1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation.
20 ///
21 /// Argument and return value labels are passed through TLS variables
22 /// __dfsan_arg_tls and __dfsan_retval_tls.
23 ///
24 /// Each byte of application memory is backed by a shadow memory byte. The
25 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then
26 /// laid out as follows:
27 ///
28 /// +--------------------+ 0x800000000000 (top of memory)
29 /// | application 3 |
30 /// +--------------------+ 0x700000000000
31 /// | invalid |
32 /// +--------------------+ 0x610000000000
33 /// | origin 1 |
34 /// +--------------------+ 0x600000000000
35 /// | application 2 |
36 /// +--------------------+ 0x510000000000
37 /// | shadow 1 |
38 /// +--------------------+ 0x500000000000
39 /// | invalid |
40 /// +--------------------+ 0x400000000000
41 /// | origin 3 |
42 /// +--------------------+ 0x300000000000
43 /// | shadow 3 |
44 /// +--------------------+ 0x200000000000
45 /// | origin 2 |
46 /// +--------------------+ 0x110000000000
47 /// | invalid |
48 /// +--------------------+ 0x100000000000
49 /// | shadow 2 |
50 /// +--------------------+ 0x010000000000
51 /// | application 1 |
52 /// +--------------------+ 0x000000000000
53 ///
54 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000
55 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000
56 ///
57 /// For more information, please refer to the design document:
58 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
59 //
60 //===----------------------------------------------------------------------===//
61
62 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DenseSet.h"
65 #include "llvm/ADT/DepthFirstIterator.h"
66 #include "llvm/ADT/None.h"
67 #include "llvm/ADT/SmallPtrSet.h"
68 #include "llvm/ADT/SmallVector.h"
69 #include "llvm/ADT/StringExtras.h"
70 #include "llvm/ADT/StringRef.h"
71 #include "llvm/ADT/Triple.h"
72 #include "llvm/ADT/iterator.h"
73 #include "llvm/Analysis/ValueTracking.h"
74 #include "llvm/IR/Argument.h"
75 #include "llvm/IR/Attributes.h"
76 #include "llvm/IR/BasicBlock.h"
77 #include "llvm/IR/Constant.h"
78 #include "llvm/IR/Constants.h"
79 #include "llvm/IR/DataLayout.h"
80 #include "llvm/IR/DerivedTypes.h"
81 #include "llvm/IR/Dominators.h"
82 #include "llvm/IR/Function.h"
83 #include "llvm/IR/GlobalAlias.h"
84 #include "llvm/IR/GlobalValue.h"
85 #include "llvm/IR/GlobalVariable.h"
86 #include "llvm/IR/IRBuilder.h"
87 #include "llvm/IR/InlineAsm.h"
88 #include "llvm/IR/InstVisitor.h"
89 #include "llvm/IR/InstrTypes.h"
90 #include "llvm/IR/Instruction.h"
91 #include "llvm/IR/Instructions.h"
92 #include "llvm/IR/IntrinsicInst.h"
93 #include "llvm/IR/LLVMContext.h"
94 #include "llvm/IR/MDBuilder.h"
95 #include "llvm/IR/Module.h"
96 #include "llvm/IR/PassManager.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/Alignment.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/SpecialCaseList.h"
107 #include "llvm/Support/VirtualFileSystem.h"
108 #include "llvm/Transforms/Instrumentation.h"
109 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
110 #include "llvm/Transforms/Utils/Local.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <iterator>
116 #include <memory>
117 #include <set>
118 #include <string>
119 #include <utility>
120 #include <vector>
121
122 using namespace llvm;
123
124 // This must be consistent with ShadowWidthBits.
125 static const Align ShadowTLSAlignment = Align(2);
126
127 static const Align MinOriginAlignment = Align(4);
128
129 // The size of TLS variables. These constants must be kept in sync with the ones
130 // in dfsan.cpp.
131 static const unsigned ArgTLSSize = 800;
132 static const unsigned RetvalTLSSize = 800;
133
134 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
135 // alignment requirements provided by the input IR are correct. For example,
136 // if the input IR contains a load with alignment 8, this flag will cause
137 // the shadow load to have alignment 16. This flag is disabled by default as
138 // we have unfortunately encountered too much code (including Clang itself;
139 // see PR14291) which performs misaligned access.
140 static cl::opt<bool> ClPreserveAlignment(
141 "dfsan-preserve-alignment",
142 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
143 cl::init(false));
144
145 // The ABI list files control how shadow parameters are passed. The pass treats
146 // every function labelled "uninstrumented" in the ABI list file as conforming
147 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
148 // additional annotations for those functions, a call to one of those functions
149 // will produce a warning message, as the labelling behaviour of the function is
150 // unknown. The other supported annotations for uninstrumented functions are
151 // "functional" and "discard", which are described below under
152 // DataFlowSanitizer::WrapperKind.
153 // Functions will often be labelled with both "uninstrumented" and one of
154 // "functional" or "discard". This will leave the function unchanged by this
155 // pass, and create a wrapper function that will call the original.
156 //
157 // Instrumented functions can also be annotated as "force_zero_labels", which
158 // will make all shadow and return values set zero labels.
159 // Functions should never be labelled with both "force_zero_labels" and
160 // "uninstrumented" or any of the unistrumented wrapper kinds.
161 static cl::list<std::string> ClABIListFiles(
162 "dfsan-abilist",
163 cl::desc("File listing native ABI functions and how the pass treats them"),
164 cl::Hidden);
165
166 // Controls whether the pass includes or ignores the labels of pointers in load
167 // instructions.
168 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
169 "dfsan-combine-pointer-labels-on-load",
170 cl::desc("Combine the label of the pointer with the label of the data when "
171 "loading from memory."),
172 cl::Hidden, cl::init(true));
173
174 // Controls whether the pass includes or ignores the labels of pointers in
175 // stores instructions.
176 static cl::opt<bool> ClCombinePointerLabelsOnStore(
177 "dfsan-combine-pointer-labels-on-store",
178 cl::desc("Combine the label of the pointer with the label of the data when "
179 "storing in memory."),
180 cl::Hidden, cl::init(false));
181
182 // Controls whether the pass propagates labels of offsets in GEP instructions.
183 static cl::opt<bool> ClCombineOffsetLabelsOnGEP(
184 "dfsan-combine-offset-labels-on-gep",
185 cl::desc(
186 "Combine the label of the offset with the label of the pointer when "
187 "doing pointer arithmetic."),
188 cl::Hidden, cl::init(true));
189
190 static cl::opt<bool> ClDebugNonzeroLabels(
191 "dfsan-debug-nonzero-labels",
192 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
193 "load or return with a nonzero label"),
194 cl::Hidden);
195
196 // Experimental feature that inserts callbacks for certain data events.
197 // Currently callbacks are only inserted for loads, stores, memory transfers
198 // (i.e. memcpy and memmove), and comparisons.
199 //
200 // If this flag is set to true, the user must provide definitions for the
201 // following callback functions:
202 // void __dfsan_load_callback(dfsan_label Label, void* addr);
203 // void __dfsan_store_callback(dfsan_label Label, void* addr);
204 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
205 // void __dfsan_cmp_callback(dfsan_label CombinedLabel);
206 static cl::opt<bool> ClEventCallbacks(
207 "dfsan-event-callbacks",
208 cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
209 cl::Hidden, cl::init(false));
210
211 // Controls whether the pass tracks the control flow of select instructions.
212 static cl::opt<bool> ClTrackSelectControlFlow(
213 "dfsan-track-select-control-flow",
214 cl::desc("Propagate labels from condition values of select instructions "
215 "to results."),
216 cl::Hidden, cl::init(true));
217
218 // TODO: This default value follows MSan. DFSan may use a different value.
219 static cl::opt<int> ClInstrumentWithCallThreshold(
220 "dfsan-instrument-with-call-threshold",
221 cl::desc("If the function being instrumented requires more than "
222 "this number of origin stores, use callbacks instead of "
223 "inline checks (-1 means never use callbacks)."),
224 cl::Hidden, cl::init(3500));
225
226 // Controls how to track origins.
227 // * 0: do not track origins.
228 // * 1: track origins at memory store operations.
229 // * 2: track origins at memory load and store operations.
230 // TODO: track callsites.
231 static cl::opt<int> ClTrackOrigins("dfsan-track-origins",
232 cl::desc("Track origins of labels"),
233 cl::Hidden, cl::init(0));
234
getGlobalTypeString(const GlobalValue & G)235 static StringRef getGlobalTypeString(const GlobalValue &G) {
236 // Types of GlobalVariables are always pointer types.
237 Type *GType = G.getValueType();
238 // For now we support excluding struct types only.
239 if (StructType *SGType = dyn_cast<StructType>(GType)) {
240 if (!SGType->isLiteral())
241 return SGType->getName();
242 }
243 return "<unknown type>";
244 }
245
246 namespace {
247
248 // Memory map parameters used in application-to-shadow address calculation.
249 // Offset = (Addr & ~AndMask) ^ XorMask
250 // Shadow = ShadowBase + Offset
251 // Origin = (OriginBase + Offset) & ~3ULL
252 struct MemoryMapParams {
253 uint64_t AndMask;
254 uint64_t XorMask;
255 uint64_t ShadowBase;
256 uint64_t OriginBase;
257 };
258
259 } // end anonymous namespace
260
261 // x86_64 Linux
262 // NOLINTNEXTLINE(readability-identifier-naming)
263 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
264 0, // AndMask (not used)
265 0x500000000000, // XorMask
266 0, // ShadowBase (not used)
267 0x100000000000, // OriginBase
268 };
269
270 namespace {
271
272 class DFSanABIList {
273 std::unique_ptr<SpecialCaseList> SCL;
274
275 public:
276 DFSanABIList() = default;
277
set(std::unique_ptr<SpecialCaseList> List)278 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
279
280 /// Returns whether either this function or its source file are listed in the
281 /// given category.
isIn(const Function & F,StringRef Category) const282 bool isIn(const Function &F, StringRef Category) const {
283 return isIn(*F.getParent(), Category) ||
284 SCL->inSection("dataflow", "fun", F.getName(), Category);
285 }
286
287 /// Returns whether this global alias is listed in the given category.
288 ///
289 /// If GA aliases a function, the alias's name is matched as a function name
290 /// would be. Similarly, aliases of globals are matched like globals.
isIn(const GlobalAlias & GA,StringRef Category) const291 bool isIn(const GlobalAlias &GA, StringRef Category) const {
292 if (isIn(*GA.getParent(), Category))
293 return true;
294
295 if (isa<FunctionType>(GA.getValueType()))
296 return SCL->inSection("dataflow", "fun", GA.getName(), Category);
297
298 return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
299 SCL->inSection("dataflow", "type", getGlobalTypeString(GA),
300 Category);
301 }
302
303 /// Returns whether this module is listed in the given category.
isIn(const Module & M,StringRef Category) const304 bool isIn(const Module &M, StringRef Category) const {
305 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
306 }
307 };
308
309 /// TransformedFunction is used to express the result of transforming one
310 /// function type into another. This struct is immutable. It holds metadata
311 /// useful for updating calls of the old function to the new type.
312 struct TransformedFunction {
TransformedFunction__anond364b4550211::TransformedFunction313 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType,
314 std::vector<unsigned> ArgumentIndexMapping)
315 : OriginalType(OriginalType), TransformedType(TransformedType),
316 ArgumentIndexMapping(ArgumentIndexMapping) {}
317
318 // Disallow copies.
319 TransformedFunction(const TransformedFunction &) = delete;
320 TransformedFunction &operator=(const TransformedFunction &) = delete;
321
322 // Allow moves.
323 TransformedFunction(TransformedFunction &&) = default;
324 TransformedFunction &operator=(TransformedFunction &&) = default;
325
326 /// Type of the function before the transformation.
327 FunctionType *OriginalType;
328
329 /// Type of the function after the transformation.
330 FunctionType *TransformedType;
331
332 /// Transforming a function may change the position of arguments. This
333 /// member records the mapping from each argument's old position to its new
334 /// position. Argument positions are zero-indexed. If the transformation
335 /// from F to F' made the first argument of F into the third argument of F',
336 /// then ArgumentIndexMapping[0] will equal 2.
337 std::vector<unsigned> ArgumentIndexMapping;
338 };
339
340 /// Given function attributes from a call site for the original function,
341 /// return function attributes appropriate for a call to the transformed
342 /// function.
343 AttributeList
transformFunctionAttributes(const TransformedFunction & TransformedFunction,LLVMContext & Ctx,AttributeList CallSiteAttrs)344 transformFunctionAttributes(const TransformedFunction &TransformedFunction,
345 LLVMContext &Ctx, AttributeList CallSiteAttrs) {
346
347 // Construct a vector of AttributeSet for each function argument.
348 std::vector<llvm::AttributeSet> ArgumentAttributes(
349 TransformedFunction.TransformedType->getNumParams());
350
351 // Copy attributes from the parameter of the original function to the
352 // transformed version. 'ArgumentIndexMapping' holds the mapping from
353 // old argument position to new.
354 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size();
355 I < IE; ++I) {
356 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I];
357 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I);
358 }
359
360 // Copy annotations on varargs arguments.
361 for (unsigned I = TransformedFunction.OriginalType->getNumParams(),
362 IE = CallSiteAttrs.getNumAttrSets();
363 I < IE; ++I) {
364 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I));
365 }
366
367 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(),
368 CallSiteAttrs.getRetAttrs(),
369 llvm::makeArrayRef(ArgumentAttributes));
370 }
371
372 class DataFlowSanitizer {
373 friend struct DFSanFunction;
374 friend class DFSanVisitor;
375
376 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 };
377
378 enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 };
379
380 /// How should calls to uninstrumented functions be handled?
381 enum WrapperKind {
382 /// This function is present in an uninstrumented form but we don't know
383 /// how it should be handled. Print a warning and call the function anyway.
