1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "mlir/Analysis/Presburger/Simplex.h"
10 #include "mlir/Analysis/Presburger/Matrix.h"
11 #include "mlir/Support/MathExtras.h"
12 #include "llvm/ADT/Optional.h"
13
14 namespace mlir {
15 using Direction = Simplex::Direction;
16
17 const int nullIndex = std::numeric_limits<int>::max();
18
19 /// Construct a Simplex object with `nVar` variables.
Simplex(unsigned nVar)20 Simplex::Simplex(unsigned nVar)
21 : nRow(0), nCol(2), nRedundant(0), tableau(0, 2 + nVar), empty(false) {
22 colUnknown.push_back(nullIndex);
23 colUnknown.push_back(nullIndex);
24 for (unsigned i = 0; i < nVar; ++i) {
25 var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol);
26 colUnknown.push_back(i);
27 nCol++;
28 }
29 }
30
Simplex(const FlatAffineConstraints & constraints)31 Simplex::Simplex(const FlatAffineConstraints &constraints)
32 : Simplex(constraints.getNumIds()) {
33 for (unsigned i = 0, numIneqs = constraints.getNumInequalities();
34 i < numIneqs; ++i)
35 addInequality(constraints.getInequality(i));
36 for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i)
37 addEquality(constraints.getEquality(i));
38 }
39
unknownFromIndex(int index) const40 const Simplex::Unknown &Simplex::unknownFromIndex(int index) const {
41 assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
42 return index >= 0 ? var[index] : con[~index];
43 }
44
unknownFromColumn(unsigned col) const45 const Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) const {
46 assert(col < nCol && "Invalid column");
47 return unknownFromIndex(colUnknown[col]);
48 }
49
unknownFromRow(unsigned row) const50 const Simplex::Unknown &Simplex::unknownFromRow(unsigned row) const {
51 assert(row < nRow && "Invalid row");
52 return unknownFromIndex(rowUnknown[row]);
53 }
54
unknownFromIndex(int index)55 Simplex::Unknown &Simplex::unknownFromIndex(int index) {
56 assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
57 return index >= 0 ? var[index] : con[~index];
58 }
59
unknownFromColumn(unsigned col)60 Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) {
61 assert(col < nCol && "Invalid column");
62 return unknownFromIndex(colUnknown[col]);
63 }
64
unknownFromRow(unsigned row)65 Simplex::Unknown &Simplex::unknownFromRow(unsigned row) {
66 assert(row < nRow && "Invalid row");
67 return unknownFromIndex(rowUnknown[row]);
68 }
69
70 /// Add a new row to the tableau corresponding to the given constant term and
71 /// list of coefficients. The coefficients are specified as a vector of
72 /// (variable index, coefficient) pairs.
addRow(ArrayRef<int64_t> coeffs)73 unsigned Simplex::addRow(ArrayRef<int64_t> coeffs) {
74 assert(coeffs.size() == 1 + var.size() &&
75 "Incorrect number of coefficients!");
76
77 ++nRow;
78 // If the tableau is not big enough to accomodate the extra row, we extend it.
79 if (nRow >= tableau.getNumRows())
80 tableau.resizeVertically(nRow);
81 rowUnknown.push_back(~con.size());
82 con.emplace_back(Orientation::Row, false, nRow - 1);
83
84 tableau(nRow - 1, 0) = 1;
85 tableau(nRow - 1, 1) = coeffs.back();
86 for (unsigned col = 2; col < nCol; ++col)
87 tableau(nRow - 1, col) = 0;
88
89 // Process each given variable coefficient.
90 for (unsigned i = 0; i < var.size(); ++i) {
91 unsigned pos = var[i].pos;
92 if (coeffs[i] == 0)
93 continue;
94
95 if (var[i].orientation == Orientation::Column) {
96 // If a variable is in column position at column col, then we just add the
97 // coefficient for that variable (scaled by the common row denominator) to
98 // the corresponding entry in the new row.
99 tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0);
100 continue;
101 }
102
103 // If the variable is in row position, we need to add that row to the new
104 // row, scaled by the coefficient for the variable, accounting for the two
105 // rows potentially having different denominators. The new denominator is
106 // the lcm of the two.
107 int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0));
108 int64_t nRowCoeff = lcm / tableau(nRow - 1, 0);
109 int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
110 tableau(nRow - 1, 0) = lcm;
111 for (unsigned col = 1; col < nCol; ++col)
112 tableau(nRow - 1, col) =
113 nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col);
114 }
115
116 normalizeRow(nRow - 1);
117 // Push to undo log along with the index of the new constraint.
118 undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
119 return con.size() - 1;
120 }
121
122 /// Normalize the row by removing factors that are common between the
123 /// denominator and all the numerator coefficients.
normalizeRow(unsigned row)124 void Simplex::normalizeRow(unsigned row) {
125 int64_t gcd = 0;
126 for (unsigned col = 0; col < nCol; ++col) {
127 if (gcd == 1)
128 break;
129 gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col)));
130 }
131 for (unsigned col = 0; col < nCol; ++col)
132 tableau(row, col) /= gcd;
133 }
134
135 namespace {
signMatchesDirection(int64_t elem,Direction direction)136 bool signMatchesDirection(int64_t elem, Direction direction) {
137 assert(elem != 0 && "elem should not be 0");
138 return direction == Direction::Up ? elem > 0 : elem < 0;
139 }
140
flippedDirection(Direction direction)141 Direction flippedDirection(Direction direction) {
142 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
143 }
144 } // anonymous namespace
145
146 /// Find a pivot to change the sample value of the row in the specified
147 /// direction. The returned pivot row will involve `row` if and only if the
148 /// unknown is unbounded in the specified direction.
149 ///
150 /// To increase (resp. decrease) the value of a row, we need to find a live
151 /// column with a non-zero coefficient. If the coefficient is positive, we need
152 /// to increase (decrease) the value of the column, and if the coefficient is
153 /// negative, we need to decrease (increase) the value of the column. Also,
154 /// we cannot decrease the sample value of restricted columns.
