOVAPDZrmk:         Opc = X86::VBLENDMPDZrmk;    break;
1723     case X86::VMOVAPSZ128rmk:      Opc = X86::VBLENDMPSZ128rmk; break;
1724     case X86::VMOVAPSZ256rmk:      Opc = X86::VBLENDMPSZ256rmk; break;
1725     case X86::VMOVAPSZrmk:         Opc = X86::VBLENDMPSZrmk;    break;
1726     case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break;
1727     case X86::VBROADCASTSDZrmk:    Opc = X86::VBLENDMPDZrmbk;    break;
1728     case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break;
1729     case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break;
1730     case X86::VBROADCASTSSZrmk:    Opc = X86::VBLENDMPSZrmbk;    break;
1731     case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break;
1732     case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break;
1733     case X86::VPBROADCASTDZrmk:    Opc = X86::VPBLENDMDZrmbk;    break;
1734     case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break;
1735     case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break;
1736     case X86::VPBROADCASTQZrmk:    Opc = X86::VPBLENDMQZrmbk;    break;
1737     }
1738 
1739     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1740               .add(Dest)
1741               .add(MI.getOperand(2))
1742               .add(Src)
1743               .add(MI.getOperand(3))
1744               .add(MI.getOperand(4))
1745               .add(MI.getOperand(5))
1746               .add(MI.getOperand(6))
1747               .add(MI.getOperand(7));
1748     break;
1749   }
1750 
1751   case X86::VMOVDQU8Z128rrk:
1752   case X86::VMOVDQU8Z256rrk:
1753   case X86::VMOVDQU8Zrrk:
1754   case X86::VMOVDQU16Z128rrk:
1755   case X86::VMOVDQU16Z256rrk:
1756   case X86::VMOVDQU16Zrrk:
1757   case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk:
1758   case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk:
1759   case X86::VMOVDQU32Zrrk:    case X86::VMOVDQA32Zrrk:
1760   case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk:
1761   case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk:
1762   case X86::VMOVDQU64Zrrk:    case X86::VMOVDQA64Zrrk:
1763   case X86::VMOVUPDZ128rrk:   case X86::VMOVAPDZ128rrk:
1764   case X86::VMOVUPDZ256rrk:   case X86::VMOVAPDZ256rrk:
1765   case X86::VMOVUPDZrrk:      case X86::VMOVAPDZrrk:
1766   case X86::VMOVUPSZ128rrk:   case X86::VMOVAPSZ128rrk:
1767   case X86::VMOVUPSZ256rrk:   case X86::VMOVAPSZ256rrk:
1768   case X86::VMOVUPSZrrk:      case X86::VMOVAPSZrrk: {
1769     unsigned Opc;
1770     switch (MIOpc) {
1771     default: llvm_unreachable("Unreachable!");
1772     case X86::VMOVDQU8Z128rrk:  Opc = X86::VPBLENDMBZ128rrk; break;
1773     case X86::VMOVDQU8Z256rrk:  Opc = X86::VPBLENDMBZ256rrk; break;
1774     case X86::VMOVDQU8Zrrk:     Opc = X86::VPBLENDMBZrrk;    break;
1775     case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break;
1776     case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break;
1777     case X86::VMOVDQU16Zrrk:    Opc = X86::VPBLENDMWZrrk;    break;
1778     case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1779     case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1780     case X86::VMOVDQU32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1781     case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1782     case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1783     case X86::VMOVDQU64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1784     case X86::VMOVUPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1785     case X86::VMOVUPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1786     case X86::VMOVUPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1787     case X86::VMOVUPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1788     case X86::VMOVUPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1789     case X86::VMOVUPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1790     case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break;
1791     case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break;
1792     case X86::VMOVDQA32Zrrk:    Opc = X86::VPBLENDMDZrrk;    break;
1793     case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break;
1794     case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break;
1795     case X86::VMOVDQA64Zrrk:    Opc = X86::VPBLENDMQZrrk;    break;
1796     case X86::VMOVAPDZ128rrk:   Opc = X86::VBLENDMPDZ128rrk; break;
1797     case X86::VMOVAPDZ256rrk:   Opc = X86::VBLENDMPDZ256rrk; break;
1798     case X86::VMOVAPDZrrk:      Opc = X86::VBLENDMPDZrrk;    break;
1799     case X86::VMOVAPSZ128rrk:   Opc = X86::VBLENDMPSZ128rrk; break;
1800     case X86::VMOVAPSZ256rrk:   Opc = X86::VBLENDMPSZ256rrk; break;
1801     case X86::VMOVAPSZrrk:      Opc = X86::VBLENDMPSZrrk;    break;
1802     }
1803 
1804     NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc))
1805               .add(Dest)
1806               .add(MI.getOperand(2))
1807               .add(Src)
1808               .add(MI.getOperand(3));
1809     break;
1810   }
1811   }
1812 
1813   if (!NewMI) return nullptr;
1814 
1815   if (LV) {  // Update live variables
1816     if (Src.isKill())
1817       LV->replaceKillInstruction(Src.getReg(), MI, *NewMI);
1818     if (Dest.isDead())
1819       LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI);
1820   }
1821 
1822   MachineBasicBlock &MBB = *MI.getParent();
1823   MBB.insert(MI.getIterator(), NewMI); // Insert the new inst
1824   return NewMI;
1825 }
1826 
1827 /// This determines which of three possible cases of a three source commute
1828 /// the source indexes correspond to taking into account any mask operands.
1829 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1830 /// possible.
1831 /// Case 0 - Possible to commute the first and second operands.
1832 /// Case 1 - Possible to commute the first and third operands.
1833 /// Case 2 - Possible to commute the second and third operands.
getThreeSrcCommuteCase(uint64_t TSFlags,unsigned SrcOpIdx1,unsigned SrcOpIdx2)1834 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1,
1835                                        unsigned SrcOpIdx2) {
1836   // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1837   if (SrcOpIdx1 > SrcOpIdx2)
1838     std::swap(SrcOpIdx1, SrcOpIdx2);
1839 
1840   unsigned Op1 = 1, Op2 = 2, Op3 = 3;
1841   if (X86II::isKMasked(TSFlags)) {
1842     Op2++;
1843     Op3++;
1844   }
1845 
1846   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2)
1847     return 0;
1848   if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3)
1849     return 1;
1850   if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3)
1851     return 2;
1852   llvm_unreachable("Unknown three src commute case.");
1853 }
1854 
getFMA3OpcodeToCommuteOperands(const MachineInstr & MI,unsigned SrcOpIdx1,unsigned SrcOpIdx2,const X86InstrFMA3Group & FMA3Group) const1855 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1856     const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2,
1857     const X86InstrFMA3Group &FMA3Group) const {
1858 
1859   unsigned Opc = MI.getOpcode();
1860 
1861   // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1862   // analysis. The commute optimization is legal only if all users of FMA*_Int
1863   // use only the lowest element of the FMA*_Int instruction. Such analysis are
1864   // not implemented yet. So, just return 0 in that case.
1865   // When such analysis are available this place will be the right place for
1866   // calling it.
1867   assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) &&
1868          "Intrinsic instructions can't commute operand 1");
1869 
1870   // Determine which case this commute is or if it can't be done.
1871   unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1872                                          SrcOpIdx2);
1873   assert(Case < 3 && "Unexpected case number!");
1874 
1875   // Define the FMA forms mapping array that helps to map input FMA form
1876   // to output FMA form to preserve the operation semantics after
1877   // commuting the operands.
1878   const unsigned Form132Index = 0;
1879   const unsigned Form213Index = 1;
1880   const unsigned Form231Index = 2;
1881   static const unsigned FormMapping[][3] = {
1882     // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1883     // FMA132 A, C, b; ==> FMA231 C, A, b;
1884     // FMA213 B, A, c; ==> FMA213 A, B, c;
1885     // FMA231 C, A, b; ==> FMA132 A, C, b;
1886     { Form231Index, Form213Index, Form132Index },
1887     // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1888     // FMA132 A, c, B; ==> FMA132 B, c, A;
1889     // FMA213 B, a, C; ==> FMA231 C, a, B;
1890     // FMA231 C, a, B; ==> FMA213 B, a, C;
1891     { Form132Index, Form231Index, Form213Index },
1892     // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1893     // FMA132 a, C, B; ==> FMA213 a, B, C;
1894     // FMA213 b, A, C; ==> FMA132 b, C, A;
1895     // FMA231 c, A, B; ==> FMA231 c, B, A;
1896     { Form213Index, Form132Index, Form231Index }
1897   };
1898 
1899   unsigned FMAForms[3];
1900   FMAForms[0] = FMA3Group.get132Opcode();
1901   FMAForms[1] = FMA3Group.get213Opcode();
1902   FMAForms[2] = FMA3Group.get231Opcode();
1903   unsigned FormIndex;
1904   for (FormIndex = 0; FormIndex < 3; FormIndex++)
1905     if (Opc == FMAForms[FormIndex])
1906       break;
1907 
1908   // Everything is ready, just adjust the FMA opcode and return it.
1909   FormIndex = FormMapping[Case][FormIndex];
1910   return FMAForms[FormIndex];
1911 }
1912 
commuteVPTERNLOG(MachineInstr & MI,unsigned SrcOpIdx1,unsigned SrcOpIdx2)1913 static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1,
1914                              unsigned SrcOpIdx2) {
1915   // Determine which case this commute is or if it can't be done.
1916   unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1,
1917                                          SrcOpIdx2);
1918   assert(Case < 3 && "Unexpected case value!");
1919 
1920   // For each case we need to swap two pairs of bits in the final immediate.
1921   static const uint8_t SwapMasks[3][4] = {
1922     { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1923     { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1924     { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1925   };
1926 
1927   uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm();
1928   // Clear out the bits we are swapping.
1929   uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] |
1930                            SwapMasks[Case][2] | SwapMasks[Case][3]);
1931   // If the immediate had a bit of the pair set, then set the opposite bit.
1932   if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1];
1933   if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0];
1934   if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3];
1935   if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2];
1936   MI.getOperand(MI.getNumOperands()-1).setImm(NewImm);
1937 }
1938 
1939 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1940 // commuted.
isCommutableVPERMV3Instruction(unsigned Opcode)1941 static bool isCommutableVPERMV3Instruction(unsigned Opcode) {
1942 #define VPERM_CASES(Suffix) \
1943   case X86::VPERMI2##Suffix##128rr:    case X86::VPERMT2##Suffix##128rr:    \
1944   case X86::VPERMI2##Suffix##256rr:    case X86::VPERMT2##Suffix##256rr:    \
1945   case X86::VPERMI2##Suffix##rr:       case X86::VPERMT2##Suffix##rr:       \
1946   case X86::VPERMI2##Suffix##128rm:    case X86::VPERMT2##Suffix##128rm:    \
1947   case X86::VPERMI2##Suffix##256rm:    case X86::VPERMT2##Suffix##256rm:    \
1948   case X86::VPERMI2##Suffix##rm:       case X86::VPERMT2##Suffix##rm:       \
1949   case X86::VPERMI2##Suffix##128rrkz:  case X86::VPERMT2##Suffix##128rrkz:  \
1950   case X86::VPERMI2##Suffix##256rrkz:  case X86::VPERMT2##Suffix##256rrkz:  \
1951   case X86::VPERMI2##Suffix##rrkz:     case X86::VPERMT2##Suffix##rrkz:     \
1952   case X86::VPERMI2##Suffix##128rmkz:  case X86::VPERMT2##Suffix##128rmkz:  \
1953   case X86::VPERMI2##Suffix##256rmkz:  case X86::VPERMT2##Suffix##256rmkz:  \
1954   case X86::VPERMI2##Suffix##rmkz:     case X86::VPERMT2##Suffix##rmkz:
1955 
1956 #define VPERM_CASES_BROADCAST(Suffix) \
1957   VPERM_CASES(Suffix) \
1958   case X86::VPERMI2##Suffix##128rmb:   case X86::VPERMT2##Suffix##128rmb:   \
1959   case X86::VPERMI2##Suffix##256rmb:   case X86::VPERMT2##Suffix##256rmb:   \
1960   case X86::VPERMI2##Suffix##rmb:      case X86::VPERMT2##Suffix##rmb:      \
1961   case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1962   case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1963   case X86::VPERMI2##Suffix##rmbkz:    case X86::VPERMT2##Suffix##rmbkz:
1964 
1965   switch (Opcode) {
1966   default: return false;
1967   VPERM_CASES(B)
1968   VPERM_CASES_BROADCAST(D)
1969   VPERM_CASES_BROADCAST(PD)
1970   VPERM_CASES_BROADCAST(PS)
1971   VPERM_CASES_BROADCAST(Q)
1972   VPERM_CASES(W)
1973     return true;
1974   }
1975 #undef VPERM_CASES_BROADCAST
1976 #undef VPERM_CASES
1977 }
1978 
1979 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1980 // from the I opcode to the T opcode and vice versa.
getCommutedVPERMV3Opcode(unsigned Opcode)1981 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) {
1982 #define VPERM_CASES(Orig, New) \
1983   case X86::Orig##128rr:    return X86::New##128rr;   \
1984   case X86::Orig##128rrkz:  return X86::New##128rrkz; \
1985   case X86::Orig##128rm:    return X86::New##128rm;   \
1986   case X86::Orig##128rmkz:  return X86::New##128rmkz; \
1987   case X86::Orig##256rr:    return X86::New##256rr;   \
1988   case X86::Orig##256rrkz:  return X86::New##256rrkz; \
1989   case X86::Orig##256rm:    return X86::New##256rm;   \
1990   case X86::Orig##256rmkz:  return X86::New##256rmkz; \
1991   case X86::Orig##rr:       return X86::New##rr;      \
1992   case X86::Orig##rrkz:     return X86::New##rrkz;    \
1993   case X86::Orig##rm:       return X86::New##rm;      \
1994   case X86::Orig##rmkz:     return X86::New##rmkz;
1995 
1996 #define VPERM_CASES_BROADCAST(Orig, New) \
1997   VPERM_CASES(Orig, New) \
1998   case X86::Orig##128rmb:   return X86::New##128rmb;   \
1999   case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
2000   case X86::Orig##256rmb:   return X86::New##256rmb;   \
2001   case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
2002   case X86::Orig##rmb:      return X86::New##rmb;      \
2003   case X86::Orig##rmbkz:    return X86::New##rmbkz;
2004 
2005   switch (Opcode) {
2006   VPERM_CASES(VPERMI2B, VPERMT2B)
2007   VPERM_CASES_BROADCAST(VPERMI2D,  VPERMT2D)
2008   VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD)
2009   VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS)
2010   VPERM_CASES_BROADCAST(VPERMI2Q,  VPERMT2Q)
2011   VPERM_CASES(VPERMI2W, VPERMT2W)
2012   VPERM_CASES(VPERMT2B, VPERMI2B)
2013   VPERM_CASES_BROADCAST(VPERMT2D,  VPERMI2D)
2014   VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD)
2015   VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS)
2016   VPERM_CASES_BROADCAST(VPERMT2Q,  VPERMI2Q)
2017   VPERM_CASES(VPERMT2W, VPERMI2W)
2018   }
2019 
2020   llvm_unreachable("Unreachable!");
2021 #undef VPERM_CASES_BROADCAST
2022 #undef VPERM_CASES
2023 }
2024 
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const2025 MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
2026                                                    unsigned OpIdx1,
2027                                                    unsigned OpIdx2) const {
2028   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
2029     if (NewMI)
2030       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
2031     return MI;
2032   };
2033 
2034   switch (MI.getOpcode()) {
2035   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
2036   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
2037   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
2038   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
2039   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
2040   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
2041     unsigned Opc;
2042     unsigned Size;
2043     switch (MI.getOpcode()) {
2044     default: llvm_unreachable("Unreachable!");
2045     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
2046     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
2047     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
2048     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
2049     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
2050     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
2051     }
2052     unsigned Amt = MI.getOperand(3).getImm();
2053     auto &WorkingMI = cloneIfNew(MI);
2054     WorkingMI.setDesc(get(Opc));
2055     WorkingMI.getOperand(3).setImm(Size - Amt);
2056     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2057                                                    OpIdx1, OpIdx2);
2058   }
2059   case X86::PFSUBrr:
2060   case X86::PFSUBRrr: {
2061     // PFSUB  x, y: x = x - y
2062     // PFSUBR x, y: x = y - x
2063     unsigned Opc =
2064         (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr);
2065     auto &WorkingMI = cloneIfNew(MI);
2066     WorkingMI.setDesc(get(Opc));
2067     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2068                                                    OpIdx1, OpIdx2);
2069   }
2070   case X86::BLENDPDrri:
2071   case X86::BLENDPSrri:
2072   case X86::VBLENDPDrri:
2073   case X86::VBLENDPSrri:
2074     // If we're optimizing for size, try to use MOVSD/MOVSS.
2075     if (MI.getParent()->getParent()->getFunction().hasOptSize()) {
2076       unsigned Mask, Opc;
2077       switch (MI.getOpcode()) {
2078       default: llvm_unreachable("Unreachable!");
2079       case X86::BLENDPDrri:  Opc = X86::MOVSDrr;  Mask = 0x03; break;
2080       case X86::BLENDPSrri:  Opc = X86::MOVSSrr;  Mask = 0x0F; break;
2081       case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break;
2082       case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break;
2083       }
2084       if ((MI.getOperand(3).getImm() ^ Mask) == 1) {
2085         auto &WorkingMI = cloneIfNew(MI);
2086         WorkingMI.setDesc(get(Opc));
2087         WorkingMI.RemoveOperand(3);
2088         return TargetInstrInfo::commuteInstructionImpl(WorkingMI,
2089                                                        /*NewMI=*/false,
2090                                                        OpIdx1, OpIdx2);
2091       }
2092     }
2093     LLVM_FALLTHROUGH;
2094   case X86::PBLENDWrri:
2095   case X86::VBLENDPDYrri:
2096   case X86::VBLENDPSYrri:
2097   case X86::VPBLENDDrri:
2098   case X86::VPBLENDWrri:
2099   case X86::VPBLENDDYrri:
2100   case X86::VPBLENDWYrri:{
2101     int8_t Mask;
2102     switch (MI.getOpcode()) {
2103     default: llvm_unreachable("Unreachable!");
2104     case X86::BLENDPDrri:    Mask = (int8_t)0x03; break;
2105     case X86::BLENDPSrri:    Mask = (int8_t)0x0F; break;
2106     case X86::PBLENDWrri:    Mask = (int8_t)0xFF; break;
2107     case X86::VBLENDPDrri:   Mask = (int8_t)0x03; break;
2108     case X86::VBLENDPSrri:   Mask = (int8_t)0x0F; break;
2109     case X86::VBLENDPDYrri:  Mask = (int8_t)0x0F; break;
2110     case X86::VBLENDPSYrri:  Mask = (int8_t)0xFF; break;
2111     case X86::VPBLENDDrri:   Mask = (int8_t)0x0F; break;
2112     case X86::VPBLENDWrri:   Mask = (int8_t)0xFF; break;
2113     case X86::VPBLENDDYrri:  Mask = (int8_t)0xFF; break;
2114     case X86::VPBLENDWYrri:  Mask = (int8_t)0xFF; break;
2115     }
2116     // Only the least significant bits of Imm are used.
2117     // Using int8_t to ensure it will be sign extended to the int64_t that
2118     // setImm takes in order to match isel behavior.
2119     int8_t Imm = MI.getOperand(3).getImm() & Mask;
2120     auto &WorkingMI = cloneIfNew(MI);
2121     WorkingMI.getOperand(3).setImm(Mask ^ Imm);
2122     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2123                                                    OpIdx1, OpIdx2);
2124   }
2125   case X86::INSERTPSrr:
2126   case X86::VINSERTPSrr:
2127   case X86::VINSERTPSZrr: {
2128     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
2129     unsigned ZMask = Imm & 15;
2130     unsigned DstIdx = (Imm >> 4) & 3;
2131     unsigned SrcIdx = (Imm >> 6) & 3;
2132 
2133     // We can commute insertps if we zero 2 of the elements, the insertion is
2134     // "inline" and we don't override the insertion with a zero.
2135     if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 &&
2136         countPopulation(ZMask) == 2) {
2137       unsigned AltIdx = findFirstSet((ZMask | (1 << DstIdx)) ^ 15);
2138       assert(AltIdx < 4 && "Illegal insertion index");
2139       unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask;
2140       auto &WorkingMI = cloneIfNew(MI);
2141       WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(AltImm);
2142       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2143                                                      OpIdx1, OpIdx2);
2144     }
2145     return nullptr;
2146   }
2147   case X86::MOVSDrr:
2148   case X86::MOVSSrr:
2149   case X86::VMOVSDrr:
2150   case X86::VMOVSSrr:{
2151     // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2152     if (Subtarget.hasSSE41()) {
2153       unsigned Mask, Opc;
2154       switch (MI.getOpcode()) {
2155       default: llvm_unreachable("Unreachable!");
2156       case X86::MOVSDrr:  Opc = X86::BLENDPDrri;  Mask = 0x02; break;
2157       case X86::MOVSSrr:  Opc = X86::BLENDPSrri;  Mask = 0x0E; break;
2158       case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break;
2159       case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break;
2160       }
2161 
2162       auto &WorkingMI = cloneIfNew(MI);
2163       WorkingMI.setDesc(get(Opc));
2164       WorkingMI.addOperand(MachineOperand::CreateImm(Mask));
2165       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2166                                                      OpIdx1, OpIdx2);
2167     }
2168 
2169     // Convert to SHUFPD.
2170     assert(MI.getOpcode() == X86::MOVSDrr &&
2171            "Can only commute MOVSDrr without SSE4.1");
2172 
2173     auto &WorkingMI = cloneIfNew(MI);
2174     WorkingMI.setDesc(get(X86::SHUFPDrri));
2175     WorkingMI.addOperand(MachineOperand::CreateImm(0x02));
2176     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2177                                                    OpIdx1, OpIdx2);
2178   }
2179   case X86::SHUFPDrri: {
2180     // Commute to MOVSD.
2181     assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
2182     auto &WorkingMI = cloneIfNew(MI);
2183     WorkingMI.setDesc(get(X86::MOVSDrr));
2184     WorkingMI.RemoveOperand(3);
2185     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2186                                                    OpIdx1, OpIdx2);
2187   }
2188   case X86::PCLMULQDQrr:
2189   case X86::VPCLMULQDQrr:
2190   case X86::VPCLMULQDQYrr:
2191   case X86::VPCLMULQDQZrr:
2192   case X86::VPCLMULQDQZ128rr:
2193   case X86::VPCLMULQDQZ256rr: {
2194     // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2195     // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2196     unsigned Imm = MI.getOperand(3).getImm();
2197     unsigned Src1Hi = Imm & 0x01;
2198     unsigned Src2Hi = Imm & 0x10;
2199     auto &WorkingMI = cloneIfNew(MI);
2200     WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4));
2201     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2202                                                    OpIdx1, OpIdx2);
2203   }
2204   case X86::VPCMPBZ128rri:  case X86::VPCMPUBZ128rri:
2205   case X86::VPCMPBZ256rri:  case X86::VPCMPUBZ256rri:
2206   case X86::VPCMPBZrri:     case X86::VPCMPUBZrri:
2207   case X86::VPCMPDZ128rri:  case X86::VPCMPUDZ128rri:
2208   case X86::VPCMPDZ256rri:  case X86::VPCMPUDZ256rri:
2209   case X86::VPCMPDZrri:     case X86::VPCMPUDZrri:
2210   case X86::VPCMPQZ128rri:  case X86::VPCMPUQZ128rri:
2211   case X86::VPCMPQZ256rri:  case X86::VPCMPUQZ256rri:
2212   case X86::VPCMPQZrri:     case X86::VPCMPUQZrri:
2213   case X86::VPCMPWZ128rri:  case X86::VPCMPUWZ128rri:
2214   case X86::VPCMPWZ256rri:  case X86::VPCMPUWZ256rri:
2215   case X86::VPCMPWZrri:     case X86::VPCMPUWZrri:
2216   case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik:
2217   case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik:
2218   case X86::VPCMPBZrrik:    case X86::VPCMPUBZrrik:
2219   case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik:
2220   case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik:
2221   case X86::VPCMPDZrrik:    case X86::VPCMPUDZrrik:
2222   case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik:
2223   case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik:
2224   case X86::VPCMPQZrrik:    case X86::VPCMPUQZrrik:
2225   case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik:
2226   case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik:
2227   case X86::VPCMPWZrrik:    case X86::VPCMPUWZrrik: {
2228     // Flip comparison mode immediate (if necessary).
2229     unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7;
2230     Imm = X86::getSwappedVPCMPImm(Imm);
2231     auto &WorkingMI = cloneIfNew(MI);
2232     WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm);
2233     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2234                                                    OpIdx1, OpIdx2);
2235   }
2236   case X86::VPCOMBri: case X86::VPCOMUBri:
2237   case X86::VPCOMDri: case X86::VPCOMUDri:
2238   case X86::VPCOMQri: case X86::VPCOMUQri:
2239   case X86::VPCOMWri: case X86::VPCOMUWri: {
2240     // Flip comparison mode immediate (if necessary).
2241     unsigned Imm = MI.getOperand(3).getImm() & 0x7;
2242     Imm = X86::getSwappedVPCOMImm(Imm);
2243     auto &WorkingMI = cloneIfNew(MI);
2244     WorkingMI.getOperand(3).setImm(Imm);
2245     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2246                                                    OpIdx1, OpIdx2);
2247   }
2248   case X86::VCMPSDZrr:
2249   case X86::VCMPSSZrr:
2250   case X86::VCMPPDZrri:
2251   case X86::VCMPPSZrri:
2252   case X86::VCMPSHZrr:
2253   case X86::VCMPPHZrri:
2254   case X86::VCMPPHZ128rri:
2255   case X86::VCMPPHZ256rri:
2256   case X86::VCMPPDZ128rri:
2257   case X86::VCMPPSZ128rri:
2258   case X86::VCMPPDZ256rri:
2259   case X86::VCMPPSZ256rri:
2260   case X86::VCMPPDZrrik:
2261   case X86::VCMPPSZrrik:
2262   case X86::VCMPPDZ128rrik:
2263   case X86::VCMPPSZ128rrik:
2264   case X86::VCMPPDZ256rrik:
2265   case X86::VCMPPSZ256rrik: {
2266     unsigned Imm =
2267                 MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f;
2268     Imm = X86::getSwappedVCMPImm(Imm);
2269     auto &WorkingMI = cloneIfNew(MI);
2270     WorkingMI.getOperand(MI.getNumExplicitOperands() - 1).setImm(Imm);
2271     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2272                                                    OpIdx1, OpIdx2);
2273   }
2274   case X86::VPERM2F128rr:
2275   case X86::VPERM2I128rr: {
2276     // Flip permute source immediate.
2277     // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2278     // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2279     int8_t Imm = MI.getOperand(3).getImm() & 0xFF;
2280     auto &WorkingMI = cloneIfNew(MI);
2281     WorkingMI.getOperand(3).setImm(Imm ^ 0x22);
2282     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2283                                                    OpIdx1, OpIdx2);
2284   }
2285   case X86::MOVHLPSrr:
2286   case X86::UNPCKHPDrr:
2287   case X86::VMOVHLPSrr:
2288   case X86::VUNPCKHPDrr:
2289   case X86::VMOVHLPSZrr:
2290   case X86::VUNPCKHPDZ128rr: {
2291     assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
2292 
2293     unsigned Opc = MI.getOpcode();
2294     switch (Opc) {
2295     default: llvm_unreachable("Unreachable!");
2296     case X86::MOVHLPSrr:       Opc = X86::UNPCKHPDrr;      break;
2297     case X86::UNPCKHPDrr:      Opc = X86::MOVHLPSrr;       break;
2298     case X86::VMOVHLPSrr:      Opc = X86::VUNPCKHPDrr;     break;
2299     case X86::VUNPCKHPDrr:     Opc = X86::VMOVHLPSrr;      break;
2300     case X86::VMOVHLPSZrr:     Opc = X86::VUNPCKHPDZ128rr; break;
2301     case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr;     break;
2302     }
2303     auto &WorkingMI = cloneIfNew(MI);
2304     WorkingMI.setDesc(get(Opc));
2305     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2306                                                    OpIdx1, OpIdx2);
2307   }
2308   case X86::CMOV16rr:  case X86::CMOV32rr:  case X86::CMOV64rr: {
2309     auto &WorkingMI = cloneIfNew(MI);
2310     unsigned OpNo = MI.getDesc().getNumOperands() - 1;
2311     X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(OpNo).getImm());
2312     WorkingMI.getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC));
2313     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2314                                                    OpIdx1, OpIdx2);
2315   }
2316   case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
2317   case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
2318   case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
2319   case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
2320   case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
2321   case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
2322   case X86::VPTERNLOGDZrrik:
2323   case X86::VPTERNLOGDZ128rrik:
2324   case X86::VPTERNLOGDZ256rrik:
2325   case X86::VPTERNLOGQZrrik:
2326   case X86::VPTERNLOGQZ128rrik:
2327   case X86::VPTERNLOGQZ256rrik:
2328   case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
2329   case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2330   case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2331   case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
2332   case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2333   case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2334   case X86::VPTERNLOGDZ128rmbi:
2335   case X86::VPTERNLOGDZ256rmbi:
2336   case X86::VPTERNLOGDZrmbi:
2337   case X86::VPTERNLOGQZ128rmbi:
2338   case X86::VPTERNLOGQZ256rmbi:
2339   case X86::VPTERNLOGQZrmbi:
2340   case X86::VPTERNLOGDZ128rmbikz:
2341   case X86::VPTERNLOGDZ256rmbikz:
2342   case X86::VPTERNLOGDZrmbikz:
2343   case X86::VPTERNLOGQZ128rmbikz:
2344   case X86::VPTERNLOGQZ256rmbikz:
2345   case X86::VPTERNLOGQZrmbikz: {
2346     auto &WorkingMI = cloneIfNew(MI);
2347     commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2);
2348     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2349                                                    OpIdx1, OpIdx2);
2350   }
2351   default: {
2352     if (isCommutableVPERMV3Instruction(MI.getOpcode())) {
2353       unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode());
2354       auto &WorkingMI = cloneIfNew(MI);
2355       WorkingMI.setDesc(get(Opc));
2356       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2357                                                      OpIdx1, OpIdx2);
2358     }
2359 
2360     const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2361                                                       MI.getDesc().TSFlags);
2362     if (FMA3Group) {
2363       unsigned Opc =
2364         getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group);
2365       auto &WorkingMI = cloneIfNew(MI);
2366       WorkingMI.setDesc(get(Opc));
2367       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2368                                                      OpIdx1, OpIdx2);
2369     }
2370 
2371     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2372   }
2373   }
2374 }
2375 
2376 bool
findThreeSrcCommutedOpIndices(const MachineInstr & MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2,bool IsIntrinsic) const2377 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI,
2378                                             unsigned &SrcOpIdx1,
2379                                             unsigned &SrcOpIdx2,
2380                                             bool IsIntrinsic) const {
2381   uint64_t TSFlags = MI.getDesc().TSFlags;
2382 
2383   unsigned FirstCommutableVecOp = 1;
2384   unsigned LastCommutableVecOp = 3;
2385   unsigned KMaskOp = -1U;
2386   if (X86II::isKMasked(TSFlags)) {
2387     // For k-zero-masked operations it is Ok to commute the first vector
2388     // operand. Unless this is an intrinsic instruction.
2389     // For regular k-masked operations a conservative choice is done as the
2390     // elements of the first vector operand, for which the corresponding bit
2391     // in the k-mask operand is set to 0, are copied to the result of the
2392     // instruction.
2393     // TODO/FIXME: The commute still may be legal if it is known that the
2394     // k-mask operand is set to either all ones or all zeroes.
2395     // It is also Ok to commute the 1st operand if all users of MI use only
2396     // the elements enabled by the k-mask operand. For example,
2397     //   v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2398     //                                                     : v1[i];
2399     //   VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2400     //                                  // Ok, to commute v1 in FMADD213PSZrk.
2401 
2402     // The k-mask operand has index = 2 for masked and zero-masked operations.
2403     KMaskOp = 2;
2404 
2405     // The operand with index = 1 is used as a source for those elements for
2406     // which the corresponding bit in the k-mask is set to 0.
2407     if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic)
2408       FirstCommutableVecOp = 3;
2409 
2410     LastCommutableVecOp++;
2411   } else if (IsIntrinsic) {
2412     // Commuting the first operand of an intrinsic instruction isn't possible
2413     // unless we can prove that only the lowest element of the result is used.
2414     FirstCommutableVecOp = 2;
2415   }
2416 
2417   if (isMem(MI, LastCommutableVecOp))
2418     LastCommutableVecOp--;
2419 
2420   // Only the first RegOpsNum operands are commutable.
2421   // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2422   // that the operand is not specified/fixed.
2423   if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2424       (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp ||
2425        SrcOpIdx1 == KMaskOp))
2426     return false;
2427   if (SrcOpIdx2 != CommuteAnyOperandIndex &&
2428       (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp ||
2429        SrcOpIdx2 == KMaskOp))
2430     return false;
2431 
2432   // Look for two different register operands assumed to be commutable
2433   // regardless of the FMA opcode. The FMA opcode is adjusted later.
2434   if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2435       SrcOpIdx2 == CommuteAnyOperandIndex) {
2436     unsigned CommutableOpIdx2 = SrcOpIdx2;
2437 
2438     // At least one of operands to be commuted is not specified and
2439     // this method is free to choose appropriate commutable operands.
2440     if (SrcOpIdx1 == SrcOpIdx2)
2441       // Both of operands are not fixed. By default set one of commutable
2442       // operands to the last register operand of the instruction.
2443       CommutableOpIdx2 = LastCommutableVecOp;
2444     else if (SrcOpIdx2 == CommuteAnyOperandIndex)
2445       // Only one of operands is not fixed.
2446       CommutableOpIdx2 = SrcOpIdx1;
2447 
2448     // CommutableOpIdx2 is well defined now. Let's choose another commutable
2449     // operand and assign its index to CommutableOpIdx1.
2450     Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg();
2451 
2452     unsigned CommutableOpIdx1;
2453     for (CommutableOpIdx1 = LastCommutableVecOp;
2454          CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) {
2455       // Just ignore and skip the k-mask operand.
2456       if (CommutableOpIdx1 == KMaskOp)
2457         continue;
2458 
2459       // The commuted operands must have different registers.
2460       // Otherwise, the commute transformation does not change anything and
2461       // is useless then.
2462       if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg())
2463         break;
2464     }
2465 
2466     // No appropriate commutable operands were found.
2467     if (CommutableOpIdx1 < FirstCommutableVecOp)
2468       return false;
2469 
2470     // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2471     // to return those values.
2472     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2473                               CommutableOpIdx1, CommutableOpIdx2))
2474       return false;
2475   }
2476 
2477   return true;
2478 }
2479 
findCommutedOpIndices(const MachineInstr & MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const2480 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI,
2481                                          unsigned &SrcOpIdx1,
2482                                          unsigned &SrcOpIdx2) const {
2483   const MCInstrDesc &Desc = MI.getDesc();
2484   if (!Desc.isCommutable())
2485     return false;
2486 
2487   switch (MI.getOpcode()) {
2488   case X86::CMPSDrr:
2489   case X86::CMPSSrr:
2490   case X86::CMPPDrri:
2491   case X86::CMPPSrri:
2492   case X86::VCMPSDrr:
2493   case X86::VCMPSSrr:
2494   case X86::VCMPPDrri:
2495   case X86::VCMPPSrri:
2496   case X86::VCMPPDYrri:
2497   case X86::VCMPPSYrri:
2498   case X86::VCMPSDZrr:
2499   case X86::VCMPSSZrr:
2500   case X86::VCMPPDZrri:
2501   case X86::VCMPPSZrri:
2502   case X86::VCMPSHZrr:
2503   case X86::VCMPPHZrri:
2504   case X86::VCMPPHZ128rri:
2505   case X86::VCMPPHZ256rri:
2506   case X86::VCMPPDZ128rri:
2507   case X86::VCMPPSZ128rri:
2508   case X86::VCMPPDZ256rri:
2509   case X86::VCMPPSZ256rri:
2510   case X86::VCMPPDZrrik:
2511   case X86::VCMPPSZrrik:
2512   case X86::VCMPPDZ128rrik:
2513   case X86::VCMPPSZ128rrik:
2514   case X86::VCMPPDZ256rrik:
2515   case X86::VCMPPSZ256rrik: {
2516     unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0;
2517 
2518     // Float comparison can be safely commuted for
2519     // Ordered/Unordered/Equal/NotEqual tests
2520     unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7;
2521     switch (Imm) {
2522     default:
2523       // EVEX versions can be commuted.
2524       if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX)
2525         break;
2526       return false;
2527     case 0x00: // EQUAL
2528     case 0x03: // UNORDERED
2529     case 0x04: // NOT EQUAL
2530     case 0x07: // ORDERED
2531       break;
2532     }
2533 
2534     // The indices of the commutable operands are 1 and 2 (or 2 and 3
2535     // when masked).
2536     // Assign them to the returned operand indices here.
2537     return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset,
2538                                 2 + OpOffset);
2539   }
2540   case X86::MOVSSrr:
2541     // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2542     // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2543     // AVX implies sse4.1.
2544     if (Subtarget.hasSSE41())
2545       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2546     return false;
2547   case X86::SHUFPDrri:
2548     // We can commute this to MOVSD.
2549     if (MI.getOperand(3).getImm() == 0x02)
2550       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2551     return false;
2552   case X86::MOVHLPSrr:
2553   case X86::UNPCKHPDrr:
2554   case X86::VMOVHLPSrr:
2555   case X86::VUNPCKHPDrr:
2556   case X86::VMOVHLPSZrr:
2557   case X86::VUNPCKHPDZ128rr:
2558     if (Subtarget.hasSSE2())
2559       return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2560     return false;
2561   case X86::VPTERNLOGDZrri:      case X86::VPTERNLOGDZrmi:
2562   case X86::VPTERNLOGDZ128rri:   case X86::VPTERNLOGDZ128rmi:
2563   case X86::VPTERNLOGDZ256rri:   case X86::VPTERNLOGDZ256rmi:
2564   case X86::VPTERNLOGQZrri:      case X86::VPTERNLOGQZrmi:
2565   case X86::VPTERNLOGQZ128rri:   case X86::VPTERNLOGQZ128rmi:
2566   case X86::VPTERNLOGQZ256rri:   case X86::VPTERNLOGQZ256rmi:
2567   case X86::VPTERNLOGDZrrik:
2568   case X86::VPTERNLOGDZ128rrik:
2569   case X86::VPTERNLOGDZ256rrik:
2570   case X86::VPTERNLOGQZrrik:
2571   case X86::VPTERNLOGQZ128rrik:
2572   case X86::VPTERNLOGQZ256rrik:
2573   case X86::VPTERNLOGDZrrikz:    case X86::VPTERNLOGDZrmikz:
2574   case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz:
2575   case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz:
2576   case X86::VPTERNLOGQZrrikz:    case X86::VPTERNLOGQZrmikz:
2577   case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz:
2578   case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz:
2579   case X86::VPTERNLOGDZ128rmbi:
2580   case X86::VPTERNLOGDZ256rmbi:
2581   case X86::VPTERNLOGDZrmbi:
2582   case X86::VPTERNLOGQZ128rmbi:
2583   case X86::VPTERNLOGQZ256rmbi:
2584   case X86::VPTERNLOGQZrmbi:
2585   case X86::VPTERNLOGDZ128rmbikz:
2586   case X86::VPTERNLOGDZ256rmbikz:
2587   case X86::VPTERNLOGDZrmbikz:
2588   case X86::VPTERNLOGQZ128rmbikz:
2589   case X86::VPTERNLOGQZ256rmbikz:
2590   case X86::VPTERNLOGQZrmbikz:
2591     return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2592   case X86::VPDPWSSDYrr:
2593   case X86::VPDPWSSDrr:
2594   case X86::VPDPWSSDSYrr:
2595   case X86::VPDPWSSDSrr:
2596   case X86::VPDPWSSDZ128r:
2597   case X86::VPDPWSSDZ128rk:
2598   case X86::VPDPWSSDZ128rkz:
2599   case X86::VPDPWSSDZ256r:
2600   case X86::VPDPWSSDZ256rk:
2601   case X86::VPDPWSSDZ256rkz:
2602   case X86::VPDPWSSDZr:
2603   case X86::VPDPWSSDZrk:
2604   case X86::VPDPWSSDZrkz:
2605   case X86::VPDPWSSDSZ128r:
2606   case X86::VPDPWSSDSZ128rk:
2607   case X86::VPDPWSSDSZ128rkz:
2608   case X86::VPDPWSSDSZ256r:
2609   case X86::VPDPWSSDSZ256rk:
2610   case X86::VPDPWSSDSZ256rkz:
2611   case X86::VPDPWSSDSZr:
2612   case X86::VPDPWSSDSZrk:
2613   case X86::VPDPWSSDSZrkz:
2614   case X86::VPMADD52HUQZ128r:
2615   case X86::VPMADD52HUQZ128rk:
2616   case X86::VPMADD52HUQZ128rkz:
2617   case X86::VPMADD52HUQZ256r:
2618   case X86::VPMADD52HUQZ256rk:
2619   case X86::VPMADD52HUQZ256rkz:
2620   case X86::VPMADD52HUQZr:
2621   case X86::VPMADD52HUQZrk:
2622   case X86::VPMADD52HUQZrkz:
2623   case X86::VPMADD52LUQZ128r:
2624   case X86::VPMADD52LUQZ128rk:
2625   case X86::VPMADD52LUQZ128rkz:
2626   case X86::VPMADD52LUQZ256r:
2627   case X86::VPMADD52LUQZ256rk:
2628   case X86::VPMADD52LUQZ256rkz:
2629   case X86::VPMADD52LUQZr:
2630   case X86::VPMADD52LUQZrk:
2631   case X86::VPMADD52LUQZrkz:
2632   case X86::VFMADDCPHZr:
2633   case X86::VFMADDCPHZrk:
2634   case X86::VFMADDCPHZrkz:
2635   case X86::VFMADDCPHZ128r:
2636   case X86::VFMADDCPHZ128rk:
2637   case X86::VFMADDCPHZ128rkz:
2638   case X86::VFMADDCPHZ256r:
2639   case X86::VFMADDCPHZ256rk:
2640   case X86::VFMADDCPHZ256rkz:
2641   case X86::VFMADDCSHZr:
2642   case X86::VFMADDCSHZrk:
2643   case X86::VFMADDCSHZrkz: {
2644     unsigned CommutableOpIdx1 = 2;
2645     unsigned CommutableOpIdx2 = 3;
2646     if (X86II::isKMasked(Desc.TSFlags)) {
2647       // Skip the mask register.