384 /// Don't label the return value.
385 WK_Warning,
386
387 /// This function does not write to (user-accessible) memory, and its return
388 /// value is unlabelled.
389 WK_Discard,
390
391 /// This function does not write to (user-accessible) memory, and the label
392 /// of its return value is the union of the label of its arguments.
393 WK_Functional,
394
395 /// Instead of calling the function, a custom wrapper __dfsw_F is called,
396 /// where F is the name of the function. This function may wrap the
397 /// original function or provide its own implementation. WK_Custom uses an
398 /// extra pointer argument to return the shadow. This allows the wrapped
399 /// form of the function type to be expressed in C.
400 WK_Custom
401 };
402
403 Module *Mod;
404 LLVMContext *Ctx;
405 Type *Int8Ptr;
406 IntegerType *OriginTy;
407 PointerType *OriginPtrTy;
408 ConstantInt *ZeroOrigin;
409 /// The shadow type for all primitive types and vector types.
410 IntegerType *PrimitiveShadowTy;
411 PointerType *PrimitiveShadowPtrTy;
412 IntegerType *IntptrTy;
413 ConstantInt *ZeroPrimitiveShadow;
414 Constant *ArgTLS;
415 ArrayType *ArgOriginTLSTy;
416 Constant *ArgOriginTLS;
417 Constant *RetvalTLS;
418 Constant *RetvalOriginTLS;
419 FunctionType *DFSanUnionLoadFnTy;
420 FunctionType *DFSanLoadLabelAndOriginFnTy;
421 FunctionType *DFSanUnimplementedFnTy;
422 FunctionType *DFSanSetLabelFnTy;
423 FunctionType *DFSanNonzeroLabelFnTy;
424 FunctionType *DFSanVarargWrapperFnTy;
425 FunctionType *DFSanCmpCallbackFnTy;
426 FunctionType *DFSanLoadStoreCallbackFnTy;
427 FunctionType *DFSanMemTransferCallbackFnTy;
428 FunctionType *DFSanChainOriginFnTy;
429 FunctionType *DFSanChainOriginIfTaintedFnTy;
430 FunctionType *DFSanMemOriginTransferFnTy;
431 FunctionType *DFSanMaybeStoreOriginFnTy;
432 FunctionCallee DFSanUnionLoadFn;
433 FunctionCallee DFSanLoadLabelAndOriginFn;
434 FunctionCallee DFSanUnimplementedFn;
435 FunctionCallee DFSanSetLabelFn;
436 FunctionCallee DFSanNonzeroLabelFn;
437 FunctionCallee DFSanVarargWrapperFn;
438 FunctionCallee DFSanLoadCallbackFn;
439 FunctionCallee DFSanStoreCallbackFn;
440 FunctionCallee DFSanMemTransferCallbackFn;
441 FunctionCallee DFSanCmpCallbackFn;
442 FunctionCallee DFSanChainOriginFn;
443 FunctionCallee DFSanChainOriginIfTaintedFn;
444 FunctionCallee DFSanMemOriginTransferFn;
445 FunctionCallee DFSanMaybeStoreOriginFn;
446 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions;
447 MDNode *ColdCallWeights;
448 MDNode *OriginStoreWeights;
449 DFSanABIList ABIList;
450 DenseMap<Value *, Function *> UnwrappedFnMap;
451 AttrBuilder ReadOnlyNoneAttrs;
452
453 /// Memory map parameters used in calculation mapping application addresses
454 /// to shadow addresses and origin addresses.
455 const MemoryMapParams *MapParams;
456
457 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB);
458 Value *getShadowAddress(Value *Addr, Instruction *Pos);
459 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset);
460 std::pair<Value *, Value *>
461 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos);
462 bool isInstrumented(const Function *F);
463 bool isInstrumented(const GlobalAlias *GA);
464 bool isForceZeroLabels(const Function *F);
465 FunctionType *getTrampolineFunctionType(FunctionType *T);
466 TransformedFunction getCustomFunctionType(FunctionType *T);
467 WrapperKind getWrapperKind(Function *F);
468 void addGlobalNameSuffix(GlobalValue *GV);
469 Function *buildWrapperFunction(Function *F, StringRef NewFName,
470 GlobalValue::LinkageTypes NewFLink,
471 FunctionType *NewFT);
472 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
473 void initializeCallbackFunctions(Module &M);
474 void initializeRuntimeFunctions(Module &M);
475 void injectMetadataGlobals(Module &M);
476 bool initializeModule(Module &M);
477
478 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads
479 /// from it. Returns the origin's loaded value.
480 Value *loadNextOrigin(Instruction *Pos, Align OriginAlign,
481 Value **OriginAddr);
482
483 /// Returns whether the given load byte size is amenable to inlined
484 /// optimization patterns.
485 bool hasLoadSizeForFastPath(uint64_t Size);
486
487 /// Returns whether the pass tracks origins. Supports only TLS ABI mode.
488 bool shouldTrackOrigins();
489
490 /// Returns a zero constant with the shadow type of OrigTy.
491 ///
492 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...}
493 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)]
494 /// getZeroShadow(other type) = i16(0)
495 Constant *getZeroShadow(Type *OrigTy);
496 /// Returns a zero constant with the shadow type of V's type.
497 Constant *getZeroShadow(Value *V);
498
499 /// Checks if V is a zero shadow.
500 bool isZeroShadow(Value *V);
501
502 /// Returns the shadow type of OrigTy.
503 ///
504 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...}
505 /// getShadowTy([n x T]) = [n x getShadowTy(T)]
506 /// getShadowTy(other type) = i16
507 Type *getShadowTy(Type *OrigTy);
508 /// Returns the shadow type of of V's type.
509 Type *getShadowTy(Value *V);
510
511 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes;
512
513 public:
514 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles);
515
516 bool runImpl(Module &M);
517 };
518
519 struct DFSanFunction {
520 DataFlowSanitizer &DFS;
521 Function *F;
522 DominatorTree DT;
523 bool IsNativeABI;
524 bool IsForceZeroLabels;
525 AllocaInst *LabelReturnAlloca = nullptr;
526 AllocaInst *OriginReturnAlloca = nullptr;
527 DenseMap<Value *, Value *> ValShadowMap;
528 DenseMap<Value *, Value *> ValOriginMap;
529 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
530 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap;
531
532 struct PHIFixupElement {
533 PHINode *Phi;
534 PHINode *ShadowPhi;
535 PHINode *OriginPhi;
536 };
537 std::vector<PHIFixupElement> PHIFixups;
538
539 DenseSet<Instruction *> SkipInsts;
540 std::vector<Value *> NonZeroChecks;
541
542 struct CachedShadow {
543 BasicBlock *Block; // The block where Shadow is defined.
544 Value *Shadow;
545 };
546 /// Maps a value to its latest shadow value in terms of domination tree.
547 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows;
548 /// Maps a value to its latest collapsed shadow value it was converted to in
549 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is
550 /// used at a post process where CFG blocks are split. So it does not cache
551 /// BasicBlock like CachedShadows, but uses domination between values.
552 DenseMap<Value *, Value *> CachedCollapsedShadows;
553 DenseMap<Value *, std::set<Value *>> ShadowElements;
554
DFSanFunction__anond364b4550211::DFSanFunction555 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI,
556 bool IsForceZeroLabels)
557 : DFS(DFS), F(F), IsNativeABI(IsNativeABI),
558 IsForceZeroLabels(IsForceZeroLabels) {
559 DT.recalculate(*F);
560 }
561
562 /// Computes the shadow address for a given function argument.
563 ///
564 /// Shadow = ArgTLS+ArgOffset.
565 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB);
566
567 /// Computes the shadow address for a return value.
568 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB);
569
570 /// Computes the origin address for a given function argument.
571 ///
572 /// Origin = ArgOriginTLS[ArgNo].
573 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB);
574
575 /// Computes the origin address for a return value.
576 Value *getRetvalOriginTLS();
577
578 Value *getOrigin(Value *V);
579 void setOrigin(Instruction *I, Value *Origin);
580 /// Generates IR to compute the origin of the last operand with a taint label.
581 Value *combineOperandOrigins(Instruction *Inst);
582 /// Before the instruction Pos, generates IR to compute the last origin with a
583 /// taint label. Labels and origins are from vectors Shadows and Origins
584 /// correspondingly. The generated IR is like
585 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0
586 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be
587 /// zeros with other bitwidths.
588 Value *combineOrigins(const std::vector<Value *> &Shadows,
589 const std::vector<Value *> &Origins, Instruction *Pos,
590 ConstantInt *Zero = nullptr);
591
592 Value *getShadow(Value *V);
593 void setShadow(Instruction *I, Value *Shadow);
594 /// Generates IR to compute the union of the two given shadows, inserting it
595 /// before Pos. The combined value is with primitive type.
596 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
597 /// Combines the shadow values of V1 and V2, then converts the combined value
598 /// with primitive type into a shadow value with the original type T.
599 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
600 Instruction *Pos);
601 Value *combineOperandShadows(Instruction *Inst);
602
603 /// Generates IR to load shadow and origin corresponding to bytes [\p
604 /// Addr, \p Addr + \p Size), where addr has alignment \p
605 /// InstAlignment, and take the union of each of those shadows. The returned
606 /// shadow always has primitive type.
607 ///
608 /// When tracking loads is enabled, the returned origin is a chain at the
609 /// current stack if the returned shadow is tainted.
610 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size,
611 Align InstAlignment,
612 Instruction *Pos);
613
614 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
615 Align InstAlignment, Value *PrimitiveShadow,
616 Value *Origin, Instruction *Pos);
617 /// Applies PrimitiveShadow to all primitive subtypes of T, returning
618 /// the expanded shadow value.
619 ///
620 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...}
621 /// EFP([n x T], PS) = [n x EFP(T,PS)]
622 /// EFP(other types, PS) = PS
623 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
624 Instruction *Pos);
625 /// Collapses Shadow into a single primitive shadow value, unioning all
626 /// primitive shadow values in the process. Returns the final primitive
627 /// shadow value.
628 ///
629 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...)
630 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...)
631 /// CTP(other types, PS) = PS
632 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos);
633
634 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign,
635 Instruction *Pos);
636
637 Align getShadowAlign(Align InstAlignment);
638
639 private:
640 /// Collapses the shadow with aggregate type into a single primitive shadow
641 /// value.
642 template <class AggregateType>
643 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow,
644 IRBuilder<> &IRB);
645
646 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB);
647
648 /// Returns the shadow value of an argument A.
649 Value *getShadowForTLSArgument(Argument *A);
650
651 /// The fast path of loading shadows.
652 std::pair<Value *, Value *>
653 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size,
654 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin,
655 Instruction *Pos);
656
657 Align getOriginAlign(Align InstAlignment);
658
659 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load
660 /// is __dfsan_load_label_and_origin. This function returns the union of all
661 /// labels and the origin of the first taint label. However this is an
662 /// additional call with many instructions. To ensure common cases are fast,
663 /// checks if it is possible to load labels and origins without using the
664 /// callback function.
665 ///
666 /// When enabling tracking load instructions, we always use
667 /// __dfsan_load_label_and_origin to reduce code size.
668 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment);
669
670 /// Returns a chain at the current stack with previous origin V.
671 Value *updateOrigin(Value *V, IRBuilder<> &IRB);
672
673 /// Returns a chain at the current stack with previous origin V if Shadow is
674 /// tainted.
675 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB);
676
677 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns
678 /// Origin otherwise.
679 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin);
680
681 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr +
682 /// Size).
683 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr,
684 uint64_t StoreOriginSize, Align Alignment);
685
686 /// Stores Origin in terms of its Shadow value.
687 /// * Do not write origins for zero shadows because we do not trace origins
688 /// for untainted sinks.
689 /// * Use __dfsan_maybe_store_origin if there are too many origin store
690 /// instrumentations.
691 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow,
692 Value *Origin, Value *StoreOriginAddr, Align InstAlignment);
693
694 /// Convert a scalar value to an i1 by comparing with 0.
695 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = "");
696
697 bool shouldInstrumentWithCall();
698
699 /// Generates IR to load shadow and origin corresponding to bytes [\p
700 /// Addr, \p Addr + \p Size), where addr has alignment \p
701 /// InstAlignment, and take the union of each of those shadows. The returned
702 /// shadow always has primitive type.
703 std::pair<Value *, Value *>
704 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size,
705 Align InstAlignment, Instruction *Pos);
706 int NumOriginStores = 0;
707 };
708
709 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
710 public:
711 DFSanFunction &DFSF;
712
DFSanVisitor(DFSanFunction & DFSF)713 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
714
getDataLayout() const715 const DataLayout &getDataLayout() const {
716 return DFSF.F->getParent()->getDataLayout();
717 }
718
719 // Combines shadow values and origins for all of I's operands.
720 void visitInstOperands(Instruction &I);
721
722 void visitUnaryOperator(UnaryOperator &UO);
723 void visitBinaryOperator(BinaryOperator &BO);
724 void visitBitCastInst(BitCastInst &BCI);
725 void visitCastInst(CastInst &CI);
726 void visitCmpInst(CmpInst &CI);
727 void visitLandingPadInst(LandingPadInst &LPI);
728 void visitGetElementPtrInst(GetElementPtrInst &GEPI);
729 void visitLoadInst(LoadInst &LI);
730 void visitStoreInst(StoreInst &SI);
731 void visitAtomicRMWInst(AtomicRMWInst &I);
732 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I);
733 void visitReturnInst(ReturnInst &RI);
734 void visitCallBase(CallBase &CB);
735 void visitPHINode(PHINode &PN);
736 void visitExtractElementInst(ExtractElementInst &I);
737 void visitInsertElementInst(InsertElementInst &I);
738 void visitShuffleVectorInst(ShuffleVectorInst &I);
739 void visitExtractValueInst(ExtractValueInst &I);
740 void visitInsertValueInst(InsertValueInst &I);
741 void visitAllocaInst(AllocaInst &I);
742 void visitSelectInst(SelectInst &I);
743 void visitMemSetInst(MemSetInst &I);
744 void visitMemTransferInst(MemTransferInst &I);
745
746 private:
747 void visitCASOrRMW(Align InstAlignment, Instruction &I);
748
749 // Returns false when this is an invoke of a custom function.