155 ///
156 /// If multiple columns are valid, we break ties by considering a lexicographic
157 /// ordering where we prefer unknowns with lower index.
findPivot(int row,Direction direction) const158 Optional<Simplex::Pivot> Simplex::findPivot(int row,
159 Direction direction) const {
160 Optional<unsigned> col;
161 for (unsigned j = 2; j < nCol; ++j) {
162 int64_t elem = tableau(row, j);
163 if (elem == 0)
164 continue;
165
166 if (unknownFromColumn(j).restricted &&
167 !signMatchesDirection(elem, direction))
168 continue;
169 if (!col || colUnknown[j] < colUnknown[*col])
170 col = j;
171 }
172
173 if (!col)
174 return {};
175
176 Direction newDirection =
177 tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
178 Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
179 return Pivot{maybePivotRow.getValueOr(row), *col};
180 }
181
182 /// Swap the associated unknowns for the row and the column.
183 ///
184 /// First we swap the index associated with the row and column. Then we update
185 /// the unknowns to reflect their new position and orientation.
swapRowWithCol(unsigned row,unsigned col)186 void Simplex::swapRowWithCol(unsigned row, unsigned col) {
187 std::swap(rowUnknown[row], colUnknown[col]);
188 Unknown &uCol = unknownFromColumn(col);
189 Unknown &uRow = unknownFromRow(row);
190 uCol.orientation = Orientation::Column;
191 uRow.orientation = Orientation::Row;
192 uCol.pos = col;
193 uRow.pos = row;
194 }
195
pivot(Pivot pair)196 void Simplex::pivot(Pivot pair) { pivot(pair.row, pair.column); }
197
198 /// Pivot pivotRow and pivotCol.
199 ///
200 /// Let R be the pivot row unknown and let C be the pivot col unknown.
201 /// Since initially R = a*C + sum b_i * X_i
202 /// (where the sum is over the other column's unknowns, x_i)
203 /// C = (R - (sum b_i * X_i))/a
204 ///
205 /// Let u be some other row unknown.
206 /// u = c*C + sum d_i * X_i
207 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
208 ///
209 /// This results in the following transform:
210 /// pivot col other col pivot col other col
211 /// pivot row a b -> pivot row 1/a -b/a
212 /// other row c d other row c/a d - bc/a
213 ///
214 /// Taking into account the common denominators p and q:
215 ///
216 /// pivot col other col pivot col other col
217 /// pivot row a/p b/p -> pivot row p/a -b/a
218 /// other row c/q d/q other row cp/aq (da - bc)/aq
219 ///
220 /// The pivot row transform is accomplished be swapping a with the pivot row's
221 /// common denominator and negating the pivot row except for the pivot column
222 /// element.
pivot(unsigned pivotRow,unsigned pivotCol)223 void Simplex::pivot(unsigned pivotRow, unsigned pivotCol) {
224 assert(pivotCol >= 2 && "Refusing to pivot invalid column");
225
226 swapRowWithCol(pivotRow, pivotCol);
227 std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
228 // We need to negate the whole pivot row except for the pivot column.
229 if (tableau(pivotRow, 0) < 0) {
230 // If the denominator is negative, we negate the row by simply negating the
231 // denominator.
232 tableau(pivotRow, 0) = -tableau(pivotRow, 0);
233 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
234 } else {
235 for (unsigned col = 1; col < nCol; ++col) {
236 if (col == pivotCol)
237 continue;
238 tableau(pivotRow, col) = -tableau(pivotRow, col);
239 }
240 }
241 normalizeRow(pivotRow);
242
243 for (unsigned row = nRedundant; row < nRow; ++row) {
244 if (row == pivotRow)
245 continue;
246 if (tableau(row, pivotCol) == 0) // Nothing to do.
247 continue;
248 tableau(row, 0) *= tableau(pivotRow, 0);
249 for (unsigned j = 1; j < nCol; ++j) {
250 if (j == pivotCol)
251 continue;
252 // Add rather than subtract because the pivot row has been negated.
253 tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) +
254 tableau(row, pivotCol) * tableau(pivotRow, j);
255 }
256 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
257 normalizeRow(row);
258 }
259 }
260
261 /// Perform pivots until the unknown has a non-negative sample value or until
262 /// no more upward pivots can be performed. Return the sign of the final sample
263 /// value.
restoreRow(Unknown & u)264 LogicalResult Simplex::restoreRow(Unknown &u) {
265 assert(u.orientation == Orientation::Row &&
266 "unknown should be in row position");
267
268 while (tableau(u.pos, 1) < 0) {
269 Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
270 if (!maybePivot)
271 break;
272
273 pivot(*maybePivot);
274 if (u.orientation == Orientation::Column)
275 return success(); // the unknown is unbounded above.
276 }
277 return success(tableau(u.pos, 1) >= 0);
278 }
279
280 /// Find a row that can be used to pivot the column in the specified direction.
281 /// This returns an empty optional if and only if the column is unbounded in the
282 /// specified direction (ignoring skipRow, if skipRow is set).
283 ///
284 /// If skipRow is set, this row is not considered, and (if it is restricted) its
285 /// restriction may be violated by the returned pivot. Usually, skipRow is set
286 /// because we don't want to move it to column position unless it is unbounded,
287 /// and we are either trying to increase the value of skipRow or explicitly
288 /// trying to make skipRow negative, so we are not concerned about this.
289 ///
290 /// If the direction is up (resp. down) and a restricted row has a negative
291 /// (positive) coefficient for the column, then this row imposes a bound on how
292 /// much the sample value of the column can change. Such a row with constant
293 /// term c and coefficient f for the column imposes a bound of c/|f| on the
294 /// change in sample value (in the specified direction). (note that c is
295 /// non-negative here since the row is restricted and the tableau is consistent)
296 ///
297 /// We iterate through the rows and pick the row which imposes the most
298 /// stringent bound, since pivoting with a row changes the row's sample value to
299 /// 0 and hence saturates the bound it imposes. We break ties between rows that
300 /// impose the same bound by considering a lexicographic ordering where we
301 /// prefer unknowns with lower index value.
