1 //===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for metadata subclasses.
11 /// They represent the different flavors of metadata that live in LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_METADATA_H
16 #define LLVM_IR_METADATA_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseMapInfo.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/PointerUnion.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/ilist_node.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/Support/CBindingWrapping.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <iterator>
39 #include <memory>
40 #include <string>
41 #include <type_traits>
42 #include <utility>
43 
44 namespace llvm {
45 
46 class Module;
47 class ModuleSlotTracker;
48 class raw_ostream;
49 class Type;
50 
51 enum LLVMConstants : uint32_t {
52   DEBUG_METADATA_VERSION = 3 // Current debug info version number.
53 };
54 
55 /// Root of the metadata hierarchy.
56 ///
57 /// This is a root class for typeless data in the IR.
58 class Metadata {
59   friend class ReplaceableMetadataImpl;
60 
61   /// RTTI.
62   const unsigned char SubclassID;
63 
64 protected:
65   /// Active type of storage.
66   enum StorageType { Uniqued, Distinct, Temporary };
67 
68   /// Storage flag for non-uniqued, otherwise unowned, metadata.
69   unsigned char Storage : 7;
70   // TODO: expose remaining bits to subclasses.
71 
72   unsigned char ImplicitCode : 1;
73 
74   unsigned short SubclassData16 = 0;
75   unsigned SubclassData32 = 0;
76 
77 public:
78   enum MetadataKind {
79 #define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
80 #include "llvm/IR/Metadata.def"
81   };
82 
83 protected:
Metadata(unsigned ID,StorageType Storage)84   Metadata(unsigned ID, StorageType Storage)
85       : SubclassID(ID), Storage(Storage), ImplicitCode(false) {
86     static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
87   }
88 
89   ~Metadata() = default;
90 
91   /// Default handling of a changed operand, which asserts.
92   ///
93   /// If subclasses pass themselves in as owners to a tracking node reference,
94   /// they must provide an implementation of this method.
handleChangedOperand(void *,Metadata *)95   void handleChangedOperand(void *, Metadata *) {
96     llvm_unreachable("Unimplemented in Metadata subclass");
97   }
98 
99 public:
getMetadataID()100   unsigned getMetadataID() const { return SubclassID; }
101 
102   /// User-friendly dump.
103   ///
104   /// If \c M is provided, metadata nodes will be numbered canonically;
105   /// otherwise, pointer addresses are substituted.
106   ///
107   /// Note: this uses an explicit overload instead of default arguments so that
108   /// the nullptr version is easy to call from a debugger.
109   ///
110   /// @{
111   void dump() const;
112   void dump(const Module *M) const;
113   /// @}
114 
115   /// Print.
116   ///
117   /// Prints definition of \c this.
118   ///
119   /// If \c M is provided, metadata nodes will be numbered canonically;
120   /// otherwise, pointer addresses are substituted.
121   /// @{
122   void print(raw_ostream &OS, const Module *M = nullptr,
123              bool IsForDebug = false) const;
124   void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
125              bool IsForDebug = false) const;
126   /// @}
127 
128   /// Print as operand.
129   ///
130   /// Prints reference of \c this.
131   ///
132   /// If \c M is provided, metadata nodes will be numbered canonically;
133   /// otherwise, pointer addresses are substituted.
134   /// @{
135   void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
136   void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
137                       const Module *M = nullptr) const;
138   /// @}
139 };
140 
141 // Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata,LLVMMetadataRef)142 DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
143 
144 // Specialized opaque metadata conversions.
145 inline Metadata **unwrap(LLVMMetadataRef *MDs) {
146   return reinterpret_cast<Metadata**>(MDs);
147 }
148 
149 #define HANDLE_METADATA(CLASS) class CLASS;
150 #include "llvm/IR/Metadata.def"
151 
152 // Provide specializations of isa so that we don't need definitions of
153 // subclasses to see if the metadata is a subclass.
154 #define HANDLE_METADATA_LEAF(CLASS)                                            \
155   template <> struct isa_impl<CLASS, Metadata> {                               \
156     static inline bool doit(const Metadata &MD) {                              \
157       return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
158     }                                                                          \
159   };
160 #include "llvm/IR/Metadata.def"
161 
162 inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
163   MD.print(OS);
164   return OS;
165 }
166 
167 /// Metadata wrapper in the Value hierarchy.
168 ///
169 /// A member of the \a Value hierarchy to represent a reference to metadata.
170 /// This allows, e.g., instrinsics to have metadata as operands.
171 ///
172 /// Notably, this is the only thing in either hierarchy that is allowed to
173 /// reference \a LocalAsMetadata.
174 class MetadataAsValue : public Value {
175   friend class ReplaceableMetadataImpl;
176   friend class LLVMContextImpl;
177 
178   Metadata *MD;
179 
180   MetadataAsValue(Type *Ty, Metadata *MD);
181 
182   /// Drop use of metadata (during teardown).
dropUse()183   void dropUse() { MD = nullptr; }
184 
185 public:
186   ~MetadataAsValue();
187 
188   static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
189   static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
190 
getMetadata()191   Metadata *getMetadata() const { return MD; }
192 
classof(const Value * V)193   static bool classof(const Value *V) {
194     return V->getValueID() == MetadataAsValueVal;
195   }
196 
197 private:
198   void handleChangedMetadata(Metadata *MD);
199   void track();
200   void untrack();
201 };
202 
203 /// API for tracking metadata references through RAUW and deletion.
204 ///
205 /// Shared API for updating \a Metadata pointers in subclasses that support
206 /// RAUW.
207 ///
208 /// This API is not meant to be used directly.  See \a TrackingMDRef for a
209 /// user-friendly tracking reference.
210 class MetadataTracking {
211 public:
212   /// Track the reference to metadata.