750 bool visitWrappedCallBase(Function &F, CallBase &CB);
751
752 // Combines origins for all of I's operands.
753 void visitInstOperandOrigins(Instruction &I);
754
755 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
756 IRBuilder<> &IRB);
757
758 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
759 IRBuilder<> &IRB);
760 };
761
762 } // end anonymous namespace
763
DataFlowSanitizer(const std::vector<std::string> & ABIListFiles)764 DataFlowSanitizer::DataFlowSanitizer(
765 const std::vector<std::string> &ABIListFiles) {
766 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
767 llvm::append_range(AllABIListFiles, ClABIListFiles);
768 // FIXME: should we propagate vfs::FileSystem to this constructor?
769 ABIList.set(
770 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
771 }
772
getTrampolineFunctionType(FunctionType * T)773 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
774 assert(!T->isVarArg());
775 SmallVector<Type *, 4> ArgTypes;
776 ArgTypes.push_back(T->getPointerTo());
777 ArgTypes.append(T->param_begin(), T->param_end());
778 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy);
779 Type *RetType = T->getReturnType();
780 if (!RetType->isVoidTy())
781 ArgTypes.push_back(PrimitiveShadowPtrTy);
782
783 if (shouldTrackOrigins()) {
784 ArgTypes.append(T->getNumParams(), OriginTy);
785 if (!RetType->isVoidTy())
786 ArgTypes.push_back(OriginPtrTy);
787 }
788
789 return FunctionType::get(T->getReturnType(), ArgTypes, false);
790 }
791
getCustomFunctionType(FunctionType * T)792 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
793 SmallVector<Type *, 4> ArgTypes;
794
795 // Some parameters of the custom function being constructed are
796 // parameters of T. Record the mapping from parameters of T to
797 // parameters of the custom function, so that parameter attributes
798 // at call sites can be updated.
799 std::vector<unsigned> ArgumentIndexMapping;
800 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) {
801 Type *ParamType = T->getParamType(I);
802 FunctionType *FT;
803 if (isa<PointerType>(ParamType) &&
804 (FT = dyn_cast<FunctionType>(ParamType->getPointerElementType()))) {
805 ArgumentIndexMapping.push_back(ArgTypes.size());
806 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
807 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
808 } else {
809 ArgumentIndexMapping.push_back(ArgTypes.size());
810 ArgTypes.push_back(ParamType);
811 }
812 }
813 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
814 ArgTypes.push_back(PrimitiveShadowTy);
815 if (T->isVarArg())
816 ArgTypes.push_back(PrimitiveShadowPtrTy);
817 Type *RetType = T->getReturnType();
818 if (!RetType->isVoidTy())
819 ArgTypes.push_back(PrimitiveShadowPtrTy);
820
821 if (shouldTrackOrigins()) {
822 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
823 ArgTypes.push_back(OriginTy);
824 if (T->isVarArg())
825 ArgTypes.push_back(OriginPtrTy);
826 if (!RetType->isVoidTy())
827 ArgTypes.push_back(OriginPtrTy);
828 }
829
830 return TransformedFunction(
831 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
832 ArgumentIndexMapping);
833 }
834
isZeroShadow(Value * V)835 bool DataFlowSanitizer::isZeroShadow(Value *V) {
836 Type *T = V->getType();
837 if (!isa<ArrayType>(T) && !isa<StructType>(T)) {
838 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
839 return CI->isZero();
840 return false;
841 }
842
843 return isa<ConstantAggregateZero>(V);
844 }
845
hasLoadSizeForFastPath(uint64_t Size)846 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) {
847 uint64_t ShadowSize = Size * ShadowWidthBytes;
848 return ShadowSize % 8 == 0 || ShadowSize == 4;
849 }
850
shouldTrackOrigins()851 bool DataFlowSanitizer::shouldTrackOrigins() {
852 static const bool ShouldTrackOrigins = ClTrackOrigins;
853 return ShouldTrackOrigins;
854 }
855
getZeroShadow(Type * OrigTy)856 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) {
857 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy))
858 return ZeroPrimitiveShadow;
859 Type *ShadowTy = getShadowTy(OrigTy);
860 return ConstantAggregateZero::get(ShadowTy);
861 }
862
getZeroShadow(Value * V)863 Constant *DataFlowSanitizer::getZeroShadow(Value *V) {
864 return getZeroShadow(V->getType());
865 }
866
expandFromPrimitiveShadowRecursive(Value * Shadow,SmallVector<unsigned,4> & Indices,Type * SubShadowTy,Value * PrimitiveShadow,IRBuilder<> & IRB)867 static Value *expandFromPrimitiveShadowRecursive(
868 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy,
869 Value *PrimitiveShadow, IRBuilder<> &IRB) {
870 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy))
871 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices);
872
873 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) {
874 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) {
875 Indices.push_back(Idx);
876 Shadow = expandFromPrimitiveShadowRecursive(
877 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB);
878 Indices.pop_back();
879 }
880 return Shadow;
881 }
882
883 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) {
884 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) {
885 Indices.push_back(Idx);
886 Shadow = expandFromPrimitiveShadowRecursive(
887 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB);
888 Indices.pop_back();
889 }
890 return Shadow;
891 }
892 llvm_unreachable("Unexpected shadow type");
893 }
894
shouldInstrumentWithCall()895 bool DFSanFunction::shouldInstrumentWithCall() {
896 return ClInstrumentWithCallThreshold >= 0 &&
897 NumOriginStores >= ClInstrumentWithCallThreshold;
898 }
899
expandFromPrimitiveShadow(Type * T,Value * PrimitiveShadow,Instruction * Pos)900 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
901 Instruction *Pos) {
902 Type *ShadowTy = DFS.getShadowTy(T);
903
904 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
905 return PrimitiveShadow;
906
907 if (DFS.isZeroShadow(PrimitiveShadow))
908 return DFS.getZeroShadow(ShadowTy);
909
910 IRBuilder<> IRB(Pos);
911 SmallVector<unsigned, 4> Indices;
912 Value *Shadow = UndefValue::get(ShadowTy);
913 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy,
914 PrimitiveShadow, IRB);
915
916 // Caches the primitive shadow value that built the shadow value.
917 CachedCollapsedShadows[Shadow] = PrimitiveShadow;
918 return Shadow;
919 }
920
921 template <class AggregateType>
collapseAggregateShadow(AggregateType * AT,Value * Shadow,IRBuilder<> & IRB)922 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow,
923 IRBuilder<> &IRB) {
924 if (!AT->getNumElements())
925 return DFS.ZeroPrimitiveShadow;
926
927 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
928 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB);
929
930 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) {
931 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
932 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB);
933 Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
934 }
935 return Aggregator;
936 }
937
collapseToPrimitiveShadow(Value * Shadow,IRBuilder<> & IRB)938 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
939 IRBuilder<> &IRB) {
940 Type *ShadowTy = Shadow->getType();
941 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
942 return Shadow;
943 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy))
944 return collapseAggregateShadow<>(AT, Shadow, IRB);
945 if (StructType *ST = dyn_cast<StructType>(ShadowTy))
946 return collapseAggregateShadow<>(ST, Shadow, IRB);
947 llvm_unreachable("Unexpected shadow type");
948 }
949
collapseToPrimitiveShadow(Value * Shadow,Instruction * Pos)950 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
951 Instruction *Pos) {
952 Type *ShadowTy = Shadow->getType();
953 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
954 return Shadow;
955
956 // Checks if the cached collapsed shadow value dominates Pos.
957 Value *&CS = CachedCollapsedShadows[Shadow];
958 if (CS && DT.dominates(CS, Pos))
959 return CS;
960
961 IRBuilder<> IRB(Pos);
962 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB);
963 // Caches the converted primitive shadow value.
964 CS = PrimitiveShadow;
965 return PrimitiveShadow;
966 }
967
getShadowTy(Type * OrigTy)968 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) {
969 if (!OrigTy->isSized())
970 return PrimitiveShadowTy;
971 if (isa<IntegerType>(OrigTy))
972 return PrimitiveShadowTy;
973 if (isa<VectorType>(OrigTy))
974 return PrimitiveShadowTy;
975 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy))
976 return ArrayType::get(getShadowTy(AT->getElementType()),
977 AT->getNumElements());
978 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
979 SmallVector<Type *, 4> Elements;
980 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I)
981 Elements.push_back(getShadowTy(ST->getElementType(I)));
982 return StructType::get(*Ctx, Elements);
983 }
984 return PrimitiveShadowTy;
985 }
986
getShadowTy(Value * V)987 Type *DataFlowSanitizer::getShadowTy(Value *V) {
988 return getShadowTy(V->getType());
989 }
990
initializeModule(Module & M)991 bool DataFlowSanitizer::initializeModule(Module &M) {
992 Triple TargetTriple(M.getTargetTriple());
993 const DataLayout &DL = M.getDataLayout();
994
995 if (TargetTriple.getOS() != Triple::Linux)
996 report_fatal_error("unsupported operating system");
997 if (TargetTriple.getArch() != Triple::x86_64)
998 report_fatal_error("unsupported architecture");
999 MapParams = &Linux_X86_64_MemoryMapParams;
1000
1001 Mod = &M;
1002 Ctx = &M.getContext();
1003 Int8Ptr = Type::getInt8PtrTy(*Ctx);
1004 OriginTy = IntegerType::get(*Ctx, OriginWidthBits);
1005 OriginPtrTy = PointerType::getUnqual(OriginTy);
1006 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
1007 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy);
1008 IntptrTy = DL.getIntPtrType(*Ctx);
1009 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0);
1010 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0);
1011
1012 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1013 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs,
1014 /*isVarArg=*/false);
1015 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy};
1016 DFSanLoadLabelAndOriginFnTy =
1017 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs,
1018 /*isVarArg=*/false);
1019 DFSanUnimplementedFnTy = FunctionType::get(
1020 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
1021 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy,
1022 Type::getInt8PtrTy(*Ctx), IntptrTy};
1023 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
1024 DFSanSetLabelArgs, /*isVarArg=*/false);
1025 DFSanNonzeroLabelFnTy =
1026 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
1027 DFSanVarargWrapperFnTy = FunctionType::get(
1028 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
1029 DFSanCmpCallbackFnTy =
1030 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
1031 /*isVarArg=*/false);
1032 DFSanChainOriginFnTy =
1033 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false);
1034 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy};
1035 DFSanChainOriginIfTaintedFnTy = FunctionType::get(
1036 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false);
1037 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits),
1038 Int8Ptr, IntptrTy, OriginTy};
1039 DFSanMaybeStoreOriginFnTy = FunctionType::get(
1040 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false);
1041 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
1042 DFSanMemOriginTransferFnTy = FunctionType::get(
1043 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false);
1044 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr};
1045 DFSanLoadStoreCallbackFnTy =
1046 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs,
1047 /*isVarArg=*/false);
1048 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1049 DFSanMemTransferCallbackFnTy =
1050 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
1051 /*isVarArg=*/false);
1052
1053 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
1054 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
1055 return true;
1056 }
1057
isInstrumented(const Function * F)1058 bool DataFlowSanitizer::isInstrumented(const Function *F) {
1059 return !ABIList.isIn(*F, "uninstrumented");
1060 }
1061
isInstrumented(const GlobalAlias * GA)1062 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
1063 return !ABIList.isIn(*GA, "uninstrumented");
1064 }
1065
isForceZeroLabels(const Function * F)1066 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) {
1067 return ABIList.isIn(*F, "force_zero_labels");
1068 }
1069
getWrapperKind(Function * F)1070 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
1071 if (ABIList.isIn(*F, "functional"))
1072 return WK_Functional;
1073 if (ABIList.isIn(*F, "discard"))
1074 return WK_Discard;
1075 if (ABIList.isIn(*F, "custom"))
1076 return WK_Custom;
1077
1078 return WK_Warning;
1079 }
1080
addGlobalNameSuffix(GlobalValue * GV)1081 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) {
1082 std::string GVName = std::string(GV->getName()), Suffix = ".dfsan";
1083 GV->setName(GVName + Suffix);
1084
1085 // Try to change the name of the function in module inline asm. We only do
1086 // this for specific asm directives, currently only ".symver", to try to avoid
1087 // corrupting asm which happens to contain the symbol name as a substring.
1088 // Note that the substitution for .symver assumes that the versioned symbol
1089 // also has an instrumented name.