findPivotRow(Optional<unsigned> skipRow,Direction direction,unsigned col) const302 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow,
303 Direction direction,
304 unsigned col) const {
305 Optional<unsigned> retRow;
306 int64_t retElem, retConst;
307 for (unsigned row = nRedundant; row < nRow; ++row) {
308 if (skipRow && row == *skipRow)
309 continue;
310 int64_t elem = tableau(row, col);
311 if (elem == 0)
312 continue;
313 if (!unknownFromRow(row).restricted)
314 continue;
315 if (signMatchesDirection(elem, direction))
316 continue;
317 int64_t constTerm = tableau(row, 1);
318
319 if (!retRow) {
320 retRow = row;
321 retElem = elem;
322 retConst = constTerm;
323 continue;
324 }
325
326 int64_t diff = retConst * elem - constTerm * retElem;
327 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
328 (diff != 0 && !signMatchesDirection(diff, direction))) {
329 retRow = row;
330 retElem = elem;
331 retConst = constTerm;
332 }
333 }
334 return retRow;
335 }
336
isEmpty() const337 bool Simplex::isEmpty() const { return empty; }
338
swapRows(unsigned i,unsigned j)339 void Simplex::swapRows(unsigned i, unsigned j) {
340 if (i == j)
341 return;
342 tableau.swapRows(i, j);
343 std::swap(rowUnknown[i], rowUnknown[j]);
344 unknownFromRow(i).pos = i;
345 unknownFromRow(j).pos = j;
346 }
347
swapColumns(unsigned i,unsigned j)348 void Simplex::swapColumns(unsigned i, unsigned j) {
349 assert(i < nCol && j < nCol && "Invalid columns provided!");
350 if (i == j)
351 return;
352 tableau.swapColumns(i, j);
353 std::swap(colUnknown[i], colUnknown[j]);
354 unknownFromColumn(i).pos = i;
355 unknownFromColumn(j).pos = j;
356 }
357
358 /// Mark this tableau empty and push an entry to the undo stack.
markEmpty()359 void Simplex::markEmpty() {
360 undoLog.push_back(UndoLogEntry::UnmarkEmpty);
361 empty = true;
362 }
363
364 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
365 /// is the current number of variables, then the corresponding inequality is
366 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
367 ///
368 /// We add the inequality and mark it as restricted. We then try to make its
369 /// sample value non-negative. If this is not possible, the tableau has become
370 /// empty and we mark it as such.
addInequality(ArrayRef<int64_t> coeffs)371 void Simplex::addInequality(ArrayRef<int64_t> coeffs) {
372 unsigned conIndex = addRow(coeffs);
373 Unknown &u = con[conIndex];
374 u.restricted = true;
375 LogicalResult result = restoreRow(u);
376 if (failed(result))
377 markEmpty();
378 }
379
380 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
381 /// is the current number of variables, then the corresponding equality is
382 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
383 ///
384 /// We simply add two opposing inequalities, which force the expression to
385 /// be zero.
addEquality(ArrayRef<int64_t> coeffs)386 void Simplex::addEquality(ArrayRef<int64_t> coeffs) {
387 addInequality(coeffs);
388 SmallVector<int64_t, 8> negatedCoeffs;
389 for (int64_t coeff : coeffs)
390 negatedCoeffs.emplace_back(-coeff);
391 addInequality(negatedCoeffs);
392 }
393
getNumVariables() const394 unsigned Simplex::getNumVariables() const { return var.size(); }
getNumConstraints() const395 unsigned Simplex::getNumConstraints() const { return con.size(); }
396
397 /// Return a snapshot of the current state. This is just the current size of the
398 /// undo log.
getSnapshot() const399 unsigned Simplex::getSnapshot() const { return undoLog.size(); }
400
undo(UndoLogEntry entry)401 void Simplex::undo(UndoLogEntry entry) {
402 if (entry == UndoLogEntry::RemoveLastConstraint) {
403 Unknown &constraint = con.back();
404 if (constraint.orientation == Orientation::Column) {
405 unsigned column = constraint.pos;
406 Optional<unsigned> row;
407
408 // Try to find any pivot row for this column that preserves tableau
409 // consistency (except possibly the column itself, which is going to be
410 // deallocated anyway).
411 //
412 // If no pivot row is found in either direction, then the unknown is
413 // unbounded in both directions and we are free to
414 // perform any pivot at all. To do this, we just need to find any row with
415 // a non-zero coefficient for the column.
416 if (Optional<unsigned> maybeRow =
417 findPivotRow({}, Direction::Up, column)) {
418 row = *maybeRow;
419 } else if (Optional<unsigned> maybeRow =
420 findPivotRow({}, Direction::Down, column)) {
421 row = *maybeRow;
422 } else {
423 // The loop doesn't find a pivot row only if the column has zero
424 // coefficients for every row. But the unknown is a constraint,
425 // so it was added initially as a row. Such a row could never have been
426 // pivoted to a column. So a pivot row will always be found.
427 for (unsigned i = nRedundant; i < nRow; ++i) {
428 if (tableau(i, column) != 0) {
429 row = i;
430 break;
431 }
432 }
433 }
434 assert(row.hasValue() && "No pivot row found!");
435 pivot(*row, column);
436 }
437
438 // Move this unknown to the last row and remove the last row from the
439 // tableau.
440 swapRows(constraint.pos, nRow - 1);
441 // It is not strictly necessary to shrink the tableau, but for now we
442 // maintain the invariant that the tableau has exactly nRow rows.
443 tableau.resizeVertically(nRow - 1);
444 nRow--;
445 rowUnknown.pop_back();
446 con.pop_back();
447 } else if (entry == UndoLogEntry::RemoveLastVariable) {
448 // Whenever we are rolling back the addition of a variable, it is guaranteed
449 // that the variable will be in column position.
450 //
451 // We can see this as follows: any constraint that depends on this variable
452 // was added after this variable was added, so the addition of such
453 // constraints should already have been rolled back by the time we get to
454 // rolling back the addition of the variable. Therefore, no constraint
455 // currently has a component along the variable, so the variable itself must
456 // be part of the basis.
457 assert(var.back().orientation == Orientation::Column &&
458 "Variable to be removed must be in column orientation!");
459
460 // Move this variable to the last column and remove the column from the
461 // tableau.