2648       ++CommutableOpIdx1;
2649       ++CommutableOpIdx2;
2650     }
2651     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2652                               CommutableOpIdx1, CommutableOpIdx2))
2653       return false;
2654     if (!MI.getOperand(SrcOpIdx1).isReg() ||
2655         !MI.getOperand(SrcOpIdx2).isReg())
2656       // No idea.
2657       return false;
2658     return true;
2659   }
2660 
2661   default:
2662     const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(),
2663                                                       MI.getDesc().TSFlags);
2664     if (FMA3Group)
2665       return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2,
2666                                            FMA3Group->isIntrinsic());
2667 
2668     // Handled masked instructions since we need to skip over the mask input
2669     // and the preserved input.
2670     if (X86II::isKMasked(Desc.TSFlags)) {
2671       // First assume that the first input is the mask operand and skip past it.
2672       unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1;
2673       unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2;
2674       // Check if the first input is tied. If there isn't one then we only
2675       // need to skip the mask operand which we did above.
2676       if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(),
2677                                              MCOI::TIED_TO) != -1)) {
2678         // If this is zero masking instruction with a tied operand, we need to
2679         // move the first index back to the first input since this must
2680         // be a 3 input instruction and we want the first two non-mask inputs.
2681         // Otherwise this is a 2 input instruction with a preserved input and
2682         // mask, so we need to move the indices to skip one more input.
2683         if (X86II::isKMergeMasked(Desc.TSFlags)) {
2684           ++CommutableOpIdx1;
2685           ++CommutableOpIdx2;
2686         } else {
2687           --CommutableOpIdx1;
2688         }
2689       }
2690 
2691       if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
2692                                 CommutableOpIdx1, CommutableOpIdx2))
2693         return false;
2694 
2695       if (!MI.getOperand(SrcOpIdx1).isReg() ||
2696           !MI.getOperand(SrcOpIdx2).isReg())
2697         // No idea.
2698         return false;
2699       return true;
2700     }
2701 
2702     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2703   }
2704   return false;
2705 }
2706 
isConvertibleLEA(MachineInstr * MI)2707 static bool isConvertibleLEA(MachineInstr *MI) {
2708   unsigned Opcode = MI->getOpcode();
2709   if (Opcode != X86::LEA32r && Opcode != X86::LEA64r &&
2710       Opcode != X86::LEA64_32r)
2711     return false;
2712 
2713   const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt);
2714   const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp);
2715   const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg);
2716 
2717   if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 ||
2718       Scale.getImm() > 1)
2719     return false;
2720 
2721   return true;
2722 }
2723 
hasCommutePreference(MachineInstr & MI,bool & Commute) const2724 bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const {
2725   // Currently we're interested in following sequence only.
2726   //   r3 = lea r1, r2
2727   //   r5 = add r3, r4
2728   // Both r3 and r4 are killed in add, we hope the add instruction has the
2729   // operand order
2730   //   r5 = add r4, r3
2731   // So later in X86FixupLEAs the lea instruction can be rewritten as add.
2732   unsigned Opcode = MI.getOpcode();
2733   if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr)
2734     return false;
2735 
2736   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2737   Register Reg1 = MI.getOperand(1).getReg();
2738   Register Reg2 = MI.getOperand(2).getReg();
2739 
2740   // Check if Reg1 comes from LEA in the same MBB.
2741   if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) {
2742     if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2743       Commute = true;
2744       return true;
2745     }
2746   }
2747 
2748   // Check if Reg2 comes from LEA in the same MBB.
2749   if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) {
2750     if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) {
2751       Commute = false;
2752       return true;
2753     }
2754   }
2755 
2756   return false;
2757 }
2758 
getCondFromBranch(const MachineInstr & MI)2759 X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) {
2760   switch (MI.getOpcode()) {
2761   default: return X86::COND_INVALID;
2762   case X86::JCC_1:
2763     return static_cast<X86::CondCode>(
2764         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2765   }
2766 }
2767 
2768 /// Return condition code of a SETCC opcode.
getCondFromSETCC(const MachineInstr & MI)2769 X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) {
2770   switch (MI.getOpcode()) {
2771   default: return X86::COND_INVALID;
2772   case X86::SETCCr: case X86::SETCCm:
2773     return static_cast<X86::CondCode>(
2774         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2775   }
2776 }
2777 
2778 /// Return condition code of a CMov opcode.
getCondFromCMov(const MachineInstr & MI)2779 X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) {
2780   switch (MI.getOpcode()) {
2781   default: return X86::COND_INVALID;
2782   case X86::CMOV16rr: case X86::CMOV32rr: case X86::CMOV64rr:
2783   case X86::CMOV16rm: case X86::CMOV32rm: case X86::CMOV64rm:
2784     return static_cast<X86::CondCode>(
2785         MI.getOperand(MI.getDesc().getNumOperands() - 1).getImm());
2786   }
2787 }
2788 
2789 /// Return the inverse of the specified condition,
2790 /// e.g. turning COND_E to COND_NE.
GetOppositeBranchCondition(X86::CondCode CC)2791 X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
2792   switch (CC) {
2793   default: llvm_unreachable("Illegal condition code!");
2794   case X86::COND_E:  return X86::COND_NE;
2795   case X86::COND_NE: return X86::COND_E;
2796   case X86::COND_L:  return X86::COND_GE;
2797   case X86::COND_LE: return X86::COND_G;
2798   case X86::COND_G:  return X86::COND_LE;
2799   case X86::COND_GE: return X86::COND_L;
2800   case X86::COND_B:  return X86::COND_AE;
2801   case X86::COND_BE: return X86::COND_A;
2802   case X86::COND_A:  return X86::COND_BE;
2803   case X86::COND_AE: return X86::COND_B;
2804   case X86::COND_S:  return X86::COND_NS;
2805   case X86::COND_NS: return X86::COND_S;
2806   case X86::COND_P:  return X86::COND_NP;
2807   case X86::COND_NP: return X86::COND_P;
2808   case X86::COND_O:  return X86::COND_NO;
2809   case X86::COND_NO: return X86::COND_O;
2810   case X86::COND_NE_OR_P:  return X86::COND_E_AND_NP;
2811   case X86::COND_E_AND_NP: return X86::COND_NE_OR_P;
2812   }
2813 }
2814 
2815 /// Assuming the flags are set by MI(a,b), return the condition code if we
2816 /// modify the instructions such that flags are set by MI(b,a).
getSwappedCondition(X86::CondCode CC)2817 static X86::CondCode getSwappedCondition(X86::CondCode CC) {
2818   switch (CC) {
2819   default: return X86::COND_INVALID;
2820   case X86::COND_E:  return X86::COND_E;
2821   case X86::COND_NE: return X86::COND_NE;
2822   case X86::COND_L:  return X86::COND_G;
2823   case X86::COND_LE: return X86::COND_GE;
2824   case X86::COND_G:  return X86::COND_L;
2825   case X86::COND_GE: return X86::COND_LE;
2826   case X86::COND_B:  return X86::COND_A;
2827   case X86::COND_BE: return X86::COND_AE;
2828   case X86::COND_A:  return X86::COND_B;
2829   case X86::COND_AE: return X86::COND_BE;
2830   }
2831 }
2832 
2833 std::pair<X86::CondCode, bool>
getX86ConditionCode(CmpInst::Predicate Predicate)2834 X86::getX86ConditionCode(CmpInst::Predicate Predicate) {
2835   X86::CondCode CC = X86::COND_INVALID;
2836   bool NeedSwap = false;
2837   switch (Predicate) {
2838   default: break;
2839   // Floating-point Predicates
2840   case CmpInst::FCMP_UEQ: CC = X86::COND_E;       break;
2841   case CmpInst::FCMP_OLT: NeedSwap = true;        LLVM_FALLTHROUGH;
2842   case CmpInst::FCMP_OGT: CC = X86::COND_A;       break;
2843   case CmpInst::FCMP_OLE: NeedSwap = true;        LLVM_FALLTHROUGH;
2844   case CmpInst::FCMP_OGE: CC = X86::COND_AE;      break;
2845   case CmpInst::FCMP_UGT: NeedSwap = true;        LLVM_FALLTHROUGH;
2846   case CmpInst::FCMP_ULT: CC = X86::COND_B;       break;
2847   case CmpInst::FCMP_UGE: NeedSwap = true;        LLVM_FALLTHROUGH;
2848   case CmpInst::FCMP_ULE: CC = X86::COND_BE;      break;
2849   case CmpInst::FCMP_ONE: CC = X86::COND_NE;      break;
2850   case CmpInst::FCMP_UNO: CC = X86::COND_P;       break;
2851   case CmpInst::FCMP_ORD: CC = X86::COND_NP;      break;
2852   case CmpInst::FCMP_OEQ:                         LLVM_FALLTHROUGH;
2853   case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
2854 
2855   // Integer Predicates
2856   case CmpInst::ICMP_EQ:  CC = X86::COND_E;       break;
2857   case CmpInst::ICMP_NE:  CC = X86::COND_NE;      break;
2858   case CmpInst::ICMP_UGT: CC = X86::COND_A;       break;
2859   case CmpInst::ICMP_UGE: CC = X86::COND_AE;      break;
2860   case CmpInst::ICMP_ULT: CC = X86::COND_B;       break;
2861   case CmpInst::ICMP_ULE: CC = X86::COND_BE;      break;
2862   case CmpInst::ICMP_SGT: CC = X86::COND_G;       break;
2863   case CmpInst::ICMP_SGE: CC = X86::COND_GE;      break;
2864   case CmpInst::ICMP_SLT: CC = X86::COND_L;       break;
2865   case CmpInst::ICMP_SLE: CC = X86::COND_LE;      break;
2866   }
2867 
2868   return std::make_pair(CC, NeedSwap);
2869 }
2870 
2871 /// Return a setcc opcode based on whether it has memory operand.
getSETOpc(bool HasMemoryOperand)2872 unsigned X86::getSETOpc(bool HasMemoryOperand) {
2873   return HasMemoryOperand ? X86::SETCCr : X86::SETCCm;
2874 }
2875 
2876 /// Return a cmov opcode for the given register size in bytes, and operand type.
getCMovOpcode(unsigned RegBytes,bool HasMemoryOperand)2877 unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand) {
2878   switch(RegBytes) {
2879   default: llvm_unreachable("Illegal register size!");
2880   case 2: return HasMemoryOperand ? X86::CMOV16rm : X86::CMOV16rr;
2881   case 4: return HasMemoryOperand ? X86::CMOV32rm : X86::CMOV32rr;
2882   case 8: return HasMemoryOperand ? X86::CMOV64rm : X86::CMOV64rr;
2883   }
2884 }
2885 
2886 /// Get the VPCMP immediate for the given condition.
getVPCMPImmForCond(ISD::CondCode CC)2887 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) {
2888   switch (CC) {
2889   default: llvm_unreachable("Unexpected SETCC condition");
2890   case ISD::SETNE:  return 4;
2891   case ISD::SETEQ:  return 0;
2892   case ISD::SETULT:
2893   case ISD::SETLT: return 1;
2894   case ISD::SETUGT:
2895   case ISD::SETGT: return 6;
2896   case ISD::SETUGE:
2897   case ISD::SETGE: return 5;
2898   case ISD::SETULE:
2899   case ISD::SETLE: return 2;
2900   }
2901 }
2902 
2903 /// Get the VPCMP immediate if the operands are swapped.
getSwappedVPCMPImm(unsigned Imm)2904 unsigned X86::getSwappedVPCMPImm(unsigned Imm) {
2905   switch (Imm) {
2906   default: llvm_unreachable("Unreachable!");
2907   case 0x01: Imm = 0x06; break; // LT  -> NLE
2908   case 0x02: Imm = 0x05; break; // LE  -> NLT
2909   case 0x05: Imm = 0x02; break; // NLT -> LE
2910   case 0x06: Imm = 0x01; break; // NLE -> LT
2911   case 0x00: // EQ
2912   case 0x03: // FALSE
2913   case 0x04: // NE
2914   case 0x07: // TRUE
2915     break;
2916   }
2917 
2918   return Imm;
2919 }
2920 
2921 /// Get the VPCOM immediate if the operands are swapped.
getSwappedVPCOMImm(unsigned Imm)2922 unsigned X86::getSwappedVPCOMImm(unsigned Imm) {
2923   switch (Imm) {
2924   default: llvm_unreachable("Unreachable!");
2925   case 0x00: Imm = 0x02; break; // LT -> GT
2926   case 0x01: Imm = 0x03; break; // LE -> GE
2927   case 0x02: Imm = 0x00; break; // GT -> LT
2928   case 0x03: Imm = 0x01; break; // GE -> LE
2929   case 0x04: // EQ
2930   case 0x05: // NE
2931   case 0x06: // FALSE
2932   case 0x07: // TRUE
2933     break;
2934   }
2935 
2936   return Imm;
2937 }
2938 
2939 /// Get the VCMP immediate if the operands are swapped.
getSwappedVCMPImm(unsigned Imm)2940 unsigned X86::getSwappedVCMPImm(unsigned Imm) {
2941   // Only need the lower 2 bits to distinquish.
2942   switch (Imm & 0x3) {
2943   default: llvm_unreachable("Unreachable!");
2944   case 0x00: case 0x03:
2945     // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
2946     break;
2947   case 0x01: case 0x02:
2948     // Need to toggle bits 3:0. Bit 4 stays the same.
2949     Imm ^= 0xf;
2950     break;
2951   }
2952 
2953   return Imm;
2954 }
2955 
isUnconditionalTailCall(const MachineInstr & MI) const2956 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const {
2957   switch (MI.getOpcode()) {
2958   case X86::TCRETURNdi:
2959   case X86::TCRETURNri:
2960   case X86::TCRETURNmi:
2961   case X86::TCRETURNdi64:
2962   case X86::TCRETURNri64:
2963   case X86::TCRETURNmi64:
2964     return true;
2965   default:
2966     return false;
2967   }
2968 }
2969 
canMakeTailCallConditional(SmallVectorImpl<MachineOperand> & BranchCond,const MachineInstr & TailCall) const2970 bool X86InstrInfo::canMakeTailCallConditional(
2971     SmallVectorImpl<MachineOperand> &BranchCond,
2972     const MachineInstr &TailCall) const {
2973   if (TailCall.getOpcode() != X86::TCRETURNdi &&
2974       TailCall.getOpcode() != X86::TCRETURNdi64) {
2975     // Only direct calls can be done with a conditional branch.
2976     return false;
2977   }
2978 
2979   const MachineFunction *MF = TailCall.getParent()->getParent();
2980   if (Subtarget.isTargetWin64() && MF->hasWinCFI()) {
2981     // Conditional tail calls confuse the Win64 unwinder.
2982     return false;
2983   }
2984 
2985   assert(BranchCond.size() == 1);
2986   if (BranchCond[0].getImm() > X86::LAST_VALID_COND) {
2987     // Can't make a conditional tail call with this condition.
2988     return false;
2989   }
2990 
2991   const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2992   if (X86FI->getTCReturnAddrDelta() != 0 ||
2993       TailCall.getOperand(1).getImm() != 0) {
2994     // A conditional tail call cannot do any stack adjustment.
2995     return false;
2996   }
2997 
2998   return true;
2999 }
3000 
replaceBranchWithTailCall(MachineBasicBlock & MBB,SmallVectorImpl<MachineOperand> & BranchCond,const MachineInstr & TailCall) const3001 void X86InstrInfo::replaceBranchWithTailCall(
3002     MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond,
3003     const MachineInstr &TailCall) const {
3004   assert(canMakeTailCallConditional(BranchCond, TailCall));
3005 
3006   MachineBasicBlock::iterator I = MBB.end();
3007   while (I != MBB.begin()) {
3008     --I;
3009     if (I->isDebugInstr())
3010       continue;
3011     if (!I->isBranch())
3012       assert(0 && "Can't find the branch to replace!");
3013 
3014     X86::CondCode CC = X86::getCondFromBranch(*I);
3015     assert(BranchCond.size() == 1);
3016     if (CC != BranchCond[0].getImm())
3017       continue;
3018 
3019     break;
3020   }
3021 
3022   unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc
3023                                                          : X86::TCRETURNdi64cc;
3024 
3025   auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc));
3026   MIB->addOperand(TailCall.getOperand(0)); // Destination.
3027   MIB.addImm(0); // Stack offset (not used).
3028   MIB->addOperand(BranchCond[0]); // Condition.
3029   MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters.
3030 
3031   // Add implicit uses and defs of all live regs potentially clobbered by the
3032   // call. This way they still appear live across the call.
3033   LivePhysRegs LiveRegs(getRegisterInfo());
3034   LiveRegs.addLiveOuts(MBB);
3035   SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
3036   LiveRegs.stepForward(*MIB, Clobbers);
3037   for (const auto &C : Clobbers) {
3038     MIB.addReg(C.first, RegState::Implicit);
3039     MIB.addReg(C.first, RegState::Implicit | RegState::Define);
3040   }
3041 
3042   I->eraseFromParent();
3043 }
3044 
3045 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
3046 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
3047 // fallthrough MBB cannot be identified.
getFallThroughMBB(MachineBasicBlock * MBB,MachineBasicBlock * TBB)3048 static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB,
3049                                             MachineBasicBlock *TBB) {
3050   // Look for non-EHPad successors other than TBB. If we find exactly one, it
3051   // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
3052   // and fallthrough MBB. If we find more than one, we cannot identify the
3053   // fallthrough MBB and should return nullptr.
3054   MachineBasicBlock *FallthroughBB = nullptr;
3055   for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
3056     if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB))
3057       continue;
3058     // Return a nullptr if we found more than one fallthrough successor.
3059     if (FallthroughBB && FallthroughBB != TBB)
3060       return nullptr;
3061     FallthroughBB = *SI;
3062   }
3063   return FallthroughBB;
3064 }
3065 
AnalyzeBranchImpl(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,SmallVectorImpl<MachineInstr * > & CondBranches,bool AllowModify) const3066 bool X86InstrInfo::AnalyzeBranchImpl(
3067     MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
3068     SmallVectorImpl<MachineOperand> &Cond,
3069     SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const {
3070 
3071   // Start from the bottom of the block and work up, examining the
3072   // terminator instructions.
3073   MachineBasicBlock::iterator I = MBB.end();
3074   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
3075   while (I != MBB.begin()) {
3076     --I;
3077     if (I->isDebugInstr())
3078       continue;
3079 
3080     // Working from the bottom, when we see a non-terminator instruction, we're
3081     // done.
3082     if (!isUnpredicatedTerminator(*I))
3083       break;
3084 
3085     // A terminator that isn't a branch can't easily be handled by this
3086     // analysis.
3087     if (!I->isBranch())
3088       return true;
3089 
3090     // Handle unconditional branches.
3091     if (I->getOpcode() == X86::JMP_1) {
3092       UnCondBrIter = I;
3093 
3094       if (!AllowModify) {
3095         TBB = I->getOperand(0).getMBB();
3096         continue;
3097       }
3098 
3099       // If the block has any instructions after a JMP, delete them.
3100       while (std::next(I) != MBB.end())
3101         std::next(I)->eraseFromParent();
3102 
3103       Cond.clear();
3104       FBB = nullptr;
3105 
3106       // Delete the JMP if it's equivalent to a fall-through.
3107       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
3108         TBB = nullptr;
3109         I->eraseFromParent();
3110         I = MBB.end();
3111         UnCondBrIter = MBB.end();
3112         continue;
3113       }
3114 
3115       // TBB is used to indicate the unconditional destination.
3116       TBB = I->getOperand(0).getMBB();
3117       continue;
3118     }
3119 
3120     // Handle conditional branches.
3121     X86::CondCode BranchCode = X86::getCondFromBranch(*I);
3122     if (BranchCode == X86::COND_INVALID)
3123       return true;  // Can't handle indirect branch.
3124 
3125     // In practice we should never have an undef eflags operand, if we do
3126     // abort here as we are not prepared to preserve the flag.
3127     if (I->findRegisterUseOperand(X86::EFLAGS)->isUndef())
3128       return true;
3129 
3130     // Working from the bottom, handle the first conditional branch.
3131     if (Cond.empty()) {
3132       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
3133       if (AllowModify && UnCondBrIter != MBB.end() &&
3134           MBB.isLayoutSuccessor(TargetBB)) {
3135         // If we can modify the code and it ends in something like:
3136         //
3137         //     jCC L1
3138         //     jmp L2
3139         //   L1:
3140         //     ...
3141         //   L2:
3142         //
3143         // Then we can change this to:
3144         //
3145         //     jnCC L2
3146         //   L1:
3147         //     ...
3148         //   L2:
3149         //
3150         // Which is a bit more efficient.
3151         // We conditionally jump to the fall-through block.
3152         BranchCode = GetOppositeBranchCondition(BranchCode);
3153         MachineBasicBlock::iterator OldInst = I;
3154 
3155         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JCC_1))
3156           .addMBB(UnCondBrIter->getOperand(0).getMBB())
3157           .addImm(BranchCode);
3158         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1))
3159           .addMBB(TargetBB);
3160 
3161         OldInst->eraseFromParent();
3162         UnCondBrIter->eraseFromParent();
3163 
3164         // Restart the analysis.
3165         UnCondBrIter = MBB.end();
3166         I = MBB.end();
3167         continue;
3168       }
3169 
3170       FBB = TBB;
3171       TBB = I->getOperand(0).getMBB();
3172       Cond.push_back(MachineOperand::CreateImm(BranchCode));
3173       CondBranches.push_back(&*I);
3174       continue;
3175     }
3176 
3177     // Handle subsequent conditional branches. Only handle the case where all
3178     // conditional branches branch to the same destination and their condition
3179     // opcodes fit one of the special multi-branch idioms.
3180     assert(Cond.size() == 1);
3181     assert(TBB);
3182 
3183     // If the conditions are the same, we can leave them alone.
3184     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
3185     auto NewTBB = I->getOperand(0).getMBB();
3186     if (OldBranchCode == BranchCode && TBB == NewTBB)
3187       continue;
3188 
3189     // If they differ, see if they fit one of the known patterns. Theoretically,
3190     // we could handle more patterns here, but we shouldn't expect to see them
3191     // if instruction selection has done a reasonable job.
3192     if (TBB == NewTBB &&
3193                ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) ||
3194                 (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) {
3195       BranchCode = X86::COND_NE_OR_P;
3196     } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) ||
3197                (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) {
3198       if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB)))
3199         return true;
3200 
3201       // X86::COND_E_AND_NP usually has two different branch destinations.
3202       //
3203       // JP B1
3204       // JE B2
3205       // JMP B1
3206       // B1:
3207       // B2:
3208       //
3209       // Here this condition branches to B2 only if NP && E. It has another
3210       // equivalent form:
3211       //
3212       // JNE B1
3213       // JNP B2
3214       // JMP B1
3215       // B1:
3216       // B2:
3217       //
3218       // Similarly it branches to B2 only if E && NP. That is why this condition
3219       // is named with COND_E_AND_NP.
3220       BranchCode = X86::COND_E_AND_NP;
3221     } else
3222       return true;
3223 
3224     // Update the MachineOperand.
3225     Cond[0].setImm(BranchCode);
3226     CondBranches.push_back(&*I);
3227   }
3228 
3229   return false;
3230 }
3231 
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const3232 bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
3233                                  MachineBasicBlock *&TBB,
3234                                  MachineBasicBlock *&FBB,
3235                                  SmallVectorImpl<MachineOperand> &Cond,
3236                                  bool AllowModify) const {
3237   SmallVector<MachineInstr *, 4> CondBranches;
3238   return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify);
3239 }
3240 
analyzeBranchPredicate(MachineBasicBlock & MBB,MachineBranchPredicate & MBP,bool AllowModify) const3241 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB,
3242                                           MachineBranchPredicate &MBP,
3243                                           bool AllowModify) const {
3244   using namespace std::placeholders;
3245 
3246   SmallVector<MachineOperand, 4> Cond;
3247   SmallVector<MachineInstr *, 4> CondBranches;
3248   if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches,
3249                         AllowModify))
3250     return true;
3251 
3252   if (Cond.size() != 1)
3253     return true;
3254 
3255   assert(MBP.TrueDest && "expected!");
3256 
3257   if (!MBP.FalseDest)
3258     MBP.FalseDest = MBB.getNextNode();
3259 
3260   const TargetRegisterInfo *TRI = &getRegisterInfo();
3261 
3262   MachineInstr *ConditionDef = nullptr;
3263   bool SingleUseCondition = true;
3264 
3265   for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) {
3266     if (I->modifiesRegister(X86::EFLAGS, TRI)) {
3267       ConditionDef = &*I;
3268       break;
3269     }
3270 
3271     if (I->readsRegister(X86::EFLAGS, TRI))
3272       SingleUseCondition = false;
3273   }
3274 
3275   if (!ConditionDef)
3276     return true;
3277 
3278   if (SingleUseCondition) {
3279     for (auto *Succ : MBB.successors())
3280       if (Succ->isLiveIn(X86::EFLAGS))
3281         SingleUseCondition = false;
3282   }
3283 
3284   MBP.ConditionDef = ConditionDef;
3285   MBP.SingleUseCondition = SingleUseCondition;
3286 
3287   // Currently we only recognize the simple pattern:
3288   //
3289   //   test %reg, %reg
3290   //   je %label
3291   //
3292   const unsigned TestOpcode =
3293       Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr;
3294 
3295   if (ConditionDef->getOpcode() == TestOpcode &&
3296       ConditionDef->getNumOperands() == 3 &&
3297       ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) &&
3298       (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) {
3299     MBP.LHS = ConditionDef->getOperand(0);
3300     MBP.RHS = MachineOperand::CreateImm(0);
3301     MBP.Predicate = Cond[0].getImm() == X86::COND_NE
3302                         ? MachineBranchPredicate::PRED_NE
3303                         : MachineBranchPredicate::PRED_EQ;
3304     return false;
3305   }
3306 
3307   return true;
3308 }
3309 
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const3310 unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB,
3311                                     int *BytesRemoved) const {
3312   assert(!BytesRemoved && "code size not handled");
3313 
3314   MachineBasicBlock::iterator I = MBB.end();
3315   unsigned Count = 0;
3316 
3317   while (I != MBB.begin()) {
3318     --I;
3319     if (I->isDebugInstr())
3320       continue;
3321     if (I->getOpcode() != X86::JMP_1 &&
3322         X86::getCondFromBranch(*I) == X86::COND_INVALID)
3323       break;
3324     // Remove the branch.
3325     I->eraseFromParent();
3326     I = MBB.end();
3327     ++Count;
3328   }
3329 
3330   return Count;
3331 }
3332 
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const3333 unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB,
3334                                     MachineBasicBlock *TBB,
3335                                     MachineBasicBlock *FBB,
3336                                     ArrayRef<MachineOperand> Cond,
3337                                     const DebugLoc &DL,
3338                                     int *BytesAdded) const {
3339   // Shouldn't be a fall through.
3340   assert(TBB && "insertBranch must not be told to insert a fallthrough");
3341   assert((Cond.size() == 1 || Cond.size() == 0) &&
3342          "X86 branch conditions have one component!");
3343   assert(!BytesAdded && "code size not handled");
3344 
3345   if (Cond.empty()) {
3346     // Unconditional branch?
3347     assert(!FBB && "Unconditional branch with multiple successors!");
3348     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB);
3349     return 1;
3350   }
3351 
3352   // If FBB is null, it is implied to be a fall-through block.
3353   bool FallThru = FBB == nullptr;
3354 
3355   // Conditional branch.
3356   unsigned Count = 0;
3357   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
3358   switch (CC) {
3359   case X86::COND_NE_OR_P:
3360     // Synthesize NE_OR_P with two branches.
3361     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE);
3362     ++Count;
3363     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P);
3364     ++Count;
3365     break;
3366   case X86::COND_E_AND_NP:
3367     // Use the next block of MBB as FBB if it is null.
3368     if (FBB == nullptr) {
3369       FBB = getFallThroughMBB(&MBB, TBB);
3370       assert(FBB && "MBB cannot be the last block in function when the false "
3371                     "body is a fall-through.");
3372     }
3373     // Synthesize COND_E_AND_NP with two branches.
3374     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE);
3375     ++Count;
3376     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP);
3377     ++Count;
3378     break;
3379   default: {
3380     BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC);
3381     ++Count;
3382   }
3383   }
3384   if (!FallThru) {
3385     // Two-way Conditional branch. Insert the second branch.
3386     BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB);
3387     ++Count;
3388   }
3389   return Count;
3390 }
3391 
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,Register DstReg,Register TrueReg,Register FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles) const3392 bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
3393                                    ArrayRef<MachineOperand> Cond,
3394                                    Register DstReg, Register TrueReg,
3395                                    Register FalseReg, int &CondCycles,
3396                                    int &TrueCycles, int &FalseCycles) const {
3397   // Not all subtargets have cmov instructions.
3398   if (!Subtarget.hasCMov())
3399     return false;
3400   if (Cond.size() != 1)
3401     return false;
3402   // We cannot do the composite conditions, at least not in SSA form.
3403   if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND)
3404     return false;
3405 
3406   // Check register classes.
3407   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3408   const TargetRegisterClass *RC =
3409     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
3410   if (!RC)
3411     return false;
3412 
3413   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
3414   if (X86::GR16RegClass.hasSubClassEq(RC) ||
3415       X86::GR32RegClass.hasSubClassEq(RC) ||
3416       X86::GR64RegClass.hasSubClassEq(RC)) {
3417     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
3418     // Bridge. Probably Ivy Bridge as well.
3419     CondCycles = 2;
3420     TrueCycles = 2;
3421     FalseCycles = 2;
3422     return true;
3423   }
3424 
3425   // Can't do vectors.
3426   return false;
3427 }
3428 
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,Register DstReg,ArrayRef<MachineOperand> Cond,Register TrueReg,Register FalseReg) const3429 void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
3430                                 MachineBasicBlock::iterator I,
3431                                 const DebugLoc &DL, Register DstReg,
3432                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
3433                                 Register FalseReg) const {
3434   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3435   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
3436   const TargetRegisterClass &RC = *MRI.getRegClass(DstReg);
3437   assert(Cond.size() == 1 && "Invalid Cond array");
3438   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8,
3439                                     false /*HasMemoryOperand*/);
3440   BuildMI(MBB, I, DL, get(Opc), DstReg)
3441       .addReg(FalseReg)
3442       .addReg(TrueReg)
3443       .addImm(Cond[0].getImm());
3444 }
3445 
3446 /// Test if the given register is a physical h register.
isHReg(unsigned Reg)3447 static bool isHReg(unsigned Reg) {
3448   return X86::GR8_ABCD_HRegClass.contains(Reg);
3449 }
3450 
3451 // Try and copy between VR128/VR64 and GR64 registers.
CopyToFromAsymmetricReg(unsigned DestReg,unsigned SrcReg,const X86Subtarget & Subtarget)3452 static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
3453                                         const X86Subtarget &Subtarget) {
3454   bool HasAVX = Subtarget.hasAVX();
3455   bool HasAVX512 = Subtarget.hasAVX512();
3456 
3457   // SrcReg(MaskReg) -> DestReg(GR64)
3458   // SrcReg(MaskReg) -> DestReg(GR32)
3459 
3460   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3461   if (X86::VK16RegClass.contains(SrcReg)) {
3462     if (X86::GR64RegClass.contains(DestReg)) {
3463       assert(Subtarget.hasBWI());
3464       return X86::KMOVQrk;
3465     }
3466     if (X86::GR32RegClass.contains(DestReg))
3467       return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk;
3468   }
3469 
3470   // SrcReg(GR64) -> DestReg(MaskReg)
3471   // SrcReg(GR32) -> DestReg(MaskReg)
3472 
3473   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3474   if (X86::VK16RegClass.contains(DestReg)) {
3475     if (X86::GR64RegClass.contains(SrcReg)) {
3476       assert(Subtarget.hasBWI());
3477       return X86::KMOVQkr;
3478     }
3479     if (X86::GR32RegClass.contains(SrcReg))
3480       return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr;
3481   }
3482 
3483 
3484   // SrcReg(VR128) -> DestReg(GR64)
3485   // SrcReg(VR64)  -> DestReg(GR64)
3486   // SrcReg(GR64)  -> DestReg(VR128)
3487   // SrcReg(GR64)  -> DestReg(VR64)
3488 
3489   if (X86::GR64RegClass.contains(DestReg)) {
3490     if (X86::VR128XRegClass.contains(SrcReg))
3491       // Copy from a VR128 register to a GR64 register.
3492       return HasAVX512 ? X86::VMOVPQIto64Zrr :
3493              HasAVX    ? X86::VMOVPQIto64rr  :
3494                          X86::MOVPQIto64rr;
3495     if (X86::VR64RegClass.contains(SrcReg))
3496       // Copy from a VR64 register to a GR64 register.
3497       return X86::MMX_MOVD64from64rr;
3498   } else if (X86::GR64RegClass.contains(SrcReg)) {
3499     // Copy from a GR64 register to a VR128 register.
3500     if (X86::VR128XRegClass.contains(DestReg))
3501       return HasAVX512 ? X86::VMOV64toPQIZrr :
3502              HasAVX    ? X86::VMOV64toPQIrr  :
3503                          X86::MOV64toPQIrr;
3504     // Copy from a GR64 register to a VR64 register.
3505     if (X86::VR64RegClass.contains(DestReg))
3506       return X86::MMX_MOVD64to64rr;
3507   }
3508 
3509   // SrcReg(VR128) -> DestReg(GR32)
3510   // SrcReg(GR32)  -> DestReg(VR128)
3511 
3512   if (X86::GR32RegClass.contains(DestReg) &&
3513       X86::VR128XRegClass.contains(SrcReg))
3514     // Copy from a VR128 register to a GR32 register.
3515     return HasAVX512 ? X86::VMOVPDI2DIZrr :
3516            HasAVX    ? X86::VMOVPDI2DIrr  :
3517                        X86::MOVPDI2DIrr;
3518 
3519   if (X86::VR128XRegClass.contains(DestReg) &&
3520       X86::GR32RegClass.contains(SrcReg))
3521     // Copy from a VR128 register to a VR128 register.
3522     return HasAVX512 ? X86::VMOVDI2PDIZrr :
3523            HasAVX    ? X86::VMOVDI2PDIrr  :
3524                        X86::MOVDI2PDIrr;
3525   return 0;
3526 }
3527 
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc) const3528 void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
3529                                MachineBasicBlock::iterator MI,
3530                                const DebugLoc &DL, MCRegister DestReg,
3531                                MCRegister SrcReg, bool KillSrc) const {
3532   // First deal with the normal symmetric copies.
3533   bool HasAVX = Subtarget.hasAVX();
3534   bool HasVLX = Subtarget.hasVLX();
3535   unsigned Opc = 0;
3536   if (X86::GR64RegClass.contains(DestReg, SrcReg))
3537     Opc = X86::MOV64rr;
3538   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
3539     Opc = X86::MOV32rr;
3540   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
3541     Opc = X86::MOV16rr;
3542   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
3543     // Copying to or from a physical H register on x86-64 requires a NOREX
3544     // move.  Otherwise use a normal move.
3545     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
3546         Subtarget.is64Bit()) {
3547       Opc = X86::MOV8rr_NOREX;
3548       // Both operands must be encodable without an REX prefix.
3549       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
3550              "8-bit H register can not be copied outside GR8_NOREX");
3551     } else
3552       Opc = X86::MOV8rr;
3553   }
3554   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
3555     Opc = X86::MMX_MOVQ64rr;
3556   else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) {
3557     if (HasVLX)
3558       Opc = X86::VMOVAPSZ128rr;
3559     else if (X86::VR128RegClass.contains(DestReg, SrcReg))
3560       Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
3561     else {
3562       // If this an extended register and we don't have VLX we need to use a
3563       // 512-bit move.
3564       Opc = X86::VMOVAPSZrr;
3565       const TargetRegisterInfo *TRI = &getRegisterInfo();
3566       DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm,
3567                                          &X86::VR512RegClass);
3568       SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm,
3569                                         &X86::VR512RegClass);
3570     }
3571   } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) {
3572     if (HasVLX)
3573       Opc = X86::VMOVAPSZ256rr;
3574     else if (X86::VR256RegClass.contains(DestReg, SrcReg))
3575       Opc = X86::VMOVAPSYrr;
3576     else {
3577       // If this an extended register and we don't have VLX we need to use a
3578       // 512-bit move.
3579       Opc = X86::VMOVAPSZrr;
3580       const TargetRegisterInfo *TRI = &getRegisterInfo();
3581       DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm,
3582                                          &X86::VR512RegClass);
3583       SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm,
3584                                         &X86::VR512RegClass);
3585     }
3586   } else if (X86::VR512RegClass.contains(DestReg, SrcReg))
3587     Opc = X86::VMOVAPSZrr;
3588   // All KMASK RegClasses hold the same k registers, can be tested against anyone.
3589   else if (X86::VK16RegClass.contains(DestReg, SrcReg))
3590     Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk;
3591   if (!Opc)
3592     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget);
3593 
3594   if (Opc) {
3595     BuildMI(MBB, MI, DL, get(Opc), DestReg)
3596       .addReg(SrcReg, getKillRegState(KillSrc));
3597     return;
3598   }
3599 
3600   if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) {
3601     // FIXME: We use a fatal error here because historically LLVM has tried
3602     // lower some of these physreg copies and we want to ensure we get
3603     // reasonable bug reports if someone encounters a case no other testing
3604     // found. This path should be removed after the LLVM 7 release.
3605     report_fatal_error("Unable to copy EFLAGS physical register!");
3606   }
3607 
3608   LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to "
3609                     << RI.getName(DestReg) << '\n');
3610   report_fatal_error("Cannot emit physreg copy instruction");
3611 }
3612 
3613 Optional<DestSourcePair>
isCopyInstrImpl(const MachineInstr & MI) const3614 X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
3615   if (MI.isMoveReg())
3616     return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
3617   return None;
3618 }
3619 
getLoadStoreRegOpcode(Register Reg,const TargetRegisterClass * RC,bool IsStackAligned,const X86Subtarget & STI,bool load)3620 static unsigned getLoadStoreRegOpcode(Register Reg,
3621                                       const TargetRegisterClass *RC,
3622                                       bool IsStackAligned,
3623                                       const X86Subtarget &STI, bool load) {
3624   bool HasAVX = STI.hasAVX();
3625   bool HasAVX512 = STI.hasAVX512();
3626   bool HasVLX = STI.hasVLX();
3627 
3628   switch (STI.getRegisterInfo()->getSpillSize(*RC)) {
3629   default:
3630     llvm_unreachable("Unknown spill size");
3631   case 1:
3632     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
3633     if (STI.is64Bit())
3634       // Copying to or from a physical H register on x86-64 requires a NOREX
3635       // move.  Otherwise use a normal move.
3636       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
3637         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
3638     return load ? X86::MOV8rm : X86::MOV8mr;
3639   case 2:
3640     if (X86::VK16RegClass.hasSubClassEq(RC))
3641       return load ? X86::KMOVWkm : X86::KMOVWmk;
3642     if (X86::FR16XRegClass.hasSubClassEq(RC)) {
3643       assert(STI.hasFP16());
3644       return load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr;
3645     }
3646     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
3647     return load ? X86::MOV16rm : X86::MOV16mr;
3648   case 4:
3649     if (X86::GR32RegClass.hasSubClassEq(RC))
3650       return load ? X86::MOV32rm : X86::MOV32mr;
3651     if (X86::FR32XRegClass.hasSubClassEq(RC))
3652       return load ?
3653         (HasAVX512 ? X86::VMOVSSZrm_alt :
3654          HasAVX    ? X86::VMOVSSrm_alt :
3655                      X86::MOVSSrm_alt) :
3656         (HasAVX512 ? X86::VMOVSSZmr :
3657          HasAVX    ? X86::VMOVSSmr :
3658                      X86::MOVSSmr);
3659     if (X86::RFP32RegClass.hasSubClassEq(RC))
3660       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
3661     if (X86::VK32RegClass.hasSubClassEq(RC)) {
3662       assert(STI.hasBWI() && "KMOVD requires BWI");
3663       return load ? X86::KMOVDkm : X86::KMOVDmk;
3664     }
3665     // All of these mask pair classes have the same spill size, the same kind
3666     // of kmov instructions can be used with all of them.
3667     if (X86::VK1PAIRRegClass.hasSubClassEq(RC) ||
3668         X86::VK2PAIRRegClass.hasSubClassEq(RC) ||
3669         X86::VK4PAIRRegClass.hasSubClassEq(RC) ||
3670         X86::VK8PAIRRegClass.hasSubClassEq(RC) ||
3671         X86::VK16PAIRRegClass.hasSubClassEq(RC))
3672       return load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE;
3673     llvm_unreachable("Unknown 4-byte regclass");
3674   case 8:
3675     if (X86::GR64RegClass.hasSubClassEq(RC))
3676       return load ? X86::MOV64rm : X86::MOV64mr;
3677     if (X86::FR64XRegClass.hasSubClassEq(RC))
3678       return load ?
3679         (HasAVX512 ? X86::VMOVSDZrm_alt :
3680          HasAVX    ? X86::VMOVSDrm_alt :
3681                      X86::MOVSDrm_alt) :
3682         (HasAVX512 ? X86::VMOVSDZmr :
3683          HasAVX    ? X86::VMOVSDmr :
3684                      X86::MOVSDmr);
3685     if (X86::VR64RegClass.hasSubClassEq(RC))
3686       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
3687     if (X86::RFP64RegClass.hasSubClassEq(RC))
3688       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
3689     if (X86::VK64RegClass.hasSubClassEq(RC)) {
3690       assert(STI.hasBWI() && "KMOVQ requires BWI");
3691       return load ? X86::KMOVQkm : X86::KMOVQmk;
3692     }
3693     llvm_unreachable("Unknown 8-byte regclass");
3694   case 10:
3695     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
3696     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
3697   case 16: {
3698     if (X86::VR128XRegClass.hasSubClassEq(RC)) {
3699       // If stack is realigned we can use aligned stores.
