1 //===- ValueHandle.h - Value Smart Pointer classes --------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the ValueHandle class and its sub-classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_IR_VALUEHANDLE_H 14 #define LLVM_IR_VALUEHANDLE_H 15 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/PointerIntPair.h" 18 #include "llvm/IR/Value.h" 19 #include "llvm/Support/Casting.h" 20 #include <cassert> 21 22 namespace llvm { 23 24 /// This is the common base class of value handles. 25 /// 26 /// ValueHandle's are smart pointers to Value's that have special behavior when 27 /// the value is deleted or ReplaceAllUsesWith'd. See the specific handles 28 /// below for details. 29 class ValueHandleBase { 30 friend class Value; 31 32 protected: 33 /// This indicates what sub class the handle actually is. 34 /// 35 /// This is to avoid having a vtable for the light-weight handle pointers. The 36 /// fully general Callback version does have a vtable. 37 enum HandleBaseKind { Assert, Callback, Weak, WeakTracking }; 38 ValueHandleBase(const ValueHandleBase & RHS)39 ValueHandleBase(const ValueHandleBase &RHS) 40 : ValueHandleBase(RHS.PrevPair.getInt(), RHS) {} 41 ValueHandleBase(HandleBaseKind Kind,const ValueHandleBase & RHS)42 ValueHandleBase(HandleBaseKind Kind, const ValueHandleBase &RHS) 43 : PrevPair(nullptr, Kind), Val(RHS.getValPtr()) { 44 if (isValid(getValPtr())) 45 AddToExistingUseList(RHS.getPrevPtr()); 46 } 47 48 private: 49 PointerIntPair<ValueHandleBase**, 2, HandleBaseKind> PrevPair; 50 ValueHandleBase *Next = nullptr; 51 Value *Val = nullptr; 52 setValPtr(Value * V)53 void setValPtr(Value *V) { Val = V; } 54 55 public: ValueHandleBase(HandleBaseKind Kind)56 explicit ValueHandleBase(HandleBaseKind Kind) 57 : PrevPair(nullptr, Kind) {} ValueHandleBase(HandleBaseKind Kind,Value * V)58 ValueHandleBase(HandleBaseKind Kind, Value *V) 59 : PrevPair(nullptr, Kind), Val(V) { 60 if (isValid(getValPtr())) 61 AddToUseList(); 62 } 63 ~ValueHandleBase()64 ~ValueHandleBase() { 65 if (isValid(getValPtr())) 66 RemoveFromUseList(); 67 } 68 69 Value *operator=(Value *RHS) { 70 if (getValPtr() == RHS) 71 return RHS; 72 if (isValid(getValPtr())) 73 RemoveFromUseList(); 74 setValPtr(RHS); 75 if (isValid(getValPtr())) 76 AddToUseList(); 77 return RHS; 78 } 79 80 Value *operator=(const ValueHandleBase &RHS) { 81 if (getValPtr() == RHS.getValPtr()) 82 return RHS.getValPtr(); 83 if (isValid(getValPtr())) 84 RemoveFromUseList(); 85 setValPtr(RHS.getValPtr()); 86 if (isValid(getValPtr())) 87 AddToExistingUseList(RHS.getPrevPtr()); 88 return getValPtr(); 89 } 90 91 Value *operator->() const { return getValPtr(); } 92 Value &operator*() const { return *getValPtr(); } 93 94 protected: getValPtr()95 Value *getValPtr() const { return Val; } 96 isValid(Value * V)97 static bool isValid(Value *V) { 98 return V && 99 V != DenseMapInfo<Value *>::getEmptyKey() && 100 V != DenseMapInfo<Value *>::getTombstoneKey(); 101 } 102 103 /// Remove this ValueHandle from its current use list. 104 void RemoveFromUseList(); 105 106 /// Clear the underlying pointer without clearing the use list. 107 /// 108 /// This should only be used if a derived class has manually removed the 109 /// handle from the use list. clearValPtr()110 void clearValPtr() { setValPtr(nullptr); } 111 112 public: 113 // Callbacks made from Value. 114 static void ValueIsDeleted(Value *V); 115 static void ValueIsRAUWd(Value *Old, Value *New); 116 117 private: 118 // Internal implementation details. getPrevPtr()119 ValueHandleBase **getPrevPtr() const { return PrevPair.getPointer(); } getKind()120 HandleBaseKind getKind() const { return PrevPair.getInt(); } setPrevPtr(ValueHandleBase ** Ptr)121 void setPrevPtr(ValueHandleBase **Ptr) { PrevPair.setPointer(Ptr); } 122 123 /// Add this ValueHandle to the use list for V. 124 /// 125 /// List is the address of either the head of the list or a Next node within 126 /// the existing use list. 127 void AddToExistingUseList(ValueHandleBase **List); 128 129 /// Add this ValueHandle to the use list after Node. 130 void AddToExistingUseListAfter(ValueHandleBase *Node); 131 132 /// Add this ValueHandle to the use list for V. 133 void AddToUseList(); 134 }; 135 136 /// A nullable Value handle that is nullable. 