462 swapColumns(var.back().pos, nCol - 1);
463 tableau.resizeHorizontally(nCol - 1);
464 var.pop_back();
465 colUnknown.pop_back();
466 nCol--;
467 } else if (entry == UndoLogEntry::UnmarkEmpty) {
468 empty = false;
469 } else if (entry == UndoLogEntry::UnmarkLastRedundant) {
470 nRedundant--;
471 }
472 }
473
474 /// Rollback to the specified snapshot.
475 ///
476 /// We undo all the log entries until the log size when the snapshot was taken
477 /// is reached.
rollback(unsigned snapshot)478 void Simplex::rollback(unsigned snapshot) {
479 while (undoLog.size() > snapshot) {
480 undo(undoLog.back());
481 undoLog.pop_back();
482 }
483 }
484
appendVariable(unsigned count)485 void Simplex::appendVariable(unsigned count) {
486 if (count == 0)
487 return;
488 var.reserve(var.size() + count);
489 colUnknown.reserve(colUnknown.size() + count);
490 for (unsigned i = 0; i < count; ++i) {
491 nCol++;
492 var.emplace_back(Orientation::Column, /*restricted=*/false,
493 /*pos=*/nCol - 1);
494 colUnknown.push_back(var.size() - 1);
495 }
496 tableau.resizeHorizontally(nCol);
497 undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable);
498 }
499
500 /// Add all the constraints from the given FlatAffineConstraints.
intersectFlatAffineConstraints(const FlatAffineConstraints & fac)501 void Simplex::intersectFlatAffineConstraints(const FlatAffineConstraints &fac) {
502 assert(fac.getNumIds() == getNumVariables() &&
503 "FlatAffineConstraints must have same dimensionality as simplex");
504 for (unsigned i = 0, e = fac.getNumInequalities(); i < e; ++i)
505 addInequality(fac.getInequality(i));
506 for (unsigned i = 0, e = fac.getNumEqualities(); i < e; ++i)
507 addEquality(fac.getEquality(i));
508 }
509
computeRowOptimum(Direction direction,unsigned row)510 Optional<Fraction> Simplex::computeRowOptimum(Direction direction,
511 unsigned row) {
512 // Keep trying to find a pivot for the row in the specified direction.
513 while (Optional<Pivot> maybePivot = findPivot(row, direction)) {
514 // If findPivot returns a pivot involving the row itself, then the optimum
515 // is unbounded, so we return None.
516 if (maybePivot->row == row)
517 return {};
518 pivot(*maybePivot);
519 }
520
521 // The row has reached its optimal sample value, which we return.
522 // The sample value is the entry in the constant column divided by the common
523 // denominator for this row.
524 return Fraction(tableau(row, 1), tableau(row, 0));
525 }
526
527 /// Compute the optimum of the specified expression in the specified direction,
528 /// or None if it is unbounded.
computeOptimum(Direction direction,ArrayRef<int64_t> coeffs)529 Optional<Fraction> Simplex::computeOptimum(Direction direction,
530 ArrayRef<int64_t> coeffs) {
531 assert(!empty && "Simplex should not be empty");
532
533 unsigned snapshot = getSnapshot();
534 unsigned conIndex = addRow(coeffs);
535 unsigned row = con[conIndex].pos;
536 Optional<Fraction> optimum = computeRowOptimum(direction, row);
537 rollback(snapshot);
538 return optimum;
539 }
540
computeOptimum(Direction direction,Unknown & u)541 Optional<Fraction> Simplex::computeOptimum(Direction direction, Unknown &u) {
542 assert(!empty && "Simplex should not be empty!");
543 if (u.orientation == Orientation::Column) {
544 unsigned column = u.pos;
545 Optional<unsigned> pivotRow = findPivotRow({}, direction, column);
546 // If no pivot is returned, the constraint is unbounded in the specified
547 // direction.
548 if (!pivotRow)
549 return {};
550 pivot(*pivotRow, column);
551 }
552
553 unsigned row = u.pos;
554 Optional<Fraction> optimum = computeRowOptimum(direction, row);
555 if (u.restricted && direction == Direction::Down &&
556 (!optimum || *optimum < Fraction(0, 1)))
557 (void)restoreRow(u);
558 return optimum;
559 }
560
isBoundedAlongConstraint(unsigned constraintIndex)561 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) {
562 assert(!empty && "It is not meaningful to ask whether a direction is bounded "
563 "in an empty set.");
564 // The constraint's perpendicular is already bounded below, since it is a
565 // constraint. If it is also bounded above, we can return true.
566 return computeOptimum(Direction::Up, con[constraintIndex]).hasValue();
567 }
568
569 /// Redundant constraints are those that are in row orientation and lie in
570 /// rows 0 to nRedundant - 1.
isMarkedRedundant(unsigned constraintIndex) const571 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
572 const Unknown &u = con[constraintIndex];
573 return u.orientation == Orientation::Row && u.pos < nRedundant;
574 }
575
576 /// Mark the specified row redundant.
577 ///
578 /// This is done by moving the unknown to the end of the block of redundant
579 /// rows (namely, to row nRedundant) and incrementing nRedundant to
580 /// accomodate the new redundant row.
markRowRedundant(Unknown & u)581 void Simplex::markRowRedundant(Unknown &u) {
582 assert(u.orientation == Orientation::Row &&
583 "Unknown should be in row position!");
584 swapRows(u.pos, nRedundant);
585 ++nRedundant;
586 undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant);
587 }
588
589 /// Find a subset of constraints that is redundant and mark them redundant.
detectRedundant()590 void Simplex::detectRedundant() {
591 // It is not meaningful to talk about redundancy for empty sets.
592 if (empty)
593 return;
594
595 // Iterate through the constraints and check for each one if it can attain
596 // negative sample values. If it can, it's not redundant. Otherwise, it is.
597 // We mark redundant constraints redundant.
598 //
599 // Constraints that get marked redundant in one iteration are not respected
600 // when checking constraints in later iterations. This prevents, for example,
601 // two identical constraints both being marked redundant since each is
602 // redundant given the other one. In this example, only the first of the
603 // constraints that is processed will get marked redundant, as it should be.
604 for (Unknown &u : con) {
605 if (u.orientation == Orientation::Column) {
606 unsigned column = u.pos;
607 Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column);
608 // If no downward pivot is returned, the constraint is unbounded below
609 // and hence not redundant.