3700       if (IsStackAligned)
3701         return load ?
3702           (HasVLX    ? X86::VMOVAPSZ128rm :
3703            HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX :
3704            HasAVX    ? X86::VMOVAPSrm :
3705                        X86::MOVAPSrm):
3706           (HasVLX    ? X86::VMOVAPSZ128mr :
3707            HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX :
3708            HasAVX    ? X86::VMOVAPSmr :
3709                        X86::MOVAPSmr);
3710       else
3711         return load ?
3712           (HasVLX    ? X86::VMOVUPSZ128rm :
3713            HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX :
3714            HasAVX    ? X86::VMOVUPSrm :
3715                        X86::MOVUPSrm):
3716           (HasVLX    ? X86::VMOVUPSZ128mr :
3717            HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX :
3718            HasAVX    ? X86::VMOVUPSmr :
3719                        X86::MOVUPSmr);
3720     }
3721     if (X86::BNDRRegClass.hasSubClassEq(RC)) {
3722       if (STI.is64Bit())
3723         return load ? X86::BNDMOV64rm : X86::BNDMOV64mr;
3724       else
3725         return load ? X86::BNDMOV32rm : X86::BNDMOV32mr;
3726     }
3727     llvm_unreachable("Unknown 16-byte regclass");
3728   }
3729   case 32:
3730     assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
3731     // If stack is realigned we can use aligned stores.
3732     if (IsStackAligned)
3733       return load ?
3734         (HasVLX    ? X86::VMOVAPSZ256rm :
3735          HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX :
3736                      X86::VMOVAPSYrm) :
3737         (HasVLX    ? X86::VMOVAPSZ256mr :
3738          HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX :
3739                      X86::VMOVAPSYmr);
3740     else
3741       return load ?
3742         (HasVLX    ? X86::VMOVUPSZ256rm :
3743          HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX :
3744                      X86::VMOVUPSYrm) :
3745         (HasVLX    ? X86::VMOVUPSZ256mr :
3746          HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX :
3747                      X86::VMOVUPSYmr);
3748   case 64:
3749     assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass");
3750     assert(STI.hasAVX512() && "Using 512-bit register requires AVX512");
3751     if (IsStackAligned)
3752       return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
3753     else
3754       return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
3755   }
3756 }
3757 
3758 Optional<ExtAddrMode>
getAddrModeFromMemoryOp(const MachineInstr & MemI,const TargetRegisterInfo * TRI) const3759 X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI,
3760                                       const TargetRegisterInfo *TRI) const {
3761   const MCInstrDesc &Desc = MemI.getDesc();
3762   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3763   if (MemRefBegin < 0)
3764     return None;
3765 
3766   MemRefBegin += X86II::getOperandBias(Desc);
3767 
3768   auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg);
3769   if (!BaseOp.isReg()) // Can be an MO_FrameIndex
3770     return None;
3771 
3772   const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp);
3773   // Displacement can be symbolic
3774   if (!DispMO.isImm())
3775     return None;
3776 
3777   ExtAddrMode AM;
3778   AM.BaseReg = BaseOp.getReg();
3779   AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg();
3780   AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm();
3781   AM.Displacement = DispMO.getImm();
3782   return AM;
3783 }
3784 
getConstValDefinedInReg(const MachineInstr & MI,const Register Reg,int64_t & ImmVal) const3785 bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI,
3786                                            const Register Reg,
3787                                            int64_t &ImmVal) const {
3788   if (MI.getOpcode() != X86::MOV32ri && MI.getOpcode() != X86::MOV64ri)
3789     return false;
3790   // Mov Src can be a global address.
3791   if (!MI.getOperand(1).isImm() || MI.getOperand(0).getReg() != Reg)
3792     return false;
3793   ImmVal = MI.getOperand(1).getImm();
3794   return true;
3795 }
3796 
preservesZeroValueInReg(const MachineInstr * MI,const Register NullValueReg,const TargetRegisterInfo * TRI) const3797 bool X86InstrInfo::preservesZeroValueInReg(
3798     const MachineInstr *MI, const Register NullValueReg,
3799     const TargetRegisterInfo *TRI) const {
3800   if (!MI->modifiesRegister(NullValueReg, TRI))
3801     return true;
3802   switch (MI->getOpcode()) {
3803   // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
3804   // X.
3805   case X86::SHR64ri:
3806   case X86::SHR32ri:
3807   case X86::SHL64ri:
3808   case X86::SHL32ri:
3809     assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() &&
3810            "expected for shift opcode!");
3811     return MI->getOperand(0).getReg() == NullValueReg &&
3812            MI->getOperand(1).getReg() == NullValueReg;
3813   // Zero extend of a sub-reg of NullValueReg into itself does not change the
3814   // null value.
3815   case X86::MOV32rr:
3816     return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) {
3817       return TRI->isSubRegisterEq(NullValueReg, MO.getReg());
3818     });
3819   default:
3820     return false;
3821   }
3822   llvm_unreachable("Should be handled above!");
3823 }
3824 
getMemOperandsWithOffsetWidth(const MachineInstr & MemOp,SmallVectorImpl<const MachineOperand * > & BaseOps,int64_t & Offset,bool & OffsetIsScalable,unsigned & Width,const TargetRegisterInfo * TRI) const3825 bool X86InstrInfo::getMemOperandsWithOffsetWidth(
3826     const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps,
3827     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
3828     const TargetRegisterInfo *TRI) const {
3829   const MCInstrDesc &Desc = MemOp.getDesc();
3830   int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags);
3831   if (MemRefBegin < 0)
3832     return false;
3833 
3834   MemRefBegin += X86II::getOperandBias(Desc);
3835 
3836   const MachineOperand *BaseOp =
3837       &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg);
3838   if (!BaseOp->isReg()) // Can be an MO_FrameIndex
3839     return false;
3840 
3841   if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1)
3842     return false;
3843 
3844   if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() !=
3845       X86::NoRegister)
3846     return false;
3847 
3848   const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp);
3849 
3850   // Displacement can be symbolic
3851   if (!DispMO.isImm())
3852     return false;
3853 
3854   Offset = DispMO.getImm();
3855 
3856   if (!BaseOp->isReg())
3857     return false;
3858 
3859   OffsetIsScalable = false;
3860   // FIXME: Relying on memoperands() may not be right thing to do here. Check
3861   // with X86 maintainers, and fix it accordingly. For now, it is ok, since
3862   // there is no use of `Width` for X86 back-end at the moment.
3863   Width =
3864       !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0;
3865   BaseOps.push_back(BaseOp);
3866   return true;
3867 }
3868 
getStoreRegOpcode(Register SrcReg,const TargetRegisterClass * RC,bool IsStackAligned,const X86Subtarget & STI)3869 static unsigned getStoreRegOpcode(Register SrcReg,
3870                                   const TargetRegisterClass *RC,
3871                                   bool IsStackAligned,
3872                                   const X86Subtarget &STI) {
3873   return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false);
3874 }
3875 
getLoadRegOpcode(Register DestReg,const TargetRegisterClass * RC,bool IsStackAligned,const X86Subtarget & STI)3876 static unsigned getLoadRegOpcode(Register DestReg,
3877                                  const TargetRegisterClass *RC,
3878                                  bool IsStackAligned, const X86Subtarget &STI) {
3879   return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true);
3880 }
3881 
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register SrcReg,bool isKill,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const3882 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
3883                                        MachineBasicBlock::iterator MI,
3884                                        Register SrcReg, bool isKill, int FrameIdx,
3885                                        const TargetRegisterClass *RC,
3886                                        const TargetRegisterInfo *TRI) const {
3887   const MachineFunction &MF = *MBB.getParent();
3888   const MachineFrameInfo &MFI = MF.getFrameInfo();
3889   assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) &&
3890          "Stack slot too small for store");
3891   if (RC->getID() == X86::TILERegClassID) {
3892     unsigned Opc = X86::TILESTORED;
3893     // tilestored %tmm, (%sp, %idx)
3894     MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3895     Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3896     BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3897     MachineInstr *NewMI =
3898         addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3899             .addReg(SrcReg, getKillRegState(isKill));
3900     MachineOperand &MO = NewMI->getOperand(2);
3901     MO.setReg(VirtReg);
3902     MO.setIsKill(true);
3903   } else {
3904     unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3905     bool isAligned =
3906         (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3907         (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3908     unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget);
3909     addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx)
3910         .addReg(SrcReg, getKillRegState(isKill));
3911   }
3912 }
3913 
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,Register DestReg,int FrameIdx,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const3914 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
3915                                         MachineBasicBlock::iterator MI,
3916                                         Register DestReg, int FrameIdx,
3917                                         const TargetRegisterClass *RC,
3918                                         const TargetRegisterInfo *TRI) const {
3919   if (RC->getID() == X86::TILERegClassID) {
3920     unsigned Opc = X86::TILELOADD;
3921     // tileloadd (%sp, %idx), %tmm
3922     MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo();
3923     Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass);
3924     MachineInstr *NewMI =
3925         BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64);
3926     NewMI = addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3927                               FrameIdx);
3928     MachineOperand &MO = NewMI->getOperand(3);
3929     MO.setReg(VirtReg);
3930     MO.setIsKill(true);
3931   } else {
3932     const MachineFunction &MF = *MBB.getParent();
3933     const MachineFrameInfo &MFI = MF.getFrameInfo();
3934     unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16);
3935     bool isAligned =
3936         (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) ||
3937         (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx));
3938     unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget);
3939     addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg),
3940                       FrameIdx);
3941   }
3942 }
3943 
analyzeCompare(const MachineInstr & MI,Register & SrcReg,Register & SrcReg2,int64_t & CmpMask,int64_t & CmpValue) const3944 bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
3945                                   Register &SrcReg2, int64_t &CmpMask,
3946                                   int64_t &CmpValue) const {
3947   switch (MI.getOpcode()) {
3948   default: break;
3949   case X86::CMP64ri32:
3950   case X86::CMP64ri8:
3951   case X86::CMP32ri:
3952   case X86::CMP32ri8:
3953   case X86::CMP16ri:
3954   case X86::CMP16ri8:
3955   case X86::CMP8ri:
3956     SrcReg = MI.getOperand(0).getReg();
3957     SrcReg2 = 0;
3958     if (MI.getOperand(1).isImm()) {
3959       CmpMask = ~0;
3960       CmpValue = MI.getOperand(1).getImm();
3961     } else {
3962       CmpMask = CmpValue = 0;
3963     }
3964     return true;
3965   // A SUB can be used to perform comparison.
3966   case X86::SUB64rm:
3967   case X86::SUB32rm:
3968   case X86::SUB16rm:
3969   case X86::SUB8rm:
3970     SrcReg = MI.getOperand(1).getReg();
3971     SrcReg2 = 0;
3972     CmpMask = 0;
3973     CmpValue = 0;
3974     return true;
3975   case X86::SUB64rr:
3976   case X86::SUB32rr:
3977   case X86::SUB16rr:
3978   case X86::SUB8rr:
3979     SrcReg = MI.getOperand(1).getReg();
3980     SrcReg2 = MI.getOperand(2).getReg();
3981     CmpMask = 0;
3982     CmpValue = 0;
3983     return true;
3984   case X86::SUB64ri32:
3985   case X86::SUB64ri8:
3986   case X86::SUB32ri:
3987   case X86::SUB32ri8:
3988   case X86::SUB16ri:
3989   case X86::SUB16ri8:
3990   case X86::SUB8ri:
3991     SrcReg = MI.getOperand(1).getReg();
3992     SrcReg2 = 0;
3993     if (MI.getOperand(2).isImm()) {
3994       CmpMask = ~0;
3995       CmpValue = MI.getOperand(2).getImm();
3996     } else {
3997       CmpMask = CmpValue = 0;
3998     }
3999     return true;
4000   case X86::CMP64rr:
4001   case X86::CMP32rr:
4002   case X86::CMP16rr:
4003   case X86::CMP8rr:
4004     SrcReg = MI.getOperand(0).getReg();
4005     SrcReg2 = MI.getOperand(1).getReg();
4006     CmpMask = 0;
4007     CmpValue = 0;
4008     return true;
4009   case X86::TEST8rr:
4010   case X86::TEST16rr:
4011   case X86::TEST32rr:
4012   case X86::TEST64rr:
4013     SrcReg = MI.getOperand(0).getReg();
4014     if (MI.getOperand(1).getReg() != SrcReg)
4015       return false;
4016     // Compare against zero.
4017     SrcReg2 = 0;
4018     CmpMask = ~0;
4019     CmpValue = 0;
4020     return true;
4021   }
4022   return false;
4023 }
4024 
4025 /// Check whether the first instruction, whose only
4026 /// purpose is to update flags, can be made redundant.
4027 /// CMPrr can be made redundant by SUBrr if the operands are the same.
4028 /// This function can be extended later on.
4029 /// SrcReg, SrcRegs: register operands for FlagI.
4030 /// ImmValue: immediate for FlagI if it takes an immediate.
isRedundantFlagInstr(const MachineInstr & FlagI,Register SrcReg,Register SrcReg2,int64_t ImmMask,int64_t ImmValue,const MachineInstr & OI)4031 inline static bool isRedundantFlagInstr(const MachineInstr &FlagI,
4032                                         Register SrcReg, Register SrcReg2,
4033                                         int64_t ImmMask, int64_t ImmValue,
4034                                         const MachineInstr &OI) {
4035   if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) ||
4036        (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) ||
4037        (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) ||
4038        (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) &&
4039       ((OI.getOperand(1).getReg() == SrcReg &&
4040         OI.getOperand(2).getReg() == SrcReg2) ||
4041        (OI.getOperand(1).getReg() == SrcReg2 &&
4042         OI.getOperand(2).getReg() == SrcReg)))
4043     return true;
4044 
4045   if (ImmMask != 0 &&
4046       ((FlagI.getOpcode() == X86::CMP64ri32 &&
4047         OI.getOpcode() == X86::SUB64ri32) ||
4048        (FlagI.getOpcode() == X86::CMP64ri8 &&
4049         OI.getOpcode() == X86::SUB64ri8) ||
4050        (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) ||
4051        (FlagI.getOpcode() == X86::CMP32ri8 &&
4052         OI.getOpcode() == X86::SUB32ri8) ||
4053        (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) ||
4054        (FlagI.getOpcode() == X86::CMP16ri8 &&
4055         OI.getOpcode() == X86::SUB16ri8) ||
4056        (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) &&
4057       OI.getOperand(1).getReg() == SrcReg &&
4058       OI.getOperand(2).getImm() == ImmValue)
4059     return true;
4060   return false;
4061 }
4062 
4063 /// Check whether the definition can be converted
4064 /// to remove a comparison against zero.
isDefConvertible(const MachineInstr & MI,bool & NoSignFlag,bool & ClearsOverflowFlag)4065 inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag,
4066                                     bool &ClearsOverflowFlag) {
4067   NoSignFlag = false;
4068   ClearsOverflowFlag = false;
4069 
4070   switch (MI.getOpcode()) {
4071   default: return false;
4072 
4073   // The shift instructions only modify ZF if their shift count is non-zero.
4074   // N.B.: The processor truncates the shift count depending on the encoding.
4075   case X86::SAR8ri:    case X86::SAR16ri:  case X86::SAR32ri:case X86::SAR64ri:
4076   case X86::SHR8ri:    case X86::SHR16ri:  case X86::SHR32ri:case X86::SHR64ri:
4077      return getTruncatedShiftCount(MI, 2) != 0;
4078 
4079   // Some left shift instructions can be turned into LEA instructions but only
4080   // if their flags aren't used. Avoid transforming such instructions.
4081   case X86::SHL8ri:    case X86::SHL16ri:  case X86::SHL32ri:case X86::SHL64ri:{
4082     unsigned ShAmt = getTruncatedShiftCount(MI, 2);
4083     if (isTruncatedShiftCountForLEA(ShAmt)) return false;
4084     return ShAmt != 0;
4085   }
4086 
4087   case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8:
4088   case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8:
4089      return getTruncatedShiftCount(MI, 3) != 0;
4090 
4091   case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
4092   case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
4093   case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
4094   case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
4095   case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
4096   case X86::DEC64r:    case X86::DEC32r:   case X86::DEC16r: case X86::DEC8r:
4097   case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
4098   case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
4099   case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
4100   case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
4101   case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
4102   case X86::INC64r:    case X86::INC32r:   case X86::INC16r: case X86::INC8r:
4103   case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri:
4104   case X86::ADC32ri8:  case X86::ADC16ri:  case X86::ADC16ri8:
4105   case X86::ADC8ri:    case X86::ADC64rr:  case X86::ADC32rr:
4106   case X86::ADC16rr:   case X86::ADC8rr:   case X86::ADC64rm:
4107   case X86::ADC32rm:   case X86::ADC16rm:  case X86::ADC8rm:
4108   case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri:
4109   case X86::SBB32ri8:  case X86::SBB16ri:  case X86::SBB16ri8:
4110   case X86::SBB8ri:    case X86::SBB64rr:  case X86::SBB32rr:
4111   case X86::SBB16rr:   case X86::SBB8rr:   case X86::SBB64rm:
4112   case X86::SBB32rm:   case X86::SBB16rm:  case X86::SBB8rm:
4113   case X86::NEG8r:     case X86::NEG16r:   case X86::NEG32r: case X86::NEG64r:
4114   case X86::SAR8r1:    case X86::SAR16r1:  case X86::SAR32r1:case X86::SAR64r1:
4115   case X86::SHR8r1:    case X86::SHR16r1:  case X86::SHR32r1:case X86::SHR64r1:
4116   case X86::SHL8r1:    case X86::SHL16r1:  case X86::SHL32r1:case X86::SHL64r1:
4117   case X86::LZCNT16rr: case X86::LZCNT16rm:
4118   case X86::LZCNT32rr: case X86::LZCNT32rm:
4119   case X86::LZCNT64rr: case X86::LZCNT64rm:
4120   case X86::POPCNT16rr:case X86::POPCNT16rm:
4121   case X86::POPCNT32rr:case X86::POPCNT32rm:
4122   case X86::POPCNT64rr:case X86::POPCNT64rm:
4123   case X86::TZCNT16rr: case X86::TZCNT16rm:
4124   case X86::TZCNT32rr: case X86::TZCNT32rm:
4125   case X86::TZCNT64rr: case X86::TZCNT64rm:
4126     return true;
4127   case X86::AND64ri32:   case X86::AND64ri8:  case X86::AND32ri:
4128   case X86::AND32ri8:    case X86::AND16ri:   case X86::AND16ri8:
4129   case X86::AND8ri:      case X86::AND64rr:   case X86::AND32rr:
4130   case X86::AND16rr:     case X86::AND8rr:    case X86::AND64rm:
4131   case X86::AND32rm:     case X86::AND16rm:   case X86::AND8rm:
4132   case X86::XOR64ri32:   case X86::XOR64ri8:  case X86::XOR32ri:
4133   case X86::XOR32ri8:    case X86::XOR16ri:   case X86::XOR16ri8:
4134   case X86::XOR8ri:      case X86::XOR64rr:   case X86::XOR32rr:
4135   case X86::XOR16rr:     case X86::XOR8rr:    case X86::XOR64rm:
4136   case X86::XOR32rm:     case X86::XOR16rm:   case X86::XOR8rm:
4137   case X86::OR64ri32:    case X86::OR64ri8:   case X86::OR32ri:
4138   case X86::OR32ri8:     case X86::OR16ri:    case X86::OR16ri8:
4139   case X86::OR8ri:       case X86::OR64rr:    case X86::OR32rr:
4140   case X86::OR16rr:      case X86::OR8rr:     case X86::OR64rm:
4141   case X86::OR32rm:      case X86::OR16rm:    case X86::OR8rm:
4142   case X86::ANDN32rr:    case X86::ANDN32rm:
4143   case X86::ANDN64rr:    case X86::ANDN64rm:
4144   case X86::BLSI32rr:    case X86::BLSI32rm:
4145   case X86::BLSI64rr:    case X86::BLSI64rm:
4146   case X86::BLSMSK32rr:  case X86::BLSMSK32rm:
4147   case X86::BLSMSK64rr:  case X86::BLSMSK64rm:
4148   case X86::BLSR32rr:    case X86::BLSR32rm:
4149   case X86::BLSR64rr:    case X86::BLSR64rm:
4150   case X86::BLCFILL32rr: case X86::BLCFILL32rm:
4151   case X86::BLCFILL64rr: case X86::BLCFILL64rm:
4152   case X86::BLCI32rr:    case X86::BLCI32rm:
4153   case X86::BLCI64rr:    case X86::BLCI64rm:
4154   case X86::BLCIC32rr:   case X86::BLCIC32rm:
4155   case X86::BLCIC64rr:   case X86::BLCIC64rm:
4156   case X86::BLCMSK32rr:  case X86::BLCMSK32rm:
4157   case X86::BLCMSK64rr:  case X86::BLCMSK64rm:
4158   case X86::BLCS32rr:    case X86::BLCS32rm:
4159   case X86::BLCS64rr:    case X86::BLCS64rm:
4160   case X86::BLSFILL32rr: case X86::BLSFILL32rm:
4161   case X86::BLSFILL64rr: case X86::BLSFILL64rm:
4162   case X86::BLSIC32rr:   case X86::BLSIC32rm:
4163   case X86::BLSIC64rr:   case X86::BLSIC64rm:
4164   case X86::BZHI32rr:    case X86::BZHI32rm:
4165   case X86::BZHI64rr:    case X86::BZHI64rm:
4166   case X86::T1MSKC32rr:  case X86::T1MSKC32rm:
4167   case X86::T1MSKC64rr:  case X86::T1MSKC64rm:
4168   case X86::TZMSK32rr:   case X86::TZMSK32rm:
4169   case X86::TZMSK64rr:   case X86::TZMSK64rm:
4170     // These instructions clear the overflow flag just like TEST.
4171     // FIXME: These are not the only instructions in this switch that clear the
4172     // overflow flag.
4173     ClearsOverflowFlag = true;
4174     return true;
4175   case X86::BEXTR32rr:   case X86::BEXTR64rr:
4176   case X86::BEXTR32rm:   case X86::BEXTR64rm:
4177   case X86::BEXTRI32ri:  case X86::BEXTRI32mi:
4178   case X86::BEXTRI64ri:  case X86::BEXTRI64mi:
4179     // BEXTR doesn't update the sign flag so we can't use it. It does clear
4180     // the overflow flag, but that's not useful without the sign flag.
4181     NoSignFlag = true;
4182     return true;
4183   }
4184 }
4185 
4186 /// Check whether the use can be converted to remove a comparison against zero.
isUseDefConvertible(const MachineInstr & MI)4187 static X86::CondCode isUseDefConvertible(const MachineInstr &MI) {
4188   switch (MI.getOpcode()) {
4189   default: return X86::COND_INVALID;
4190   case X86::NEG8r:
4191   case X86::NEG16r:
4192   case X86::NEG32r:
4193   case X86::NEG64r:
4194     return X86::COND_AE;
4195   case X86::LZCNT16rr:
4196   case X86::LZCNT32rr:
4197   case X86::LZCNT64rr:
4198     return X86::COND_B;
4199   case X86::POPCNT16rr:
4200   case X86::POPCNT32rr:
4201   case X86::POPCNT64rr:
4202     return X86::COND_E;
4203   case X86::TZCNT16rr:
4204   case X86::TZCNT32rr:
4205   case X86::TZCNT64rr:
4206     return X86::COND_B;
4207   case X86::BSF16rr:
4208   case X86::BSF32rr:
4209   case X86::BSF64rr:
4210   case X86::BSR16rr:
4211   case X86::BSR32rr:
4212   case X86::BSR64rr:
4213     return X86::COND_E;
4214   case X86::BLSI32rr:
4215   case X86::BLSI64rr:
4216     return X86::COND_AE;
4217   case X86::BLSR32rr:
4218   case X86::BLSR64rr:
4219   case X86::BLSMSK32rr:
4220   case X86::BLSMSK64rr:
4221     return X86::COND_B;
4222   // TODO: TBM instructions.
4223   }
4224 }
4225 
4226 /// Check if there exists an earlier instruction that
4227 /// operates on the same source operands and sets flags in the same way as
4228 /// Compare; remove Compare if possible.
optimizeCompareInstr(MachineInstr & CmpInstr,Register SrcReg,Register SrcReg2,int64_t CmpMask,int64_t CmpValue,const MachineRegisterInfo * MRI) const4229 bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
4230                                         Register SrcReg2, int64_t CmpMask,
4231                                         int64_t CmpValue,
4232                                         const MachineRegisterInfo *MRI) const {
4233   // Check whether we can replace SUB with CMP.
4234   switch (CmpInstr.getOpcode()) {
4235   default: break;
4236   case X86::SUB64ri32:
4237   case X86::SUB64ri8:
4238   case X86::SUB32ri:
4239   case X86::SUB32ri8:
4240   case X86::SUB16ri:
4241   case X86::SUB16ri8:
4242   case X86::SUB8ri:
4243   case X86::SUB64rm:
4244   case X86::SUB32rm:
4245   case X86::SUB16rm:
4246   case X86::SUB8rm:
4247   case X86::SUB64rr:
4248   case X86::SUB32rr:
4249   case X86::SUB16rr:
4250   case X86::SUB8rr: {
4251     if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg()))
4252       return false;
4253     // There is no use of the destination register, we can replace SUB with CMP.
4254     unsigned NewOpcode = 0;
4255     switch (CmpInstr.getOpcode()) {
4256     default: llvm_unreachable("Unreachable!");
4257     case X86::SUB64rm:   NewOpcode = X86::CMP64rm;   break;
4258     case X86::SUB32rm:   NewOpcode = X86::CMP32rm;   break;
4259     case X86::SUB16rm:   NewOpcode = X86::CMP16rm;   break;
4260     case X86::SUB8rm:    NewOpcode = X86::CMP8rm;    break;
4261     case X86::SUB64rr:   NewOpcode = X86::CMP64rr;   break;
4262     case X86::SUB32rr:   NewOpcode = X86::CMP32rr;   break;
4263     case X86::SUB16rr:   NewOpcode = X86::CMP16rr;   break;
4264     case X86::SUB8rr:    NewOpcode = X86::CMP8rr;    break;
4265     case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break;
4266     case X86::SUB64ri8:  NewOpcode = X86::CMP64ri8;  break;
4267     case X86::SUB32ri:   NewOpcode = X86::CMP32ri;   break;
4268     case X86::SUB32ri8:  NewOpcode = X86::CMP32ri8;  break;
4269     case X86::SUB16ri:   NewOpcode = X86::CMP16ri;   break;
4270     case X86::SUB16ri8:  NewOpcode = X86::CMP16ri8;  break;
4271     case X86::SUB8ri:    NewOpcode = X86::CMP8ri;    break;
4272     }
4273     CmpInstr.setDesc(get(NewOpcode));
4274     CmpInstr.RemoveOperand(0);
4275     // Mutating this instruction invalidates any debug data associated with it.
4276     CmpInstr.dropDebugNumber();
4277     // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
4278     if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm ||
4279         NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm)
4280       return false;
4281   }
4282   }
4283 
4284   // Get the unique definition of SrcReg.
4285   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
4286   if (!MI) return false;
4287 
4288   // CmpInstr is the first instruction of the BB.
4289   MachineBasicBlock::iterator I = CmpInstr, Def = MI;
4290 
4291   // If we are comparing against zero, check whether we can use MI to update
4292   // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
4293   bool IsCmpZero = (CmpMask != 0 && CmpValue == 0);
4294   if (IsCmpZero && MI->getParent() != CmpInstr.getParent())
4295     return false;
4296 
4297   // If we have a use of the source register between the def and our compare
4298   // instruction we can eliminate the compare iff the use sets EFLAGS in the
4299   // right way.
4300   bool ShouldUpdateCC = false;
4301   bool NoSignFlag = false;
4302   bool ClearsOverflowFlag = false;
4303   X86::CondCode NewCC = X86::COND_INVALID;
4304   if (IsCmpZero && !isDefConvertible(*MI, NoSignFlag, ClearsOverflowFlag)) {
4305     // Scan forward from the use until we hit the use we're looking for or the
4306     // compare instruction.
4307     for (MachineBasicBlock::iterator J = MI;; ++J) {
4308       // Do we have a convertible instruction?
4309       NewCC = isUseDefConvertible(*J);
4310       if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() &&
4311           J->getOperand(1).getReg() == SrcReg) {
4312         assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!");
4313         ShouldUpdateCC = true; // Update CC later on.
4314         // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
4315         // with the new def.
4316         Def = J;
4317         MI = &*Def;
4318         break;
4319       }
4320 
4321       if (J == I)
4322         return false;
4323     }
4324   }
4325 
4326   // We are searching for an earlier instruction that can make CmpInstr
4327   // redundant and that instruction will be saved in Sub.
4328   MachineInstr *Sub = nullptr;
4329   const TargetRegisterInfo *TRI = &getRegisterInfo();
4330 
4331   // We iterate backward, starting from the instruction before CmpInstr and
4332   // stop when reaching the definition of a source register or done with the BB.
4333   // RI points to the instruction before CmpInstr.
4334   // If the definition is in this basic block, RE points to the definition;
4335   // otherwise, RE is the rend of the basic block.
4336   MachineBasicBlock::reverse_iterator
4337       RI = ++I.getReverse(),
4338       RE = CmpInstr.getParent() == MI->getParent()
4339                ? Def.getReverse() /* points to MI */
4340                : CmpInstr.getParent()->rend();
4341   MachineInstr *Movr0Inst = nullptr;
4342   for (; RI != RE; ++RI) {
4343     MachineInstr &Instr = *RI;
4344     // Check whether CmpInstr can be made redundant by the current instruction.
4345     if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask,
4346                                            CmpValue, Instr)) {
4347       Sub = &Instr;
4348       break;
4349     }
4350 
4351     if (Instr.modifiesRegister(X86::EFLAGS, TRI) ||
4352         Instr.readsRegister(X86::EFLAGS, TRI)) {
4353       // This instruction modifies or uses EFLAGS.
4354 
4355       // MOV32r0 etc. are implemented with xor which clobbers condition code.
4356       // They are safe to move up, if the definition to EFLAGS is dead and
4357       // earlier instructions do not read or write EFLAGS.
4358       if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 &&
4359           Instr.registerDefIsDead(X86::EFLAGS, TRI)) {
4360         Movr0Inst = &Instr;
4361         continue;
4362       }
4363 
4364       // We can't remove CmpInstr.
4365       return false;
4366     }
4367   }
4368 
4369   // Return false if no candidates exist.
4370   if (!IsCmpZero && !Sub)
4371     return false;
4372 
4373   bool IsSwapped =
4374       (SrcReg2 != 0 && Sub && Sub->getOperand(1).getReg() == SrcReg2 &&
4375        Sub->getOperand(2).getReg() == SrcReg);
4376 
4377   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
4378   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
4379   // If we are done with the basic block, we need to check whether EFLAGS is
4380   // live-out.
4381   bool IsSafe = false;
4382   SmallVector<std::pair<MachineInstr*, X86::CondCode>, 4> OpsToUpdate;
4383   MachineBasicBlock::iterator E = CmpInstr.getParent()->end();
4384   for (++I; I != E; ++I) {
4385     const MachineInstr &Instr = *I;
4386     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
4387     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
4388     // We should check the usage if this instruction uses and updates EFLAGS.
4389     if (!UseEFLAGS && ModifyEFLAGS) {
4390       // It is safe to remove CmpInstr if EFLAGS is updated again.
4391       IsSafe = true;
4392       break;
4393     }
4394     if (!UseEFLAGS && !ModifyEFLAGS)
4395       continue;
4396 
4397     // EFLAGS is used by this instruction.
4398     X86::CondCode OldCC = X86::COND_INVALID;
4399     if (IsCmpZero || IsSwapped) {
4400       // We decode the condition code from opcode.
4401       if (Instr.isBranch())
4402         OldCC = X86::getCondFromBranch(Instr);
4403       else {
4404         OldCC = X86::getCondFromSETCC(Instr);
4405         if (OldCC == X86::COND_INVALID)
4406           OldCC = X86::getCondFromCMov(Instr);
4407       }
4408       if (OldCC == X86::COND_INVALID) return false;
4409     }
4410     X86::CondCode ReplacementCC = X86::COND_INVALID;
4411     if (IsCmpZero) {
4412       switch (OldCC) {
4413       default: break;
4414       case X86::COND_A: case X86::COND_AE:
4415       case X86::COND_B: case X86::COND_BE:
4416         // CF is used, we can't perform this optimization.
4417         return false;
4418       case X86::COND_G: case X86::COND_GE:
4419       case X86::COND_L: case X86::COND_LE:
4420       case X86::COND_O: case X86::COND_NO:
4421         // If OF is used, the instruction needs to clear it like CmpZero does.
4422         if (!ClearsOverflowFlag)
4423           return false;
4424         break;
4425       case X86::COND_S: case X86::COND_NS:
4426         // If SF is used, but the instruction doesn't update the SF, then we
4427         // can't do the optimization.
4428         if (NoSignFlag)
4429           return false;
4430         break;
4431       }
4432 
4433       // If we're updating the condition code check if we have to reverse the
4434       // condition.
4435       if (ShouldUpdateCC)
4436         switch (OldCC) {
4437         default:
4438           return false;
4439         case X86::COND_E:
4440           ReplacementCC = NewCC;
4441           break;
4442         case X86::COND_NE:
4443           ReplacementCC = GetOppositeBranchCondition(NewCC);
4444           break;
4445         }
4446     } else if (IsSwapped) {
4447       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
4448       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
4449       // We swap the condition code and synthesize the new opcode.
4450       ReplacementCC = getSwappedCondition(OldCC);
4451       if (ReplacementCC == X86::COND_INVALID) return false;
4452     }
4453 
4454     if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) {
4455       // Push the MachineInstr to OpsToUpdate.
4456       // If it is safe to remove CmpInstr, the condition code of these
4457       // instructions will be modified.
4458       OpsToUpdate.push_back(std::make_pair(&*I, ReplacementCC));
4459     }
4460     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
4461       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
4462       IsSafe = true;
4463       break;
4464     }
4465   }
4466 
4467   // If EFLAGS is not killed nor re-defined, we should check whether it is
4468   // live-out. If it is live-out, do not optimize.
4469   if ((IsCmpZero || IsSwapped) && !IsSafe) {
4470     MachineBasicBlock *MBB = CmpInstr.getParent();
4471     for (MachineBasicBlock *Successor : MBB->successors())
4472       if (Successor->isLiveIn(X86::EFLAGS))
4473         return false;
4474   }
4475 
4476   // The instruction to be updated is either Sub or MI.
4477   Sub = IsCmpZero ? MI : Sub;
4478   // Move Movr0Inst to the appropriate place before Sub.
4479   if (Movr0Inst) {
4480     // Look backwards until we find a def that doesn't use the current EFLAGS.
4481     Def = Sub;
4482     MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(),
4483                                         InsertE = Sub->getParent()->rend();
4484     for (; InsertI != InsertE; ++InsertI) {
4485       MachineInstr *Instr = &*InsertI;
4486       if (!Instr->readsRegister(X86::EFLAGS, TRI) &&
4487           Instr->modifiesRegister(X86::EFLAGS, TRI)) {
4488         Sub->getParent()->remove(Movr0Inst);
4489         Instr->getParent()->insert(MachineBasicBlock::iterator(Instr),
4490                                    Movr0Inst);
4491         break;
4492       }
4493     }
4494     if (InsertI == InsertE)
4495       return false;
4496   }
4497 
4498   // Make sure Sub instruction defines EFLAGS and mark the def live.
4499   MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS);
4500   assert(FlagDef && "Unable to locate a def EFLAGS operand");
4501   FlagDef->setIsDead(false);
4502 
4503   CmpInstr.eraseFromParent();
4504 
4505   // Modify the condition code of instructions in OpsToUpdate.
4506   for (auto &Op : OpsToUpdate) {
4507     Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1)
4508         .setImm(Op.second);
4509   }
4510   return true;
4511 }
4512 
4513 /// Try to remove the load by folding it to a register
4514 /// operand at the use. We fold the load instructions if load defines a virtual
4515 /// register, the virtual register is used once in the same BB, and the
4516 /// instructions in-between do not load or store, and have no side effects.
optimizeLoadInstr(MachineInstr & MI,const MachineRegisterInfo * MRI,Register & FoldAsLoadDefReg,MachineInstr * & DefMI) const4517 MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI,
4518                                               const MachineRegisterInfo *MRI,
4519                                               Register &FoldAsLoadDefReg,
4520                                               MachineInstr *&DefMI) const {
4521   // Check whether we can move DefMI here.
4522   DefMI = MRI->getVRegDef(FoldAsLoadDefReg);
4523   assert(DefMI);
4524   bool SawStore = false;
4525   if (!DefMI->isSafeToMove(nullptr, SawStore))
4526     return nullptr;
4527 
4528   // Collect information about virtual register operands of MI.
4529   SmallVector<unsigned, 1> SrcOperandIds;
4530   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
4531     MachineOperand &MO = MI.getOperand(i);
4532     if (!MO.isReg())
4533       continue;
4534     Register Reg = MO.getReg();
4535     if (Reg != FoldAsLoadDefReg)
4536       continue;
4537     // Do not fold if we have a subreg use or a def.
4538     if (MO.getSubReg() || MO.isDef())
4539       return nullptr;
4540     SrcOperandIds.push_back(i);
4541   }
4542   if (SrcOperandIds.empty())
4543     return nullptr;
4544 
4545   // Check whether we can fold the def into SrcOperandId.
4546   if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) {
4547     FoldAsLoadDefReg = 0;
4548     return FoldMI;
4549   }
4550 
4551   return nullptr;
4552 }
4553 
4554 /// Expand a single-def pseudo instruction to a two-addr
4555 /// instruction with two undef reads of the register being defined.
4556 /// This is used for mapping:
4557 ///   %xmm4 = V_SET0
4558 /// to:
4559 ///   %xmm4 = PXORrr undef %xmm4, undef %xmm4
4560 ///
Expand2AddrUndef(MachineInstrBuilder & MIB,const MCInstrDesc & Desc)4561 static bool Expand2AddrUndef(MachineInstrBuilder &MIB,
4562                              const MCInstrDesc &Desc) {
4563   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4564   Register Reg = MIB.getReg(0);
4565   MIB->setDesc(Desc);
4566 
4567   // MachineInstr::addOperand() will insert explicit operands before any
4568   // implicit operands.
4569   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4570   // But we don't trust that.
4571   assert(MIB.getReg(1) == Reg &&
4572          MIB.getReg(2) == Reg && "Misplaced operand");
4573   return true;
4574 }
4575 
4576 /// Expand a single-def pseudo instruction to a two-addr
4577 /// instruction with two %k0 reads.
4578 /// This is used for mapping:
4579 ///   %k4 = K_SET1
4580 /// to:
4581 ///   %k4 = KXNORrr %k0, %k0
Expand2AddrKreg(MachineInstrBuilder & MIB,const MCInstrDesc & Desc,Register Reg)4582 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc,
4583                             Register Reg) {
4584   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
4585   MIB->setDesc(Desc);
4586   MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
4587   return true;
4588 }
4589 
expandMOV32r1(MachineInstrBuilder & MIB,const TargetInstrInfo & TII,bool MinusOne)4590 static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII,
4591                           bool MinusOne) {
4592   MachineBasicBlock &MBB = *MIB->getParent();
4593   const DebugLoc &DL = MIB->getDebugLoc();
4594   Register Reg = MIB.getReg(0);
4595 
4596   // Insert the XOR.
4597   BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg)
4598       .addReg(Reg, RegState::Undef)
4599       .addReg(Reg, RegState::Undef);
4600 
4601   // Turn the pseudo into an INC or DEC.
4602   MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r));
4603   MIB.addReg(Reg);
4604 
4605   return true;
4606 }
4607 
ExpandMOVImmSExti8(MachineInstrBuilder & MIB,const TargetInstrInfo & TII,const X86Subtarget & Subtarget)4608 static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB,
4609                                const TargetInstrInfo &TII,
4610                                const X86Subtarget &Subtarget) {
4611   MachineBasicBlock &MBB = *MIB->getParent();
4612   const DebugLoc &DL = MIB->getDebugLoc();
4613   int64_t Imm = MIB->getOperand(1).getImm();
4614   assert(Imm != 0 && "Using push/pop for 0 is not efficient.");
4615   MachineBasicBlock::iterator I = MIB.getInstr();
4616 
4617   int StackAdjustment;
4618 
4619   if (Subtarget.is64Bit()) {
4620     assert(MIB->getOpcode() == X86::MOV64ImmSExti8 ||
4621            MIB->getOpcode() == X86::MOV32ImmSExti8);
4622 
4623     // Can't use push/pop lowering if the function might write to the red zone.
4624     X86MachineFunctionInfo *X86FI =
4625         MBB.getParent()->getInfo<X86MachineFunctionInfo>();
4626     if (X86FI->getUsesRedZone()) {
4627       MIB->setDesc(TII.get(MIB->getOpcode() ==
4628                            X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri));
4629       return true;
4630     }
4631 
4632     // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
4633     // widen the register if necessary.
4634     StackAdjustment = 8;
4635     BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm);
4636     MIB->setDesc(TII.get(X86::POP64r));
4637     MIB->getOperand(0)
4638         .setReg(getX86SubSuperRegister(MIB.getReg(0), 64));
4639   } else {
4640     assert(MIB->getOpcode() == X86::MOV32ImmSExti8);
4641     StackAdjustment = 4;
4642     BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm);
4643     MIB->setDesc(TII.get(X86::POP32r));
4644   }
4645   MIB->RemoveOperand(1);
4646   MIB->addImplicitDefUseOperands(*MBB.getParent());
4647 
4648   // Build CFI if necessary.