213   ///
214   /// Register \c MD with \c *MD, if the subclass supports tracking.  If \c *MD
215   /// gets RAUW'ed, \c MD will be updated to the new address.  If \c *MD gets
216   /// deleted, \c MD will be set to \c nullptr.
217   ///
218   /// If tracking isn't supported, \c *MD will not change.
219   ///
220   /// \return true iff tracking is supported by \c MD.
track(Metadata * & MD)221   static bool track(Metadata *&MD) {
222     return track(&MD, *MD, static_cast<Metadata *>(nullptr));
223   }
224 
225   /// Track the reference to metadata for \a Metadata.
226   ///
227   /// As \a track(Metadata*&), but with support for calling back to \c Owner to
228   /// tell it that its operand changed.  This could trigger \c Owner being
229   /// re-uniqued.
track(void * Ref,Metadata & MD,Metadata & Owner)230   static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
231     return track(Ref, MD, &Owner);
232   }
233 
234   /// Track the reference to metadata for \a MetadataAsValue.
235   ///
236   /// As \a track(Metadata*&), but with support for calling back to \c Owner to
237   /// tell it that its operand changed.  This could trigger \c Owner being
238   /// re-uniqued.
track(void * Ref,Metadata & MD,MetadataAsValue & Owner)239   static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
240     return track(Ref, MD, &Owner);
241   }
242 
243   /// Stop tracking a reference to metadata.
244   ///
245   /// Stops \c *MD from tracking \c MD.
untrack(Metadata * & MD)246   static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
247   static void untrack(void *Ref, Metadata &MD);
248 
249   /// Move tracking from one reference to another.
250   ///
251   /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
252   /// except that ownership callbacks are maintained.
253   ///
254   /// Note: it is an error if \c *MD does not equal \c New.
255   ///
256   /// \return true iff tracking is supported by \c MD.
retrack(Metadata * & MD,Metadata * & New)257   static bool retrack(Metadata *&MD, Metadata *&New) {
258     return retrack(&MD, *MD, &New);
259   }
260   static bool retrack(void *Ref, Metadata &MD, void *New);
261 
262   /// Check whether metadata is replaceable.
263   static bool isReplaceable(const Metadata &MD);
264 
265   using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *>;
266 
267 private:
268   /// Track a reference to metadata for an owner.
269   ///
270   /// Generalized version of tracking.
271   static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
272 };
273 
274 /// Shared implementation of use-lists for replaceable metadata.
275 ///
276 /// Most metadata cannot be RAUW'ed.  This is a shared implementation of
277 /// use-lists and associated API for the two that support it (\a ValueAsMetadata
278 /// and \a TempMDNode).
279 class ReplaceableMetadataImpl {
280   friend class MetadataTracking;
281 
282 public:
283   using OwnerTy = MetadataTracking::OwnerTy;
284 
285 private:
286   LLVMContext &Context;
287   uint64_t NextIndex = 0;
288   SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
289 
290 public:
ReplaceableMetadataImpl(LLVMContext & Context)291   ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
292 
~ReplaceableMetadataImpl()293   ~ReplaceableMetadataImpl() {
294     assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
295   }
296 
getContext()297   LLVMContext &getContext() const { return Context; }
298 
299   /// Replace all uses of this with MD.
300   ///
301   /// Replace all uses of this with \c MD, which is allowed to be null.
302   void replaceAllUsesWith(Metadata *MD);
303 
304   /// Resolve all uses of this.
305   ///
306   /// Resolve all uses of this, turning off RAUW permanently.  If \c
307   /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
308   /// is resolved.
309   void resolveAllUses(bool ResolveUsers = true);
310 
311 private:
312   void addRef(void *Ref, OwnerTy Owner);
313   void dropRef(void *Ref);
314   void moveRef(void *Ref, void *New, const Metadata &MD);
315 
316   /// Lazily construct RAUW support on MD.
317   ///
318   /// If this is an unresolved MDNode, RAUW support will be created on-demand.
319   /// ValueAsMetadata always has RAUW support.
320   static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
321 
322   /// Get RAUW support on MD, if it exists.
323   static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
324 
325   /// Check whether this node will support RAUW.
326   ///
327   /// Returns \c true unless getOrCreate() would return null.
328   static bool isReplaceable(const Metadata &MD);
329 };
330 
331 /// Value wrapper in the Metadata hierarchy.
332 ///
333 /// This is a custom value handle that allows other metadata to refer to
334 /// classes in the Value hierarchy.
335 ///
336 /// Because of full uniquing support, each value is only wrapped by a single \a
337 /// ValueAsMetadata object, so the lookup maps are far more efficient than
338 /// those using ValueHandleBase.
339 class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
340   friend class ReplaceableMetadataImpl;
341   friend class LLVMContextImpl;
342 
343   Value *V;
344 
345   /// Drop users without RAUW (during teardown).
dropUsers()346   void dropUsers() {
347     ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
348   }
349 
350 protected:
ValueAsMetadata(unsigned ID,Value * V)351   ValueAsMetadata(unsigned ID, Value *V)
352       : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
353     assert(V && "Expected valid value");
354   }
355 
356   ~ValueAsMetadata() = default;
357 
358 public:
359   static ValueAsMetadata *get(Value *V);
360 
getConstant(Value * C)361   static ConstantAsMetadata *getConstant(Value *C) {
362     return cast<ConstantAsMetadata>(get(C));
363   }
364 
getLocal(Value * Local)365   static LocalAsMetadata *getLocal(Value *Local) {
366     return cast<LocalAsMetadata>(get(Local));
367   }
368 
369   static ValueAsMetadata *getIfExists(Value *V);
370 
getConstantIfExists(Value * C)371   static ConstantAsMetadata *getConstantIfExists(Value *C) {
372     return cast_or_null<ConstantAsMetadata>(getIfExists(C));
373   }
374 
getLocalIfExists(Value * Local)375   static LocalAsMetadata *getLocalIfExists(Value *Local) {
376     return cast_or_null<LocalAsMetadata>(getIfExists(Local));
377   }
378 
getValue()379   Value *getValue() const { return V; }
getType()380   Type *getType() const { return V->getType(); }
getContext()381   LLVMContext &getContext() const { return V->getContext(); }
382 
383   static void handleDeletion(Value *V);
384   static void handleRAUW(Value *From, Value *To);
385 
386 protected:
387   /// Handle collisions after \a Value::replaceAllUsesWith().