1090 std::string Asm = GV->getParent()->getModuleInlineAsm();
1091 std::string SearchStr = ".symver " + GVName + ",";
1092 size_t Pos = Asm.find(SearchStr);
1093 if (Pos != std::string::npos) {
1094 Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ",");
1095 Pos = Asm.find("@");
1096
1097 if (Pos == std::string::npos)
1098 report_fatal_error(Twine("unsupported .symver: ", Asm));
1099
1100 Asm.replace(Pos, 1, Suffix + "@");
1101 GV->getParent()->setModuleInlineAsm(Asm);
1102 }
1103 }
1104
1105 Function *
buildWrapperFunction(Function * F,StringRef NewFName,GlobalValue::LinkageTypes NewFLink,FunctionType * NewFT)1106 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
1107 GlobalValue::LinkageTypes NewFLink,
1108 FunctionType *NewFT) {
1109 FunctionType *FT = F->getFunctionType();
1110 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
1111 NewFName, F->getParent());
1112 NewF->copyAttributesFrom(F);
1113 NewF->removeRetAttrs(
1114 AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
1115
1116 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
1117 if (F->isVarArg()) {
1118 NewF->removeFnAttrs(AttrBuilder().addAttribute("split-stack"));
1119 CallInst::Create(DFSanVarargWrapperFn,
1120 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
1121 BB);
1122 new UnreachableInst(*Ctx, BB);
1123 } else {
1124 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin());
1125 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams());
1126
1127 CallInst *CI = CallInst::Create(F, Args, "", BB);
1128 if (FT->getReturnType()->isVoidTy())
1129 ReturnInst::Create(*Ctx, BB);
1130 else
1131 ReturnInst::Create(*Ctx, CI, BB);
1132 }
1133
1134 return NewF;
1135 }
1136
getOrBuildTrampolineFunction(FunctionType * FT,StringRef FName)1137 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
1138 StringRef FName) {
1139 FunctionType *FTT = getTrampolineFunctionType(FT);
1140 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT);
1141 Function *F = dyn_cast<Function>(C.getCallee());
1142 if (F && F->isDeclaration()) {
1143 F->setLinkage(GlobalValue::LinkOnceODRLinkage);
1144 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
1145 std::vector<Value *> Args;
1146 Function::arg_iterator AI = F->arg_begin() + 1;
1147 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
1148 Args.push_back(&*AI);
1149 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB);
1150 Type *RetType = FT->getReturnType();
1151 ReturnInst *RI = RetType->isVoidTy() ? ReturnInst::Create(*Ctx, BB)
1152 : ReturnInst::Create(*Ctx, CI, BB);
1153
1154 // F is called by a wrapped custom function with primitive shadows. So
1155 // its arguments and return value need conversion.
1156 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true,
1157 /*ForceZeroLabels=*/false);
1158 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI;
1159 ++ValAI;
1160 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) {
1161 Value *Shadow =
1162 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI);
1163 DFSF.ValShadowMap[&*ValAI] = Shadow;
1164 }
1165 Function::arg_iterator RetShadowAI = ShadowAI;
1166 const bool ShouldTrackOrigins = shouldTrackOrigins();
1167 if (ShouldTrackOrigins) {
1168 ValAI = F->arg_begin();
1169 ++ValAI;
1170 Function::arg_iterator OriginAI = ShadowAI;
1171 if (!RetType->isVoidTy())
1172 ++OriginAI;
1173 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++OriginAI, --N) {
1174 DFSF.ValOriginMap[&*ValAI] = &*OriginAI;
1175 }
1176 }
1177 DFSanVisitor(DFSF).visitCallInst(*CI);
1178 if (!RetType->isVoidTy()) {
1179 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(
1180 DFSF.getShadow(RI->getReturnValue()), RI);
1181 new StoreInst(PrimitiveShadow, &*RetShadowAI, RI);
1182 if (ShouldTrackOrigins) {
1183 Value *Origin = DFSF.getOrigin(RI->getReturnValue());
1184 new StoreInst(Origin, &*std::prev(F->arg_end()), RI);
1185 }
1186 }
1187 }
1188
1189 return cast<Constant>(C.getCallee());
1190 }
1191
1192 // Initialize DataFlowSanitizer runtime functions and declare them in the module
initializeRuntimeFunctions(Module & M)1193 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
1194 {
1195 AttributeList AL;
1196 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind);
1197 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly);
1198 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1199 DFSanUnionLoadFn =
1200 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
1201 }
1202 {
1203 AttributeList AL;
1204 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind);
1205 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly);
1206 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1207 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction(
1208 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL);
1209 }
1210 DFSanUnimplementedFn =
1211 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
1212 {
1213 AttributeList AL;
1214 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1215 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1216 DFSanSetLabelFn =
1217 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
1218 }
1219 DFSanNonzeroLabelFn =
1220 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
1221 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
1222 DFSanVarargWrapperFnTy);
1223 {
1224 AttributeList AL;
1225 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1226 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1227 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin",
1228 DFSanChainOriginFnTy, AL);
1229 }
1230 {
1231 AttributeList AL;
1232 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1233 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1234 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1235 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction(
1236 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL);
1237 }
1238 DFSanMemOriginTransferFn = Mod->getOrInsertFunction(
1239 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy);
1240
1241 {
1242 AttributeList AL;
1243 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1244 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt);
1245 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction(
1246 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL);
1247 }
1248
1249 DFSanRuntimeFunctions.insert(
1250 DFSanUnionLoadFn.getCallee()->stripPointerCasts());
1251 DFSanRuntimeFunctions.insert(
1252 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts());
1253 DFSanRuntimeFunctions.insert(
1254 DFSanUnimplementedFn.getCallee()->stripPointerCasts());
1255 DFSanRuntimeFunctions.insert(
1256 DFSanSetLabelFn.getCallee()->stripPointerCasts());
1257 DFSanRuntimeFunctions.insert(
1258 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts());
1259 DFSanRuntimeFunctions.insert(
1260 DFSanVarargWrapperFn.getCallee()->stripPointerCasts());
1261 DFSanRuntimeFunctions.insert(
1262 DFSanLoadCallbackFn.getCallee()->stripPointerCasts());
1263 DFSanRuntimeFunctions.insert(
1264 DFSanStoreCallbackFn.getCallee()->stripPointerCasts());
1265 DFSanRuntimeFunctions.insert(
1266 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts());
1267 DFSanRuntimeFunctions.insert(
1268 DFSanCmpCallbackFn.getCallee()->stripPointerCasts());
1269 DFSanRuntimeFunctions.insert(
1270 DFSanChainOriginFn.getCallee()->stripPointerCasts());
1271 DFSanRuntimeFunctions.insert(
1272 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts());
1273 DFSanRuntimeFunctions.insert(
1274 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts());
1275 DFSanRuntimeFunctions.insert(
1276 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts());
1277 }
1278
1279 // Initializes event callback functions and declare them in the module
initializeCallbackFunctions(Module & M)1280 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
1281 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback",
1282 DFSanLoadStoreCallbackFnTy);
1283 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback",
1284 DFSanLoadStoreCallbackFnTy);
1285 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
1286 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
1287 DFSanCmpCallbackFn =
1288 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy);
1289 }
1290
injectMetadataGlobals(Module & M)1291 void DataFlowSanitizer::injectMetadataGlobals(Module &M) {
1292 // These variables can be used:
1293 // - by the runtime (to discover what the shadow width was, during
1294 // compilation)
1295 // - in testing (to avoid hardcoding the shadow width and type but instead
1296 // extract them by pattern matching)
1297 Type *IntTy = Type::getInt32Ty(*Ctx);
1298 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] {
1299 return new GlobalVariable(
1300 M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage,
1301 ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits");
1302 });
1303 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] {
1304 return new GlobalVariable(M, IntTy, /*isConstant=*/true,
1305 GlobalValue::WeakODRLinkage,
1306 ConstantInt::get(IntTy, ShadowWidthBytes),
1307 "__dfsan_shadow_width_bytes");
1308 });
1309 }
1310
runImpl(Module & M)1311 bool DataFlowSanitizer::runImpl(Module &M) {
1312 initializeModule(M);
1313
1314 if (ABIList.isIn(M, "skip"))
1315 return false;
1316
1317 const unsigned InitialGlobalSize = M.global_size();
1318 const unsigned InitialModuleSize = M.size();
1319
1320 bool Changed = false;
1321
1322 auto GetOrInsertGlobal = [this, &Changed](StringRef Name,
1323 Type *Ty) -> Constant * {
1324 Constant *C = Mod->getOrInsertGlobal(Name, Ty);
1325 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
1326 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
1327 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
1328 }
1329 return C;
1330 };
1331
1332 // These globals must be kept in sync with the ones in dfsan.cpp.
1333 ArgTLS =
1334 GetOrInsertGlobal("__dfsan_arg_tls",
1335 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8));
1336 RetvalTLS = GetOrInsertGlobal(
1337 "__dfsan_retval_tls",
1338 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8));
1339 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS);
1340 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy);
1341 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy);
1342
1343 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] {
1344 Changed = true;
1345 return new GlobalVariable(
1346 M, OriginTy, true, GlobalValue::WeakODRLinkage,
1347 ConstantInt::getSigned(OriginTy,
1348 shouldTrackOrigins() ? ClTrackOrigins : 0),
1349 "__dfsan_track_origins");
1350 });
1351
1352 injectMetadataGlobals(M);
1353
1354 initializeCallbackFunctions(M);
1355 initializeRuntimeFunctions(M);
1356
1357 std::vector<Function *> FnsToInstrument;
1358 SmallPtrSet<Function *, 2> FnsWithNativeABI;
1359 SmallPtrSet<Function *, 2> FnsWithForceZeroLabel;
1360 for (Function &F : M)
1361 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F))
1362 FnsToInstrument.push_back(&F);
1363
1364 // Give function aliases prefixes when necessary, and build wrappers where the
1365 // instrumentedness is inconsistent.
1366 for (Module::alias_iterator AI = M.alias_begin(), AE = M.alias_end();
1367 AI != AE;) {
1368 GlobalAlias *GA = &*AI;
1369 ++AI;
1370 // Don't stop on weak. We assume people aren't playing games with the
1371 // instrumentedness of overridden weak aliases.
1372 auto *F = dyn_cast<Function>(GA->getAliaseeObject());
1373 if (!F)
1374 continue;
1375
1376 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
1377 if (GAInst && FInst) {
1378 addGlobalNameSuffix(GA);
1379 } else if (GAInst != FInst) {
1380 // Non-instrumented alias of an instrumented function, or vice versa.
1381 // Replace the alias with a native-ABI wrapper of the aliasee. The pass
1382 // below will take care of instrumenting it.
1383 Function *NewF =
1384 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
1385 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
1386 NewF->takeName(GA);
1387 GA->eraseFromParent();
1388 FnsToInstrument.push_back(NewF);
1389 }
1390 }
1391
1392 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly)
1393 .addAttribute(Attribute::ReadNone);
1394
1395 // First, change the ABI of every function in the module. ABI-listed
1396 // functions keep their original ABI and get a wrapper function.
1397 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(),
1398 FE = FnsToInstrument.end();
1399 FI != FE; ++FI) {
1400 Function &F = **FI;
1401 FunctionType *FT = F.getFunctionType();
1402
1403 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
1404 FT->getReturnType()->isVoidTy());
1405
1406 if (isInstrumented(&F)) {
1407 if (isForceZeroLabels(&F))
1408 FnsWithForceZeroLabel.insert(&F);
1409
1410 // Instrumented functions get a '.dfsan' suffix. This allows us to more
1411 // easily identify cases of mismatching ABIs. This naming scheme is
1412 // mangling-compatible (see Itanium ABI), using a vendor-specific suffix.
1413 addGlobalNameSuffix(&F);
1414 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
1415 // Build a wrapper function for F. The wrapper simply calls F, and is
1416 // added to FnsToInstrument so that any instrumentation according to its
1417 // WrapperKind is done in the second pass below.
1418
1419 // If the function being wrapped has local linkage, then preserve the
1420 // function's linkage in the wrapper function.
1421 GlobalValue::LinkageTypes WrapperLinkage =
1422 F.hasLocalLinkage() ? F.getLinkage()
1423 : GlobalValue::LinkOnceODRLinkage;
1424
1425 Function *NewF = buildWrapperFunction(
1426 &F,
1427 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) +
1428 std::string(F.getName()),
1429 WrapperLinkage, FT);
1430 NewF->removeFnAttrs(ReadOnlyNoneAttrs);
1431
1432 Value *WrappedFnCst =
1433 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
1434 F.replaceAllUsesWith(WrappedFnCst);
1435
1436 UnwrappedFnMap[WrappedFnCst] = &F;
1437 *FI = NewF;
1438
1439 if (!F.isDeclaration()) {
1440 // This function is probably defining an interposition of an
1441 // uninstrumented function and hence needs to keep the original ABI.
1442 // But any functions it may call need to use the instrumented ABI, so
1443 // we instrument it in a mode which preserves the original ABI.
1444 FnsWithNativeABI.insert(&F);
1445
1446 // This code needs to rebuild the iterators, as they may be invalidated
1447 // by the push_back, taking care that the new range does not include
1448 // any functions added by this code.
1449 size_t N = FI - FnsToInstrument.begin(),
1450 Count = FE - FnsToInstrument.begin();
1451 FnsToInstrument.push_back(&F);
1452 FI = FnsToInstrument.begin() + N;
1453 FE = FnsToInstrument.begin() + Count;
1454 }
1455 // Hopefully, nobody will try to indirectly call a vararg
1456 // function... yet.
1457 } else if (FT->isVarArg()) {
1458 UnwrappedFnMap[&F] = &F;
1459 *FI = nullptr;
1460 }
1461 }
1462
1463 for (Function *F : FnsToInstrument) {
1464 if (!F || F->isDeclaration())
1465 continue;
1466
1467 removeUnreachableBlocks(*F);
1468
1469 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F),
1470 FnsWithForceZeroLabel.count(F));
1471
1472 // DFSanVisitor may create new basic blocks, which confuses df_iterator.
1473 // Build a copy of the list before iterating over it.
1474 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock()));
1475
1476 for (BasicBlock *BB : BBList) {
1477 Instruction *Inst = &BB->front();
1478 while (true) {
1479 // DFSanVisitor may split the current basic block, changing the current
1480 // instruction's next pointer and moving the next instruction to the
1481 // tail block from which we should continue.
1482 Instruction *Next = Inst->getNextNode();
1483 // DFSanVisitor may delete Inst, so keep track of whether it was a
1484 // terminator.
1485 bool IsTerminator = Inst->isTerminator();
1486 if (!DFSF.SkipInsts.count(Inst))
1487 DFSanVisitor(DFSF).visit(Inst);
1488 if (IsTerminator)
1489 break;
1490 Inst = Next;
1491 }
1492 }
1493
1494 // We will not necessarily be able to compute the shadow for every phi node
1495 // until we have visited every block. Therefore, the code that handles phi
1496 // nodes adds them to the PHIFixups list so that they can be properly
1497 // handled here.