4649   MachineFunction &MF = *MBB.getParent();
4650   const X86FrameLowering *TFL = Subtarget.getFrameLowering();
4651   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
4652   bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
4653   bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI;
4654   if (EmitCFI) {
4655     TFL->BuildCFI(MBB, I, DL,
4656         MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
4657     TFL->BuildCFI(MBB, std::next(I), DL,
4658         MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment));
4659   }
4660 
4661   return true;
4662 }
4663 
4664 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
4665 // code sequence is needed for other targets.
expandLoadStackGuard(MachineInstrBuilder & MIB,const TargetInstrInfo & TII)4666 static void expandLoadStackGuard(MachineInstrBuilder &MIB,
4667                                  const TargetInstrInfo &TII) {
4668   MachineBasicBlock &MBB = *MIB->getParent();
4669   const DebugLoc &DL = MIB->getDebugLoc();
4670   Register Reg = MIB.getReg(0);
4671   const GlobalValue *GV =
4672       cast<GlobalValue>((*MIB->memoperands_begin())->getValue());
4673   auto Flags = MachineMemOperand::MOLoad |
4674                MachineMemOperand::MODereferenceable |
4675                MachineMemOperand::MOInvariant;
4676   MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4677       MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8));
4678   MachineBasicBlock::iterator I = MIB.getInstr();
4679 
4680   BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1)
4681       .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0)
4682       .addMemOperand(MMO);
4683   MIB->setDebugLoc(DL);
4684   MIB->setDesc(TII.get(X86::MOV64rm));
4685   MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0);
4686 }
4687 
expandXorFP(MachineInstrBuilder & MIB,const TargetInstrInfo & TII)4688 static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) {
4689   MachineBasicBlock &MBB = *MIB->getParent();
4690   MachineFunction &MF = *MBB.getParent();
4691   const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
4692   const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
4693   unsigned XorOp =
4694       MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr;
4695   MIB->setDesc(TII.get(XorOp));
4696   MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef);
4697   return true;
4698 }
4699 
4700 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4701 // but not VLX. If it uses an extended register we need to use an instruction
4702 // that loads the lower 128/256-bit, but is available with only AVX512F.
expandNOVLXLoad(MachineInstrBuilder & MIB,const TargetRegisterInfo * TRI,const MCInstrDesc & LoadDesc,const MCInstrDesc & BroadcastDesc,unsigned SubIdx)4703 static bool expandNOVLXLoad(MachineInstrBuilder &MIB,
4704                             const TargetRegisterInfo *TRI,
4705                             const MCInstrDesc &LoadDesc,
4706                             const MCInstrDesc &BroadcastDesc,
4707                             unsigned SubIdx) {
4708   Register DestReg = MIB.getReg(0);
4709   // Check if DestReg is XMM16-31 or YMM16-31.
4710   if (TRI->getEncodingValue(DestReg) < 16) {
4711     // We can use a normal VEX encoded load.
4712     MIB->setDesc(LoadDesc);
4713   } else {
4714     // Use a 128/256-bit VBROADCAST instruction.
4715     MIB->setDesc(BroadcastDesc);
4716     // Change the destination to a 512-bit register.
4717     DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass);
4718     MIB->getOperand(0).setReg(DestReg);
4719   }
4720   return true;
4721 }
4722 
4723 // This is used to handle spills for 128/256-bit registers when we have AVX512,
4724 // but not VLX. If it uses an extended register we need to use an instruction
4725 // that stores the lower 128/256-bit, but is available with only AVX512F.
expandNOVLXStore(MachineInstrBuilder & MIB,const TargetRegisterInfo * TRI,const MCInstrDesc & StoreDesc,const MCInstrDesc & ExtractDesc,unsigned SubIdx)4726 static bool expandNOVLXStore(MachineInstrBuilder &MIB,
4727                              const TargetRegisterInfo *TRI,
4728                              const MCInstrDesc &StoreDesc,
4729                              const MCInstrDesc &ExtractDesc,
4730                              unsigned SubIdx) {
4731   Register SrcReg = MIB.getReg(X86::AddrNumOperands);
4732   // Check if DestReg is XMM16-31 or YMM16-31.
4733   if (TRI->getEncodingValue(SrcReg) < 16) {
4734     // We can use a normal VEX encoded store.
4735     MIB->setDesc(StoreDesc);
4736   } else {
4737     // Use a VEXTRACTF instruction.
4738     MIB->setDesc(ExtractDesc);
4739     // Change the destination to a 512-bit register.
4740     SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass);
4741     MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg);
4742     MIB.addImm(0x0); // Append immediate to extract from the lower bits.
4743   }
4744 
4745   return true;
4746 }
4747 
expandSHXDROT(MachineInstrBuilder & MIB,const MCInstrDesc & Desc)4748 static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) {
4749   MIB->setDesc(Desc);
4750   int64_t ShiftAmt = MIB->getOperand(2).getImm();
4751   // Temporarily remove the immediate so we can add another source register.
4752   MIB->RemoveOperand(2);
4753   // Add the register. Don't copy the kill flag if there is one.
4754   MIB.addReg(MIB.getReg(1),
4755              getUndefRegState(MIB->getOperand(1).isUndef()));
4756   // Add back the immediate.
4757   MIB.addImm(ShiftAmt);
4758   return true;
4759 }
4760 
expandPostRAPseudo(MachineInstr & MI) const4761 bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
4762   bool HasAVX = Subtarget.hasAVX();
4763   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4764   switch (MI.getOpcode()) {
4765   case X86::MOV32r0:
4766     return Expand2AddrUndef(MIB, get(X86::XOR32rr));
4767   case X86::MOV32r1:
4768     return expandMOV32r1(MIB, *this, /*MinusOne=*/ false);
4769   case X86::MOV32r_1:
4770     return expandMOV32r1(MIB, *this, /*MinusOne=*/ true);
4771   case X86::MOV32ImmSExti8:
4772   case X86::MOV64ImmSExti8:
4773     return ExpandMOVImmSExti8(MIB, *this, Subtarget);
4774   case X86::SETB_C32r:
4775     return Expand2AddrUndef(MIB, get(X86::SBB32rr));
4776   case X86::SETB_C64r:
4777     return Expand2AddrUndef(MIB, get(X86::SBB64rr));
4778   case X86::MMX_SET0:
4779     return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr));
4780   case X86::V_SET0:
4781   case X86::FsFLD0SS:
4782   case X86::FsFLD0SD:
4783   case X86::FsFLD0F128:
4784     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
4785   case X86::AVX_SET0: {
4786     assert(HasAVX && "AVX not supported");
4787     const TargetRegisterInfo *TRI = &getRegisterInfo();
4788     Register SrcReg = MIB.getReg(0);
4789     Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4790     MIB->getOperand(0).setReg(XReg);
4791     Expand2AddrUndef(MIB, get(X86::VXORPSrr));
4792     MIB.addReg(SrcReg, RegState::ImplicitDefine);
4793     return true;
4794   }
4795   case X86::AVX512_128_SET0:
4796   case X86::AVX512_FsFLD0SH:
4797   case X86::AVX512_FsFLD0SS:
4798   case X86::AVX512_FsFLD0SD:
4799   case X86::AVX512_FsFLD0F128: {
4800     bool HasVLX = Subtarget.hasVLX();
4801     Register SrcReg = MIB.getReg(0);
4802     const TargetRegisterInfo *TRI = &getRegisterInfo();
4803     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16)
4804       return Expand2AddrUndef(MIB,
4805                               get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4806     // Extended register without VLX. Use a larger XOR.
4807     SrcReg =
4808         TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass);
4809     MIB->getOperand(0).setReg(SrcReg);
4810     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4811   }
4812   case X86::AVX512_256_SET0:
4813   case X86::AVX512_512_SET0: {
4814     bool HasVLX = Subtarget.hasVLX();
4815     Register SrcReg = MIB.getReg(0);
4816     const TargetRegisterInfo *TRI = &getRegisterInfo();
4817     if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) {
4818       Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm);
4819       MIB->getOperand(0).setReg(XReg);
4820       Expand2AddrUndef(MIB,
4821                        get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr));
4822       MIB.addReg(SrcReg, RegState::ImplicitDefine);
4823       return true;
4824     }
4825     if (MI.getOpcode() == X86::AVX512_256_SET0) {
4826       // No VLX so we must reference a zmm.
4827       unsigned ZReg =
4828         TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass);
4829       MIB->getOperand(0).setReg(ZReg);
4830     }
4831     return Expand2AddrUndef(MIB, get(X86::VPXORDZrr));
4832   }
4833   case X86::V_SETALLONES:
4834     return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr));
4835   case X86::AVX2_SETALLONES:
4836     return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr));
4837   case X86::AVX1_SETALLONES: {
4838     Register Reg = MIB.getReg(0);
4839     // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4840     MIB->setDesc(get(X86::VCMPPSYrri));
4841     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf);
4842     return true;
4843   }
4844   case X86::AVX512_512_SETALLONES: {
4845     Register Reg = MIB.getReg(0);
4846     MIB->setDesc(get(X86::VPTERNLOGDZrri));
4847     // VPTERNLOGD needs 3 register inputs and an immediate.
4848     // 0xff will return 1s for any input.
4849     MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef)
4850        .addReg(Reg, RegState::Undef).addImm(0xff);
4851     return true;
4852   }
4853   case X86::AVX512_512_SEXT_MASK_32:
4854   case X86::AVX512_512_SEXT_MASK_64: {
4855     Register Reg = MIB.getReg(0);
4856     Register MaskReg = MIB.getReg(1);
4857     unsigned MaskState = getRegState(MIB->getOperand(1));
4858     unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ?
4859                    X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz;
4860     MI.RemoveOperand(1);
4861     MIB->setDesc(get(Opc));
4862     // VPTERNLOG needs 3 register inputs and an immediate.
4863     // 0xff will return 1s for any input.
4864     MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState)
4865        .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff);
4866     return true;
4867   }
4868   case X86::VMOVAPSZ128rm_NOVLX:
4869     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm),
4870                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4871   case X86::VMOVUPSZ128rm_NOVLX:
4872     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm),
4873                            get(X86::VBROADCASTF32X4rm), X86::sub_xmm);
4874   case X86::VMOVAPSZ256rm_NOVLX:
4875     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm),
4876                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4877   case X86::VMOVUPSZ256rm_NOVLX:
4878     return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm),
4879                            get(X86::VBROADCASTF64X4rm), X86::sub_ymm);
4880   case X86::VMOVAPSZ128mr_NOVLX:
4881     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr),
4882                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4883   case X86::VMOVUPSZ128mr_NOVLX:
4884     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr),
4885                             get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm);
4886   case X86::VMOVAPSZ256mr_NOVLX:
4887     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr),
4888                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4889   case X86::VMOVUPSZ256mr_NOVLX:
4890     return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr),
4891                             get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm);
4892   case X86::MOV32ri64: {
4893     Register Reg = MIB.getReg(0);
4894     Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit);
4895     MI.setDesc(get(X86::MOV32ri));
4896     MIB->getOperand(0).setReg(Reg32);
4897     MIB.addReg(Reg, RegState::ImplicitDefine);
4898     return true;
4899   }
4900 
4901   // KNL does not recognize dependency-breaking idioms for mask registers,
4902   // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4903   // Using %k0 as the undef input register is a performance heuristic based
4904   // on the assumption that %k0 is used less frequently than the other mask
4905   // registers, since it is not usable as a write mask.
4906   // FIXME: A more advanced approach would be to choose the best input mask
4907   // register based on context.
4908   case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0);
4909   case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0);
4910   case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0);
4911   case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0);
4912   case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0);
4913   case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0);
4914   case TargetOpcode::LOAD_STACK_GUARD:
4915     expandLoadStackGuard(MIB, *this);
4916     return true;
4917   case X86::XOR64_FP:
4918   case X86::XOR32_FP:
4919     return expandXorFP(MIB, *this);
4920   case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8));
4921   case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8));
4922   case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8));
4923   case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8));
4924   case X86::ADD8rr_DB:    MIB->setDesc(get(X86::OR8rr));    break;
4925   case X86::ADD16rr_DB:   MIB->setDesc(get(X86::OR16rr));   break;
4926   case X86::ADD32rr_DB:   MIB->setDesc(get(X86::OR32rr));   break;
4927   case X86::ADD64rr_DB:   MIB->setDesc(get(X86::OR64rr));   break;
4928   case X86::ADD8ri_DB:    MIB->setDesc(get(X86::OR8ri));    break;
4929   case X86::ADD16ri_DB:   MIB->setDesc(get(X86::OR16ri));   break;
4930   case X86::ADD32ri_DB:   MIB->setDesc(get(X86::OR32ri));   break;
4931   case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break;
4932   case X86::ADD16ri8_DB:  MIB->setDesc(get(X86::OR16ri8));  break;
4933   case X86::ADD32ri8_DB:  MIB->setDesc(get(X86::OR32ri8));  break;
4934   case X86::ADD64ri8_DB:  MIB->setDesc(get(X86::OR64ri8));  break;
4935   }
4936   return false;
4937 }
4938 
4939 /// Return true for all instructions that only update
4940 /// the first 32 or 64-bits of the destination register and leave the rest
4941 /// unmodified. This can be used to avoid folding loads if the instructions
4942 /// only update part of the destination register, and the non-updated part is
4943 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4944 /// instructions breaks the partial register dependency and it can improve
4945 /// performance. e.g.:
4946 ///
4947 ///   movss (%rdi), %xmm0
4948 ///   cvtss2sd %xmm0, %xmm0
4949 ///
4950 /// Instead of
4951 ///   cvtss2sd (%rdi), %xmm0
4952 ///
4953 /// FIXME: This should be turned into a TSFlags.
4954 ///
hasPartialRegUpdate(unsigned Opcode,const X86Subtarget & Subtarget,bool ForLoadFold=false)4955 static bool hasPartialRegUpdate(unsigned Opcode,
4956                                 const X86Subtarget &Subtarget,
4957                                 bool ForLoadFold = false) {
4958   switch (Opcode) {
4959   case X86::CVTSI2SSrr:
4960   case X86::CVTSI2SSrm:
4961   case X86::CVTSI642SSrr:
4962   case X86::CVTSI642SSrm:
4963   case X86::CVTSI2SDrr:
4964   case X86::CVTSI2SDrm:
4965   case X86::CVTSI642SDrr:
4966   case X86::CVTSI642SDrm:
4967     // Load folding won't effect the undef register update since the input is
4968     // a GPR.
4969     return !ForLoadFold;
4970   case X86::CVTSD2SSrr:
4971   case X86::CVTSD2SSrm:
4972   case X86::CVTSS2SDrr:
4973   case X86::CVTSS2SDrm:
4974   case X86::MOVHPDrm:
4975   case X86::MOVHPSrm:
4976   case X86::MOVLPDrm:
4977   case X86::MOVLPSrm:
4978   case X86::RCPSSr:
4979   case X86::RCPSSm:
4980   case X86::RCPSSr_Int:
4981   case X86::RCPSSm_Int:
4982   case X86::ROUNDSDr:
4983   case X86::ROUNDSDm:
4984   case X86::ROUNDSSr:
4985   case X86::ROUNDSSm:
4986   case X86::RSQRTSSr:
4987   case X86::RSQRTSSm:
4988   case X86::RSQRTSSr_Int:
4989   case X86::RSQRTSSm_Int:
4990   case X86::SQRTSSr:
4991   case X86::SQRTSSm:
4992   case X86::SQRTSSr_Int:
4993   case X86::SQRTSSm_Int:
4994   case X86::SQRTSDr:
4995   case X86::SQRTSDm:
4996   case X86::SQRTSDr_Int:
4997   case X86::SQRTSDm_Int:
4998     return true;
4999   // GPR
5000   case X86::POPCNT32rm:
5001   case X86::POPCNT32rr:
5002   case X86::POPCNT64rm:
5003   case X86::POPCNT64rr:
5004     return Subtarget.hasPOPCNTFalseDeps();
5005   case X86::LZCNT32rm:
5006   case X86::LZCNT32rr:
5007   case X86::LZCNT64rm:
5008   case X86::LZCNT64rr:
5009   case X86::TZCNT32rm:
5010   case X86::TZCNT32rr:
5011   case X86::TZCNT64rm:
5012   case X86::TZCNT64rr:
5013     return Subtarget.hasLZCNTFalseDeps();
5014   }
5015 
5016   return false;
5017 }
5018 
5019 /// Inform the BreakFalseDeps pass how many idle
5020 /// instructions we would like before a partial register update.
getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5021 unsigned X86InstrInfo::getPartialRegUpdateClearance(
5022     const MachineInstr &MI, unsigned OpNum,
5023     const TargetRegisterInfo *TRI) const {
5024   if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget))
5025     return 0;
5026 
5027   // If MI is marked as reading Reg, the partial register update is wanted.
5028   const MachineOperand &MO = MI.getOperand(0);
5029   Register Reg = MO.getReg();
5030   if (Reg.isVirtual()) {
5031     if (MO.readsReg() || MI.readsVirtualRegister(Reg))
5032       return 0;
5033   } else {
5034     if (MI.readsRegister(Reg, TRI))
5035       return 0;
5036   }
5037 
5038   // If any instructions in the clearance range are reading Reg, insert a
5039   // dependency breaking instruction, which is inexpensive and is likely to
5040   // be hidden in other instruction's cycles.
5041   return PartialRegUpdateClearance;
5042 }
5043 
5044 // Return true for any instruction the copies the high bits of the first source
5045 // operand into the unused high bits of the destination operand.
5046 // Also returns true for instructions that have two inputs where one may
5047 // be undef and we want it to use the same register as the other input.
hasUndefRegUpdate(unsigned Opcode,unsigned OpNum,bool ForLoadFold=false)5048 static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum,
5049                               bool ForLoadFold = false) {
5050   // Set the OpNum parameter to the first source operand.
5051   switch (Opcode) {
5052   case X86::MMX_PUNPCKHBWirr:
5053   case X86::MMX_PUNPCKHWDirr:
5054   case X86::MMX_PUNPCKHDQirr:
5055   case X86::MMX_PUNPCKLBWirr:
5056   case X86::MMX_PUNPCKLWDirr:
5057   case X86::MMX_PUNPCKLDQirr:
5058   case X86::MOVHLPSrr:
5059   case X86::PACKSSWBrr:
5060   case X86::PACKUSWBrr:
5061   case X86::PACKSSDWrr:
5062   case X86::PACKUSDWrr:
5063   case X86::PUNPCKHBWrr:
5064   case X86::PUNPCKLBWrr:
5065   case X86::PUNPCKHWDrr:
5066   case X86::PUNPCKLWDrr:
5067   case X86::PUNPCKHDQrr:
5068   case X86::PUNPCKLDQrr:
5069   case X86::PUNPCKHQDQrr:
5070   case X86::PUNPCKLQDQrr:
5071   case X86::SHUFPDrri:
5072   case X86::SHUFPSrri:
5073     // These instructions are sometimes used with an undef first or second
5074     // source. Return true here so BreakFalseDeps will assign this source to the
5075     // same register as the first source to avoid a false dependency.
5076     // Operand 1 of these instructions is tied so they're separate from their
5077     // VEX counterparts.
5078     return OpNum == 2 && !ForLoadFold;
5079 
5080   case X86::VMOVLHPSrr:
5081   case X86::VMOVLHPSZrr:
5082   case X86::VPACKSSWBrr:
5083   case X86::VPACKUSWBrr:
5084   case X86::VPACKSSDWrr:
5085   case X86::VPACKUSDWrr:
5086   case X86::VPACKSSWBZ128rr:
5087   case X86::VPACKUSWBZ128rr:
5088   case X86::VPACKSSDWZ128rr:
5089   case X86::VPACKUSDWZ128rr:
5090   case X86::VPERM2F128rr:
5091   case X86::VPERM2I128rr:
5092   case X86::VSHUFF32X4Z256rri:
5093   case X86::VSHUFF32X4Zrri:
5094   case X86::VSHUFF64X2Z256rri:
5095   case X86::VSHUFF64X2Zrri:
5096   case X86::VSHUFI32X4Z256rri:
5097   case X86::VSHUFI32X4Zrri:
5098   case X86::VSHUFI64X2Z256rri:
5099   case X86::VSHUFI64X2Zrri:
5100   case X86::VPUNPCKHBWrr:
5101   case X86::VPUNPCKLBWrr:
5102   case X86::VPUNPCKHBWYrr:
5103   case X86::VPUNPCKLBWYrr:
5104   case X86::VPUNPCKHBWZ128rr:
5105   case X86::VPUNPCKLBWZ128rr:
5106   case X86::VPUNPCKHBWZ256rr:
5107   case X86::VPUNPCKLBWZ256rr:
5108   case X86::VPUNPCKHBWZrr:
5109   case X86::VPUNPCKLBWZrr:
5110   case X86::VPUNPCKHWDrr:
5111   case X86::VPUNPCKLWDrr:
5112   case X86::VPUNPCKHWDYrr:
5113   case X86::VPUNPCKLWDYrr:
5114   case X86::VPUNPCKHWDZ128rr:
5115   case X86::VPUNPCKLWDZ128rr:
5116   case X86::VPUNPCKHWDZ256rr:
5117   case X86::VPUNPCKLWDZ256rr:
5118   case X86::VPUNPCKHWDZrr:
5119   case X86::VPUNPCKLWDZrr:
5120   case X86::VPUNPCKHDQrr:
5121   case X86::VPUNPCKLDQrr:
5122   case X86::VPUNPCKHDQYrr:
5123   case X86::VPUNPCKLDQYrr:
5124   case X86::VPUNPCKHDQZ128rr:
5125   case X86::VPUNPCKLDQZ128rr:
5126   case X86::VPUNPCKHDQZ256rr:
5127   case X86::VPUNPCKLDQZ256rr:
5128   case X86::VPUNPCKHDQZrr:
5129   case X86::VPUNPCKLDQZrr:
5130   case X86::VPUNPCKHQDQrr:
5131   case X86::VPUNPCKLQDQrr:
5132   case X86::VPUNPCKHQDQYrr:
5133   case X86::VPUNPCKLQDQYrr:
5134   case X86::VPUNPCKHQDQZ128rr:
5135   case X86::VPUNPCKLQDQZ128rr:
5136   case X86::VPUNPCKHQDQZ256rr:
5137   case X86::VPUNPCKLQDQZ256rr:
5138   case X86::VPUNPCKHQDQZrr:
5139   case X86::VPUNPCKLQDQZrr:
5140     // These instructions are sometimes used with an undef first or second
5141     // source. Return true here so BreakFalseDeps will assign this source to the
5142     // same register as the first source to avoid a false dependency.
5143     return (OpNum == 1 || OpNum == 2) && !ForLoadFold;
5144 
5145   case X86::VCVTSI2SSrr:
5146   case X86::VCVTSI2SSrm:
5147   case X86::VCVTSI2SSrr_Int:
5148   case X86::VCVTSI2SSrm_Int:
5149   case X86::VCVTSI642SSrr:
5150   case X86::VCVTSI642SSrm:
5151   case X86::VCVTSI642SSrr_Int:
5152   case X86::VCVTSI642SSrm_Int:
5153   case X86::VCVTSI2SDrr:
5154   case X86::VCVTSI2SDrm:
5155   case X86::VCVTSI2SDrr_Int:
5156   case X86::VCVTSI2SDrm_Int:
5157   case X86::VCVTSI642SDrr:
5158   case X86::VCVTSI642SDrm:
5159   case X86::VCVTSI642SDrr_Int:
5160   case X86::VCVTSI642SDrm_Int:
5161   // AVX-512
5162   case X86::VCVTSI2SSZrr:
5163   case X86::VCVTSI2SSZrm:
5164   case X86::VCVTSI2SSZrr_Int:
5165   case X86::VCVTSI2SSZrrb_Int:
5166   case X86::VCVTSI2SSZrm_Int:
5167   case X86::VCVTSI642SSZrr:
5168   case X86::VCVTSI642SSZrm:
5169   case X86::VCVTSI642SSZrr_Int:
5170   case X86::VCVTSI642SSZrrb_Int:
5171   case X86::VCVTSI642SSZrm_Int:
5172   case X86::VCVTSI2SDZrr:
5173   case X86::VCVTSI2SDZrm:
5174   case X86::VCVTSI2SDZrr_Int:
5175   case X86::VCVTSI2SDZrm_Int:
5176   case X86::VCVTSI642SDZrr:
5177   case X86::VCVTSI642SDZrm:
5178   case X86::VCVTSI642SDZrr_Int:
5179   case X86::VCVTSI642SDZrrb_Int:
5180   case X86::VCVTSI642SDZrm_Int:
5181   case X86::VCVTUSI2SSZrr:
5182   case X86::VCVTUSI2SSZrm:
5183   case X86::VCVTUSI2SSZrr_Int:
5184   case X86::VCVTUSI2SSZrrb_Int:
5185   case X86::VCVTUSI2SSZrm_Int:
5186   case X86::VCVTUSI642SSZrr:
5187   case X86::VCVTUSI642SSZrm:
5188   case X86::VCVTUSI642SSZrr_Int:
5189   case X86::VCVTUSI642SSZrrb_Int:
5190   case X86::VCVTUSI642SSZrm_Int:
5191   case X86::VCVTUSI2SDZrr:
5192   case X86::VCVTUSI2SDZrm:
5193   case X86::VCVTUSI2SDZrr_Int:
5194   case X86::VCVTUSI2SDZrm_Int:
5195   case X86::VCVTUSI642SDZrr:
5196   case X86::VCVTUSI642SDZrm:
5197   case X86::VCVTUSI642SDZrr_Int:
5198   case X86::VCVTUSI642SDZrrb_Int:
5199   case X86::VCVTUSI642SDZrm_Int:
5200   case X86::VCVTSI2SHZrr:
5201   case X86::VCVTSI2SHZrm:
5202   case X86::VCVTSI2SHZrr_Int:
5203   case X86::VCVTSI2SHZrrb_Int:
5204   case X86::VCVTSI2SHZrm_Int:
5205   case X86::VCVTSI642SHZrr:
5206   case X86::VCVTSI642SHZrm:
5207   case X86::VCVTSI642SHZrr_Int:
5208   case X86::VCVTSI642SHZrrb_Int:
5209   case X86::VCVTSI642SHZrm_Int:
5210   case X86::VCVTUSI2SHZrr:
5211   case X86::VCVTUSI2SHZrm:
5212   case X86::VCVTUSI2SHZrr_Int:
5213   case X86::VCVTUSI2SHZrrb_Int:
5214   case X86::VCVTUSI2SHZrm_Int:
5215   case X86::VCVTUSI642SHZrr:
5216   case X86::VCVTUSI642SHZrm:
5217   case X86::VCVTUSI642SHZrr_Int:
5218   case X86::VCVTUSI642SHZrrb_Int:
5219   case X86::VCVTUSI642SHZrm_Int:
5220     // Load folding won't effect the undef register update since the input is
5221     // a GPR.
5222     return OpNum == 1 && !ForLoadFold;
5223   case X86::VCVTSD2SSrr:
5224   case X86::VCVTSD2SSrm:
5225   case X86::VCVTSD2SSrr_Int:
5226   case X86::VCVTSD2SSrm_Int:
5227   case X86::VCVTSS2SDrr:
5228   case X86::VCVTSS2SDrm:
5229   case X86::VCVTSS2SDrr_Int:
5230   case X86::VCVTSS2SDrm_Int:
5231   case X86::VRCPSSr:
5232   case X86::VRCPSSr_Int:
5233   case X86::VRCPSSm:
5234   case X86::VRCPSSm_Int:
5235   case X86::VROUNDSDr:
5236   case X86::VROUNDSDm:
5237   case X86::VROUNDSDr_Int:
5238   case X86::VROUNDSDm_Int:
5239   case X86::VROUNDSSr:
5240   case X86::VROUNDSSm:
5241   case X86::VROUNDSSr_Int:
5242   case X86::VROUNDSSm_Int:
5243   case X86::VRSQRTSSr:
5244   case X86::VRSQRTSSr_Int:
5245   case X86::VRSQRTSSm:
5246   case X86::VRSQRTSSm_Int:
5247   case X86::VSQRTSSr:
5248   case X86::VSQRTSSr_Int:
5249   case X86::VSQRTSSm:
5250   case X86::VSQRTSSm_Int:
5251   case X86::VSQRTSDr:
5252   case X86::VSQRTSDr_Int:
5253   case X86::VSQRTSDm:
5254   case X86::VSQRTSDm_Int:
5255   // AVX-512
5256   case X86::VCVTSD2SSZrr:
5257   case X86::VCVTSD2SSZrr_Int:
5258   case X86::VCVTSD2SSZrrb_Int:
5259   case X86::VCVTSD2SSZrm:
5260   case X86::VCVTSD2SSZrm_Int:
5261   case X86::VCVTSS2SDZrr:
5262   case X86::VCVTSS2SDZrr_Int:
5263   case X86::VCVTSS2SDZrrb_Int:
5264   case X86::VCVTSS2SDZrm:
5265   case X86::VCVTSS2SDZrm_Int:
5266   case X86::VGETEXPSDZr:
5267   case X86::VGETEXPSDZrb:
5268   case X86::VGETEXPSDZm:
5269   case X86::VGETEXPSSZr:
5270   case X86::VGETEXPSSZrb:
5271   case X86::VGETEXPSSZm:
5272   case X86::VGETMANTSDZrri:
5273   case X86::VGETMANTSDZrrib:
5274   case X86::VGETMANTSDZrmi:
5275   case X86::VGETMANTSSZrri:
5276   case X86::VGETMANTSSZrrib:
5277   case X86::VGETMANTSSZrmi:
5278   case X86::VRNDSCALESDZr:
5279   case X86::VRNDSCALESDZr_Int:
5280   case X86::VRNDSCALESDZrb_Int:
5281   case X86::VRNDSCALESDZm:
5282   case X86::VRNDSCALESDZm_Int:
5283   case X86::VRNDSCALESSZr:
5284   case X86::VRNDSCALESSZr_Int:
5285   case X86::VRNDSCALESSZrb_Int:
5286   case X86::VRNDSCALESSZm:
5287   case X86::VRNDSCALESSZm_Int:
5288   case X86::VRCP14SDZrr:
5289   case X86::VRCP14SDZrm:
5290   case X86::VRCP14SSZrr:
5291   case X86::VRCP14SSZrm:
5292   case X86::VRCPSHZrr:
5293   case X86::VRCPSHZrm:
5294   case X86::VRSQRTSHZrr:
5295   case X86::VRSQRTSHZrm:
5296   case X86::VREDUCESHZrmi:
5297   case X86::VREDUCESHZrri:
5298   case X86::VREDUCESHZrrib:
5299   case X86::VGETEXPSHZr:
5300   case X86::VGETEXPSHZrb:
5301   case X86::VGETEXPSHZm:
5302   case X86::VGETMANTSHZrri:
5303   case X86::VGETMANTSHZrrib:
5304   case X86::VGETMANTSHZrmi:
5305   case X86::VRNDSCALESHZr:
5306   case X86::VRNDSCALESHZr_Int:
5307   case X86::VRNDSCALESHZrb_Int:
5308   case X86::VRNDSCALESHZm:
5309   case X86::VRNDSCALESHZm_Int:
5310   case X86::VSQRTSHZr:
5311   case X86::VSQRTSHZr_Int:
5312   case X86::VSQRTSHZrb_Int:
5313   case X86::VSQRTSHZm:
5314   case X86::VSQRTSHZm_Int:
5315   case X86::VRCP28SDZr:
5316   case X86::VRCP28SDZrb:
5317   case X86::VRCP28SDZm:
5318   case X86::VRCP28SSZr:
5319   case X86::VRCP28SSZrb:
5320   case X86::VRCP28SSZm:
5321   case X86::VREDUCESSZrmi:
5322   case X86::VREDUCESSZrri:
5323   case X86::VREDUCESSZrrib:
5324   case X86::VRSQRT14SDZrr:
5325   case X86::VRSQRT14SDZrm:
5326   case X86::VRSQRT14SSZrr:
5327   case X86::VRSQRT14SSZrm:
5328   case X86::VRSQRT28SDZr:
5329   case X86::VRSQRT28SDZrb:
5330   case X86::VRSQRT28SDZm:
5331   case X86::VRSQRT28SSZr:
5332   case X86::VRSQRT28SSZrb:
5333   case X86::VRSQRT28SSZm:
5334   case X86::VSQRTSSZr:
5335   case X86::VSQRTSSZr_Int:
5336   case X86::VSQRTSSZrb_Int:
5337   case X86::VSQRTSSZm:
5338   case X86::VSQRTSSZm_Int:
5339   case X86::VSQRTSDZr:
5340   case X86::VSQRTSDZr_Int:
5341   case X86::VSQRTSDZrb_Int:
5342   case X86::VSQRTSDZm:
5343   case X86::VSQRTSDZm_Int:
5344   case X86::VCVTSD2SHZrr:
5345   case X86::VCVTSD2SHZrr_Int:
5346   case X86::VCVTSD2SHZrrb_Int:
5347   case X86::VCVTSD2SHZrm:
5348   case X86::VCVTSD2SHZrm_Int:
5349   case X86::VCVTSS2SHZrr:
5350   case X86::VCVTSS2SHZrr_Int:
5351   case X86::VCVTSS2SHZrrb_Int:
5352   case X86::VCVTSS2SHZrm:
5353   case X86::VCVTSS2SHZrm_Int:
5354   case X86::VCVTSH2SDZrr:
5355   case X86::VCVTSH2SDZrr_Int:
5356   case X86::VCVTSH2SDZrrb_Int:
5357   case X86::VCVTSH2SDZrm:
5358   case X86::VCVTSH2SDZrm_Int:
5359   case X86::VCVTSH2SSZrr:
5360   case X86::VCVTSH2SSZrr_Int:
5361   case X86::VCVTSH2SSZrrb_Int:
5362   case X86::VCVTSH2SSZrm:
5363   case X86::VCVTSH2SSZrm_Int:
5364     return OpNum == 1;
5365   case X86::VMOVSSZrrk:
5366   case X86::VMOVSDZrrk:
5367     return OpNum == 3 && !ForLoadFold;
5368   case X86::VMOVSSZrrkz:
5369   case X86::VMOVSDZrrkz:
5370     return OpNum == 2 && !ForLoadFold;
5371   }
5372 
5373   return false;
5374 }
5375 
5376 /// Inform the BreakFalseDeps pass how many idle instructions we would like
5377 /// before certain undef register reads.
5378 ///
5379 /// This catches the VCVTSI2SD family of instructions:
5380 ///
5381 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
5382 ///
5383 /// We should to be careful *not* to catch VXOR idioms which are presumably
5384 /// handled specially in the pipeline:
5385 ///
5386 /// vxorps undef %xmm1, undef %xmm1, %xmm1
5387 ///
5388 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
5389 /// high bits that are passed-through are not live.
5390 unsigned
getUndefRegClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5391 X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
5392                                    const TargetRegisterInfo *TRI) const {
5393   const MachineOperand &MO = MI.getOperand(OpNum);
5394   if (Register::isPhysicalRegister(MO.getReg()) &&
5395       hasUndefRegUpdate(MI.getOpcode(), OpNum))
5396     return UndefRegClearance;
5397 
5398   return 0;
5399 }
5400 
breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5401 void X86InstrInfo::breakPartialRegDependency(
5402     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5403   Register Reg = MI.getOperand(OpNum).getReg();
5404   // If MI kills this register, the false dependence is already broken.
5405   if (MI.killsRegister(Reg, TRI))
5406     return;
5407 
5408   if (X86::VR128RegClass.contains(Reg)) {
5409     // These instructions are all floating point domain, so xorps is the best
5410     // choice.
5411     unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr;
5412     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg)
5413         .addReg(Reg, RegState::Undef)
5414         .addReg(Reg, RegState::Undef);
5415     MI.addRegisterKilled(Reg, TRI, true);
5416   } else if (X86::VR256RegClass.contains(Reg)) {
5417     // Use vxorps to clear the full ymm register.
5418     // It wants to read and write the xmm sub-register.
5419     Register XReg = TRI->getSubReg(Reg, X86::sub_xmm);
5420     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg)
5421         .addReg(XReg, RegState::Undef)
5422         .addReg(XReg, RegState::Undef)
5423         .addReg(Reg, RegState::ImplicitDefine);
5424     MI.addRegisterKilled(Reg, TRI, true);
5425   } else if (X86::GR64RegClass.contains(Reg)) {
5426     // Using XOR32rr because it has shorter encoding and zeros up the upper bits
5427     // as well.
5428     Register XReg = TRI->getSubReg(Reg, X86::sub_32bit);
5429     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg)
5430         .addReg(XReg, RegState::Undef)
5431         .addReg(XReg, RegState::Undef)
5432         .addReg(Reg, RegState::ImplicitDefine);
5433     MI.addRegisterKilled(Reg, TRI, true);
5434   } else if (X86::GR32RegClass.contains(Reg)) {
5435     BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg)
5436         .addReg(Reg, RegState::Undef)
5437         .addReg(Reg, RegState::Undef);
5438     MI.addRegisterKilled(Reg, TRI, true);
5439   }
5440 }
5441 
addOperands(MachineInstrBuilder & MIB,ArrayRef<MachineOperand> MOs,int PtrOffset=0)5442 static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs,
5443                         int PtrOffset = 0) {
5444   unsigned NumAddrOps = MOs.size();
5445 
5446   if (NumAddrOps < 4) {
5447     // FrameIndex only - add an immediate offset (whether its zero or not).
5448     for (unsigned i = 0; i != NumAddrOps; ++i)
5449       MIB.add(MOs[i]);
5450     addOffset(MIB, PtrOffset);
5451   } else {
5452     // General Memory Addressing - we need to add any offset to an existing
5453     // offset.
5454     assert(MOs.size() == 5 && "Unexpected memory operand list length");
5455     for (unsigned i = 0; i != NumAddrOps; ++i) {
5456       const MachineOperand &MO = MOs[i];
5457       if (i == 3 && PtrOffset != 0) {
5458         MIB.addDisp(MO, PtrOffset);
5459       } else {
5460         MIB.add(MO);
5461       }
5462     }
5463   }
5464 }
5465 
updateOperandRegConstraints(MachineFunction & MF,MachineInstr & NewMI,const TargetInstrInfo & TII)5466 static void updateOperandRegConstraints(MachineFunction &MF,
5467                                         MachineInstr &NewMI,
5468                                         const TargetInstrInfo &TII) {
5469   MachineRegisterInfo &MRI = MF.getRegInfo();
5470   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
5471 
5472   for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) {
5473     MachineOperand &MO = NewMI.getOperand(Idx);
5474     // We only need to update constraints on virtual register operands.
5475     if (!MO.isReg())
5476       continue;
5477     Register Reg = MO.getReg();
5478     if (!Reg.isVirtual())
5479       continue;
5480 
5481     auto *NewRC = MRI.constrainRegClass(
5482         Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF));
5483     if (!NewRC) {
5484       LLVM_DEBUG(
5485           dbgs() << "WARNING: Unable to update register constraint for operand "
5486                  << Idx << " of instruction:\n";
5487           NewMI.dump(); dbgs() << "\n");
5488     }
5489   }
5490 }
5491 
FuseTwoAddrInst(MachineFunction & MF,unsigned Opcode,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,MachineInstr & MI,const TargetInstrInfo & TII)5492 static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
5493                                      ArrayRef<MachineOperand> MOs,
5494                                      MachineBasicBlock::iterator InsertPt,
5495                                      MachineInstr &MI,
5496                                      const TargetInstrInfo &TII) {
5497   // Create the base instruction with the memory operand as the first part.
5498   // Omit the implicit operands, something BuildMI can't do.
5499   MachineInstr *NewMI =
5500       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5501   MachineInstrBuilder MIB(MF, NewMI);
5502   addOperands(MIB, MOs);
5503 
5504   // Loop over the rest of the ri operands, converting them over.
5505   unsigned NumOps = MI.getDesc().getNumOperands() - 2;
5506   for (unsigned i = 0; i != NumOps; ++i) {
5507     MachineOperand &MO = MI.getOperand(i + 2);
5508     MIB.add(MO);
5509   }
5510   for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) {
5511     MachineOperand &MO = MI.getOperand(i);
5512     MIB.add(MO);
5513   }
5514 
5515   updateOperandRegConstraints(MF, *NewMI, TII);
5516 
5517   MachineBasicBlock *MBB = InsertPt->getParent();
5518   MBB->insert(InsertPt, NewMI);
5519 
5520   return MIB;
5521 }
5522 
FuseInst(MachineFunction & MF,unsigned Opcode,unsigned OpNo,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,MachineInstr & MI,const TargetInstrInfo & TII,int PtrOffset=0)5523 static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode,
5524                               unsigned OpNo, ArrayRef<MachineOperand> MOs,
5525                               MachineBasicBlock::iterator InsertPt,
5526                               MachineInstr &MI, const TargetInstrInfo &TII,
5527                               int PtrOffset = 0) {
5528   // Omit the implicit operands, something BuildMI can't do.
5529   MachineInstr *NewMI =
5530       MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true);
5531   MachineInstrBuilder MIB(MF, NewMI);
5532 
5533   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5534     MachineOperand &MO = MI.getOperand(i);
5535     if (i == OpNo) {
5536       assert(MO.isReg() && "Expected to fold into reg operand!");
5537       addOperands(MIB, MOs, PtrOffset);
5538     } else {
5539       MIB.add(MO);
5540     }
5541   }
5542 
5543   updateOperandRegConstraints(MF, *NewMI, TII);
5544 
5545   // Copy the NoFPExcept flag from the instruction we're fusing.
5546   if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
5547     NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept);
5548 
5549   MachineBasicBlock *MBB = InsertPt->getParent();
5550   MBB->insert(InsertPt, NewMI);
5551 
5552   return MIB;
5553 }
5554 
MakeM0Inst(const TargetInstrInfo & TII,unsigned Opcode,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,MachineInstr & MI)5555 static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
5556                                 ArrayRef<MachineOperand> MOs,
5557                                 MachineBasicBlock::iterator InsertPt,
5558                                 MachineInstr &MI) {
5559   MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
5560                                     MI.getDebugLoc(), TII.get(Opcode));
5561   addOperands(MIB, MOs);
5562   return MIB.addImm(0);
5563 }
5564 
foldMemoryOperandCustom(MachineFunction & MF,MachineInstr & MI,unsigned OpNum,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,unsigned Size,Align Alignment) const5565 MachineInstr *X86InstrInfo::foldMemoryOperandCustom(
5566     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
5567     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5568     unsigned Size, Align Alignment) const {
5569   switch (MI.getOpcode()) {
5570   case X86::INSERTPSrr:
5571   case X86::VINSERTPSrr:
5572   case X86::VINSERTPSZrr:
5573     // Attempt to convert the load of inserted vector into a fold load
5574     // of a single float.