388   ///
389   /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
390   /// \a Value gets RAUW'ed and the target already exists, this is used to
391   /// merge the two metadata nodes.
replaceAllUsesWith(Metadata * MD)392   void replaceAllUsesWith(Metadata *MD) {
393     ReplaceableMetadataImpl::replaceAllUsesWith(MD);
394   }
395 
396 public:
classof(const Metadata * MD)397   static bool classof(const Metadata *MD) {
398     return MD->getMetadataID() == LocalAsMetadataKind ||
399            MD->getMetadataID() == ConstantAsMetadataKind;
400   }
401 };
402 
403 class ConstantAsMetadata : public ValueAsMetadata {
404   friend class ValueAsMetadata;
405 
ConstantAsMetadata(Constant * C)406   ConstantAsMetadata(Constant *C)
407       : ValueAsMetadata(ConstantAsMetadataKind, C) {}
408 
409 public:
get(Constant * C)410   static ConstantAsMetadata *get(Constant *C) {
411     return ValueAsMetadata::getConstant(C);
412   }
413 
getIfExists(Constant * C)414   static ConstantAsMetadata *getIfExists(Constant *C) {
415     return ValueAsMetadata::getConstantIfExists(C);
416   }
417 
getValue()418   Constant *getValue() const {
419     return cast<Constant>(ValueAsMetadata::getValue());
420   }
421 
classof(const Metadata * MD)422   static bool classof(const Metadata *MD) {
423     return MD->getMetadataID() == ConstantAsMetadataKind;
424   }
425 };
426 
427 class LocalAsMetadata : public ValueAsMetadata {
428   friend class ValueAsMetadata;
429 
LocalAsMetadata(Value * Local)430   LocalAsMetadata(Value *Local)
431       : ValueAsMetadata(LocalAsMetadataKind, Local) {
432     assert(!isa<Constant>(Local) && "Expected local value");
433   }
434 
435 public:
get(Value * Local)436   static LocalAsMetadata *get(Value *Local) {
437     return ValueAsMetadata::getLocal(Local);
438   }
439 
getIfExists(Value * Local)440   static LocalAsMetadata *getIfExists(Value *Local) {
441     return ValueAsMetadata::getLocalIfExists(Local);
442   }
443 
classof(const Metadata * MD)444   static bool classof(const Metadata *MD) {
445     return MD->getMetadataID() == LocalAsMetadataKind;
446   }
447 };
448 
449 /// Transitional API for extracting constants from Metadata.
450 ///
451 /// This namespace contains transitional functions for metadata that points to
452 /// \a Constants.
453 ///
454 /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
455 /// operands could refer to any \a Value.  There's was a lot of code like this:
456 ///
457 /// \code
458 ///     MDNode *N = ...;
459 ///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
460 /// \endcode
461 ///
462 /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
463 /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
464 /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
465 /// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
466 /// requires subtle control flow changes.
467 ///
468 /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
469 /// so that metadata can refer to numbers without traversing a bridge to the \a
470 /// Value hierarchy.  In this final state, the code above would look like this:
471 ///
472 /// \code
473 ///     MDNode *N = ...;
474 ///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
475 /// \endcode
476 ///
477 /// The API in this namespace supports the transition.  \a MDInt doesn't exist
478 /// yet, and even once it does, changing each metadata schema to use it is its
479 /// own mini-project.  In the meantime this API prevents us from introducing
480 /// complex and bug-prone control flow that will disappear in the end.  In
481 /// particular, the above code looks like this:
482 ///
483 /// \code
484 ///     MDNode *N = ...;
485 ///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
486 /// \endcode
487 ///
488 /// The full set of provided functions includes:
489 ///
490 ///   mdconst::hasa                <=> isa
491 ///   mdconst::extract             <=> cast
492 ///   mdconst::extract_or_null     <=> cast_or_null
493 ///   mdconst::dyn_extract         <=> dyn_cast
494 ///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
495 ///
496 /// The target of the cast must be a subclass of \a Constant.
497 namespace mdconst {
498 
499 namespace detail {
500 
501 template <class T> T &make();
502 template <class T, class Result> struct HasDereference {
503   using Yes = char[1];
504   using No = char[2];
505   template <size_t N> struct SFINAE {};
506 
507   template <class U, class V>
508   static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
509   template <class U, class V> static No &hasDereference(...);
510 
511   static const bool value =
512       sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
513 };
514 template <class V, class M> struct IsValidPointer {
515   static const bool value = std::is_base_of<Constant, V>::value &&
516                             HasDereference<M, const Metadata &>::value;
517 };
518 template <class V, class M> struct IsValidReference {
519   static const bool value = std::is_base_of<Constant, V>::value &&
520                             std::is_convertible<M, const Metadata &>::value;
521 };
522 
523 } // end namespace detail
524 
525 /// Check whether Metadata has a Value.
526 ///
527 /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
528 /// type \c X.
529 template <class X, class Y>
530 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
hasa(Y && MD)531 hasa(Y &&MD) {
532   assert(MD && "Null pointer sent into hasa");
533   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
534     return isa<X>(V->getValue());
535   return false;
536 }
537 template <class X, class Y>
538 inline
539     typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
hasa(Y & MD)540     hasa(Y &MD) {
541   return hasa(&MD);
542 }
543 
544 /// Extract a Value from Metadata.
