1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/BasicAliasAnalysis.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Transforms/Vectorize.h"
33 
34 #define DEBUG_TYPE "vector-combine"
35 #include "llvm/Transforms/Utils/InstructionWorklist.h"
36 
37 using namespace llvm;
38 using namespace llvm::PatternMatch;
39 
40 STATISTIC(NumVecLoad, "Number of vector loads formed");
41 STATISTIC(NumVecCmp, "Number of vector compares formed");
42 STATISTIC(NumVecBO, "Number of vector binops formed");
43 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
44 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
45 STATISTIC(NumScalarBO, "Number of scalar binops formed");
46 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
47 
48 static cl::opt<bool> DisableVectorCombine(
49     "disable-vector-combine", cl::init(false), cl::Hidden,
50     cl::desc("Disable all vector combine transforms"));
51 
52 static cl::opt<bool> DisableBinopExtractShuffle(
53     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
54     cl::desc("Disable binop extract to shuffle transforms"));
55 
56 static cl::opt<unsigned> MaxInstrsToScan(
57     "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
58     cl::desc("Max number of instructions to scan for vector combining."));
59 
60 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
61 
62 namespace {
63 class VectorCombine {
64 public:
VectorCombine(Function & F,const TargetTransformInfo & TTI,const DominatorTree & DT,AAResults & AA,AssumptionCache & AC)65   VectorCombine(Function &F, const TargetTransformInfo &TTI,
66                 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC)
67       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC) {}
68 
69   bool run();
70 
71 private:
72   Function &F;
73   IRBuilder<> Builder;
74   const TargetTransformInfo &TTI;
75   const DominatorTree &DT;
76   AAResults &AA;
77   AssumptionCache &AC;
78   InstructionWorklist Worklist;
79 
80   bool vectorizeLoadInsert(Instruction &I);
81   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
82                                         ExtractElementInst *Ext1,
83                                         unsigned PreferredExtractIndex) const;
84   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
85                              const Instruction &I,
86                              ExtractElementInst *&ConvertToShuffle,
87                              unsigned PreferredExtractIndex);
88   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
89                      Instruction &I);
90   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
91                        Instruction &I);
92   bool foldExtractExtract(Instruction &I);
93   bool foldBitcastShuf(Instruction &I);
94   bool scalarizeBinopOrCmp(Instruction &I);
95   bool foldExtractedCmps(Instruction &I);
96   bool foldSingleElementStore(Instruction &I);
97   bool scalarizeLoadExtract(Instruction &I);
98 
replaceValue(Value & Old,Value & New)99   void replaceValue(Value &Old, Value &New) {
100     Old.replaceAllUsesWith(&New);
101     New.takeName(&Old);
102     if (auto *NewI = dyn_cast<Instruction>(&New)) {
103       Worklist.pushUsersToWorkList(*NewI);
104       Worklist.pushValue(NewI);
105     }
106     Worklist.pushValue(&Old);
107   }
108 
eraseInstruction(Instruction & I)109   void eraseInstruction(Instruction &I) {
110     for (Value *Op : I.operands())
111       Worklist.pushValue(Op);
112     Worklist.remove(&I);
113     I.eraseFromParent();
114   }
115 };
116 } // namespace
117 
vectorizeLoadInsert(Instruction & I)118 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
119   // Match insert into fixed vector of scalar value.
120   // TODO: Handle non-zero insert index.
121   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
122   Value *Scalar;
123   if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
124       !Scalar->hasOneUse())
125     return false;
126 
127   // Optionally match an extract from another vector.
128   Value *X;
129   bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
130   if (!HasExtract)
131     X = Scalar;
132 
133   // Match source value as load of scalar or vector.
134   // Do not vectorize scalar load (widening) if atomic/volatile or under
135   // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
136   // or create data races non-existent in the source.
137   auto *Load = dyn_cast<LoadInst>(X);
138   if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
139       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
140       mustSuppressSpeculation(*Load))
141     return false;
142 
143   const DataLayout &DL = I.getModule()->getDataLayout();
144   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
145   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
146 
147   // If original AS != Load's AS, we can't bitcast the original pointer and have
148   // to use Load's operand instead. Ideally we would want to strip pointer casts
149   // without changing AS, but there's no API to do that ATM.
150   unsigned AS = Load->getPointerAddressSpace();
151   if (AS != SrcPtr->getType()->getPointerAddressSpace())
152     SrcPtr = Load->getPointerOperand();
153 
154   // We are potentially transforming byte-sized (8-bit) memory accesses, so make
155   // sure we have all of our type-based constraints in place for this target.
156   Type *ScalarTy = Scalar->getType();
157   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
158   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
159   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
160       ScalarSize % 8 != 0)
161     return false;
162 
163   // Check safety of replacing the scalar load with a larger vector load.
164   // We use minimal alignment (maximum flexibility) because we only care about
165   // the dereferenceable region. When calculating cost and creating a new op,
166   // we may use a larger value based on alignment attributes.
167   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
168   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
169   unsigned OffsetEltIndex = 0;
170   Align Alignment = Load->getAlign();
171   if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT)) {
172     // It is not safe to load directly from the pointer, but we can still peek
173     // through gep offsets and check if it safe to load from a base address with
174     // updated alignment. If it is, we can shuffle the element(s) into place
175     // after loading.
