1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form.  In cases that this kicks in, it can be a significant
11 // performance win.
12 //
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
18 //
19 //===----------------------------------------------------------------------===//
20 //
21 // TODO List:
22 //
23 // Future loop memory idioms to recognize:
24 //   memcmp, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 //   fpowi
27 // Future integer operation idioms to recognize:
28 //   ctpop
29 //
30 // Beware that isel's default lowering for ctpop is highly inefficient for
31 // i64 and larger types when i64 is legal and the value has few bits set.  It
32 // would be good to enhance isel to emit a loop for ctpop in this case.
33 //
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Analysis/AliasAnalysis.h"
50 #include "llvm/Analysis/CmpInstAnalysis.h"
51 #include "llvm/Analysis/LoopAccessAnalysis.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Analysis/MemoryLocation.h"
55 #include "llvm/Analysis/MemorySSA.h"
56 #include "llvm/Analysis/MemorySSAUpdater.h"
57 #include "llvm/Analysis/MustExecute.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ScalarEvolution.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/GlobalValue.h"
73 #include "llvm/IR/GlobalVariable.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PassManager.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/IR/ValueHandle.h"
88 #include "llvm/InitializePasses.h"
89 #include "llvm/Pass.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/InstructionCost.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include "llvm/Transforms/Scalar.h"
96 #include "llvm/Transforms/Utils/BuildLibCalls.h"
97 #include "llvm/Transforms/Utils/Local.h"
98 #include "llvm/Transforms/Utils/LoopUtils.h"
99 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
100 #include <algorithm>
101 #include <cassert>
102 #include <cstdint>
103 #include <utility>
104 #include <vector>
105 
106 using namespace llvm;
107 
108 #define DEBUG_TYPE "loop-idiom"
109 
110 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
111 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
112 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores");
113 STATISTIC(
114     NumShiftUntilBitTest,
115     "Number of uncountable loops recognized as 'shift until bitttest' idiom");
116 STATISTIC(NumShiftUntilZero,
117           "Number of uncountable loops recognized as 'shift until zero' idiom");
118 
119 bool DisableLIRP::All;
120 static cl::opt<bool, true>
121     DisableLIRPAll("disable-" DEBUG_TYPE "-all",
122                    cl::desc("Options to disable Loop Idiom Recognize Pass."),
123                    cl::location(DisableLIRP::All), cl::init(false),
124                    cl::ReallyHidden);
125 
126 bool DisableLIRP::Memset;
127 static cl::opt<bool, true>
128     DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
129                       cl::desc("Proceed with loop idiom recognize pass, but do "
130                                "not convert loop(s) to memset."),
131                       cl::location(DisableLIRP::Memset), cl::init(false),
132                       cl::ReallyHidden);
133 
134 bool DisableLIRP::Memcpy;
135 static cl::opt<bool, true>
136     DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
137                       cl::desc("Proceed with loop idiom recognize pass, but do "
138                                "not convert loop(s) to memcpy."),
139                       cl::location(DisableLIRP::Memcpy), cl::init(false),
140                       cl::ReallyHidden);
141 
142 static cl::opt<bool> UseLIRCodeSizeHeurs(
143     "use-lir-code-size-heurs",
144     cl::desc("Use loop idiom recognition code size heuristics when compiling"
145              "with -Os/-Oz"),
146     cl::init(true), cl::Hidden);
147 
148 namespace {
149 
150 class LoopIdiomRecognize {
151   Loop *CurLoop = nullptr;
152   AliasAnalysis *AA;
153   DominatorTree *DT;
154   LoopInfo *LI;
155   ScalarEvolution *SE;
156   TargetLibraryInfo *TLI;
157   const TargetTransformInfo *TTI;
158   const DataLayout *DL;
159   OptimizationRemarkEmitter &ORE;
160   bool ApplyCodeSizeHeuristics;
161   std::unique_ptr<MemorySSAUpdater> MSSAU;
162 
163 public:
LoopIdiomRecognize(AliasAnalysis * AA,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,MemorySSA * MSSA,const DataLayout * DL,OptimizationRemarkEmitter & ORE)164   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
165                               LoopInfo *LI, ScalarEvolution *SE,
166                               TargetLibraryInfo *TLI,
167                               const TargetTransformInfo *TTI, MemorySSA *MSSA,
168                               const DataLayout *DL,
169                               OptimizationRemarkEmitter &ORE)
170       : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
171     if (MSSA)
172       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
173   }
174 
175   bool runOnLoop(Loop *L);
176 
177 private:
178   using StoreList = SmallVector<StoreInst *, 8>;
179   using StoreListMap = MapVector<Value *, StoreList>;
180 
181   StoreListMap StoreRefsForMemset;
182   StoreListMap StoreRefsForMemsetPattern;
183   StoreList StoreRefsForMemcpy;
184   bool HasMemset;
185   bool HasMemsetPattern;
186   bool HasMemcpy;
187 
188   /// Return code for isLegalStore()
189   enum LegalStoreKind {
190     None = 0,
191     Memset,
192     MemsetPattern,
193     Memcpy,
194     UnorderedAtomicMemcpy,
195     DontUse // Dummy retval never to be used. Allows catching errors in retval
196             // handling.
197   };
198 
199   /// \name Countable Loop Idiom Handling
200   /// @{
201 
202   bool runOnCountableLoop();
203   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
204                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
205 
206   void collectStores(BasicBlock *BB);
207   LegalStoreKind isLegalStore(StoreInst *SI);
208   enum class ForMemset { No, Yes };
209   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
210                          ForMemset For);
211 
212   template <typename MemInst>
213   bool processLoopMemIntrinsic(
214       BasicBlock *BB,
215       bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
216       const SCEV *BECount);
217   bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount);
218   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
219 
220   bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV,
221                                MaybeAlign StoreAlignment, Value *StoredVal,
222                                Instruction *TheStore,
223                                SmallPtrSetImpl<Instruction *> &Stores,
224                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
225                                bool IsNegStride, bool IsLoopMemset = false);
226   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
227   bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr,
228                                   const SCEV *StoreSize, MaybeAlign StoreAlign,
229                                   MaybeAlign LoadAlign, Instruction *TheStore,
230                                   Instruction *TheLoad,
231                                   const SCEVAddRecExpr *StoreEv,
232                                   const SCEVAddRecExpr *LoadEv,
233                                   const SCEV *BECount);
234   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
235                                  bool IsLoopMemset = false);
236 
237   /// @}
238   /// \name Noncountable Loop Idiom Handling
239   /// @{
240 
241   bool runOnNoncountableLoop();
242 
243   bool recognizePopcount();
244   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
245                                PHINode *CntPhi, Value *Var);
246   bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
247   void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
248                                 Instruction *CntInst, PHINode *CntPhi,
249                                 Value *Var, Instruction *DefX,
250                                 const DebugLoc &DL, bool ZeroCheck,
251                                 bool IsCntPhiUsedOutsideLoop);
252 
253   bool recognizeShiftUntilBitTest();
254   bool recognizeShiftUntilZero();
255 
256   /// @}
257 };
258 
259 class LoopIdiomRecognizeLegacyPass : public LoopPass {
260 public:
261   static char ID;
262 
LoopIdiomRecognizeLegacyPass()263   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
264     initializeLoopIdiomRecognizeLegacyPassPass(
265         *PassRegistry::getPassRegistry());
266   }
267 
runOnLoop(Loop * L,LPPassManager & LPM)268   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
269     if (DisableLIRP::All)
270       return false;
271 
272     if (skipLoop(L))
273       return false;
274 
275     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
276     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
277     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
278     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
279     TargetLibraryInfo *TLI =
280         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
281             *L->getHeader()->getParent());
282     const TargetTransformInfo *TTI =
283         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
284             *L->getHeader()->getParent());
285     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
286     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
287     MemorySSA *MSSA = nullptr;
288     if (MSSAAnalysis)
289       MSSA = &MSSAAnalysis->getMSSA();
290 
291     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
292     // pass.  Function analyses need to be preserved across loop transformations
293     // but ORE cannot be preserved (see comment before the pass definition).
294     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
295 
296     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE);
297     return LIR.runOnLoop(L);
298   }
299 
300   /// This transformation requires natural loop information & requires that
301   /// loop preheaders be inserted into the CFG.
getAnalysisUsage(AnalysisUsage & AU) const302   void getAnalysisUsage(AnalysisUsage &AU) const override {
303     AU.addRequired<TargetLibraryInfoWrapperPass>();
304     AU.addRequired<TargetTransformInfoWrapperPass>();
305     AU.addPreserved<MemorySSAWrapperPass>();
306     getLoopAnalysisUsage(AU);
307   }
308 };
309 
310 } // end anonymous namespace
311 
312 char LoopIdiomRecognizeLegacyPass::ID = 0;
313 
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)314 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
315                                               LoopStandardAnalysisResults &AR,
316                                               LPMUpdater &) {
317   if (DisableLIRP::All)
318     return PreservedAnalyses::all();
319 
320   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
321 
322   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
323   // pass.  Function analyses need to be preserved across loop transformations
324   // but ORE cannot be preserved (see comment before the pass definition).
325   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
326 
327   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
328                          AR.MSSA, DL, ORE);
329   if (!LIR.runOnLoop(&L))
330     return PreservedAnalyses::all();
331 
332   auto PA = getLoopPassPreservedAnalyses();
333   if (AR.MSSA)
334     PA.preserve<MemorySSAAnalysis>();
335   return PA;
336 }
337 
338 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
339                       "Recognize loop idioms", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)340 INITIALIZE_PASS_DEPENDENCY(LoopPass)
341 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
342 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
343 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
344                     "Recognize loop idioms", false, false)
345 
346 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
347 
deleteDeadInstruction(Instruction * I)348 static void deleteDeadInstruction(Instruction *I) {
349   I->replaceAllUsesWith(UndefValue::get(I->getType()));
350   I->eraseFromParent();
351 }
352 
353 //===----------------------------------------------------------------------===//
354 //
355 //          Implementation of LoopIdiomRecognize
356 //
357 //===----------------------------------------------------------------------===//
358 
runOnLoop(Loop * L)359 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
360   CurLoop = L;
361   // If the loop could not be converted to canonical form, it must have an
362   // indirectbr in it, just give up.
363   if (!L->getLoopPreheader())
364     return false;
365 
366   // Disable loop idiom recognition if the function's name is a common idiom.
367   StringRef Name = L->getHeader()->getParent()->getName();
368   if (Name == "memset" || Name == "memcpy")
369     return false;
370 
371   // Determine if code size heuristics need to be applied.
372   ApplyCodeSizeHeuristics =
373       L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
374 
375   HasMemset = TLI->has(LibFunc_memset);
376   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
377   HasMemcpy = TLI->has(LibFunc_memcpy);
378 
379   if (HasMemset || HasMemsetPattern || HasMemcpy)
380     if (SE->hasLoopInvariantBackedgeTakenCount(L))
381       return runOnCountableLoop();
382 
383   return runOnNoncountableLoop();
384 }
385 
runOnCountableLoop()386 bool LoopIdiomRecognize::runOnCountableLoop() {
387   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
388   assert(!isa<SCEVCouldNotCompute>(BECount) &&
389          "runOnCountableLoop() called on a loop without a predictable"
390          "backedge-taken count");
391 
392   // If this loop executes exactly one time, then it should be peeled, not
393   // optimized by this pass.
394   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
395     if (BECst->getAPInt() == 0)
396       return false;
397 
398   SmallVector<BasicBlock *, 8> ExitBlocks;
399   CurLoop->getUniqueExitBlocks(ExitBlocks);
400 
401   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
402                     << CurLoop->getHeader()->getParent()->getName()
403                     << "] Countable Loop %" << CurLoop->getHeader()->getName()
404                     << "\n");
405 
406   // The following transforms hoist stores/memsets into the loop pre-header.
407   // Give up if the loop has instructions that may throw.
408   SimpleLoopSafetyInfo SafetyInfo;
409   SafetyInfo.computeLoopSafetyInfo(CurLoop);
410   if (SafetyInfo.anyBlockMayThrow())
411     return false;
412 
413   bool MadeChange = false;
414 
415   // Scan all the blocks in the loop that are not in subloops.
416   for (auto *BB : CurLoop->getBlocks()) {
417     // Ignore blocks in subloops.
418     if (LI->getLoopFor(BB) != CurLoop)
419       continue;
420 
421     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
422   }
423   return MadeChange;
424 }
425 
getStoreStride(const SCEVAddRecExpr * StoreEv)426 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
427   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
428   return ConstStride->getAPInt();
429 }
430 
431 /// getMemSetPatternValue - If a strided store of the specified value is safe to
432 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
433 /// be passed in.  Otherwise, return null.
434 ///
435 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
436 /// just replicate their input array and then pass on to memset_pattern16.
getMemSetPatternValue(Value * V,const DataLayout * DL)437 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
438   // FIXME: This could check for UndefValue because it can be merged into any
439   // other valid pattern.