545 ///
546 /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
547 template <class X, class Y>
548 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
extract(Y && MD)549 extract(Y &&MD) {
550   return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
551 }
552 template <class X, class Y>
553 inline
554     typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
extract(Y & MD)555     extract(Y &MD) {
556   return extract(&MD);
557 }
558 
559 /// Extract a Value from Metadata, allowing null.
560 ///
561 /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
562 /// from \c MD, allowing \c MD to be null.
563 template <class X, class Y>
564 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
extract_or_null(Y && MD)565 extract_or_null(Y &&MD) {
566   if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
567     return cast<X>(V->getValue());
568   return nullptr;
569 }
570 
571 /// Extract a Value from Metadata, if any.
572 ///
573 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
574 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
575 /// Value it does contain is of the wrong subclass.
576 template <class X, class Y>
577 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
dyn_extract(Y && MD)578 dyn_extract(Y &&MD) {
579   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
580     return dyn_cast<X>(V->getValue());
581   return nullptr;
582 }
583 
584 /// Extract a Value from Metadata, if any, allowing null.
585 ///
586 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
587 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
588 /// Value it does contain is of the wrong subclass, allowing \c MD to be null.
589 template <class X, class Y>
590 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
dyn_extract_or_null(Y && MD)591 dyn_extract_or_null(Y &&MD) {
592   if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
593     return dyn_cast<X>(V->getValue());
594   return nullptr;
595 }
596 
597 } // end namespace mdconst
598 
599 //===----------------------------------------------------------------------===//
600 /// A single uniqued string.
601 ///
602 /// These are used to efficiently contain a byte sequence for metadata.
603 /// MDString is always unnamed.
604 class MDString : public Metadata {
605   friend class StringMapEntryStorage<MDString>;
606 
607   StringMapEntry<MDString> *Entry = nullptr;
608 
MDString()609   MDString() : Metadata(MDStringKind, Uniqued) {}
610 
611 public:
612   MDString(const MDString &) = delete;
613   MDString &operator=(MDString &&) = delete;
614   MDString &operator=(const MDString &) = delete;
615 
616   static MDString *get(LLVMContext &Context, StringRef Str);
get(LLVMContext & Context,const char * Str)617   static MDString *get(LLVMContext &Context, const char *Str) {
618     return get(Context, Str ? StringRef(Str) : StringRef());
619   }
620 
621   StringRef getString() const;
622 
getLength()623   unsigned getLength() const { return (unsigned)getString().size(); }
624 
625   using iterator = StringRef::iterator;
626 
627   /// Pointer to the first byte of the string.
begin()628   iterator begin() const { return getString().begin(); }
629 
630   /// Pointer to one byte past the end of the string.
end()631   iterator end() const { return getString().end(); }
632 
bytes_begin()633   const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
bytes_end()634   const unsigned char *bytes_end() const { return getString().bytes_end(); }
635 
636   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Metadata * MD)637   static bool classof(const Metadata *MD) {
638     return MD->getMetadataID() == MDStringKind;
639   }
640 };
641 
642 /// A collection of metadata nodes that might be associated with a
643 /// memory access used by the alias-analysis infrastructure.
644 struct AAMDNodes {
645   explicit AAMDNodes() = default;
AAMDNodesAAMDNodes646   explicit AAMDNodes(MDNode *T, MDNode *TS, MDNode *S, MDNode *N)
647       : TBAA(T), TBAAStruct(TS), Scope(S), NoAlias(N) {}
648 
649   bool operator==(const AAMDNodes &A) const {
650     return TBAA == A.TBAA && TBAAStruct == A.TBAAStruct && Scope == A.Scope &&
651            NoAlias == A.NoAlias;
652   }
653 
654   bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
655 
656   explicit operator bool() const {
657     return TBAA || TBAAStruct || Scope || NoAlias;
658   }
659 
660   /// The tag for type-based alias analysis.
661   MDNode *TBAA = nullptr;
662 
663   /// The tag for type-based alias analysis (tbaa struct).
664   MDNode *TBAAStruct = nullptr;
665 
666   /// The tag for alias scope specification (used with noalias).
667   MDNode *Scope = nullptr;
668 
669   /// The tag specifying the noalias scope.
670   MDNode *NoAlias = nullptr;
671 
672   /// Given two sets of AAMDNodes that apply to the same pointer,
673   /// give the best AAMDNodes that are compatible with both (i.e. a set of
674   /// nodes whose allowable aliasing conclusions are a subset of those
675   /// allowable by both of the inputs). However, for efficiency
676   /// reasons, do not create any new MDNodes.
intersectAAMDNodes677   AAMDNodes intersect(const AAMDNodes &Other) {
678     AAMDNodes Result;
679     Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
680     Result.TBAAStruct = Other.TBAAStruct == TBAAStruct ? TBAAStruct : nullptr;
681     Result.Scope = Other.Scope == Scope ? Scope : nullptr;
682     Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
683     return Result;
684   }
685 };
686 
687 // Specialize DenseMapInfo for AAMDNodes.
688 template<>
689 struct DenseMapInfo<AAMDNodes> {
690   static inline AAMDNodes getEmptyKey() {
691     return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
692                      nullptr, nullptr, nullptr);
693   }
694 
695   static inline AAMDNodes getTombstoneKey() {
696     return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
697                      nullptr, nullptr, nullptr);
698   }
699 
700   static unsigned getHashValue(const AAMDNodes &Val) {
701     return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
702            DenseMapInfo<MDNode *>::getHashValue(Val.TBAAStruct) ^
703            DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
704            DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
705   }
706 
707   static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
708     return LHS == RHS;
709   }
710 };
711 
712 /// Tracking metadata reference owned by Metadata.