176     unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType());
177     APInt Offset(OffsetBitWidth, 0);
178     SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
179 
180     // We want to shuffle the result down from a high element of a vector, so
181     // the offset must be positive.
182     if (Offset.isNegative())
183       return false;
184 
185     // The offset must be a multiple of the scalar element to shuffle cleanly
186     // in the element's size.
187     uint64_t ScalarSizeInBytes = ScalarSize / 8;
188     if (Offset.urem(ScalarSizeInBytes) != 0)
189       return false;
190 
191     // If we load MinVecNumElts, will our target element still be loaded?
192     OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
193     if (OffsetEltIndex >= MinVecNumElts)
194       return false;
195 
196     if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &DT))
197       return false;
198 
199     // Update alignment with offset value. Note that the offset could be negated
200     // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
201     // negation does not change the result of the alignment calculation.
202     Alignment = commonAlignment(Alignment, Offset.getZExtValue());
203   }
204 
205   // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
206   // Use the greater of the alignment on the load or its source pointer.
207   Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
208   Type *LoadTy = Load->getType();
209   InstructionCost OldCost =
210       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
211   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
212   OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
213                                           /* Insert */ true, HasExtract);
214 
215   // New pattern: load VecPtr
216   InstructionCost NewCost =
217       TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
218   // Optionally, we are shuffling the loaded vector element(s) into place.
219   // For the mask set everything but element 0 to undef to prevent poison from
220   // propagating from the extra loaded memory. This will also optionally
221   // shrink/grow the vector from the loaded size to the output size.
222   // We assume this operation has no cost in codegen if there was no offset.
223   // Note that we could use freeze to avoid poison problems, but then we might
224   // still need a shuffle to change the vector size.
225   unsigned OutputNumElts = Ty->getNumElements();
226   SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
227   assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
228   Mask[0] = OffsetEltIndex;
229   if (OffsetEltIndex)
230     NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);
231 
232   // We can aggressively convert to the vector form because the backend can
233   // invert this transform if it does not result in a performance win.
234   if (OldCost < NewCost || !NewCost.isValid())
235     return false;
236 
237   // It is safe and potentially profitable to load a vector directly:
238   // inselt undef, load Scalar, 0 --> load VecPtr
239   IRBuilder<> Builder(Load);
240   Value *CastedPtr = Builder.CreateBitCast(SrcPtr, MinVecTy->getPointerTo(AS));
241   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
242   VecLd = Builder.CreateShuffleVector(VecLd, Mask);
243 
244   replaceValue(I, *VecLd);
245   ++NumVecLoad;
246   return true;
247 }
248 
249 /// Determine which, if any, of the inputs should be replaced by a shuffle
250 /// followed by extract from a different index.
getShuffleExtract(ExtractElementInst * Ext0,ExtractElementInst * Ext1,unsigned PreferredExtractIndex=InvalidIndex) const251 ExtractElementInst *VectorCombine::getShuffleExtract(
252     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
253     unsigned PreferredExtractIndex = InvalidIndex) const {
254   assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
255          isa<ConstantInt>(Ext1->getIndexOperand()) &&
256          "Expected constant extract indexes");
257 
258   unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
259   unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
260 
261   // If the extract indexes are identical, no shuffle is needed.
262   if (Index0 == Index1)
263     return nullptr;
264 
265   Type *VecTy = Ext0->getVectorOperand()->getType();
266   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
267   InstructionCost Cost0 =
268       TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
269   InstructionCost Cost1 =
270       TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
271 
272   // If both costs are invalid no shuffle is needed
273   if (!Cost0.isValid() && !Cost1.isValid())
274     return nullptr;
275 
276   // We are extracting from 2 different indexes, so one operand must be shuffled
277   // before performing a vector operation and/or extract. The more expensive
278   // extract will be replaced by a shuffle.
279   if (Cost0 > Cost1)
280     return Ext0;
281   if (Cost1 > Cost0)
282     return Ext1;
283 
284   // If the costs are equal and there is a preferred extract index, shuffle the
285   // opposite operand.
286   if (PreferredExtractIndex == Index0)
287     return Ext1;
288   if (PreferredExtractIndex == Index1)
289     return Ext0;
290 
291   // Otherwise, replace the extract with the higher index.
292   return Index0 > Index1 ? Ext0 : Ext1;
293 }
294 
295 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
296 /// vector operation(s) followed by extract. Return true if the existing
297 /// instructions are cheaper than a vector alternative. Otherwise, return false
298 /// and if one of the extracts should be transformed to a shufflevector, set
299 /// \p ConvertToShuffle to that extract instruction.
isExtractExtractCheap(ExtractElementInst * Ext0,ExtractElementInst * Ext1,const Instruction & I,ExtractElementInst * & ConvertToShuffle,unsigned PreferredExtractIndex)300 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
301                                           ExtractElementInst *Ext1,
302                                           const Instruction &I,
303                                           ExtractElementInst *&ConvertToShuffle,
304                                           unsigned PreferredExtractIndex) {
305   assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
306          isa<ConstantInt>(Ext1->getOperand(1)) &&
307          "Expected constant extract indexes");
308   unsigned Opcode = I.getOpcode();
309   Type *ScalarTy = Ext0->getType();
310   auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
311   InstructionCost ScalarOpCost, VectorOpCost;
312 
313   // Get cost estimates for scalar and vector versions of the operation.