5575     if (OpNum == 2) {
5576       unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm();
5577       unsigned ZMask = Imm & 15;
5578       unsigned DstIdx = (Imm >> 4) & 3;
5579       unsigned SrcIdx = (Imm >> 6) & 3;
5580 
5581       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5582       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5583       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5584       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(4)) {
5585         int PtrOffset = SrcIdx * 4;
5586         unsigned NewImm = (DstIdx << 4) | ZMask;
5587         unsigned NewOpCode =
5588             (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm :
5589             (MI.getOpcode() == X86::VINSERTPSrr)  ? X86::VINSERTPSrm  :
5590                                                     X86::INSERTPSrm;
5591         MachineInstr *NewMI =
5592             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset);
5593         NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm);
5594         return NewMI;
5595       }
5596     }
5597     break;
5598   case X86::MOVHLPSrr:
5599   case X86::VMOVHLPSrr:
5600   case X86::VMOVHLPSZrr:
5601     // Move the upper 64-bits of the second operand to the lower 64-bits.
5602     // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
5603     // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
5604     if (OpNum == 2) {
5605       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5606       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5607       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5608       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) {
5609         unsigned NewOpCode =
5610             (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm :
5611             (MI.getOpcode() == X86::VMOVHLPSrr)  ? X86::VMOVLPSrm     :
5612                                                    X86::MOVLPSrm;
5613         MachineInstr *NewMI =
5614             FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8);
5615         return NewMI;
5616       }
5617     }
5618     break;
5619   case X86::UNPCKLPDrr:
5620     // If we won't be able to fold this to the memory form of UNPCKL, use
5621     // MOVHPD instead. Done as custom because we can't have this in the load
5622     // table twice.
5623     if (OpNum == 2) {
5624       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5625       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF);
5626       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5627       if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) {
5628         MachineInstr *NewMI =
5629             FuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this);
5630         return NewMI;
5631       }
5632     }
5633     break;
5634   }
5635 
5636   return nullptr;
5637 }
5638 
shouldPreventUndefRegUpdateMemFold(MachineFunction & MF,MachineInstr & MI)5639 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF,
5640                                                MachineInstr &MI) {
5641   if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/true) ||
5642       !MI.getOperand(1).isReg())
5643     return false;
5644 
5645   // The are two cases we need to handle depending on where in the pipeline
5646   // the folding attempt is being made.
5647   // -Register has the undef flag set.
5648   // -Register is produced by the IMPLICIT_DEF instruction.
5649 
5650   if (MI.getOperand(1).isUndef())
5651     return true;
5652 
5653   MachineRegisterInfo &RegInfo = MF.getRegInfo();
5654   MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg());
5655   return VRegDef && VRegDef->isImplicitDef();
5656 }
5657 
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,unsigned OpNum,ArrayRef<MachineOperand> MOs,MachineBasicBlock::iterator InsertPt,unsigned Size,Align Alignment,bool AllowCommute) const5658 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
5659     MachineFunction &MF, MachineInstr &MI, unsigned OpNum,
5660     ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt,
5661     unsigned Size, Align Alignment, bool AllowCommute) const {
5662   bool isSlowTwoMemOps = Subtarget.slowTwoMemOps();
5663   bool isTwoAddrFold = false;
5664 
5665   // For CPUs that favor the register form of a call or push,
5666   // do not fold loads into calls or pushes, unless optimizing for size
5667   // aggressively.
5668   if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() &&
5669       (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r ||
5670        MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r ||
5671        MI.getOpcode() == X86::PUSH64r))
5672     return nullptr;
5673 
5674   // Avoid partial and undef register update stalls unless optimizing for size.
5675   if (!MF.getFunction().hasOptSize() &&
5676       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5677        shouldPreventUndefRegUpdateMemFold(MF, MI)))
5678     return nullptr;
5679 
5680   unsigned NumOps = MI.getDesc().getNumOperands();
5681   bool isTwoAddr =
5682       NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
5683 
5684   // FIXME: AsmPrinter doesn't know how to handle
5685   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
5686   if (MI.getOpcode() == X86::ADD32ri &&
5687       MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
5688     return nullptr;
5689 
5690   // GOTTPOFF relocation loads can only be folded into add instructions.
5691   // FIXME: Need to exclude other relocations that only support specific
5692   // instructions.
5693   if (MOs.size() == X86::AddrNumOperands &&
5694       MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF &&
5695       MI.getOpcode() != X86::ADD64rr)
5696     return nullptr;
5697 
5698   MachineInstr *NewMI = nullptr;
5699 
5700   // Attempt to fold any custom cases we have.
5701   if (MachineInstr *CustomMI = foldMemoryOperandCustom(
5702           MF, MI, OpNum, MOs, InsertPt, Size, Alignment))
5703     return CustomMI;
5704 
5705   const X86MemoryFoldTableEntry *I = nullptr;
5706 
5707   // Folding a memory location into the two-address part of a two-address
5708   // instruction is different than folding it other places.  It requires
5709   // replacing the *two* registers with the memory location.
5710   if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() &&
5711       MI.getOperand(1).isReg() &&
5712       MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
5713     I = lookupTwoAddrFoldTable(MI.getOpcode());
5714     isTwoAddrFold = true;
5715   } else {
5716     if (OpNum == 0) {
5717       if (MI.getOpcode() == X86::MOV32r0) {
5718         NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI);
5719         if (NewMI)
5720           return NewMI;
5721       }
5722     }
5723 
5724     I = lookupFoldTable(MI.getOpcode(), OpNum);
5725   }
5726 
5727   if (I != nullptr) {
5728     unsigned Opcode = I->DstOp;
5729     bool FoldedLoad =
5730         isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_LOAD) || OpNum > 0;
5731     bool FoldedStore =
5732         isTwoAddrFold || (OpNum == 0 && I->Flags & TB_FOLDED_STORE);
5733     MaybeAlign MinAlign =
5734         decodeMaybeAlign((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT);
5735     if (MinAlign && Alignment < *MinAlign)
5736       return nullptr;
5737     bool NarrowToMOV32rm = false;
5738     if (Size) {
5739       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5740       const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum,
5741                                                   &RI, MF);
5742       unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8;
5743       // Check if it's safe to fold the load. If the size of the object is
5744       // narrower than the load width, then it's not.
5745       // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
5746       if (FoldedLoad && Size < RCSize) {
5747         // If this is a 64-bit load, but the spill slot is 32, then we can do
5748         // a 32-bit load which is implicitly zero-extended. This likely is
5749         // due to live interval analysis remat'ing a load from stack slot.
5750         if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
5751           return nullptr;
5752         if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
5753           return nullptr;
5754         Opcode = X86::MOV32rm;
5755         NarrowToMOV32rm = true;
5756       }
5757       // For stores, make sure the size of the object is equal to the size of
5758       // the store. If the object is larger, the extra bits would be garbage. If
5759       // the object is smaller we might overwrite another object or fault.
5760       if (FoldedStore && Size != RCSize)
5761         return nullptr;
5762     }
5763 
5764     if (isTwoAddrFold)
5765       NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this);
5766     else
5767       NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this);
5768 
5769     if (NarrowToMOV32rm) {
5770       // If this is the special case where we use a MOV32rm to load a 32-bit
5771       // value and zero-extend the top bits. Change the destination register
5772       // to a 32-bit one.
5773       Register DstReg = NewMI->getOperand(0).getReg();
5774       if (DstReg.isPhysical())
5775         NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit));
5776       else
5777         NewMI->getOperand(0).setSubReg(X86::sub_32bit);
5778     }
5779     return NewMI;
5780   }
5781 
5782   // If the instruction and target operand are commutable, commute the
5783   // instruction and try again.
5784   if (AllowCommute) {
5785     unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex;
5786     if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) {
5787       bool HasDef = MI.getDesc().getNumDefs();
5788       Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
5789       Register Reg1 = MI.getOperand(CommuteOpIdx1).getReg();
5790       Register Reg2 = MI.getOperand(CommuteOpIdx2).getReg();
5791       bool Tied1 =
5792           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO);
5793       bool Tied2 =
5794           0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO);
5795 
5796       // If either of the commutable operands are tied to the destination
5797       // then we can not commute + fold.
5798       if ((HasDef && Reg0 == Reg1 && Tied1) ||
5799           (HasDef && Reg0 == Reg2 && Tied2))
5800         return nullptr;
5801 
5802       MachineInstr *CommutedMI =
5803           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
5804       if (!CommutedMI) {
5805         // Unable to commute.
5806         return nullptr;
5807       }
5808       if (CommutedMI != &MI) {
5809         // New instruction. We can't fold from this.
5810         CommutedMI->eraseFromParent();
5811         return nullptr;
5812       }
5813 
5814       // Attempt to fold with the commuted version of the instruction.
5815       NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size,
5816                                     Alignment, /*AllowCommute=*/false);
5817       if (NewMI)
5818         return NewMI;
5819 
5820       // Folding failed again - undo the commute before returning.
5821       MachineInstr *UncommutedMI =
5822           commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2);
5823       if (!UncommutedMI) {
5824         // Unable to commute.
5825         return nullptr;
5826       }
5827       if (UncommutedMI != &MI) {
5828         // New instruction. It doesn't need to be kept.
5829         UncommutedMI->eraseFromParent();
5830         return nullptr;
5831       }
5832 
5833       // Return here to prevent duplicate fuse failure report.
5834       return nullptr;
5835     }
5836   }
5837 
5838   // No fusion
5839   if (PrintFailedFusing && !MI.isCopy())
5840     dbgs() << "We failed to fuse operand " << OpNum << " in " << MI;
5841   return nullptr;
5842 }
5843 
5844 MachineInstr *
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,int FrameIndex,LiveIntervals * LIS,VirtRegMap * VRM) const5845 X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
5846                                     ArrayRef<unsigned> Ops,
5847                                     MachineBasicBlock::iterator InsertPt,
5848                                     int FrameIndex, LiveIntervals *LIS,
5849                                     VirtRegMap *VRM) const {
5850   // Check switch flag
5851   if (NoFusing)
5852     return nullptr;
5853 
5854   // Avoid partial and undef register update stalls unless optimizing for size.
5855   if (!MF.getFunction().hasOptSize() &&
5856       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
5857        shouldPreventUndefRegUpdateMemFold(MF, MI)))
5858     return nullptr;
5859 
5860   // Don't fold subreg spills, or reloads that use a high subreg.
5861   for (auto Op : Ops) {
5862     MachineOperand &MO = MI.getOperand(Op);
5863     auto SubReg = MO.getSubReg();
5864     if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi))
5865       return nullptr;
5866   }
5867 
5868   const MachineFrameInfo &MFI = MF.getFrameInfo();
5869   unsigned Size = MFI.getObjectSize(FrameIndex);
5870   Align Alignment = MFI.getObjectAlign(FrameIndex);
5871   // If the function stack isn't realigned we don't want to fold instructions
5872   // that need increased alignment.
5873   if (!RI.hasStackRealignment(MF))
5874     Alignment =
5875         std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign());
5876   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
5877     unsigned NewOpc = 0;
5878     unsigned RCSize = 0;
5879     switch (MI.getOpcode()) {
5880     default: return nullptr;
5881     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
5882     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
5883     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
5884     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
5885     }
5886     // Check if it's safe to fold the load. If the size of the object is
5887     // narrower than the load width, then it's not.
5888     if (Size < RCSize)
5889       return nullptr;
5890     // Change to CMPXXri r, 0 first.
5891     MI.setDesc(get(NewOpc));
5892     MI.getOperand(1).ChangeToImmediate(0);
5893   } else if (Ops.size() != 1)
5894     return nullptr;
5895 
5896   return foldMemoryOperandImpl(MF, MI, Ops[0],
5897                                MachineOperand::CreateFI(FrameIndex), InsertPt,
5898                                Size, Alignment, /*AllowCommute=*/true);
5899 }
5900 
5901 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
5902 /// because the latter uses contents that wouldn't be defined in the folded
5903 /// version.  For instance, this transformation isn't legal:
5904 ///   movss (%rdi), %xmm0
5905 ///   addps %xmm0, %xmm0
5906 /// ->
5907 ///   addps (%rdi), %xmm0
5908 ///
5909 /// But this one is:
5910 ///   movss (%rdi), %xmm0
5911 ///   addss %xmm0, %xmm0
5912 /// ->
5913 ///   addss (%rdi), %xmm0
5914 ///
isNonFoldablePartialRegisterLoad(const MachineInstr & LoadMI,const MachineInstr & UserMI,const MachineFunction & MF)5915 static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI,
5916                                              const MachineInstr &UserMI,
5917                                              const MachineFunction &MF) {
5918   unsigned Opc = LoadMI.getOpcode();
5919   unsigned UserOpc = UserMI.getOpcode();
5920   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
5921   const TargetRegisterClass *RC =
5922       MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg());
5923   unsigned RegSize = TRI.getRegSizeInBits(*RC);
5924 
5925   if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm ||
5926        Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt ||
5927        Opc == X86::VMOVSSZrm_alt) &&
5928       RegSize > 32) {
5929     // These instructions only load 32 bits, we can't fold them if the
5930     // destination register is wider than 32 bits (4 bytes), and its user
5931     // instruction isn't scalar (SS).
5932     switch (UserOpc) {
5933     case X86::CVTSS2SDrr_Int:
5934     case X86::VCVTSS2SDrr_Int:
5935     case X86::VCVTSS2SDZrr_Int:
5936     case X86::VCVTSS2SDZrr_Intk:
5937     case X86::VCVTSS2SDZrr_Intkz:
5938     case X86::CVTSS2SIrr_Int:     case X86::CVTSS2SI64rr_Int:
5939     case X86::VCVTSS2SIrr_Int:    case X86::VCVTSS2SI64rr_Int:
5940     case X86::VCVTSS2SIZrr_Int:   case X86::VCVTSS2SI64Zrr_Int:
5941     case X86::CVTTSS2SIrr_Int:    case X86::CVTTSS2SI64rr_Int:
5942     case X86::VCVTTSS2SIrr_Int:   case X86::VCVTTSS2SI64rr_Int:
5943     case X86::VCVTTSS2SIZrr_Int:  case X86::VCVTTSS2SI64Zrr_Int:
5944     case X86::VCVTSS2USIZrr_Int:  case X86::VCVTSS2USI64Zrr_Int:
5945     case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int:
5946     case X86::RCPSSr_Int:   case X86::VRCPSSr_Int:
5947     case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int:
5948     case X86::ROUNDSSr_Int: case X86::VROUNDSSr_Int:
5949     case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int:
5950     case X86::UCOMISSrr_Int:case X86::VUCOMISSrr_Int:case X86::VUCOMISSZrr_Int:
5951     case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int:
5952     case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int:
5953     case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int:
5954     case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int:
5955     case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int:
5956     case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int:
5957     case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int:
5958     case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int:
5959     case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz:
5960     case X86::VCMPSSZrr_Intk:
5961     case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz:
5962     case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz:
5963     case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz:
5964     case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz:
5965     case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz:
5966     case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz:
5967     case X86::VFMADDSS4rr_Int:   case X86::VFNMADDSS4rr_Int:
5968     case X86::VFMSUBSS4rr_Int:   case X86::VFNMSUBSS4rr_Int:
5969     case X86::VFMADD132SSr_Int:  case X86::VFNMADD132SSr_Int:
5970     case X86::VFMADD213SSr_Int:  case X86::VFNMADD213SSr_Int:
5971     case X86::VFMADD231SSr_Int:  case X86::VFNMADD231SSr_Int:
5972     case X86::VFMSUB132SSr_Int:  case X86::VFNMSUB132SSr_Int:
5973     case X86::VFMSUB213SSr_Int:  case X86::VFNMSUB213SSr_Int:
5974     case X86::VFMSUB231SSr_Int:  case X86::VFNMSUB231SSr_Int:
5975     case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int:
5976     case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int:
5977     case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int:
5978     case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int:
5979     case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int:
5980     case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int:
5981     case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk:
5982     case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk:
5983     case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk:
5984     case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk:
5985     case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk:
5986     case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk:
5987     case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz:
5988     case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz:
5989     case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz:
5990     case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz:
5991     case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz:
5992     case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz:
5993     case X86::VFIXUPIMMSSZrri:
5994     case X86::VFIXUPIMMSSZrrik:
5995     case X86::VFIXUPIMMSSZrrikz:
5996     case X86::VFPCLASSSSZrr:
5997     case X86::VFPCLASSSSZrrk:
5998     case X86::VGETEXPSSZr:
5999     case X86::VGETEXPSSZrk:
6000     case X86::VGETEXPSSZrkz:
6001     case X86::VGETMANTSSZrri:
6002     case X86::VGETMANTSSZrrik:
6003     case X86::VGETMANTSSZrrikz:
6004     case X86::VRANGESSZrri:
6005     case X86::VRANGESSZrrik:
6006     case X86::VRANGESSZrrikz:
6007     case X86::VRCP14SSZrr:
6008     case X86::VRCP14SSZrrk:
6009     case X86::VRCP14SSZrrkz:
6010     case X86::VRCP28SSZr:
6011     case X86::VRCP28SSZrk:
6012     case X86::VRCP28SSZrkz:
6013     case X86::VREDUCESSZrri:
6014     case X86::VREDUCESSZrrik:
6015     case X86::VREDUCESSZrrikz:
6016     case X86::VRNDSCALESSZr_Int:
6017     case X86::VRNDSCALESSZr_Intk:
6018     case X86::VRNDSCALESSZr_Intkz:
6019     case X86::VRSQRT14SSZrr:
6020     case X86::VRSQRT14SSZrrk:
6021     case X86::VRSQRT14SSZrrkz:
6022     case X86::VRSQRT28SSZr:
6023     case X86::VRSQRT28SSZrk:
6024     case X86::VRSQRT28SSZrkz:
6025     case X86::VSCALEFSSZrr:
6026     case X86::VSCALEFSSZrrk:
6027     case X86::VSCALEFSSZrrkz:
6028       return false;
6029     default:
6030       return true;
6031     }
6032   }
6033 
6034   if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm ||
6035        Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt ||
6036        Opc == X86::VMOVSDZrm_alt) &&
6037       RegSize > 64) {
6038     // These instructions only load 64 bits, we can't fold them if the
6039     // destination register is wider than 64 bits (8 bytes), and its user
6040     // instruction isn't scalar (SD).
6041     switch (UserOpc) {
6042     case X86::CVTSD2SSrr_Int:
6043     case X86::VCVTSD2SSrr_Int:
6044     case X86::VCVTSD2SSZrr_Int:
6045     case X86::VCVTSD2SSZrr_Intk:
6046     case X86::VCVTSD2SSZrr_Intkz:
6047     case X86::CVTSD2SIrr_Int:     case X86::CVTSD2SI64rr_Int:
6048     case X86::VCVTSD2SIrr_Int:    case X86::VCVTSD2SI64rr_Int:
6049     case X86::VCVTSD2SIZrr_Int:   case X86::VCVTSD2SI64Zrr_Int:
6050     case X86::CVTTSD2SIrr_Int:    case X86::CVTTSD2SI64rr_Int:
6051     case X86::VCVTTSD2SIrr_Int:   case X86::VCVTTSD2SI64rr_Int:
6052     case X86::VCVTTSD2SIZrr_Int:  case X86::VCVTTSD2SI64Zrr_Int:
6053     case X86::VCVTSD2USIZrr_Int:  case X86::VCVTSD2USI64Zrr_Int:
6054     case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int:
6055     case X86::ROUNDSDr_Int: case X86::VROUNDSDr_Int:
6056     case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int:
6057     case X86::UCOMISDrr_Int:case X86::VUCOMISDrr_Int:case X86::VUCOMISDZrr_Int:
6058     case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int:
6059     case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int:
6060     case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int:
6061     case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int:
6062     case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int:
6063     case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int:
6064     case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int:
6065     case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int:
6066     case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz:
6067     case X86::VCMPSDZrr_Intk:
6068     case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz:
6069     case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz:
6070     case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz:
6071     case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz:
6072     case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz:
6073     case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz:
6074     case X86::VFMADDSD4rr_Int:   case X86::VFNMADDSD4rr_Int:
6075     case X86::VFMSUBSD4rr_Int:   case X86::VFNMSUBSD4rr_Int:
6076     case X86::VFMADD132SDr_Int:  case X86::VFNMADD132SDr_Int:
6077     case X86::VFMADD213SDr_Int:  case X86::VFNMADD213SDr_Int:
6078     case X86::VFMADD231SDr_Int:  case X86::VFNMADD231SDr_Int:
6079     case X86::VFMSUB132SDr_Int:  case X86::VFNMSUB132SDr_Int:
6080     case X86::VFMSUB213SDr_Int:  case X86::VFNMSUB213SDr_Int:
6081     case X86::VFMSUB231SDr_Int:  case X86::VFNMSUB231SDr_Int:
6082     case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int:
6083     case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int:
6084     case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int:
6085     case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int:
6086     case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int:
6087     case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int:
6088     case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk:
6089     case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk:
6090     case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk:
6091     case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk:
6092     case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk:
6093     case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk:
6094     case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz:
6095     case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz:
6096     case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz:
6097     case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz:
6098     case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz:
6099     case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz:
6100     case X86::VFIXUPIMMSDZrri:
6101     case X86::VFIXUPIMMSDZrrik:
6102     case X86::VFIXUPIMMSDZrrikz:
6103     case X86::VFPCLASSSDZrr:
6104     case X86::VFPCLASSSDZrrk:
6105     case X86::VGETEXPSDZr:
6106     case X86::VGETEXPSDZrk:
6107     case X86::VGETEXPSDZrkz:
6108     case X86::VGETMANTSDZrri:
6109     case X86::VGETMANTSDZrrik:
6110     case X86::VGETMANTSDZrrikz:
6111     case X86::VRANGESDZrri:
6112     case X86::VRANGESDZrrik:
6113     case X86::VRANGESDZrrikz:
6114     case X86::VRCP14SDZrr:
6115     case X86::VRCP14SDZrrk:
6116     case X86::VRCP14SDZrrkz:
6117     case X86::VRCP28SDZr:
6118     case X86::VRCP28SDZrk:
6119     case X86::VRCP28SDZrkz:
6120     case X86::VREDUCESDZrri:
6121     case X86::VREDUCESDZrrik:
6122     case X86::VREDUCESDZrrikz:
6123     case X86::VRNDSCALESDZr_Int:
6124     case X86::VRNDSCALESDZr_Intk:
6125     case X86::VRNDSCALESDZr_Intkz:
6126     case X86::VRSQRT14SDZrr:
6127     case X86::VRSQRT14SDZrrk:
6128     case X86::VRSQRT14SDZrrkz:
6129     case X86::VRSQRT28SDZr:
6130     case X86::VRSQRT28SDZrk:
6131     case X86::VRSQRT28SDZrkz:
6132     case X86::VSCALEFSDZrr:
6133     case X86::VSCALEFSDZrrk:
6134     case X86::VSCALEFSDZrrkz:
6135       return false;
6136     default:
6137       return true;
6138     }
6139   }
6140 
6141   if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) {
6142     // These instructions only load 16 bits, we can't fold them if the
6143     // destination register is wider than 16 bits (2 bytes), and its user
6144     // instruction isn't scalar (SH).
6145     switch (UserOpc) {
6146     case X86::VADDSHZrr_Int:
6147     case X86::VCMPSHZrr_Int:
6148     case X86::VDIVSHZrr_Int:
6149     case X86::VMAXSHZrr_Int:
6150     case X86::VMINSHZrr_Int:
6151     case X86::VMULSHZrr_Int:
6152     case X86::VSUBSHZrr_Int:
6153     case X86::VADDSHZrr_Intk: case X86::VADDSHZrr_Intkz:
6154     case X86::VCMPSHZrr_Intk:
6155     case X86::VDIVSHZrr_Intk: case X86::VDIVSHZrr_Intkz:
6156     case X86::VMAXSHZrr_Intk: case X86::VMAXSHZrr_Intkz:
6157     case X86::VMINSHZrr_Intk: case X86::VMINSHZrr_Intkz:
6158     case X86::VMULSHZrr_Intk: case X86::VMULSHZrr_Intkz:
6159     case X86::VSUBSHZrr_Intk: case X86::VSUBSHZrr_Intkz:
6160     case X86::VFMADD132SHZr_Int: case X86::VFNMADD132SHZr_Int:
6161     case X86::VFMADD213SHZr_Int: case X86::VFNMADD213SHZr_Int:
6162     case X86::VFMADD231SHZr_Int: case X86::VFNMADD231SHZr_Int:
6163     case X86::VFMSUB132SHZr_Int: case X86::VFNMSUB132SHZr_Int:
6164     case X86::VFMSUB213SHZr_Int: case X86::VFNMSUB213SHZr_Int:
6165     case X86::VFMSUB231SHZr_Int: case X86::VFNMSUB231SHZr_Int:
6166     case X86::VFMADD132SHZr_Intk: case X86::VFNMADD132SHZr_Intk:
6167     case X86::VFMADD213SHZr_Intk: case X86::VFNMADD213SHZr_Intk:
6168     case X86::VFMADD231SHZr_Intk: case X86::VFNMADD231SHZr_Intk:
6169     case X86::VFMSUB132SHZr_Intk: case X86::VFNMSUB132SHZr_Intk:
6170     case X86::VFMSUB213SHZr_Intk: case X86::VFNMSUB213SHZr_Intk:
6171     case X86::VFMSUB231SHZr_Intk: case X86::VFNMSUB231SHZr_Intk:
6172     case X86::VFMADD132SHZr_Intkz: case X86::VFNMADD132SHZr_Intkz:
6173     case X86::VFMADD213SHZr_Intkz: case X86::VFNMADD213SHZr_Intkz:
6174     case X86::VFMADD231SHZr_Intkz: case X86::VFNMADD231SHZr_Intkz:
6175     case X86::VFMSUB132SHZr_Intkz: case X86::VFNMSUB132SHZr_Intkz:
6176     case X86::VFMSUB213SHZr_Intkz: case X86::VFNMSUB213SHZr_Intkz:
6177     case X86::VFMSUB231SHZr_Intkz: case X86::VFNMSUB231SHZr_Intkz:
6178       return false;
6179     default:
6180       return true;
6181     }
6182   }
6183 
6184   return false;
6185 }
6186 
foldMemoryOperandImpl(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,MachineBasicBlock::iterator InsertPt,MachineInstr & LoadMI,LiveIntervals * LIS) const6187 MachineInstr *X86InstrInfo::foldMemoryOperandImpl(
6188     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
6189     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
6190     LiveIntervals *LIS) const {
6191 
6192   // TODO: Support the case where LoadMI loads a wide register, but MI
6193   // only uses a subreg.
6194   for (auto Op : Ops) {
6195     if (MI.getOperand(Op).getSubReg())
6196       return nullptr;
6197   }
6198 
6199   // If loading from a FrameIndex, fold directly from the FrameIndex.
6200   unsigned NumOps = LoadMI.getDesc().getNumOperands();
6201   int FrameIndex;
6202   if (isLoadFromStackSlot(LoadMI, FrameIndex)) {
6203     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6204       return nullptr;
6205     return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS);
6206   }
6207 
6208   // Check switch flag
6209   if (NoFusing) return nullptr;
6210 
6211   // Avoid partial and undef register update stalls unless optimizing for size.
6212   if (!MF.getFunction().hasOptSize() &&
6213       (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/true) ||
6214        shouldPreventUndefRegUpdateMemFold(MF, MI)))
6215     return nullptr;
6216 
6217   // Determine the alignment of the load.
6218   Align Alignment;
6219   if (LoadMI.hasOneMemOperand())
6220     Alignment = (*LoadMI.memoperands_begin())->getAlign();
6221   else
6222     switch (LoadMI.getOpcode()) {
6223     case X86::AVX512_512_SET0:
6224     case X86::AVX512_512_SETALLONES:
6225       Alignment = Align(64);
6226       break;
6227     case X86::AVX2_SETALLONES:
6228     case X86::AVX1_SETALLONES:
6229     case X86::AVX_SET0:
6230     case X86::AVX512_256_SET0:
6231       Alignment = Align(32);
6232       break;
6233     case X86::V_SET0:
6234     case X86::V_SETALLONES:
6235     case X86::AVX512_128_SET0:
6236     case X86::FsFLD0F128:
6237     case X86::AVX512_FsFLD0F128:
6238       Alignment = Align(16);
6239       break;
6240     case X86::MMX_SET0:
6241     case X86::FsFLD0SD:
6242     case X86::AVX512_FsFLD0SD:
6243       Alignment = Align(8);
6244       break;
6245     case X86::FsFLD0SS:
6246     case X86::AVX512_FsFLD0SS:
6247       Alignment = Align(4);
6248       break;
6249     case X86::AVX512_FsFLD0SH:
6250       Alignment = Align(2);
6251       break;
6252     default:
6253       return nullptr;
6254     }
6255   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
6256     unsigned NewOpc = 0;
6257     switch (MI.getOpcode()) {
6258     default: return nullptr;
6259     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
6260     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
6261     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
6262     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
6263     }
6264     // Change to CMPXXri r, 0 first.
6265     MI.setDesc(get(NewOpc));
6266     MI.getOperand(1).ChangeToImmediate(0);
6267   } else if (Ops.size() != 1)
6268     return nullptr;
6269 
6270   // Make sure the subregisters match.
6271   // Otherwise we risk changing the size of the load.
6272   if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg())
6273     return nullptr;
6274 
6275   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
6276   switch (LoadMI.getOpcode()) {
6277   case X86::MMX_SET0:
6278   case X86::V_SET0:
6279   case X86::V_SETALLONES:
6280   case X86::AVX2_SETALLONES:
6281   case X86::AVX1_SETALLONES:
6282   case X86::AVX_SET0:
6283   case X86::AVX512_128_SET0:
6284   case X86::AVX512_256_SET0:
6285   case X86::AVX512_512_SET0:
6286   case X86::AVX512_512_SETALLONES:
6287   case X86::AVX512_FsFLD0SH:
6288   case X86::FsFLD0SD:
6289   case X86::AVX512_FsFLD0SD:
6290   case X86::FsFLD0SS:
6291   case X86::AVX512_FsFLD0SS:
6292   case X86::FsFLD0F128:
6293   case X86::AVX512_FsFLD0F128: {
6294     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
6295     // Create a constant-pool entry and operands to load from it.
6296 
6297     // Medium and large mode can't fold loads this way.
6298     if (MF.getTarget().getCodeModel() != CodeModel::Small &&
6299         MF.getTarget().getCodeModel() != CodeModel::Kernel)
6300       return nullptr;
6301 
6302     // x86-32 PIC requires a PIC base register for constant pools.
6303     unsigned PICBase = 0;
6304     // Since we're using Small or Kernel code model, we can always use
6305     // RIP-relative addressing for a smaller encoding.
6306     if (Subtarget.is64Bit()) {
6307       PICBase = X86::RIP;
6308     } else if (MF.getTarget().isPositionIndependent()) {
6309       // FIXME: PICBase = getGlobalBaseReg(&MF);
6310       // This doesn't work for several reasons.
6311       // 1. GlobalBaseReg may have been spilled.
6312       // 2. It may not be live at MI.
6313       return nullptr;
6314     }
6315 
6316     // Create a constant-pool entry.
6317     MachineConstantPool &MCP = *MF.getConstantPool();
6318     Type *Ty;
6319     unsigned Opc = LoadMI.getOpcode();
6320     if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS)
6321       Ty = Type::getFloatTy(MF.getFunction().getContext());
6322     else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD)
6323       Ty = Type::getDoubleTy(MF.getFunction().getContext());
6324     else if (Opc == X86::FsFLD0F128 || Opc == X86::AVX512_FsFLD0F128)
6325       Ty = Type::getFP128Ty(MF.getFunction().getContext());
6326     else if (Opc == X86::AVX512_FsFLD0SH)
6327       Ty = Type::getHalfTy(MF.getFunction().getContext());
6328     else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES)
6329       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6330                                 16);
6331     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 ||
6332              Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES)
6333       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6334                                 8);
6335     else if (Opc == X86::MMX_SET0)
6336       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6337                                 2);
6338     else
6339       Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),
6340                                 4);
6341 
6342     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES ||
6343                       Opc == X86::AVX512_512_SETALLONES ||
6344                       Opc == X86::AVX1_SETALLONES);
6345     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
6346                                     Constant::getNullValue(Ty);
6347     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
6348 
6349     // Create operands to load from the constant pool entry.
6350     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
6351     MOs.push_back(MachineOperand::CreateImm(1));
6352     MOs.push_back(MachineOperand::CreateReg(0, false));
6353     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
6354     MOs.push_back(MachineOperand::CreateReg(0, false));
6355     break;
6356   }
6357   default: {
6358     if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF))
6359       return nullptr;
6360 
6361     // Folding a normal load. Just copy the load's address operands.
6362     MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands,
6363                LoadMI.operands_begin() + NumOps);
6364     break;
6365   }
6366   }
6367   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt,
6368                                /*Size=*/0, Alignment, /*AllowCommute=*/true);
6369 }
6370 
6371 static SmallVector<MachineMemOperand *, 2>
extractLoadMMOs(ArrayRef<MachineMemOperand * > MMOs,MachineFunction & MF)6372 extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6373   SmallVector<MachineMemOperand *, 2> LoadMMOs;
6374 
6375   for (MachineMemOperand *MMO : MMOs) {
6376     if (!MMO->isLoad())
6377       continue;
6378 
6379     if (!MMO->isStore()) {
6380       // Reuse the MMO.
6381       LoadMMOs.push_back(MMO);
6382     } else {
6383       // Clone the MMO and unset the store flag.
6384       LoadMMOs.push_back(MF.getMachineMemOperand(
6385           MMO, MMO->getFlags() & ~MachineMemOperand::MOStore));
6386     }
6387   }
6388 
6389   return LoadMMOs;
6390 }
6391 
6392 static SmallVector<MachineMemOperand *, 2>
extractStoreMMOs(ArrayRef<MachineMemOperand * > MMOs,MachineFunction & MF)6393 extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) {
6394   SmallVector<MachineMemOperand *, 2> StoreMMOs;
6395 
6396   for (MachineMemOperand *MMO : MMOs) {
6397     if (!MMO->isStore())
6398       continue;
6399 
6400     if (!MMO->isLoad()) {
6401       // Reuse the MMO.
6402       StoreMMOs.push_back(MMO);
6403     } else {
6404       // Clone the MMO and unset the load flag.
6405       StoreMMOs.push_back(MF.getMachineMemOperand(
6406           MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad));
6407     }
6408   }
6409 
6410   return StoreMMOs;
6411 }
6412 
getBroadcastOpcode(const X86MemoryFoldTableEntry * I,const TargetRegisterClass * RC,const X86Subtarget & STI)6413 static unsigned getBroadcastOpcode(const X86MemoryFoldTableEntry *I,
6414                                    const TargetRegisterClass *RC,
6415                                    const X86Subtarget &STI) {
6416   assert(STI.hasAVX512() && "Expected at least AVX512!");
6417   unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC);
6418   assert((SpillSize == 64 || STI.hasVLX()) &&
6419          "Can't broadcast less than 64 bytes without AVX512VL!");
6420 
6421   switch (I->Flags & TB_BCAST_MASK) {
6422   default: llvm_unreachable("Unexpected broadcast type!");
6423   case TB_BCAST_D:
6424     switch (SpillSize) {
6425     default: llvm_unreachable("Unknown spill size");
6426     case 16: return X86::VPBROADCASTDZ128rm;
6427     case 32: return X86::VPBROADCASTDZ256rm;
6428     case 64: return X86::VPBROADCASTDZrm;
6429     }
6430     break;
6431   case TB_BCAST_Q:
6432     switch (SpillSize) {
6433     default: llvm_unreachable("Unknown spill size");
6434     case 16: return X86::VPBROADCASTQZ128rm;
6435     case 32: return X86::VPBROADCASTQZ256rm;
6436     case 64: return X86::VPBROADCASTQZrm;
6437     }
6438     break;
6439   case TB_BCAST_SS:
6440     switch (SpillSize) {
6441     default: llvm_unreachable("Unknown spill size");
6442     case 16: return X86::VBROADCASTSSZ128rm;
6443     case 32: return X86::VBROADCASTSSZ256rm;
6444     case 64: return X86::VBROADCASTSSZrm;
6445     }
6446     break;
6447   case TB_BCAST_SD:
6448     switch (SpillSize) {
6449     default: llvm_unreachable("Unknown spill size");
6450     case 16: return X86::VMOVDDUPZ128rm;
6451     case 32: return X86::VBROADCASTSDZ256rm;
6452     case 64: return X86::VBROADCASTSDZrm;
6453     }
6454     break;
6455   }
6456 }
6457 
unfoldMemoryOperand(MachineFunction & MF,MachineInstr & MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs) const6458 bool X86InstrInfo::unfoldMemoryOperand(
6459     MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad,
6460     bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const {
6461   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode());
6462   if (I == nullptr)
6463     return false;
6464   unsigned Opc = I->DstOp;
6465   unsigned Index = I->Flags & TB_INDEX_MASK;
6466   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6467   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6468   bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
6469   if (UnfoldLoad && !FoldedLoad)
6470     return false;
6471   UnfoldLoad &= FoldedLoad;
6472   if (UnfoldStore && !FoldedStore)
6473     return false;
6474   UnfoldStore &= FoldedStore;
6475 
6476   const MCInstrDesc &MCID = get(Opc);
6477 
6478   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6479   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6480   // TODO: Check if 32-byte or greater accesses are slow too?
6481   if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass &&
6482       Subtarget.isUnalignedMem16Slow())
6483     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
6484     // conservatively assume the address is unaligned. That's bad for
6485     // performance.
6486     return false;
6487   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
6488   SmallVector<MachineOperand,2> BeforeOps;
6489   SmallVector<MachineOperand,2> AfterOps;
6490   SmallVector<MachineOperand,4> ImpOps;
6491   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
6492     MachineOperand &Op = MI.getOperand(i);
6493     if (i >= Index && i < Index + X86::AddrNumOperands)
6494       AddrOps.push_back(Op);
6495     else if (Op.isReg() && Op.isImplicit())
6496       ImpOps.push_back(Op);
6497     else if (i < Index)
6498       BeforeOps.push_back(Op);
6499     else if (i > Index)
6500       AfterOps.push_back(Op);
6501   }
6502 
6503   // Emit the load or broadcast instruction.
6504   if (UnfoldLoad) {
6505     auto MMOs = extractLoadMMOs(MI.memoperands(), MF);
6506 
6507     unsigned Opc;
6508     if (FoldedBCast) {
6509       Opc = getBroadcastOpcode(I, RC, Subtarget);
6510     } else {
6511       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6512       bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6513       Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget);
6514     }
6515 
6516     DebugLoc DL;
6517     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg);
6518     for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6519       MIB.add(AddrOps[i]);
6520     MIB.setMemRefs(MMOs);
6521     NewMIs.push_back(MIB);
6522 
6523     if (UnfoldStore) {
6524       // Address operands cannot be marked isKill.
6525       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
6526         MachineOperand &MO = NewMIs[0]->getOperand(i);
6527         if (MO.isReg())
6528           MO.setIsKill(false);
6529       }
6530     }
6531   }
6532 
6533   // Emit the data processing instruction.
6534   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true);
6535   MachineInstrBuilder MIB(MF, DataMI);
6536 
6537   if (FoldedStore)
6538     MIB.addReg(Reg, RegState::Define);
6539   for (MachineOperand &BeforeOp : BeforeOps)
6540     MIB.add(BeforeOp);
6541   if (FoldedLoad)
6542     MIB.addReg(Reg);
6543   for (MachineOperand &AfterOp : AfterOps)
6544     MIB.add(AfterOp);
6545   for (MachineOperand &ImpOp : ImpOps) {
6546     MIB.addReg(ImpOp.getReg(),
6547                getDefRegState(ImpOp.isDef()) |
6548                RegState::Implicit |
6549                getKillRegState(ImpOp.isKill()) |
6550                getDeadRegState(ImpOp.isDead()) |
6551                getUndefRegState(ImpOp.isUndef()));
6552   }
6553   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6554   switch (DataMI->getOpcode()) {
6555   default: break;
6556   case X86::CMP64ri32:
6557   case X86::CMP64ri8:
6558   case X86::CMP32ri:
6559   case X86::CMP32ri8:
6560   case X86::CMP16ri:
6561   case X86::CMP16ri8:
6562   case X86::CMP8ri: {
6563     MachineOperand &MO0 = DataMI->getOperand(0);
6564     MachineOperand &MO1 = DataMI->getOperand(1);
6565     if (MO1.isImm() && MO1.getImm() == 0) {
6566       unsigned NewOpc;
6567       switch (DataMI->getOpcode()) {
6568       default: llvm_unreachable("Unreachable!");
6569       case X86::CMP64ri8:
6570       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
6571       case X86::CMP32ri8:
6572       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
6573       case X86::CMP16ri8:
6574       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
6575       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
6576       }
6577       DataMI->setDesc(get(NewOpc));
6578       MO1.ChangeToRegister(MO0.getReg(), false);
6579     }
6580   }
6581   }
6582   NewMIs.push_back(DataMI);
6583 
6584   // Emit the store instruction.
6585   if (UnfoldStore) {
6586     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
6587     auto MMOs = extractStoreMMOs(MI.memoperands(), MF);
6588     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*DstRC), 16);
6589     bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6590     unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget);
6591     DebugLoc DL;
6592     MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
6593     for (unsigned i = 0, e = AddrOps.size(); i != e; ++i)
6594       MIB.add(AddrOps[i]);
6595     MIB.addReg(Reg, RegState::Kill);
6596     MIB.setMemRefs(MMOs);
6597     NewMIs.push_back(MIB);
6598   }
6599 
6600   return true;
6601 }
6602 
6603 bool
unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes) const6604 X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
6605                                   SmallVectorImpl<SDNode*> &NewNodes) const {
6606   if (!N->isMachineOpcode())
6607     return false;
6608 
6609   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode());
6610   if (I == nullptr)
6611     return false;
6612   unsigned Opc = I->DstOp;
6613   unsigned Index = I->Flags & TB_INDEX_MASK;
6614   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6615   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6616   bool FoldedBCast = I->Flags & TB_FOLDED_BCAST;
6617   const MCInstrDesc &MCID = get(Opc);
6618   MachineFunction &MF = DAG.getMachineFunction();
6619   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
6620   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
6621   unsigned NumDefs = MCID.NumDefs;
6622   std::vector<SDValue> AddrOps;
6623   std::vector<SDValue> BeforeOps;
6624   std::vector<SDValue> AfterOps;
6625   SDLoc dl(N);
6626   unsigned NumOps = N->getNumOperands();
6627   for (unsigned i = 0; i != NumOps-1; ++i) {
6628     SDValue Op = N->getOperand(i);
6629     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
6630       AddrOps.push_back(Op);
6631     else if (i < Index-NumDefs)
6632       BeforeOps.push_back(Op);
6633     else if (i > Index-NumDefs)
6634       AfterOps.push_back(Op);
6635   }
6636   SDValue Chain = N->getOperand(NumOps-1);
6637   AddrOps.push_back(Chain);
6638 
6639   // Emit the load instruction.