440 
441   // If the value isn't a constant, we can't promote it to being in a constant
442   // array.  We could theoretically do a store to an alloca or something, but
443   // that doesn't seem worthwhile.
444   Constant *C = dyn_cast<Constant>(V);
445   if (!C)
446     return nullptr;
447 
448   // Only handle simple values that are a power of two bytes in size.
449   uint64_t Size = DL->getTypeSizeInBits(V->getType());
450   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
451     return nullptr;
452 
453   // Don't care enough about darwin/ppc to implement this.
454   if (DL->isBigEndian())
455     return nullptr;
456 
457   // Convert to size in bytes.
458   Size /= 8;
459 
460   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
461   // if the top and bottom are the same (e.g. for vectors and large integers).
462   if (Size > 16)
463     return nullptr;
464 
465   // If the constant is exactly 16 bytes, just use it.
466   if (Size == 16)
467     return C;
468 
469   // Otherwise, we'll use an array of the constants.
470   unsigned ArraySize = 16 / Size;
471   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
472   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
473 }
474 
475 LoopIdiomRecognize::LegalStoreKind
isLegalStore(StoreInst * SI)476 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
477   // Don't touch volatile stores.
478   if (SI->isVolatile())
479     return LegalStoreKind::None;
480   // We only want simple or unordered-atomic stores.
481   if (!SI->isUnordered())
482     return LegalStoreKind::None;
483 
484   // Avoid merging nontemporal stores.
485   if (SI->getMetadata(LLVMContext::MD_nontemporal))
486     return LegalStoreKind::None;
487 
488   Value *StoredVal = SI->getValueOperand();
489   Value *StorePtr = SI->getPointerOperand();
490 
491   // Don't convert stores of non-integral pointer types to memsets (which stores
492   // integers).
493   if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
494     return LegalStoreKind::None;
495 
496   // Reject stores that are so large that they overflow an unsigned.
497   // When storing out scalable vectors we bail out for now, since the code
498   // below currently only works for constant strides.
499   TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
500   if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) ||
501       (SizeInBits.getFixedSize() >> 32) != 0)
502     return LegalStoreKind::None;
503 
504   // See if the pointer expression is an AddRec like {base,+,1} on the current
505   // loop, which indicates a strided store.  If we have something else, it's a
506   // random store we can't handle.
507   const SCEVAddRecExpr *StoreEv =
508       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
509   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
510     return LegalStoreKind::None;
511 
512   // Check to see if we have a constant stride.
513   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
514     return LegalStoreKind::None;
515 
516   // See if the store can be turned into a memset.
517 
518   // If the stored value is a byte-wise value (like i32 -1), then it may be
519   // turned into a memset of i8 -1, assuming that all the consecutive bytes
520   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
521   // but it can be turned into memset_pattern if the target supports it.
522   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
523 
524   // Note: memset and memset_pattern on unordered-atomic is yet not supported
525   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
526 
527   // If we're allowed to form a memset, and the stored value would be
528   // acceptable for memset, use it.
529   if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
530       // Verify that the stored value is loop invariant.  If not, we can't
531       // promote the memset.
532       CurLoop->isLoopInvariant(SplatValue)) {
533     // It looks like we can use SplatValue.
534     return LegalStoreKind::Memset;
535   }
536   if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
537       // Don't create memset_pattern16s with address spaces.
538       StorePtr->getType()->getPointerAddressSpace() == 0 &&
539       getMemSetPatternValue(StoredVal, DL)) {
540     // It looks like we can use PatternValue!
541     return LegalStoreKind::MemsetPattern;
542   }
543 
544   // Otherwise, see if the store can be turned into a memcpy.
545   if (HasMemcpy && !DisableLIRP::Memcpy) {
546     // Check to see if the stride matches the size of the store.  If so, then we
547     // know that every byte is touched in the loop.
548     APInt Stride = getStoreStride(StoreEv);
549     unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
550     if (StoreSize != Stride && StoreSize != -Stride)
551       return LegalStoreKind::None;
552 
553     // The store must be feeding a non-volatile load.
554     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
555 
556     // Only allow non-volatile loads
557     if (!LI || LI->isVolatile())
558       return LegalStoreKind::None;
559     // Only allow simple or unordered-atomic loads
560     if (!LI->isUnordered())
561       return LegalStoreKind::None;
562 
563     // See if the pointer expression is an AddRec like {base,+,1} on the current
564     // loop, which indicates a strided load.  If we have something else, it's a
565     // random load we can't handle.
566     const SCEVAddRecExpr *LoadEv =
567         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
568     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
569       return LegalStoreKind::None;
570 
571     // The store and load must share the same stride.
572     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
573       return LegalStoreKind::None;
574 
575     // Success.  This store can be converted into a memcpy.
576     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
577     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
578                            : LegalStoreKind::Memcpy;
579   }
580   // This store can't be transformed into a memset/memcpy.
581   return LegalStoreKind::None;
582 }
583 
collectStores(BasicBlock * BB)584 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
585   StoreRefsForMemset.clear();
586   StoreRefsForMemsetPattern.clear();
587   StoreRefsForMemcpy.clear();
588   for (Instruction &I : *BB) {
589     StoreInst *SI = dyn_cast<StoreInst>(&I);
590     if (!SI)
591       continue;
592 
593     // Make sure this is a strided store with a constant stride.
594     switch (isLegalStore(SI)) {
595     case LegalStoreKind::None:
596       // Nothing to do
597       break;
598     case LegalStoreKind::Memset: {
599       // Find the base pointer.
600       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
601       StoreRefsForMemset[Ptr].push_back(SI);
602     } break;
603     case LegalStoreKind::MemsetPattern: {
604       // Find the base pointer.
605       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
606       StoreRefsForMemsetPattern[Ptr].push_back(SI);
607     } break;
608     case LegalStoreKind::Memcpy:
609     case LegalStoreKind::UnorderedAtomicMemcpy:
610       StoreRefsForMemcpy.push_back(SI);
611       break;
612     default:
613       assert(false && "unhandled return value");
614       break;
615     }
616   }
617 }
618 
619 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
620 /// with the specified backedge count.  This block is known to be in the current
621 /// loop and not in any subloops.
runOnLoopBlock(BasicBlock * BB,const SCEV * BECount,SmallVectorImpl<BasicBlock * > & ExitBlocks)622 bool LoopIdiomRecognize::runOnLoopBlock(
623     BasicBlock *BB, const SCEV *BECount,
624     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
625   // We can only promote stores in this block if they are unconditionally
626   // executed in the loop.  For a block to be unconditionally executed, it has
627   // to dominate all the exit blocks of the loop.  Verify this now.
628   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
629     if (!DT->dominates(BB, ExitBlocks[i]))
630       return false;
631 
632   bool MadeChange = false;
633   // Look for store instructions, which may be optimized to memset/memcpy.
634   collectStores(BB);
635 
636   // Look for a single store or sets of stores with a common base, which can be
637   // optimized into a memset (memset_pattern).  The latter most commonly happens
638   // with structs and handunrolled loops.
639   for (auto &SL : StoreRefsForMemset)
640     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
641 
642   for (auto &SL : StoreRefsForMemsetPattern)
643     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
644 
645   // Optimize the store into a memcpy, if it feeds an similarly strided load.
646   for (auto &SI : StoreRefsForMemcpy)
647     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
648 
649   MadeChange |= processLoopMemIntrinsic<MemCpyInst>(
650       BB, &LoopIdiomRecognize::processLoopMemCpy, BECount);
651   MadeChange |= processLoopMemIntrinsic<MemSetInst>(
652       BB, &LoopIdiomRecognize::processLoopMemSet, BECount);
653 
654   return MadeChange;
655 }
656 
657 /// See if this store(s) can be promoted to a memset.
processLoopStores(SmallVectorImpl<StoreInst * > & SL,const SCEV * BECount,ForMemset For)658 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
659                                            const SCEV *BECount, ForMemset For) {
660   // Try to find consecutive stores that can be transformed into memsets.
661   SetVector<StoreInst *> Heads, Tails;
662   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
663 
664   // Do a quadratic search on all of the given stores and find
665   // all of the pairs of stores that follow each other.
666   SmallVector<unsigned, 16> IndexQueue;
667   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
668     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
669 
670     Value *FirstStoredVal = SL[i]->getValueOperand();
671     Value *FirstStorePtr = SL[i]->getPointerOperand();
672     const SCEVAddRecExpr *FirstStoreEv =
673         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
674     APInt FirstStride = getStoreStride(FirstStoreEv);
675     unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
676 
677     // See if we can optimize just this store in isolation.
678     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
679       Heads.insert(SL[i]);
680       continue;
681     }
682 
683     Value *FirstSplatValue = nullptr;
684     Constant *FirstPatternValue = nullptr;
685 
686     if (For == ForMemset::Yes)
687       FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
688     else
689       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
690 
691     assert((FirstSplatValue || FirstPatternValue) &&
692            "Expected either splat value or pattern value.");
693 
694     IndexQueue.clear();
695     // If a store has multiple consecutive store candidates, search Stores
696     // array according to the sequence: from i+1 to e, then from i-1 to 0.
697     // This is because usually pairing with immediate succeeding or preceding
698     // candidate create the best chance to find memset opportunity.
699     unsigned j = 0;
700     for (j = i + 1; j < e; ++j)
701       IndexQueue.push_back(j);
702     for (j = i; j > 0; --j)
703       IndexQueue.push_back(j - 1);
704 
705     for (auto &k : IndexQueue) {
706       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
707       Value *SecondStorePtr = SL[k]->getPointerOperand();
708       const SCEVAddRecExpr *SecondStoreEv =
709           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
710       APInt SecondStride = getStoreStride(SecondStoreEv);
711 
712       if (FirstStride != SecondStride)
713         continue;
714 
715       Value *SecondStoredVal = SL[k]->getValueOperand();
716       Value *SecondSplatValue = nullptr;
717       Constant *SecondPatternValue = nullptr;
718 
719       if (For == ForMemset::Yes)
720         SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
721       else
722         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
723 
724       assert((SecondSplatValue || SecondPatternValue) &&
725              "Expected either splat value or pattern value.");
726 
727       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
728         if (For == ForMemset::Yes) {
729           if (isa<UndefValue>(FirstSplatValue))
730             FirstSplatValue = SecondSplatValue;
731           if (FirstSplatValue != SecondSplatValue)
732             continue;
733         } else {
734           if (isa<UndefValue>(FirstPatternValue))
735             FirstPatternValue = SecondPatternValue;
736           if (FirstPatternValue != SecondPatternValue)
737             continue;
738         }
739         Tails.insert(SL[k]);
740         Heads.insert(SL[i]);
741         ConsecutiveChain[SL[i]] = SL[k];
742         break;
743       }
744     }
745   }
746 
747   // We may run into multiple chains that merge into a single chain. We mark the
748   // stores that we transformed so that we don't visit the same store twice.
749   SmallPtrSet<Value *, 16> TransformedStores;
750   bool Changed = false;
751 
752   // For stores that start but don't end a link in the chain:
753   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
754        it != e; ++it) {
755     if (Tails.count(*it))
756       continue;
757 
758     // We found a store instr that starts a chain. Now follow the chain and try
759     // to transform it.
760     SmallPtrSet<Instruction *, 8> AdjacentStores;
761     StoreInst *I = *it;
762 
763     StoreInst *HeadStore = I;
764     unsigned StoreSize = 0;
765 
766     // Collect the chain into a list.
767     while (Tails.count(I) || Heads.count(I)) {
768       if (TransformedStores.count(I))
769         break;
770       AdjacentStores.insert(I);
771 
772       StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
773       // Move to the next value in the chain.
774       I = ConsecutiveChain[I];
775     }
776 
777     Value *StoredVal = HeadStore->getValueOperand();
778     Value *StorePtr = HeadStore->getPointerOperand();
779     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
780     APInt Stride = getStoreStride(StoreEv);
781 
782     // Check to see if the stride matches the size of the stores.  If so, then
783     // we know that every byte is touched in the loop.
784     if (StoreSize != Stride && StoreSize != -Stride)
785       continue;
786 
787     bool IsNegStride = StoreSize == -Stride;
788 
789     Type *IntIdxTy = DL->getIndexType(StorePtr->getType());
790     const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize);
791     if (processLoopStridedStore(StorePtr, StoreSizeSCEV,
792                                 MaybeAlign(HeadStore->getAlignment()),
793                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
794                                 BECount, IsNegStride)) {
795       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
796       Changed = true;
797     }
798   }
799 
800   return Changed;
801 }
802 
803 /// processLoopMemIntrinsic - Template function for calling different processor
804 /// functions based on mem instrinsic type.