314   bool IsBinOp = Instruction::isBinaryOp(Opcode);
315   if (IsBinOp) {
316     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
317     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
318   } else {
319     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
320            "Expected a compare");
321     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
322     ScalarOpCost = TTI.getCmpSelInstrCost(
323         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
324     VectorOpCost = TTI.getCmpSelInstrCost(
325         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
326   }
327 
328   // Get cost estimates for the extract elements. These costs will factor into
329   // both sequences.
330   unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
331   unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
332 
333   InstructionCost Extract0Cost =
334       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
335   InstructionCost Extract1Cost =
336       TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
337 
338   // A more expensive extract will always be replaced by a splat shuffle.
339   // For example, if Ext0 is more expensive:
340   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
341   // extelt (opcode (splat V0, Ext0), V1), Ext1
342   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
343   //       check the cost of creating a broadcast shuffle and shuffling both
344   //       operands to element 0.
345   InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
346 
347   // Extra uses of the extracts mean that we include those costs in the
348   // vector total because those instructions will not be eliminated.
349   InstructionCost OldCost, NewCost;
350   if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
351     // Handle a special case. If the 2 extracts are identical, adjust the
352     // formulas to account for that. The extra use charge allows for either the
353     // CSE'd pattern or an unoptimized form with identical values:
354     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
355     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
356                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
357     OldCost = CheapExtractCost + ScalarOpCost;
358     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
359   } else {
360     // Handle the general case. Each extract is actually a different value:
361     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
362     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
363     NewCost = VectorOpCost + CheapExtractCost +
364               !Ext0->hasOneUse() * Extract0Cost +
365               !Ext1->hasOneUse() * Extract1Cost;
366   }
367 
368   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
369   if (ConvertToShuffle) {
370     if (IsBinOp && DisableBinopExtractShuffle)
371       return true;
372 
373     // If we are extracting from 2 different indexes, then one operand must be
374     // shuffled before performing the vector operation. The shuffle mask is
375     // undefined except for 1 lane that is being translated to the remaining
376     // extraction lane. Therefore, it is a splat shuffle. Ex:
377     // ShufMask = { undef, undef, 0, undef }
378     // TODO: The cost model has an option for a "broadcast" shuffle
379     //       (splat-from-element-0), but no option for a more general splat.
380     NewCost +=
381         TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
382   }
383 
384   // Aggressively form a vector op if the cost is equal because the transform
385   // may enable further optimization.
386   // Codegen can reverse this transform (scalarize) if it was not profitable.
387   return OldCost < NewCost;
388 }
389 
390 /// Create a shuffle that translates (shifts) 1 element from the input vector
391 /// to a new element location.
createShiftShuffle(Value * Vec,unsigned OldIndex,unsigned NewIndex,IRBuilder<> & Builder)392 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
393                                  unsigned NewIndex, IRBuilder<> &Builder) {
394   // The shuffle mask is undefined except for 1 lane that is being translated
395   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
396   // ShufMask = { 2, undef, undef, undef }
397   auto *VecTy = cast<FixedVectorType>(Vec->getType());
398   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
399   ShufMask[NewIndex] = OldIndex;
400   return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
401 }
402 
403 /// Given an extract element instruction with constant index operand, shuffle
404 /// the source vector (shift the scalar element) to a NewIndex for extraction.
405 /// Return null if the input can be constant folded, so that we are not creating
406 /// unnecessary instructions.
translateExtract(ExtractElementInst * ExtElt,unsigned NewIndex,IRBuilder<> & Builder)407 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
408                                             unsigned NewIndex,
409                                             IRBuilder<> &Builder) {
410   // If the extract can be constant-folded, this code is unsimplified. Defer
411   // to other passes to handle that.
412   Value *X = ExtElt->getVectorOperand();
413   Value *C = ExtElt->getIndexOperand();
414   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
415   if (isa<Constant>(X))
416     return nullptr;
417 
418   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
419                                    NewIndex, Builder);
420   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
421 }
422 
423 /// Try to reduce extract element costs by converting scalar compares to vector
424 /// compares followed by extract.
425 /// cmp (ext0 V0, C), (ext1 V1, C)
foldExtExtCmp(ExtractElementInst * Ext0,ExtractElementInst * Ext1,Instruction & I)426 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
427                                   ExtractElementInst *Ext1, Instruction &I) {
428   assert(isa<CmpInst>(&I) && "Expected a compare");
429   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
430              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
431          "Expected matching constant extract indexes");
432 
433   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
434   ++NumVecCmp;
435   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
436   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
437   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
438   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
439   replaceValue(I, *NewExt);
440 }
441 
442 /// Try to reduce extract element costs by converting scalar binops to vector
443 /// binops followed by extract.
444 /// bo (ext0 V0, C), (ext1 V1, C)
foldExtExtBinop(ExtractElementInst * Ext0,ExtractElementInst * Ext1,Instruction & I)445 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
446                                     ExtractElementInst *Ext1, Instruction &I) {
447   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
448   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
449              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
450          "Expected matching constant extract indexes");
451 
452   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
453   ++NumVecBO;
454   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
455   Value *VecBO =
456       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
457 
458   // All IR flags are safe to back-propagate because any potential poison
459   // created in unused vector elements is discarded by the extract.