1498 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) {
1499 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N;
1500 ++Val) {
1501 P.ShadowPhi->setIncomingValue(
1502 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val)));
1503 if (P.OriginPhi)
1504 P.OriginPhi->setIncomingValue(
1505 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val)));
1506 }
1507 }
1508
1509 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
1510 // places (i.e. instructions in basic blocks we haven't even begun visiting
1511 // yet). To make our life easier, do this work in a pass after the main
1512 // instrumentation.
1513 if (ClDebugNonzeroLabels) {
1514 for (Value *V : DFSF.NonZeroChecks) {
1515 Instruction *Pos;
1516 if (Instruction *I = dyn_cast<Instruction>(V))
1517 Pos = I->getNextNode();
1518 else
1519 Pos = &DFSF.F->getEntryBlock().front();
1520 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
1521 Pos = Pos->getNextNode();
1522 IRBuilder<> IRB(Pos);
1523 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos);
1524 Value *Ne =
1525 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow);
1526 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1527 Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
1528 IRBuilder<> ThenIRB(BI);
1529 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
1530 }
1531 }
1532 }
1533
1534 return Changed || !FnsToInstrument.empty() ||
1535 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
1536 }
1537
getArgTLS(Type * T,unsigned ArgOffset,IRBuilder<> & IRB)1538 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) {
1539 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy);
1540 if (ArgOffset)
1541 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset));
1542 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0),
1543 "_dfsarg");
1544 }
1545
getRetvalTLS(Type * T,IRBuilder<> & IRB)1546 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) {
1547 return IRB.CreatePointerCast(
1548 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret");
1549 }
1550
getRetvalOriginTLS()1551 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; }
1552
getArgOriginTLS(unsigned ArgNo,IRBuilder<> & IRB)1553 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) {
1554 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo,
1555 "_dfsarg_o");
1556 }
1557
getOrigin(Value * V)1558 Value *DFSanFunction::getOrigin(Value *V) {
1559 assert(DFS.shouldTrackOrigins());
1560 if (!isa<Argument>(V) && !isa<Instruction>(V))
1561 return DFS.ZeroOrigin;
1562 Value *&Origin = ValOriginMap[V];
1563 if (!Origin) {
1564 if (Argument *A = dyn_cast<Argument>(V)) {
1565 if (IsNativeABI)
1566 return DFS.ZeroOrigin;
1567 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) {
1568 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin();
1569 IRBuilder<> IRB(ArgOriginTLSPos);
1570 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB);
1571 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr);
1572 } else {
1573 // Overflow
1574 Origin = DFS.ZeroOrigin;
1575 }
1576 } else {
1577 Origin = DFS.ZeroOrigin;
1578 }
1579 }
1580 return Origin;
1581 }
1582
setOrigin(Instruction * I,Value * Origin)1583 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) {
1584 if (!DFS.shouldTrackOrigins())
1585 return;
1586 assert(!ValOriginMap.count(I));
1587 assert(Origin->getType() == DFS.OriginTy);
1588 ValOriginMap[I] = Origin;
1589 }
1590
getShadowForTLSArgument(Argument * A)1591 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) {
1592 unsigned ArgOffset = 0;
1593 const DataLayout &DL = F->getParent()->getDataLayout();
1594 for (auto &FArg : F->args()) {
1595 if (!FArg.getType()->isSized()) {
1596 if (A == &FArg)
1597 break;
1598 continue;
1599 }
1600
1601 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg));
1602 if (A != &FArg) {
1603 ArgOffset += alignTo(Size, ShadowTLSAlignment);
1604 if (ArgOffset > ArgTLSSize)
1605 break; // ArgTLS overflows, uses a zero shadow.
1606 continue;
1607 }
1608
1609 if (ArgOffset + Size > ArgTLSSize)
1610 break; // ArgTLS overflows, uses a zero shadow.
1611
1612 Instruction *ArgTLSPos = &*F->getEntryBlock().begin();
1613 IRBuilder<> IRB(ArgTLSPos);
1614 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB);
1615 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr,
1616 ShadowTLSAlignment);
1617 }
1618
1619 return DFS.getZeroShadow(A);
1620 }
1621
getShadow(Value * V)1622 Value *DFSanFunction::getShadow(Value *V) {
1623 if (!isa<Argument>(V) && !isa<Instruction>(V))
1624 return DFS.getZeroShadow(V);
1625 if (IsForceZeroLabels)
1626 return DFS.getZeroShadow(V);
1627 Value *&Shadow = ValShadowMap[V];
1628 if (!Shadow) {
1629 if (Argument *A = dyn_cast<Argument>(V)) {
1630 if (IsNativeABI)
1631 return DFS.getZeroShadow(V);
1632 Shadow = getShadowForTLSArgument(A);
1633 NonZeroChecks.push_back(Shadow);
1634 } else {
1635 Shadow = DFS.getZeroShadow(V);
1636 }
1637 }
1638 return Shadow;
1639 }
1640
setShadow(Instruction * I,Value * Shadow)1641 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
1642 assert(!ValShadowMap.count(I));
1643 ValShadowMap[I] = Shadow;
1644 }
1645
1646 /// Compute the integer shadow offset that corresponds to a given
1647 /// application address.
1648 ///
1649 /// Offset = (Addr & ~AndMask) ^ XorMask
getShadowOffset(Value * Addr,IRBuilder<> & IRB)1650 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) {
1651 assert(Addr != RetvalTLS && "Reinstrumenting?");
1652 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy);
1653
1654 uint64_t AndMask = MapParams->AndMask;
1655 if (AndMask)
1656 OffsetLong =
1657 IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask));
1658
1659 uint64_t XorMask = MapParams->XorMask;
1660 if (XorMask)
1661 OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask));
1662 return OffsetLong;
1663 }
1664
1665 std::pair<Value *, Value *>
getShadowOriginAddress(Value * Addr,Align InstAlignment,Instruction * Pos)1666 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment,
1667 Instruction *Pos) {
1668 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL
1669 IRBuilder<> IRB(Pos);
1670 Value *ShadowOffset = getShadowOffset(Addr, IRB);
1671 Value *ShadowLong = ShadowOffset;
1672 uint64_t ShadowBase = MapParams->ShadowBase;
1673 if (ShadowBase != 0) {
1674 ShadowLong =
1675 IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase));
1676 }
1677 IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
1678 Value *ShadowPtr =
1679 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1680 Value *OriginPtr = nullptr;
1681 if (shouldTrackOrigins()) {
1682 Value *OriginLong = ShadowOffset;
1683 uint64_t OriginBase = MapParams->OriginBase;
1684 if (OriginBase != 0)
1685 OriginLong =
1686 IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase));
1687 const Align Alignment = llvm::assumeAligned(InstAlignment.value());
1688 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB.
1689 // So Mask is unnecessary.
1690 if (Alignment < MinOriginAlignment) {
1691 uint64_t Mask = MinOriginAlignment.value() - 1;
1692 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask));
1693 }
1694 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy);
1695 }
1696 return std::make_pair(ShadowPtr, OriginPtr);
1697 }
1698
getShadowAddress(Value * Addr,Instruction * Pos,Value * ShadowOffset)1699 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos,
1700 Value *ShadowOffset) {
1701 IRBuilder<> IRB(Pos);
1702 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy);
1703 }
1704
getShadowAddress(Value * Addr,Instruction * Pos)1705 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
1706 IRBuilder<> IRB(Pos);
1707 Value *ShadowOffset = getShadowOffset(Addr, IRB);
1708 return getShadowAddress(Addr, Pos, ShadowOffset);
1709 }
1710
combineShadowsThenConvert(Type * T,Value * V1,Value * V2,Instruction * Pos)1711 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
1712 Instruction *Pos) {
1713 Value *PrimitiveValue = combineShadows(V1, V2, Pos);
1714 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos);
1715 }
1716
1717 // Generates IR to compute the union of the two given shadows, inserting it
1718 // before Pos. The combined value is with primitive type.
combineShadows(Value * V1,Value * V2,Instruction * Pos)1719 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
1720 if (DFS.isZeroShadow(V1))
1721 return collapseToPrimitiveShadow(V2, Pos);
1722 if (DFS.isZeroShadow(V2))
1723 return collapseToPrimitiveShadow(V1, Pos);
1724 if (V1 == V2)
1725 return collapseToPrimitiveShadow(V1, Pos);
1726
1727 auto V1Elems = ShadowElements.find(V1);
1728 auto V2Elems = ShadowElements.find(V2);
1729 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
1730 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
1731 V2Elems->second.begin(), V2Elems->second.end())) {
1732 return collapseToPrimitiveShadow(V1, Pos);
1733 }
1734 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
1735 V1Elems->second.begin(), V1Elems->second.end())) {
1736 return collapseToPrimitiveShadow(V2, Pos);
1737 }
1738 } else if (V1Elems != ShadowElements.end()) {
1739 if (V1Elems->second.count(V2))
1740 return collapseToPrimitiveShadow(V1, Pos);
1741 } else if (V2Elems != ShadowElements.end()) {
1742 if (V2Elems->second.count(V1))
1743 return collapseToPrimitiveShadow(V2, Pos);
1744 }
1745
1746 auto Key = std::make_pair(V1, V2);
1747 if (V1 > V2)
1748 std::swap(Key.first, Key.second);
1749 CachedShadow &CCS = CachedShadows[Key];
1750 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
1751 return CCS.Shadow;
1752
1753 // Converts inputs shadows to shadows with primitive types.
1754 Value *PV1 = collapseToPrimitiveShadow(V1, Pos);
1755 Value *PV2 = collapseToPrimitiveShadow(V2, Pos);
1756
1757 IRBuilder<> IRB(Pos);
1758 CCS.Block = Pos->getParent();
1759 CCS.Shadow = IRB.CreateOr(PV1, PV2);
1760
1761 std::set<Value *> UnionElems;
1762 if (V1Elems != ShadowElements.end()) {
1763 UnionElems = V1Elems->second;
1764 } else {
1765 UnionElems.insert(V1);
1766 }
1767 if (V2Elems != ShadowElements.end()) {
1768 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
1769 } else {
1770 UnionElems.insert(V2);
1771 }
1772 ShadowElements[CCS.Shadow] = std::move(UnionElems);
1773
1774 return CCS.Shadow;
1775 }
1776
1777 // A convenience function which folds the shadows of each of the operands
1778 // of the provided instruction Inst, inserting the IR before Inst. Returns
1779 // the computed union Value.
combineOperandShadows(Instruction * Inst)1780 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
1781 if (Inst->getNumOperands() == 0)
1782 return DFS.getZeroShadow(Inst);
1783
1784 Value *Shadow = getShadow(Inst->getOperand(0));
1785 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I)
1786 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst);
1787
1788 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst);
1789 }
1790
visitInstOperands(Instruction & I)1791 void DFSanVisitor::visitInstOperands(Instruction &I) {
1792 Value *CombinedShadow = DFSF.combineOperandShadows(&I);
1793 DFSF.setShadow(&I, CombinedShadow);
1794 visitInstOperandOrigins(I);
1795 }
1796
combineOrigins(const std::vector<Value * > & Shadows,const std::vector<Value * > & Origins,Instruction * Pos,ConstantInt * Zero)1797 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows,
1798 const std::vector<Value *> &Origins,
1799 Instruction *Pos, ConstantInt *Zero) {
1800 assert(Shadows.size() == Origins.size());
1801 size_t Size = Origins.size();
1802 if (Size == 0)
1803 return DFS.ZeroOrigin;
1804 Value *Origin = nullptr;
1805 if (!Zero)
1806 Zero = DFS.ZeroPrimitiveShadow;
1807 for (size_t I = 0; I != Size; ++I) {
1808 Value *OpOrigin = Origins[I];
1809 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin);
1810 if (ConstOpOrigin && ConstOpOrigin->isNullValue())
1811 continue;
1812 if (!Origin) {
1813 Origin = OpOrigin;
1814 continue;
1815 }
1816 Value *OpShadow = Shadows[I];
1817 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos);
1818 IRBuilder<> IRB(Pos);
1819 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero);
1820 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1821 }
1822 return Origin ? Origin : DFS.ZeroOrigin;
1823 }
1824
combineOperandOrigins(Instruction * Inst)1825 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) {
1826 size_t Size = Inst->getNumOperands();
1827 std::vector<Value *> Shadows(Size);
1828 std::vector<Value *> Origins(Size);
1829 for (unsigned I = 0; I != Size; ++I) {
1830 Shadows[I] = getShadow(Inst->getOperand(I));
1831 Origins[I] = getOrigin(Inst->getOperand(I));
1832 }
1833 return combineOrigins(Shadows, Origins, Inst);
1834 }
1835
visitInstOperandOrigins(Instruction & I)1836 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) {
1837 if (!DFSF.DFS.shouldTrackOrigins())
1838 return;
1839 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I);
1840 DFSF.setOrigin(&I, CombinedOrigin);
1841 }
1842
getShadowAlign(Align InstAlignment)1843 Align DFSanFunction::getShadowAlign(Align InstAlignment) {
1844 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1);
1845 return Align(Alignment.value() * DFS.ShadowWidthBytes);
1846 }
1847
getOriginAlign(Align InstAlignment)1848 Align DFSanFunction::getOriginAlign(Align InstAlignment) {
1849 const Align Alignment = llvm::assumeAligned(InstAlignment.value());
1850 return Align(std::max(MinOriginAlignment, Alignment));
1851 }
1852
useCallbackLoadLabelAndOrigin(uint64_t Size,Align InstAlignment)1853 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size,
1854 Align InstAlignment) {
1855 // When enabling tracking load instructions, we always use
1856 // __dfsan_load_label_and_origin to reduce code size.