6640   SDNode *Load = nullptr;
6641   if (FoldedLoad) {
6642     EVT VT = *TRI.legalclasstypes_begin(*RC);
6643     auto MMOs = extractLoadMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
6644     if (MMOs.empty() && RC == &X86::VR128RegClass &&
6645         Subtarget.isUnalignedMem16Slow())
6646       // Do not introduce a slow unaligned load.
6647       return false;
6648     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
6649     // memory access is slow above.
6650 
6651     unsigned Opc;
6652     if (FoldedBCast) {
6653       Opc = getBroadcastOpcode(I, RC, Subtarget);
6654     } else {
6655       unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6656       bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6657       Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget);
6658     }
6659 
6660     Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps);
6661     NewNodes.push_back(Load);
6662 
6663     // Preserve memory reference information.
6664     DAG.setNodeMemRefs(cast<MachineSDNode>(Load), MMOs);
6665   }
6666 
6667   // Emit the data processing instruction.
6668   std::vector<EVT> VTs;
6669   const TargetRegisterClass *DstRC = nullptr;
6670   if (MCID.getNumDefs() > 0) {
6671     DstRC = getRegClass(MCID, 0, &RI, MF);
6672     VTs.push_back(*TRI.legalclasstypes_begin(*DstRC));
6673   }
6674   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
6675     EVT VT = N->getValueType(i);
6676     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
6677       VTs.push_back(VT);
6678   }
6679   if (Load)
6680     BeforeOps.push_back(SDValue(Load, 0));
6681   llvm::append_range(BeforeOps, AfterOps);
6682   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
6683   switch (Opc) {
6684     default: break;
6685     case X86::CMP64ri32:
6686     case X86::CMP64ri8:
6687     case X86::CMP32ri:
6688     case X86::CMP32ri8:
6689     case X86::CMP16ri:
6690     case X86::CMP16ri8:
6691     case X86::CMP8ri:
6692       if (isNullConstant(BeforeOps[1])) {
6693         switch (Opc) {
6694           default: llvm_unreachable("Unreachable!");
6695           case X86::CMP64ri8:
6696           case X86::CMP64ri32: Opc = X86::TEST64rr; break;
6697           case X86::CMP32ri8:
6698           case X86::CMP32ri:   Opc = X86::TEST32rr; break;
6699           case X86::CMP16ri8:
6700           case X86::CMP16ri:   Opc = X86::TEST16rr; break;
6701           case X86::CMP8ri:    Opc = X86::TEST8rr; break;
6702         }
6703         BeforeOps[1] = BeforeOps[0];
6704       }
6705   }
6706   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps);
6707   NewNodes.push_back(NewNode);
6708 
6709   // Emit the store instruction.
6710   if (FoldedStore) {
6711     AddrOps.pop_back();
6712     AddrOps.push_back(SDValue(NewNode, 0));
6713     AddrOps.push_back(Chain);
6714     auto MMOs = extractStoreMMOs(cast<MachineSDNode>(N)->memoperands(), MF);
6715     if (MMOs.empty() && RC == &X86::VR128RegClass &&
6716         Subtarget.isUnalignedMem16Slow())
6717       // Do not introduce a slow unaligned store.
6718       return false;
6719     // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
6720     // memory access is slow above.
6721     unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16);
6722     bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment;
6723     SDNode *Store =
6724         DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget),
6725                            dl, MVT::Other, AddrOps);
6726     NewNodes.push_back(Store);
6727 
6728     // Preserve memory reference information.
6729     DAG.setNodeMemRefs(cast<MachineSDNode>(Store), MMOs);
6730   }
6731 
6732   return true;
6733 }
6734 
getOpcodeAfterMemoryUnfold(unsigned Opc,bool UnfoldLoad,bool UnfoldStore,unsigned * LoadRegIndex) const6735 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
6736                                       bool UnfoldLoad, bool UnfoldStore,
6737                                       unsigned *LoadRegIndex) const {
6738   const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc);
6739   if (I == nullptr)
6740     return 0;
6741   bool FoldedLoad = I->Flags & TB_FOLDED_LOAD;
6742   bool FoldedStore = I->Flags & TB_FOLDED_STORE;
6743   if (UnfoldLoad && !FoldedLoad)
6744     return 0;
6745   if (UnfoldStore && !FoldedStore)
6746     return 0;
6747   if (LoadRegIndex)
6748     *LoadRegIndex = I->Flags & TB_INDEX_MASK;
6749   return I->DstOp;
6750 }
6751 
6752 bool
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const6753 X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
6754                                      int64_t &Offset1, int64_t &Offset2) const {
6755   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
6756     return false;
6757   unsigned Opc1 = Load1->getMachineOpcode();
6758   unsigned Opc2 = Load2->getMachineOpcode();
6759   switch (Opc1) {
6760   default: return false;
6761   case X86::MOV8rm:
6762   case X86::MOV16rm:
6763   case X86::MOV32rm:
6764   case X86::MOV64rm:
6765   case X86::LD_Fp32m:
6766   case X86::LD_Fp64m:
6767   case X86::LD_Fp80m:
6768   case X86::MOVSSrm:
6769   case X86::MOVSSrm_alt:
6770   case X86::MOVSDrm:
6771   case X86::MOVSDrm_alt:
6772   case X86::MMX_MOVD64rm:
6773   case X86::MMX_MOVQ64rm:
6774   case X86::MOVAPSrm:
6775   case X86::MOVUPSrm:
6776   case X86::MOVAPDrm:
6777   case X86::MOVUPDrm:
6778   case X86::MOVDQArm:
6779   case X86::MOVDQUrm:
6780   // AVX load instructions
6781   case X86::VMOVSSrm:
6782   case X86::VMOVSSrm_alt:
6783   case X86::VMOVSDrm:
6784   case X86::VMOVSDrm_alt:
6785   case X86::VMOVAPSrm:
6786   case X86::VMOVUPSrm:
6787   case X86::VMOVAPDrm:
6788   case X86::VMOVUPDrm:
6789   case X86::VMOVDQArm:
6790   case X86::VMOVDQUrm:
6791   case X86::VMOVAPSYrm:
6792   case X86::VMOVUPSYrm:
6793   case X86::VMOVAPDYrm:
6794   case X86::VMOVUPDYrm:
6795   case X86::VMOVDQAYrm:
6796   case X86::VMOVDQUYrm:
6797   // AVX512 load instructions
6798   case X86::VMOVSSZrm:
6799   case X86::VMOVSSZrm_alt:
6800   case X86::VMOVSDZrm:
6801   case X86::VMOVSDZrm_alt:
6802   case X86::VMOVAPSZ128rm:
6803   case X86::VMOVUPSZ128rm:
6804   case X86::VMOVAPSZ128rm_NOVLX:
6805   case X86::VMOVUPSZ128rm_NOVLX:
6806   case X86::VMOVAPDZ128rm:
6807   case X86::VMOVUPDZ128rm:
6808   case X86::VMOVDQU8Z128rm:
6809   case X86::VMOVDQU16Z128rm:
6810   case X86::VMOVDQA32Z128rm:
6811   case X86::VMOVDQU32Z128rm:
6812   case X86::VMOVDQA64Z128rm:
6813   case X86::VMOVDQU64Z128rm:
6814   case X86::VMOVAPSZ256rm:
6815   case X86::VMOVUPSZ256rm:
6816   case X86::VMOVAPSZ256rm_NOVLX:
6817   case X86::VMOVUPSZ256rm_NOVLX:
6818   case X86::VMOVAPDZ256rm:
6819   case X86::VMOVUPDZ256rm:
6820   case X86::VMOVDQU8Z256rm:
6821   case X86::VMOVDQU16Z256rm:
6822   case X86::VMOVDQA32Z256rm:
6823   case X86::VMOVDQU32Z256rm:
6824   case X86::VMOVDQA64Z256rm:
6825   case X86::VMOVDQU64Z256rm:
6826   case X86::VMOVAPSZrm:
6827   case X86::VMOVUPSZrm:
6828   case X86::VMOVAPDZrm:
6829   case X86::VMOVUPDZrm:
6830   case X86::VMOVDQU8Zrm:
6831   case X86::VMOVDQU16Zrm:
6832   case X86::VMOVDQA32Zrm:
6833   case X86::VMOVDQU32Zrm:
6834   case X86::VMOVDQA64Zrm:
6835   case X86::VMOVDQU64Zrm:
6836   case X86::KMOVBkm:
6837   case X86::KMOVWkm:
6838   case X86::KMOVDkm:
6839   case X86::KMOVQkm:
6840     break;
6841   }
6842   switch (Opc2) {
6843   default: return false;
6844   case X86::MOV8rm:
6845   case X86::MOV16rm:
6846   case X86::MOV32rm:
6847   case X86::MOV64rm:
6848   case X86::LD_Fp32m:
6849   case X86::LD_Fp64m:
6850   case X86::LD_Fp80m:
6851   case X86::MOVSSrm:
6852   case X86::MOVSSrm_alt:
6853   case X86::MOVSDrm:
6854   case X86::MOVSDrm_alt:
6855   case X86::MMX_MOVD64rm:
6856   case X86::MMX_MOVQ64rm:
6857   case X86::MOVAPSrm:
6858   case X86::MOVUPSrm:
6859   case X86::MOVAPDrm:
6860   case X86::MOVUPDrm:
6861   case X86::MOVDQArm:
6862   case X86::MOVDQUrm:
6863   // AVX load instructions
6864   case X86::VMOVSSrm:
6865   case X86::VMOVSSrm_alt:
6866   case X86::VMOVSDrm:
6867   case X86::VMOVSDrm_alt:
6868   case X86::VMOVAPSrm:
6869   case X86::VMOVUPSrm:
6870   case X86::VMOVAPDrm:
6871   case X86::VMOVUPDrm:
6872   case X86::VMOVDQArm:
6873   case X86::VMOVDQUrm:
6874   case X86::VMOVAPSYrm:
6875   case X86::VMOVUPSYrm:
6876   case X86::VMOVAPDYrm:
6877   case X86::VMOVUPDYrm:
6878   case X86::VMOVDQAYrm:
6879   case X86::VMOVDQUYrm:
6880   // AVX512 load instructions
6881   case X86::VMOVSSZrm:
6882   case X86::VMOVSSZrm_alt:
6883   case X86::VMOVSDZrm:
6884   case X86::VMOVSDZrm_alt:
6885   case X86::VMOVAPSZ128rm:
6886   case X86::VMOVUPSZ128rm:
6887   case X86::VMOVAPSZ128rm_NOVLX:
6888   case X86::VMOVUPSZ128rm_NOVLX:
6889   case X86::VMOVAPDZ128rm:
6890   case X86::VMOVUPDZ128rm:
6891   case X86::VMOVDQU8Z128rm:
6892   case X86::VMOVDQU16Z128rm:
6893   case X86::VMOVDQA32Z128rm:
6894   case X86::VMOVDQU32Z128rm:
6895   case X86::VMOVDQA64Z128rm:
6896   case X86::VMOVDQU64Z128rm:
6897   case X86::VMOVAPSZ256rm:
6898   case X86::VMOVUPSZ256rm:
6899   case X86::VMOVAPSZ256rm_NOVLX:
6900   case X86::VMOVUPSZ256rm_NOVLX:
6901   case X86::VMOVAPDZ256rm:
6902   case X86::VMOVUPDZ256rm:
6903   case X86::VMOVDQU8Z256rm:
6904   case X86::VMOVDQU16Z256rm:
6905   case X86::VMOVDQA32Z256rm:
6906   case X86::VMOVDQU32Z256rm:
6907   case X86::VMOVDQA64Z256rm:
6908   case X86::VMOVDQU64Z256rm:
6909   case X86::VMOVAPSZrm:
6910   case X86::VMOVUPSZrm:
6911   case X86::VMOVAPDZrm:
6912   case X86::VMOVUPDZrm:
6913   case X86::VMOVDQU8Zrm:
6914   case X86::VMOVDQU16Zrm:
6915   case X86::VMOVDQA32Zrm:
6916   case X86::VMOVDQU32Zrm:
6917   case X86::VMOVDQA64Zrm:
6918   case X86::VMOVDQU64Zrm:
6919   case X86::KMOVBkm:
6920   case X86::KMOVWkm:
6921   case X86::KMOVDkm:
6922   case X86::KMOVQkm:
6923     break;
6924   }
6925 
6926   // Lambda to check if both the loads have the same value for an operand index.
6927   auto HasSameOp = [&](int I) {
6928     return Load1->getOperand(I) == Load2->getOperand(I);
6929   };
6930 
6931   // All operands except the displacement should match.
6932   if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) ||
6933       !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg))
6934     return false;
6935 
6936   // Chain Operand must be the same.
6937   if (!HasSameOp(5))
6938     return false;
6939 
6940   // Now let's examine if the displacements are constants.
6941   auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp));
6942   auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp));
6943   if (!Disp1 || !Disp2)
6944     return false;
6945 
6946   Offset1 = Disp1->getSExtValue();
6947   Offset2 = Disp2->getSExtValue();
6948   return true;
6949 }
6950 
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const6951 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
6952                                            int64_t Offset1, int64_t Offset2,
6953                                            unsigned NumLoads) const {
6954   assert(Offset2 > Offset1);
6955   if ((Offset2 - Offset1) / 8 > 64)
6956     return false;
6957 
6958   unsigned Opc1 = Load1->getMachineOpcode();
6959   unsigned Opc2 = Load2->getMachineOpcode();
6960   if (Opc1 != Opc2)
6961     return false;  // FIXME: overly conservative?
6962 
6963   switch (Opc1) {
6964   default: break;
6965   case X86::LD_Fp32m:
6966   case X86::LD_Fp64m:
6967   case X86::LD_Fp80m:
6968   case X86::MMX_MOVD64rm:
6969   case X86::MMX_MOVQ64rm:
6970     return false;
6971   }
6972 
6973   EVT VT = Load1->getValueType(0);
6974   switch (VT.getSimpleVT().SimpleTy) {
6975   default:
6976     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
6977     // have 16 of them to play with.
6978     if (Subtarget.is64Bit()) {
6979       if (NumLoads >= 3)
6980         return false;
6981     } else if (NumLoads) {
6982       return false;
6983     }
6984     break;
6985   case MVT::i8:
6986   case MVT::i16:
6987   case MVT::i32:
6988   case MVT::i64:
6989   case MVT::f32:
6990   case MVT::f64:
6991     if (NumLoads)
6992       return false;
6993     break;
6994   }
6995 
6996   return true;
6997 }
6998 
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const6999 bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI,
7000                                         const MachineBasicBlock *MBB,
7001                                         const MachineFunction &MF) const {
7002 
7003   // ENDBR instructions should not be scheduled around.
7004   unsigned Opcode = MI.getOpcode();
7005   if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 ||
7006       Opcode == X86::LDTILECFG)
7007     return true;
7008 
7009   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
7010 }
7011 
7012 bool X86InstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const7013 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
7014   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
7015   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
7016   Cond[0].setImm(GetOppositeBranchCondition(CC));
7017   return false;
7018 }
7019 
7020 bool X86InstrInfo::
isSafeToMoveRegClassDefs(const TargetRegisterClass * RC) const7021 isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
7022   // FIXME: Return false for x87 stack register classes for now. We can't
7023   // allow any loads of these registers before FpGet_ST0_80.
7024   return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass ||
7025            RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass ||
7026            RC == &X86::RFP80RegClass);
7027 }
7028 
7029 /// Return a virtual register initialized with the
7030 /// the global base register value. Output instructions required to
7031 /// initialize the register in the function entry block, if necessary.
7032 ///
7033 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
7034 ///
getGlobalBaseReg(MachineFunction * MF) const7035 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
7036   assert((!Subtarget.is64Bit() ||
7037           MF->getTarget().getCodeModel() == CodeModel::Medium ||
7038           MF->getTarget().getCodeModel() == CodeModel::Large) &&
7039          "X86-64 PIC uses RIP relative addressing");
7040 
7041   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
7042   Register GlobalBaseReg = X86FI->getGlobalBaseReg();
7043   if (GlobalBaseReg != 0)
7044     return GlobalBaseReg;
7045 
7046   // Create the register. The code to initialize it is inserted
7047   // later, by the CGBR pass (below).
7048   MachineRegisterInfo &RegInfo = MF->getRegInfo();
7049   GlobalBaseReg = RegInfo.createVirtualRegister(
7050       Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass);
7051   X86FI->setGlobalBaseReg(GlobalBaseReg);
7052   return GlobalBaseReg;
7053 }
7054 
7055 // These are the replaceable SSE instructions. Some of these have Int variants
7056 // that we don't include here. We don't want to replace instructions selected
7057 // by intrinsics.
7058 static const uint16_t ReplaceableInstrs[][3] = {
7059   //PackedSingle     PackedDouble    PackedInt
7060   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
7061   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
7062   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
7063   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
7064   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
7065   { X86::MOVLPSmr,   X86::MOVLPDmr,  X86::MOVPQI2QImr },
7066   { X86::MOVSDmr,    X86::MOVSDmr,   X86::MOVPQI2QImr },
7067   { X86::MOVSSmr,    X86::MOVSSmr,   X86::MOVPDI2DImr },
7068   { X86::MOVSDrm,    X86::MOVSDrm,   X86::MOVQI2PQIrm },
7069   { X86::MOVSDrm_alt,X86::MOVSDrm_alt,X86::MOVQI2PQIrm },
7070   { X86::MOVSSrm,    X86::MOVSSrm,   X86::MOVDI2PDIrm },
7071   { X86::MOVSSrm_alt,X86::MOVSSrm_alt,X86::MOVDI2PDIrm },
7072   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
7073   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
7074   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
7075   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
7076   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
7077   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
7078   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
7079   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
7080   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
7081   { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm },
7082   { X86::MOVLHPSrr,  X86::UNPCKLPDrr, X86::PUNPCKLQDQrr },
7083   { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm },
7084   { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr },
7085   { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm },
7086   { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr },
7087   { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm },
7088   { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr },
7089   { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr },
7090   { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr },
7091   // AVX 128-bit support
7092   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
7093   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
7094   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
7095   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
7096   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
7097   { X86::VMOVLPSmr,  X86::VMOVLPDmr,  X86::VMOVPQI2QImr },
7098   { X86::VMOVSDmr,   X86::VMOVSDmr,   X86::VMOVPQI2QImr },
7099   { X86::VMOVSSmr,   X86::VMOVSSmr,   X86::VMOVPDI2DImr },
7100   { X86::VMOVSDrm,   X86::VMOVSDrm,   X86::VMOVQI2PQIrm },
7101   { X86::VMOVSDrm_alt,X86::VMOVSDrm_alt,X86::VMOVQI2PQIrm },
7102   { X86::VMOVSSrm,   X86::VMOVSSrm,   X86::VMOVDI2PDIrm },
7103   { X86::VMOVSSrm_alt,X86::VMOVSSrm_alt,X86::VMOVDI2PDIrm },
7104   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
7105   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
7106   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
7107   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
7108   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
7109   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
7110   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
7111   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
7112   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
7113   { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm },
7114   { X86::VMOVLHPSrr,  X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr },
7115   { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm },
7116   { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr },
7117   { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm },
7118   { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr },
7119   { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm },
7120   { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr },
7121   { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr },
7122   { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr },
7123   // AVX 256-bit support
7124   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
7125   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
7126   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
7127   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
7128   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
7129   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr },
7130   { X86::VPERMPSYrm,   X86::VPERMPSYrm,   X86::VPERMDYrm },
7131   { X86::VPERMPSYrr,   X86::VPERMPSYrr,   X86::VPERMDYrr },
7132   { X86::VPERMPDYmi,   X86::VPERMPDYmi,   X86::VPERMQYmi },
7133   { X86::VPERMPDYri,   X86::VPERMPDYri,   X86::VPERMQYri },
7134   // AVX512 support
7135   { X86::VMOVLPSZ128mr,  X86::VMOVLPDZ128mr,  X86::VMOVPQI2QIZmr  },
7136   { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr },
7137   { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr },
7138   { X86::VMOVNTPSZmr,    X86::VMOVNTPDZmr,    X86::VMOVNTDQZmr    },
7139   { X86::VMOVSDZmr,      X86::VMOVSDZmr,      X86::VMOVPQI2QIZmr  },
7140   { X86::VMOVSSZmr,      X86::VMOVSSZmr,      X86::VMOVPDI2DIZmr  },
7141   { X86::VMOVSDZrm,      X86::VMOVSDZrm,      X86::VMOVQI2PQIZrm  },
7142   { X86::VMOVSDZrm_alt,  X86::VMOVSDZrm_alt,  X86::VMOVQI2PQIZrm  },
7143   { X86::VMOVSSZrm,      X86::VMOVSSZrm,      X86::VMOVDI2PDIZrm  },
7144   { X86::VMOVSSZrm_alt,  X86::VMOVSSZrm_alt,  X86::VMOVDI2PDIZrm  },
7145   { X86::VBROADCASTSSZ128rr,X86::VBROADCASTSSZ128rr,X86::VPBROADCASTDZ128rr },
7146   { X86::VBROADCASTSSZ128rm,X86::VBROADCASTSSZ128rm,X86::VPBROADCASTDZ128rm },
7147   { X86::VBROADCASTSSZ256rr,X86::VBROADCASTSSZ256rr,X86::VPBROADCASTDZ256rr },
7148   { X86::VBROADCASTSSZ256rm,X86::VBROADCASTSSZ256rm,X86::VPBROADCASTDZ256rm },
7149   { X86::VBROADCASTSSZrr,   X86::VBROADCASTSSZrr,   X86::VPBROADCASTDZrr },
7150   { X86::VBROADCASTSSZrm,   X86::VBROADCASTSSZrm,   X86::VPBROADCASTDZrm },
7151   { X86::VMOVDDUPZ128rr,    X86::VMOVDDUPZ128rr,    X86::VPBROADCASTQZ128rr },
7152   { X86::VMOVDDUPZ128rm,    X86::VMOVDDUPZ128rm,    X86::VPBROADCASTQZ128rm },
7153   { X86::VBROADCASTSDZ256rr,X86::VBROADCASTSDZ256rr,X86::VPBROADCASTQZ256rr },
7154   { X86::VBROADCASTSDZ256rm,X86::VBROADCASTSDZ256rm,X86::VPBROADCASTQZ256rm },
7155   { X86::VBROADCASTSDZrr,   X86::VBROADCASTSDZrr,   X86::VPBROADCASTQZrr },
7156   { X86::VBROADCASTSDZrm,   X86::VBROADCASTSDZrm,   X86::VPBROADCASTQZrm },
7157   { X86::VINSERTF32x4Zrr,   X86::VINSERTF32x4Zrr,   X86::VINSERTI32x4Zrr },
7158   { X86::VINSERTF32x4Zrm,   X86::VINSERTF32x4Zrm,   X86::VINSERTI32x4Zrm },
7159   { X86::VINSERTF32x8Zrr,   X86::VINSERTF32x8Zrr,   X86::VINSERTI32x8Zrr },
7160   { X86::VINSERTF32x8Zrm,   X86::VINSERTF32x8Zrm,   X86::VINSERTI32x8Zrm },
7161   { X86::VINSERTF64x2Zrr,   X86::VINSERTF64x2Zrr,   X86::VINSERTI64x2Zrr },
7162   { X86::VINSERTF64x2Zrm,   X86::VINSERTF64x2Zrm,   X86::VINSERTI64x2Zrm },
7163   { X86::VINSERTF64x4Zrr,   X86::VINSERTF64x4Zrr,   X86::VINSERTI64x4Zrr },
7164   { X86::VINSERTF64x4Zrm,   X86::VINSERTF64x4Zrm,   X86::VINSERTI64x4Zrm },
7165   { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr },
7166   { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm },
7167   { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr },
7168   { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm },
7169   { X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTF32x4Zrr,   X86::VEXTRACTI32x4Zrr },
7170   { X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTF32x4Zmr,   X86::VEXTRACTI32x4Zmr },
7171   { X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTF32x8Zrr,   X86::VEXTRACTI32x8Zrr },
7172   { X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTF32x8Zmr,   X86::VEXTRACTI32x8Zmr },
7173   { X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTF64x2Zrr,   X86::VEXTRACTI64x2Zrr },
7174   { X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTF64x2Zmr,   X86::VEXTRACTI64x2Zmr },
7175   { X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTF64x4Zrr,   X86::VEXTRACTI64x4Zrr },
7176   { X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTF64x4Zmr,   X86::VEXTRACTI64x4Zmr },
7177   { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr },
7178   { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr },
7179   { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr },
7180   { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr },
7181   { X86::VPERMILPSmi,        X86::VPERMILPSmi,        X86::VPSHUFDmi },
7182   { X86::VPERMILPSri,        X86::VPERMILPSri,        X86::VPSHUFDri },
7183   { X86::VPERMILPSZ128mi,    X86::VPERMILPSZ128mi,    X86::VPSHUFDZ128mi },
7184   { X86::VPERMILPSZ128ri,    X86::VPERMILPSZ128ri,    X86::VPSHUFDZ128ri },
7185   { X86::VPERMILPSZ256mi,    X86::VPERMILPSZ256mi,    X86::VPSHUFDZ256mi },
7186   { X86::VPERMILPSZ256ri,    X86::VPERMILPSZ256ri,    X86::VPSHUFDZ256ri },
7187   { X86::VPERMILPSZmi,       X86::VPERMILPSZmi,       X86::VPSHUFDZmi },
7188   { X86::VPERMILPSZri,       X86::VPERMILPSZri,       X86::VPSHUFDZri },
7189   { X86::VPERMPSZ256rm,      X86::VPERMPSZ256rm,      X86::VPERMDZ256rm },
7190   { X86::VPERMPSZ256rr,      X86::VPERMPSZ256rr,      X86::VPERMDZ256rr },
7191   { X86::VPERMPDZ256mi,      X86::VPERMPDZ256mi,      X86::VPERMQZ256mi },
7192   { X86::VPERMPDZ256ri,      X86::VPERMPDZ256ri,      X86::VPERMQZ256ri },
7193   { X86::VPERMPDZ256rm,      X86::VPERMPDZ256rm,      X86::VPERMQZ256rm },
7194   { X86::VPERMPDZ256rr,      X86::VPERMPDZ256rr,      X86::VPERMQZ256rr },
7195   { X86::VPERMPSZrm,         X86::VPERMPSZrm,         X86::VPERMDZrm },
7196   { X86::VPERMPSZrr,         X86::VPERMPSZrr,         X86::VPERMDZrr },
7197   { X86::VPERMPDZmi,         X86::VPERMPDZmi,         X86::VPERMQZmi },
7198   { X86::VPERMPDZri,         X86::VPERMPDZri,         X86::VPERMQZri },
7199   { X86::VPERMPDZrm,         X86::VPERMPDZrm,         X86::VPERMQZrm },
7200   { X86::VPERMPDZrr,         X86::VPERMPDZrr,         X86::VPERMQZrr },
7201   { X86::VUNPCKLPDZ256rm,    X86::VUNPCKLPDZ256rm,    X86::VPUNPCKLQDQZ256rm },
7202   { X86::VUNPCKLPDZ256rr,    X86::VUNPCKLPDZ256rr,    X86::VPUNPCKLQDQZ256rr },
7203   { X86::VUNPCKHPDZ256rm,    X86::VUNPCKHPDZ256rm,    X86::VPUNPCKHQDQZ256rm },
7204   { X86::VUNPCKHPDZ256rr,    X86::VUNPCKHPDZ256rr,    X86::VPUNPCKHQDQZ256rr },
7205   { X86::VUNPCKLPSZ256rm,    X86::VUNPCKLPSZ256rm,    X86::VPUNPCKLDQZ256rm },
7206   { X86::VUNPCKLPSZ256rr,    X86::VUNPCKLPSZ256rr,    X86::VPUNPCKLDQZ256rr },
7207   { X86::VUNPCKHPSZ256rm,    X86::VUNPCKHPSZ256rm,    X86::VPUNPCKHDQZ256rm },
7208   { X86::VUNPCKHPSZ256rr,    X86::VUNPCKHPSZ256rr,    X86::VPUNPCKHDQZ256rr },
7209   { X86::VUNPCKLPDZ128rm,    X86::VUNPCKLPDZ128rm,    X86::VPUNPCKLQDQZ128rm },
7210   { X86::VMOVLHPSZrr,        X86::VUNPCKLPDZ128rr,    X86::VPUNPCKLQDQZ128rr },
7211   { X86::VUNPCKHPDZ128rm,    X86::VUNPCKHPDZ128rm,    X86::VPUNPCKHQDQZ128rm },
7212   { X86::VUNPCKHPDZ128rr,    X86::VUNPCKHPDZ128rr,    X86::VPUNPCKHQDQZ128rr },
7213   { X86::VUNPCKLPSZ128rm,    X86::VUNPCKLPSZ128rm,    X86::VPUNPCKLDQZ128rm },
7214   { X86::VUNPCKLPSZ128rr,    X86::VUNPCKLPSZ128rr,    X86::VPUNPCKLDQZ128rr },
7215   { X86::VUNPCKHPSZ128rm,    X86::VUNPCKHPSZ128rm,    X86::VPUNPCKHDQZ128rm },
7216   { X86::VUNPCKHPSZ128rr,    X86::VUNPCKHPSZ128rr,    X86::VPUNPCKHDQZ128rr },
7217   { X86::VUNPCKLPDZrm,       X86::VUNPCKLPDZrm,       X86::VPUNPCKLQDQZrm },
7218   { X86::VUNPCKLPDZrr,       X86::VUNPCKLPDZrr,       X86::VPUNPCKLQDQZrr },
7219   { X86::VUNPCKHPDZrm,       X86::VUNPCKHPDZrm,       X86::VPUNPCKHQDQZrm },
7220   { X86::VUNPCKHPDZrr,       X86::VUNPCKHPDZrr,       X86::VPUNPCKHQDQZrr },
7221   { X86::VUNPCKLPSZrm,       X86::VUNPCKLPSZrm,       X86::VPUNPCKLDQZrm },
7222   { X86::VUNPCKLPSZrr,       X86::VUNPCKLPSZrr,       X86::VPUNPCKLDQZrr },
7223   { X86::VUNPCKHPSZrm,       X86::VUNPCKHPSZrm,       X86::VPUNPCKHDQZrm },
7224   { X86::VUNPCKHPSZrr,       X86::VUNPCKHPSZrr,       X86::VPUNPCKHDQZrr },
7225   { X86::VEXTRACTPSZmr,      X86::VEXTRACTPSZmr,      X86::VPEXTRDZmr },
7226   { X86::VEXTRACTPSZrr,      X86::VEXTRACTPSZrr,      X86::VPEXTRDZrr },
7227 };
7228 
7229 static const uint16_t ReplaceableInstrsAVX2[][3] = {
7230   //PackedSingle       PackedDouble       PackedInt
7231   { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
7232   { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
7233   { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
7234   { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
7235   { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
7236   { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
7237   { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
7238   { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
7239   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
7240   { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr },
7241   { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm},
7242   { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr},
7243   { X86::VMOVDDUPrm,     X86::VMOVDDUPrm,     X86::VPBROADCASTQrm},
7244   { X86::VMOVDDUPrr,     X86::VMOVDDUPrr,     X86::VPBROADCASTQrr},
7245   { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr},
7246   { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm},
7247   { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr},
7248   { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm},
7249   { X86::VBROADCASTF128,  X86::VBROADCASTF128,  X86::VBROADCASTI128 },
7250   { X86::VBLENDPSYrri,    X86::VBLENDPSYrri,    X86::VPBLENDDYrri },
7251   { X86::VBLENDPSYrmi,    X86::VBLENDPSYrmi,    X86::VPBLENDDYrmi },
7252   { X86::VPERMILPSYmi,    X86::VPERMILPSYmi,    X86::VPSHUFDYmi },
7253   { X86::VPERMILPSYri,    X86::VPERMILPSYri,    X86::VPSHUFDYri },
7254   { X86::VUNPCKLPDYrm,    X86::VUNPCKLPDYrm,    X86::VPUNPCKLQDQYrm },
7255   { X86::VUNPCKLPDYrr,    X86::VUNPCKLPDYrr,    X86::VPUNPCKLQDQYrr },
7256   { X86::VUNPCKHPDYrm,    X86::VUNPCKHPDYrm,    X86::VPUNPCKHQDQYrm },
7257   { X86::VUNPCKHPDYrr,    X86::VUNPCKHPDYrr,    X86::VPUNPCKHQDQYrr },
7258   { X86::VUNPCKLPSYrm,    X86::VUNPCKLPSYrm,    X86::VPUNPCKLDQYrm },
7259   { X86::VUNPCKLPSYrr,    X86::VUNPCKLPSYrr,    X86::VPUNPCKLDQYrr },
7260   { X86::VUNPCKHPSYrm,    X86::VUNPCKHPSYrm,    X86::VPUNPCKHDQYrm },
7261   { X86::VUNPCKHPSYrr,    X86::VUNPCKHPSYrr,    X86::VPUNPCKHDQYrr },
7262 };
7263 
7264 static const uint16_t ReplaceableInstrsFP[][3] = {
7265   //PackedSingle         PackedDouble
7266   { X86::MOVLPSrm,       X86::MOVLPDrm,      X86::INSTRUCTION_LIST_END },
7267   { X86::MOVHPSrm,       X86::MOVHPDrm,      X86::INSTRUCTION_LIST_END },
7268   { X86::MOVHPSmr,       X86::MOVHPDmr,      X86::INSTRUCTION_LIST_END },
7269   { X86::VMOVLPSrm,      X86::VMOVLPDrm,     X86::INSTRUCTION_LIST_END },
7270   { X86::VMOVHPSrm,      X86::VMOVHPDrm,     X86::INSTRUCTION_LIST_END },
7271   { X86::VMOVHPSmr,      X86::VMOVHPDmr,     X86::INSTRUCTION_LIST_END },
7272   { X86::VMOVLPSZ128rm,  X86::VMOVLPDZ128rm, X86::INSTRUCTION_LIST_END },
7273   { X86::VMOVHPSZ128rm,  X86::VMOVHPDZ128rm, X86::INSTRUCTION_LIST_END },
7274   { X86::VMOVHPSZ128mr,  X86::VMOVHPDZ128mr, X86::INSTRUCTION_LIST_END },
7275 };
7276 
7277 static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = {
7278   //PackedSingle       PackedDouble       PackedInt
7279   { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
7280   { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
7281   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
7282   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
7283 };
7284 
7285 static const uint16_t ReplaceableInstrsAVX512[][4] = {
7286   // Two integer columns for 64-bit and 32-bit elements.
7287   //PackedSingle        PackedDouble        PackedInt             PackedInt
7288   { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr  },
7289   { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm  },
7290   { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr  },
7291   { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr  },
7292   { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm  },
7293   { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr  },
7294   { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm  },
7295   { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr  },
7296   { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr  },
7297   { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm  },
7298   { X86::VMOVAPSZmr,    X86::VMOVAPDZmr,    X86::VMOVDQA64Zmr,    X86::VMOVDQA32Zmr     },
7299   { X86::VMOVAPSZrm,    X86::VMOVAPDZrm,    X86::VMOVDQA64Zrm,    X86::VMOVDQA32Zrm     },
7300   { X86::VMOVAPSZrr,    X86::VMOVAPDZrr,    X86::VMOVDQA64Zrr,    X86::VMOVDQA32Zrr     },
7301   { X86::VMOVUPSZmr,    X86::VMOVUPDZmr,    X86::VMOVDQU64Zmr,    X86::VMOVDQU32Zmr     },
7302   { X86::VMOVUPSZrm,    X86::VMOVUPDZrm,    X86::VMOVDQU64Zrm,    X86::VMOVDQU32Zrm     },
7303 };
7304 
7305 static const uint16_t ReplaceableInstrsAVX512DQ[][4] = {
7306   // Two integer columns for 64-bit and 32-bit elements.
7307   //PackedSingle        PackedDouble        PackedInt           PackedInt
7308   { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7309   { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7310   { X86::VANDPSZ128rm,  X86::VANDPDZ128rm,  X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
7311   { X86::VANDPSZ128rr,  X86::VANDPDZ128rr,  X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
7312   { X86::VORPSZ128rm,   X86::VORPDZ128rm,   X86::VPORQZ128rm,   X86::VPORDZ128rm   },
7313   { X86::VORPSZ128rr,   X86::VORPDZ128rr,   X86::VPORQZ128rr,   X86::VPORDZ128rr   },
7314   { X86::VXORPSZ128rm,  X86::VXORPDZ128rm,  X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
7315   { X86::VXORPSZ128rr,  X86::VXORPDZ128rr,  X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
7316   { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7317   { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7318   { X86::VANDPSZ256rm,  X86::VANDPDZ256rm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
7319   { X86::VANDPSZ256rr,  X86::VANDPDZ256rr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
7320   { X86::VORPSZ256rm,   X86::VORPDZ256rm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
7321   { X86::VORPSZ256rr,   X86::VORPDZ256rr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
7322   { X86::VXORPSZ256rm,  X86::VXORPDZ256rm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
7323   { X86::VXORPSZ256rr,  X86::VXORPDZ256rr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
7324   { X86::VANDNPSZrm,    X86::VANDNPDZrm,    X86::VPANDNQZrm,    X86::VPANDNDZrm    },
7325   { X86::VANDNPSZrr,    X86::VANDNPDZrr,    X86::VPANDNQZrr,    X86::VPANDNDZrr    },
7326   { X86::VANDPSZrm,     X86::VANDPDZrm,     X86::VPANDQZrm,     X86::VPANDDZrm     },
7327   { X86::VANDPSZrr,     X86::VANDPDZrr,     X86::VPANDQZrr,     X86::VPANDDZrr     },
7328   { X86::VORPSZrm,      X86::VORPDZrm,      X86::VPORQZrm,      X86::VPORDZrm      },
7329   { X86::VORPSZrr,      X86::VORPDZrr,      X86::VPORQZrr,      X86::VPORDZrr      },
7330   { X86::VXORPSZrm,     X86::VXORPDZrm,     X86::VPXORQZrm,     X86::VPXORDZrm     },
7331   { X86::VXORPSZrr,     X86::VXORPDZrr,     X86::VPXORQZrr,     X86::VPXORDZrr     },
7332 };
7333 
7334 static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = {
7335   // Two integer columns for 64-bit and 32-bit elements.