460   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
461     VecBOInst->copyIRFlags(&I);
462 
463   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
464   replaceValue(I, *NewExt);
465 }
466 
467 /// Match an instruction with extracted vector operands.
foldExtractExtract(Instruction & I)468 bool VectorCombine::foldExtractExtract(Instruction &I) {
469   // It is not safe to transform things like div, urem, etc. because we may
470   // create undefined behavior when executing those on unknown vector elements.
471   if (!isSafeToSpeculativelyExecute(&I))
472     return false;
473 
474   Instruction *I0, *I1;
475   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
476   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
477       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
478     return false;
479 
480   Value *V0, *V1;
481   uint64_t C0, C1;
482   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
483       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
484       V0->getType() != V1->getType())
485     return false;
486 
487   // If the scalar value 'I' is going to be re-inserted into a vector, then try
488   // to create an extract to that same element. The extract/insert can be
489   // reduced to a "select shuffle".
490   // TODO: If we add a larger pattern match that starts from an insert, this
491   //       probably becomes unnecessary.
492   auto *Ext0 = cast<ExtractElementInst>(I0);
493   auto *Ext1 = cast<ExtractElementInst>(I1);
494   uint64_t InsertIndex = InvalidIndex;
495   if (I.hasOneUse())
496     match(I.user_back(),
497           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
498 
499   ExtractElementInst *ExtractToChange;
500   if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
501     return false;
502 
503   if (ExtractToChange) {
504     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
505     ExtractElementInst *NewExtract =
506         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
507     if (!NewExtract)
508       return false;
509     if (ExtractToChange == Ext0)
510       Ext0 = NewExtract;
511     else
512       Ext1 = NewExtract;
513   }
514 
515   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
516     foldExtExtCmp(Ext0, Ext1, I);
517   else
518     foldExtExtBinop(Ext0, Ext1, I);
519 
520   Worklist.push(Ext0);
521   Worklist.push(Ext1);
522   return true;
523 }
524 
525 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
526 /// destination type followed by shuffle. This can enable further transforms by
527 /// moving bitcasts or shuffles together.
foldBitcastShuf(Instruction & I)528 bool VectorCombine::foldBitcastShuf(Instruction &I) {
529   Value *V;
530   ArrayRef<int> Mask;
531   if (!match(&I, m_BitCast(
532                      m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
533     return false;
534 
535   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
536   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
537   // mask for scalable type is a splat or not.
538   // 2) Disallow non-vector casts and length-changing shuffles.
539   // TODO: We could allow any shuffle.
540   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
541   auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
542   if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
543     return false;
544 
545   unsigned DestNumElts = DestTy->getNumElements();
546   unsigned SrcNumElts = SrcTy->getNumElements();
547   SmallVector<int, 16> NewMask;
548   if (SrcNumElts <= DestNumElts) {
549     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
550     // always be expanded to the equivalent form choosing narrower elements.
551     assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
552     unsigned ScaleFactor = DestNumElts / SrcNumElts;
553     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
554   } else {
555     // The bitcast is from narrow elements to wide elements. The shuffle mask
556     // must choose consecutive elements to allow casting first.
557     assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
558     unsigned ScaleFactor = SrcNumElts / DestNumElts;
559     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
560       return false;
561   }
562 
563   // The new shuffle must not cost more than the old shuffle. The bitcast is
564   // moved ahead of the shuffle, so assume that it has the same cost as before.
565   InstructionCost DestCost = TTI.getShuffleCost(
566       TargetTransformInfo::SK_PermuteSingleSrc, DestTy, NewMask);
567   InstructionCost SrcCost =
568       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask);
569   if (DestCost > SrcCost || !DestCost.isValid())
570     return false;
571 
572   // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
573   ++NumShufOfBitcast;
574   Value *CastV = Builder.CreateBitCast(V, DestTy);
575   Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
576   replaceValue(I, *Shuf);
577   return true;
578 }
579 
580 /// Match a vector binop or compare instruction with at least one inserted
581 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
scalarizeBinopOrCmp(Instruction & I)582 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
583   CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
584   Value *Ins0, *Ins1;
585   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
586       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
587     return false;
588 
589   // Do not convert the vector condition of a vector select into a scalar
590   // condition. That may cause problems for codegen because of differences in
591   // boolean formats and register-file transfers.
592   // TODO: Can we account for that in the cost model?
593   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
594   if (IsCmp)
595     for (User *U : I.users())
596       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
597         return false;
598 
599   // Match against one or both scalar values being inserted into constant
600   // vectors:
601   // vec_op VecC0, (inselt VecC1, V1, Index)
602   // vec_op (inselt VecC0, V0, Index), VecC1
603   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
604   // TODO: Deal with mismatched index constants and variable indexes?