805 template <typename MemInst>
processLoopMemIntrinsic(BasicBlock * BB,bool (LoopIdiomRecognize::* Processor)(MemInst *,const SCEV *),const SCEV * BECount)806 bool LoopIdiomRecognize::processLoopMemIntrinsic(
807     BasicBlock *BB,
808     bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
809     const SCEV *BECount) {
810   bool MadeChange = false;
811   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
812     Instruction *Inst = &*I++;
813     // Look for memory instructions, which may be optimized to a larger one.
814     if (MemInst *MI = dyn_cast<MemInst>(Inst)) {
815       WeakTrackingVH InstPtr(&*I);
816       if (!(this->*Processor)(MI, BECount))
817         continue;
818       MadeChange = true;
819 
820       // If processing the instruction invalidated our iterator, start over from
821       // the top of the block.
822       if (!InstPtr)
823         I = BB->begin();
824     }
825   }
826   return MadeChange;
827 }
828 
829 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy
processLoopMemCpy(MemCpyInst * MCI,const SCEV * BECount)830 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI,
831                                            const SCEV *BECount) {
832   // We can only handle non-volatile memcpys with a constant size.
833   if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength()))
834     return false;
835 
836   // If we're not allowed to hack on memcpy, we fail.
837   if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy)
838     return false;
839 
840   Value *Dest = MCI->getDest();
841   Value *Source = MCI->getSource();
842   if (!Dest || !Source)
843     return false;
844 
845   // See if the load and store pointer expressions are AddRec like {base,+,1} on
846   // the current loop, which indicates a strided load and store.  If we have
847   // something else, it's a random load or store we can't handle.
848   const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest));
849   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
850     return false;
851   const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source));
852   if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
853     return false;
854 
855   // Reject memcpys that are so large that they overflow an unsigned.
856   uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue();
857   if ((SizeInBytes >> 32) != 0)
858     return false;
859 
860   // Check if the stride matches the size of the memcpy. If so, then we know
861   // that every byte is touched in the loop.
862   const SCEVConstant *ConstStoreStride =
863       dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
864   const SCEVConstant *ConstLoadStride =
865       dyn_cast<SCEVConstant>(LoadEv->getOperand(1));
866   if (!ConstStoreStride || !ConstLoadStride)
867     return false;
868 
869   APInt StoreStrideValue = ConstStoreStride->getAPInt();
870   APInt LoadStrideValue = ConstLoadStride->getAPInt();
871   // Huge stride value - give up
872   if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64)
873     return false;
874 
875   if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) {
876     ORE.emit([&]() {
877       return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI)
878              << ore::NV("Inst", "memcpy") << " in "
879              << ore::NV("Function", MCI->getFunction())
880              << " function will not be hoisted: "
881              << ore::NV("Reason", "memcpy size is not equal to stride");
882     });
883     return false;
884   }
885 
886   int64_t StoreStrideInt = StoreStrideValue.getSExtValue();
887   int64_t LoadStrideInt = LoadStrideValue.getSExtValue();
888   // Check if the load stride matches the store stride.
889   if (StoreStrideInt != LoadStrideInt)
890     return false;
891 
892   return processLoopStoreOfLoopLoad(
893       Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes),
894       MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv,
895       BECount);
896 }
897 
898 /// processLoopMemSet - See if this memset can be promoted to a large memset.
processLoopMemSet(MemSetInst * MSI,const SCEV * BECount)899 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
900                                            const SCEV *BECount) {
901   // We can only handle non-volatile memsets.
902   if (MSI->isVolatile())
903     return false;
904 
905   // If we're not allowed to hack on memset, we fail.
906   if (!HasMemset || DisableLIRP::Memset)
907     return false;
908 
909   Value *Pointer = MSI->getDest();
910 
911   // See if the pointer expression is an AddRec like {base,+,1} on the current
912   // loop, which indicates a strided store.  If we have something else, it's a
913   // random store we can't handle.
914   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
915   if (!Ev || Ev->getLoop() != CurLoop)
916     return false;
917   if (!Ev->isAffine()) {
918     LLVM_DEBUG(dbgs() << "  Pointer is not affine, abort\n");
919     return false;
920   }
921 
922   const SCEV *PointerStrideSCEV = Ev->getOperand(1);
923   const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength());
924   if (!PointerStrideSCEV || !MemsetSizeSCEV)
925     return false;
926 
927   bool IsNegStride = false;
928   const bool IsConstantSize = isa<ConstantInt>(MSI->getLength());
929 
930   if (IsConstantSize) {
931     // Memset size is constant.
932     // Check if the pointer stride matches the memset size. If so, then
933     // we know that every byte is touched in the loop.
934     LLVM_DEBUG(dbgs() << "  memset size is constant\n");
935     uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
936     const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
937     if (!ConstStride)
938       return false;
939 
940     APInt Stride = ConstStride->getAPInt();
941     if (SizeInBytes != Stride && SizeInBytes != -Stride)
942       return false;
943 
944     IsNegStride = SizeInBytes == -Stride;
945   } else {
946     // Memset size is non-constant.
947     // Check if the pointer stride matches the memset size.
948     // To be conservative, the pass would not promote pointers that aren't in
949     // address space zero. Also, the pass only handles memset length and stride
950     // that are invariant for the top level loop.
951     LLVM_DEBUG(dbgs() << "  memset size is non-constant\n");
952     if (Pointer->getType()->getPointerAddressSpace() != 0) {
953       LLVM_DEBUG(dbgs() << "  pointer is not in address space zero, "
954                         << "abort\n");
955       return false;
956     }
957     if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) {
958       LLVM_DEBUG(dbgs() << "  memset size is not a loop-invariant, "
959                         << "abort\n");
960       return false;
961     }
962 
963     // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV
964     IsNegStride = PointerStrideSCEV->isNonConstantNegative();
965     const SCEV *PositiveStrideSCEV =
966         IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV)
967                     : PointerStrideSCEV;
968     LLVM_DEBUG(dbgs() << "  MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n"
969                       << "  PositiveStrideSCEV: " << *PositiveStrideSCEV
970                       << "\n");
971 
972     if (PositiveStrideSCEV != MemsetSizeSCEV) {
973       // TODO: folding can be done to the SCEVs
974       // The folding is to fold expressions that is covered by the loop guard
975       // at loop entry. After the folding, compare again and proceed
976       // optimization if equal.
977       LLVM_DEBUG(dbgs() << "  SCEV don't match, abort\n");
978       return false;
979     }
980   }
981 
982   // Verify that the memset value is loop invariant.  If not, we can't promote
983   // the memset.
984   Value *SplatValue = MSI->getValue();
985   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
986     return false;
987 
988   SmallPtrSet<Instruction *, 1> MSIs;
989   MSIs.insert(MSI);
990   return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()),
991                                  MaybeAlign(MSI->getDestAlignment()),
992                                  SplatValue, MSI, MSIs, Ev, BECount,
993                                  IsNegStride, /*IsLoopMemset=*/true);
994 }
995 
996 /// mayLoopAccessLocation - Return true if the specified loop might access the
997 /// specified pointer location, which is a loop-strided access.  The 'Access'
998 /// argument specifies what the verboten forms of access are (read or write).
999 static bool
mayLoopAccessLocation(Value * Ptr,ModRefInfo Access,Loop * L,const SCEV * BECount,const SCEV * StoreSizeSCEV,AliasAnalysis & AA,SmallPtrSetImpl<Instruction * > & IgnoredInsts)1000 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
1001                       const SCEV *BECount, const SCEV *StoreSizeSCEV,
1002                       AliasAnalysis &AA,
1003                       SmallPtrSetImpl<Instruction *> &IgnoredInsts) {
1004   // Get the location that may be stored across the loop.  Since the access is
1005   // strided positively through memory, we say that the modified location starts
1006   // at the pointer and has infinite size.
1007   LocationSize AccessSize = LocationSize::afterPointer();
1008 
1009   // If the loop iterates a fixed number of times, we can refine the access size
1010   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
1011   const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount);
1012   const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
1013   if (BECst && ConstSize)
1014     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
1015                                        ConstSize->getValue()->getZExtValue());
1016 
1017   // TODO: For this to be really effective, we have to dive into the pointer
1018   // operand in the store.  Store to &A[i] of 100 will always return may alias
1019   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
1020   // which will then no-alias a store to &A[100].
1021   MemoryLocation StoreLoc(Ptr, AccessSize);
1022 
1023   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
1024        ++BI)
1025     for (Instruction &I : **BI)
1026       if (IgnoredInsts.count(&I) == 0 &&
1027           isModOrRefSet(
1028               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
1029         return true;
1030   return false;
1031 }
1032 
1033 // If we have a negative stride, Start refers to the end of the memory location
1034 // we're trying to memset.  Therefore, we need to recompute the base pointer,
1035 // which is just Start - BECount*Size.
getStartForNegStride(const SCEV * Start,const SCEV * BECount,Type * IntPtr,const SCEV * StoreSizeSCEV,ScalarEvolution * SE)1036 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
1037                                         Type *IntPtr, const SCEV *StoreSizeSCEV,
1038                                         ScalarEvolution *SE) {
1039   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
1040   if (!StoreSizeSCEV->isOne()) {
1041     // index = back edge count * store size
1042     Index = SE->getMulExpr(Index,
1043                            SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
1044                            SCEV::FlagNUW);
1045   }
1046   // base pointer = start - index * store size
1047   return SE->getMinusSCEV(Start, Index);
1048 }
1049 
1050 /// Compute trip count from the backedge taken count.
getTripCount(const SCEV * BECount,Type * IntPtr,Loop * CurLoop,const DataLayout * DL,ScalarEvolution * SE)1051 static const SCEV *getTripCount(const SCEV *BECount, Type *IntPtr,
1052                                 Loop *CurLoop, const DataLayout *DL,
1053                                 ScalarEvolution *SE) {
1054   const SCEV *TripCountS = nullptr;
1055   // The # stored bytes is (BECount+1).  Expand the trip count out to
1056   // pointer size if it isn't already.
1057   //
1058   // If we're going to need to zero extend the BE count, check if we can add
1059   // one to it prior to zero extending without overflow. Provided this is safe,
1060   // it allows better simplification of the +1.
1061   if (DL->getTypeSizeInBits(BECount->getType()) <
1062           DL->getTypeSizeInBits(IntPtr) &&
1063       SE->isLoopEntryGuardedByCond(
1064           CurLoop, ICmpInst::ICMP_NE, BECount,
1065           SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
1066     TripCountS = SE->getZeroExtendExpr(
1067         SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
1068         IntPtr);
1069   } else {
1070     TripCountS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
1071                                 SE->getOne(IntPtr), SCEV::FlagNUW);
1072   }
1073 
1074   return TripCountS;
1075 }
1076 
1077 /// Compute the number of bytes as a SCEV from the backedge taken count.
1078 ///
1079 /// This also maps the SCEV into the provided type and tries to handle the
1080 /// computation in a way that will fold cleanly.
getNumBytes(const SCEV * BECount,Type * IntPtr,const SCEV * StoreSizeSCEV,Loop * CurLoop,const DataLayout * DL,ScalarEvolution * SE)1081 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
1082                                const SCEV *StoreSizeSCEV, Loop *CurLoop,
1083                                const DataLayout *DL, ScalarEvolution *SE) {
1084   const SCEV *TripCountSCEV = getTripCount(BECount, IntPtr, CurLoop, DL, SE);
1085 
1086   return SE->getMulExpr(TripCountSCEV,
1087                         SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
1088                         SCEV::FlagNUW);
1089 }
1090 
1091 /// processLoopStridedStore - We see a strided store of some value.  If we can
1092 /// transform this into a memset or memset_pattern in the loop preheader, do so.
processLoopStridedStore(Value * DestPtr,const SCEV * StoreSizeSCEV,MaybeAlign StoreAlignment,Value * StoredVal,Instruction * TheStore,SmallPtrSetImpl<Instruction * > & Stores,const SCEVAddRecExpr * Ev,const SCEV * BECount,bool IsNegStride,bool IsLoopMemset)1093 bool LoopIdiomRecognize::processLoopStridedStore(
1094     Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment,
1095     Value *StoredVal, Instruction *TheStore,
1096     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
1097     const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) {
1098   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
1099   Constant *PatternValue = nullptr;
1100 
1101   if (!SplatValue)
1102     PatternValue = getMemSetPatternValue(StoredVal, DL);
1103 
1104   assert((SplatValue || PatternValue) &&
1105          "Expected either splat value or pattern value.");
1106 
1107   // The trip count of the loop and the base pointer of the addrec SCEV is
1108   // guaranteed to be loop invariant, which means that it should dominate the
1109   // header.  This allows us to insert code for it in the preheader.
1110   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
1111   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1112   IRBuilder<> Builder(Preheader->getTerminator());
1113   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1114   SCEVExpanderCleaner ExpCleaner(Expander, *DT);
1115 
1116   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
1117   Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
1118 
1119   bool Changed = false;
1120   const SCEV *Start = Ev->getStart();
1121   // Handle negative strided loops.