7336   //PackedSingle          PackedDouble
7337   //PackedInt             PackedInt
7338   { X86::VANDNPSZ128rmk,  X86::VANDNPDZ128rmk,
7339     X86::VPANDNQZ128rmk,  X86::VPANDNDZ128rmk  },
7340   { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz,
7341     X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz },
7342   { X86::VANDNPSZ128rrk,  X86::VANDNPDZ128rrk,
7343     X86::VPANDNQZ128rrk,  X86::VPANDNDZ128rrk  },
7344   { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz,
7345     X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz },
7346   { X86::VANDPSZ128rmk,   X86::VANDPDZ128rmk,
7347     X86::VPANDQZ128rmk,   X86::VPANDDZ128rmk   },
7348   { X86::VANDPSZ128rmkz,  X86::VANDPDZ128rmkz,
7349     X86::VPANDQZ128rmkz,  X86::VPANDDZ128rmkz  },
7350   { X86::VANDPSZ128rrk,   X86::VANDPDZ128rrk,
7351     X86::VPANDQZ128rrk,   X86::VPANDDZ128rrk   },
7352   { X86::VANDPSZ128rrkz,  X86::VANDPDZ128rrkz,
7353     X86::VPANDQZ128rrkz,  X86::VPANDDZ128rrkz  },
7354   { X86::VORPSZ128rmk,    X86::VORPDZ128rmk,
7355     X86::VPORQZ128rmk,    X86::VPORDZ128rmk    },
7356   { X86::VORPSZ128rmkz,   X86::VORPDZ128rmkz,
7357     X86::VPORQZ128rmkz,   X86::VPORDZ128rmkz   },
7358   { X86::VORPSZ128rrk,    X86::VORPDZ128rrk,
7359     X86::VPORQZ128rrk,    X86::VPORDZ128rrk    },
7360   { X86::VORPSZ128rrkz,   X86::VORPDZ128rrkz,
7361     X86::VPORQZ128rrkz,   X86::VPORDZ128rrkz   },
7362   { X86::VXORPSZ128rmk,   X86::VXORPDZ128rmk,
7363     X86::VPXORQZ128rmk,   X86::VPXORDZ128rmk   },
7364   { X86::VXORPSZ128rmkz,  X86::VXORPDZ128rmkz,
7365     X86::VPXORQZ128rmkz,  X86::VPXORDZ128rmkz  },
7366   { X86::VXORPSZ128rrk,   X86::VXORPDZ128rrk,
7367     X86::VPXORQZ128rrk,   X86::VPXORDZ128rrk   },
7368   { X86::VXORPSZ128rrkz,  X86::VXORPDZ128rrkz,
7369     X86::VPXORQZ128rrkz,  X86::VPXORDZ128rrkz  },
7370   { X86::VANDNPSZ256rmk,  X86::VANDNPDZ256rmk,
7371     X86::VPANDNQZ256rmk,  X86::VPANDNDZ256rmk  },
7372   { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz,
7373     X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz },
7374   { X86::VANDNPSZ256rrk,  X86::VANDNPDZ256rrk,
7375     X86::VPANDNQZ256rrk,  X86::VPANDNDZ256rrk  },
7376   { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz,
7377     X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz },
7378   { X86::VANDPSZ256rmk,   X86::VANDPDZ256rmk,
7379     X86::VPANDQZ256rmk,   X86::VPANDDZ256rmk   },
7380   { X86::VANDPSZ256rmkz,  X86::VANDPDZ256rmkz,
7381     X86::VPANDQZ256rmkz,  X86::VPANDDZ256rmkz  },
7382   { X86::VANDPSZ256rrk,   X86::VANDPDZ256rrk,
7383     X86::VPANDQZ256rrk,   X86::VPANDDZ256rrk   },
7384   { X86::VANDPSZ256rrkz,  X86::VANDPDZ256rrkz,
7385     X86::VPANDQZ256rrkz,  X86::VPANDDZ256rrkz  },
7386   { X86::VORPSZ256rmk,    X86::VORPDZ256rmk,
7387     X86::VPORQZ256rmk,    X86::VPORDZ256rmk    },
7388   { X86::VORPSZ256rmkz,   X86::VORPDZ256rmkz,
7389     X86::VPORQZ256rmkz,   X86::VPORDZ256rmkz   },
7390   { X86::VORPSZ256rrk,    X86::VORPDZ256rrk,
7391     X86::VPORQZ256rrk,    X86::VPORDZ256rrk    },
7392   { X86::VORPSZ256rrkz,   X86::VORPDZ256rrkz,
7393     X86::VPORQZ256rrkz,   X86::VPORDZ256rrkz   },
7394   { X86::VXORPSZ256rmk,   X86::VXORPDZ256rmk,
7395     X86::VPXORQZ256rmk,   X86::VPXORDZ256rmk   },
7396   { X86::VXORPSZ256rmkz,  X86::VXORPDZ256rmkz,
7397     X86::VPXORQZ256rmkz,  X86::VPXORDZ256rmkz  },
7398   { X86::VXORPSZ256rrk,   X86::VXORPDZ256rrk,
7399     X86::VPXORQZ256rrk,   X86::VPXORDZ256rrk   },
7400   { X86::VXORPSZ256rrkz,  X86::VXORPDZ256rrkz,
7401     X86::VPXORQZ256rrkz,  X86::VPXORDZ256rrkz  },
7402   { X86::VANDNPSZrmk,     X86::VANDNPDZrmk,
7403     X86::VPANDNQZrmk,     X86::VPANDNDZrmk     },
7404   { X86::VANDNPSZrmkz,    X86::VANDNPDZrmkz,
7405     X86::VPANDNQZrmkz,    X86::VPANDNDZrmkz    },
7406   { X86::VANDNPSZrrk,     X86::VANDNPDZrrk,
7407     X86::VPANDNQZrrk,     X86::VPANDNDZrrk     },
7408   { X86::VANDNPSZrrkz,    X86::VANDNPDZrrkz,
7409     X86::VPANDNQZrrkz,    X86::VPANDNDZrrkz    },
7410   { X86::VANDPSZrmk,      X86::VANDPDZrmk,
7411     X86::VPANDQZrmk,      X86::VPANDDZrmk      },
7412   { X86::VANDPSZrmkz,     X86::VANDPDZrmkz,
7413     X86::VPANDQZrmkz,     X86::VPANDDZrmkz     },
7414   { X86::VANDPSZrrk,      X86::VANDPDZrrk,
7415     X86::VPANDQZrrk,      X86::VPANDDZrrk      },
7416   { X86::VANDPSZrrkz,     X86::VANDPDZrrkz,
7417     X86::VPANDQZrrkz,     X86::VPANDDZrrkz     },
7418   { X86::VORPSZrmk,       X86::VORPDZrmk,
7419     X86::VPORQZrmk,       X86::VPORDZrmk       },
7420   { X86::VORPSZrmkz,      X86::VORPDZrmkz,
7421     X86::VPORQZrmkz,      X86::VPORDZrmkz      },
7422   { X86::VORPSZrrk,       X86::VORPDZrrk,
7423     X86::VPORQZrrk,       X86::VPORDZrrk       },
7424   { X86::VORPSZrrkz,      X86::VORPDZrrkz,
7425     X86::VPORQZrrkz,      X86::VPORDZrrkz      },
7426   { X86::VXORPSZrmk,      X86::VXORPDZrmk,
7427     X86::VPXORQZrmk,      X86::VPXORDZrmk      },
7428   { X86::VXORPSZrmkz,     X86::VXORPDZrmkz,
7429     X86::VPXORQZrmkz,     X86::VPXORDZrmkz     },
7430   { X86::VXORPSZrrk,      X86::VXORPDZrrk,
7431     X86::VPXORQZrrk,      X86::VPXORDZrrk      },
7432   { X86::VXORPSZrrkz,     X86::VXORPDZrrkz,
7433     X86::VPXORQZrrkz,     X86::VPXORDZrrkz     },
7434   // Broadcast loads can be handled the same as masked operations to avoid
7435   // changing element size.
7436   { X86::VANDNPSZ128rmb,  X86::VANDNPDZ128rmb,
7437     X86::VPANDNQZ128rmb,  X86::VPANDNDZ128rmb  },
7438   { X86::VANDPSZ128rmb,   X86::VANDPDZ128rmb,
7439     X86::VPANDQZ128rmb,   X86::VPANDDZ128rmb   },
7440   { X86::VORPSZ128rmb,    X86::VORPDZ128rmb,
7441     X86::VPORQZ128rmb,    X86::VPORDZ128rmb    },
7442   { X86::VXORPSZ128rmb,   X86::VXORPDZ128rmb,
7443     X86::VPXORQZ128rmb,   X86::VPXORDZ128rmb   },
7444   { X86::VANDNPSZ256rmb,  X86::VANDNPDZ256rmb,
7445     X86::VPANDNQZ256rmb,  X86::VPANDNDZ256rmb  },
7446   { X86::VANDPSZ256rmb,   X86::VANDPDZ256rmb,
7447     X86::VPANDQZ256rmb,   X86::VPANDDZ256rmb   },
7448   { X86::VORPSZ256rmb,    X86::VORPDZ256rmb,
7449     X86::VPORQZ256rmb,    X86::VPORDZ256rmb    },
7450   { X86::VXORPSZ256rmb,   X86::VXORPDZ256rmb,
7451     X86::VPXORQZ256rmb,   X86::VPXORDZ256rmb   },
7452   { X86::VANDNPSZrmb,     X86::VANDNPDZrmb,
7453     X86::VPANDNQZrmb,     X86::VPANDNDZrmb     },
7454   { X86::VANDPSZrmb,      X86::VANDPDZrmb,
7455     X86::VPANDQZrmb,      X86::VPANDDZrmb      },
7456   { X86::VANDPSZrmb,      X86::VANDPDZrmb,
7457     X86::VPANDQZrmb,      X86::VPANDDZrmb      },
7458   { X86::VORPSZrmb,       X86::VORPDZrmb,
7459     X86::VPORQZrmb,       X86::VPORDZrmb       },
7460   { X86::VXORPSZrmb,      X86::VXORPDZrmb,
7461     X86::VPXORQZrmb,      X86::VPXORDZrmb      },
7462   { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk,
7463     X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk },
7464   { X86::VANDPSZ128rmbk,  X86::VANDPDZ128rmbk,
7465     X86::VPANDQZ128rmbk,  X86::VPANDDZ128rmbk  },
7466   { X86::VORPSZ128rmbk,   X86::VORPDZ128rmbk,
7467     X86::VPORQZ128rmbk,   X86::VPORDZ128rmbk   },
7468   { X86::VXORPSZ128rmbk,  X86::VXORPDZ128rmbk,
7469     X86::VPXORQZ128rmbk,  X86::VPXORDZ128rmbk  },
7470   { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk,
7471     X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk },
7472   { X86::VANDPSZ256rmbk,  X86::VANDPDZ256rmbk,
7473     X86::VPANDQZ256rmbk,  X86::VPANDDZ256rmbk  },
7474   { X86::VORPSZ256rmbk,   X86::VORPDZ256rmbk,
7475     X86::VPORQZ256rmbk,   X86::VPORDZ256rmbk   },
7476   { X86::VXORPSZ256rmbk,  X86::VXORPDZ256rmbk,
7477     X86::VPXORQZ256rmbk,  X86::VPXORDZ256rmbk  },
7478   { X86::VANDNPSZrmbk,    X86::VANDNPDZrmbk,
7479     X86::VPANDNQZrmbk,    X86::VPANDNDZrmbk    },
7480   { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
7481     X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
7482   { X86::VANDPSZrmbk,     X86::VANDPDZrmbk,
7483     X86::VPANDQZrmbk,     X86::VPANDDZrmbk     },
7484   { X86::VORPSZrmbk,      X86::VORPDZrmbk,
7485     X86::VPORQZrmbk,      X86::VPORDZrmbk      },
7486   { X86::VXORPSZrmbk,     X86::VXORPDZrmbk,
7487     X86::VPXORQZrmbk,     X86::VPXORDZrmbk     },
7488   { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz,
7489     X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz},
7490   { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz,
7491     X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz },
7492   { X86::VORPSZ128rmbkz,  X86::VORPDZ128rmbkz,
7493     X86::VPORQZ128rmbkz,  X86::VPORDZ128rmbkz  },
7494   { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz,
7495     X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz },
7496   { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz,
7497     X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz},
7498   { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz,
7499     X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz },
7500   { X86::VORPSZ256rmbkz,  X86::VORPDZ256rmbkz,
7501     X86::VPORQZ256rmbkz,  X86::VPORDZ256rmbkz  },
7502   { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz,
7503     X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz },
7504   { X86::VANDNPSZrmbkz,   X86::VANDNPDZrmbkz,
7505     X86::VPANDNQZrmbkz,   X86::VPANDNDZrmbkz   },
7506   { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
7507     X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
7508   { X86::VANDPSZrmbkz,    X86::VANDPDZrmbkz,
7509     X86::VPANDQZrmbkz,    X86::VPANDDZrmbkz    },
7510   { X86::VORPSZrmbkz,     X86::VORPDZrmbkz,
7511     X86::VPORQZrmbkz,     X86::VPORDZrmbkz     },
7512   { X86::VXORPSZrmbkz,    X86::VXORPDZrmbkz,
7513     X86::VPXORQZrmbkz,    X86::VPXORDZrmbkz    },
7514 };
7515 
7516 // NOTE: These should only be used by the custom domain methods.
7517 static const uint16_t ReplaceableBlendInstrs[][3] = {
7518   //PackedSingle             PackedDouble             PackedInt
7519   { X86::BLENDPSrmi,         X86::BLENDPDrmi,         X86::PBLENDWrmi   },
7520   { X86::BLENDPSrri,         X86::BLENDPDrri,         X86::PBLENDWrri   },
7521   { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDWrmi  },
7522   { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDWrri  },
7523   { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDWYrmi },
7524   { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDWYrri },
7525 };
7526 static const uint16_t ReplaceableBlendAVX2Instrs[][3] = {
7527   //PackedSingle             PackedDouble             PackedInt
7528   { X86::VBLENDPSrmi,        X86::VBLENDPDrmi,        X86::VPBLENDDrmi  },
7529   { X86::VBLENDPSrri,        X86::VBLENDPDrri,        X86::VPBLENDDrri  },
7530   { X86::VBLENDPSYrmi,       X86::VBLENDPDYrmi,       X86::VPBLENDDYrmi },
7531   { X86::VBLENDPSYrri,       X86::VBLENDPDYrri,       X86::VPBLENDDYrri },
7532 };
7533 
7534 // Special table for changing EVEX logic instructions to VEX.
7535 // TODO: Should we run EVEX->VEX earlier?
7536 static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = {
7537   // Two integer columns for 64-bit and 32-bit elements.
7538   //PackedSingle     PackedDouble     PackedInt           PackedInt
7539   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNQZ128rm, X86::VPANDNDZ128rm },
7540   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNQZ128rr, X86::VPANDNDZ128rr },
7541   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDQZ128rm,  X86::VPANDDZ128rm  },
7542   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDQZ128rr,  X86::VPANDDZ128rr  },
7543   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORQZ128rm,   X86::VPORDZ128rm   },
7544   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORQZ128rr,   X86::VPORDZ128rr   },
7545   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORQZ128rm,  X86::VPXORDZ128rm  },
7546   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORQZ128rr,  X86::VPXORDZ128rr  },
7547   { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm },
7548   { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr },
7549   { X86::VANDPSYrm,  X86::VANDPDYrm,  X86::VPANDQZ256rm,  X86::VPANDDZ256rm  },
7550   { X86::VANDPSYrr,  X86::VANDPDYrr,  X86::VPANDQZ256rr,  X86::VPANDDZ256rr  },
7551   { X86::VORPSYrm,   X86::VORPDYrm,   X86::VPORQZ256rm,   X86::VPORDZ256rm   },
7552   { X86::VORPSYrr,   X86::VORPDYrr,   X86::VPORQZ256rr,   X86::VPORDZ256rr   },
7553   { X86::VXORPSYrm,  X86::VXORPDYrm,  X86::VPXORQZ256rm,  X86::VPXORDZ256rm  },
7554   { X86::VXORPSYrr,  X86::VXORPDYrr,  X86::VPXORQZ256rr,  X86::VPXORDZ256rr  },
7555 };
7556 
7557 // FIXME: Some shuffle and unpack instructions have equivalents in different
7558 // domains, but they require a bit more work than just switching opcodes.
7559 
lookup(unsigned opcode,unsigned domain,ArrayRef<uint16_t[3]> Table)7560 static const uint16_t *lookup(unsigned opcode, unsigned domain,
7561                               ArrayRef<uint16_t[3]> Table) {
7562   for (const uint16_t (&Row)[3] : Table)
7563     if (Row[domain-1] == opcode)
7564       return Row;
7565   return nullptr;
7566 }
7567 
lookupAVX512(unsigned opcode,unsigned domain,ArrayRef<uint16_t[4]> Table)7568 static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain,
7569                                     ArrayRef<uint16_t[4]> Table) {
7570   // If this is the integer domain make sure to check both integer columns.
7571   for (const uint16_t (&Row)[4] : Table)
7572     if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode))
7573       return Row;
7574   return nullptr;
7575 }
7576 
7577 // Helper to attempt to widen/narrow blend masks.
AdjustBlendMask(unsigned OldMask,unsigned OldWidth,unsigned NewWidth,unsigned * pNewMask=nullptr)7578 static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth,
7579                             unsigned NewWidth, unsigned *pNewMask = nullptr) {
7580   assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) &&
7581          "Illegal blend mask scale");
7582   unsigned NewMask = 0;
7583 
7584   if ((OldWidth % NewWidth) == 0) {
7585     unsigned Scale = OldWidth / NewWidth;
7586     unsigned SubMask = (1u << Scale) - 1;
7587     for (unsigned i = 0; i != NewWidth; ++i) {
7588       unsigned Sub = (OldMask >> (i * Scale)) & SubMask;
7589       if (Sub == SubMask)
7590         NewMask |= (1u << i);
7591       else if (Sub != 0x0)
7592         return false;
7593     }
7594   } else {
7595     unsigned Scale = NewWidth / OldWidth;
7596     unsigned SubMask = (1u << Scale) - 1;
7597     for (unsigned i = 0; i != OldWidth; ++i) {
7598       if (OldMask & (1 << i)) {
7599         NewMask |= (SubMask << (i * Scale));
7600       }
7601     }
7602   }
7603 
7604   if (pNewMask)
7605     *pNewMask = NewMask;
7606   return true;
7607 }
7608 
getExecutionDomainCustom(const MachineInstr & MI) const7609 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const {
7610   unsigned Opcode = MI.getOpcode();
7611   unsigned NumOperands = MI.getDesc().getNumOperands();
7612 
7613   auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) {
7614     uint16_t validDomains = 0;
7615     if (MI.getOperand(NumOperands - 1).isImm()) {
7616       unsigned Imm = MI.getOperand(NumOperands - 1).getImm();
7617       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4))
7618         validDomains |= 0x2; // PackedSingle
7619       if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2))
7620         validDomains |= 0x4; // PackedDouble
7621       if (!Is256 || Subtarget.hasAVX2())
7622         validDomains |= 0x8; // PackedInt
7623     }
7624     return validDomains;
7625   };
7626 
7627   switch (Opcode) {
7628   case X86::BLENDPDrmi:
7629   case X86::BLENDPDrri:
7630   case X86::VBLENDPDrmi:
7631   case X86::VBLENDPDrri:
7632     return GetBlendDomains(2, false);
7633   case X86::VBLENDPDYrmi:
7634   case X86::VBLENDPDYrri:
7635     return GetBlendDomains(4, true);
7636   case X86::BLENDPSrmi:
7637   case X86::BLENDPSrri:
7638   case X86::VBLENDPSrmi:
7639   case X86::VBLENDPSrri:
7640   case X86::VPBLENDDrmi:
7641   case X86::VPBLENDDrri:
7642     return GetBlendDomains(4, false);
7643   case X86::VBLENDPSYrmi:
7644   case X86::VBLENDPSYrri:
7645   case X86::VPBLENDDYrmi:
7646   case X86::VPBLENDDYrri:
7647     return GetBlendDomains(8, true);
7648   case X86::PBLENDWrmi:
7649   case X86::PBLENDWrri:
7650   case X86::VPBLENDWrmi:
7651   case X86::VPBLENDWrri:
7652   // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
7653   case X86::VPBLENDWYrmi:
7654   case X86::VPBLENDWYrri:
7655     return GetBlendDomains(8, false);
7656   case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
7657   case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
7658   case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
7659   case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
7660   case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
7661   case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
7662   case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
7663   case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
7664   case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
7665   case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
7666   case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
7667   case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
7668   case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
7669   case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
7670   case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
7671   case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm:
7672     // If we don't have DQI see if we can still switch from an EVEX integer
7673     // instruction to a VEX floating point instruction.
7674     if (Subtarget.hasDQI())
7675       return 0;
7676 
7677     if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16)
7678       return 0;
7679     if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16)
7680       return 0;
7681     // Register forms will have 3 operands. Memory form will have more.
7682     if (NumOperands == 3 &&
7683         RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16)
7684       return 0;
7685 
7686     // All domains are valid.
7687     return 0xe;
7688   case X86::MOVHLPSrr:
7689     // We can swap domains when both inputs are the same register.
7690     // FIXME: This doesn't catch all the cases we would like. If the input
7691     // register isn't KILLed by the instruction, the two address instruction
7692     // pass puts a COPY on one input. The other input uses the original
7693     // register. This prevents the same physical register from being used by
7694     // both inputs.
7695     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
7696         MI.getOperand(0).getSubReg() == 0 &&
7697         MI.getOperand(1).getSubReg() == 0 &&
7698         MI.getOperand(2).getSubReg() == 0)
7699       return 0x6;
7700     return 0;
7701   case X86::SHUFPDrri:
7702     return 0x6;
7703   }
7704   return 0;
7705 }
7706 
setExecutionDomainCustom(MachineInstr & MI,unsigned Domain) const7707 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI,
7708                                             unsigned Domain) const {
7709   assert(Domain > 0 && Domain < 4 && "Invalid execution domain");
7710   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
7711   assert(dom && "Not an SSE instruction");
7712 
7713   unsigned Opcode = MI.getOpcode();
7714   unsigned NumOperands = MI.getDesc().getNumOperands();
7715 
7716   auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) {
7717     if (MI.getOperand(NumOperands - 1).isImm()) {
7718       unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255;
7719       Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm);
7720       unsigned NewImm = Imm;
7721 
7722       const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs);
7723       if (!table)
7724         table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
7725 
7726       if (Domain == 1) { // PackedSingle
7727         AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
7728       } else if (Domain == 2) { // PackedDouble
7729         AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm);
7730       } else if (Domain == 3) { // PackedInt
7731         if (Subtarget.hasAVX2()) {
7732           // If we are already VPBLENDW use that, else use VPBLENDD.
7733           if ((ImmWidth / (Is256 ? 2 : 1)) != 8) {
7734             table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs);
7735             AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm);
7736           }
7737         } else {
7738           assert(!Is256 && "128-bit vector expected");
7739           AdjustBlendMask(Imm, ImmWidth, 8, &NewImm);
7740         }
7741       }
7742 
7743       assert(table && table[Domain - 1] && "Unknown domain op");
7744       MI.setDesc(get(table[Domain - 1]));
7745       MI.getOperand(NumOperands - 1).setImm(NewImm & 255);
7746     }
7747     return true;
7748   };
7749 
7750   switch (Opcode) {
7751   case X86::BLENDPDrmi:
7752   case X86::BLENDPDrri:
7753   case X86::VBLENDPDrmi:
7754   case X86::VBLENDPDrri:
7755     return SetBlendDomain(2, false);
7756   case X86::VBLENDPDYrmi:
7757   case X86::VBLENDPDYrri:
7758     return SetBlendDomain(4, true);
7759   case X86::BLENDPSrmi:
7760   case X86::BLENDPSrri:
7761   case X86::VBLENDPSrmi:
7762   case X86::VBLENDPSrri:
7763   case X86::VPBLENDDrmi:
7764   case X86::VPBLENDDrri:
7765     return SetBlendDomain(4, false);
7766   case X86::VBLENDPSYrmi:
7767   case X86::VBLENDPSYrri:
7768   case X86::VPBLENDDYrmi:
7769   case X86::VPBLENDDYrri:
7770     return SetBlendDomain(8, true);
7771   case X86::PBLENDWrmi:
7772   case X86::PBLENDWrri:
7773   case X86::VPBLENDWrmi:
7774   case X86::VPBLENDWrri:
7775     return SetBlendDomain(8, false);
7776   case X86::VPBLENDWYrmi:
7777   case X86::VPBLENDWYrri:
7778     return SetBlendDomain(16, true);
7779   case X86::VPANDDZ128rr:  case X86::VPANDDZ128rm:
7780   case X86::VPANDDZ256rr:  case X86::VPANDDZ256rm:
7781   case X86::VPANDQZ128rr:  case X86::VPANDQZ128rm:
7782   case X86::VPANDQZ256rr:  case X86::VPANDQZ256rm:
7783   case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm:
7784   case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm:
7785   case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm:
7786   case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm:
7787   case X86::VPORDZ128rr:   case X86::VPORDZ128rm:
7788   case X86::VPORDZ256rr:   case X86::VPORDZ256rm:
7789   case X86::VPORQZ128rr:   case X86::VPORQZ128rm:
7790   case X86::VPORQZ256rr:   case X86::VPORQZ256rm:
7791   case X86::VPXORDZ128rr:  case X86::VPXORDZ128rm:
7792   case X86::VPXORDZ256rr:  case X86::VPXORDZ256rm:
7793   case X86::VPXORQZ128rr:  case X86::VPXORQZ128rm:
7794   case X86::VPXORQZ256rr:  case X86::VPXORQZ256rm: {
7795     // Without DQI, convert EVEX instructions to VEX instructions.
7796     if (Subtarget.hasDQI())
7797       return false;
7798 
7799     const uint16_t *table = lookupAVX512(MI.getOpcode(), dom,
7800                                          ReplaceableCustomAVX512LogicInstrs);
7801     assert(table && "Instruction not found in table?");
7802     // Don't change integer Q instructions to D instructions and
7803     // use D intructions if we started with a PS instruction.
7804     if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
7805       Domain = 4;
7806     MI.setDesc(get(table[Domain - 1]));
7807     return true;
7808   }
7809   case X86::UNPCKHPDrr:
7810   case X86::MOVHLPSrr:
7811     // We just need to commute the instruction which will switch the domains.
7812     if (Domain != dom && Domain != 3 &&
7813         MI.getOperand(1).getReg() == MI.getOperand(2).getReg() &&
7814         MI.getOperand(0).getSubReg() == 0 &&
7815         MI.getOperand(1).getSubReg() == 0 &&
7816         MI.getOperand(2).getSubReg() == 0) {
7817       commuteInstruction(MI, false);
7818       return true;
7819     }
7820     // We must always return true for MOVHLPSrr.
7821     if (Opcode == X86::MOVHLPSrr)
7822       return true;
7823     break;
7824   case X86::SHUFPDrri: {
7825     if (Domain == 1) {
7826       unsigned Imm = MI.getOperand(3).getImm();
7827       unsigned NewImm = 0x44;
7828       if (Imm & 1) NewImm |= 0x0a;
7829       if (Imm & 2) NewImm |= 0xa0;
7830       MI.getOperand(3).setImm(NewImm);
7831       MI.setDesc(get(X86::SHUFPSrri));
7832     }
7833     return true;
7834   }
7835   }
7836   return false;
7837 }
7838 
7839 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr & MI) const7840 X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const {
7841   uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
7842   unsigned opcode = MI.getOpcode();
7843   uint16_t validDomains = 0;
7844   if (domain) {
7845     // Attempt to match for custom instructions.
7846     validDomains = getExecutionDomainCustom(MI);
7847     if (validDomains)
7848       return std::make_pair(domain, validDomains);
7849 
7850     if (lookup(opcode, domain, ReplaceableInstrs)) {
7851       validDomains = 0xe;
7852     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) {
7853       validDomains = Subtarget.hasAVX2() ? 0xe : 0x6;
7854     } else if (lookup(opcode, domain, ReplaceableInstrsFP)) {
7855       validDomains = 0x6;
7856     } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) {
7857       // Insert/extract instructions should only effect domain if AVX2
7858       // is enabled.
7859       if (!Subtarget.hasAVX2())
7860         return std::make_pair(0, 0);
7861       validDomains = 0xe;
7862     } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) {
7863       validDomains = 0xe;
7864     } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain,
7865                                                   ReplaceableInstrsAVX512DQ)) {
7866       validDomains = 0xe;
7867     } else if (Subtarget.hasDQI()) {
7868       if (const uint16_t *table = lookupAVX512(opcode, domain,
7869                                              ReplaceableInstrsAVX512DQMasked)) {
7870         if (domain == 1 || (domain == 3 && table[3] == opcode))
7871           validDomains = 0xa;
7872         else
7873           validDomains = 0xc;
7874       }
7875     }
7876   }
7877   return std::make_pair(domain, validDomains);
7878 }
7879 
setExecutionDomain(MachineInstr & MI,unsigned Domain) const7880 void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const {
7881   assert(Domain>0 && Domain<4 && "Invalid execution domain");
7882   uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
7883   assert(dom && "Not an SSE instruction");
7884 
7885   // Attempt to match for custom instructions.
7886   if (setExecutionDomainCustom(MI, Domain))
7887     return;
7888 
7889   const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs);
7890   if (!table) { // try the other table
7891     assert((Subtarget.hasAVX2() || Domain < 3) &&
7892            "256-bit vector operations only available in AVX2");
7893     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2);
7894   }
7895   if (!table) { // try the FP table
7896     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP);
7897     assert((!table || Domain < 3) &&
7898            "Can only select PackedSingle or PackedDouble");
7899   }
7900   if (!table) { // try the other table
7901     assert(Subtarget.hasAVX2() &&
7902            "256-bit insert/extract only available in AVX2");
7903     table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract);
7904   }
7905   if (!table) { // try the AVX512 table
7906     assert(Subtarget.hasAVX512() && "Requires AVX-512");
7907     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512);
7908     // Don't change integer Q instructions to D instructions.
7909     if (table && Domain == 3 && table[3] == MI.getOpcode())
7910       Domain = 4;
7911   }
7912   if (!table) { // try the AVX512DQ table
7913     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
7914     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ);
7915     // Don't change integer Q instructions to D instructions and
7916     // use D instructions if we started with a PS instruction.
7917     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
7918       Domain = 4;
7919   }
7920   if (!table) { // try the AVX512DQMasked table
7921     assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ");
7922     table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked);
7923     if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode()))
7924       Domain = 4;
7925   }
7926   assert(table && "Cannot change domain");
7927   MI.setDesc(get(table[Domain - 1]));
7928 }
7929 
7930 /// Return the noop instruction to use for a noop.
getNop() const7931 MCInst X86InstrInfo::getNop() const {
7932   MCInst Nop;
7933   Nop.setOpcode(X86::NOOP);
7934   return Nop;
7935 }
7936 
isHighLatencyDef(int opc) const7937 bool X86InstrInfo::isHighLatencyDef(int opc) const {
7938   switch (opc) {
7939   default: return false;
7940   case X86::DIVPDrm:
7941   case X86::DIVPDrr:
7942   case X86::DIVPSrm:
7943   case X86::DIVPSrr:
7944   case X86::DIVSDrm:
7945   case X86::DIVSDrm_Int:
7946   case X86::DIVSDrr:
7947   case X86::DIVSDrr_Int:
7948   case X86::DIVSSrm:
7949   case X86::DIVSSrm_Int:
7950   case X86::DIVSSrr:
7951   case X86::DIVSSrr_Int:
7952   case X86::SQRTPDm:
7953   case X86::SQRTPDr:
7954   case X86::SQRTPSm:
7955   case X86::SQRTPSr:
7956   case X86::SQRTSDm:
7957   case X86::SQRTSDm_Int:
7958   case X86::SQRTSDr:
7959   case X86::SQRTSDr_Int:
7960   case X86::SQRTSSm:
7961   case X86::SQRTSSm_Int:
7962   case X86::SQRTSSr:
7963   case X86::SQRTSSr_Int:
7964   // AVX instructions with high latency
7965   case X86::VDIVPDrm:
7966   case X86::VDIVPDrr:
7967   case X86::VDIVPDYrm:
7968   case X86::VDIVPDYrr:
7969   case X86::VDIVPSrm:
7970   case X86::VDIVPSrr:
7971   case X86::VDIVPSYrm:
7972   case X86::VDIVPSYrr:
7973   case X86::VDIVSDrm:
7974   case X86::VDIVSDrm_Int:
7975   case X86::VDIVSDrr:
7976   case X86::VDIVSDrr_Int:
7977   case X86::VDIVSSrm:
7978   case X86::VDIVSSrm_Int:
7979   case X86::VDIVSSrr:
7980   case X86::VDIVSSrr_Int:
7981   case X86::VSQRTPDm:
7982   case X86::VSQRTPDr:
7983   case X86::VSQRTPDYm:
7984   case X86::VSQRTPDYr:
7985   case X86::VSQRTPSm:
7986   case X86::VSQRTPSr:
7987   case X86::VSQRTPSYm:
7988   case X86::VSQRTPSYr:
7989   case X86::VSQRTSDm:
7990   case X86::VSQRTSDm_Int:
7991   case X86::VSQRTSDr:
7992   case X86::VSQRTSDr_Int:
7993   case X86::VSQRTSSm:
7994   case X86::VSQRTSSm_Int:
7995   case X86::VSQRTSSr:
7996   case X86::VSQRTSSr_Int:
7997   // AVX512 instructions with high latency
7998   case X86::VDIVPDZ128rm:
7999   case X86::VDIVPDZ128rmb:
8000   case X86::VDIVPDZ128rmbk:
8001   case X86::VDIVPDZ128rmbkz:
8002   case X86::VDIVPDZ128rmk:
8003   case X86::VDIVPDZ128rmkz:
8004   case X86::VDIVPDZ128rr:
8005   case X86::VDIVPDZ128rrk:
8006   case X86::VDIVPDZ128rrkz:
8007   case X86::VDIVPDZ256rm:
8008   case X86::VDIVPDZ256rmb:
8009   case X86::VDIVPDZ256rmbk:
8010   case X86::VDIVPDZ256rmbkz:
8011   case X86::VDIVPDZ256rmk:
8012   case X86::VDIVPDZ256rmkz:
8013   case X86::VDIVPDZ256rr:
8014   case X86::VDIVPDZ256rrk:
8015   case X86::VDIVPDZ256rrkz:
8016   case X86::VDIVPDZrrb:
8017   case X86::VDIVPDZrrbk:
8018   case X86::VDIVPDZrrbkz:
8019   case X86::VDIVPDZrm:
8020   case X86::VDIVPDZrmb:
8021   case X86::VDIVPDZrmbk:
8022   case X86::VDIVPDZrmbkz:
8023   case X86::VDIVPDZrmk:
8024   case X86::VDIVPDZrmkz:
8025   case X86::VDIVPDZrr:
8026   case X86::VDIVPDZrrk:
8027   case X86::VDIVPDZrrkz:
8028   case X86::VDIVPSZ128rm:
8029   case X86::VDIVPSZ128rmb:
8030   case X86::VDIVPSZ128rmbk:
8031   case X86::VDIVPSZ128rmbkz:
8032   case X86::VDIVPSZ128rmk:
8033   case X86::VDIVPSZ128rmkz:
8034   case X86::VDIVPSZ128rr:
8035   case X86::VDIVPSZ128rrk:
8036   case X86::VDIVPSZ128rrkz:
8037   case X86::VDIVPSZ256rm:
8038   case X86::VDIVPSZ256rmb:
8039   case X86::VDIVPSZ256rmbk:
8040   case X86::VDIVPSZ256rmbkz:
8041   case X86::VDIVPSZ256rmk:
8042   case X86::VDIVPSZ256rmkz:
8043   case X86::VDIVPSZ256rr:
8044   case X86::VDIVPSZ256rrk:
8045   case X86::VDIVPSZ256rrkz:
8046   case X86::VDIVPSZrrb:
8047   case X86::VDIVPSZrrbk:
8048   case X86::VDIVPSZrrbkz:
8049   case X86::VDIVPSZrm:
8050   case X86::VDIVPSZrmb:
8051   case X86::VDIVPSZrmbk:
8052   case X86::VDIVPSZrmbkz:
8053   case X86::VDIVPSZrmk:
8054   case X86::VDIVPSZrmkz:
8055   case X86::VDIVPSZrr:
8056   case X86::VDIVPSZrrk:
8057   case X86::VDIVPSZrrkz:
8058   case X86::VDIVSDZrm:
8059   case X86::VDIVSDZrr:
8060   case X86::VDIVSDZrm_Int:
8061   case X86::VDIVSDZrm_Intk:
8062   case X86::VDIVSDZrm_Intkz:
8063   case X86::VDIVSDZrr_Int:
8064   case X86::VDIVSDZrr_Intk:
8065   case X86::VDIVSDZrr_Intkz:
8066   case X86::VDIVSDZrrb_Int:
8067   case X86::VDIVSDZrrb_Intk:
8068   case X86::VDIVSDZrrb_Intkz:
8069   case X86::VDIVSSZrm:
8070   case X86::VDIVSSZrr:
8071   case X86::VDIVSSZrm_Int:
8072   case X86::VDIVSSZrm_Intk:
8073   case X86::VDIVSSZrm_Intkz:
8074   case X86::VDIVSSZrr_Int:
8075   case X86::VDIVSSZrr_Intk:
8076   case X86::VDIVSSZrr_Intkz:
8077   case X86::VDIVSSZrrb_Int:
8078   case X86::VDIVSSZrrb_Intk:
8079   case X86::VDIVSSZrrb_Intkz:
8080   case X86::VSQRTPDZ128m:
8081   case X86::VSQRTPDZ128mb:
8082   case X86::VSQRTPDZ128mbk:
8083   case X86::VSQRTPDZ128mbkz:
8084   case X86::VSQRTPDZ128mk:
8085   case X86::VSQRTPDZ128mkz:
8086   case X86::VSQRTPDZ128r:
8087   case X86::VSQRTPDZ128rk:
8088   case X86::VSQRTPDZ128rkz:
8089   case X86::VSQRTPDZ256m:
8090   case X86::VSQRTPDZ256mb:
8091   case X86::VSQRTPDZ256mbk:
8092   case X86::VSQRTPDZ256mbkz:
8093   case X86::VSQRTPDZ256mk:
8094   case X86::VSQRTPDZ256mkz:
8095   case X86::VSQRTPDZ256r:
8096   case X86::VSQRTPDZ256rk:
8097   case X86::VSQRTPDZ256rkz:
8098   case X86::VSQRTPDZm:
8099   case X86::VSQRTPDZmb:
8100   case X86::VSQRTPDZmbk:
8101   case X86::VSQRTPDZmbkz:
8102   case X86::VSQRTPDZmk:
8103   case X86::VSQRTPDZmkz:
8104   case X86::VSQRTPDZr:
8105   case X86::VSQRTPDZrb:
8106   case X86::VSQRTPDZrbk:
8107   case X86::VSQRTPDZrbkz:
8108   case X86::VSQRTPDZrk:
8109   case X86::VSQRTPDZrkz:
8110   case X86::VSQRTPSZ128m:
8111   case X86::VSQRTPSZ128mb:
8112   case X86::VSQRTPSZ128mbk:
8113   case X86::VSQRTPSZ128mbkz:
8114   case X86::VSQRTPSZ128mk:
8115   case X86::VSQRTPSZ128mkz:
8116   case X86::VSQRTPSZ128r:
8117   case X86::VSQRTPSZ128rk:
8118   case X86::VSQRTPSZ128rkz:
8119   case X86::VSQRTPSZ256m:
8120   case X86::VSQRTPSZ256mb:
8121   case X86::VSQRTPSZ256mbk:
8122   case X86::VSQRTPSZ256mbkz:
8123   case X86::VSQRTPSZ256mk:
8124   case X86::VSQRTPSZ256mkz:
8125   case X86::VSQRTPSZ256r:
8126   case X86::VSQRTPSZ256rk:
8127   case X86::VSQRTPSZ256rkz:
8128   case X86::VSQRTPSZm:
8129   case X86::VSQRTPSZmb:
8130   case X86::VSQRTPSZmbk:
8131   case X86::VSQRTPSZmbkz:
8132   case X86::VSQRTPSZmk:
8133   case X86::VSQRTPSZmkz:
8134   case X86::VSQRTPSZr:
8135   case X86::VSQRTPSZrb:
8136   case X86::VSQRTPSZrbk:
8137   case X86::VSQRTPSZrbkz:
8138   case X86::VSQRTPSZrk:
8139   case X86::VSQRTPSZrkz:
8140   case X86::VSQRTSDZm:
8141   case X86::VSQRTSDZm_Int:
8142   case X86::VSQRTSDZm_Intk:
8143   case X86::VSQRTSDZm_Intkz:
8144   case X86::VSQRTSDZr:
8145   case X86::VSQRTSDZr_Int:
8146   case X86::VSQRTSDZr_Intk:
8147   case X86::VSQRTSDZr_Intkz:
8148   case X86::VSQRTSDZrb_Int:
8149   case X86::VSQRTSDZrb_Intk:
8150   case X86::VSQRTSDZrb_Intkz:
8151   case X86::VSQRTSSZm:
8152   case X86::VSQRTSSZm_Int:
8153   case X86::VSQRTSSZm_Intk:
8154   case X86::VSQRTSSZm_Intkz:
8155   case X86::VSQRTSSZr:
8156   case X86::VSQRTSSZr_Int:
8157   case X86::VSQRTSSZr_Intk:
8158   case X86::VSQRTSSZr_Intkz:
8159   case X86::VSQRTSSZrb_Int:
8160   case X86::VSQRTSSZrb_Intk:
8161   case X86::VSQRTSSZrb_Intkz:
8162 
8163   case X86::VGATHERDPDYrm:
8164   case X86::VGATHERDPDZ128rm:
8165   case X86::VGATHERDPDZ256rm:
8166   case X86::VGATHERDPDZrm:
8167   case X86::VGATHERDPDrm:
8168   case X86::VGATHERDPSYrm:
8169   case X86::VGATHERDPSZ128rm:
8170   case X86::VGATHERDPSZ256rm:
8171   case X86::VGATHERDPSZrm:
8172   case X86::VGATHERDPSrm:
8173   case X86::VGATHERPF0DPDm:
8174   case X86::VGATHERPF0DPSm:
8175   case X86::VGATHERPF0QPDm:
8176   case X86::VGATHERPF0QPSm:
8177   case X86::VGATHERPF1DPDm:
8178   case X86::VGATHERPF1DPSm:
8179   case X86::VGATHERPF1QPDm:
8180   case X86::VGATHERPF1QPSm:
8181   case X86::VGATHERQPDYrm:
8182   case X86::VGATHERQPDZ128rm:
8183   case X86::VGATHERQPDZ256rm:
8184   case X86::VGATHERQPDZrm:
8185   case X86::VGATHERQPDrm:
8186   case X86::VGATHERQPSYrm:
8187   case X86::VGATHERQPSZ128rm:
8188   case X86::VGATHERQPSZ256rm:
8189   case X86::VGATHERQPSZrm:
8190   case X86::VGATHERQPSrm:
8191   case X86::VPGATHERDDYrm:
8192   case X86::VPGATHERDDZ128rm:
8193   case X86::VPGATHERDDZ256rm:
8194   case X86::VPGATHERDDZrm:
8195   case X86::VPGATHERDDrm:
8196   case X86::VPGATHERDQYrm:
8197   case X86::VPGATHERDQZ128rm:
8198   case X86::VPGATHERDQZ256rm:
8199   case X86::VPGATHERDQZrm:
8200   case X86::VPGATHERDQrm:
8201   case X86::VPGATHERQDYrm:
8202   case X86::VPGATHERQDZ128rm:
8203   case X86::VPGATHERQDZ256rm:
8204   case X86::VPGATHERQDZrm:
8205   case X86::VPGATHERQDrm:
8206   case X86::VPGATHERQQYrm:
8207   case X86::VPGATHERQQZ128rm:
8208   case X86::VPGATHERQQZ256rm:
8209   case X86::VPGATHERQQZrm:
8210   case X86::VPGATHERQQrm:
8211   case X86::VSCATTERDPDZ128mr:
8212   case X86::VSCATTERDPDZ256mr:
8213   case X86::VSCATTERDPDZmr:
8214   case X86::VSCATTERDPSZ128mr:
8215   case X86::VSCATTERDPSZ256mr:
8216   case X86::VSCATTERDPSZmr:
8217   case X86::VSCATTERPF0DPDm:
8218   case X86::VSCATTERPF0DPSm:
8219   case X86::VSCATTERPF0QPDm:
8220   case X86::VSCATTERPF0QPSm:
8221   case X86::VSCATTERPF1DPDm:
8222   case X86::VSCATTERPF1DPSm:
8223   case X86::VSCATTERPF1QPDm:
8224   case X86::VSCATTERPF1QPSm:
8225   case X86::VSCATTERQPDZ128mr:
8226   case X86::VSCATTERQPDZ256mr:
8227   case X86::VSCATTERQPDZmr:
8228   case X86::VSCATTERQPSZ128mr:
8229   case X86::VSCATTERQPSZ256mr:
8230   case X86::VSCATTERQPSZmr:
8231   case X86::VPSCATTERDDZ128mr:
8232   case X86::VPSCATTERDDZ256mr:
8233   case X86::VPSCATTERDDZmr:
8234   case X86::VPSCATTERDQZ128mr:
8235   case X86::VPSCATTERDQZ256mr:
8236   case X86::VPSCATTERDQZmr:
8237   case X86::VPSCATTERQDZ128mr:
8238   case X86::VPSCATTERQDZ256mr:
8239   case X86::VPSCATTERQDZmr:
8240   case X86::VPSCATTERQQZ128mr:
8241   case X86::VPSCATTERQQZ256mr:
8242   case X86::VPSCATTERQQZmr:
8243     return true;
8244   }
8245 }
8246 
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const8247 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
8248                                          const MachineRegisterInfo *MRI,
8249                                          const MachineInstr &DefMI,
8250                                          unsigned DefIdx,
8251                                          const MachineInstr &UseMI,
8252                                          unsigned UseIdx) const {
8253   return isHighLatencyDef(DefMI.getOpcode());
8254 }
8255 
hasReassociableOperands(const MachineInstr & Inst,const MachineBasicBlock * MBB) const8256 bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst,
8257                                            const MachineBasicBlock *MBB) const {
8258   assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 &&
8259          Inst.getNumDefs() <= 2 && "Reassociation needs binary operators");
8260 
8261   // Integer binary math/logic instructions have a third source operand:
8262   // the EFLAGS register. That operand must be both defined here and never
8263   // used; ie, it must be dead. If the EFLAGS operand is live, then we can
8264   // not change anything because rearranging the operands could affect other
8265   // instructions that depend on the exact status flags (zero, sign, etc.)