605   Constant *VecC0 = nullptr, *VecC1 = nullptr;
606   Value *V0 = nullptr, *V1 = nullptr;
607   uint64_t Index0 = 0, Index1 = 0;
608   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
609                                m_ConstantInt(Index0))) &&
610       !match(Ins0, m_Constant(VecC0)))
611     return false;
612   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
613                                m_ConstantInt(Index1))) &&
614       !match(Ins1, m_Constant(VecC1)))
615     return false;
616 
617   bool IsConst0 = !V0;
618   bool IsConst1 = !V1;
619   if (IsConst0 && IsConst1)
620     return false;
621   if (!IsConst0 && !IsConst1 && Index0 != Index1)
622     return false;
623 
624   // Bail for single insertion if it is a load.
625   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
626   auto *I0 = dyn_cast_or_null<Instruction>(V0);
627   auto *I1 = dyn_cast_or_null<Instruction>(V1);
628   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
629       (IsConst1 && I0 && I0->mayReadFromMemory()))
630     return false;
631 
632   uint64_t Index = IsConst0 ? Index1 : Index0;
633   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
634   Type *VecTy = I.getType();
635   assert(VecTy->isVectorTy() &&
636          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
637          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
638           ScalarTy->isPointerTy()) &&
639          "Unexpected types for insert element into binop or cmp");
640 
641   unsigned Opcode = I.getOpcode();
642   InstructionCost ScalarOpCost, VectorOpCost;
643   if (IsCmp) {
644     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
645     ScalarOpCost = TTI.getCmpSelInstrCost(
646         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
647     VectorOpCost = TTI.getCmpSelInstrCost(
648         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
649   } else {
650     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
651     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
652   }
653 
654   // Get cost estimate for the insert element. This cost will factor into
655   // both sequences.
656   InstructionCost InsertCost =
657       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
658   InstructionCost OldCost =
659       (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
660   InstructionCost NewCost = ScalarOpCost + InsertCost +
661                             (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
662                             (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
663 
664   // We want to scalarize unless the vector variant actually has lower cost.
665   if (OldCost < NewCost || !NewCost.isValid())
666     return false;
667 
668   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
669   // inselt NewVecC, (scalar_op V0, V1), Index
670   if (IsCmp)
671     ++NumScalarCmp;
672   else
673     ++NumScalarBO;
674 
675   // For constant cases, extract the scalar element, this should constant fold.
676   if (IsConst0)
677     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
678   if (IsConst1)
679     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
680 
681   Value *Scalar =
682       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
683             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
684 
685   Scalar->setName(I.getName() + ".scalar");
686 
687   // All IR flags are safe to back-propagate. There is no potential for extra
688   // poison to be created by the scalar instruction.
689   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
690     ScalarInst->copyIRFlags(&I);
691 
692   // Fold the vector constants in the original vectors into a new base vector.
693   Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
694                             : ConstantExpr::get(Opcode, VecC0, VecC1);
695   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
696   replaceValue(I, *Insert);
697   return true;
698 }
699 
700 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
701 /// a vector into vector operations followed by extract. Note: The SLP pass
702 /// may miss this pattern because of implementation problems.
foldExtractedCmps(Instruction & I)703 bool VectorCombine::foldExtractedCmps(Instruction &I) {
704   // We are looking for a scalar binop of booleans.
705   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
706   if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
707     return false;
708 
709   // The compare predicates should match, and each compare should have a
710   // constant operand.
711   // TODO: Relax the one-use constraints.
712   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
713   Instruction *I0, *I1;
714   Constant *C0, *C1;
715   CmpInst::Predicate P0, P1;
716   if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
717       !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
718       P0 != P1)
719     return false;
720 
721   // The compare operands must be extracts of the same vector with constant
722   // extract indexes.
723   // TODO: Relax the one-use constraints.
724   Value *X;
725   uint64_t Index0, Index1;
726   if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
727       !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
728     return false;
729 
730   auto *Ext0 = cast<ExtractElementInst>(I0);
731   auto *Ext1 = cast<ExtractElementInst>(I1);
732   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
733   if (!ConvertToShuf)
734     return false;
735 
736   // The original scalar pattern is:
737   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
738   CmpInst::Predicate Pred = P0;
739   unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
740                                                     : Instruction::ICmp;
741   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
742   if (!VecTy)
743     return false;
744 
745   InstructionCost OldCost =
746       TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
747   OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
748   OldCost +=
749       TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(),
750                              CmpInst::makeCmpResultType(I0->getType()), Pred) *
751       2;
752   OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
753 
754   // The proposed vector pattern is:
755   // vcmp = cmp Pred X, VecC
756   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
757   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
758   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
759   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
760   InstructionCost NewCost = TTI.getCmpSelInstrCost(
761       CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred);
762   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
763   ShufMask[CheapIndex] = ExpensiveIndex;
764   NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
765                                 ShufMask);
766   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
767   NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
768 
769   // Aggressively form vector ops if the cost is equal because the transform
770   // may enable further optimization.
771   // Codegen can reverse this transform (scalarize) if it was not profitable.
772   if (OldCost < NewCost || !NewCost.isValid())
773     return false;
774 
775   // Create a vector constant from the 2 scalar constants.