1122   if (IsNegStride)
1123     Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE);
1124 
1125   // TODO: ideally we should still be able to generate memset if SCEV expander
1126   // is taught to generate the dependencies at the latest point.
1127   if (!isSafeToExpand(Start, *SE))
1128     return Changed;
1129 
1130   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
1131   // this into a memset in the loop preheader now if we want.  However, this
1132   // would be unsafe to do if there is anything else in the loop that may read
1133   // or write to the aliased location.  Check for any overlap by generating the
1134   // base pointer and checking the region.
1135   Value *BasePtr =
1136       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
1137 
1138   // From here on out, conservatively report to the pass manager that we've
1139   // changed the IR, even if we later clean up these added instructions. There
1140   // may be structural differences e.g. in the order of use lists not accounted
1141   // for in just a textual dump of the IR. This is written as a variable, even
1142   // though statically all the places this dominates could be replaced with
1143   // 'true', with the hope that anyone trying to be clever / "more precise" with
1144   // the return value will read this comment, and leave them alone.
1145   Changed = true;
1146 
1147   if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1148                             StoreSizeSCEV, *AA, Stores))
1149     return Changed;
1150 
1151   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
1152     return Changed;
1153 
1154   // Okay, everything looks good, insert the memset.
1155 
1156   const SCEV *NumBytesS =
1157       getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1158 
1159   // TODO: ideally we should still be able to generate memset if SCEV expander
1160   // is taught to generate the dependencies at the latest point.
1161   if (!isSafeToExpand(NumBytesS, *SE))
1162     return Changed;
1163 
1164   Value *NumBytes =
1165       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1166 
1167   CallInst *NewCall;
1168   if (SplatValue) {
1169     NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes,
1170                                    MaybeAlign(StoreAlignment));
1171   } else {
1172     // Everything is emitted in default address space
1173     Type *Int8PtrTy = DestInt8PtrTy;
1174 
1175     Module *M = TheStore->getModule();
1176     StringRef FuncName = "memset_pattern16";
1177     FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
1178                                                 Int8PtrTy, Int8PtrTy, IntIdxTy);
1179     inferLibFuncAttributes(M, FuncName, *TLI);
1180 
1181     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
1182     // an constant array of 16-bytes.  Plop the value into a mergable global.
1183     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1184                                             GlobalValue::PrivateLinkage,
1185                                             PatternValue, ".memset_pattern");
1186     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
1187     GV->setAlignment(Align(16));
1188     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
1189     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
1190   }
1191   NewCall->setDebugLoc(TheStore->getDebugLoc());
1192 
1193   if (MSSAU) {
1194     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1195         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1196     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1197   }
1198 
1199   LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
1200                     << "    from store to: " << *Ev << " at: " << *TheStore
1201                     << "\n");
1202 
1203   ORE.emit([&]() {
1204     OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore",
1205                          NewCall->getDebugLoc(), Preheader);
1206     R << "Transformed loop-strided store in "
1207       << ore::NV("Function", TheStore->getFunction())
1208       << " function into a call to "
1209       << ore::NV("NewFunction", NewCall->getCalledFunction())
1210       << "() intrinsic";
1211     if (!Stores.empty())
1212       R << ore::setExtraArgs();
1213     for (auto *I : Stores) {
1214       R << ore::NV("FromBlock", I->getParent()->getName())
1215         << ore::NV("ToBlock", Preheader->getName());
1216     }
1217     return R;
1218   });
1219 
1220   // Okay, the memset has been formed.  Zap the original store and anything that
1221   // feeds into it.
1222   for (auto *I : Stores) {
1223     if (MSSAU)
1224       MSSAU->removeMemoryAccess(I, true);
1225     deleteDeadInstruction(I);
1226   }
1227   if (MSSAU && VerifyMemorySSA)
1228     MSSAU->getMemorySSA()->verifyMemorySSA();
1229   ++NumMemSet;
1230   ExpCleaner.markResultUsed();
1231   return true;
1232 }
1233 
1234 /// If the stored value is a strided load in the same loop with the same stride
1235 /// this may be transformable into a memcpy.  This kicks in for stuff like
1236 /// for (i) A[i] = B[i];
processLoopStoreOfLoopLoad(StoreInst * SI,const SCEV * BECount)1237 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1238                                                     const SCEV *BECount) {
1239   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1240 
1241   Value *StorePtr = SI->getPointerOperand();
1242   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1243   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1244 
1245   // The store must be feeding a non-volatile load.
1246   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1247   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1248 
1249   // See if the pointer expression is an AddRec like {base,+,1} on the current
1250   // loop, which indicates a strided load.  If we have something else, it's a
1251   // random load we can't handle.
1252   Value *LoadPtr = LI->getPointerOperand();
1253   const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1254 
1255   const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize);
1256   return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV,
1257                                     SI->getAlign(), LI->getAlign(), SI, LI,
1258                                     StoreEv, LoadEv, BECount);
1259 }
1260 
1261 class MemmoveVerifier {
1262 public:
MemmoveVerifier(const Value & LoadBasePtr,const Value & StoreBasePtr,const DataLayout & DL)1263   explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr,
1264                            const DataLayout &DL)
1265       : DL(DL), LoadOff(0), StoreOff(0),
1266         BP1(llvm::GetPointerBaseWithConstantOffset(
1267             LoadBasePtr.stripPointerCasts(), LoadOff, DL)),
1268         BP2(llvm::GetPointerBaseWithConstantOffset(
1269             StoreBasePtr.stripPointerCasts(), StoreOff, DL)),
1270         IsSameObject(BP1 == BP2) {}
1271 
loadAndStoreMayFormMemmove(unsigned StoreSize,bool IsNegStride,const Instruction & TheLoad,bool IsMemCpy) const1272   bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride,
1273                                   const Instruction &TheLoad,
1274                                   bool IsMemCpy) const {
1275     if (IsMemCpy) {
1276       // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1277       // for negative stride.
1278       if ((!IsNegStride && LoadOff <= StoreOff) ||
1279           (IsNegStride && LoadOff >= StoreOff))
1280         return false;
1281     } else {
1282       // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1283       // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr.
1284       int64_t LoadSize =
1285           DL.getTypeSizeInBits(TheLoad.getType()).getFixedSize() / 8;
1286       if (BP1 != BP2 || LoadSize != int64_t(StoreSize))
1287         return false;
1288       if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) ||
1289           (IsNegStride && LoadOff + LoadSize > StoreOff))
1290         return false;
1291     }
1292     return true;
1293   }
1294 
1295 private:
1296   const DataLayout &DL;
1297   int64_t LoadOff;
1298   int64_t StoreOff;
1299   const Value *BP1;
1300   const Value *BP2;
1301 
1302 public:
1303   const bool IsSameObject;
1304 };
1305 
processLoopStoreOfLoopLoad(Value * DestPtr,Value * SourcePtr,const SCEV * StoreSizeSCEV,MaybeAlign StoreAlign,MaybeAlign LoadAlign,Instruction * TheStore,Instruction * TheLoad,const SCEVAddRecExpr * StoreEv,const SCEVAddRecExpr * LoadEv,const SCEV * BECount)1306 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
1307     Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV,
1308     MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore,
1309     Instruction *TheLoad, const SCEVAddRecExpr *StoreEv,
1310     const SCEVAddRecExpr *LoadEv, const SCEV *BECount) {
1311 
1312   // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to
1313   // conservatively bail here, since otherwise we may have to transform
1314   // llvm.memcpy.inline into llvm.memcpy which is illegal.
1315   if (isa<MemCpyInlineInst>(TheStore))
1316     return false;
1317 
1318   // The trip count of the loop and the base pointer of the addrec SCEV is
1319   // guaranteed to be loop invariant, which means that it should dominate the
1320   // header.  This allows us to insert code for it in the preheader.
1321   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1322   IRBuilder<> Builder(Preheader->getTerminator());
1323   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1324 
1325   SCEVExpanderCleaner ExpCleaner(Expander, *DT);
1326 
1327   bool Changed = false;
1328   const SCEV *StrStart = StoreEv->getStart();
1329   unsigned StrAS = DestPtr->getType()->getPointerAddressSpace();
1330   Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1331 
1332   APInt Stride = getStoreStride(StoreEv);
1333   const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
1334 
1335   // TODO: Deal with non-constant size; Currently expect constant store size
1336   assert(ConstStoreSize && "store size is expected to be a constant");
1337 
1338   int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue();
1339   bool IsNegStride = StoreSize == -Stride;
1340 
1341   // Handle negative strided loops.
1342   if (IsNegStride)
1343     StrStart =
1344         getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1345 
1346   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1347   // this into a memcpy in the loop preheader now if we want.  However, this
1348   // would be unsafe to do if there is anything else in the loop that may read
1349   // or write the memory region we're storing to.  This includes the load that
1350   // feeds the stores.  Check for an alias by generating the base address and
1351   // checking everything.
1352   Value *StoreBasePtr = Expander.expandCodeFor(
1353       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1354 
1355   // From here on out, conservatively report to the pass manager that we've
1356   // changed the IR, even if we later clean up these added instructions. There
1357   // may be structural differences e.g. in the order of use lists not accounted
1358   // for in just a textual dump of the IR. This is written as a variable, even
1359   // though statically all the places this dominates could be replaced with
1360   // 'true', with the hope that anyone trying to be clever / "more precise" with
1361   // the return value will read this comment, and leave them alone.
1362   Changed = true;
1363 
1364   SmallPtrSet<Instruction *, 2> IgnoredInsts;
1365   IgnoredInsts.insert(TheStore);
1366 
1367   bool IsMemCpy = isa<MemCpyInst>(TheStore);
1368   const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store";
1369 
1370   bool LoopAccessStore =
1371       mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1372                             StoreSizeSCEV, *AA, IgnoredInsts);
1373   if (LoopAccessStore) {
1374     // For memmove case it's not enough to guarantee that loop doesn't access
1375     // TheStore and TheLoad. Additionally we need to make sure that TheStore is
1376     // the only user of TheLoad.
1377     if (!TheLoad->hasOneUse())
1378       return Changed;
1379     IgnoredInsts.insert(TheLoad);
1380     if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
1381                               BECount, StoreSizeSCEV, *AA, IgnoredInsts)) {
1382       ORE.emit([&]() {
1383         return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore",
1384                                         TheStore)
1385                << ore::NV("Inst", InstRemark) << " in "
1386                << ore::NV("Function", TheStore->getFunction())
1387                << " function will not be hoisted: "
1388                << ore::NV("Reason", "The loop may access store location");
1389       });
1390       return Changed;
1391     }
1392     IgnoredInsts.erase(TheLoad);
1393   }
1394 
1395   const SCEV *LdStart = LoadEv->getStart();
1396   unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace();
1397 
1398   // Handle negative strided loops.
1399   if (IsNegStride)
1400     LdStart =
1401         getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1402 
1403   // For a memcpy, we have to make sure that the input array is not being
1404   // mutated by the loop.
1405   Value *LoadBasePtr = Expander.expandCodeFor(
1406       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1407 
1408   // If the store is a memcpy instruction, we must check if it will write to
1409   // the load memory locations. So remove it from the ignored stores.
1410   if (IsMemCpy)
1411     IgnoredInsts.erase(TheStore);
1412   MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL);
1413   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1414                             StoreSizeSCEV, *AA, IgnoredInsts)) {
1415     if (!IsMemCpy) {
1416       ORE.emit([&]() {
1417         return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad",
1418                                         TheLoad)
1419                << ore::NV("Inst", InstRemark) << " in "
1420                << ore::NV("Function", TheStore->getFunction())
1421                << " function will not be hoisted: "
1422                << ore::NV("Reason", "The loop may access load location");
1423       });
1424       return Changed;
1425     }
1426     // At this point loop may access load only for memcpy in same underlying
1427     // object. If that's not the case bail out.
1428     if (!Verifier.IsSameObject)
1429       return Changed;
1430   }
1431 
1432   bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore;
1433   if (UseMemMove)
1434     if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad,
1435                                              IsMemCpy))
1436       return Changed;
1437 
1438   if (avoidLIRForMultiBlockLoop())
1439     return Changed;
1440 
1441   // Okay, everything is safe, we can transform this!
1442 
1443   const SCEV *NumBytesS =
1444       getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1445 
1446   Value *NumBytes =
1447       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1448 
1449   CallInst *NewCall = nullptr;
1450   // Check whether to generate an unordered atomic memcpy:
1451   //  If the load or store are atomic, then they must necessarily be unordered
1452   //  by previous checks.
1453   if (!TheStore->isAtomic() && !TheLoad->isAtomic()) {
1454     if (UseMemMove)
1455       NewCall = Builder.CreateMemMove(StoreBasePtr, StoreAlign, LoadBasePtr,
1456                                       LoadAlign, NumBytes);
1457     else
1458       NewCall = Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr,
1459                                      LoadAlign, NumBytes);
1460   } else {
1461     // For now don't support unordered atomic memmove.
