1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/InstCombine/InstCombiner.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
36 
37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
38 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
39 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
41 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
42 /// the alloca, and if the source pointer is a pointer to a constant global, we
43 /// can optimize this.
44 static bool
isOnlyCopiedFromConstantMemory(AAResults * AA,Value * V,MemTransferInst * & TheCopy,SmallVectorImpl<Instruction * > & ToDelete)45 isOnlyCopiedFromConstantMemory(AAResults *AA,
46                                Value *V, MemTransferInst *&TheCopy,
47                                SmallVectorImpl<Instruction *> &ToDelete) {
48   // We track lifetime intrinsics as we encounter them.  If we decide to go
49   // ahead and replace the value with the global, this lets the caller quickly
50   // eliminate the markers.
51 
52   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
53   ValuesToInspect.emplace_back(V, false);
54   while (!ValuesToInspect.empty()) {
55     auto ValuePair = ValuesToInspect.pop_back_val();
56     const bool IsOffset = ValuePair.second;
57     for (auto &U : ValuePair.first->uses()) {
58       auto *I = cast<Instruction>(U.getUser());
59 
60       if (auto *LI = dyn_cast<LoadInst>(I)) {
61         // Ignore non-volatile loads, they are always ok.
62         if (!LI->isSimple()) return false;
63         continue;
64       }
65 
66       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
67         // If uses of the bitcast are ok, we are ok.
68         ValuesToInspect.emplace_back(I, IsOffset);
69         continue;
70       }
71       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
72         // If the GEP has all zero indices, it doesn't offset the pointer. If it
73         // doesn't, it does.
74         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
75         continue;
76       }
77 
78       if (auto *Call = dyn_cast<CallBase>(I)) {
79         // If this is the function being called then we treat it like a load and
80         // ignore it.
81         if (Call->isCallee(&U))
82           continue;
83 
84         unsigned DataOpNo = Call->getDataOperandNo(&U);
85         bool IsArgOperand = Call->isArgOperand(&U);
86 
87         // Inalloca arguments are clobbered by the call.
88         if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
89           return false;
90 
91         // If this is a readonly/readnone call site, then we know it is just a
92         // load (but one that potentially returns the value itself), so we can
93         // ignore it if we know that the value isn't captured.
94         if (Call->onlyReadsMemory() &&
95             (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
96           continue;
97 
98         // If this is being passed as a byval argument, the caller is making a
99         // copy, so it is only a read of the alloca.
100         if (IsArgOperand && Call->isByValArgument(DataOpNo))
101           continue;
102       }
103 
104       // Lifetime intrinsics can be handled by the caller.
105       if (I->isLifetimeStartOrEnd()) {
106         assert(I->use_empty() && "Lifetime markers have no result to use!");
107         ToDelete.push_back(I);
108         continue;
109       }
110 
111       // If this is isn't our memcpy/memmove, reject it as something we can't
112       // handle.
113       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
114       if (!MI)
115         return false;
116 
117       // If the transfer is using the alloca as a source of the transfer, then
118       // ignore it since it is a load (unless the transfer is volatile).
119       if (U.getOperandNo() == 1) {
120         if (MI->isVolatile()) return false;
121         continue;
122       }
123 
124       // If we already have seen a copy, reject the second one.
125       if (TheCopy) return false;
126 
127       // If the pointer has been offset from the start of the alloca, we can't
128       // safely handle this.
129       if (IsOffset) return false;
130 
131       // If the memintrinsic isn't using the alloca as the dest, reject it.
132       if (U.getOperandNo() != 0) return false;
133 
134       // If the source of the memcpy/move is not a constant global, reject it.
135       if (!AA->pointsToConstantMemory(MI->getSource()))
136         return false;
137 
138       // Otherwise, the transform is safe.  Remember the copy instruction.
139       TheCopy = MI;
140     }
141   }
142   return true;
143 }
144 
145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
146 /// modified by a copy from a constant global.  If we can prove this, we can
147 /// replace any uses of the alloca with uses of the global directly.
148 static MemTransferInst *
isOnlyCopiedFromConstantMemory(AAResults * AA,AllocaInst * AI,SmallVectorImpl<Instruction * > & ToDelete)149 isOnlyCopiedFromConstantMemory(AAResults *AA,
150                                AllocaInst *AI,
151                                SmallVectorImpl<Instruction *> &ToDelete) {
152   MemTransferInst *TheCopy = nullptr;
153   if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
154     return TheCopy;
155   return nullptr;
156 }
157 
158 /// Returns true if V is dereferenceable for size of alloca.
isDereferenceableForAllocaSize(const Value * V,const AllocaInst * AI,const DataLayout & DL)159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
160                                            const DataLayout &DL) {
161   if (AI->isArrayAllocation())
162     return false;
163   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
164   if (!AllocaSize)
165     return false;
166   return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()),
167                                             APInt(64, AllocaSize), DL);
168 }
169 
simplifyAllocaArraySize(InstCombinerImpl & IC,AllocaInst & AI)170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC,
171                                             AllocaInst &AI) {
172   // Check for array size of 1 (scalar allocation).
173   if (!AI.isArrayAllocation()) {
174     // i32 1 is the canonical array size for scalar allocations.
175     if (AI.getArraySize()->getType()->isIntegerTy(32))
176       return nullptr;
177 
178     // Canonicalize it.
179     return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
180   }
181 
182   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
183   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
184     if (C->getValue().getActiveBits() <= 64) {
185       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
186       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
187       New->setAlignment(AI.getAlign());
188 
189       // Scan to the end of the allocation instructions, to skip over a block of
190       // allocas if possible...also skip interleaved debug info
191       //
192       BasicBlock::iterator It(New);
193       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
194         ++It;
195 
196       // Now that I is pointing to the first non-allocation-inst in the block,
197       // insert our getelementptr instruction...
198       //
199       Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
200       Value *NullIdx = Constant::getNullValue(IdxTy);
201       Value *Idx[2] = {NullIdx, NullIdx};
202       Instruction *NewI = GetElementPtrInst::CreateInBounds(
203           NewTy, New, Idx, New->getName() + ".sub");
204       IC.InsertNewInstBefore(NewI, *It);
205 
206       // Gracefully handle allocas in other address spaces.
207       if (AI.getType()->getPointerAddressSpace() !=
208           NewI->getType()->getPointerAddressSpace()) {
209         NewI =
210             CastInst::CreatePointerBitCastOrAddrSpaceCast(NewI, AI.getType());
211         IC.InsertNewInstBefore(NewI, *It);
212       }
213 
214       // Now make everything use the getelementptr instead of the original
215       // allocation.
216       return IC.replaceInstUsesWith(AI, NewI);
217     }
218   }
219 
220   if (isa<UndefValue>(AI.getArraySize()))
221     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
222 
223   // Ensure that the alloca array size argument has type intptr_t, so that
224   // any casting is exposed early.