137 /// 138 /// This is a value handle that points to a value, and nulls itself 139 /// out if that value is deleted. 140 class WeakVH : public ValueHandleBase { 141 public: WeakVH()142 WeakVH() : ValueHandleBase(Weak) {} WeakVH(Value * P)143 WeakVH(Value *P) : ValueHandleBase(Weak, P) {} WeakVH(const WeakVH & RHS)144 WeakVH(const WeakVH &RHS) 145 : ValueHandleBase(Weak, RHS) {} 146 147 WeakVH &operator=(const WeakVH &RHS) = default; 148 149 Value *operator=(Value *RHS) { 150 return ValueHandleBase::operator=(RHS); 151 } 152 Value *operator=(const ValueHandleBase &RHS) { 153 return ValueHandleBase::operator=(RHS); 154 } 155 156 operator Value*() const { 157 return getValPtr(); 158 } 159 }; 160 161 // Specialize simplify_type to allow WeakVH to participate in 162 // dyn_cast, isa, etc. 163 template <> struct simplify_type<WeakVH> { 164 using SimpleType = Value *; 165 166 static SimpleType getSimplifiedValue(WeakVH &WVH) { return WVH; } 167 }; 168 template <> struct simplify_type<const WeakVH> { 169 using SimpleType = Value *; 170 171 static SimpleType getSimplifiedValue(const WeakVH &WVH) { return WVH; } 172 }; 173 174 // Specialize DenseMapInfo to allow WeakVH to participate in DenseMap. 175 template <> struct DenseMapInfo<WeakVH> { 176 static inline WeakVH getEmptyKey() { 177 return WeakVH(DenseMapInfo<Value *>::getEmptyKey()); 178 } 179 180 static inline WeakVH getTombstoneKey() { 181 return WeakVH(DenseMapInfo<Value *>::getTombstoneKey()); 182 } 183 184 static unsigned getHashValue(const WeakVH &Val) { 185 return DenseMapInfo<Value *>::getHashValue(Val); 186 } 187 188 static bool isEqual(const WeakVH &LHS, const WeakVH &RHS) { 189 return DenseMapInfo<Value *>::isEqual(LHS, RHS); 190 } 191 }; 192 193 /// Value handle that is nullable, but tries to track the Value. 194 /// 195 /// This is a value handle that tries hard to point to a Value, even across 196 /// RAUW operations, but will null itself out if the value is destroyed. this 197 /// is useful for advisory sorts of information, but should not be used as the 198 /// key of a map (since the map would have to rearrange itself when the pointer 199 /// changes). 200 class WeakTrackingVH : public ValueHandleBase { 201 public: 202 WeakTrackingVH() : ValueHandleBase(WeakTracking) {} 203 WeakTrackingVH(Value *P) : ValueHandleBase(WeakTracking, P) {} 204 WeakTrackingVH(const WeakTrackingVH &RHS) 205 : ValueHandleBase(WeakTracking, RHS) {} 206 207 WeakTrackingVH &operator=(const WeakTrackingVH &RHS) = default; 208 209 Value *operator=(Value *RHS) { 210 return ValueHandleBase::operator=(RHS); 211 } 212 Value *operator=(const ValueHandleBase &RHS) { 213 return ValueHandleBase::operator=(RHS); 214 } 215 216 operator Value*() const { 217 return getValPtr(); 218 } 219 220 bool pointsToAliveValue() const { 221 return ValueHandleBase::isValid(getValPtr()); 222 } 223 }; 224 225 // Specialize simplify_type to allow WeakTrackingVH to participate in 226 // dyn_cast, isa, etc. 227 template <> struct simplify_type<WeakTrackingVH> { 228 using SimpleType = Value *; 229 230 static SimpleType getSimplifiedValue(WeakTrackingVH &WVH) { return WVH; } 231 }; 232 template <> struct simplify_type<const WeakTrackingVH> { 233 using SimpleType = Value *; 234 235 static SimpleType getSimplifiedValue(const WeakTrackingVH &WVH) { 236 return WVH; 237 } 238 }; 239 240 /// Value handle that asserts if the Value is deleted. 241 /// 242 /// This is a Value Handle that points to a value and asserts out if the value 243 /// is destroyed while the handle is still live. This is very useful for 244 /// catching dangling pointer bugs and other things which can be non-obvious. 