1462     if (UseMemMove)
1463       return Changed;
1464     // We cannot allow unaligned ops for unordered load/store, so reject
1465     // anything where the alignment isn't at least the element size.
1466     assert((StoreAlign.hasValue() && LoadAlign.hasValue()) &&
1467            "Expect unordered load/store to have align.");
1468     if (StoreAlign.getValue() < StoreSize || LoadAlign.getValue() < StoreSize)
1469       return Changed;
1470 
1471     // If the element.atomic memcpy is not lowered into explicit
1472     // loads/stores later, then it will be lowered into an element-size
1473     // specific lib call. If the lib call doesn't exist for our store size, then
1474     // we shouldn't generate the memcpy.
1475     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1476       return Changed;
1477 
1478     // Create the call.
1479     // Note that unordered atomic loads/stores are *required* by the spec to
1480     // have an alignment but non-atomic loads/stores may not.
1481     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1482         StoreBasePtr, StoreAlign.getValue(), LoadBasePtr, LoadAlign.getValue(),
1483         NumBytes, StoreSize);
1484   }
1485   NewCall->setDebugLoc(TheStore->getDebugLoc());
1486 
1487   if (MSSAU) {
1488     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1489         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1490     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1491   }
1492 
1493   LLVM_DEBUG(dbgs() << "  Formed new call: " << *NewCall << "\n"
1494                     << "    from load ptr=" << *LoadEv << " at: " << *TheLoad
1495                     << "\n"
1496                     << "    from store ptr=" << *StoreEv << " at: " << *TheStore
1497                     << "\n");
1498 
1499   ORE.emit([&]() {
1500     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1501                               NewCall->getDebugLoc(), Preheader)
1502            << "Formed a call to "
1503            << ore::NV("NewFunction", NewCall->getCalledFunction())
1504            << "() intrinsic from " << ore::NV("Inst", InstRemark)
1505            << " instruction in " << ore::NV("Function", TheStore->getFunction())
1506            << " function"
1507            << ore::setExtraArgs()
1508            << ore::NV("FromBlock", TheStore->getParent()->getName())
1509            << ore::NV("ToBlock", Preheader->getName());
1510   });
1511 
1512   // Okay, a new call to memcpy/memmove has been formed.  Zap the original store
1513   // and anything that feeds into it.
1514   if (MSSAU)
1515     MSSAU->removeMemoryAccess(TheStore, true);
1516   deleteDeadInstruction(TheStore);
1517   if (MSSAU && VerifyMemorySSA)
1518     MSSAU->getMemorySSA()->verifyMemorySSA();
1519   if (UseMemMove)
1520     ++NumMemMove;
1521   else
1522     ++NumMemCpy;
1523   ExpCleaner.markResultUsed();
1524   return true;
1525 }
1526 
1527 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1528 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1529 //
avoidLIRForMultiBlockLoop(bool IsMemset,bool IsLoopMemset)1530 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1531                                                    bool IsLoopMemset) {
1532   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1533     if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) {
1534       LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1535                         << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1536                         << " avoided: multi-block top-level loop\n");
1537       return true;
1538     }
1539   }
1540 
1541   return false;
1542 }
1543 
runOnNoncountableLoop()1544 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1545   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1546                     << CurLoop->getHeader()->getParent()->getName()
1547                     << "] Noncountable Loop %"
1548                     << CurLoop->getHeader()->getName() << "\n");
1549 
1550   return recognizePopcount() || recognizeAndInsertFFS() ||
1551          recognizeShiftUntilBitTest() || recognizeShiftUntilZero();
1552 }
1553 
1554 /// Check if the given conditional branch is based on the comparison between
1555 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1556 /// true), the control yields to the loop entry. If the branch matches the
1557 /// behavior, the variable involved in the comparison is returned. This function
1558 /// will be called to see if the precondition and postcondition of the loop are
1559 /// in desirable form.
matchCondition(BranchInst * BI,BasicBlock * LoopEntry,bool JmpOnZero=false)1560 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1561                              bool JmpOnZero = false) {
1562   if (!BI || !BI->isConditional())
1563     return nullptr;
1564 
1565   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1566   if (!Cond)
1567     return nullptr;
1568 
1569   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1570   if (!CmpZero || !CmpZero->isZero())
1571     return nullptr;
1572 
1573   BasicBlock *TrueSucc = BI->getSuccessor(0);
1574   BasicBlock *FalseSucc = BI->getSuccessor(1);
1575   if (JmpOnZero)
1576     std::swap(TrueSucc, FalseSucc);
1577 
1578   ICmpInst::Predicate Pred = Cond->getPredicate();
1579   if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1580       (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1581     return Cond->getOperand(0);
1582 
1583   return nullptr;
1584 }
1585 
1586 // Check if the recurrence variable `VarX` is in the right form to create
1587 // the idiom. Returns the value coerced to a PHINode if so.
getRecurrenceVar(Value * VarX,Instruction * DefX,BasicBlock * LoopEntry)1588 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1589                                  BasicBlock *LoopEntry) {
1590   auto *PhiX = dyn_cast<PHINode>(VarX);
1591   if (PhiX && PhiX->getParent() == LoopEntry &&
1592       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1593     return PhiX;
1594   return nullptr;
1595 }
1596 
1597 /// Return true iff the idiom is detected in the loop.
1598 ///
1599 /// Additionally:
1600 /// 1) \p CntInst is set to the instruction counting the population bit.
1601 /// 2) \p CntPhi is set to the corresponding phi node.
1602 /// 3) \p Var is set to the value whose population bits are being counted.
1603 ///
1604 /// The core idiom we are trying to detect is:
1605 /// \code
1606 ///    if (x0 != 0)
1607 ///      goto loop-exit // the precondition of the loop
1608 ///    cnt0 = init-val;
1609 ///    do {
1610 ///       x1 = phi (x0, x2);
1611 ///       cnt1 = phi(cnt0, cnt2);
1612 ///
1613 ///       cnt2 = cnt1 + 1;
1614 ///        ...
1615 ///       x2 = x1 & (x1 - 1);
1616 ///        ...
1617 ///    } while(x != 0);
1618 ///
1619 /// loop-exit:
1620 /// \endcode
detectPopcountIdiom(Loop * CurLoop,BasicBlock * PreCondBB,Instruction * & CntInst,PHINode * & CntPhi,Value * & Var)1621 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1622                                 Instruction *&CntInst, PHINode *&CntPhi,
1623                                 Value *&Var) {
1624   // step 1: Check to see if the look-back branch match this pattern:
1625   //    "if (a!=0) goto loop-entry".
1626   BasicBlock *LoopEntry;
1627   Instruction *DefX2, *CountInst;
1628   Value *VarX1, *VarX0;
1629   PHINode *PhiX, *CountPhi;
1630 
1631   DefX2 = CountInst = nullptr;
1632   VarX1 = VarX0 = nullptr;
1633   PhiX = CountPhi = nullptr;
1634   LoopEntry = *(CurLoop->block_begin());
1635 
1636   // step 1: Check if the loop-back branch is in desirable form.
1637   {
1638     if (Value *T = matchCondition(
1639             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1640       DefX2 = dyn_cast<Instruction>(T);
1641     else
1642       return false;
1643   }
1644 
1645   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1646   {
1647     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1648       return false;
1649 
1650     BinaryOperator *SubOneOp;
1651 
1652     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1653       VarX1 = DefX2->getOperand(1);
1654     else {
1655       VarX1 = DefX2->getOperand(0);
1656       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1657     }
1658     if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1659       return false;
1660 
1661     ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1662     if (!Dec ||
1663         !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1664           (SubOneOp->getOpcode() == Instruction::Add &&
1665            Dec->isMinusOne()))) {
1666       return false;
1667     }
1668   }
1669 
1670   // step 3: Check the recurrence of variable X
1671   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1672   if (!PhiX)
1673     return false;
1674 
1675   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1676   {
1677     CountInst = nullptr;
1678     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1679                               IterE = LoopEntry->end();
1680          Iter != IterE; Iter++) {
1681       Instruction *Inst = &*Iter;
1682       if (Inst->getOpcode() != Instruction::Add)
1683         continue;
1684 
1685       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1686       if (!Inc || !Inc->isOne())
1687         continue;
1688 
1689       PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1690       if (!Phi)
1691         continue;
1692 
1693       // Check if the result of the instruction is live of the loop.
1694       bool LiveOutLoop = false;
1695       for (User *U : Inst->users()) {
1696         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1697           LiveOutLoop = true;
1698           break;
1699         }
1700       }
1701 
1702       if (LiveOutLoop) {
1703         CountInst = Inst;
1704         CountPhi = Phi;
1705         break;
1706       }
1707     }
1708 
1709     if (!CountInst)
1710       return false;
1711   }
1712 
1713   // step 5: check if the precondition is in this form:
1714   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1715   {
1716     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1717     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1718     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1719       return false;
1720 
1721     CntInst = CountInst;
1722     CntPhi = CountPhi;
1723     Var = T;
1724   }
1725 
1726   return true;
1727 }
1728 
1729 /// Return true if the idiom is detected in the loop.
1730 ///
1731 /// Additionally:
1732 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1733 ///       or nullptr if there is no such.
1734 /// 2) \p CntPhi is set to the corresponding phi node
1735 ///       or nullptr if there is no such.
1736 /// 3) \p Var is set to the value whose CTLZ could be used.
1737 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1738 ///
1739 /// The core idiom we are trying to detect is:
1740 /// \code
1741 ///    if (x0 == 0)
1742 ///      goto loop-exit // the precondition of the loop
1743 ///    cnt0 = init-val;
1744 ///    do {
1745 ///       x = phi (x0, x.next);   //PhiX
1746 ///       cnt = phi(cnt0, cnt.next);
1747 ///
1748 ///       cnt.next = cnt + 1;
1749 ///        ...
1750 ///       x.next = x >> 1;   // DefX
1751 ///        ...
1752 ///    } while(x.next != 0);
1753 ///
1754 /// loop-exit:
1755 /// \endcode
detectShiftUntilZeroIdiom(Loop * CurLoop,const DataLayout & DL,Intrinsic::ID & IntrinID,Value * & InitX,Instruction * & CntInst,PHINode * & CntPhi,Instruction * & DefX)1756 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1757                                       Intrinsic::ID &IntrinID, Value *&InitX,
1758                                       Instruction *&CntInst, PHINode *&CntPhi,
1759                                       Instruction *&DefX) {
1760   BasicBlock *LoopEntry;
1761   Value *VarX = nullptr;
1762 
1763   DefX = nullptr;
1764   CntInst = nullptr;
1765   CntPhi = nullptr;
1766   LoopEntry = *(CurLoop->block_begin());
1767 
1768   // step 1: Check if the loop-back branch is in desirable form.
1769   if (Value *T = matchCondition(
1770           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1771     DefX = dyn_cast<Instruction>(T);
1772   else
1773     return false;
1774 
1775   // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1776   if (!DefX || !DefX->isShift())
1777     return false;
1778   IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1779                                                      Intrinsic::ctlz;
1780   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1781   if (!Shft || !Shft->isOne())
1782     return false;
1783   VarX = DefX->getOperand(0);
1784 
1785   // step 3: Check the recurrence of variable X
1786   PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1787   if (!PhiX)
1788     return false;
1789 
1790   InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1791 
1792   // Make sure the initial value can't be negative otherwise the ashr in the
1793   // loop might never reach zero which would make the loop infinite.
1794   if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1795     return false;
1796 
1797   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1798   //         or cnt.next = cnt + -1.
1799   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1800   //       then all uses of "cnt.next" could be optimized to the trip count
1801   //       plus "cnt0". Currently it is not optimized.
1802   //       This step could be used to detect POPCNT instruction:
1803   //       cnt.next = cnt + (x.next & 1)
1804   for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1805                             IterE = LoopEntry->end();
1806        Iter != IterE; Iter++) {
1807     Instruction *Inst = &*Iter;
1808     if (Inst->getOpcode() != Instruction::Add)
1809       continue;
1810 
1811     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1812     if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
1813       continue;
1814 
1815     PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1816     if (!Phi)
1817       continue;
1818 
1819     CntInst = Inst;
1820     CntPhi = Phi;
1821     break;
1822   }
1823   if (!CntInst)
1824     return false;
1825 
1826   return true;
1827 }
1828 
1829 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1830 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1831 /// trip count returns true; otherwise, returns false.
recognizeAndInsertFFS()1832 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1833   // Give up if the loop has multiple blocks or multiple backedges.
1834   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1835     return false;
1836 
1837   Intrinsic::ID IntrinID;
1838   Value *InitX;
1839   Instruction *DefX = nullptr;
1840   PHINode *CntPhi = nullptr;
1841   Instruction *CntInst = nullptr;
1842   // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1843   // this is always 6.