225   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
226   if (AI.getArraySize()->getType() != IntPtrTy) {
227     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
228     return IC.replaceOperand(AI, 0, V);
229   }
230 
231   return nullptr;
232 }
233 
234 namespace {
235 // If I and V are pointers in different address space, it is not allowed to
236 // use replaceAllUsesWith since I and V have different types. A
237 // non-target-specific transformation should not use addrspacecast on V since
238 // the two address space may be disjoint depending on target.
239 //
240 // This class chases down uses of the old pointer until reaching the load
241 // instructions, then replaces the old pointer in the load instructions with
242 // the new pointer. If during the chasing it sees bitcast or GEP, it will
243 // create new bitcast or GEP with the new pointer and use them in the load
244 // instruction.
245 class PointerReplacer {
246 public:
PointerReplacer(InstCombinerImpl & IC)247   PointerReplacer(InstCombinerImpl &IC) : IC(IC) {}
248 
249   bool collectUsers(Instruction &I);
250   void replacePointer(Instruction &I, Value *V);
251 
252 private:
253   void replace(Instruction *I);
254   Value *getReplacement(Value *I);
255 
256   SmallSetVector<Instruction *, 4> Worklist;
257   MapVector<Value *, Value *> WorkMap;
258   InstCombinerImpl &IC;
259 };
260 } // end anonymous namespace
261 
collectUsers(Instruction & I)262 bool PointerReplacer::collectUsers(Instruction &I) {
263   for (auto U : I.users()) {
264     auto *Inst = cast<Instruction>(&*U);
265     if (auto *Load = dyn_cast<LoadInst>(Inst)) {
266       if (Load->isVolatile())
267         return false;
268       Worklist.insert(Load);
269     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
270       Worklist.insert(Inst);
271       if (!collectUsers(*Inst))
272         return false;
273     } else if (auto *MI = dyn_cast<MemTransferInst>(Inst)) {
274       if (MI->isVolatile())
275         return false;
276       Worklist.insert(Inst);
277     } else if (Inst->isLifetimeStartOrEnd()) {
278       continue;
279     } else {
280       LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n');
281       return false;
282     }
283   }
284 
285   return true;
286 }
287 
getReplacement(Value * V)288 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); }
289 
replace(Instruction * I)290 void PointerReplacer::replace(Instruction *I) {
291   if (getReplacement(I))
292     return;
293 
294   if (auto *LT = dyn_cast<LoadInst>(I)) {
295     auto *V = getReplacement(LT->getPointerOperand());
296     assert(V && "Operand not replaced");
297     auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(),
298                               LT->getAlign(), LT->getOrdering(),
299                               LT->getSyncScopeID());
300     NewI->takeName(LT);
301     copyMetadataForLoad(*NewI, *LT);
302 
303     IC.InsertNewInstWith(NewI, *LT);
304     IC.replaceInstUsesWith(*LT, NewI);
305     WorkMap[LT] = NewI;
306   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
307     auto *V = getReplacement(GEP->getPointerOperand());
308     assert(V && "Operand not replaced");
309     SmallVector<Value *, 8> Indices;
310     Indices.append(GEP->idx_begin(), GEP->idx_end());
311     auto *NewI = GetElementPtrInst::Create(
312         V->getType()->getPointerElementType(), V, Indices);
313     IC.InsertNewInstWith(NewI, *GEP);
314     NewI->takeName(GEP);
315     WorkMap[GEP] = NewI;
316   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
317     auto *V = getReplacement(BC->getOperand(0));
318     assert(V && "Operand not replaced");
319     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
320                                   V->getType()->getPointerAddressSpace());
321     auto *NewI = new BitCastInst(V, NewT);
322     IC.InsertNewInstWith(NewI, *BC);
323     NewI->takeName(BC);
324     WorkMap[BC] = NewI;
325   } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) {
326     auto *SrcV = getReplacement(MemCpy->getRawSource());
327     // The pointer may appear in the destination of a copy, but we don't want to
328     // replace it.
329     if (!SrcV) {
330       assert(getReplacement(MemCpy->getRawDest()) &&
331              "destination not in replace list");
332       return;
333     }
334 
335     IC.Builder.SetInsertPoint(MemCpy);
336     auto *NewI = IC.Builder.CreateMemTransferInst(
337         MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(),
338         SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(),
339         MemCpy->isVolatile());
340     AAMDNodes AAMD = MemCpy->getAAMetadata();
341     if (AAMD)
342       NewI->setAAMetadata(AAMD);
343 
344     IC.eraseInstFromFunction(*MemCpy);
345     WorkMap[MemCpy] = NewI;
346   } else {
347     llvm_unreachable("should never reach here");
348   }
349 }
350 
replacePointer(Instruction & I,Value * V)351 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
352 #ifndef NDEBUG
353   auto *PT = cast<PointerType>(I.getType());
354   auto *NT = cast<PointerType>(V->getType());
355   assert(PT != NT && PT->getElementType() == NT->getElementType() &&
356          "Invalid usage");
357 #endif
358   WorkMap[&I] = V;
359 
360   for (Instruction *Workitem : Worklist)
361     replace(Workitem);
362 }
363 
visitAllocaInst(AllocaInst & AI)364 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) {
365   if (auto *I = simplifyAllocaArraySize(*this, AI))
366     return I;
367 
368   if (AI.getAllocatedType()->isSized()) {
369     // Move all alloca's of zero byte objects to the entry block and merge them
370     // together.  Note that we only do this for alloca's, because malloc should
371     // allocate and return a unique pointer, even for a zero byte allocation.
372     if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) {
373       // For a zero sized alloca there is no point in doing an array allocation.
374       // This is helpful if the array size is a complicated expression not used
375       // elsewhere.
376       if (AI.isArrayAllocation())
377         return replaceOperand(AI, 0,
378             ConstantInt::get(AI.getArraySize()->getType(), 1));
379 
380       // Get the first instruction in the entry block.
381       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
382       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
383       if (FirstInst != &AI) {
384         // If the entry block doesn't start with a zero-size alloca then move
385         // this one to the start of the entry block.  There is no problem with
386         // dominance as the array size was forced to a constant earlier already.
387         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
388         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
389             DL.getTypeAllocSize(EntryAI->getAllocatedType())
390                     .getKnownMinSize() != 0) {
391           AI.moveBefore(FirstInst);
392           return &AI;
393         }
394 
395         // Replace this zero-sized alloca with the one at the start of the entry
396         // block after ensuring that the address will be aligned enough for both
397         // types.
398         const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign());
399         EntryAI->setAlignment(MaxAlign);
400         if (AI.getType() != EntryAI->getType())
401           return new BitCastInst(EntryAI, AI.getType());
402         return replaceInstUsesWith(AI, EntryAI);
403       }
404     }
405   }
406 
407   // Check to see if this allocation is only modified by a memcpy/memmove from
408   // a constant whose alignment is equal to or exceeds that of the allocation.
