1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
34 /// reusing an existing cast if a suitable one exists, moving an existing
35 /// cast if a suitable one exists but isn't in the right place, or
36 /// creating a new one.
ReuseOrCreateCast(Value * V,Type * Ty,Instruction::CastOps Op,BasicBlock::iterator IP)37 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
38                                        Instruction::CastOps Op,
39                                        BasicBlock::iterator IP) {
40   // This function must be called with the builder having a valid insertion
41   // point. It doesn't need to be the actual IP where the uses of the returned
42   // cast will be added, but it must dominate such IP.
43   // We use this precondition to produce a cast that will dominate all its
44   // uses. In particular, this is crucial for the case where the builder's
45   // insertion point *is* the point where we were asked to put the cast.
46   // Since we don't know the builder's insertion point is actually
47   // where the uses will be added (only that it dominates it), we are
48   // not allowed to move it.
49   BasicBlock::iterator BIP = Builder.GetInsertPoint();
50 
51   Instruction *Ret = nullptr;
52 
53   // Check to see if there is already a cast!
54   for (User *U : V->users())
55     if (U->getType() == Ty)
56       if (CastInst *CI = dyn_cast<CastInst>(U))
57         if (CI->getOpcode() == Op) {
58           // If the cast isn't where we want it, create a new cast at IP.
59           // Likewise, do not reuse a cast at BIP because it must dominate
60           // instructions that might be inserted before BIP.
61           if (BasicBlock::iterator(CI) != IP || BIP == IP) {
62             // Create a new cast, and leave the old cast in place in case
63             // it is being used as an insert point.
64             Ret = CastInst::Create(Op, V, Ty, "", &*IP);
65             Ret->takeName(CI);
66             CI->replaceAllUsesWith(Ret);
67             break;
68           }
69           Ret = CI;
70           break;
71         }
72 
73   // Create a new cast.
74   if (!Ret)
75     Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
76 
77   // We assert at the end of the function since IP might point to an
78   // instruction with different dominance properties than a cast
79   // (an invoke for example) and not dominate BIP (but the cast does).
80   assert(SE.DT.dominates(Ret, &*BIP));
81 
82   rememberInstruction(Ret);
83   return Ret;
84 }
85 
findInsertPointAfter(Instruction * I,BasicBlock * MustDominate)86 static BasicBlock::iterator findInsertPointAfter(Instruction *I,
87                                                  BasicBlock *MustDominate) {
88   BasicBlock::iterator IP = ++I->getIterator();
89   if (auto *II = dyn_cast<InvokeInst>(I))
90     IP = II->getNormalDest()->begin();
91 
92   while (isa<PHINode>(IP))
93     ++IP;
94 
95   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
96     ++IP;
97   } else if (isa<CatchSwitchInst>(IP)) {
98     IP = MustDominate->getFirstInsertionPt();
99   } else {
100     assert(!IP->isEHPad() && "unexpected eh pad!");
101   }
102 
103   return IP;
104 }
105 
106 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
107 /// which must be possible with a noop cast, doing what we can to share
108 /// the casts.
InsertNoopCastOfTo(Value * V,Type * Ty)109 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
110   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
111   assert((Op == Instruction::BitCast ||
112           Op == Instruction::PtrToInt ||
113           Op == Instruction::IntToPtr) &&
114          "InsertNoopCastOfTo cannot perform non-noop casts!");
115   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
116          "InsertNoopCastOfTo cannot change sizes!");
117 
118   // Short-circuit unnecessary bitcasts.
119   if (Op == Instruction::BitCast) {
120     if (V->getType() == Ty)
121       return V;
122     if (CastInst *CI = dyn_cast<CastInst>(V)) {
123       if (CI->getOperand(0)->getType() == Ty)
124         return CI->getOperand(0);
125     }
126   }
127   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
128   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
129       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
130     if (CastInst *CI = dyn_cast<CastInst>(V))
131       if ((CI->getOpcode() == Instruction::PtrToInt ||
132            CI->getOpcode() == Instruction::IntToPtr) &&
133           SE.getTypeSizeInBits(CI->getType()) ==
134           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
135         return CI->getOperand(0);
136     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
137       if ((CE->getOpcode() == Instruction::PtrToInt ||
138            CE->getOpcode() == Instruction::IntToPtr) &&
139           SE.getTypeSizeInBits(CE->getType()) ==
140           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
141         return CE->getOperand(0);
142   }
143 
144   // Fold a cast of a constant.
145   if (Constant *C = dyn_cast<Constant>(V))
146     return ConstantExpr::getCast(Op, C, Ty);
147 
148   // Cast the argument at the beginning of the entry block, after
149   // any bitcasts of other arguments.