610 if (!pivotRow)
611 continue;
612 pivot(*pivotRow, column);
613 }
614
615 unsigned row = u.pos;
616 Optional<Fraction> minimum = computeRowOptimum(Direction::Down, row);
617 if (!minimum || *minimum < Fraction(0, 1)) {
618 // Constraint is unbounded below or can attain negative sample values and
619 // hence is not redundant.
620 (void)restoreRow(u);
621 continue;
622 }
623
624 markRowRedundant(u);
625 }
626 }
627
isUnbounded()628 bool Simplex::isUnbounded() {
629 if (empty)
630 return false;
631
632 SmallVector<int64_t, 8> dir(var.size() + 1);
633 for (unsigned i = 0; i < var.size(); ++i) {
634 dir[i] = 1;
635
636 Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir);
637 if (!maybeMax)
638 return true;
639
640 Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir);
641 if (!maybeMin)
642 return true;
643
644 dir[i] = 0;
645 }
646 return false;
647 }
648
649 /// Make a tableau to represent a pair of points in the original tableau.
650 ///
651 /// The product constraints and variables are stored as: first A's, then B's.
652 ///
653 /// The product tableau has row layout:
654 /// A's redundant rows, B's redundant rows, A's other rows, B's other rows.
655 ///
656 /// It has column layout:
657 /// denominator, constant, A's columns, B's columns.
makeProduct(const Simplex & a,const Simplex & b)658 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
659 unsigned numVar = a.getNumVariables() + b.getNumVariables();
660 unsigned numCon = a.getNumConstraints() + b.getNumConstraints();
661 Simplex result(numVar);
662
663 result.tableau.resizeVertically(numCon);
664 result.empty = a.empty || b.empty;
665
666 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
667 SmallVector<Unknown, 8> result;
668 result.reserve(v.size() + w.size());
669 result.insert(result.end(), v.begin(), v.end());
670 result.insert(result.end(), w.begin(), w.end());
671 return result;
672 };
673 result.con = concat(a.con, b.con);
674 result.var = concat(a.var, b.var);
675
676 auto indexFromBIndex = [&](int index) {
677 return index >= 0 ? a.getNumVariables() + index
678 : ~(a.getNumConstraints() + ~index);
679 };
680
681 result.colUnknown.assign(2, nullIndex);
682 for (unsigned i = 2; i < a.nCol; ++i) {
683 result.colUnknown.push_back(a.colUnknown[i]);
684 result.unknownFromIndex(result.colUnknown.back()).pos =
685 result.colUnknown.size() - 1;
686 }
687 for (unsigned i = 2; i < b.nCol; ++i) {
688 result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
689 result.unknownFromIndex(result.colUnknown.back()).pos =
690 result.colUnknown.size() - 1;
691 }
692
693 auto appendRowFromA = [&](unsigned row) {
694 for (unsigned col = 0; col < a.nCol; ++col)
695 result.tableau(result.nRow, col) = a.tableau(row, col);
696 result.rowUnknown.push_back(a.rowUnknown[row]);
697 result.unknownFromIndex(result.rowUnknown.back()).pos =
698 result.rowUnknown.size() - 1;
699 result.nRow++;
700 };
701
702 // Also fixes the corresponding entry in rowUnknown and var/con (as the case
703 // may be).
704 auto appendRowFromB = [&](unsigned row) {
705 result.tableau(result.nRow, 0) = b.tableau(row, 0);
706 result.tableau(result.nRow, 1) = b.tableau(row, 1);
707
708 unsigned offset = a.nCol - 2;
709 for (unsigned col = 2; col < b.nCol; ++col)
710 result.tableau(result.nRow, offset + col) = b.tableau(row, col);
711 result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
712 result.unknownFromIndex(result.rowUnknown.back()).pos =
713 result.rowUnknown.size() - 1;
714 result.nRow++;
715 };
716
717 result.nRedundant = a.nRedundant + b.nRedundant;
718 for (unsigned row = 0; row < a.nRedundant; ++row)
719 appendRowFromA(row);
720 for (unsigned row = 0; row < b.nRedundant; ++row)
721 appendRowFromB(row);
722 for (unsigned row = a.nRedundant; row < a.nRow; ++row)
723 appendRowFromA(row);
724 for (unsigned row = b.nRedundant; row < b.nRow; ++row)
725 appendRowFromB(row);
726
727 return result;
728 }
729
getRationalSample() const730 SmallVector<Fraction, 8> Simplex::getRationalSample() const {
731 assert(!empty && "This should not be called when Simplex is empty.");
732
733 SmallVector<Fraction, 8> sample;
734 sample.reserve(var.size());
735 // Push the sample value for each variable into the vector.
736 for (const Unknown &u : var) {
737 if (u.orientation == Orientation::Column) {
738 // If the variable is in column position, its sample value is zero.
739 sample.emplace_back(0, 1);
740 } else {
741 // If the variable is in row position, its sample value is the entry in
742 // the constant column divided by the entry in the common denominator
743 // column.
744 sample.emplace_back(tableau(u.pos, 1), tableau(u.pos, 0));
745 }
746 }
747 return sample;
748 }
749
getSamplePointIfIntegral() const750 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const {
751 // If the tableau is empty, no sample point exists.
752 if (empty)
753 return {};
754 SmallVector<Fraction, 8> rationalSample = getRationalSample();
755 SmallVector<int64_t, 8> integerSample;
756 integerSample.reserve(var.size());
757 for (const Fraction &coord : rationalSample) {
758 // If the sample is non-integral, return None.
759 if (coord.num % coord.den != 0)
760 return {};
761 integerSample.push_back(coord.num / coord.den);
762 }
763 return integerSample;
764 }
765
766 /// Given a simplex for a polytope, construct a new simplex whose variables are
767 /// identified with a pair of points (x, y) in the original polytope. Supports
768 /// some operations needed for generalized basis reduction. In what follows,
769 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
770 /// dimension of the original polytope.
771 ///
772 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
773 /// also supports rolling back this addition, by maintaining a snapshot stack
774 /// that contains a snapshot of the Simplex's state for each equality, just
775 /// before that equality was added.