409   // If this is the case, we can change all users to use the constant global
410   // instead.  This is commonly produced by the CFE by constructs like "void
411   // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently
412   // read.
413   SmallVector<Instruction *, 4> ToDelete;
414   if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
415     Value *TheSrc = Copy->getSource();
416     Align AllocaAlign = AI.getAlign();
417     Align SourceAlign = getOrEnforceKnownAlignment(
418       TheSrc, AllocaAlign, DL, &AI, &AC, &DT);
419     if (AllocaAlign <= SourceAlign &&
420         isDereferenceableForAllocaSize(TheSrc, &AI, DL) &&
421         !isa<Instruction>(TheSrc)) {
422       // FIXME: Can we sink instructions without violating dominance when TheSrc
423       // is an instruction instead of a constant or argument?
424       LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
425       LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
426       unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace();
427       auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace);
428       if (AI.getType()->getAddressSpace() == SrcAddrSpace) {
429         for (Instruction *Delete : ToDelete)
430           eraseInstFromFunction(*Delete);
431 
432         Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
433         Instruction *NewI = replaceInstUsesWith(AI, Cast);
434         eraseInstFromFunction(*Copy);
435         ++NumGlobalCopies;
436         return NewI;
437       }
438 
439       PointerReplacer PtrReplacer(*this);
440       if (PtrReplacer.collectUsers(AI)) {
441         for (Instruction *Delete : ToDelete)
442           eraseInstFromFunction(*Delete);
443 
444         Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
445         PtrReplacer.replacePointer(AI, Cast);
446         ++NumGlobalCopies;
447       }
448     }
449   }
450 
451   // At last, use the generic allocation site handler to aggressively remove
452   // unused allocas.
453   return visitAllocSite(AI);
454 }
455 
456 // Are we allowed to form a atomic load or store of this type?
isSupportedAtomicType(Type * Ty)457 static bool isSupportedAtomicType(Type *Ty) {
458   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
459 }
460 
461 /// Helper to combine a load to a new type.
462 ///
463 /// This just does the work of combining a load to a new type. It handles
464 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
465 /// loaded *value* type. This will convert it to a pointer, cast the operand to
466 /// that pointer type, load it, etc.
467 ///
468 /// Note that this will create all of the instructions with whatever insert
469 /// point the \c InstCombinerImpl currently is using.
combineLoadToNewType(LoadInst & LI,Type * NewTy,const Twine & Suffix)470 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy,
471                                                  const Twine &Suffix) {
472   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
473          "can't fold an atomic load to requested type");
474 
475   Value *Ptr = LI.getPointerOperand();
476   unsigned AS = LI.getPointerAddressSpace();
477   Type *NewPtrTy = NewTy->getPointerTo(AS);
478   Value *NewPtr = nullptr;
479   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
480         NewPtr->getType() == NewPtrTy))
481     NewPtr = Builder.CreateBitCast(Ptr, NewPtrTy);
482 
483   LoadInst *NewLoad = Builder.CreateAlignedLoad(
484       NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix);
485   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
486   copyMetadataForLoad(*NewLoad, LI);
487   return NewLoad;
488 }
489 
490 /// Combine a store to a new type.
491 ///
492 /// Returns the newly created store instruction.
combineStoreToNewValue(InstCombinerImpl & IC,StoreInst & SI,Value * V)493 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI,
494                                          Value *V) {
495   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
496          "can't fold an atomic store of requested type");
497 
498   Value *Ptr = SI.getPointerOperand();
499   unsigned AS = SI.getPointerAddressSpace();
500   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
501   SI.getAllMetadata(MD);
502 
503   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
504       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
505       SI.getAlign(), SI.isVolatile());
506   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
507   for (const auto &MDPair : MD) {
508     unsigned ID = MDPair.first;
509     MDNode *N = MDPair.second;
510     // Note, essentially every kind of metadata should be preserved here! This
511     // routine is supposed to clone a store instruction changing *only its
512     // type*. The only metadata it makes sense to drop is metadata which is
513     // invalidated when the pointer type changes. This should essentially
514     // never be the case in LLVM, but we explicitly switch over only known
515     // metadata to be conservatively correct. If you are adding metadata to
516     // LLVM which pertains to stores, you almost certainly want to add it
517     // here.
518     switch (ID) {
519     case LLVMContext::MD_dbg:
520     case LLVMContext::MD_tbaa:
521     case LLVMContext::MD_prof:
522     case LLVMContext::MD_fpmath:
523     case LLVMContext::MD_tbaa_struct:
524     case LLVMContext::MD_alias_scope:
525     case LLVMContext::MD_noalias:
526     case LLVMContext::MD_nontemporal:
527     case LLVMContext::MD_mem_parallel_loop_access:
528     case LLVMContext::MD_access_group:
529       // All of these directly apply.
530       NewStore->setMetadata(ID, N);
531       break;
532     case LLVMContext::MD_invariant_load:
533     case LLVMContext::MD_nonnull:
534     case LLVMContext::MD_noundef:
535     case LLVMContext::MD_range:
536     case LLVMContext::MD_align:
537     case LLVMContext::MD_dereferenceable:
538     case LLVMContext::MD_dereferenceable_or_null:
539       // These don't apply for stores.
540       break;
541     }
542   }
543 
544   return NewStore;
545 }
546 
547 /// Returns true if instruction represent minmax pattern like:
548 ///   select ((cmp load V1, load V2), V1, V2).
isMinMaxWithLoads(Value * V,Type * & LoadTy)549 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
550   assert(V->getType()->isPointerTy() && "Expected pointer type.");
551   // Ignore possible ty* to ixx* bitcast.
552   V = InstCombiner::peekThroughBitcast(V);
553   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
554   // pattern.
555   CmpInst::Predicate Pred;
556   Instruction *L1;
557   Instruction *L2;
558   Value *LHS;
559   Value *RHS;
560   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
561                          m_Value(LHS), m_Value(RHS))))
562     return false;
563   LoadTy = L1->getType();
564   return (match(L1, m_Load(m_Specific(LHS))) &&
565           match(L2, m_Load(m_Specific(RHS)))) ||
566          (match(L1, m_Load(m_Specific(RHS))) &&
567           match(L2, m_Load(m_Specific(LHS))));
568 }
569 
570 /// Combine loads to match the type of their uses' value after looking
571 /// through intervening bitcasts.
572 ///
573 /// The core idea here is that if the result of a load is used in an operation,
574 /// we should load the type most conducive to that operation. For example, when
575 /// loading an integer and converting that immediately to a pointer, we should
576 /// instead directly load a pointer.
577 ///
578 /// However, this routine must never change the width of a load or the number of
579 /// loads as that would introduce a semantic change. This combine is expected to
580 /// be a semantic no-op which just allows loads to more closely model the types
581 /// of their consuming operations.