245 /// One particularly useful place to use this is as the Key of a map. Dangling 246 /// pointer bugs often lead to really subtle bugs that only occur if another 247 /// object happens to get allocated to the same address as the old one. Using 248 /// an AssertingVH ensures that an assert is triggered as soon as the bad 249 /// delete occurs. 250 /// 251 /// Note that an AssertingVH handle does *not* follow values across RAUW 252 /// operations. This means that RAUW's need to explicitly update the 253 /// AssertingVH's as it moves. This is required because in non-assert mode this 254 /// class turns into a trivial wrapper around a pointer. 255 template <typename ValueTy> 256 class AssertingVH 257 #ifndef NDEBUG 258 : public ValueHandleBase 259 #endif 260 { 261 friend struct DenseMapInfo<AssertingVH<ValueTy>>; 262 263 #ifndef NDEBUG 264 Value *getRawValPtr() const { return ValueHandleBase::getValPtr(); } 265 void setRawValPtr(Value *P) { ValueHandleBase::operator=(P); } 266 #else 267 Value *ThePtr; 268 Value *getRawValPtr() const { return ThePtr; } 269 void setRawValPtr(Value *P) { ThePtr = P; } 270 #endif 271 // Convert a ValueTy*, which may be const, to the raw Value*. 272 static Value *GetAsValue(Value *V) { return V; } 273 static Value *GetAsValue(const Value *V) { return const_cast<Value*>(V); } 274 275 ValueTy *getValPtr() const { return static_cast<ValueTy *>(getRawValPtr()); } 276 void setValPtr(ValueTy *P) { setRawValPtr(GetAsValue(P)); } 277 278 public: 279 #ifndef NDEBUG 280 AssertingVH() : ValueHandleBase(Assert) {} 281 AssertingVH(ValueTy *P) : ValueHandleBase(Assert, GetAsValue(P)) {} 282 AssertingVH(const AssertingVH &RHS) : ValueHandleBase(Assert, RHS) {} 283 #else 284 AssertingVH() : ThePtr(nullptr) {} 285 AssertingVH(ValueTy *P) : ThePtr(GetAsValue(P)) {} 286 AssertingVH(const AssertingVH<ValueTy> &) = default; 287 #endif 288 289 operator ValueTy*() const { 290 return getValPtr(); 291 } 292 293 ValueTy *operator=(ValueTy *RHS) { 294 setValPtr(RHS); 295 return getValPtr(); 296 } 297 ValueTy *operator=(const AssertingVH<ValueTy> &RHS) { 298 setValPtr(RHS.getValPtr()); 299 return getValPtr(); 300 } 301 302 ValueTy *operator->() const { return getValPtr(); } 303 ValueTy &operator*() const { return *getValPtr(); } 304 }; 305 306 // Specialize DenseMapInfo to allow AssertingVH to participate in DenseMap. 307 template<typename T> 308 struct DenseMapInfo<AssertingVH<T>> { 309 static inline AssertingVH<T> getEmptyKey() { 310 AssertingVH<T> Res; 311 Res.setRawValPtr(DenseMapInfo<Value *>::getEmptyKey()); 312 return Res; 313 } 314 315 static inline AssertingVH<T> getTombstoneKey() { 316 AssertingVH<T> Res; 317 Res.setRawValPtr(DenseMapInfo<Value *>::getTombstoneKey()); 318 return Res; 319 } 320 321 static unsigned getHashValue(const AssertingVH<T> &Val) { 322 return DenseMapInfo<Value *>::getHashValue(Val.getRawValPtr()); 323 } 324 325 static bool isEqual(const AssertingVH<T> &LHS, const AssertingVH<T> &RHS) { 326 return DenseMapInfo<Value *>::isEqual(LHS.getRawValPtr(), 327 RHS.getRawValPtr()); 328 } 329 }; 330 331 /// Value handle that tracks a Value across RAUW. 332 /// 333 /// TrackingVH is designed for situations where a client needs to hold a handle 334 /// to a Value (or subclass) across some operations which may move that value, 335 /// but should never destroy it or replace it with some unacceptable type. 336 /// 337 /// It is an error to attempt to replace a value with one of a type which is 338 /// incompatible with any of its outstanding TrackingVHs. 339 /// 340 /// It is an error to read from a TrackingVH that does not point to a valid 341 /// value. A TrackingVH is said to not point to a valid value if either it 342 /// hasn't yet been assigned a value yet or because the value it was tracking 343 /// has since been deleted. 344 /// 345 /// Assigning a value to a TrackingVH is always allowed, even if said TrackingVH 346 /// no longer points to a valid value. 