1857 if (ClTrackOrigins == 2)
1858 return true;
1859
1860 assert(Size != 0);
1861 // * if Size == 1, it is sufficient to load its origin aligned at 4.
1862 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to
1863 // load its origin aligned at 4. If not, although origins may be lost, it
1864 // should not happen very often.
1865 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When
1866 // Size % 4 == 0, it is more efficient to load origins without callbacks.
1867 // * Otherwise we use __dfsan_load_label_and_origin.
1868 // This should ensure that common cases run efficiently.
1869 if (Size <= 2)
1870 return false;
1871
1872 const Align Alignment = llvm::assumeAligned(InstAlignment.value());
1873 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size);
1874 }
1875
loadNextOrigin(Instruction * Pos,Align OriginAlign,Value ** OriginAddr)1876 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign,
1877 Value **OriginAddr) {
1878 IRBuilder<> IRB(Pos);
1879 *OriginAddr =
1880 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1));
1881 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign);
1882 }
1883
loadShadowFast(Value * ShadowAddr,Value * OriginAddr,uint64_t Size,Align ShadowAlign,Align OriginAlign,Value * FirstOrigin,Instruction * Pos)1884 std::pair<Value *, Value *> DFSanFunction::loadShadowFast(
1885 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign,
1886 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) {
1887 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
1888 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes;
1889
1890 assert(Size >= 4 && "Not large enough load size for fast path!");
1891
1892 // Used for origin tracking.
1893 std::vector<Value *> Shadows;
1894 std::vector<Value *> Origins;
1895
1896 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20)
1897 // but this function is only used in a subset of cases that make it possible
1898 // to optimize the instrumentation.
1899 //
1900 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow
1901 // per byte) is either:
1902 // - a multiple of 8 (common)
1903 // - equal to 4 (only for load32)
1904 //
1905 // For the second case, we can fit the wide shadow in a 32-bit integer. In all
1906 // other cases, we use a 64-bit integer to hold the wide shadow.
1907 Type *WideShadowTy =
1908 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx);
1909
1910 IRBuilder<> IRB(Pos);
1911 Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo());
1912 Value *CombinedWideShadow =
1913 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
1914
1915 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth();
1916 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits;
1917
1918 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) {
1919 if (BytesPerWideShadow > 4) {
1920 assert(BytesPerWideShadow == 8);
1921 // The wide shadow relates to two origin pointers: one for the first four
1922 // application bytes, and one for the latest four. We use a left shift to
1923 // get just the shadow bytes that correspond to the first origin pointer,
1924 // and then the entire shadow for the second origin pointer (which will be
1925 // chosen by combineOrigins() iff the least-significant half of the wide
1926 // shadow was empty but the other half was not).
1927 Value *WideShadowLo = IRB.CreateShl(
1928 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2));
1929 Shadows.push_back(WideShadow);
1930 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr));
1931
1932 Shadows.push_back(WideShadowLo);
1933 Origins.push_back(Origin);
1934 } else {
1935 Shadows.push_back(WideShadow);
1936 Origins.push_back(Origin);
1937 }
1938 };
1939
1940 if (ShouldTrackOrigins)
1941 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin);
1942
1943 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly;
1944 // then OR individual shadows within the combined WideShadow by binary ORing.
1945 // This is fewer instructions than ORing shadows individually, since it
1946 // needs logN shift/or instructions (N being the bytes of the combined wide
1947 // shadow).
1948 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size;
1949 ByteOfs += BytesPerWideShadow) {
1950 WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr,
1951 ConstantInt::get(DFS.IntptrTy, 1));
1952 Value *NextWideShadow =
1953 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
1954 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow);
1955 if (ShouldTrackOrigins) {
1956 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr);
1957 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin);
1958 }
1959 }
1960 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits;
1961 Width >>= 1) {
1962 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width);
1963 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow);
1964 }
1965 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy),
1966 ShouldTrackOrigins
1967 ? combineOrigins(Shadows, Origins, Pos,
1968 ConstantInt::getSigned(IRB.getInt64Ty(), 0))
1969 : DFS.ZeroOrigin};
1970 }
1971
loadShadowOriginSansLoadTracking(Value * Addr,uint64_t Size,Align InstAlignment,Instruction * Pos)1972 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking(
1973 Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) {
1974 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
1975
1976 // Non-escaped loads.
1977 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
1978 const auto SI = AllocaShadowMap.find(AI);
1979 if (SI != AllocaShadowMap.end()) {
1980 IRBuilder<> IRB(Pos);
1981 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second);
1982 const auto OI = AllocaOriginMap.find(AI);
1983 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end());
1984 return {ShadowLI, ShouldTrackOrigins
1985 ? IRB.CreateLoad(DFS.OriginTy, OI->second)
1986 : nullptr};
1987 }
1988 }
1989
1990 // Load from constant addresses.
1991 SmallVector<const Value *, 2> Objs;
1992 getUnderlyingObjects(Addr, Objs);
1993 bool AllConstants = true;
1994 for (const Value *Obj : Objs) {
1995 if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
1996 continue;
1997 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
1998 continue;
1999
2000 AllConstants = false;
2001 break;
2002 }
2003 if (AllConstants)
2004 return {DFS.ZeroPrimitiveShadow,
2005 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2006
2007 if (Size == 0)
2008 return {DFS.ZeroPrimitiveShadow,
2009 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2010
2011 // Use callback to load if this is not an optimizable case for origin
2012 // tracking.
2013 if (ShouldTrackOrigins &&
2014 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) {
2015 IRBuilder<> IRB(Pos);
2016 CallInst *Call =
2017 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn,
2018 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
2019 ConstantInt::get(DFS.IntptrTy, Size)});
2020 Call->addRetAttr(Attribute::ZExt);
2021 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits),
2022 DFS.PrimitiveShadowTy),
2023 IRB.CreateTrunc(Call, DFS.OriginTy)};
2024 }
2025
2026 // Other cases that support loading shadows or origins in a fast way.
2027 Value *ShadowAddr, *OriginAddr;
2028 std::tie(ShadowAddr, OriginAddr) =
2029 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2030
2031 const Align ShadowAlign = getShadowAlign(InstAlignment);
2032 const Align OriginAlign = getOriginAlign(InstAlignment);
2033 Value *Origin = nullptr;
2034 if (ShouldTrackOrigins) {
2035 IRBuilder<> IRB(Pos);
2036 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign);
2037 }
2038
2039 // When the byte size is small enough, we can load the shadow directly with
2040 // just a few instructions.
2041 switch (Size) {
2042 case 1: {
2043 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos);
2044 LI->setAlignment(ShadowAlign);
2045 return {LI, Origin};
2046 }
2047 case 2: {
2048 IRBuilder<> IRB(Pos);
2049 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr,
2050 ConstantInt::get(DFS.IntptrTy, 1));
2051 Value *Load =
2052 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign);
2053 Value *Load1 =
2054 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign);
2055 return {combineShadows(Load, Load1, Pos), Origin};
2056 }
2057 }
2058 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size);
2059
2060 if (HasSizeForFastPath)
2061 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign,
2062 OriginAlign, Origin, Pos);
2063
2064 IRBuilder<> IRB(Pos);
2065 CallInst *FallbackCall = IRB.CreateCall(
2066 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
2067 FallbackCall->addRetAttr(Attribute::ZExt);
2068 return {FallbackCall, Origin};
2069 }
2070
loadShadowOrigin(Value * Addr,uint64_t Size,Align InstAlignment,Instruction * Pos)2071 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr,
2072 uint64_t Size,
2073 Align InstAlignment,
2074 Instruction *Pos) {
2075 Value *PrimitiveShadow, *Origin;
2076 std::tie(PrimitiveShadow, Origin) =
2077 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos);
2078 if (DFS.shouldTrackOrigins()) {
2079 if (ClTrackOrigins == 2) {
2080 IRBuilder<> IRB(Pos);
2081 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow);
2082 if (!ConstantShadow || !ConstantShadow->isZeroValue())
2083 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB);
2084 }
2085 }
2086 return {PrimitiveShadow, Origin};
2087 }
2088
addAcquireOrdering(AtomicOrdering AO)2089 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) {
2090 switch (AO) {
2091 case AtomicOrdering::NotAtomic:
2092 return AtomicOrdering::NotAtomic;
2093 case AtomicOrdering::Unordered:
2094 case AtomicOrdering::Monotonic:
2095 case AtomicOrdering::Acquire:
2096 return AtomicOrdering::Acquire;
2097 case AtomicOrdering::Release:
2098 case AtomicOrdering::AcquireRelease:
2099 return AtomicOrdering::AcquireRelease;
2100 case AtomicOrdering::SequentiallyConsistent:
2101 return AtomicOrdering::SequentiallyConsistent;
2102 }
2103 llvm_unreachable("Unknown ordering");
2104 }
2105
visitLoadInst(LoadInst & LI)2106 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
2107 auto &DL = LI.getModule()->getDataLayout();
2108 uint64_t Size = DL.getTypeStoreSize(LI.getType());
2109 if (Size == 0) {
2110 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI));
2111 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin);
2112 return;
2113 }
2114
2115 // When an application load is atomic, increase atomic ordering between
2116 // atomic application loads and stores to ensure happen-before order; load
2117 // shadow data after application data; store zero shadow data before
2118 // application data. This ensure shadow loads return either labels of the
2119 // initial application data or zeros.
2120 if (LI.isAtomic())
2121 LI.setOrdering(addAcquireOrdering(LI.getOrdering()));
2122
2123 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI;
2124 std::vector<Value *> Shadows;
2125 std::vector<Value *> Origins;
2126 Value *PrimitiveShadow, *Origin;
2127 std::tie(PrimitiveShadow, Origin) =
2128 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos);
2129 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2130 if (ShouldTrackOrigins) {
2131 Shadows.push_back(PrimitiveShadow);
2132 Origins.push_back(Origin);
2133 }
2134 if (ClCombinePointerLabelsOnLoad) {
2135 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
2136 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos);
2137 if (ShouldTrackOrigins) {
2138 Shadows.push_back(PtrShadow);
2139 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand()));
2140 }
2141 }
2142 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow))
2143 DFSF.NonZeroChecks.push_back(PrimitiveShadow);
2144
2145 Value *Shadow =
2146 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos);
2147 DFSF.setShadow(&LI, Shadow);
2148
2149 if (ShouldTrackOrigins) {
2150 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos));
2151 }
2152
2153 if (ClEventCallbacks) {
2154 IRBuilder<> IRB(Pos);
2155 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr);
2156 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8});
2157 }
2158 }
2159
updateOriginIfTainted(Value * Shadow,Value * Origin,IRBuilder<> & IRB)2160 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin,
2161 IRBuilder<> &IRB) {
2162 assert(DFS.shouldTrackOrigins());
2163 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin});
2164 }
2165
updateOrigin(Value * V,IRBuilder<> & IRB)2166 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) {
2167 if (!DFS.shouldTrackOrigins())
2168 return V;
2169 return IRB.CreateCall(DFS.DFSanChainOriginFn, V);
2170 }
2171
originToIntptr(IRBuilder<> & IRB,Value * Origin)2172 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) {
2173 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2174 const DataLayout &DL = F->getParent()->getDataLayout();
2175 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2176 if (IntptrSize == OriginSize)
2177 return Origin;
2178 assert(IntptrSize == OriginSize * 2);
2179 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false);
2180 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8));
2181 }
2182
paintOrigin(IRBuilder<> & IRB,Value * Origin,Value * StoreOriginAddr,uint64_t StoreOriginSize,Align Alignment)2183 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin,
2184 Value *StoreOriginAddr,
2185 uint64_t StoreOriginSize, Align Alignment) {
2186 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2187 const DataLayout &DL = F->getParent()->getDataLayout();
2188 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy);
2189 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2190 assert(IntptrAlignment >= MinOriginAlignment);
2191 assert(IntptrSize >= OriginSize);
2192
2193 unsigned Ofs = 0;
2194 Align CurrentAlignment = Alignment;
2195 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) {
2196 Value *IntptrOrigin = originToIntptr(IRB, Origin);
2197 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast(
2198 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0));
2199 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) {
2200 Value *Ptr =
2201 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I)
2202 : IntptrStoreOriginPtr;
2203 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
2204 Ofs += IntptrSize / OriginSize;
2205 CurrentAlignment = IntptrAlignment;
2206 }
2207 }
2208
2209 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize;
2210 ++I) {
2211 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I)
2212 : StoreOriginAddr;
2213 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
2214 CurrentAlignment = MinOriginAlignment;
2215 }
2216 }
2217
convertToBool(Value * V,IRBuilder<> & IRB,const Twine & Name)2218 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB,
2219 const Twine &Name) {
2220 Type *VTy = V->getType();
2221 assert(VTy->isIntegerTy());
2222 if (VTy->getIntegerBitWidth() == 1)
2223 // Just converting a bool to a bool, so do nothing.
2224 return V;
2225 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name);
2226 }
2227
storeOrigin(Instruction * Pos,Value * Addr,uint64_t Size,Value * Shadow,Value * Origin,Value * StoreOriginAddr,Align InstAlignment)2228 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size,
2229 Value *Shadow, Value *Origin,
2230 Value *StoreOriginAddr, Align InstAlignment) {
2231 // Do not write origins for zero shadows because we do not trace origins for
2232 // untainted sinks.