582 ///
583 /// Currently, we also refuse to change the precise type used for an atomic load
584 /// or a volatile load. This is debatable, and might be reasonable to change
585 /// later. However, it is risky in case some backend or other part of LLVM is
586 /// relying on the exact type loaded to select appropriate atomic operations.
combineLoadToOperationType(InstCombinerImpl & IC,LoadInst & LI)587 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC,
588                                                LoadInst &LI) {
589   // FIXME: We could probably with some care handle both volatile and ordered
590   // atomic loads here but it isn't clear that this is important.
591   if (!LI.isUnordered())
592     return nullptr;
593 
594   if (LI.use_empty())
595     return nullptr;
596 
597   // swifterror values can't be bitcasted.
598   if (LI.getPointerOperand()->isSwiftError())
599     return nullptr;
600 
601   const DataLayout &DL = IC.getDataLayout();
602 
603   // Fold away bit casts of the loaded value by loading the desired type.
604   // Note that we should not do this for pointer<->integer casts,
605   // because that would result in type punning.
606   if (LI.hasOneUse()) {
607     // Don't transform when the type is x86_amx, it makes the pass that lower
608     // x86_amx type happy.
609     if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) {
610       assert(!LI.getType()->isX86_AMXTy() &&
611              "load from x86_amx* should not happen!");
612       if (BC->getType()->isX86_AMXTy())
613         return nullptr;
614     }
615 
616     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
617       if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() ==
618                                     CI->getDestTy()->isPtrOrPtrVectorTy())
619         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
620           LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
621           CI->replaceAllUsesWith(NewLoad);
622           IC.eraseInstFromFunction(*CI);
623           return &LI;
624         }
625   }
626 
627   // FIXME: We should also canonicalize loads of vectors when their elements are
628   // cast to other types.
629   return nullptr;
630 }
631 
unpackLoadToAggregate(InstCombinerImpl & IC,LoadInst & LI)632 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) {
633   // FIXME: We could probably with some care handle both volatile and atomic
634   // stores here but it isn't clear that this is important.
635   if (!LI.isSimple())
636     return nullptr;
637 
638   Type *T = LI.getType();
639   if (!T->isAggregateType())
640     return nullptr;
641 
642   StringRef Name = LI.getName();
643   assert(LI.getAlignment() && "Alignment must be set at this point");
644 
645   if (auto *ST = dyn_cast<StructType>(T)) {
646     // If the struct only have one element, we unpack.
647     auto NumElements = ST->getNumElements();
648     if (NumElements == 1) {
649       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
650                                                   ".unpack");
651       NewLoad->setAAMetadata(LI.getAAMetadata());
652       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
653         UndefValue::get(T), NewLoad, 0, Name));
654     }
655 
656     // We don't want to break loads with padding here as we'd loose
657     // the knowledge that padding exists for the rest of the pipeline.
658     const DataLayout &DL = IC.getDataLayout();
659     auto *SL = DL.getStructLayout(ST);
660     if (SL->hasPadding())
661       return nullptr;
662 
663     const auto Align = LI.getAlign();
664     auto *Addr = LI.getPointerOperand();
665     auto *IdxType = Type::getInt32Ty(T->getContext());
666     auto *Zero = ConstantInt::get(IdxType, 0);
667 
668     Value *V = UndefValue::get(T);
669     for (unsigned i = 0; i < NumElements; i++) {
670       Value *Indices[2] = {
671         Zero,
672         ConstantInt::get(IdxType, i),
673       };
674       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
675                                                Name + ".elt");
676       auto *L = IC.Builder.CreateAlignedLoad(
677           ST->getElementType(i), Ptr,
678           commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
679       // Propagate AA metadata. It'll still be valid on the narrowed load.
680       L->setAAMetadata(LI.getAAMetadata());
681       V = IC.Builder.CreateInsertValue(V, L, i);
682     }
683 
684     V->setName(Name);
685     return IC.replaceInstUsesWith(LI, V);
686   }
687 
688   if (auto *AT = dyn_cast<ArrayType>(T)) {
689     auto *ET = AT->getElementType();
690     auto NumElements = AT->getNumElements();
691     if (NumElements == 1) {
692       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
693       NewLoad->setAAMetadata(LI.getAAMetadata());
694       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
695         UndefValue::get(T), NewLoad, 0, Name));
696     }
697 
698     // Bail out if the array is too large. Ideally we would like to optimize
699     // arrays of arbitrary size but this has a terrible impact on compile time.
700     // The threshold here is chosen arbitrarily, maybe needs a little bit of
701     // tuning.
702     if (NumElements > IC.MaxArraySizeForCombine)
703       return nullptr;
704 
705     const DataLayout &DL = IC.getDataLayout();
706     auto EltSize = DL.getTypeAllocSize(ET);
707     const auto Align = LI.getAlign();
708 
709     auto *Addr = LI.getPointerOperand();
710     auto *IdxType = Type::getInt64Ty(T->getContext());
711     auto *Zero = ConstantInt::get(IdxType, 0);
712 
713     Value *V = UndefValue::get(T);
714     uint64_t Offset = 0;
715     for (uint64_t i = 0; i < NumElements; i++) {
716       Value *Indices[2] = {
717         Zero,
718         ConstantInt::get(IdxType, i),
719       };
720       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
721                                                Name + ".elt");
722       auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
723                                              commonAlignment(Align, Offset),
724                                              Name + ".unpack");
725       L->setAAMetadata(LI.getAAMetadata());
726       V = IC.Builder.CreateInsertValue(V, L, i);
727       Offset += EltSize;
728     }
729 
730     V->setName(Name);
731     return IC.replaceInstUsesWith(LI, V);
732   }
733 
734   return nullptr;
735 }
736 
737 // If we can determine that all possible objects pointed to by the provided
738 // pointer value are, not only dereferenceable, but also definitively less than
739 // or equal to the provided maximum size, then return true. Otherwise, return
740 // false (constant global values and allocas fall into this category).
741 //
742 // FIXME: This should probably live in ValueTracking (or similar).
isObjectSizeLessThanOrEq(Value * V,uint64_t MaxSize,const DataLayout & DL)743 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
744                                      const DataLayout &DL) {
745   SmallPtrSet<Value *, 4> Visited;
746   SmallVector<Value *, 4> Worklist(1, V);
747 
748   do {
749     Value *P = Worklist.pop_back_val();
750     P = P->stripPointerCasts();
751 
752     if (!Visited.insert(P).second)
753       continue;
754 
755     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
756       Worklist.push_back(SI->getTrueValue());
757       Worklist.push_back(SI->getFalseValue());
758       continue;
759     }
760 
761     if (PHINode *PN = dyn_cast<PHINode>(P)) {
762       append_range(Worklist, PN->incoming_values());
763       continue;
764     }
765 
766     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
767       if (GA->isInterposable())
768         return false;
769       Worklist.push_back(GA->getAliasee());
770       continue;
771     }
772 
773     // If we know how big this object is, and it is less than MaxSize, continue
774     // searching. Otherwise, return false.