1844   size_t IdiomCanonicalSize = 6;
1845 
1846   if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1847                                  CntInst, CntPhi, DefX))
1848     return false;
1849 
1850   bool IsCntPhiUsedOutsideLoop = false;
1851   for (User *U : CntPhi->users())
1852     if (!CurLoop->contains(cast<Instruction>(U))) {
1853       IsCntPhiUsedOutsideLoop = true;
1854       break;
1855     }
1856   bool IsCntInstUsedOutsideLoop = false;
1857   for (User *U : CntInst->users())
1858     if (!CurLoop->contains(cast<Instruction>(U))) {
1859       IsCntInstUsedOutsideLoop = true;
1860       break;
1861     }
1862   // If both CntInst and CntPhi are used outside the loop the profitability
1863   // is questionable.
1864   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1865     return false;
1866 
1867   // For some CPUs result of CTLZ(X) intrinsic is undefined
1868   // when X is 0. If we can not guarantee X != 0, we need to check this
1869   // when expand.
1870   bool ZeroCheck = false;
1871   // It is safe to assume Preheader exist as it was checked in
1872   // parent function RunOnLoop.
1873   BasicBlock *PH = CurLoop->getLoopPreheader();
1874 
1875   // If we are using the count instruction outside the loop, make sure we
1876   // have a zero check as a precondition. Without the check the loop would run
1877   // one iteration for before any check of the input value. This means 0 and 1
1878   // would have identical behavior in the original loop and thus
1879   if (!IsCntPhiUsedOutsideLoop) {
1880     auto *PreCondBB = PH->getSinglePredecessor();
1881     if (!PreCondBB)
1882       return false;
1883     auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1884     if (!PreCondBI)
1885       return false;
1886     if (matchCondition(PreCondBI, PH) != InitX)
1887       return false;
1888     ZeroCheck = true;
1889   }
1890 
1891   // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1892   // profitable if we delete the loop.
1893 
1894   // the loop has only 6 instructions:
1895   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1896   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1897   //  %shr = ashr %n.addr.0, 1
1898   //  %tobool = icmp eq %shr, 0
1899   //  %inc = add nsw %i.0, 1
1900   //  br i1 %tobool
1901 
1902   const Value *Args[] = {InitX,
1903                          ConstantInt::getBool(InitX->getContext(), ZeroCheck)};
1904 
1905   // @llvm.dbg doesn't count as they have no semantic effect.
1906   auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1907   uint32_t HeaderSize =
1908       std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1909 
1910   IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
1911   InstructionCost Cost =
1912     TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency);
1913   if (HeaderSize != IdiomCanonicalSize &&
1914       Cost > TargetTransformInfo::TCC_Basic)
1915     return false;
1916 
1917   transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1918                            DefX->getDebugLoc(), ZeroCheck,
1919                            IsCntPhiUsedOutsideLoop);
1920   return true;
1921 }
1922 
1923 /// Recognizes a population count idiom in a non-countable loop.
1924 ///
1925 /// If detected, transforms the relevant code to issue the popcount intrinsic
1926 /// function call, and returns true; otherwise, returns false.
recognizePopcount()1927 bool LoopIdiomRecognize::recognizePopcount() {
1928   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1929     return false;
1930 
1931   // Counting population are usually conducted by few arithmetic instructions.
1932   // Such instructions can be easily "absorbed" by vacant slots in a
1933   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1934   // in a compact loop.
1935 
1936   // Give up if the loop has multiple blocks or multiple backedges.
1937   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1938     return false;
1939 
1940   BasicBlock *LoopBody = *(CurLoop->block_begin());
1941   if (LoopBody->size() >= 20) {
1942     // The loop is too big, bail out.
1943     return false;
1944   }
1945 
1946   // It should have a preheader containing nothing but an unconditional branch.
1947   BasicBlock *PH = CurLoop->getLoopPreheader();
1948   if (!PH || &PH->front() != PH->getTerminator())
1949     return false;
1950   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1951   if (!EntryBI || EntryBI->isConditional())
1952     return false;
1953 
1954   // It should have a precondition block where the generated popcount intrinsic
1955   // function can be inserted.
1956   auto *PreCondBB = PH->getSinglePredecessor();
1957   if (!PreCondBB)
1958     return false;
1959   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1960   if (!PreCondBI || PreCondBI->isUnconditional())
1961     return false;
1962 
1963   Instruction *CntInst;
1964   PHINode *CntPhi;
1965   Value *Val;
1966   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1967     return false;
1968 
1969   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1970   return true;
1971 }
1972 
createPopcntIntrinsic(IRBuilder<> & IRBuilder,Value * Val,const DebugLoc & DL)1973 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1974                                        const DebugLoc &DL) {
1975   Value *Ops[] = {Val};
1976   Type *Tys[] = {Val->getType()};
1977 
1978   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1979   Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1980   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1981   CI->setDebugLoc(DL);
1982 
1983   return CI;
1984 }
1985 
createFFSIntrinsic(IRBuilder<> & IRBuilder,Value * Val,const DebugLoc & DL,bool ZeroCheck,Intrinsic::ID IID)1986 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1987                                     const DebugLoc &DL, bool ZeroCheck,
1988                                     Intrinsic::ID IID) {
1989   Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)};
1990   Type *Tys[] = {Val->getType()};
1991 
1992   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1993   Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1994   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1995   CI->setDebugLoc(DL);
1996 
1997   return CI;
1998 }
1999 
2000 /// Transform the following loop (Using CTLZ, CTTZ is similar):
2001 /// loop:
2002 ///   CntPhi = PHI [Cnt0, CntInst]
2003 ///   PhiX = PHI [InitX, DefX]
2004 ///   CntInst = CntPhi + 1
2005 ///   DefX = PhiX >> 1
2006 ///   LOOP_BODY
2007 ///   Br: loop if (DefX != 0)
2008 /// Use(CntPhi) or Use(CntInst)
2009 ///
2010 /// Into:
2011 /// If CntPhi used outside the loop:
2012 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
2013 ///   Count = CountPrev + 1
2014 /// else
2015 ///   Count = BitWidth(InitX) - CTLZ(InitX)
2016 /// loop:
2017 ///   CntPhi = PHI [Cnt0, CntInst]
2018 ///   PhiX = PHI [InitX, DefX]
2019 ///   PhiCount = PHI [Count, Dec]
2020 ///   CntInst = CntPhi + 1
2021 ///   DefX = PhiX >> 1
2022 ///   Dec = PhiCount - 1
2023 ///   LOOP_BODY
2024 ///   Br: loop if (Dec != 0)
2025 /// Use(CountPrev + Cnt0) // Use(CntPhi)
2026 /// or
2027 /// Use(Count + Cnt0) // Use(CntInst)
2028 ///
2029 /// If LOOP_BODY is empty the loop will be deleted.
2030 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
transformLoopToCountable(Intrinsic::ID IntrinID,BasicBlock * Preheader,Instruction * CntInst,PHINode * CntPhi,Value * InitX,Instruction * DefX,const DebugLoc & DL,bool ZeroCheck,bool IsCntPhiUsedOutsideLoop)2031 void LoopIdiomRecognize::transformLoopToCountable(
2032     Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
2033     PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
2034     bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
2035   BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
2036 
2037   // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
2038   IRBuilder<> Builder(PreheaderBr);
2039   Builder.SetCurrentDebugLocation(DL);
2040 
2041   // If there are no uses of CntPhi crate:
2042   //   Count = BitWidth - CTLZ(InitX);
2043   //   NewCount = Count;
2044   // If there are uses of CntPhi create:
2045   //   NewCount = BitWidth - CTLZ(InitX >> 1);
2046   //   Count = NewCount + 1;
2047   Value *InitXNext;
2048   if (IsCntPhiUsedOutsideLoop) {
2049     if (DefX->getOpcode() == Instruction::AShr)
2050       InitXNext = Builder.CreateAShr(InitX, 1);
2051     else if (DefX->getOpcode() == Instruction::LShr)
2052       InitXNext = Builder.CreateLShr(InitX, 1);
2053     else if (DefX->getOpcode() == Instruction::Shl) // cttz
2054       InitXNext = Builder.CreateShl(InitX, 1);
2055     else
2056       llvm_unreachable("Unexpected opcode!");
2057   } else
2058     InitXNext = InitX;
2059   Value *Count =
2060       createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
2061   Type *CountTy = Count->getType();
2062   Count = Builder.CreateSub(
2063       ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count);
2064   Value *NewCount = Count;
2065   if (IsCntPhiUsedOutsideLoop)
2066     Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1));
2067 
2068   NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType());
2069 
2070   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
2071   if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) {
2072     // If the counter was being incremented in the loop, add NewCount to the
2073     // counter's initial value, but only if the initial value is not zero.
2074     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2075     if (!InitConst || !InitConst->isZero())
2076       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2077   } else {
2078     // If the count was being decremented in the loop, subtract NewCount from
2079     // the counter's initial value.
2080     NewCount = Builder.CreateSub(CntInitVal, NewCount);
2081   }
2082 
2083   // Step 2: Insert new IV and loop condition:
2084   // loop:
2085   //   ...
2086   //   PhiCount = PHI [Count, Dec]
2087   //   ...
2088   //   Dec = PhiCount - 1
2089   //   ...
2090   //   Br: loop if (Dec != 0)
2091   BasicBlock *Body = *(CurLoop->block_begin());
2092   auto *LbBr = cast<BranchInst>(Body->getTerminator());
2093   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2094 
2095   PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front());
2096 
2097   Builder.SetInsertPoint(LbCond);
2098   Instruction *TcDec = cast<Instruction>(Builder.CreateSub(
2099       TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true));
2100 
2101   TcPhi->addIncoming(Count, Preheader);
2102   TcPhi->addIncoming(TcDec, Body);
2103 
2104   CmpInst::Predicate Pred =
2105       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
2106   LbCond->setPredicate(Pred);
2107   LbCond->setOperand(0, TcDec);
2108   LbCond->setOperand(1, ConstantInt::get(CountTy, 0));
2109 
2110   // Step 3: All the references to the original counter outside
2111   //  the loop are replaced with the NewCount
2112   if (IsCntPhiUsedOutsideLoop)
2113     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
2114   else
2115     CntInst->replaceUsesOutsideBlock(NewCount, Body);
2116 
2117   // step 4: Forget the "non-computable" trip-count SCEV associated with the
2118   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2119   SE->forgetLoop(CurLoop);
2120 }
2121 
transformLoopToPopcount(BasicBlock * PreCondBB,Instruction * CntInst,PHINode * CntPhi,Value * Var)2122 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
2123                                                  Instruction *CntInst,
2124                                                  PHINode *CntPhi, Value *Var) {
2125   BasicBlock *PreHead = CurLoop->getLoopPreheader();
2126   auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
2127   const DebugLoc &DL = CntInst->getDebugLoc();
2128 
2129   // Assuming before transformation, the loop is following:
2130   //  if (x) // the precondition
2131   //     do { cnt++; x &= x - 1; } while(x);
2132 
2133   // Step 1: Insert the ctpop instruction at the end of the precondition block
2134   IRBuilder<> Builder(PreCondBr);
2135   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
2136   {
2137     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
2138     NewCount = PopCntZext =
2139         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
2140 
2141     if (NewCount != PopCnt)
2142       (cast<Instruction>(NewCount))->setDebugLoc(DL);
2143 
2144     // TripCnt is exactly the number of iterations the loop has
2145     TripCnt = NewCount;
2146 
2147     // If the population counter's initial value is not zero, insert Add Inst.
2148     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
2149     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2150     if (!InitConst || !InitConst->isZero()) {
2151       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2152       (cast<Instruction>(NewCount))->setDebugLoc(DL);
2153     }
2154   }
2155 
2156   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
2157   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
2158   //   function would be partial dead code, and downstream passes will drag
2159   //   it back from the precondition block to the preheader.
2160   {
2161     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
2162 
2163     Value *Opnd0 = PopCntZext;
2164     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
2165     if (PreCond->getOperand(0) != Var)
2166       std::swap(Opnd0, Opnd1);
2167 
2168     ICmpInst *NewPreCond = cast<ICmpInst>(
2169         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
2170     PreCondBr->setCondition(NewPreCond);
2171 
2172     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
2173   }
2174 
2175   // Step 3: Note that the population count is exactly the trip count of the
2176   // loop in question, which enable us to convert the loop from noncountable
2177   // loop into a countable one. The benefit is twofold:
2178   //
2179   //  - If the loop only counts population, the entire loop becomes dead after
2180   //    the transformation. It is a lot easier to prove a countable loop dead
2181   //    than to prove a noncountable one. (In some C dialects, an infinite loop
2182   //    isn't dead even if it computes nothing useful. In general, DCE needs
2183   //    to prove a noncountable loop finite before safely delete it.)
2184   //
2185   //  - If the loop also performs something else, it remains alive.
2186   //    Since it is transformed to countable form, it can be aggressively
2187   //    optimized by some optimizations which are in general not applicable
2188   //    to a noncountable loop.