347 template <typename ValueTy> class TrackingVH { 348 WeakTrackingVH InnerHandle; 349 350 public: 351 ValueTy *getValPtr() const { 352 assert(InnerHandle.pointsToAliveValue() && 353 "TrackingVH must be non-null and valid on dereference!"); 354 355 // Check that the value is a member of the correct subclass. We would like 356 // to check this property on assignment for better debugging, but we don't 357 // want to require a virtual interface on this VH. Instead we allow RAUW to 358 // replace this value with a value of an invalid type, and check it here. 359 assert(isa<ValueTy>(InnerHandle) && 360 "Tracked Value was replaced by one with an invalid type!"); 361 return cast<ValueTy>(InnerHandle); 362 } 363 364 void setValPtr(ValueTy *P) { 365 // Assigning to non-valid TrackingVH's are fine so we just unconditionally 366 // assign here. 367 InnerHandle = GetAsValue(P); 368 } 369 370 // Convert a ValueTy*, which may be const, to the type the base 371 // class expects. 372 static Value *GetAsValue(Value *V) { return V; } 373 static Value *GetAsValue(const Value *V) { return const_cast<Value*>(V); } 374 375 public: 376 TrackingVH() = default; 377 TrackingVH(ValueTy *P) { setValPtr(P); } 378 379 operator ValueTy*() const { 380 return getValPtr(); 381 } 382 383 ValueTy *operator=(ValueTy *RHS) { 384 setValPtr(RHS); 385 return getValPtr(); 386 } 387 388 ValueTy *operator->() const { return getValPtr(); } 389 ValueTy &operator*() const { return *getValPtr(); } 390 }; 391 392 /// Value handle with callbacks on RAUW and destruction. 393 /// 394 /// This is a value handle that allows subclasses to define callbacks that run 395 /// when the underlying Value has RAUW called on it or is destroyed. This 396 /// class can be used as the key of a map, as long as the user takes it out of 397 /// the map before calling setValPtr() (since the map has to rearrange itself 398 /// when the pointer changes). Unlike ValueHandleBase, this class has a vtable. 399 class CallbackVH : public ValueHandleBase { 400 virtual void anchor(); 401 protected: 402 ~CallbackVH() = default; 403 CallbackVH(const CallbackVH &) = default; 404 CallbackVH &operator=(const CallbackVH &) = default; 405 406 void setValPtr(Value *P) { 407 ValueHandleBase::operator=(P); 408 } 409 410 public: 411 CallbackVH() : ValueHandleBase(Callback) {} 412 CallbackVH(Value *P) : ValueHandleBase(Callback, P) {} 413 414 operator Value*() const { 415 return getValPtr(); 416 } 417 418 /// Callback for Value destruction. 419 /// 420 /// Called when this->getValPtr() is destroyed, inside ~Value(), so you 421 /// may call any non-virtual Value method on getValPtr(), but no subclass 422 /// methods. If WeakTrackingVH were implemented as a CallbackVH, it would use 423 /// this 424 /// method to call setValPtr(NULL). AssertingVH would use this method to 425 /// cause an assertion failure. 426 /// 427 /// All implementations must remove the reference from this object to the 428 /// Value that's being destroyed. 429 virtual void deleted() { setValPtr(nullptr); } 430 431 /// Callback for Value RAUW. 432 /// 433 /// Called when this->getValPtr()->replaceAllUsesWith(new_value) is called, 434 /// _before_ any of the uses have actually been replaced. If WeakTrackingVH 435 /// were 436 /// implemented as a CallbackVH, it would use this method to call 437 /// setValPtr(new_value). AssertingVH would do nothing in this method. 438 virtual void allUsesReplacedWith(Value *) {} 439 }; 440 441 /// Value handle that poisons itself if the Value is deleted. 442 /// 443 /// This is a Value Handle that points to a value and poisons itself if the 444 /// value is destroyed while the handle is still live. This is very useful for 445 /// catching dangling pointer bugs where an \c AssertingVH cannot be used 446 /// because the dangling handle needs to outlive the value without ever being 447 /// used. 448 /// 449 /// One particularly useful place to use this is as the Key of a map. Dangling 450 /// pointer bugs often lead to really subtle bugs that only occur if another 451 /// object happens to get allocated to the same address as the old one. Using 452 /// a PoisoningVH ensures that an assert is triggered if looking up a new value 453 /// in the map finds a handle from the old value. 