775     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
776       if (!AI->getAllocatedType()->isSized())
777         return false;
778 
779       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
780       if (!CS)
781         return false;
782 
783       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
784       // Make sure that, even if the multiplication below would wrap as an
785       // uint64_t, we still do the right thing.
786       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
787         return false;
788       continue;
789     }
790 
791     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
792       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
793         return false;
794 
795       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
796       if (InitSize > MaxSize)
797         return false;
798       continue;
799     }
800 
801     return false;
802   } while (!Worklist.empty());
803 
804   return true;
805 }
806 
807 // If we're indexing into an object of a known size, and the outer index is
808 // not a constant, but having any value but zero would lead to undefined
809 // behavior, replace it with zero.
810 //
811 // For example, if we have:
812 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
813 // ...
814 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
815 // ... = load i32* %arrayidx, align 4
816 // Then we know that we can replace %x in the GEP with i64 0.
817 //
818 // FIXME: We could fold any GEP index to zero that would cause UB if it were
819 // not zero. Currently, we only handle the first such index. Also, we could
820 // also search through non-zero constant indices if we kept track of the
821 // offsets those indices implied.
canReplaceGEPIdxWithZero(InstCombinerImpl & IC,GetElementPtrInst * GEPI,Instruction * MemI,unsigned & Idx)822 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC,
823                                      GetElementPtrInst *GEPI, Instruction *MemI,
824                                      unsigned &Idx) {
825   if (GEPI->getNumOperands() < 2)
826     return false;
827 
828   // Find the first non-zero index of a GEP. If all indices are zero, return
829   // one past the last index.
830   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
831     unsigned I = 1;
832     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
833       Value *V = GEPI->getOperand(I);
834       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
835         if (CI->isZero())
836           continue;
837 
838       break;
839     }
840 
841     return I;
842   };
843 
844   // Skip through initial 'zero' indices, and find the corresponding pointer
845   // type. See if the next index is not a constant.
846   Idx = FirstNZIdx(GEPI);
847   if (Idx == GEPI->getNumOperands())
848     return false;
849   if (isa<Constant>(GEPI->getOperand(Idx)))
850     return false;
851 
852   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
853   Type *SourceElementType = GEPI->getSourceElementType();
854   // Size information about scalable vectors is not available, so we cannot
855   // deduce whether indexing at n is undefined behaviour or not. Bail out.
856   if (isa<ScalableVectorType>(SourceElementType))
857     return false;
858 
859   Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops);
860   if (!AllocTy || !AllocTy->isSized())
861     return false;
862   const DataLayout &DL = IC.getDataLayout();
863   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize();
864 
865   // If there are more indices after the one we might replace with a zero, make
866   // sure they're all non-negative. If any of them are negative, the overall
867   // address being computed might be before the base address determined by the
868   // first non-zero index.
869   auto IsAllNonNegative = [&]() {
870     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
871       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
872       if (Known.isNonNegative())
873         continue;
874       return false;
875     }
876 
877     return true;
878   };
879 
880   // FIXME: If the GEP is not inbounds, and there are extra indices after the
881   // one we'll replace, those could cause the address computation to wrap
882   // (rendering the IsAllNonNegative() check below insufficient). We can do
883   // better, ignoring zero indices (and other indices we can prove small
884   // enough not to wrap).
885   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
886     return false;
887 
888   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
889   // also known to be dereferenceable.
890   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
891          IsAllNonNegative();
892 }
893 
894 // If we're indexing into an object with a variable index for the memory
895 // access, but the object has only one element, we can assume that the index
896 // will always be zero. If we replace the GEP, return it.
897 template <typename T>
replaceGEPIdxWithZero(InstCombinerImpl & IC,Value * Ptr,T & MemI)898 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr,
899                                           T &MemI) {
900   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
901     unsigned Idx;
902     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
903       Instruction *NewGEPI = GEPI->clone();
904       NewGEPI->setOperand(Idx,
905         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
906       NewGEPI->insertBefore(GEPI);
907       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
908       return NewGEPI;
909     }
910   }
911 
912   return nullptr;
913 }
914 
canSimplifyNullStoreOrGEP(StoreInst & SI)915 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
916   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
917     return false;
918 
919   auto *Ptr = SI.getPointerOperand();
920   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
921     Ptr = GEPI->getOperand(0);
922   return (isa<ConstantPointerNull>(Ptr) &&
923           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
924 }
925 
canSimplifyNullLoadOrGEP(LoadInst & LI,Value * Op)926 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
927   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
928     const Value *GEPI0 = GEPI->getOperand(0);
929     if (isa<ConstantPointerNull>(GEPI0) &&
930         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
931       return true;
932   }
933   if (isa<UndefValue>(Op) ||
934       (isa<ConstantPointerNull>(Op) &&
935        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
936     return true;
937   return false;
938 }
939 
visitLoadInst(LoadInst & LI)940 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) {
941   Value *Op = LI.getOperand(0);
942 
943   // Try to canonicalize the loaded type.
944   if (Instruction *Res = combineLoadToOperationType(*this, LI))
945     return Res;
946 
947   // Attempt to improve the alignment.
948   Align KnownAlign = getOrEnforceKnownAlignment(
949       Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
950   if (KnownAlign > LI.getAlign())
951     LI.setAlignment(KnownAlign);
952 
953   // Replace GEP indices if possible.
954   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
955       Worklist.push(NewGEPI);
956       return &LI;
957   }
958 
959   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
960     return Res;
961 
962   // Do really simple store-to-load forwarding and load CSE, to catch cases
963   // where there are several consecutive memory accesses to the same location,
964   // separated by a few arithmetic operations.
965   bool IsLoadCSE = false;
966   if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) {
967     if (IsLoadCSE)
968       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
969 
970     return replaceInstUsesWith(
971         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
972                                            LI.getName() + ".cast"));
973   }
974 
975   // None of the following transforms are legal for volatile/ordered atomic
976   // loads.  Most of them do apply for unordered atomics.
977   if (!LI.isUnordered()) return nullptr;
978 
979   // load(gep null, ...) -> unreachable
980   // load null/undef -> unreachable
981   // TODO: Consider a target hook for valid address spaces for this xforms.
982   if (canSimplifyNullLoadOrGEP(LI, Op)) {
983     // Insert a new store to null instruction before the load to indicate
984     // that this code is not reachable.  We do this instead of inserting
985     // an unreachable instruction directly because we cannot modify the
986     // CFG.
987     StoreInst *SI = new StoreInst(PoisonValue::get(LI.getType()),
988                                   Constant::getNullValue(Op->getType()), &LI);
989     SI->setDebugLoc(LI.getDebugLoc());
990     return replaceInstUsesWith(LI, PoisonValue::get(LI.getType()));
991   }
992 
993   if (Op->hasOneUse()) {
994     // Change select and PHI nodes to select values instead of addresses: this
995     // helps alias analysis out a lot, allows many others simplifications, and
996     // exposes redundancy in the code.