2189   //
2190   // After this step, this loop (conceptually) would look like following:
2191   //   newcnt = __builtin_ctpop(x);
2192   //   t = newcnt;
2193   //   if (x)
2194   //     do { cnt++; x &= x-1; t--) } while (t > 0);
2195   BasicBlock *Body = *(CurLoop->block_begin());
2196   {
2197     auto *LbBr = cast<BranchInst>(Body->getTerminator());
2198     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2199     Type *Ty = TripCnt->getType();
2200 
2201     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
2202 
2203     Builder.SetInsertPoint(LbCond);
2204     Instruction *TcDec = cast<Instruction>(
2205         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
2206                           "tcdec", false, true));
2207 
2208     TcPhi->addIncoming(TripCnt, PreHead);
2209     TcPhi->addIncoming(TcDec, Body);
2210 
2211     CmpInst::Predicate Pred =
2212         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
2213     LbCond->setPredicate(Pred);
2214     LbCond->setOperand(0, TcDec);
2215     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
2216   }
2217 
2218   // Step 4: All the references to the original population counter outside
2219   //  the loop are replaced with the NewCount -- the value returned from
2220   //  __builtin_ctpop().
2221   CntInst->replaceUsesOutsideBlock(NewCount, Body);
2222 
2223   // step 5: Forget the "non-computable" trip-count SCEV associated with the
2224   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2225   SE->forgetLoop(CurLoop);
2226 }
2227 
2228 /// Match loop-invariant value.
2229 template <typename SubPattern_t> struct match_LoopInvariant {
2230   SubPattern_t SubPattern;
2231   const Loop *L;
2232 
match_LoopInvariantmatch_LoopInvariant2233   match_LoopInvariant(const SubPattern_t &SP, const Loop *L)
2234       : SubPattern(SP), L(L) {}
2235 
matchmatch_LoopInvariant2236   template <typename ITy> bool match(ITy *V) {
2237     return L->isLoopInvariant(V) && SubPattern.match(V);
2238   }
2239 };
2240 
2241 /// Matches if the value is loop-invariant.
2242 template <typename Ty>
m_LoopInvariant(const Ty & M,const Loop * L)2243 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) {
2244   return match_LoopInvariant<Ty>(M, L);
2245 }
2246 
2247 /// Return true if the idiom is detected in the loop.
2248 ///
2249 /// The core idiom we are trying to detect is:
2250 /// \code
2251 ///   entry:
2252 ///     <...>
2253 ///     %bitmask = shl i32 1, %bitpos
2254 ///     br label %loop
2255 ///
2256 ///   loop:
2257 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2258 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
2259 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2260 ///     %x.next = shl i32 %x.curr, 1
2261 ///     <...>
2262 ///     br i1 %x.curr.isbitunset, label %loop, label %end
2263 ///
2264 ///   end:
2265 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2266 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2267 ///     <...>
2268 /// \endcode
detectShiftUntilBitTestIdiom(Loop * CurLoop,Value * & BaseX,Value * & BitMask,Value * & BitPos,Value * & CurrX,Instruction * & NextX)2269 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX,
2270                                          Value *&BitMask, Value *&BitPos,
2271                                          Value *&CurrX, Instruction *&NextX) {
2272   LLVM_DEBUG(dbgs() << DEBUG_TYPE
2273              " Performing shift-until-bittest idiom detection.\n");
2274 
2275   // Give up if the loop has multiple blocks or multiple backedges.
2276   if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2277     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2278     return false;
2279   }
2280 
2281   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2282   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2283   assert(LoopPreheaderBB && "There is always a loop preheader.");
2284 
2285   using namespace PatternMatch;
2286 
2287   // Step 1: Check if the loop backedge is in desirable form.
2288 
2289   ICmpInst::Predicate Pred;
2290   Value *CmpLHS, *CmpRHS;
2291   BasicBlock *TrueBB, *FalseBB;
2292   if (!match(LoopHeaderBB->getTerminator(),
2293              m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)),
2294                   m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) {
2295     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2296     return false;
2297   }
2298 
2299   // Step 2: Check if the backedge's condition is in desirable form.
2300 
2301   auto MatchVariableBitMask = [&]() {
2302     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2303            match(CmpLHS,
2304                  m_c_And(m_Value(CurrX),
2305                          m_CombineAnd(
2306                              m_Value(BitMask),
2307                              m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)),
2308                                              CurLoop))));
2309   };
2310   auto MatchConstantBitMask = [&]() {
2311     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2312            match(CmpLHS, m_And(m_Value(CurrX),
2313                                m_CombineAnd(m_Value(BitMask), m_Power2()))) &&
2314            (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask)));
2315   };
2316   auto MatchDecomposableConstantBitMask = [&]() {
2317     APInt Mask;
2318     return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) &&
2319            ICmpInst::isEquality(Pred) && Mask.isPowerOf2() &&
2320            (BitMask = ConstantInt::get(CurrX->getType(), Mask)) &&
2321            (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2()));
2322   };
2323 
2324   if (!MatchVariableBitMask() && !MatchConstantBitMask() &&
2325       !MatchDecomposableConstantBitMask()) {
2326     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n");
2327     return false;
2328   }
2329 
2330   // Step 3: Check if the recurrence is in desirable form.
2331   auto *CurrXPN = dyn_cast<PHINode>(CurrX);
2332   if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) {
2333     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2334     return false;
2335   }
2336 
2337   BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB);
2338   NextX =
2339       dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB));
2340 
2341   assert(CurLoop->isLoopInvariant(BaseX) &&
2342          "Expected BaseX to be avaliable in the preheader!");
2343 
2344   if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) {
2345     // FIXME: support right-shift?
2346     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2347     return false;
2348   }
2349 
2350   // Step 4: Check if the backedge's destinations are in desirable form.
2351 
2352   assert(ICmpInst::isEquality(Pred) &&
2353          "Should only get equality predicates here.");
2354 
2355   // cmp-br is commutative, so canonicalize to a single variant.
2356   if (Pred != ICmpInst::Predicate::ICMP_EQ) {
2357     Pred = ICmpInst::getInversePredicate(Pred);
2358     std::swap(TrueBB, FalseBB);
2359   }
2360 
2361   // We expect to exit loop when comparison yields false,
2362   // so when it yields true we should branch back to loop header.
2363   if (TrueBB != LoopHeaderBB) {
2364     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2365     return false;
2366   }
2367 
2368   // Okay, idiom checks out.
2369   return true;
2370 }
2371 
2372 /// Look for the following loop:
2373 /// \code
2374 ///   entry:
2375 ///     <...>
2376 ///     %bitmask = shl i32 1, %bitpos
2377 ///     br label %loop
2378 ///
2379 ///   loop:
2380 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2381 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
2382 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2383 ///     %x.next = shl i32 %x.curr, 1
2384 ///     <...>
2385 ///     br i1 %x.curr.isbitunset, label %loop, label %end
2386 ///
2387 ///   end:
2388 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2389 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2390 ///     <...>
2391 /// \endcode
2392 ///
2393 /// And transform it into:
2394 /// \code
2395 ///   entry:
2396 ///     %bitmask = shl i32 1, %bitpos
2397 ///     %lowbitmask = add i32 %bitmask, -1
2398 ///     %mask = or i32 %lowbitmask, %bitmask
2399 ///     %x.masked = and i32 %x, %mask
2400 ///     %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked,
2401 ///                                                         i1 true)
2402 ///     %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros
2403 ///     %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1
2404 ///     %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos
2405 ///     %tripcount = add i32 %backedgetakencount, 1
2406 ///     %x.curr = shl i32 %x, %backedgetakencount
2407 ///     %x.next = shl i32 %x, %tripcount
2408 ///     br label %loop
2409 ///
2410 ///   loop:
2411 ///     %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ]
2412 ///     %loop.iv.next = add nuw i32 %loop.iv, 1
2413 ///     %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount
2414 ///     <...>
2415 ///     br i1 %loop.ivcheck, label %end, label %loop
2416 ///
2417 ///   end:
2418 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2419 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2420 ///     <...>
2421 /// \endcode
recognizeShiftUntilBitTest()2422 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() {
2423   bool MadeChange = false;
2424 
2425   Value *X, *BitMask, *BitPos, *XCurr;
2426   Instruction *XNext;
2427   if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr,
2428                                     XNext)) {
2429     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2430                " shift-until-bittest idiom detection failed.\n");
2431     return MadeChange;
2432   }
2433   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n");
2434 
2435   // Ok, it is the idiom we were looking for, we *could* transform this loop,
2436   // but is it profitable to transform?
2437 
2438   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2439   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2440   assert(LoopPreheaderBB && "There is always a loop preheader.");
2441 
2442   BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2443   assert(SuccessorBB && "There is only a single successor.");
2444 
2445   IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2446   Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc());
2447 
2448   Intrinsic::ID IntrID = Intrinsic::ctlz;
2449   Type *Ty = X->getType();
2450   unsigned Bitwidth = Ty->getScalarSizeInBits();
2451 
2452   TargetTransformInfo::TargetCostKind CostKind =
2453       TargetTransformInfo::TCK_SizeAndLatency;
2454 
2455   // The rewrite is considered to be unprofitable iff and only iff the
2456   // intrinsic/shift we'll use are not cheap. Note that we are okay with *just*
2457   // making the loop countable, even if nothing else changes.
2458   IntrinsicCostAttributes Attrs(
2459       IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()});
2460   InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2461   if (Cost > TargetTransformInfo::TCC_Basic) {
2462     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2463                " Intrinsic is too costly, not beneficial\n");
2464     return MadeChange;
2465   }
2466   if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) >
2467       TargetTransformInfo::TCC_Basic) {
2468     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n");
2469     return MadeChange;
2470   }
2471 
2472   // Ok, transform appears worthwhile.
2473   MadeChange = true;
2474 
2475   // Step 1: Compute the loop trip count.
2476 
2477   Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty),
2478                                         BitPos->getName() + ".lowbitmask");
2479   Value *Mask =
2480       Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask");
2481   Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked");
2482   CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic(
2483       IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()},
2484       /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros");
2485   Value *XMaskedNumActiveBits = Builder.CreateSub(
2486       ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros,
2487       XMasked->getName() + ".numactivebits", /*HasNUW=*/true,
2488       /*HasNSW=*/Bitwidth != 2);
2489   Value *XMaskedLeadingOnePos =
2490       Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty),
2491                         XMasked->getName() + ".leadingonepos", /*HasNUW=*/false,
2492                         /*HasNSW=*/Bitwidth > 2);
2493 
2494   Value *LoopBackedgeTakenCount = Builder.CreateSub(
2495       BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount",
2496       /*HasNUW=*/true, /*HasNSW=*/true);
2497   // We know loop's backedge-taken count, but what's loop's trip count?
2498   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2499   Value *LoopTripCount =
2500       Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2501                         CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2502                         /*HasNSW=*/Bitwidth != 2);
2503 
2504   // Step 2: Compute the recurrence's final value without a loop.
2505 
2506   // NewX is always safe to compute, because `LoopBackedgeTakenCount`
2507   // will always be smaller than `bitwidth(X)`, i.e. we never get poison.
2508   Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount);
2509   NewX->takeName(XCurr);
2510   if (auto *I = dyn_cast<Instruction>(NewX))
2511     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2512 
2513   Value *NewXNext;
2514   // Rewriting XNext is more complicated, however, because `X << LoopTripCount`
2515   // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
2516   // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know
2517   // that isn't the case, we'll need to emit an alternative, safe IR.
2518   if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() ||
2519       PatternMatch::match(
2520           BitPos, PatternMatch::m_SpecificInt_ICMP(
2521                       ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(),
2522                                                Ty->getScalarSizeInBits() - 1))))
2523     NewXNext = Builder.CreateShl(X, LoopTripCount);
2524   else {
2525     // Otherwise, just additionally shift by one. It's the smallest solution,
2526     // alternatively, we could check that NewX is INT_MIN (or BitPos is )
2527     // and select 0 instead.
2528     NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1));
2529   }
2530 
2531   NewXNext->takeName(XNext);
2532   if (auto *I = dyn_cast<Instruction>(NewXNext))
2533     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2534 
2535   // Step 3: Adjust the successor basic block to recieve the computed
2536   //         recurrence's final value instead of the recurrence itself.
2537 
2538   XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB);
2539   XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB);
2540 
2541   // Step 4: Rewrite the loop into a countable form, with canonical IV.
2542 
2543   // The new canonical induction variable.
2544   Builder.SetInsertPoint(&LoopHeaderBB->front());
2545   auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2546 
2547   // The induction itself.
2548   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2549   Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2550   auto *IVNext =
2551       Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
2552                         /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2553 
2554   // The loop trip count check.
2555   auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount,
2556                                        CurLoop->getName() + ".ivcheck");
2557   Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB);
2558   LoopHeaderBB->getTerminator()->eraseFromParent();
2559 
2560   // Populate the IV PHI.