454 /// 455 /// Note that a PoisoningVH handle does *not* follow values across RAUW 456 /// operations. This means that RAUW's need to explicitly update the 457 /// PoisoningVH's as it moves. This is required because in non-assert mode this 458 /// class turns into a trivial wrapper around a pointer. 459 template <typename ValueTy> 460 class PoisoningVH 461 #ifndef NDEBUG 462 final : public CallbackVH 463 #endif 464 { 465 friend struct DenseMapInfo<PoisoningVH<ValueTy>>; 466 467 // Convert a ValueTy*, which may be const, to the raw Value*. 468 static Value *GetAsValue(Value *V) { return V; } 469 static Value *GetAsValue(const Value *V) { return const_cast<Value *>(V); } 470 471 #ifndef NDEBUG 472 /// A flag tracking whether this value has been poisoned. 473 /// 474 /// On delete and RAUW, we leave the value pointer alone so that as a raw 475 /// pointer it produces the same value (and we fit into the same key of 476 /// a hash table, etc), but we poison the handle so that any top-level usage 477 /// will fail. 478 bool Poisoned = false; 479 480 Value *getRawValPtr() const { return ValueHandleBase::getValPtr(); } 481 void setRawValPtr(Value *P) { ValueHandleBase::operator=(P); } 482 483 /// Handle deletion by poisoning the handle. 484 void deleted() override { 485 assert(!Poisoned && "Tried to delete an already poisoned handle!"); 486 Poisoned = true; 487 RemoveFromUseList(); 488 } 489 490 /// Handle RAUW by poisoning the handle. 491 void allUsesReplacedWith(Value *) override { 492 assert(!Poisoned && "Tried to RAUW an already poisoned handle!"); 493 Poisoned = true; 494 RemoveFromUseList(); 495 } 496 #else // NDEBUG 497 Value *ThePtr = nullptr; 498 499 Value *getRawValPtr() const { return ThePtr; } 500 void setRawValPtr(Value *P) { ThePtr = P; } 501 #endif 502 503 ValueTy *getValPtr() const { 504 assert(!Poisoned && "Accessed a poisoned value handle!"); 505 return static_cast<ValueTy *>(getRawValPtr()); 506 } 507 void setValPtr(ValueTy *P) { setRawValPtr(GetAsValue(P)); } 508 509 public: 510 PoisoningVH() = default; 511 #ifndef NDEBUG 512 PoisoningVH(ValueTy *P) : CallbackVH(GetAsValue(P)) {} 513 PoisoningVH(const PoisoningVH &RHS) 514 : CallbackVH(RHS), Poisoned(RHS.Poisoned) {} 515 516 ~PoisoningVH() { 517 if (Poisoned) 518 clearValPtr(); 519 } 520 521 PoisoningVH &operator=(const PoisoningVH &RHS) { 522 if (Poisoned) 523 clearValPtr(); 524 CallbackVH::operator=(RHS); 525 Poisoned = RHS.Poisoned; 526 return *this; 527 } 528 #else 529 PoisoningVH(ValueTy *P) : ThePtr(GetAsValue(P)) {} 530 #endif 531 532 operator ValueTy *() const { return getValPtr(); } 533 534 ValueTy *operator->() const { return getValPtr(); } 535 ValueTy &operator*() const { return *getValPtr(); } 536 }; 537 538 // Specialize DenseMapInfo to allow PoisoningVH to participate in DenseMap. 539 template <typename T> struct DenseMapInfo<PoisoningVH<T>> { 540 static inline PoisoningVH<T> getEmptyKey() { 541 PoisoningVH<T> Res; 542 Res.setRawValPtr(DenseMapInfo<Value *>::getEmptyKey()); 543 return Res; 544 } 545 546 static inline PoisoningVH<T> getTombstoneKey() { 547 PoisoningVH<T> Res; 548 Res.setRawValPtr(DenseMapInfo<Value *>::getTombstoneKey()); 549 return Res; 550 } 551 552 static unsigned getHashValue(const PoisoningVH<T> &Val) { 553 return DenseMapInfo<Value *>::getHashValue(Val.getRawValPtr()); 554 } 555 556 static bool isEqual(const PoisoningVH<T> &LHS, const PoisoningVH<T> &RHS) { 557 return DenseMapInfo<Value *>::isEqual(LHS.getRawValPtr(), 558 RHS.getRawValPtr()); 559 } 560 }; 561 562 } // end namespace llvm 563 564 #endif // LLVM_IR_VALUEHANDLE_H 565