997     //
998     // Note that we cannot do the transformation unless we know that the
999     // introduced loads cannot trap!  Something like this is valid as long as
1000     // the condition is always false: load (select bool %C, int* null, int* %G),
1001     // but it would not be valid if we transformed it to load from null
1002     // unconditionally.
1003     //
1004     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1005       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
1006       Align Alignment = LI.getAlign();
1007       if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1008                                       Alignment, DL, SI) &&
1009           isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1010                                       Alignment, DL, SI)) {
1011         LoadInst *V1 =
1012             Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1013                                SI->getOperand(1)->getName() + ".val");
1014         LoadInst *V2 =
1015             Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1016                                SI->getOperand(2)->getName() + ".val");
1017         assert(LI.isUnordered() && "implied by above");
1018         V1->setAlignment(Alignment);
1019         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1020         V2->setAlignment(Alignment);
1021         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1022         return SelectInst::Create(SI->getCondition(), V1, V2);
1023       }
1024 
1025       // load (select (cond, null, P)) -> load P
1026       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1027           !NullPointerIsDefined(SI->getFunction(),
1028                                 LI.getPointerAddressSpace()))
1029         return replaceOperand(LI, 0, SI->getOperand(2));
1030 
1031       // load (select (cond, P, null)) -> load P
1032       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1033           !NullPointerIsDefined(SI->getFunction(),
1034                                 LI.getPointerAddressSpace()))
1035         return replaceOperand(LI, 0, SI->getOperand(1));
1036     }
1037   }
1038   return nullptr;
1039 }
1040 
1041 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1042 ///
1043 /// \returns underlying value that was "cast", or nullptr otherwise.
1044 ///
1045 /// For example, if we have:
1046 ///
1047 ///     %E0 = extractelement <2 x double> %U, i32 0
1048 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1049 ///     %E1 = extractelement <2 x double> %U, i32 1
1050 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1051 ///
1052 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1053 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1054 /// Note that %U may contain non-undef values where %V1 has undef.
likeBitCastFromVector(InstCombinerImpl & IC,Value * V)1055 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) {
1056   Value *U = nullptr;
1057   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1058     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1059     if (!E)
1060       return nullptr;
1061     auto *W = E->getVectorOperand();
1062     if (!U)
1063       U = W;
1064     else if (U != W)
1065       return nullptr;
1066     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1067     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1068       return nullptr;
1069     V = IV->getAggregateOperand();
1070   }
1071   if (!match(V, m_Undef()) || !U)
1072     return nullptr;
1073 
1074   auto *UT = cast<VectorType>(U->getType());
1075   auto *VT = V->getType();
1076   // Check that types UT and VT are bitwise isomorphic.
1077   const auto &DL = IC.getDataLayout();
1078   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1079     return nullptr;
1080   }
1081   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1082     if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1083       return nullptr;
1084   } else {
1085     auto *ST = cast<StructType>(VT);
1086     if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1087       return nullptr;
1088     for (const auto *EltT : ST->elements()) {
1089       if (EltT != UT->getElementType())
1090         return nullptr;
1091     }
1092   }
1093   return U;
1094 }
1095 
1096 /// Combine stores to match the type of value being stored.
1097 ///
1098 /// The core idea here is that the memory does not have any intrinsic type and
1099 /// where we can we should match the type of a store to the type of value being
1100 /// stored.
1101 ///
1102 /// However, this routine must never change the width of a store or the number of
1103 /// stores as that would introduce a semantic change. This combine is expected to
1104 /// be a semantic no-op which just allows stores to more closely model the types
1105 /// of their incoming values.
1106 ///
1107 /// Currently, we also refuse to change the precise type used for an atomic or
1108 /// volatile store. This is debatable, and might be reasonable to change later.
1109 /// However, it is risky in case some backend or other part of LLVM is relying
1110 /// on the exact type stored to select appropriate atomic operations.
1111 ///
1112 /// \returns true if the store was successfully combined away. This indicates
1113 /// the caller must erase the store instruction. We have to let the caller erase
1114 /// the store instruction as otherwise there is no way to signal whether it was
1115 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
combineStoreToValueType(InstCombinerImpl & IC,StoreInst & SI)1116 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) {
1117   // FIXME: We could probably with some care handle both volatile and ordered
1118   // atomic stores here but it isn't clear that this is important.
1119   if (!SI.isUnordered())
1120     return false;
1121 
1122   // swifterror values can't be bitcasted.
1123   if (SI.getPointerOperand()->isSwiftError())
1124     return false;
1125 
1126   Value *V = SI.getValueOperand();
1127 
1128   // Fold away bit casts of the stored value by storing the original type.
1129   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1130     assert(!BC->getType()->isX86_AMXTy() &&
1131            "store to x86_amx* should not happen!");
1132     V = BC->getOperand(0);
1133     // Don't transform when the type is x86_amx, it makes the pass that lower
1134     // x86_amx type happy.
1135     if (V->getType()->isX86_AMXTy())
1136       return false;
1137     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1138       combineStoreToNewValue(IC, SI, V);
1139       return true;
1140     }
1141   }
1142 
1143   if (Value *U = likeBitCastFromVector(IC, V))
1144     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1145       combineStoreToNewValue(IC, SI, U);
1146       return true;
1147     }
1148 
1149   // FIXME: We should also canonicalize stores of vectors when their elements
1150   // are cast to other types.
1151   return false;
1152 }
1153 
unpackStoreToAggregate(InstCombinerImpl & IC,StoreInst & SI)1154 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) {
1155   // FIXME: We could probably with some care handle both volatile and atomic
1156   // stores here but it isn't clear that this is important.
1157   if (!SI.isSimple())
1158     return false;
1159 
1160   Value *V = SI.getValueOperand();
1161   Type *T = V->getType();
1162 
1163   if (!T->isAggregateType())
1164     return false;
1165 
1166   if (auto *ST = dyn_cast<StructType>(T)) {
1167     // If the struct only have one element, we unpack.
1168     unsigned Count = ST->getNumElements();
1169     if (Count == 1) {
1170       V = IC.Builder.CreateExtractValue(V, 0);
1171       combineStoreToNewValue(IC, SI, V);
1172       return true;
1173     }
1174 
1175     // We don't want to break loads with padding here as we'd loose
1176     // the knowledge that padding exists for the rest of the pipeline.