2233 const Align OriginAlignment = getOriginAlign(InstAlignment);
2234 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos);
2235 IRBuilder<> IRB(Pos);
2236 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) {
2237 if (!ConstantShadow->isZeroValue())
2238 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size,
2239 OriginAlignment);
2240 return;
2241 }
2242
2243 if (shouldInstrumentWithCall()) {
2244 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn,
2245 {CollapsedShadow,
2246 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
2247 ConstantInt::get(DFS.IntptrTy, Size), Origin});
2248 } else {
2249 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp");
2250 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
2251 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT);
2252 IRBuilder<> IRBNew(CheckTerm);
2253 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size,
2254 OriginAlignment);
2255 ++NumOriginStores;
2256 }
2257 }
2258
storeZeroPrimitiveShadow(Value * Addr,uint64_t Size,Align ShadowAlign,Instruction * Pos)2259 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size,
2260 Align ShadowAlign,
2261 Instruction *Pos) {
2262 IRBuilder<> IRB(Pos);
2263 IntegerType *ShadowTy =
2264 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits);
2265 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
2266 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
2267 Value *ExtShadowAddr =
2268 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
2269 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
2270 // Do not write origins for 0 shadows because we do not trace origins for
2271 // untainted sinks.
2272 }
2273
storePrimitiveShadowOrigin(Value * Addr,uint64_t Size,Align InstAlignment,Value * PrimitiveShadow,Value * Origin,Instruction * Pos)2274 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
2275 Align InstAlignment,
2276 Value *PrimitiveShadow,
2277 Value *Origin,
2278 Instruction *Pos) {
2279 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin;
2280
2281 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
2282 const auto SI = AllocaShadowMap.find(AI);
2283 if (SI != AllocaShadowMap.end()) {
2284 IRBuilder<> IRB(Pos);
2285 IRB.CreateStore(PrimitiveShadow, SI->second);
2286
2287 // Do not write origins for 0 shadows because we do not trace origins for
2288 // untainted sinks.
2289 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) {
2290 const auto OI = AllocaOriginMap.find(AI);
2291 assert(OI != AllocaOriginMap.end() && Origin);
2292 IRB.CreateStore(Origin, OI->second);
2293 }
2294 return;
2295 }
2296 }
2297
2298 const Align ShadowAlign = getShadowAlign(InstAlignment);
2299 if (DFS.isZeroShadow(PrimitiveShadow)) {
2300 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos);
2301 return;
2302 }
2303
2304 IRBuilder<> IRB(Pos);
2305 Value *ShadowAddr, *OriginAddr;
2306 std::tie(ShadowAddr, OriginAddr) =
2307 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2308
2309 const unsigned ShadowVecSize = 8;
2310 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 &&
2311 "Shadow vector is too large!");
2312
2313 uint64_t Offset = 0;
2314 uint64_t LeftSize = Size;
2315 if (LeftSize >= ShadowVecSize) {
2316 auto *ShadowVecTy =
2317 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize);
2318 Value *ShadowVec = UndefValue::get(ShadowVecTy);
2319 for (unsigned I = 0; I != ShadowVecSize; ++I) {
2320 ShadowVec = IRB.CreateInsertElement(
2321 ShadowVec, PrimitiveShadow,
2322 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I));
2323 }
2324 Value *ShadowVecAddr =
2325 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
2326 do {
2327 Value *CurShadowVecAddr =
2328 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
2329 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
2330 LeftSize -= ShadowVecSize;
2331 ++Offset;
2332 } while (LeftSize >= ShadowVecSize);
2333 Offset *= ShadowVecSize;
2334 }
2335 while (LeftSize > 0) {
2336 Value *CurShadowAddr =
2337 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset);
2338 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign);
2339 --LeftSize;
2340 ++Offset;
2341 }
2342
2343 if (ShouldTrackOrigins) {
2344 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr,
2345 InstAlignment);
2346 }
2347 }
2348
addReleaseOrdering(AtomicOrdering AO)2349 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) {
2350 switch (AO) {
2351 case AtomicOrdering::NotAtomic:
2352 return AtomicOrdering::NotAtomic;
2353 case AtomicOrdering::Unordered:
2354 case AtomicOrdering::Monotonic:
2355 case AtomicOrdering::Release:
2356 return AtomicOrdering::Release;
2357 case AtomicOrdering::Acquire:
2358 case AtomicOrdering::AcquireRelease:
2359 return AtomicOrdering::AcquireRelease;
2360 case AtomicOrdering::SequentiallyConsistent:
2361 return AtomicOrdering::SequentiallyConsistent;
2362 }
2363 llvm_unreachable("Unknown ordering");
2364 }
2365
visitStoreInst(StoreInst & SI)2366 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
2367 auto &DL = SI.getModule()->getDataLayout();
2368 Value *Val = SI.getValueOperand();
2369 uint64_t Size = DL.getTypeStoreSize(Val->getType());
2370 if (Size == 0)
2371 return;
2372
2373 // When an application store is atomic, increase atomic ordering between
2374 // atomic application loads and stores to ensure happen-before order; load
2375 // shadow data after application data; store zero shadow data before
2376 // application data. This ensure shadow loads return either labels of the
2377 // initial application data or zeros.
2378 if (SI.isAtomic())
2379 SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
2380
2381 const bool ShouldTrackOrigins =
2382 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic();
2383 std::vector<Value *> Shadows;
2384 std::vector<Value *> Origins;
2385
2386 Value *Shadow =
2387 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val);
2388
2389 if (ShouldTrackOrigins) {
2390 Shadows.push_back(Shadow);
2391 Origins.push_back(DFSF.getOrigin(Val));
2392 }
2393
2394 Value *PrimitiveShadow;
2395 if (ClCombinePointerLabelsOnStore) {
2396 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
2397 if (ShouldTrackOrigins) {
2398 Shadows.push_back(PtrShadow);
2399 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand()));
2400 }
2401 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
2402 } else {
2403 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI);
2404 }
2405 Value *Origin = nullptr;
2406 if (ShouldTrackOrigins)
2407 Origin = DFSF.combineOrigins(Shadows, Origins, &SI);
2408 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(),
2409 PrimitiveShadow, Origin, &SI);
2410 if (ClEventCallbacks) {
2411 IRBuilder<> IRB(&SI);
2412 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr);
2413 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8});
2414 }
2415 }
2416
visitCASOrRMW(Align InstAlignment,Instruction & I)2417 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) {
2418 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
2419
2420 Value *Val = I.getOperand(1);
2421 const auto &DL = I.getModule()->getDataLayout();
2422 uint64_t Size = DL.getTypeStoreSize(Val->getType());
2423 if (Size == 0)
2424 return;
2425
2426 // Conservatively set data at stored addresses and return with zero shadow to
2427 // prevent shadow data races.
2428 IRBuilder<> IRB(&I);
2429 Value *Addr = I.getOperand(0);
2430 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment);
2431 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I);
2432 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I));
2433 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2434 }
2435
visitAtomicRMWInst(AtomicRMWInst & I)2436 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) {
2437 visitCASOrRMW(I.getAlign(), I);
2438 // TODO: The ordering change follows MSan. It is possible not to change
2439 // ordering because we always set and use 0 shadows.
2440 I.setOrdering(addReleaseOrdering(I.getOrdering()));
2441 }
2442
visitAtomicCmpXchgInst(AtomicCmpXchgInst & I)2443 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
2444 visitCASOrRMW(I.getAlign(), I);
2445 // TODO: The ordering change follows MSan. It is possible not to change
2446 // ordering because we always set and use 0 shadows.
2447 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
2448 }
2449
visitUnaryOperator(UnaryOperator & UO)2450 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
2451 visitInstOperands(UO);
2452 }
2453
visitBinaryOperator(BinaryOperator & BO)2454 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
2455 visitInstOperands(BO);
2456 }
2457
visitBitCastInst(BitCastInst & BCI)2458 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) {
2459 // Special case: if this is the bitcast (there is exactly 1 allowed) between
2460 // a musttail call and a ret, don't instrument. New instructions are not
2461 // allowed after a musttail call.
2462 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0)))
2463 if (CI->isMustTailCall())
2464 return;
2465 visitInstOperands(BCI);
2466 }
2467
visitCastInst(CastInst & CI)2468 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); }
2469
visitCmpInst(CmpInst & CI)2470 void DFSanVisitor::visitCmpInst(CmpInst &CI) {
2471 visitInstOperands(CI);
2472 if (ClEventCallbacks) {
2473 IRBuilder<> IRB(&CI);
2474 Value *CombinedShadow = DFSF.getShadow(&CI);
2475 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow);
2476 }
2477 }
2478
visitLandingPadInst(LandingPadInst & LPI)2479 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) {
2480 // We do not need to track data through LandingPadInst.
2481 //
2482 // For the C++ exceptions, if a value is thrown, this value will be stored
2483 // in a memory location provided by __cxa_allocate_exception(...) (on the
2484 // throw side) or __cxa_begin_catch(...) (on the catch side).
2485 // This memory will have a shadow, so with the loads and stores we will be
2486 // able to propagate labels on data thrown through exceptions, without any
2487 // special handling of the LandingPadInst.
2488 //
2489 // The second element in the pair result of the LandingPadInst is a
2490 // register value, but it is for a type ID and should never be tainted.
2491 DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI));
2492 DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin);
2493 }
2494
visitGetElementPtrInst(GetElementPtrInst & GEPI)2495 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2496 if (ClCombineOffsetLabelsOnGEP) {
2497 visitInstOperands(GEPI);
2498 return;
2499 }
2500
2501 // Only propagate shadow/origin of base pointer value but ignore those of
2502 // offset operands.
2503 Value *BasePointer = GEPI.getPointerOperand();
2504 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer));
2505 if (DFSF.DFS.shouldTrackOrigins())
2506 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer));
2507 }
2508
visitExtractElementInst(ExtractElementInst & I)2509 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
2510 visitInstOperands(I);
2511 }
2512
visitInsertElementInst(InsertElementInst & I)2513 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
2514 visitInstOperands(I);
2515 }
2516
visitShuffleVectorInst(ShuffleVectorInst & I)2517 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
2518 visitInstOperands(I);
2519 }
2520
visitExtractValueInst(ExtractValueInst & I)2521 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
2522 IRBuilder<> IRB(&I);
2523 Value *Agg = I.getAggregateOperand();
2524 Value *AggShadow = DFSF.getShadow(Agg);
2525 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2526 DFSF.setShadow(&I, ResShadow);
2527 visitInstOperandOrigins(I);
2528 }
2529
visitInsertValueInst(InsertValueInst & I)2530 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
2531 IRBuilder<> IRB(&I);
2532 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand());
2533 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand());
2534 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2535 DFSF.setShadow(&I, Res);
2536 visitInstOperandOrigins(I);
2537 }
2538
visitAllocaInst(AllocaInst & I)2539 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
2540 bool AllLoadsStores = true;
2541 for (User *U : I.users()) {
2542 if (isa<LoadInst>(U))
2543 continue;
2544
2545 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
2546 if (SI->getPointerOperand() == &I)
2547 continue;
2548 }
2549
2550 AllLoadsStores = false;
2551 break;
2552 }
2553 if (AllLoadsStores) {
2554 IRBuilder<> IRB(&I);
2555 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy);
2556 if (DFSF.DFS.shouldTrackOrigins()) {
2557 DFSF.AllocaOriginMap[&I] =
2558 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa");
2559 }
2560 }
2561 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow);
2562 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2563 }
2564
visitSelectInst(SelectInst & I)2565 void DFSanVisitor::visitSelectInst(SelectInst &I) {
2566 Value *CondShadow = DFSF.getShadow(I.getCondition());
2567 Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
2568 Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
2569 Value *ShadowSel = nullptr;
2570 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2571 std::vector<Value *> Shadows;
2572 std::vector<Value *> Origins;
2573 Value *TrueOrigin =
2574 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr;
2575 Value *FalseOrigin =
2576 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr;
2577
2578 if (isa<VectorType>(I.getCondition()->getType())) {
2579 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow,
2580 FalseShadow, &I);
2581 if (ShouldTrackOrigins) {
2582 Shadows.push_back(TrueShadow);
2583 Shadows.push_back(FalseShadow);
2584 Origins.push_back(TrueOrigin);
2585 Origins.push_back(FalseOrigin);
2586 }
2587 } else {
2588 if (TrueShadow == FalseShadow) {
2589 ShadowSel = TrueShadow;
2590 if (ShouldTrackOrigins) {
2591 Shadows.push_back(TrueShadow);
2592 Origins.push_back(TrueOrigin);
2593 }
2594 } else {
2595 ShadowSel =
2596 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
2597 if (ShouldTrackOrigins) {
2598 Shadows.push_back(ShadowSel);
2599 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin,
2600 FalseOrigin, "", &I));
2601 }
2602 }
2603 }
2604 DFSF.setShadow(&I, ClTrackSelectControlFlow
2605 ? DFSF.combineShadowsThenConvert(
2606 I.getType(), CondShadow, ShadowSel, &I)
2607 : ShadowSel);
2608 if (ShouldTrackOrigins) {
2609 if (ClTrackSelectControlFlow) {
2610 Shadows.push_back(CondShadow);
2611 Origins.push_back(DFSF.getOrigin(I.getCondition()));
2612 }
2613 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I));
2614 }
2615 }
2616
visitMemSetInst(MemSetInst & I)2617 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
2618 IRBuilder<> IRB(&I);
2619 Value *ValShadow = DFSF.getShadow(I.getValue());
2620 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins()
2621 ? DFSF.getOrigin(I.getValue())
2622 : DFSF.DFS.ZeroOrigin;
2623 IRB.CreateCall(
2624 DFSF.DFS.DFSanSetLabelFn,
2625 {ValShadow, ValOrigin,
2626 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)),
2627 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2628 }
2629
visitMemTransferInst(MemTransferInst & I)2630 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
2631 IRBuilder<> IRB(&I);
2632
2633 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we
2634 // need to move origins before moving shadows.