776   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
777                                    UndefValue::get(VecTy->getElementType()));
778   CmpC[Index0] = C0;
779   CmpC[Index1] = C1;
780   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
781 
782   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
783   Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
784                                         VCmp, Shuf);
785   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
786   replaceValue(I, *NewExt);
787   ++NumVecCmpBO;
788   return true;
789 }
790 
791 // Check if memory loc modified between two instrs in the same BB
isMemModifiedBetween(BasicBlock::iterator Begin,BasicBlock::iterator End,const MemoryLocation & Loc,AAResults & AA)792 static bool isMemModifiedBetween(BasicBlock::iterator Begin,
793                                  BasicBlock::iterator End,
794                                  const MemoryLocation &Loc, AAResults &AA) {
795   unsigned NumScanned = 0;
796   return std::any_of(Begin, End, [&](const Instruction &Instr) {
797     return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
798            ++NumScanned > MaxInstrsToScan;
799   });
800 }
801 
802 /// Helper class to indicate whether a vector index can be safely scalarized and
803 /// if a freeze needs to be inserted.
804 class ScalarizationResult {
805   enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
806 
807   StatusTy Status;
808   Value *ToFreeze;
809 
ScalarizationResult(StatusTy Status,Value * ToFreeze=nullptr)810   ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
811       : Status(Status), ToFreeze(ToFreeze) {}
812 
813 public:
814   ScalarizationResult(const ScalarizationResult &Other) = default;
~ScalarizationResult()815   ~ScalarizationResult() {
816     assert(!ToFreeze && "freeze() not called with ToFreeze being set");
817   }
818 
unsafe()819   static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
safe()820   static ScalarizationResult safe() { return {StatusTy::Safe}; }
safeWithFreeze(Value * ToFreeze)821   static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
822     return {StatusTy::SafeWithFreeze, ToFreeze};
823   }
824 
825   /// Returns true if the index can be scalarize without requiring a freeze.
isSafe() const826   bool isSafe() const { return Status == StatusTy::Safe; }
827   /// Returns true if the index cannot be scalarized.
isUnsafe() const828   bool isUnsafe() const { return Status == StatusTy::Unsafe; }
829   /// Returns true if the index can be scalarize, but requires inserting a
830   /// freeze.
isSafeWithFreeze() const831   bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
832 
833   /// Reset the state of Unsafe and clear ToFreze if set.
discard()834   void discard() {
835     ToFreeze = nullptr;
836     Status = StatusTy::Unsafe;
837   }
838 
839   /// Freeze the ToFreeze and update the use in \p User to use it.
freeze(IRBuilder<> & Builder,Instruction & UserI)840   void freeze(IRBuilder<> &Builder, Instruction &UserI) {
841     assert(isSafeWithFreeze() &&
842            "should only be used when freezing is required");
843     assert(is_contained(ToFreeze->users(), &UserI) &&
844            "UserI must be a user of ToFreeze");
845     IRBuilder<>::InsertPointGuard Guard(Builder);
846     Builder.SetInsertPoint(cast<Instruction>(&UserI));
847     Value *Frozen =
848         Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
849     for (Use &U : make_early_inc_range((UserI.operands())))
850       if (U.get() == ToFreeze)
851         U.set(Frozen);
852 
853     ToFreeze = nullptr;
854   }
855 };
856 
857 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p
858 /// Idx. \p Idx must access a valid vector element.
canScalarizeAccess(FixedVectorType * VecTy,Value * Idx,Instruction * CtxI,AssumptionCache & AC,const DominatorTree & DT)859 static ScalarizationResult canScalarizeAccess(FixedVectorType *VecTy,
860                                               Value *Idx, Instruction *CtxI,
861                                               AssumptionCache &AC,
862                                               const DominatorTree &DT) {
863   if (auto *C = dyn_cast<ConstantInt>(Idx)) {
864     if (C->getValue().ult(VecTy->getNumElements()))
865       return ScalarizationResult::safe();
866     return ScalarizationResult::unsafe();
867   }
868 
869   unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
870   APInt Zero(IntWidth, 0);
871   APInt MaxElts(IntWidth, VecTy->getNumElements());
872   ConstantRange ValidIndices(Zero, MaxElts);
873   ConstantRange IdxRange(IntWidth, true);
874 
875   if (isGuaranteedNotToBePoison(Idx, &AC)) {
876     if (ValidIndices.contains(computeConstantRange(Idx, true, &AC, CtxI, &DT)))
877       return ScalarizationResult::safe();
878     return ScalarizationResult::unsafe();
879   }
880 
881   // If the index may be poison, check if we can insert a freeze before the
882   // range of the index is restricted.
883   Value *IdxBase;
884   ConstantInt *CI;
885   if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
886     IdxRange = IdxRange.binaryAnd(CI->getValue());
887   } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
888     IdxRange = IdxRange.urem(CI->getValue());
889   }
890 
891   if (ValidIndices.contains(IdxRange))
892     return ScalarizationResult::safeWithFreeze(IdxBase);
893   return ScalarizationResult::unsafe();
894 }
895 
896 /// The memory operation on a vector of \p ScalarType had alignment of
897 /// \p VectorAlignment. Compute the maximal, but conservatively correct,
898 /// alignment that will be valid for the memory operation on a single scalar
899 /// element of the same type with index \p Idx.