713 ///
714 /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
715 /// of \a Metadata, which has the option of registering itself for callbacks to
716 /// re-unique itself.
717 ///
718 /// In particular, this is used by \a MDNode.
719 class MDOperand {
720   Metadata *MD = nullptr;
721 
722 public:
723   MDOperand() = default;
724   MDOperand(MDOperand &&) = delete;
725   MDOperand(const MDOperand &) = delete;
726   MDOperand &operator=(MDOperand &&) = delete;
727   MDOperand &operator=(const MDOperand &) = delete;
728   ~MDOperand() { untrack(); }
729 
730   Metadata *get() const { return MD; }
731   operator Metadata *() const { return get(); }
732   Metadata *operator->() const { return get(); }
733   Metadata &operator*() const { return *get(); }
734 
735   void reset() {
736     untrack();
737     MD = nullptr;
738   }
739   void reset(Metadata *MD, Metadata *Owner) {
740     untrack();
741     this->MD = MD;
742     track(Owner);
743   }
744 
745 private:
746   void track(Metadata *Owner) {
747     if (MD) {
748       if (Owner)
749         MetadataTracking::track(this, *MD, *Owner);
750       else
751         MetadataTracking::track(MD);
752     }
753   }
754 
755   void untrack() {
756     assert(static_cast<void *>(this) == &MD && "Expected same address");
757     if (MD)
758       MetadataTracking::untrack(MD);
759   }
760 };
761 
762 template <> struct simplify_type<MDOperand> {
763   using SimpleType = Metadata *;
764 
765   static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
766 };
767 
768 template <> struct simplify_type<const MDOperand> {
769   using SimpleType = Metadata *;
770 
771   static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
772 };
773 
774 /// Pointer to the context, with optional RAUW support.
775 ///
776 /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
777 /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
778 class ContextAndReplaceableUses {
779   PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
780 
781 public:
782   ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
783   ContextAndReplaceableUses(
784       std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
785       : Ptr(ReplaceableUses.release()) {
786     assert(getReplaceableUses() && "Expected non-null replaceable uses");
787   }
788   ContextAndReplaceableUses() = delete;
789   ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
790   ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
791   ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
792   ContextAndReplaceableUses &
793   operator=(const ContextAndReplaceableUses &) = delete;
794   ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
795 
796   operator LLVMContext &() { return getContext(); }
797 
798   /// Whether this contains RAUW support.
799   bool hasReplaceableUses() const {
800     return Ptr.is<ReplaceableMetadataImpl *>();
801   }
802 
803   LLVMContext &getContext() const {
804     if (hasReplaceableUses())
805       return getReplaceableUses()->getContext();
806     return *Ptr.get<LLVMContext *>();
807   }
808 
809   ReplaceableMetadataImpl *getReplaceableUses() const {
810     if (hasReplaceableUses())
811       return Ptr.get<ReplaceableMetadataImpl *>();
812     return nullptr;
813   }
814 
815   /// Ensure that this has RAUW support, and then return it.
816   ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
817     if (!hasReplaceableUses())
818       makeReplaceable(std::make_unique<ReplaceableMetadataImpl>(getContext()));
819     return getReplaceableUses();
820   }
821 
822   /// Assign RAUW support to this.
823   ///
824   /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
825   /// not be null).
826   void
827   makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
828     assert(ReplaceableUses && "Expected non-null replaceable uses");
829     assert(&ReplaceableUses->getContext() == &getContext() &&
830            "Expected same context");
831     delete getReplaceableUses();
832     Ptr = ReplaceableUses.release();
833   }
834 
835   /// Drop RAUW support.
836   ///
837   /// Cede ownership of RAUW support, returning it.
838   std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
839     assert(hasReplaceableUses() && "Expected to own replaceable uses");
840     std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
841         getReplaceableUses());
842     Ptr = &ReplaceableUses->getContext();
843     return ReplaceableUses;
844   }
845 };
846 
847 struct TempMDNodeDeleter {
848   inline void operator()(MDNode *Node) const;
849 };
850 
851 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
852   using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
853 #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
854 #include "llvm/IR/Metadata.def"
855 
856 /// Metadata node.
857 ///
858 /// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
859 /// metadata nodes (with full support for RAUW) can be used to delay uniquing
860 /// until forward references are known.  The basic metadata node is an \a
861 /// MDTuple.
862 ///
863 /// There is limited support for RAUW at construction time.  At construction
864 /// time, if any operand is a temporary node (or an unresolved uniqued node,
865 /// which indicates a transitive temporary operand), the node itself will be
866 /// unresolved.  As soon as all operands become resolved, it will drop RAUW
867 /// support permanently.
868 ///
869 /// If an unresolved node is part of a cycle, \a resolveCycles() needs
870 /// to be called on some member of the cycle once all temporary nodes have been
871 /// replaced.
872 class MDNode : public Metadata {
873   friend class ReplaceableMetadataImpl;
874   friend class LLVMContextImpl;
875 
876   unsigned NumOperands;
877   unsigned NumUnresolved;
878 
879   ContextAndReplaceableUses Context;
880 
881 protected:
882   MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
883          ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
884   ~MDNode() = default;
885 
886   void *operator new(size_t Size, unsigned NumOps);
887   void operator delete(void *Mem);
888 
889   /// Required by std, but never called.
890   void operator delete(void *, unsigned) {
891     llvm_unreachable("Constructor throws?");
892   }
893 
894   /// Required by std, but never called.