776 class GBRSimplex {
777 using Orientation = Simplex::Orientation;
778
779 public:
GBRSimplex(const Simplex & originalSimplex)780 GBRSimplex(const Simplex &originalSimplex)
781 : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
782 simplexConstraintOffset(simplex.getNumConstraints()) {}
783
784 /// Add an equality dotProduct(dir, x - y) == 0.
785 /// First pushes a snapshot for the current simplex state to the stack so
786 /// that this can be rolled back later.
addEqualityForDirection(ArrayRef<int64_t> dir)787 void addEqualityForDirection(ArrayRef<int64_t> dir) {
788 assert(
789 std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) &&
790 "Direction passed is the zero vector!");
791 snapshotStack.push_back(simplex.getSnapshot());
792 simplex.addEquality(getCoeffsForDirection(dir));
793 }
794
795 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
796 /// the direction equalities to `dual`.
computeWidthAndDuals(ArrayRef<int64_t> dir,SmallVectorImpl<int64_t> & dual,int64_t & dualDenom)797 Fraction computeWidthAndDuals(ArrayRef<int64_t> dir,
798 SmallVectorImpl<int64_t> &dual,
799 int64_t &dualDenom) {
800 unsigned snap = simplex.getSnapshot();
801 unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
802 unsigned row = simplex.con[conIndex].pos;
803 Optional<Fraction> maybeWidth =
804 simplex.computeRowOptimum(Simplex::Direction::Up, row);
805 assert(maybeWidth.hasValue() && "Width should not be unbounded!");
806 dualDenom = simplex.tableau(row, 0);
807 dual.clear();
808 // The increment is i += 2 because equalities are added as two inequalities,
809 // one positive and one negative. Each iteration processes one equality.
810 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
811 // The dual variable is the negative of the coefficient of the new row
812 // in the column of the constraint, if the constraint is in a column.
813 // Note that the second inequality for the equality is negated.
814 //
815 // We want the dual for the original equality. If the positive inequality
816 // is in column position, the negative of its row coefficient is the
817 // desired dual. If the negative inequality is in column position, its row
818 // coefficient is the desired dual. (its coefficients are already the
819 // negated coefficients of the original equality, so we don't need to
820 // negate it now.)
821 //
822 // If neither are in column position, we move the negated inequality to
823 // column position. Since the inequality must have sample value zero
824 // (since it corresponds to an equality), we are free to pivot with
825 // any column. Since both the unknowns have sample value before and after
826 // pivoting, no other sample values will change and the tableau will
827 // remain consistent. To pivot, we just need to find a column that has a
828 // non-zero coefficient in this row. There must be one since otherwise the
829 // equality would be 0 == 0, which should never be passed to
830 // addEqualityForDirection.
831 //
832 // After finding a column, we pivot with the column, after which we can
833 // get the dual from the inequality in column position as explained above.
834 if (simplex.con[i].orientation == Orientation::Column) {
835 dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
836 } else {
837 if (simplex.con[i + 1].orientation == Orientation::Row) {
838 unsigned ineqRow = simplex.con[i + 1].pos;
839 // Since it is an equality, the sample value must be zero.
840 assert(simplex.tableau(ineqRow, 1) == 0 &&
841 "Equality's sample value must be zero.");
842 for (unsigned col = 2; col < simplex.nCol; ++col) {
843 if (simplex.tableau(ineqRow, col) != 0) {
844 simplex.pivot(ineqRow, col);
845 break;
846 }
847 }
848 assert(simplex.con[i + 1].orientation == Orientation::Column &&
849 "No pivot found. Equality has all-zeros row in tableau!");
850 }
851 dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
852 }
853 }
854 simplex.rollback(snap);
855 return *maybeWidth;
856 }
857
858 /// Remove the last equality that was added through addEqualityForDirection.
859 ///
860 /// We do this by rolling back to the snapshot at the top of the stack, which
861 /// should be a snapshot taken just before the last equality was added.
removeLastEquality()862 void removeLastEquality() {
863 assert(!snapshotStack.empty() && "Snapshot stack is empty!");
864 simplex.rollback(snapshotStack.back());
865 snapshotStack.pop_back();
866 }
867
868 private:
869 /// Returns coefficients of the expression 'dot_product(dir, x - y)',
870 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
871 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
872 /// where n is the dimension of the original polytope.
getCoeffsForDirection(ArrayRef<int64_t> dir)873 SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) {
874 assert(2 * dir.size() == simplex.getNumVariables() &&
875 "Direction vector has wrong dimensionality");
876 SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end());
877 coeffs.reserve(2 * dir.size());
878 for (int64_t coeff : dir)
879 coeffs.push_back(-coeff);
880 coeffs.push_back(0); // constant term
881 return coeffs;
882 }
883
884 Simplex simplex;
885 /// The first index of the equality constraints, the index immediately after
886 /// the last constraint in the initial product simplex.
887 unsigned simplexConstraintOffset;
888 /// A stack of snapshots, used for rolling back.
889 SmallVector<unsigned, 8> snapshotStack;
890 };
891
892 /// Reduce the basis to try and find a direction in which the polytope is
893 /// "thin". This only works for bounded polytopes.
894 ///
895 /// This is an implementation of the algorithm described in the paper
896 /// "An Implementation of Generalized Basis Reduction for Integer Programming"
897 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
898 ///
899 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
900 /// Let width_i(v) = max <v, x - y> where x and y are points in the original
901 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
902 ///
903 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
904 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
905 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when
906 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
907 /// minimizing value of u, if it were allowed to be fractional. Due to
908 /// convexity, the minimizing integer value is either floor(dual_i) or
909 /// ceil(dual_i), so we just need to check which of these gives a lower
910 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
911 ///
912 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
913 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
914 /// same i). Otherwise, we increment i.
915 ///
916 /// We keep f values and duals cached and invalidate them when necessary.
917 /// Whenever possible, we use them instead of recomputing them. We implement the
918 /// algorithm as follows.
919 ///
920 /// In an iteration at i we need to compute:
921 /// a) width_i(b_{i + 1})
922 /// b) width_i(b_i)
923 /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
924 ///
925 /// If width_i(b_i) is not already cached, we compute it.
926 ///
927 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
928 /// store the duals from this computation.