2635 if (DFSF.DFS.shouldTrackOrigins()) {
2636 IRB.CreateCall(
2637 DFSF.DFS.DFSanMemOriginTransferFn,
2638 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2639 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2640 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)});
2641 }
2642
2643 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
2644 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
2645 Value *LenShadow =
2646 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(),
2647 DFSF.DFS.ShadowWidthBytes));
2648 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
2649 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr);
2650 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
2651 auto *MTI = cast<MemTransferInst>(
2652 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
2653 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
2654 if (ClPreserveAlignment) {
2655 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes);
2656 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes);
2657 } else {
2658 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes));
2659 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes));
2660 }
2661 if (ClEventCallbacks) {
2662 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn,
2663 {RawDestShadow,
2664 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2665 }
2666 }
2667
isAMustTailRetVal(Value * RetVal)2668 static bool isAMustTailRetVal(Value *RetVal) {
2669 // Tail call may have a bitcast between return.
2670 if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
2671 RetVal = I->getOperand(0);
2672 }
2673 if (auto *I = dyn_cast<CallInst>(RetVal)) {
2674 return I->isMustTailCall();
2675 }
2676 return false;
2677 }
2678
visitReturnInst(ReturnInst & RI)2679 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
2680 if (!DFSF.IsNativeABI && RI.getReturnValue()) {
2681 // Don't emit the instrumentation for musttail call returns.
2682 if (isAMustTailRetVal(RI.getReturnValue()))
2683 return;
2684
2685 Value *S = DFSF.getShadow(RI.getReturnValue());
2686 IRBuilder<> IRB(&RI);
2687 Type *RT = DFSF.F->getFunctionType()->getReturnType();
2688 unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT));
2689 if (Size <= RetvalTLSSize) {
2690 // If the size overflows, stores nothing. At callsite, oversized return
2691 // shadows are set to zero.
2692 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment);
2693 }
2694 if (DFSF.DFS.shouldTrackOrigins()) {
2695 Value *O = DFSF.getOrigin(RI.getReturnValue());
2696 IRB.CreateStore(O, DFSF.getRetvalOriginTLS());
2697 }
2698 }
2699 }
2700
addShadowArguments(Function & F,CallBase & CB,std::vector<Value * > & Args,IRBuilder<> & IRB)2701 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB,
2702 std::vector<Value *> &Args,
2703 IRBuilder<> &IRB) {
2704 FunctionType *FT = F.getFunctionType();
2705
2706 auto *I = CB.arg_begin();
2707
2708 // Adds non-variable argument shadows.
2709 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
2710 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB));
2711
2712 // Adds variable argument shadows.
2713 if (FT->isVarArg()) {
2714 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy,
2715 CB.arg_size() - FT->getNumParams());
2716 auto *LabelVAAlloca =
2717 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(),
2718 "labelva", &DFSF.F->getEntryBlock().front());
2719
2720 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
2721 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N);
2722 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB),
2723 LabelVAPtr);
2724 }
2725
2726 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
2727 }
2728
2729 // Adds the return value shadow.
2730 if (!FT->getReturnType()->isVoidTy()) {
2731 if (!DFSF.LabelReturnAlloca) {
2732 DFSF.LabelReturnAlloca = new AllocaInst(
2733 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(),
2734 "labelreturn", &DFSF.F->getEntryBlock().front());
2735 }
2736 Args.push_back(DFSF.LabelReturnAlloca);
2737 }
2738 }
2739
addOriginArguments(Function & F,CallBase & CB,std::vector<Value * > & Args,IRBuilder<> & IRB)2740 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB,
2741 std::vector<Value *> &Args,
2742 IRBuilder<> &IRB) {
2743 FunctionType *FT = F.getFunctionType();
2744
2745 auto *I = CB.arg_begin();
2746
2747 // Add non-variable argument origins.
2748 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
2749 Args.push_back(DFSF.getOrigin(*I));
2750
2751 // Add variable argument origins.
2752 if (FT->isVarArg()) {
2753 auto *OriginVATy =
2754 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams());
2755 auto *OriginVAAlloca =
2756 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(),
2757 "originva", &DFSF.F->getEntryBlock().front());
2758
2759 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
2760 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N);
2761 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr);
2762 }
2763
2764 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0));
2765 }
2766
2767 // Add the return value origin.
2768 if (!FT->getReturnType()->isVoidTy()) {
2769 if (!DFSF.OriginReturnAlloca) {
2770 DFSF.OriginReturnAlloca = new AllocaInst(
2771 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(),
2772 "originreturn", &DFSF.F->getEntryBlock().front());
2773 }
2774 Args.push_back(DFSF.OriginReturnAlloca);
2775 }
2776 }
2777
visitWrappedCallBase(Function & F,CallBase & CB)2778 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) {
2779 IRBuilder<> IRB(&CB);
2780 switch (DFSF.DFS.getWrapperKind(&F)) {
2781 case DataFlowSanitizer::WK_Warning:
2782 CB.setCalledFunction(&F);
2783 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
2784 IRB.CreateGlobalStringPtr(F.getName()));
2785 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
2786 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
2787 return true;
2788 case DataFlowSanitizer::WK_Discard:
2789 CB.setCalledFunction(&F);
2790 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
2791 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
2792 return true;
2793 case DataFlowSanitizer::WK_Functional:
2794 CB.setCalledFunction(&F);
2795 visitInstOperands(CB);
2796 return true;
2797 case DataFlowSanitizer::WK_Custom:
2798 // Don't try to handle invokes of custom functions, it's too complicated.
2799 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
2800 // wrapper.
2801 CallInst *CI = dyn_cast<CallInst>(&CB);
2802 if (!CI)
2803 return false;
2804
2805 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2806 FunctionType *FT = F.getFunctionType();
2807 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
2808 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_";
2809 CustomFName += F.getName();
2810 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
2811 CustomFName, CustomFn.TransformedType);
2812 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
2813 CustomFn->copyAttributesFrom(&F);
2814
2815 // Custom functions returning non-void will write to the return label.
2816 if (!FT->getReturnType()->isVoidTy()) {
2817 CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs);
2818 }
2819 }
2820
2821 std::vector<Value *> Args;
2822
2823 // Adds non-variable arguments.
2824 auto *I = CB.arg_begin();
2825 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) {
2826 Type *T = (*I)->getType();
2827 FunctionType *ParamFT;
2828 if (isa<PointerType>(T) &&
2829 (ParamFT = dyn_cast<FunctionType>(T->getPointerElementType()))) {
2830 std::string TName = "dfst";
2831 TName += utostr(FT->getNumParams() - N);
2832 TName += "$";
2833 TName += F.getName();
2834 Constant *Trampoline =
2835 DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
2836 Args.push_back(Trampoline);
2837 Args.push_back(
2838 IRB.CreateBitCast(*I, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
2839 } else {
2840 Args.push_back(*I);
2841 }
2842 }
2843
2844 // Adds shadow arguments.
2845 const unsigned ShadowArgStart = Args.size();
2846 addShadowArguments(F, CB, Args, IRB);
2847
2848 // Adds origin arguments.
2849 const unsigned OriginArgStart = Args.size();
2850 if (ShouldTrackOrigins)
2851 addOriginArguments(F, CB, Args, IRB);
2852
2853 // Adds variable arguments.
2854 append_range(Args, drop_begin(CB.args(), FT->getNumParams()));
2855
2856 CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
2857 CustomCI->setCallingConv(CI->getCallingConv());
2858 CustomCI->setAttributes(transformFunctionAttributes(
2859 CustomFn, CI->getContext(), CI->getAttributes()));
2860
2861 // Update the parameter attributes of the custom call instruction to
2862 // zero extend the shadow parameters. This is required for targets
2863 // which consider PrimitiveShadowTy an illegal type.
2864 for (unsigned N = 0; N < FT->getNumParams(); N++) {
2865 const unsigned ArgNo = ShadowArgStart + N;
2866 if (CustomCI->getArgOperand(ArgNo)->getType() ==
2867 DFSF.DFS.PrimitiveShadowTy)
2868 CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
2869 if (ShouldTrackOrigins) {
2870 const unsigned OriginArgNo = OriginArgStart + N;
2871 if (CustomCI->getArgOperand(OriginArgNo)->getType() ==
2872 DFSF.DFS.OriginTy)
2873 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt);
2874 }
2875 }
2876
2877 // Loads the return value shadow and origin.
2878 if (!FT->getReturnType()->isVoidTy()) {
2879 LoadInst *LabelLoad =
2880 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca);
2881 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow(
2882 FT->getReturnType(), LabelLoad, &CB));
2883 if (ShouldTrackOrigins) {
2884 LoadInst *OriginLoad =
2885 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca);
2886 DFSF.setOrigin(CustomCI, OriginLoad);
2887 }
2888 }
2889
2890 CI->replaceAllUsesWith(CustomCI);
2891 CI->eraseFromParent();
2892 return true;
2893 }
2894 return false;
2895 }
2896
visitCallBase(CallBase & CB)2897 void DFSanVisitor::visitCallBase(CallBase &CB) {
2898 Function *F = CB.getCalledFunction();
2899 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) {
2900 visitInstOperands(CB);
2901 return;
2902 }
2903
2904 // Calls to this function are synthesized in wrappers, and we shouldn't
2905 // instrument them.
2906 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
2907 return;
2908
2909 DenseMap<Value *, Function *>::iterator UnwrappedFnIt =
2910 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand());
2911 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end())
2912 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB))
2913 return;
2914
2915 IRBuilder<> IRB(&CB);
2916
2917 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2918 FunctionType *FT = CB.getFunctionType();
2919 const DataLayout &DL = getDataLayout();
2920
2921 // Stores argument shadows.
2922 unsigned ArgOffset = 0;
2923 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) {
2924 if (ShouldTrackOrigins) {
2925 // Ignore overflowed origins
2926 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I));
2927 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS &&
2928 !DFSF.DFS.isZeroShadow(ArgShadow))
2929 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)),
2930 DFSF.getArgOriginTLS(I, IRB));
2931 }
2932
2933 unsigned Size =
2934 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I)));
2935 // Stop storing if arguments' size overflows. Inside a function, arguments
2936 // after overflow have zero shadow values.
2937 if (ArgOffset + Size > ArgTLSSize)
2938 break;
2939 IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)),
2940 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB),
2941 ShadowTLSAlignment);
2942 ArgOffset += alignTo(Size, ShadowTLSAlignment);
2943 }
2944
2945 Instruction *Next = nullptr;
2946 if (!CB.getType()->isVoidTy()) {
2947 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2948 if (II->getNormalDest()->getSinglePredecessor()) {
2949 Next = &II->getNormalDest()->front();
2950 } else {
2951 BasicBlock *NewBB =
2952 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
2953 Next = &NewBB->front();
2954 }
2955 } else {
2956 assert(CB.getIterator() != CB.getParent()->end());
2957 Next = CB.getNextNode();
2958 }
2959
2960 // Don't emit the epilogue for musttail call returns.
2961 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
2962 return;
2963
2964 // Loads the return value shadow.
2965 IRBuilder<> NextIRB(Next);
2966 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB));
2967 if (Size > RetvalTLSSize) {
2968 // Set overflowed return shadow to be zero.
2969 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
2970 } else {
2971 LoadInst *LI = NextIRB.CreateAlignedLoad(
2972 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB),
2973 ShadowTLSAlignment, "_dfsret");
2974 DFSF.SkipInsts.insert(LI);
2975 DFSF.setShadow(&CB, LI);
2976 DFSF.NonZeroChecks.push_back(LI);
2977 }
2978
2979 if (ShouldTrackOrigins) {
2980 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy,
2981 DFSF.getRetvalOriginTLS(), "_dfsret_o");
2982 DFSF.SkipInsts.insert(LI);
2983 DFSF.setOrigin(&CB, LI);
2984 }
2985 }
2986 }
2987
visitPHINode(PHINode & PN)2988 void DFSanVisitor::visitPHINode(PHINode &PN) {
2989 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN);
2990 PHINode *ShadowPN =
2991 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN);
2992
2993 // Give the shadow phi node valid predecessors to fool SplitEdge into working.
2994 Value *UndefShadow = UndefValue::get(ShadowTy);
2995 for (BasicBlock *BB : PN.blocks())
2996 ShadowPN->addIncoming(UndefShadow, BB);
2997
2998 DFSF.setShadow(&PN, ShadowPN);
2999
3000 PHINode *OriginPN = nullptr;
3001 if (DFSF.DFS.shouldTrackOrigins()) {
3002 OriginPN =
3003 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN);
3004 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy);
3005 for (BasicBlock *BB : PN.blocks())
3006 OriginPN->addIncoming(UndefOrigin, BB);
3007 DFSF.setOrigin(&PN, OriginPN);
3008 }
3009
3010 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN});
3011 }
3012
3013 namespace {
3014 class DataFlowSanitizerLegacyPass : public ModulePass {
3015 private:
3016 std::vector<std::string> ABIListFiles;
3017
3018 public:
3019 static char ID;
3020
DataFlowSanitizerLegacyPass(const std::vector<std::string> & ABIListFiles=std::vector<std::string> ())3021 DataFlowSanitizerLegacyPass(
3022 const std::vector<std::string> &ABIListFiles = std::vector<std::string>())
3023 : ModulePass(ID), ABIListFiles(ABIListFiles) {}
3024
runOnModule(Module & M)3025 bool runOnModule(Module &M) override {
3026 return DataFlowSanitizer(ABIListFiles).runImpl(M);
3027 }
3028 };
3029 } // namespace
3030
3031 char DataFlowSanitizerLegacyPass::ID;
3032
3033 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan",
3034 "DataFlowSanitizer: dynamic data flow analysis.", false, false)
3035
createDataFlowSanitizerLegacyPassPass(const std::vector<std::string> & ABIListFiles)3036 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass(
3037 const std::vector<std::string> &ABIListFiles) {
3038 return new DataFlowSanitizerLegacyPass(ABIListFiles);
3039 }
3040
run(Module & M,ModuleAnalysisManager & AM)3041 PreservedAnalyses DataFlowSanitizerPass::run(Module &M,
3042 ModuleAnalysisManager &AM) {
3043 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) {
3044 return PreservedAnalyses::none();
3045 }
3046 return PreservedAnalyses::all();
3047 }
3048