computeAlignmentAfterScalarization(Align VectorAlignment,Type * ScalarType,Value * Idx,const DataLayout & DL)900 static Align computeAlignmentAfterScalarization(Align VectorAlignment,
901                                                 Type *ScalarType, Value *Idx,
902                                                 const DataLayout &DL) {
903   if (auto *C = dyn_cast<ConstantInt>(Idx))
904     return commonAlignment(VectorAlignment,
905                            C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
906   return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
907 }
908 
909 // Combine patterns like:
910 //   %0 = load <4 x i32>, <4 x i32>* %a
911 //   %1 = insertelement <4 x i32> %0, i32 %b, i32 1
912 //   store <4 x i32> %1, <4 x i32>* %a
913 // to:
914 //   %0 = bitcast <4 x i32>* %a to i32*
915 //   %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
916 //   store i32 %b, i32* %1
foldSingleElementStore(Instruction & I)917 bool VectorCombine::foldSingleElementStore(Instruction &I) {
918   StoreInst *SI = dyn_cast<StoreInst>(&I);
919   if (!SI || !SI->isSimple() ||
920       !isa<FixedVectorType>(SI->getValueOperand()->getType()))
921     return false;
922 
923   // TODO: Combine more complicated patterns (multiple insert) by referencing
924   // TargetTransformInfo.
925   Instruction *Source;
926   Value *NewElement;
927   Value *Idx;
928   if (!match(SI->getValueOperand(),
929              m_InsertElt(m_Instruction(Source), m_Value(NewElement),
930                          m_Value(Idx))))
931     return false;
932 
933   if (auto *Load = dyn_cast<LoadInst>(Source)) {
934     auto VecTy = cast<FixedVectorType>(SI->getValueOperand()->getType());
935     const DataLayout &DL = I.getModule()->getDataLayout();
936     Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
937     // Don't optimize for atomic/volatile load or store. Ensure memory is not
938     // modified between, vector type matches store size, and index is inbounds.
939     if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
940         !DL.typeSizeEqualsStoreSize(Load->getType()) ||
941         SrcAddr != SI->getPointerOperand()->stripPointerCasts())
942       return false;
943 
944     auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
945     if (ScalarizableIdx.isUnsafe() ||
946         isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
947                              MemoryLocation::get(SI), AA))
948       return false;
949 
950     if (ScalarizableIdx.isSafeWithFreeze())
951       ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
952     Value *GEP = Builder.CreateInBoundsGEP(
953         SI->getValueOperand()->getType(), SI->getPointerOperand(),
954         {ConstantInt::get(Idx->getType(), 0), Idx});
955     StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
956     NSI->copyMetadata(*SI);
957     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
958         std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
959         DL);
960     NSI->setAlignment(ScalarOpAlignment);
961     replaceValue(I, *NSI);
962     eraseInstruction(I);
963     return true;
964   }
965 
966   return false;
967 }
968 
969 /// Try to scalarize vector loads feeding extractelement instructions.
scalarizeLoadExtract(Instruction & I)970 bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
971   Value *Ptr;
972   if (!match(&I, m_Load(m_Value(Ptr))))
973     return false;
974 
975   auto *LI = cast<LoadInst>(&I);
976   const DataLayout &DL = I.getModule()->getDataLayout();
977   if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(LI->getType()))
978     return false;
979 
980   auto *FixedVT = dyn_cast<FixedVectorType>(LI->getType());
981   if (!FixedVT)
982     return false;
983 
984   InstructionCost OriginalCost = TTI.getMemoryOpCost(
985       Instruction::Load, LI->getType(), Align(LI->getAlignment()),
986       LI->getPointerAddressSpace());
987   InstructionCost ScalarizedCost = 0;
988 
989   Instruction *LastCheckedInst = LI;
990   unsigned NumInstChecked = 0;
991   // Check if all users of the load are extracts with no memory modifications
992   // between the load and the extract. Compute the cost of both the original
993   // code and the scalarized version.
994   for (User *U : LI->users()) {
995     auto *UI = dyn_cast<ExtractElementInst>(U);
996     if (!UI || UI->getParent() != LI->getParent())
997       return false;
998 
999     if (!isGuaranteedNotToBePoison(UI->getOperand(1), &AC, LI, &DT))
1000       return false;
1001 
1002     // Check if any instruction between the load and the extract may modify
1003     // memory.
1004     if (LastCheckedInst->comesBefore(UI)) {
1005       for (Instruction &I :
1006            make_range(std::next(LI->getIterator()), UI->getIterator())) {
1007         // Bail out if we reached the check limit or the instruction may write
1008         // to memory.
1009         if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
1010           return false;
1011         NumInstChecked++;
1012       }
1013     }
1014 
1015     if (!LastCheckedInst)
1016       LastCheckedInst = UI;
1017     else if (LastCheckedInst->comesBefore(UI))
1018       LastCheckedInst = UI;
1019 
1020     auto ScalarIdx = canScalarizeAccess(FixedVT, UI->getOperand(1), &I, AC, DT);
1021     if (!ScalarIdx.isSafe()) {
1022       // TODO: Freeze index if it is safe to do so.
1023       ScalarIdx.discard();
1024       return false;
1025     }
1026 
1027     auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
1028     OriginalCost +=
1029         TTI.getVectorInstrCost(Instruction::ExtractElement, LI->getType(),
1030                                Index ? Index->getZExtValue() : -1);
1031     ScalarizedCost +=
1032         TTI.getMemoryOpCost(Instruction::Load, FixedVT->getElementType(),
1033                             Align(1), LI->getPointerAddressSpace());
1034     ScalarizedCost += TTI.getAddressComputationCost(FixedVT->getElementType());
1035   }
1036 
1037   if (ScalarizedCost >= OriginalCost)
1038     return false;
1039 
1040   // Replace extracts with narrow scalar loads.