929 ///
930 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
931 /// of u as explained before, caches the duals from this computation, sets
932 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
933 ///
934 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
935 /// decrement i, resulting in the basis
936 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
937 /// with corresponding f values
938 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
939 /// The values up to i - 1 remain unchanged. We have just gotten the middle
940 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the
941 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
942 /// the cache. The iteration after decrementing needs exactly the duals from the
943 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
944 ///
945 /// When incrementing i, no cached f values get invalidated. However, the cached
946 /// duals do get invalidated as the duals for the higher levels are different.
reduceBasis(Matrix & basis,unsigned level)947 void Simplex::reduceBasis(Matrix &basis, unsigned level) {
948 const Fraction epsilon(3, 4);
949
950 if (level == basis.getNumRows() - 1)
951 return;
952
953 GBRSimplex gbrSimplex(*this);
954 SmallVector<Fraction, 8> width;
955 SmallVector<int64_t, 8> dual;
956 int64_t dualDenom;
957
958 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
959 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
960 // the new value of width_i(b_{i+1}).
961 //
962 // If dual_i is not an integer, the minimizing value must be either
963 // floor(dual_i) or ceil(dual_i). We compute the expression for both and
964 // choose the minimizing value.
965 //
966 // If dual_i is an integer, we don't need to perform these computations. We
967 // know that in this case,
968 // a) u = dual_i.
969 // b) one can show that dual_j for j < i are the same duals we would have
970 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
971 // are the ones already in the cache.
972 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
973 // which
974 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must
975 // be in the cache, so we get it from there and return it.
976 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
977 assert(i < level + dual.size() && "dual_i is not known!");
978
979 int64_t u = floorDiv(dual[i - level], dualDenom);
980 basis.addToRow(i, i + 1, u);
981 if (dual[i - level] % dualDenom != 0) {
982 SmallVector<int64_t, 8> candidateDual[2];
983 int64_t candidateDualDenom[2];
984 Fraction widthI[2];
985
986 // Initially u is floor(dual) and basis reflects this.
987 widthI[0] = gbrSimplex.computeWidthAndDuals(
988 basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);
989
990 // Now try ceil(dual), i.e. floor(dual) + 1.
991 ++u;
992 basis.addToRow(i, i + 1, 1);
993 widthI[1] = gbrSimplex.computeWidthAndDuals(
994 basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);
995
996 unsigned j = widthI[0] < widthI[1] ? 0 : 1;
997 if (j == 0)
998 // Subtract 1 to go from u = ceil(dual) back to floor(dual).
999 basis.addToRow(i, i + 1, -1);
1000 dual = std::move(candidateDual[j]);
1001 dualDenom = candidateDualDenom[j];
1002 return widthI[j];
1003 }
1004 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
1005 // When dual minimizes f_i(b_{i+1} + dual*b_i), this is equal to
1006 // width_{i+1}(b_{i+1}).
1007 return width[i + 1 - level];
1008 };
1009
1010 // In the ith iteration of the loop, gbrSimplex has constraints for directions
1011 // from `level` to i - 1.
1012 unsigned i = level;
1013 while (i < basis.getNumRows() - 1) {
1014 if (i >= level + width.size()) {
1015 // We don't even know the value of f_i(b_i), so let's find that first.
1016 // We have to do this first since later we assume that width already
1017 // contains values up to and including i.
1018
1019 assert((i == 0 || i - 1 < level + width.size()) &&
1020 "We are at level i but we don't know the value of width_{i-1}");
1021
1022 // We don't actually use these duals at all, but it doesn't matter
1023 // because this case should only occur when i is level, and there are no
1024 // duals in that case anyway.
1025 assert(i == level && "This case should only occur when i == level");
1026 width.push_back(
1027 gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
1028 }
1029
1030 if (i >= level + dual.size()) {
1031 assert(i + 1 >= level + width.size() &&
1032 "We don't know dual_i but we know width_{i+1}");
1033 // We don't know dual for our level, so let's find it.
1034 gbrSimplex.addEqualityForDirection(basis.getRow(i));
1035 width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
1036 dualDenom));
1037 gbrSimplex.removeLastEquality();
1038 }
1039
1040 // This variable stores width_i(b_{i+1} + u*b_i).
1041 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
1042 if (widthICandidate < epsilon * width[i - level]) {
1043 basis.swapRows(i, i + 1);
1044 width[i - level] = widthICandidate;
1045 // The values of width_{i+1}(b_{i+1}) and higher may change after the
1046 // swap, so we remove the cached values here.
1047 width.resize(i - level + 1);
1048 if (i == level) {
1049 dual.clear();
1050 continue;
1051 }
1052
1053 gbrSimplex.removeLastEquality();
1054 i--;
1055 continue;
1056 }
1057
1058 // Invalidate duals since the higher level needs to recompute its own duals.
1059 dual.clear();
1060 gbrSimplex.addEqualityForDirection(basis.getRow(i));
1061 i++;
1062 }
1063 }
1064
1065 /// Search for an integer sample point using a branch and bound algorithm.
1066 ///
1067 /// Each row in the basis matrix is a vector, and the set of basis vectors
1068 /// should span the space. Initially this is the identity matrix,
1069 /// i.e., the basis vectors are just the variables.
1070 ///
1071 /// In every level, a value is assigned to the level-th basis vector, as
1072 /// follows. Compute the minimum and maximum rational values of this direction.
1073 /// If only one integer point lies in this range, constrain the variable to
1074 /// have this value and recurse to the next variable.
1075 ///
1076 /// If the range has multiple values, perform generalized basis reduction via
1077 /// reduceBasis and then compute the bounds again. Now we try constraining
1078 /// this direction in the first value in this range and "recurse" to the next
1079 /// level. If we fail to find a sample, we try assigning the direction the next
1080 /// value in this range, and so on.
1081 ///
1082 /// If no integer sample is found from any of the assignments, or if the range
1083 /// contains no integer value, then of course the polytope is empty for the
1084 /// current assignment of the values in previous levels, so we return to
1085 /// the previous level.
1086 ///
1087 /// If we reach the last level where all the variables have been assigned values
1088 /// already, then we simply return the current sample point if it is integral,
1089 /// and go back to the previous level otherwise.