895   void operator delete(void *, unsigned, bool) {
896     llvm_unreachable("Constructor throws?");
897   }
898 
899   void dropAllReferences();
900 
901   MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
902   MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
903 
904   using mutable_op_range = iterator_range<MDOperand *>;
905 
906   mutable_op_range mutable_operands() {
907     return mutable_op_range(mutable_begin(), mutable_end());
908   }
909 
910 public:
911   MDNode(const MDNode &) = delete;
912   void operator=(const MDNode &) = delete;
913   void *operator new(size_t) = delete;
914 
915   static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
916   static inline MDTuple *getIfExists(LLVMContext &Context,
917                                      ArrayRef<Metadata *> MDs);
918   static inline MDTuple *getDistinct(LLVMContext &Context,
919                                      ArrayRef<Metadata *> MDs);
920   static inline TempMDTuple getTemporary(LLVMContext &Context,
921                                          ArrayRef<Metadata *> MDs);
922 
923   /// Create a (temporary) clone of this.
924   TempMDNode clone() const;
925 
926   /// Deallocate a node created by getTemporary.
927   ///
928   /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
929   /// references will be reset.
930   static void deleteTemporary(MDNode *N);
931 
932   LLVMContext &getContext() const { return Context.getContext(); }
933 
934   /// Replace a specific operand.
935   void replaceOperandWith(unsigned I, Metadata *New);
936 
937   /// Check if node is fully resolved.
938   ///
939   /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
940   /// this always returns \c true.
941   ///
942   /// If \a isUniqued(), returns \c true if this has already dropped RAUW
943   /// support (because all operands are resolved).
944   ///
945   /// As forward declarations are resolved, their containers should get
946   /// resolved automatically.  However, if this (or one of its operands) is
947   /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
948   bool isResolved() const { return !isTemporary() && !NumUnresolved; }
949 
950   bool isUniqued() const { return Storage == Uniqued; }
951   bool isDistinct() const { return Storage == Distinct; }
952   bool isTemporary() const { return Storage == Temporary; }
953 
954   /// RAUW a temporary.
955   ///
956   /// \pre \a isTemporary() must be \c true.
957   void replaceAllUsesWith(Metadata *MD) {
958     assert(isTemporary() && "Expected temporary node");
959     if (Context.hasReplaceableUses())
960       Context.getReplaceableUses()->replaceAllUsesWith(MD);
961   }
962 
963   /// Resolve cycles.
964   ///
965   /// Once all forward declarations have been resolved, force cycles to be
966   /// resolved.
967   ///
968   /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
969   void resolveCycles();
970 
971   /// Resolve a unique, unresolved node.
972   void resolve();
973 
974   /// Replace a temporary node with a permanent one.
975   ///
976   /// Try to create a uniqued version of \c N -- in place, if possible -- and
977   /// return it.  If \c N cannot be uniqued, return a distinct node instead.
978   template <class T>
979   static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
980   replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
981     return cast<T>(N.release()->replaceWithPermanentImpl());
982   }
983 
984   /// Replace a temporary node with a uniqued one.
985   ///
986   /// Create a uniqued version of \c N -- in place, if possible -- and return
987   /// it.  Takes ownership of the temporary node.
988   ///
989   /// \pre N does not self-reference.
990   template <class T>
991   static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
992   replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
993     return cast<T>(N.release()->replaceWithUniquedImpl());
994   }
995 
996   /// Replace a temporary node with a distinct one.
997   ///
998   /// Create a distinct version of \c N -- in place, if possible -- and return
999   /// it.  Takes ownership of the temporary node.
1000   template <class T>
1001   static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
1002   replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
1003     return cast<T>(N.release()->replaceWithDistinctImpl());
1004   }
1005 
1006 private:
1007   MDNode *replaceWithPermanentImpl();
1008   MDNode *replaceWithUniquedImpl();
1009   MDNode *replaceWithDistinctImpl();
1010 
1011 protected:
1012   /// Set an operand.
1013   ///
1014   /// Sets the operand directly, without worrying about uniquing.
1015   void setOperand(unsigned I, Metadata *New);
1016 
1017   void storeDistinctInContext();
1018   template <class T, class StoreT>
1019   static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
1020   template <class T> static T *storeImpl(T *N, StorageType Storage);
1021 
1022 private:
1023   void handleChangedOperand(void *Ref, Metadata *New);
1024 
1025   /// Drop RAUW support, if any.
1026   void dropReplaceableUses();
1027 
1028   void resolveAfterOperandChange(Metadata *Old, Metadata *New);
1029   void decrementUnresolvedOperandCount();
1030   void countUnresolvedOperands();
1031 
1032   /// Mutate this to be "uniqued".
1033   ///
1034   /// Mutate this so that \a isUniqued().
1035   /// \pre \a isTemporary().
1036   /// \pre already added to uniquing set.
1037   void makeUniqued();
1038 
1039   /// Mutate this to be "distinct".
1040   ///
1041   /// Mutate this so that \a isDistinct().
1042   /// \pre \a isTemporary().
1043   void makeDistinct();
1044 
1045   void deleteAsSubclass();
1046   MDNode *uniquify();
1047   void eraseFromStore();
1048 
1049   template <class NodeTy> struct HasCachedHash;
1050   template <class NodeTy>
1051   static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
1052     N->recalculateHash();
1053   }
1054   template <class NodeTy>
1055   static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
1056   template <class NodeTy>
1057   static void dispatchResetHash(NodeTy *N, std::true_type) {
1058     N->setHash(0);
1059   }
1060   template <class NodeTy>
1061   static void dispatchResetHash(NodeTy *, std::false_type) {}
1062 
1063 public:
1064   using op_iterator = const MDOperand *;
1065   using op_range = iterator_range<op_iterator>;
1066 
1067   op_iterator op_begin() const {
1068     return const_cast<MDNode *>(this)->mutable_begin();
1069   }
1070 
1071   op_iterator op_end() const {
1072     return const_cast<MDNode *>(this)->mutable_end();
1073   }
1074 
1075   op_range operands() const { return op_range(op_begin(), op_end()); }
1076 
1077   const MDOperand &getOperand(unsigned I) const {
1078     assert(I < NumOperands && "Out of range");
1079     return op_begin()[I];
1080   }
1081 
1082   /// Return number of MDNode operands.