1041   for (User *U : LI->users()) {
1042     auto *EI = cast<ExtractElementInst>(U);
1043     Builder.SetInsertPoint(EI);
1044 
1045     Value *Idx = EI->getOperand(1);
1046     Value *GEP =
1047         Builder.CreateInBoundsGEP(FixedVT, Ptr, {Builder.getInt32(0), Idx});
1048     auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
1049         FixedVT->getElementType(), GEP, EI->getName() + ".scalar"));
1050 
1051     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1052         LI->getAlign(), FixedVT->getElementType(), Idx, DL);
1053     NewLoad->setAlignment(ScalarOpAlignment);
1054 
1055     replaceValue(*EI, *NewLoad);
1056   }
1057 
1058   return true;
1059 }
1060 
1061 /// This is the entry point for all transforms. Pass manager differences are
1062 /// handled in the callers of this function.
run()1063 bool VectorCombine::run() {
1064   if (DisableVectorCombine)
1065     return false;
1066 
1067   // Don't attempt vectorization if the target does not support vectors.
1068   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
1069     return false;
1070 
1071   bool MadeChange = false;
1072   auto FoldInst = [this, &MadeChange](Instruction &I) {
1073     Builder.SetInsertPoint(&I);
1074     MadeChange |= vectorizeLoadInsert(I);
1075     MadeChange |= foldExtractExtract(I);
1076     MadeChange |= foldBitcastShuf(I);
1077     MadeChange |= scalarizeBinopOrCmp(I);
1078     MadeChange |= foldExtractedCmps(I);
1079     MadeChange |= scalarizeLoadExtract(I);
1080     MadeChange |= foldSingleElementStore(I);
1081   };
1082   for (BasicBlock &BB : F) {
1083     // Ignore unreachable basic blocks.
1084     if (!DT.isReachableFromEntry(&BB))
1085       continue;
1086     // Use early increment range so that we can erase instructions in loop.
1087     for (Instruction &I : make_early_inc_range(BB)) {
1088       if (isa<DbgInfoIntrinsic>(I))
1089         continue;
1090       FoldInst(I);
1091     }
1092   }
1093 
1094   while (!Worklist.isEmpty()) {
1095     Instruction *I = Worklist.removeOne();
1096     if (!I)
1097       continue;
1098 
1099     if (isInstructionTriviallyDead(I)) {
1100       eraseInstruction(*I);
1101       continue;
1102     }
1103 
1104     FoldInst(*I);
1105   }
1106 
1107   return MadeChange;
1108 }
1109 
1110 // Pass manager boilerplate below here.
1111 
1112 namespace {
1113 class VectorCombineLegacyPass : public FunctionPass {
1114 public:
1115   static char ID;
VectorCombineLegacyPass()1116   VectorCombineLegacyPass() : FunctionPass(ID) {
1117     initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
1118   }
1119 
getAnalysisUsage(AnalysisUsage & AU) const1120   void getAnalysisUsage(AnalysisUsage &AU) const override {
1121     AU.addRequired<AssumptionCacheTracker>();
1122     AU.addRequired<DominatorTreeWrapperPass>();
1123     AU.addRequired<TargetTransformInfoWrapperPass>();
1124     AU.addRequired<AAResultsWrapperPass>();
1125     AU.setPreservesCFG();
1126     AU.addPreserved<DominatorTreeWrapperPass>();
1127     AU.addPreserved<GlobalsAAWrapperPass>();
1128     AU.addPreserved<AAResultsWrapperPass>();
1129     AU.addPreserved<BasicAAWrapperPass>();
1130     FunctionPass::getAnalysisUsage(AU);
1131   }
1132 
runOnFunction(Function & F)1133   bool runOnFunction(Function &F) override {
1134     if (skipFunction(F))
1135       return false;
1136     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1137     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1138     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1139     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1140     VectorCombine Combiner(F, TTI, DT, AA, AC);
1141     return Combiner.run();
1142   }
1143 };
1144 } // namespace
1145 
1146 char VectorCombineLegacyPass::ID = 0;
1147 INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
1148                       "Optimize scalar/vector ops", false,
1149                       false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1150 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1151 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1152 INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
1153                     "Optimize scalar/vector ops", false, false)
1154 Pass *llvm::createVectorCombinePass() {
1155   return new VectorCombineLegacyPass();
1156 }
1157 
run(Function & F,FunctionAnalysisManager & FAM)1158 PreservedAnalyses VectorCombinePass::run(Function &F,
1159                                          FunctionAnalysisManager &FAM) {
1160   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1161   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
1162   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
1163   AAResults &AA = FAM.getResult<AAManager>(F);
1164   VectorCombine Combiner(F, TTI, DT, AA, AC);
1165   if (!Combiner.run())
1166     return PreservedAnalyses::all();
1167   PreservedAnalyses PA;
1168   PA.preserveSet<CFGAnalyses>();
1169   return PA;
1170 }
1171