1090 ///
1091 /// To avoid potentially arbitrarily large recursion depths leading to stack
1092 /// overflows, this algorithm is implemented iteratively.
findIntegerSample()1093 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() {
1094 if (empty)
1095 return {};
1096
1097 unsigned nDims = var.size();
1098 Matrix basis = Matrix::identity(nDims);
1099
1100 unsigned level = 0;
1101 // The snapshot just before constraining a direction to a value at each level.
1102 SmallVector<unsigned, 8> snapshotStack;
1103 // The maximum value in the range of the direction for each level.
1104 SmallVector<int64_t, 8> upperBoundStack;
1105 // The next value to try constraining the basis vector to at each level.
1106 SmallVector<int64_t, 8> nextValueStack;
1107
1108 snapshotStack.reserve(basis.getNumRows());
1109 upperBoundStack.reserve(basis.getNumRows());
1110 nextValueStack.reserve(basis.getNumRows());
1111 while (level != -1u) {
1112 if (level == basis.getNumRows()) {
1113 // We've assigned values to all variables. Return if we have a sample,
1114 // or go back up to the previous level otherwise.
1115 if (auto maybeSample = getSamplePointIfIntegral())
1116 return maybeSample;
1117 level--;
1118 continue;
1119 }
1120
1121 if (level >= upperBoundStack.size()) {
1122 // We haven't populated the stack values for this level yet, so we have
1123 // just come down a level ("recursed"). Find the lower and upper bounds.
1124 // If there is more than one integer point in the range, perform
1125 // generalized basis reduction.
1126 SmallVector<int64_t, 8> basisCoeffs =
1127 llvm::to_vector<8>(basis.getRow(level));
1128 basisCoeffs.push_back(0);
1129
1130 int64_t minRoundedUp, maxRoundedDown;
1131 std::tie(minRoundedUp, maxRoundedDown) =
1132 computeIntegerBounds(basisCoeffs);
1133
1134 // Heuristic: if the sample point is integral at this point, just return
1135 // it.
1136 if (auto maybeSample = getSamplePointIfIntegral())
1137 return *maybeSample;
1138
1139 if (minRoundedUp < maxRoundedDown) {
1140 reduceBasis(basis, level);
1141 basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
1142 basisCoeffs.push_back(0);
1143 std::tie(minRoundedUp, maxRoundedDown) =
1144 computeIntegerBounds(basisCoeffs);
1145 }
1146
1147 snapshotStack.push_back(getSnapshot());
1148 // The smallest value in the range is the next value to try.
1149 nextValueStack.push_back(minRoundedUp);
1150 upperBoundStack.push_back(maxRoundedDown);
1151 }
1152
1153 assert((snapshotStack.size() - 1 == level &&
1154 nextValueStack.size() - 1 == level &&
1155 upperBoundStack.size() - 1 == level) &&
1156 "Mismatched variable stack sizes!");
1157
1158 // Whether we "recursed" or "returned" from a lower level, we rollback
1159 // to the snapshot of the starting state at this level. (in the "recursed"
1160 // case this has no effect)
1161 rollback(snapshotStack.back());
1162 int64_t nextValue = nextValueStack.back();
1163 nextValueStack.back()++;
1164 if (nextValue > upperBoundStack.back()) {
1165 // We have exhausted the range and found no solution. Pop the stack and
1166 // return up a level.
1167 snapshotStack.pop_back();
1168 nextValueStack.pop_back();
1169 upperBoundStack.pop_back();
1170 level--;
1171 continue;
1172 }
1173
1174 // Try the next value in the range and "recurse" into the next level.
1175 SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(),
1176 basis.getRow(level).end());
1177 basisCoeffs.push_back(-nextValue);
1178 addEquality(basisCoeffs);
1179 level++;
1180 }
1181
1182 return {};
1183 }
1184
1185 /// Compute the minimum and maximum integer values the expression can take. We
1186 /// compute each separately.
1187 std::pair<int64_t, int64_t>
computeIntegerBounds(ArrayRef<int64_t> coeffs)1188 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) {
1189 int64_t minRoundedUp;
1190 if (Optional<Fraction> maybeMin =
1191 computeOptimum(Simplex::Direction::Down, coeffs))
1192 minRoundedUp = ceil(*maybeMin);
1193 else
1194 llvm_unreachable("Tableau should not be unbounded");
1195
1196 int64_t maxRoundedDown;
1197 if (Optional<Fraction> maybeMax =
1198 computeOptimum(Simplex::Direction::Up, coeffs))
1199 maxRoundedDown = floor(*maybeMax);
1200 else
1201 llvm_unreachable("Tableau should not be unbounded");
1202
1203 return {minRoundedUp, maxRoundedDown};
1204 }
1205
print(raw_ostream & os) const1206 void Simplex::print(raw_ostream &os) const {
1207 os << "rows = " << nRow << ", columns = " << nCol << "\n";
1208 if (empty)
1209 os << "Simplex marked empty!\n";
1210 os << "var: ";
1211 for (unsigned i = 0; i < var.size(); ++i) {
1212 if (i > 0)
1213 os << ", ";
1214 var[i].print(os);
1215 }
1216 os << "\ncon: ";
1217 for (unsigned i = 0; i < con.size(); ++i) {
1218 if (i > 0)
1219 os << ", ";
1220 con[i].print(os);
1221 }
1222 os << '\n';
1223 for (unsigned row = 0; row < nRow; ++row) {
1224 if (row > 0)
1225 os << ", ";
1226 os << "r" << row << ": " << rowUnknown[row];
1227 }
1228 os << '\n';
1229 os << "c0: denom, c1: const";
1230 for (unsigned col = 2; col < nCol; ++col)
1231 os << ", c" << col << ": " << colUnknown[col];
1232 os << '\n';
1233 for (unsigned row = 0; row < nRow; ++row) {
1234 for (unsigned col = 0; col < nCol; ++col)
1235 os << tableau(row, col) << '\t';
1236 os << '\n';
1237 }
1238 os << '\n';
1239 }
1240
dump() const1241 void Simplex::dump() const { print(llvm::errs()); }
1242
1243 } // namespace mlir
1244