1083   unsigned getNumOperands() const { return NumOperands; }
1084 
1085   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1086   static bool classof(const Metadata *MD) {
1087     switch (MD->getMetadataID()) {
1088     default:
1089       return false;
1090 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1091   case CLASS##Kind:                                                            \
1092     return true;
1093 #include "llvm/IR/Metadata.def"
1094     }
1095   }
1096 
1097   /// Check whether MDNode is a vtable access.
1098   bool isTBAAVtableAccess() const;
1099 
1100   /// Methods for metadata merging.
1101   static MDNode *concatenate(MDNode *A, MDNode *B);
1102   static MDNode *intersect(MDNode *A, MDNode *B);
1103   static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1104   static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1105   static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1106   static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1107   static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1108 };
1109 
1110 /// Tuple of metadata.
1111 ///
1112 /// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
1113 /// default based on their operands.
1114 class MDTuple : public MDNode {
1115   friend class LLVMContextImpl;
1116   friend class MDNode;
1117 
1118   MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1119           ArrayRef<Metadata *> Vals)
1120       : MDNode(C, MDTupleKind, Storage, Vals) {
1121     setHash(Hash);
1122   }
1123 
1124   ~MDTuple() { dropAllReferences(); }
1125 
1126   void setHash(unsigned Hash) { SubclassData32 = Hash; }
1127   void recalculateHash();
1128 
1129   static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1130                           StorageType Storage, bool ShouldCreate = true);
1131 
1132   TempMDTuple cloneImpl() const {
1133     return getTemporary(getContext(),
1134                         SmallVector<Metadata *, 4>(op_begin(), op_end()));
1135   }
1136 
1137 public:
1138   /// Get the hash, if any.
1139   unsigned getHash() const { return SubclassData32; }
1140 
1141   static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1142     return getImpl(Context, MDs, Uniqued);
1143   }
1144 
1145   static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1146     return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1147   }
1148 
1149   /// Return a distinct node.
1150   ///
1151   /// Return a distinct node -- i.e., a node that is not uniqued.
1152   static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1153     return getImpl(Context, MDs, Distinct);
1154   }
1155 
1156   /// Return a temporary node.
1157   ///
1158   /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1159   /// not uniqued, may be RAUW'd, and must be manually deleted with
1160   /// deleteTemporary.
1161   static TempMDTuple getTemporary(LLVMContext &Context,
1162                                   ArrayRef<Metadata *> MDs) {
1163     return TempMDTuple(getImpl(Context, MDs, Temporary));
1164   }
1165 
1166   /// Return a (temporary) clone of this.
1167   TempMDTuple clone() const { return cloneImpl(); }
1168 
1169   static bool classof(const Metadata *MD) {
1170     return MD->getMetadataID() == MDTupleKind;
1171   }
1172 };
1173 
1174 MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1175   return MDTuple::get(Context, MDs);
1176 }
1177 
1178 MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1179   return MDTuple::getIfExists(Context, MDs);
1180 }
1181 
1182 MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1183   return MDTuple::getDistinct(Context, MDs);
1184 }
1185 
1186 TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1187                                  ArrayRef<Metadata *> MDs) {
1188   return MDTuple::getTemporary(Context, MDs);
1189 }
1190 
1191 void TempMDNodeDeleter::operator()(MDNode *Node) const {
1192   MDNode::deleteTemporary(Node);
1193 }
1194 
1195 /// Typed iterator through MDNode operands.
1196 ///
1197 /// An iterator that transforms an \a MDNode::iterator into an iterator over a
1198 /// particular Metadata subclass.
1199 template <class T>
1200 class TypedMDOperandIterator
1201     : public std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void,
1202                            T *> {
1203   MDNode::op_iterator I = nullptr;
1204 
1205 public:
1206   TypedMDOperandIterator() = default;
1207   explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1208 
1209   T *operator*() const { return cast_or_null<T>(*I); }
1210 
1211   TypedMDOperandIterator &operator++() {
1212     ++I;
1213     return *this;
1214   }
1215 
1216   TypedMDOperandIterator operator++(int) {
1217     TypedMDOperandIterator Temp(*this);
1218     ++I;
1219     return Temp;
1220   }
1221 
1222   bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1223   bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1224 };
1225 
1226 /// Typed, array-like tuple of metadata.
1227 ///
1228 /// This is a wrapper for \a MDTuple that makes it act like an array holding a
1229 /// particular type of metadata.
1230 template <class T> class MDTupleTypedArrayWrapper {
1231   const MDTuple *N = nullptr;
1232 
1233 public:
1234   MDTupleTypedArrayWrapper() = default;
1235   MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1236 
1237   template <class U>
1238   MDTupleTypedArrayWrapper(
1239       const MDTupleTypedArrayWrapper<U> &Other,
1240       typename std::enable_if<std::is_convertible<U *, T *>::value>::type * =
1241           nullptr)
1242       : N(Other.get()) {}
1243 
1244   template <class U>
1245   explicit MDTupleTypedArrayWrapper(
1246       const MDTupleTypedArrayWrapper<U> &Other,
1247       typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * =
1248           nullptr)
1249       : N(Other.get()) {}
1250 
1251   explicit operator bool() const { return get(); }
1252   explicit operator MDTuple *() const { return get(); }
1253 
1254   MDTuple *get() const { return const_cast<MDTuple *>(N); }
1255   MDTuple *operator->() const { return get(); }
1256   MDTuple &operator*() const { return *get(); }
1257 
1258   // FIXME: Fix callers and remove condition on N.
1259   unsigned size() const { return N ? N->getNumOperands() : 0u; }
1260   bool empty() const { return N ? N->getNumOperands() == 0 : true; }
1261   T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1262 
1263   // FIXME: Fix callers and remove condition on N.