1177     const DataLayout &DL = IC.getDataLayout();
1178     auto *SL = DL.getStructLayout(ST);
1179     if (SL->hasPadding())
1180       return false;
1181 
1182     const auto Align = SI.getAlign();
1183 
1184     SmallString<16> EltName = V->getName();
1185     EltName += ".elt";
1186     auto *Addr = SI.getPointerOperand();
1187     SmallString<16> AddrName = Addr->getName();
1188     AddrName += ".repack";
1189 
1190     auto *IdxType = Type::getInt32Ty(ST->getContext());
1191     auto *Zero = ConstantInt::get(IdxType, 0);
1192     for (unsigned i = 0; i < Count; i++) {
1193       Value *Indices[2] = {
1194         Zero,
1195         ConstantInt::get(IdxType, i),
1196       };
1197       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1198                                                AddrName);
1199       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1200       auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
1201       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1202       NS->setAAMetadata(SI.getAAMetadata());
1203     }
1204 
1205     return true;
1206   }
1207 
1208   if (auto *AT = dyn_cast<ArrayType>(T)) {
1209     // If the array only have one element, we unpack.
1210     auto NumElements = AT->getNumElements();
1211     if (NumElements == 1) {
1212       V = IC.Builder.CreateExtractValue(V, 0);
1213       combineStoreToNewValue(IC, SI, V);
1214       return true;
1215     }
1216 
1217     // Bail out if the array is too large. Ideally we would like to optimize
1218     // arrays of arbitrary size but this has a terrible impact on compile time.
1219     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1220     // tuning.
1221     if (NumElements > IC.MaxArraySizeForCombine)
1222       return false;
1223 
1224     const DataLayout &DL = IC.getDataLayout();
1225     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1226     const auto Align = SI.getAlign();
1227 
1228     SmallString<16> EltName = V->getName();
1229     EltName += ".elt";
1230     auto *Addr = SI.getPointerOperand();
1231     SmallString<16> AddrName = Addr->getName();
1232     AddrName += ".repack";
1233 
1234     auto *IdxType = Type::getInt64Ty(T->getContext());
1235     auto *Zero = ConstantInt::get(IdxType, 0);
1236 
1237     uint64_t Offset = 0;
1238     for (uint64_t i = 0; i < NumElements; i++) {
1239       Value *Indices[2] = {
1240         Zero,
1241         ConstantInt::get(IdxType, i),
1242       };
1243       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1244                                                AddrName);
1245       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1246       auto EltAlign = commonAlignment(Align, Offset);
1247       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1248       NS->setAAMetadata(SI.getAAMetadata());
1249       Offset += EltSize;
1250     }
1251 
1252     return true;
1253   }
1254 
1255   return false;
1256 }
1257 
1258 /// equivalentAddressValues - Test if A and B will obviously have the same
1259 /// value. This includes recognizing that %t0 and %t1 will have the same
1260 /// value in code like this:
1261 ///   %t0 = getelementptr \@a, 0, 3
1262 ///   store i32 0, i32* %t0
1263 ///   %t1 = getelementptr \@a, 0, 3
1264 ///   %t2 = load i32* %t1
1265 ///
equivalentAddressValues(Value * A,Value * B)1266 static bool equivalentAddressValues(Value *A, Value *B) {
1267   // Test if the values are trivially equivalent.
1268   if (A == B) return true;
1269 
1270   // Test if the values come form identical arithmetic instructions.
1271   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1272   // its only used to compare two uses within the same basic block, which
1273   // means that they'll always either have the same value or one of them
1274   // will have an undefined value.
1275   if (isa<BinaryOperator>(A) ||
1276       isa<CastInst>(A) ||
1277       isa<PHINode>(A) ||
1278       isa<GetElementPtrInst>(A))
1279     if (Instruction *BI = dyn_cast<Instruction>(B))
1280       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1281         return true;
1282 
1283   // Otherwise they may not be equivalent.
1284   return false;
1285 }
1286 
1287 /// Converts store (bitcast (load (bitcast (select ...)))) to
1288 /// store (load (select ...)), where select is minmax:
1289 /// select ((cmp load V1, load V2), V1, V2).
removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl & IC,StoreInst & SI)1290 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC,
1291                                                 StoreInst &SI) {
1292   // bitcast?
1293   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1294     return false;
1295   // load? integer?
1296   Value *LoadAddr;
1297   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1298     return false;
1299   auto *LI = cast<LoadInst>(SI.getValueOperand());
1300   if (!LI->getType()->isIntegerTy())
1301     return false;
1302   Type *CmpLoadTy;
1303   if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
1304     return false;
1305 
1306   // Make sure the type would actually change.
1307   // This condition can be hit with chains of bitcasts.
1308   if (LI->getType() == CmpLoadTy)
1309     return false;
1310 
1311   // Make sure we're not changing the size of the load/store.
1312   const auto &DL = IC.getDataLayout();
1313   if (DL.getTypeStoreSizeInBits(LI->getType()) !=
1314       DL.getTypeStoreSizeInBits(CmpLoadTy))
1315     return false;
1316 
1317   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1318         auto *SI = dyn_cast<StoreInst>(U);
1319         return SI && SI->getPointerOperand() != LI &&
1320                InstCombiner::peekThroughBitcast(SI->getPointerOperand()) !=
1321                    LoadAddr &&
1322                !SI->getPointerOperand()->isSwiftError();
1323       }))
1324     return false;
1325 
1326   IC.Builder.SetInsertPoint(LI);
1327   LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
1328   // Replace all the stores with stores of the newly loaded value.
1329   for (auto *UI : LI->users()) {
1330     auto *USI = cast<StoreInst>(UI);
1331     IC.Builder.SetInsertPoint(USI);
1332     combineStoreToNewValue(IC, *USI, NewLI);
1333   }
1334   IC.replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
1335   IC.eraseInstFromFunction(*LI);
1336   return true;
1337 }
1338 
visitStoreInst(StoreInst & SI)1339 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) {
1340   Value *Val = SI.getOperand(0);
1341   Value *Ptr = SI.getOperand(1);
1342 
1343   // Try to canonicalize the stored type.
1344   if (combineStoreToValueType(*this, SI))
1345     return eraseInstFromFunction(SI);
1346 
1347   // Attempt to improve the alignment.
1348   const Align KnownAlign = getOrEnforceKnownAlignment(
1349       Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
1350   if (KnownAlign > SI.getAlign())
1351     SI.setAlignment(KnownAlign);
1352 
1353   // Try to canonicalize the stored type.
1354   if (unpackStoreToAggregate(*this, SI))
1355     return eraseInstFromFunction(SI);
1356 
1357   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1358     return eraseInstFromFunction(SI);
1359 
1360   // Replace GEP indices if possible.
1361   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1362       Worklist.push(NewGEPI);
1363       return &SI;
1364   }
1365 
1366   // Don't hack volatile/ordered stores.
1367   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1368   if (!SI.isUnordered()) return nullptr;
1369 
1370   // If the RHS is an alloca with a single use, zapify the store, making the
1371   // alloca dead.
1372   if (Ptr->hasOneUse()) {
1373     if (isa<AllocaInst>(Ptr))
1374       return eraseInstFromFunction(SI);
1375     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1376       if (isa<AllocaInst>(GEP->getOperand(0))) {
1377         if (GEP->getOperand(0)->hasOneUse())
1378           return eraseInstFromFunction(SI);
1379       }
1380     }
1381   }
1382 
1383   // If we have a store to a location which is known constant, we can conclude
1384   // that the store must be storing the constant value (else the memory
1385   // wouldn't be constant), and this must be a noop.