150   if (Argument *A = dyn_cast<Argument>(V)) {
151     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
152     while ((isa<BitCastInst>(IP) &&
153             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
154             cast<BitCastInst>(IP)->getOperand(0) != A) ||
155            isa<DbgInfoIntrinsic>(IP))
156       ++IP;
157     return ReuseOrCreateCast(A, Ty, Op, IP);
158   }
159 
160   // Cast the instruction immediately after the instruction.
161   Instruction *I = cast<Instruction>(V);
162   BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
163   return ReuseOrCreateCast(I, Ty, Op, IP);
164 }
165 
166 /// InsertBinop - Insert the specified binary operator, doing a small amount
167 /// of work to avoid inserting an obviously redundant operation, and hoisting
168 /// to an outer loop when the opportunity is there and it is safe.
InsertBinop(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS,SCEV::NoWrapFlags Flags,bool IsSafeToHoist)169 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
170                                  Value *LHS, Value *RHS,
171                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
172   // Fold a binop with constant operands.
173   if (Constant *CLHS = dyn_cast<Constant>(LHS))
174     if (Constant *CRHS = dyn_cast<Constant>(RHS))
175       return ConstantExpr::get(Opcode, CLHS, CRHS);
176 
177   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
178   unsigned ScanLimit = 6;
179   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
180   // Scanning starts from the last instruction before the insertion point.
181   BasicBlock::iterator IP = Builder.GetInsertPoint();
182   if (IP != BlockBegin) {
183     --IP;
184     for (; ScanLimit; --IP, --ScanLimit) {
185       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
186       // generated code.
187       if (isa<DbgInfoIntrinsic>(IP))
188         ScanLimit++;
189 
190       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
191         // Ensure that no-wrap flags match.
192         if (isa<OverflowingBinaryOperator>(I)) {
193           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
194             return true;
195           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
196             return true;
197         }
198         // Conservatively, do not use any instruction which has any of exact
199         // flags installed.
200         if (isa<PossiblyExactOperator>(I) && I->isExact())
201           return true;
202         return false;
203       };
204       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
205           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
206         return &*IP;
207       if (IP == BlockBegin) break;
208     }
209   }
210 
211   // Save the original insertion point so we can restore it when we're done.
212   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
213   SCEVInsertPointGuard Guard(Builder, this);
214 
215   if (IsSafeToHoist) {
216     // Move the insertion point out of as many loops as we can.
217     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
218       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
219       BasicBlock *Preheader = L->getLoopPreheader();
220       if (!Preheader) break;
221 
222       // Ok, move up a level.
223       Builder.SetInsertPoint(Preheader->getTerminator());
224     }
225   }
226 
227   // If we haven't found this binop, insert it.
228   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
229   BO->setDebugLoc(Loc);
230   if (Flags & SCEV::FlagNUW)
231     BO->setHasNoUnsignedWrap();
232   if (Flags & SCEV::FlagNSW)
233     BO->setHasNoSignedWrap();
234   rememberInstruction(BO);
235 
236   return BO;
237 }
238 
239 /// FactorOutConstant - Test if S is divisible by Factor, using signed
240 /// division. If so, update S with Factor divided out and return true.
241 /// S need not be evenly divisible if a reasonable remainder can be
242 /// computed.
FactorOutConstant(const SCEV * & S,const SCEV * & Remainder,const SCEV * Factor,ScalarEvolution & SE,const DataLayout & DL)243 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
244                               const SCEV *Factor, ScalarEvolution &SE,
245                               const DataLayout &DL) {
246   // Everything is divisible by one.
247   if (Factor->isOne())
248     return true;
249 
250   // x/x == 1.
251   if (S == Factor) {
252     S = SE.getConstant(S->getType(), 1);
253     return true;
254   }
255 
256   // For a Constant, check for a multiple of the given factor.
257   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
258     // 0/x == 0.
259     if (C->isZero())
260       return true;
261     // Check for divisibility.
262     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
263       ConstantInt *CI =
264           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
265       // If the quotient is zero and the remainder is non-zero, reject
266       // the value at this scale. It will be considered for subsequent
267       // smaller scales.
268       if (!CI->isZero()) {
269         const SCEV *Div = SE.getConstant(CI);
270         S = Div;
271         Remainder = SE.getAddExpr(
272             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
273         return true;
274       }
275     }
276   }
277 
278   // In a Mul, check if there is a constant operand which is a multiple
279   // of the given factor.