8266   // that are set by using these particular operands with this operation.
8267   const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS);
8268   assert((Inst.getNumDefs() == 1 || FlagDef) &&
8269          "Implicit def isn't flags?");
8270   if (FlagDef && !FlagDef->isDead())
8271     return false;
8272 
8273   return TargetInstrInfo::hasReassociableOperands(Inst, MBB);
8274 }
8275 
8276 // TODO: There are many more machine instruction opcodes to match:
8277 //       1. Other data types (integer, vectors)
8278 //       2. Other math / logic operations (xor, or)
8279 //       3. Other forms of the same operation (intrinsics and other variants)
isAssociativeAndCommutative(const MachineInstr & Inst) const8280 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
8281   switch (Inst.getOpcode()) {
8282   case X86::AND8rr:
8283   case X86::AND16rr:
8284   case X86::AND32rr:
8285   case X86::AND64rr:
8286   case X86::OR8rr:
8287   case X86::OR16rr:
8288   case X86::OR32rr:
8289   case X86::OR64rr:
8290   case X86::XOR8rr:
8291   case X86::XOR16rr:
8292   case X86::XOR32rr:
8293   case X86::XOR64rr:
8294   case X86::IMUL16rr:
8295   case X86::IMUL32rr:
8296   case X86::IMUL64rr:
8297   case X86::PANDrr:
8298   case X86::PORrr:
8299   case X86::PXORrr:
8300   case X86::ANDPDrr:
8301   case X86::ANDPSrr:
8302   case X86::ORPDrr:
8303   case X86::ORPSrr:
8304   case X86::XORPDrr:
8305   case X86::XORPSrr:
8306   case X86::PADDBrr:
8307   case X86::PADDWrr:
8308   case X86::PADDDrr:
8309   case X86::PADDQrr:
8310   case X86::PMULLWrr:
8311   case X86::PMULLDrr:
8312   case X86::PMAXSBrr:
8313   case X86::PMAXSDrr:
8314   case X86::PMAXSWrr:
8315   case X86::PMAXUBrr:
8316   case X86::PMAXUDrr:
8317   case X86::PMAXUWrr:
8318   case X86::PMINSBrr:
8319   case X86::PMINSDrr:
8320   case X86::PMINSWrr:
8321   case X86::PMINUBrr:
8322   case X86::PMINUDrr:
8323   case X86::PMINUWrr:
8324   case X86::VPANDrr:
8325   case X86::VPANDYrr:
8326   case X86::VPANDDZ128rr:
8327   case X86::VPANDDZ256rr:
8328   case X86::VPANDDZrr:
8329   case X86::VPANDQZ128rr:
8330   case X86::VPANDQZ256rr:
8331   case X86::VPANDQZrr:
8332   case X86::VPORrr:
8333   case X86::VPORYrr:
8334   case X86::VPORDZ128rr:
8335   case X86::VPORDZ256rr:
8336   case X86::VPORDZrr:
8337   case X86::VPORQZ128rr:
8338   case X86::VPORQZ256rr:
8339   case X86::VPORQZrr:
8340   case X86::VPXORrr:
8341   case X86::VPXORYrr:
8342   case X86::VPXORDZ128rr:
8343   case X86::VPXORDZ256rr:
8344   case X86::VPXORDZrr:
8345   case X86::VPXORQZ128rr:
8346   case X86::VPXORQZ256rr:
8347   case X86::VPXORQZrr:
8348   case X86::VANDPDrr:
8349   case X86::VANDPSrr:
8350   case X86::VANDPDYrr:
8351   case X86::VANDPSYrr:
8352   case X86::VANDPDZ128rr:
8353   case X86::VANDPSZ128rr:
8354   case X86::VANDPDZ256rr:
8355   case X86::VANDPSZ256rr:
8356   case X86::VANDPDZrr:
8357   case X86::VANDPSZrr:
8358   case X86::VORPDrr:
8359   case X86::VORPSrr:
8360   case X86::VORPDYrr:
8361   case X86::VORPSYrr:
8362   case X86::VORPDZ128rr:
8363   case X86::VORPSZ128rr:
8364   case X86::VORPDZ256rr:
8365   case X86::VORPSZ256rr:
8366   case X86::VORPDZrr:
8367   case X86::VORPSZrr:
8368   case X86::VXORPDrr:
8369   case X86::VXORPSrr:
8370   case X86::VXORPDYrr:
8371   case X86::VXORPSYrr:
8372   case X86::VXORPDZ128rr:
8373   case X86::VXORPSZ128rr:
8374   case X86::VXORPDZ256rr:
8375   case X86::VXORPSZ256rr:
8376   case X86::VXORPDZrr:
8377   case X86::VXORPSZrr:
8378   case X86::KADDBrr:
8379   case X86::KADDWrr:
8380   case X86::KADDDrr:
8381   case X86::KADDQrr:
8382   case X86::KANDBrr:
8383   case X86::KANDWrr:
8384   case X86::KANDDrr:
8385   case X86::KANDQrr:
8386   case X86::KORBrr:
8387   case X86::KORWrr:
8388   case X86::KORDrr:
8389   case X86::KORQrr:
8390   case X86::KXORBrr:
8391   case X86::KXORWrr:
8392   case X86::KXORDrr:
8393   case X86::KXORQrr:
8394   case X86::VPADDBrr:
8395   case X86::VPADDWrr:
8396   case X86::VPADDDrr:
8397   case X86::VPADDQrr:
8398   case X86::VPADDBYrr:
8399   case X86::VPADDWYrr:
8400   case X86::VPADDDYrr:
8401   case X86::VPADDQYrr:
8402   case X86::VPADDBZ128rr:
8403   case X86::VPADDWZ128rr:
8404   case X86::VPADDDZ128rr:
8405   case X86::VPADDQZ128rr:
8406   case X86::VPADDBZ256rr:
8407   case X86::VPADDWZ256rr:
8408   case X86::VPADDDZ256rr:
8409   case X86::VPADDQZ256rr:
8410   case X86::VPADDBZrr:
8411   case X86::VPADDWZrr:
8412   case X86::VPADDDZrr:
8413   case X86::VPADDQZrr:
8414   case X86::VPMULLWrr:
8415   case X86::VPMULLWYrr:
8416   case X86::VPMULLWZ128rr:
8417   case X86::VPMULLWZ256rr:
8418   case X86::VPMULLWZrr:
8419   case X86::VPMULLDrr:
8420   case X86::VPMULLDYrr:
8421   case X86::VPMULLDZ128rr:
8422   case X86::VPMULLDZ256rr:
8423   case X86::VPMULLDZrr:
8424   case X86::VPMULLQZ128rr:
8425   case X86::VPMULLQZ256rr:
8426   case X86::VPMULLQZrr:
8427   case X86::VPMAXSBrr:
8428   case X86::VPMAXSBYrr:
8429   case X86::VPMAXSBZ128rr:
8430   case X86::VPMAXSBZ256rr:
8431   case X86::VPMAXSBZrr:
8432   case X86::VPMAXSDrr:
8433   case X86::VPMAXSDYrr:
8434   case X86::VPMAXSDZ128rr:
8435   case X86::VPMAXSDZ256rr:
8436   case X86::VPMAXSDZrr:
8437   case X86::VPMAXSQZ128rr:
8438   case X86::VPMAXSQZ256rr:
8439   case X86::VPMAXSQZrr:
8440   case X86::VPMAXSWrr:
8441   case X86::VPMAXSWYrr:
8442   case X86::VPMAXSWZ128rr:
8443   case X86::VPMAXSWZ256rr:
8444   case X86::VPMAXSWZrr:
8445   case X86::VPMAXUBrr:
8446   case X86::VPMAXUBYrr:
8447   case X86::VPMAXUBZ128rr:
8448   case X86::VPMAXUBZ256rr:
8449   case X86::VPMAXUBZrr:
8450   case X86::VPMAXUDrr:
8451   case X86::VPMAXUDYrr:
8452   case X86::VPMAXUDZ128rr:
8453   case X86::VPMAXUDZ256rr:
8454   case X86::VPMAXUDZrr:
8455   case X86::VPMAXUQZ128rr:
8456   case X86::VPMAXUQZ256rr:
8457   case X86::VPMAXUQZrr:
8458   case X86::VPMAXUWrr:
8459   case X86::VPMAXUWYrr:
8460   case X86::VPMAXUWZ128rr:
8461   case X86::VPMAXUWZ256rr:
8462   case X86::VPMAXUWZrr:
8463   case X86::VPMINSBrr:
8464   case X86::VPMINSBYrr:
8465   case X86::VPMINSBZ128rr:
8466   case X86::VPMINSBZ256rr:
8467   case X86::VPMINSBZrr:
8468   case X86::VPMINSDrr:
8469   case X86::VPMINSDYrr:
8470   case X86::VPMINSDZ128rr:
8471   case X86::VPMINSDZ256rr:
8472   case X86::VPMINSDZrr:
8473   case X86::VPMINSQZ128rr:
8474   case X86::VPMINSQZ256rr:
8475   case X86::VPMINSQZrr:
8476   case X86::VPMINSWrr:
8477   case X86::VPMINSWYrr:
8478   case X86::VPMINSWZ128rr:
8479   case X86::VPMINSWZ256rr:
8480   case X86::VPMINSWZrr:
8481   case X86::VPMINUBrr:
8482   case X86::VPMINUBYrr:
8483   case X86::VPMINUBZ128rr:
8484   case X86::VPMINUBZ256rr:
8485   case X86::VPMINUBZrr:
8486   case X86::VPMINUDrr:
8487   case X86::VPMINUDYrr:
8488   case X86::VPMINUDZ128rr:
8489   case X86::VPMINUDZ256rr:
8490   case X86::VPMINUDZrr:
8491   case X86::VPMINUQZ128rr:
8492   case X86::VPMINUQZ256rr:
8493   case X86::VPMINUQZrr:
8494   case X86::VPMINUWrr:
8495   case X86::VPMINUWYrr:
8496   case X86::VPMINUWZ128rr:
8497   case X86::VPMINUWZ256rr:
8498   case X86::VPMINUWZrr:
8499   // Normal min/max instructions are not commutative because of NaN and signed
8500   // zero semantics, but these are. Thus, there's no need to check for global
8501   // relaxed math; the instructions themselves have the properties we need.
8502   case X86::MAXCPDrr:
8503   case X86::MAXCPSrr:
8504   case X86::MAXCSDrr:
8505   case X86::MAXCSSrr:
8506   case X86::MINCPDrr:
8507   case X86::MINCPSrr:
8508   case X86::MINCSDrr:
8509   case X86::MINCSSrr:
8510   case X86::VMAXCPDrr:
8511   case X86::VMAXCPSrr:
8512   case X86::VMAXCPDYrr:
8513   case X86::VMAXCPSYrr:
8514   case X86::VMAXCPDZ128rr:
8515   case X86::VMAXCPSZ128rr:
8516   case X86::VMAXCPDZ256rr:
8517   case X86::VMAXCPSZ256rr:
8518   case X86::VMAXCPDZrr:
8519   case X86::VMAXCPSZrr:
8520   case X86::VMAXCSDrr:
8521   case X86::VMAXCSSrr:
8522   case X86::VMAXCSDZrr:
8523   case X86::VMAXCSSZrr:
8524   case X86::VMINCPDrr:
8525   case X86::VMINCPSrr:
8526   case X86::VMINCPDYrr:
8527   case X86::VMINCPSYrr:
8528   case X86::VMINCPDZ128rr:
8529   case X86::VMINCPSZ128rr:
8530   case X86::VMINCPDZ256rr:
8531   case X86::VMINCPSZ256rr:
8532   case X86::VMINCPDZrr:
8533   case X86::VMINCPSZrr:
8534   case X86::VMINCSDrr:
8535   case X86::VMINCSSrr:
8536   case X86::VMINCSDZrr:
8537   case X86::VMINCSSZrr:
8538   case X86::VMAXCPHZ128rr:
8539   case X86::VMAXCPHZ256rr:
8540   case X86::VMAXCPHZrr:
8541   case X86::VMAXCSHZrr:
8542   case X86::VMINCPHZ128rr:
8543   case X86::VMINCPHZ256rr:
8544   case X86::VMINCPHZrr:
8545   case X86::VMINCSHZrr:
8546     return true;
8547   case X86::ADDPDrr:
8548   case X86::ADDPSrr:
8549   case X86::ADDSDrr:
8550   case X86::ADDSSrr:
8551   case X86::MULPDrr:
8552   case X86::MULPSrr:
8553   case X86::MULSDrr:
8554   case X86::MULSSrr:
8555   case X86::VADDPDrr:
8556   case X86::VADDPSrr:
8557   case X86::VADDPDYrr:
8558   case X86::VADDPSYrr:
8559   case X86::VADDPDZ128rr:
8560   case X86::VADDPSZ128rr:
8561   case X86::VADDPDZ256rr:
8562   case X86::VADDPSZ256rr:
8563   case X86::VADDPDZrr:
8564   case X86::VADDPSZrr:
8565   case X86::VADDSDrr:
8566   case X86::VADDSSrr:
8567   case X86::VADDSDZrr:
8568   case X86::VADDSSZrr:
8569   case X86::VMULPDrr:
8570   case X86::VMULPSrr:
8571   case X86::VMULPDYrr:
8572   case X86::VMULPSYrr:
8573   case X86::VMULPDZ128rr:
8574   case X86::VMULPSZ128rr:
8575   case X86::VMULPDZ256rr:
8576   case X86::VMULPSZ256rr:
8577   case X86::VMULPDZrr:
8578   case X86::VMULPSZrr:
8579   case X86::VMULSDrr:
8580   case X86::VMULSSrr:
8581   case X86::VMULSDZrr:
8582   case X86::VMULSSZrr:
8583   case X86::VADDPHZ128rr:
8584   case X86::VADDPHZ256rr:
8585   case X86::VADDPHZrr:
8586   case X86::VADDSHZrr:
8587   case X86::VMULPHZ128rr:
8588   case X86::VMULPHZ256rr:
8589   case X86::VMULPHZrr:
8590   case X86::VMULSHZrr:
8591     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
8592            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
8593   default:
8594     return false;
8595   }
8596 }
8597 
8598 /// If \p DescribedReg overlaps with the MOVrr instruction's destination
8599 /// register then, if possible, describe the value in terms of the source
8600 /// register.
8601 static Optional<ParamLoadedValue>
describeMOVrrLoadedValue(const MachineInstr & MI,Register DescribedReg,const TargetRegisterInfo * TRI)8602 describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg,
8603                          const TargetRegisterInfo *TRI) {
8604   Register DestReg = MI.getOperand(0).getReg();
8605   Register SrcReg = MI.getOperand(1).getReg();
8606 
8607   auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
8608 
8609   // If the described register is the destination, just return the source.
8610   if (DestReg == DescribedReg)
8611     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8612 
8613   // If the described register is a sub-register of the destination register,
8614   // then pick out the source register's corresponding sub-register.
8615   if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) {
8616     Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx);
8617     return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr);
8618   }
8619 
8620   // The remaining case to consider is when the described register is a
8621   // super-register of the destination register. MOV8rr and MOV16rr does not
8622   // write to any of the other bytes in the register, meaning that we'd have to
8623   // describe the value using a combination of the source register and the
8624   // non-overlapping bits in the described register, which is not currently
8625   // possible.
8626   if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr ||
8627       !TRI->isSuperRegister(DestReg, DescribedReg))
8628     return None;
8629 
8630   assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case");
8631   return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
8632 }
8633 
8634 Optional<ParamLoadedValue>
describeLoadedValue(const MachineInstr & MI,Register Reg) const8635 X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
8636   const MachineOperand *Op = nullptr;
8637   DIExpression *Expr = nullptr;
8638 
8639   const TargetRegisterInfo *TRI = &getRegisterInfo();
8640 
8641   switch (MI.getOpcode()) {
8642   case X86::LEA32r:
8643   case X86::LEA64r:
8644   case X86::LEA64_32r: {
8645     // We may need to describe a 64-bit parameter with a 32-bit LEA.
8646     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8647       return None;
8648 
8649     // Operand 4 could be global address. For now we do not support
8650     // such situation.
8651     if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm())
8652       return None;
8653 
8654     const MachineOperand &Op1 = MI.getOperand(1);
8655     const MachineOperand &Op2 = MI.getOperand(3);
8656     assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister ||
8657                            Register::isPhysicalRegister(Op2.getReg())));
8658 
8659     // Omit situations like:
8660     // %rsi = lea %rsi, 4, ...
8661     if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) ||
8662         Op2.getReg() == MI.getOperand(0).getReg())
8663       return None;
8664     else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister &&
8665               TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) ||
8666              (Op2.getReg() != X86::NoRegister &&
8667               TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg())))
8668       return None;
8669 
8670     int64_t Coef = MI.getOperand(2).getImm();
8671     int64_t Offset = MI.getOperand(4).getImm();
8672     SmallVector<uint64_t, 8> Ops;
8673 
8674     if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) {
8675       Op = &Op1;
8676     } else if (Op1.isFI())
8677       Op = &Op1;
8678 
8679     if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) {
8680       Ops.push_back(dwarf::DW_OP_constu);
8681       Ops.push_back(Coef + 1);
8682       Ops.push_back(dwarf::DW_OP_mul);
8683     } else {
8684       if (Op && Op2.getReg() != X86::NoRegister) {
8685         int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false);
8686         if (dwarfReg < 0)
8687           return None;
8688         else if (dwarfReg < 32) {
8689           Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg);
8690           Ops.push_back(0);
8691         } else {
8692           Ops.push_back(dwarf::DW_OP_bregx);
8693           Ops.push_back(dwarfReg);
8694           Ops.push_back(0);
8695         }
8696       } else if (!Op) {
8697         assert(Op2.getReg() != X86::NoRegister);
8698         Op = &Op2;
8699       }
8700 
8701       if (Coef > 1) {
8702         assert(Op2.getReg() != X86::NoRegister);
8703         Ops.push_back(dwarf::DW_OP_constu);
8704         Ops.push_back(Coef);
8705         Ops.push_back(dwarf::DW_OP_mul);
8706       }
8707 
8708       if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) &&
8709           Op2.getReg() != X86::NoRegister) {
8710         Ops.push_back(dwarf::DW_OP_plus);
8711       }
8712     }
8713 
8714     DIExpression::appendOffset(Ops, Offset);
8715     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops);
8716 
8717     return ParamLoadedValue(*Op, Expr);;
8718   }
8719   case X86::MOV8ri:
8720   case X86::MOV16ri:
8721     // TODO: Handle MOV8ri and MOV16ri.
8722     return None;
8723   case X86::MOV32ri:
8724   case X86::MOV64ri:
8725   case X86::MOV64ri32:
8726     // MOV32ri may be used for producing zero-extended 32-bit immediates in
8727     // 64-bit parameters, so we need to consider super-registers.
8728     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8729       return None;
8730     return ParamLoadedValue(MI.getOperand(1), Expr);
8731   case X86::MOV8rr:
8732   case X86::MOV16rr:
8733   case X86::MOV32rr:
8734   case X86::MOV64rr:
8735     return describeMOVrrLoadedValue(MI, Reg, TRI);
8736   case X86::XOR32rr: {
8737     // 64-bit parameters are zero-materialized using XOR32rr, so also consider
8738     // super-registers.
8739     if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg))
8740       return None;
8741     if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
8742       return ParamLoadedValue(MachineOperand::CreateImm(0), Expr);
8743     return None;
8744   }
8745   case X86::MOVSX64rr32: {
8746     // We may need to describe the lower 32 bits of the MOVSX; for example, in
8747     // cases like this:
8748     //
8749     //  $ebx = [...]
8750     //  $rdi = MOVSX64rr32 $ebx
8751     //  $esi = MOV32rr $edi
8752     if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg))
8753       return None;
8754 
8755     Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {});
8756 
8757     // If the described register is the destination register we need to
8758     // sign-extend the source register from 32 bits. The other case we handle
8759     // is when the described register is the 32-bit sub-register of the
8760     // destination register, in case we just need to return the source
8761     // register.
8762     if (Reg == MI.getOperand(0).getReg())
8763       Expr = DIExpression::appendExt(Expr, 32, 64, true);
8764     else
8765       assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) &&
8766              "Unhandled sub-register case for MOVSX64rr32");
8767 
8768     return ParamLoadedValue(MI.getOperand(1), Expr);
8769   }
8770   default:
8771     assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction");
8772     return TargetInstrInfo::describeLoadedValue(MI, Reg);
8773   }
8774 }
8775 
8776 /// This is an architecture-specific helper function of reassociateOps.
8777 /// Set special operand attributes for new instructions after reassociation.
setSpecialOperandAttr(MachineInstr & OldMI1,MachineInstr & OldMI2,MachineInstr & NewMI1,MachineInstr & NewMI2) const8778 void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
8779                                          MachineInstr &OldMI2,
8780                                          MachineInstr &NewMI1,
8781                                          MachineInstr &NewMI2) const {
8782   // Propagate FP flags from the original instructions.
8783   // But clear poison-generating flags because those may not be valid now.
8784   // TODO: There should be a helper function for copying only fast-math-flags.
8785   uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
8786   NewMI1.setFlags(IntersectedFlags);
8787   NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
8788   NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
8789   NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
8790 
8791   NewMI2.setFlags(IntersectedFlags);
8792   NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
8793   NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
8794   NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
8795 
8796   // Integer instructions may define an implicit EFLAGS dest register operand.
8797   MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS);
8798   MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS);
8799 
8800   assert(!OldFlagDef1 == !OldFlagDef2 &&
8801          "Unexpected instruction type for reassociation");
8802 
8803   if (!OldFlagDef1 || !OldFlagDef2)
8804     return;
8805 
8806   assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() &&
8807          "Must have dead EFLAGS operand in reassociable instruction");
8808 
8809   MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS);
8810   MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS);
8811 
8812   assert(NewFlagDef1 && NewFlagDef2 &&
8813          "Unexpected operand in reassociable instruction");
8814 
8815   // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
8816   // of this pass or other passes. The EFLAGS operands must be dead in these new
8817   // instructions because the EFLAGS operands in the original instructions must
8818   // be dead in order for reassociation to occur.
8819   NewFlagDef1->setIsDead();
8820   NewFlagDef2->setIsDead();
8821 }
8822 
8823 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const8824 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
8825   return std::make_pair(TF, 0u);
8826 }
8827 
8828 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const8829 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
8830   using namespace X86II;
8831   static const std::pair<unsigned, const char *> TargetFlags[] = {
8832       {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"},
8833       {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"},
8834       {MO_GOT, "x86-got"},
8835       {MO_GOTOFF, "x86-gotoff"},
8836       {MO_GOTPCREL, "x86-gotpcrel"},
8837       {MO_PLT, "x86-plt"},
8838       {MO_TLSGD, "x86-tlsgd"},
8839       {MO_TLSLD, "x86-tlsld"},
8840       {MO_TLSLDM, "x86-tlsldm"},
8841       {MO_GOTTPOFF, "x86-gottpoff"},
8842       {MO_INDNTPOFF, "x86-indntpoff"},
8843       {MO_TPOFF, "x86-tpoff"},
8844       {MO_DTPOFF, "x86-dtpoff"},
8845       {MO_NTPOFF, "x86-ntpoff"},
8846       {MO_GOTNTPOFF, "x86-gotntpoff"},
8847       {MO_DLLIMPORT, "x86-dllimport"},
8848       {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"},
8849       {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"},
8850       {MO_TLVP, "x86-tlvp"},
8851       {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"},
8852       {MO_SECREL, "x86-secrel"},
8853       {MO_COFFSTUB, "x86-coffstub"}};
8854   return makeArrayRef(TargetFlags);
8855 }
8856 
8857 namespace {
8858   /// Create Global Base Reg pass. This initializes the PIC
8859   /// global base register for x86-32.
8860   struct CGBR : public MachineFunctionPass {
8861     static char ID;
CGBR__anon0e6519760611::CGBR8862     CGBR() : MachineFunctionPass(ID) {}
8863 
runOnMachineFunction__anon0e6519760611::CGBR8864     bool runOnMachineFunction(MachineFunction &MF) override {
8865       const X86TargetMachine *TM =
8866         static_cast<const X86TargetMachine *>(&MF.getTarget());
8867       const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
8868 
8869       // Don't do anything in the 64-bit small and kernel code models. They use
8870       // RIP-relative addressing for everything.
8871       if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small ||
8872                             TM->getCodeModel() == CodeModel::Kernel))
8873         return false;
8874 
8875       // Only emit a global base reg in PIC mode.
8876       if (!TM->isPositionIndependent())
8877         return false;
8878 
8879       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
8880       Register GlobalBaseReg = X86FI->getGlobalBaseReg();
8881 
8882       // If we didn't need a GlobalBaseReg, don't insert code.
8883       if (GlobalBaseReg == 0)
8884         return false;
8885 
8886       // Insert the set of GlobalBaseReg into the first MBB of the function
8887       MachineBasicBlock &FirstMBB = MF.front();
8888       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
8889       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
8890       MachineRegisterInfo &RegInfo = MF.getRegInfo();
8891       const X86InstrInfo *TII = STI.getInstrInfo();
8892 
8893       Register PC;
8894       if (STI.isPICStyleGOT())
8895         PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
8896       else
8897         PC = GlobalBaseReg;
8898 
8899       if (STI.is64Bit()) {
8900         if (TM->getCodeModel() == CodeModel::Medium) {
8901           // In the medium code model, use a RIP-relative LEA to materialize the
8902           // GOT.
8903           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC)
8904               .addReg(X86::RIP)
8905               .addImm(0)
8906               .addReg(0)
8907               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
8908               .addReg(0);
8909         } else if (TM->getCodeModel() == CodeModel::Large) {
8910           // In the large code model, we are aiming for this code, though the
8911           // register allocation may vary:
8912           //   leaq .LN$pb(%rip), %rax
8913           //   movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
8914           //   addq %rcx, %rax
8915           // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
8916           Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
8917           Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass);
8918           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg)
8919               .addReg(X86::RIP)
8920               .addImm(0)
8921               .addReg(0)
8922               .addSym(MF.getPICBaseSymbol())
8923               .addReg(0);
8924           std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol());
8925           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg)
8926               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
8927                                  X86II::MO_PIC_BASE_OFFSET);
8928           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC)
8929               .addReg(PBReg, RegState::Kill)
8930               .addReg(GOTReg, RegState::Kill);
8931         } else {
8932           llvm_unreachable("unexpected code model");
8933         }
8934       } else {
8935         // Operand of MovePCtoStack is completely ignored by asm printer. It's
8936         // only used in JIT code emission as displacement to pc.
8937         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
8938 
8939         // If we're using vanilla 'GOT' PIC style, we should use relative
8940         // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
8941         if (STI.isPICStyleGOT()) {
8942           // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
8943           // %some_register
8944           BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
8945               .addReg(PC)
8946               .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
8947                                  X86II::MO_GOT_ABSOLUTE_ADDRESS);
8948         }
8949       }
8950 
8951       return true;
8952     }
8953 
getPassName__anon0e6519760611::CGBR8954     StringRef getPassName() const override {
8955       return "X86 PIC Global Base Reg Initialization";
8956     }
8957 
getAnalysisUsage__anon0e6519760611::CGBR8958     void getAnalysisUsage(AnalysisUsage &AU) const override {
8959       AU.setPreservesCFG();
8960       MachineFunctionPass::getAnalysisUsage(AU);
8961     }
8962   };
8963 } // namespace
8964 
8965 char CGBR::ID = 0;
8966 FunctionPass*
createX86GlobalBaseRegPass()8967 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
8968 
8969 namespace {
8970   struct LDTLSCleanup : public MachineFunctionPass {
8971     static char ID;
LDTLSCleanup__anon0e6519760711::LDTLSCleanup8972     LDTLSCleanup() : MachineFunctionPass(ID) {}
8973 
runOnMachineFunction__anon0e6519760711::LDTLSCleanup8974     bool runOnMachineFunction(MachineFunction &MF) override {
8975       if (skipFunction(MF.getFunction()))
8976         return false;
8977 
8978       X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>();
8979       if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
8980         // No point folding accesses if there isn't at least two.
8981         return false;
8982       }
8983 
8984       MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
8985       return VisitNode(DT->getRootNode(), 0);
8986     }
8987 
8988     // Visit the dominator subtree rooted at Node in pre-order.
8989     // If TLSBaseAddrReg is non-null, then use that to replace any
8990     // TLS_base_addr instructions. Otherwise, create the register
8991     // when the first such instruction is seen, and then use it
8992     // as we encounter more instructions.
VisitNode__anon0e6519760711::LDTLSCleanup8993     bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
8994       MachineBasicBlock *BB = Node->getBlock();
8995       bool Changed = false;
8996 
8997       // Traverse the current block.
8998       for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
8999            ++I) {
9000         switch (I->getOpcode()) {
9001           case X86::TLS_base_addr32:
9002           case X86::TLS_base_addr64:
9003             if (TLSBaseAddrReg)
9004               I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
9005             else
9006               I = SetRegister(*I, &TLSBaseAddrReg);
9007             Changed = true;
9008             break;
9009           default:
9010             break;
9011         }
9012       }
9013 
9014       // Visit the children of this block in the dominator tree.
9015       for (auto I = Node->begin(), E = Node->end(); I != E; ++I) {
9016         Changed |= VisitNode(*I, TLSBaseAddrReg);
9017       }
9018 
9019       return Changed;
9020     }
9021 
9022     // Replace the TLS_base_addr instruction I with a copy from
9023     // TLSBaseAddrReg, returning the new instruction.
ReplaceTLSBaseAddrCall__anon0e6519760711::LDTLSCleanup9024     MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I,
9025                                          unsigned TLSBaseAddrReg) {
9026       MachineFunction *MF = I.getParent()->getParent();
9027       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
9028       const bool is64Bit = STI.is64Bit();
9029       const X86InstrInfo *TII = STI.getInstrInfo();
9030 
9031       // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
9032       MachineInstr *Copy =
9033           BuildMI(*I.getParent(), I, I.getDebugLoc(),
9034                   TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX)
9035               .addReg(TLSBaseAddrReg);
9036 
9037       // Erase the TLS_base_addr instruction.
9038       I.eraseFromParent();
9039 
9040       return Copy;
9041     }
9042 
9043     // Create a virtual register in *TLSBaseAddrReg, and populate it by
9044     // inserting a copy instruction after I. Returns the new instruction.
SetRegister__anon0e6519760711::LDTLSCleanup9045     MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
9046       MachineFunction *MF = I.getParent()->getParent();
9047       const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>();
9048       const bool is64Bit = STI.is64Bit();
9049       const X86InstrInfo *TII = STI.getInstrInfo();
9050 
9051       // Create a virtual register for the TLS base address.
9052       MachineRegisterInfo &RegInfo = MF->getRegInfo();
9053       *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
9054                                                       ? &X86::GR64RegClass
9055                                                       : &X86::GR32RegClass);
9056 
9057       // Insert a copy from RAX/EAX to TLSBaseAddrReg.
9058       MachineInstr *Next = I.getNextNode();
9059       MachineInstr *Copy =
9060           BuildMI(*I.getParent(), Next, I.getDebugLoc(),
9061                   TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
9062               .addReg(is64Bit ? X86::RAX : X86::EAX);
9063 
9064       return Copy;
9065     }
9066 
getPassName__anon0e6519760711::LDTLSCleanup9067     StringRef getPassName() const override {
9068       return "Local Dynamic TLS Access Clean-up";
9069     }
9070 
getAnalysisUsage__anon0e6519760711::LDTLSCleanup9071     void getAnalysisUsage(AnalysisUsage &AU) const override {
9072       AU.setPreservesCFG();
9073       AU.addRequired<MachineDominatorTree>();
9074       MachineFunctionPass::getAnalysisUsage(AU);
9075     }
9076   };
9077 }
9078 
9079 char LDTLSCleanup::ID = 0;
9080 FunctionPass*
createCleanupLocalDynamicTLSPass()9081 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
9082 
9083 /// Constants defining how certain sequences should be outlined.
9084 ///
9085 /// \p MachineOutlinerDefault implies that the function is called with a call
9086 /// instruction, and a return must be emitted for the outlined function frame.
9087 ///
9088 /// That is,
9089 ///
9090 /// I1                                 OUTLINED_FUNCTION:
9091 /// I2 --> call OUTLINED_FUNCTION       I1
9092 /// I3                                  I2
9093 ///                                     I3
9094 ///                                     ret
9095 ///
9096 /// * Call construction overhead: 1 (call instruction)
9097 /// * Frame construction overhead: 1 (return instruction)
9098 ///
9099 /// \p MachineOutlinerTailCall implies that the function is being tail called.
9100 /// A jump is emitted instead of a call, and the return is already present in
9101 /// the outlined sequence. That is,
9102 ///
9103 /// I1                                 OUTLINED_FUNCTION:
9104 /// I2 --> jmp OUTLINED_FUNCTION       I1
9105 /// ret                                I2
9106 ///                                    ret
9107 ///
9108 /// * Call construction overhead: 1 (jump instruction)
9109 /// * Frame construction overhead: 0 (don't need to return)
9110 ///
9111 enum MachineOutlinerClass {
9112   MachineOutlinerDefault,
9113   MachineOutlinerTailCall
9114 };
9115 
getOutliningCandidateInfo(std::vector<outliner::Candidate> & RepeatedSequenceLocs) const9116 outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo(
9117     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
9118   unsigned SequenceSize =
9119       std::accumulate(RepeatedSequenceLocs[0].front(),
9120                       std::next(RepeatedSequenceLocs[0].back()), 0,
9121                       [](unsigned Sum, const MachineInstr &MI) {
9122                         // FIXME: x86 doesn't implement getInstSizeInBytes, so
9123                         // we can't tell the cost.  Just assume each instruction
9124                         // is one byte.
9125                         if (MI.isDebugInstr() || MI.isKill())
9126                           return Sum;
9127                         return Sum + 1;
9128                       });
9129 
9130   // We check to see if CFI Instructions are present, and if they are
9131   // we find the number of CFI Instructions in the candidates.
9132   unsigned CFICount = 0;
9133   MachineBasicBlock::iterator MBBI = RepeatedSequenceLocs[0].front();
9134   for (unsigned Loc = RepeatedSequenceLocs[0].getStartIdx();
9135        Loc < RepeatedSequenceLocs[0].getEndIdx() + 1; Loc++) {
9136     const std::vector<MCCFIInstruction> &CFIInstructions =
9137         RepeatedSequenceLocs[0].getMF()->getFrameInstructions();
9138     if (MBBI->isCFIInstruction()) {
9139       unsigned CFIIndex = MBBI->getOperand(0).getCFIIndex();
9140       MCCFIInstruction CFI = CFIInstructions[CFIIndex];
9141       CFICount++;
9142     }
9143     MBBI++;
9144   }
9145 
9146   // We compare the number of found CFI Instructions to  the number of CFI
9147   // instructions in the parent function for each candidate.  We must check this
9148   // since if we outline one of the CFI instructions in a function, we have to
9149   // outline them all for correctness. If we do not, the address offsets will be
9150   // incorrect between the two sections of the program.
9151   for (outliner::Candidate &C : RepeatedSequenceLocs) {
9152     std::vector<MCCFIInstruction> CFIInstructions =
9153         C.getMF()->getFrameInstructions();
9154 
9155     if (CFICount > 0 && CFICount != CFIInstructions.size())
9156       return outliner::OutlinedFunction();
9157   }
9158 
9159   // FIXME: Use real size in bytes for call and ret instructions.
9160   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
9161     for (outliner::Candidate &C : RepeatedSequenceLocs)
9162       C.setCallInfo(MachineOutlinerTailCall, 1);
9163 
9164     return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
9165                                       0, // Number of bytes to emit frame.
9166                                       MachineOutlinerTailCall // Type of frame.
9167     );
9168   }
9169 
9170   if (CFICount > 0)
9171     return outliner::OutlinedFunction();
9172 
9173   for (outliner::Candidate &C : RepeatedSequenceLocs)
9174     C.setCallInfo(MachineOutlinerDefault, 1);
9175 
9176   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1,
9177                                     MachineOutlinerDefault);
9178 }
9179 
isFunctionSafeToOutlineFrom(MachineFunction & MF,bool OutlineFromLinkOnceODRs) const9180 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF,
9181                                            bool OutlineFromLinkOnceODRs) const {
9182   const Function &F = MF.getFunction();
9183 
9184   // Does the function use a red zone? If it does, then we can't risk messing
9185   // with the stack.
9186   if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) {
9187     // It could have a red zone. If it does, then we don't want to touch it.
9188     const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
9189     if (!X86FI || X86FI->getUsesRedZone())
9190       return false;
9191   }
9192 
9193   // If we *don't* want to outline from things that could potentially be deduped
9194   // then return false.
9195   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
9196       return false;
9197 
9198   // This function is viable for outlining, so return true.
9199   return true;
9200 }
9201 
9202 outliner::InstrType
getOutliningType(MachineBasicBlock::iterator & MIT,unsigned Flags) const9203 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,  unsigned Flags) const {
9204   MachineInstr &MI = *MIT;
9205   // Don't allow debug values to impact outlining type.
9206   if (MI.isDebugInstr() || MI.isIndirectDebugValue())
9207     return outliner::InstrType::Invisible;
9208 
9209   // At this point, KILL instructions don't really tell us much so we can go
9210   // ahead and skip over them.
9211   if (MI.isKill())
9212     return outliner::InstrType::Invisible;
9213 
9214   // Is this a tail call? If yes, we can outline as a tail call.
9215   if (isTailCall(MI))
9216     return outliner::InstrType::Legal;
9217 
9218   // Is this the terminator of a basic block?
9219   if (MI.isTerminator() || MI.isReturn()) {
9220 
9221     // Does its parent have any successors in its MachineFunction?
9222     if (MI.getParent()->succ_empty())
9223       return outliner::InstrType::Legal;
9224 
9225     // It does, so we can't tail call it.
9226     return outliner::InstrType::Illegal;
9227   }
9228 
9229   // Don't outline anything that modifies or reads from the stack pointer.
9230   //
9231   // FIXME: There are instructions which are being manually built without
9232   // explicit uses/defs so we also have to check the MCInstrDesc. We should be
9233   // able to remove the extra checks once those are fixed up. For example,
9234   // sometimes we might get something like %rax = POP64r 1. This won't be
9235   // caught by modifiesRegister or readsRegister even though the instruction
9236   // really ought to be formed so that modifiesRegister/readsRegister would
9237   // catch it.
9238   if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
9239       MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
9240       MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
9241     return outliner::InstrType::Illegal;
9242 
9243   // Outlined calls change the instruction pointer, so don't read from it.
9244   if (MI.readsRegister(X86::RIP, &RI) ||
9245       MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
9246       MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
9247     return outliner::InstrType::Illegal;
9248 
9249   // Positions can't safely be outlined.
9250   if (MI.isPosition())
9251     return outliner::InstrType::Illegal;
9252 
9253   // Make sure none of the operands of this instruction do anything tricky.
9254   for (const MachineOperand &MOP : MI.operands())
9255     if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
9256         MOP.isTargetIndex())
9257       return outliner::InstrType::Illegal;
9258 
9259   return outliner::InstrType::Legal;
9260 }
9261 
buildOutlinedFrame(MachineBasicBlock & MBB,MachineFunction & MF,const outliner::OutlinedFunction & OF) const9262 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB,
9263                                           MachineFunction &MF,
9264                                           const outliner::OutlinedFunction &OF)
9265                                           const {
9266   // If we're a tail call, we already have a return, so don't do anything.
9267   if (OF.FrameConstructionID == MachineOutlinerTailCall)
9268     return;
9269 
9270   // We're a normal call, so our sequence doesn't have a return instruction.
9271   // Add it in.
9272   MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
9273   MBB.insert(MBB.end(), retq);
9274 }
9275 
9276 MachineBasicBlock::iterator
insertOutlinedCall(Module & M,MachineBasicBlock & MBB,MachineBasicBlock::iterator & It,MachineFunction & MF,const outliner::Candidate & C) const9277 X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
9278                                  MachineBasicBlock::iterator &It,
9279                                  MachineFunction &MF,
9280                                  const outliner::Candidate &C) const {
9281   // Is it a tail call?
9282   if (C.CallConstructionID == MachineOutlinerTailCall) {
9283     // Yes, just insert a JMP.
9284     It = MBB.insert(It,
9285                   BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64))
9286                       .addGlobalAddress(M.getNamedValue(MF.getName())));
9287   } else {
9288     // No, insert a call.
9289     It = MBB.insert(It,
9290                   BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
9291                       .addGlobalAddress(M.getNamedValue(MF.getName())));
9292   }
9293 
9294   return It;
9295 }
9296 
9297 #define GET_INSTRINFO_HELPERS
9298 #include "X86GenInstrInfo.inc"
9299