1264   using iterator = TypedMDOperandIterator<T>;
1265 
1266   iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1267   iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1268 };
1269 
1270 #define HANDLE_METADATA(CLASS)                                                 \
1271   using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
1272 #include "llvm/IR/Metadata.def"
1273 
1274 /// Placeholder metadata for operands of distinct MDNodes.
1275 ///
1276 /// This is a lightweight placeholder for an operand of a distinct node.  It's
1277 /// purpose is to help track forward references when creating a distinct node.
1278 /// This allows distinct nodes involved in a cycle to be constructed before
1279 /// their operands without requiring a heavyweight temporary node with
1280 /// full-blown RAUW support.
1281 ///
1282 /// Each placeholder supports only a single MDNode user.  Clients should pass
1283 /// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1284 /// should be replaced with.
1285 ///
1286 /// While it would be possible to implement move operators, they would be
1287 /// fairly expensive.  Leave them unimplemented to discourage their use
1288 /// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1289 class DistinctMDOperandPlaceholder : public Metadata {
1290   friend class MetadataTracking;
1291 
1292   Metadata **Use = nullptr;
1293 
1294 public:
1295   explicit DistinctMDOperandPlaceholder(unsigned ID)
1296       : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1297     SubclassData32 = ID;
1298   }
1299 
1300   DistinctMDOperandPlaceholder() = delete;
1301   DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1302   DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1303 
1304   ~DistinctMDOperandPlaceholder() {
1305     if (Use)
1306       *Use = nullptr;
1307   }
1308 
1309   unsigned getID() const { return SubclassData32; }
1310 
1311   /// Replace the use of this with MD.
1312   void replaceUseWith(Metadata *MD) {
1313     if (!Use)
1314       return;
1315     *Use = MD;
1316 
1317     if (*Use)
1318       MetadataTracking::track(*Use);
1319 
1320     Metadata *T = cast<Metadata>(this);
1321     MetadataTracking::untrack(T);
1322     assert(!Use && "Use is still being tracked despite being untracked!");
1323   }
1324 };
1325 
1326 //===----------------------------------------------------------------------===//
1327 /// A tuple of MDNodes.
1328 ///
1329 /// Despite its name, a NamedMDNode isn't itself an MDNode.
1330 ///
1331 /// NamedMDNodes are named module-level entities that contain lists of MDNodes.
1332 ///
1333 /// It is illegal for a NamedMDNode to appear as an operand of an MDNode.
1334 class NamedMDNode : public ilist_node<NamedMDNode> {
1335   friend class LLVMContextImpl;
1336   friend class Module;
1337 
1338   std::string Name;
1339   Module *Parent = nullptr;
1340   void *Operands; // SmallVector<TrackingMDRef, 4>
1341 
1342   void setParent(Module *M) { Parent = M; }
1343 
1344   explicit NamedMDNode(const Twine &N);
1345 
1346   template<class T1, class T2>
1347   class op_iterator_impl :
1348       public std::iterator<std::bidirectional_iterator_tag, T2> {
1349     friend class NamedMDNode;
1350 
1351     const NamedMDNode *Node = nullptr;
1352     unsigned Idx = 0;
1353 
1354     op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
1355 
1356   public:
1357     op_iterator_impl() = default;
1358 
1359     bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1360     bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1361 
1362     op_iterator_impl &operator++() {
1363       ++Idx;
1364       return *this;
1365     }
1366 
1367     op_iterator_impl operator++(int) {
1368       op_iterator_impl tmp(*this);
1369       operator++();
1370       return tmp;
1371     }
1372 
1373     op_iterator_impl &operator--() {
1374       --Idx;
1375       return *this;
1376     }
1377 
1378     op_iterator_impl operator--(int) {
1379       op_iterator_impl tmp(*this);
1380       operator--();
1381       return tmp;
1382     }
1383 
1384     T1 operator*() const { return Node->getOperand(Idx); }
1385   };
1386 
1387 public:
1388   NamedMDNode(const NamedMDNode &) = delete;
1389   ~NamedMDNode();
1390 
1391   /// Drop all references and remove the node from parent module.
1392   void eraseFromParent();
1393 
1394   /// Remove all uses and clear node vector.
1395   void dropAllReferences() { clearOperands(); }
1396   /// Drop all references to this node's operands.
1397   void clearOperands();
1398 
1399   /// Get the module that holds this named metadata collection.
1400   inline Module *getParent() { return Parent; }
1401   inline const Module *getParent() const { return Parent; }
1402 
1403   MDNode *getOperand(unsigned i) const;
1404   unsigned getNumOperands() const;
1405   void addOperand(MDNode *M);
1406   void setOperand(unsigned I, MDNode *New);
1407   StringRef getName() const;
1408   void print(raw_ostream &ROS, bool IsForDebug = false) const;
1409   void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1410              bool IsForDebug = false) const;
1411   void dump() const;
1412 
1413   // ---------------------------------------------------------------------------
1414   // Operand Iterator interface...
1415   //
1416   using op_iterator = op_iterator_impl<MDNode *, MDNode>;
1417 
1418   op_iterator op_begin() { return op_iterator(this, 0); }
1419   op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
1420 
1421   using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>;
1422 
1423   const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1424   const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
1425 
1426   inline iterator_range<op_iterator>  operands() {
1427     return make_range(op_begin(), op_end());
1428   }
1429   inline iterator_range<const_op_iterator> operands() const {
1430     return make_range(op_begin(), op_end());
1431   }
1432 };
1433 
1434 // Create wrappers for C Binding types (see CBindingWrapping.h).
1435 DEFINE_ISA_CONVERSION_FUNCTIONS(NamedMDNode, LLVMNamedMDNodeRef)
1436 
1437 } // end namespace llvm
1438 
1439 #endif // LLVM_IR_METADATA_H
1440