1386   if (AA->pointsToConstantMemory(Ptr))
1387     return eraseInstFromFunction(SI);
1388 
1389   // Do really simple DSE, to catch cases where there are several consecutive
1390   // stores to the same location, separated by a few arithmetic operations. This
1391   // situation often occurs with bitfield accesses.
1392   BasicBlock::iterator BBI(SI);
1393   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1394        --ScanInsts) {
1395     --BBI;
1396     // Don't count debug info directives, lest they affect codegen,
1397     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1398     if (BBI->isDebugOrPseudoInst() ||
1399         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1400       ScanInsts++;
1401       continue;
1402     }
1403 
1404     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1405       // Prev store isn't volatile, and stores to the same location?
1406       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1407                                                         SI.getOperand(1))) {
1408         ++NumDeadStore;
1409         // Manually add back the original store to the worklist now, so it will
1410         // be processed after the operands of the removed store, as this may
1411         // expose additional DSE opportunities.
1412         Worklist.push(&SI);
1413         eraseInstFromFunction(*PrevSI);
1414         return nullptr;
1415       }
1416       break;
1417     }
1418 
1419     // If this is a load, we have to stop.  However, if the loaded value is from
1420     // the pointer we're loading and is producing the pointer we're storing,
1421     // then *this* store is dead (X = load P; store X -> P).
1422     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1423       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1424         assert(SI.isUnordered() && "can't eliminate ordering operation");
1425         return eraseInstFromFunction(SI);
1426       }
1427 
1428       // Otherwise, this is a load from some other location.  Stores before it
1429       // may not be dead.
1430       break;
1431     }
1432 
1433     // Don't skip over loads, throws or things that can modify memory.
1434     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1435       break;
1436   }
1437 
1438   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1439   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1440   if (canSimplifyNullStoreOrGEP(SI)) {
1441     if (!isa<PoisonValue>(Val))
1442       return replaceOperand(SI, 0, PoisonValue::get(Val->getType()));
1443     return nullptr;  // Do not modify these!
1444   }
1445 
1446   // store undef, Ptr -> noop
1447   if (isa<UndefValue>(Val))
1448     return eraseInstFromFunction(SI);
1449 
1450   return nullptr;
1451 }
1452 
1453 /// Try to transform:
1454 ///   if () { *P = v1; } else { *P = v2 }
1455 /// or:
1456 ///   *P = v1; if () { *P = v2; }
1457 /// into a phi node with a store in the successor.
mergeStoreIntoSuccessor(StoreInst & SI)1458 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) {
1459   if (!SI.isUnordered())
1460     return false; // This code has not been audited for volatile/ordered case.
1461 
1462   // Check if the successor block has exactly 2 incoming edges.
1463   BasicBlock *StoreBB = SI.getParent();
1464   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1465   if (!DestBB->hasNPredecessors(2))
1466     return false;
1467 
1468   // Capture the other block (the block that doesn't contain our store).
1469   pred_iterator PredIter = pred_begin(DestBB);
1470   if (*PredIter == StoreBB)
1471     ++PredIter;
1472   BasicBlock *OtherBB = *PredIter;
1473 
1474   // Bail out if all of the relevant blocks aren't distinct. This can happen,
1475   // for example, if SI is in an infinite loop.
1476   if (StoreBB == DestBB || OtherBB == DestBB)
1477     return false;
1478 
1479   // Verify that the other block ends in a branch and is not otherwise empty.
1480   BasicBlock::iterator BBI(OtherBB->getTerminator());
1481   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1482   if (!OtherBr || BBI == OtherBB->begin())
1483     return false;
1484 
1485   // If the other block ends in an unconditional branch, check for the 'if then
1486   // else' case. There is an instruction before the branch.
1487   StoreInst *OtherStore = nullptr;
1488   if (OtherBr->isUnconditional()) {
1489     --BBI;
1490     // Skip over debugging info.
1491     while (isa<DbgInfoIntrinsic>(BBI) ||
1492            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1493       if (BBI==OtherBB->begin())
1494         return false;
1495       --BBI;
1496     }
1497     // If this isn't a store, isn't a store to the same location, or is not the
1498     // right kind of store, bail out.
1499     OtherStore = dyn_cast<StoreInst>(BBI);
1500     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1501         !SI.isSameOperationAs(OtherStore))
1502       return false;
1503   } else {
1504     // Otherwise, the other block ended with a conditional branch. If one of the
1505     // destinations is StoreBB, then we have the if/then case.
1506     if (OtherBr->getSuccessor(0) != StoreBB &&
1507         OtherBr->getSuccessor(1) != StoreBB)
1508       return false;
1509 
1510     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1511     // if/then triangle. See if there is a store to the same ptr as SI that
1512     // lives in OtherBB.
1513     for (;; --BBI) {
1514       // Check to see if we find the matching store.
1515       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1516         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1517             !SI.isSameOperationAs(OtherStore))
1518           return false;
1519         break;
1520       }
1521       // If we find something that may be using or overwriting the stored
1522       // value, or if we run out of instructions, we can't do the transform.
1523       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1524           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1525         return false;
1526     }
1527 
1528     // In order to eliminate the store in OtherBr, we have to make sure nothing
1529     // reads or overwrites the stored value in StoreBB.
1530     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1531       // FIXME: This should really be AA driven.
1532       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1533         return false;
1534     }
1535   }
1536 
1537   // Insert a PHI node now if we need it.
1538   Value *MergedVal = OtherStore->getOperand(0);
1539   // The debug locations of the original instructions might differ. Merge them.
1540   DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1541                                                      OtherStore->getDebugLoc());
1542   if (MergedVal != SI.getOperand(0)) {
1543     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1544     PN->addIncoming(SI.getOperand(0), SI.getParent());
1545     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1546     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1547     PN->setDebugLoc(MergedLoc);
1548   }
1549 
1550   // Advance to a place where it is safe to insert the new store and insert it.
1551   BBI = DestBB->getFirstInsertionPt();
1552   StoreInst *NewSI =
1553       new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(),
1554                     SI.getOrdering(), SI.getSyncScopeID());
1555   InsertNewInstBefore(NewSI, *BBI);
1556   NewSI->setDebugLoc(MergedLoc);
1557 
1558   // If the two stores had AA tags, merge them.
1559   AAMDNodes AATags = SI.getAAMetadata();
1560   if (AATags)
1561     NewSI->setAAMetadata(AATags.merge(OtherStore->getAAMetadata()));
1562 
1563   // Nuke the old stores.
1564   eraseInstFromFunction(SI);
1565   eraseInstFromFunction(*OtherStore);
1566   return true;
1567 }
1568