2561   IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2562   IV->addIncoming(IVNext, LoopHeaderBB);
2563 
2564   // Step 5: Forget the "non-computable" trip-count SCEV associated with the
2565   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2566 
2567   SE->forgetLoop(CurLoop);
2568 
2569   // Other passes will take care of actually deleting the loop if possible.
2570 
2571   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n");
2572 
2573   ++NumShiftUntilBitTest;
2574   return MadeChange;
2575 }
2576 
2577 /// Return true if the idiom is detected in the loop.
2578 ///
2579 /// The core idiom we are trying to detect is:
2580 /// \code
2581 ///   entry:
2582 ///     <...>
2583 ///     %start = <...>
2584 ///     %extraoffset = <...>
2585 ///     <...>
2586 ///     br label %for.cond
2587 ///
2588 ///   loop:
2589 ///     %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2590 ///     %nbits = add nsw i8 %iv, %extraoffset
2591 ///     %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2592 ///     %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2593 ///     %iv.next = add i8 %iv, 1
2594 ///     <...>
2595 ///     br i1 %val.shifted.iszero, label %end, label %loop
2596 ///
2597 ///   end:
2598 ///     %iv.res = phi i8 [ %iv, %loop ] <...>
2599 ///     %nbits.res = phi i8 [ %nbits, %loop ] <...>
2600 ///     %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2601 ///     %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2602 ///     %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2603 ///     <...>
2604 /// \endcode
detectShiftUntilZeroIdiom(Loop * CurLoop,ScalarEvolution * SE,Instruction * & ValShiftedIsZero,Intrinsic::ID & IntrinID,Instruction * & IV,Value * & Start,Value * & Val,const SCEV * & ExtraOffsetExpr,bool & InvertedCond)2605 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE,
2606                                       Instruction *&ValShiftedIsZero,
2607                                       Intrinsic::ID &IntrinID, Instruction *&IV,
2608                                       Value *&Start, Value *&Val,
2609                                       const SCEV *&ExtraOffsetExpr,
2610                                       bool &InvertedCond) {
2611   LLVM_DEBUG(dbgs() << DEBUG_TYPE
2612              " Performing shift-until-zero idiom detection.\n");
2613 
2614   // Give up if the loop has multiple blocks or multiple backedges.
2615   if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2616     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2617     return false;
2618   }
2619 
2620   Instruction *ValShifted, *NBits, *IVNext;
2621   Value *ExtraOffset;
2622 
2623   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2624   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2625   assert(LoopPreheaderBB && "There is always a loop preheader.");
2626 
2627   using namespace PatternMatch;
2628 
2629   // Step 1: Check if the loop backedge, condition is in desirable form.
2630 
2631   ICmpInst::Predicate Pred;
2632   BasicBlock *TrueBB, *FalseBB;
2633   if (!match(LoopHeaderBB->getTerminator(),
2634              m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB),
2635                   m_BasicBlock(FalseBB))) ||
2636       !match(ValShiftedIsZero,
2637              m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) ||
2638       !ICmpInst::isEquality(Pred)) {
2639     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2640     return false;
2641   }
2642 
2643   // Step 2: Check if the comparison's operand is in desirable form.
2644   // FIXME: Val could be a one-input PHI node, which we should look past.
2645   if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop),
2646                                  m_Instruction(NBits)))) {
2647     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n");
2648     return false;
2649   }
2650   IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz
2651                                                          : Intrinsic::ctlz;
2652 
2653   // Step 3: Check if the shift amount is in desirable form.
2654 
2655   if (match(NBits, m_c_Add(m_Instruction(IV),
2656                            m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2657       (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap()))
2658     ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset));
2659   else if (match(NBits,
2660                  m_Sub(m_Instruction(IV),
2661                        m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2662            NBits->hasNoSignedWrap())
2663     ExtraOffsetExpr = SE->getSCEV(ExtraOffset);
2664   else {
2665     IV = NBits;
2666     ExtraOffsetExpr = SE->getZero(NBits->getType());
2667   }
2668 
2669   // Step 4: Check if the recurrence is in desirable form.
2670   auto *IVPN = dyn_cast<PHINode>(IV);
2671   if (!IVPN || IVPN->getParent() != LoopHeaderBB) {
2672     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2673     return false;
2674   }
2675 
2676   Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB);
2677   IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB));
2678 
2679   if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) {
2680     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2681     return false;
2682   }
2683 
2684   // Step 4: Check if the backedge's destinations are in desirable form.
2685 
2686   assert(ICmpInst::isEquality(Pred) &&
2687          "Should only get equality predicates here.");
2688 
2689   // cmp-br is commutative, so canonicalize to a single variant.
2690   InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ;
2691   if (InvertedCond) {
2692     Pred = ICmpInst::getInversePredicate(Pred);
2693     std::swap(TrueBB, FalseBB);
2694   }
2695 
2696   // We expect to exit loop when comparison yields true,
2697   // so when it yields false we should branch back to loop header.
2698   if (FalseBB != LoopHeaderBB) {
2699     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2700     return false;
2701   }
2702 
2703   // The new, countable, loop will certainly only run a known number of
2704   // iterations, It won't be infinite. But the old loop might be infinite
2705   // under certain conditions. For logical shifts, the value will become zero
2706   // after at most bitwidth(%Val) loop iterations. However, for arithmetic
2707   // right-shift, iff the sign bit was set, the value will never become zero,
2708   // and the loop may never finish.
2709   if (ValShifted->getOpcode() == Instruction::AShr &&
2710       !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) {
2711     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n");
2712     return false;
2713   }
2714 
2715   // Okay, idiom checks out.
2716   return true;
2717 }
2718 
2719 /// Look for the following loop:
2720 /// \code
2721 ///   entry:
2722 ///     <...>
2723 ///     %start = <...>
2724 ///     %extraoffset = <...>
2725 ///     <...>
2726 ///     br label %for.cond
2727 ///
2728 ///   loop:
2729 ///     %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2730 ///     %nbits = add nsw i8 %iv, %extraoffset
2731 ///     %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2732 ///     %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2733 ///     %iv.next = add i8 %iv, 1
2734 ///     <...>
2735 ///     br i1 %val.shifted.iszero, label %end, label %loop
2736 ///
2737 ///   end:
2738 ///     %iv.res = phi i8 [ %iv, %loop ] <...>
2739 ///     %nbits.res = phi i8 [ %nbits, %loop ] <...>
2740 ///     %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2741 ///     %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2742 ///     %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2743 ///     <...>
2744 /// \endcode
2745 ///
2746 /// And transform it into:
2747 /// \code
2748 ///   entry:
2749 ///     <...>
2750 ///     %start = <...>
2751 ///     %extraoffset = <...>
2752 ///     <...>
2753 ///     %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0)
2754 ///     %val.numactivebits = sub i8 8, %val.numleadingzeros
2755 ///     %extraoffset.neg = sub i8 0, %extraoffset
2756 ///     %tmp = add i8 %val.numactivebits, %extraoffset.neg
2757 ///     %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start)
2758 ///     %loop.tripcount = sub i8 %iv.final, %start
2759 ///     br label %loop
2760 ///
2761 ///   loop:
2762 ///     %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ]
2763 ///     %loop.iv.next = add i8 %loop.iv, 1
2764 ///     %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount
2765 ///     %iv = add i8 %loop.iv, %start
2766 ///     <...>
2767 ///     br i1 %loop.ivcheck, label %end, label %loop
2768 ///
2769 ///   end:
2770 ///     %iv.res = phi i8 [ %iv.final, %loop ] <...>
2771 ///     <...>
2772 /// \endcode
recognizeShiftUntilZero()2773 bool LoopIdiomRecognize::recognizeShiftUntilZero() {
2774   bool MadeChange = false;
2775 
2776   Instruction *ValShiftedIsZero;
2777   Intrinsic::ID IntrID;
2778   Instruction *IV;
2779   Value *Start, *Val;
2780   const SCEV *ExtraOffsetExpr;
2781   bool InvertedCond;
2782   if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV,
2783                                  Start, Val, ExtraOffsetExpr, InvertedCond)) {
2784     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2785                " shift-until-zero idiom detection failed.\n");
2786     return MadeChange;
2787   }
2788   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n");
2789 
2790   // Ok, it is the idiom we were looking for, we *could* transform this loop,
2791   // but is it profitable to transform?
2792 
2793   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2794   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2795   assert(LoopPreheaderBB && "There is always a loop preheader.");
2796 
2797   BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2798   assert(SuccessorBB && "There is only a single successor.");
2799 
2800   IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2801   Builder.SetCurrentDebugLocation(IV->getDebugLoc());
2802 
2803   Type *Ty = Val->getType();
2804   unsigned Bitwidth = Ty->getScalarSizeInBits();
2805 
2806   TargetTransformInfo::TargetCostKind CostKind =
2807       TargetTransformInfo::TCK_SizeAndLatency;
2808 
2809   // The rewrite is considered to be unprofitable iff and only iff the
2810   // intrinsic we'll use are not cheap. Note that we are okay with *just*
2811   // making the loop countable, even if nothing else changes.
2812   IntrinsicCostAttributes Attrs(
2813       IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getFalse()});
2814   InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2815   if (Cost > TargetTransformInfo::TCC_Basic) {
2816     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2817                " Intrinsic is too costly, not beneficial\n");
2818     return MadeChange;
2819   }
2820 
2821   // Ok, transform appears worthwhile.
2822   MadeChange = true;
2823 
2824   bool OffsetIsZero = false;
2825   if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr))
2826     OffsetIsZero = ExtraOffsetExprC->isZero();
2827 
2828   // Step 1: Compute the loop's final IV value / trip count.
2829 
2830   CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic(
2831       IntrID, Ty, {Val, /*is_zero_undef=*/Builder.getFalse()},
2832       /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros");
2833   Value *ValNumActiveBits = Builder.CreateSub(
2834       ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros,
2835       Val->getName() + ".numactivebits", /*HasNUW=*/true,
2836       /*HasNSW=*/Bitwidth != 2);
2837 
2838   SCEVExpander Expander(*SE, *DL, "loop-idiom");
2839   Expander.setInsertPoint(&*Builder.GetInsertPoint());
2840   Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr);
2841 
2842   Value *ValNumActiveBitsOffset = Builder.CreateAdd(
2843       ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset",
2844       /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true);
2845   Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty},
2846                                            {ValNumActiveBitsOffset, Start},
2847                                            /*FMFSource=*/nullptr, "iv.final");
2848 
2849   auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub(
2850       IVFinal, Start, CurLoop->getName() + ".backedgetakencount",
2851       /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true));
2852   // FIXME: or when the offset was `add nuw`
2853 
2854   // We know loop's backedge-taken count, but what's loop's trip count?
2855   Value *LoopTripCount =
2856       Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2857                         CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2858                         /*HasNSW=*/Bitwidth != 2);
2859 
2860   // Step 2: Adjust the successor basic block to recieve the original
2861   //         induction variable's final value instead of the orig. IV itself.
2862 
2863   IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB);
2864 
2865   // Step 3: Rewrite the loop into a countable form, with canonical IV.
2866 
2867   // The new canonical induction variable.
2868   Builder.SetInsertPoint(&LoopHeaderBB->front());
2869   auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2870 
2871   // The induction itself.
2872   Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI());
2873   auto *CIVNext =
2874       Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next",
2875                         /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2876 
2877   // The loop trip count check.
2878   auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount,
2879                                         CurLoop->getName() + ".ivcheck");
2880   auto *NewIVCheck = CIVCheck;
2881   if (InvertedCond) {
2882     NewIVCheck = Builder.CreateNot(CIVCheck);
2883     NewIVCheck->takeName(ValShiftedIsZero);
2884   }
2885 
2886   // The original IV, but rebased to be an offset to the CIV.
2887   auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false,
2888                                      /*HasNSW=*/true); // FIXME: what about NUW?
2889   IVDePHId->takeName(IV);
2890 
2891   // The loop terminator.
2892   Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2893   Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB);
2894   LoopHeaderBB->getTerminator()->eraseFromParent();
2895 
2896   // Populate the IV PHI.
2897   CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2898   CIV->addIncoming(CIVNext, LoopHeaderBB);
2899 
2900   // Step 4: Forget the "non-computable" trip-count SCEV associated with the
2901   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2902 
2903   SE->forgetLoop(CurLoop);
2904 
2905   // Step 5: Try to cleanup the loop's body somewhat.
2906   IV->replaceAllUsesWith(IVDePHId);
2907   IV->eraseFromParent();
2908 
2909   ValShiftedIsZero->replaceAllUsesWith(NewIVCheck);
2910   ValShiftedIsZero->eraseFromParent();
2911 
2912   // Other passes will take care of actually deleting the loop if possible.
2913 
2914   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n");
2915 
2916   ++NumShiftUntilZero;
2917   return MadeChange;
2918 }
2919