280   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
281     // Size is known, check if there is a constant operand which is a multiple
282     // of the given factor. If so, we can factor it.
283     const SCEVConstant *FC = cast<SCEVConstant>(Factor);
284     if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
285       if (!C->getAPInt().srem(FC->getAPInt())) {
286         SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
287         NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
288         S = SE.getMulExpr(NewMulOps);
289         return true;
290       }
291   }
292 
293   // In an AddRec, check if both start and step are divisible.
294   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
295     const SCEV *Step = A->getStepRecurrence(SE);
296     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
297     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
298       return false;
299     if (!StepRem->isZero())
300       return false;
301     const SCEV *Start = A->getStart();
302     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
303       return false;
304     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
305                          A->getNoWrapFlags(SCEV::FlagNW));
306     return true;
307   }
308 
309   return false;
310 }
311 
312 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
313 /// is the number of SCEVAddRecExprs present, which are kept at the end of
314 /// the list.
315 ///
SimplifyAddOperands(SmallVectorImpl<const SCEV * > & Ops,Type * Ty,ScalarEvolution & SE)316 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
317                                 Type *Ty,
318                                 ScalarEvolution &SE) {
319   unsigned NumAddRecs = 0;
320   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
321     ++NumAddRecs;
322   // Group Ops into non-addrecs and addrecs.
323   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
324   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
325   // Let ScalarEvolution sort and simplify the non-addrecs list.
326   const SCEV *Sum = NoAddRecs.empty() ?
327                     SE.getConstant(Ty, 0) :
328                     SE.getAddExpr(NoAddRecs);
329   // If it returned an add, use the operands. Otherwise it simplified
330   // the sum into a single value, so just use that.
331   Ops.clear();
332   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
333     Ops.append(Add->op_begin(), Add->op_end());
334   else if (!Sum->isZero())
335     Ops.push_back(Sum);
336   // Then append the addrecs.
337   Ops.append(AddRecs.begin(), AddRecs.end());
338 }
339 
340 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
341 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
342 /// This helps expose more opportunities for folding parts of the expressions
343 /// into GEP indices.
344 ///
SplitAddRecs(SmallVectorImpl<const SCEV * > & Ops,Type * Ty,ScalarEvolution & SE)345 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
346                          Type *Ty,
347                          ScalarEvolution &SE) {
348   // Find the addrecs.
349   SmallVector<const SCEV *, 8> AddRecs;
350   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
351     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
352       const SCEV *Start = A->getStart();
353       if (Start->isZero()) break;
354       const SCEV *Zero = SE.getConstant(Ty, 0);
355       AddRecs.push_back(SE.getAddRecExpr(Zero,
356                                          A->getStepRecurrence(SE),
357                                          A->getLoop(),
358                                          A->getNoWrapFlags(SCEV::FlagNW)));
359       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
360         Ops[i] = Zero;
361         Ops.append(Add->op_begin(), Add->op_end());
362         e += Add->getNumOperands();
363       } else {
364         Ops[i] = Start;
365       }
366     }
367   if (!AddRecs.empty()) {
368     // Add the addrecs onto the end of the list.
369     Ops.append(AddRecs.begin(), AddRecs.end());
370     // Resort the operand list, moving any constants to the front.
371     SimplifyAddOperands(Ops, Ty, SE);
372   }
373 }
374 
375 /// expandAddToGEP - Expand an addition expression with a pointer type into
376 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
377 /// BasicAliasAnalysis and other passes analyze the result. See the rules
378 /// for getelementptr vs. inttoptr in
379 /// http://llvm.org/docs/LangRef.html#pointeraliasing
380 /// for details.
381 ///
382 /// Design note: The correctness of using getelementptr here depends on
383 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
384 /// they may introduce pointer arithmetic which may not be safely converted
385 /// into getelementptr.
386 ///
387 /// Design note: It might seem desirable for this function to be more
388 /// loop-aware. If some of the indices are loop-invariant while others
389 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
390 /// loop-invariant portions of the overall computation outside the loop.
391 /// However, there are a few reasons this is not done here. Hoisting simple
392 /// arithmetic is a low-level optimization that often isn't very
393 /// important until late in the optimization process. In fact, passes
394 /// like InstructionCombining will combine GEPs, even if it means
395 /// pushing loop-invariant computation down into loops, so even if the
396 /// GEPs were split here, the work would quickly be undone. The
397 /// LoopStrengthReduction pass, which is usually run quite late (and
398 /// after the last InstructionCombining pass), takes care of hoisting
399 /// loop-invariant portions of expressions, after considering what
400 /// can be folded using target addressing modes.
401 ///
expandAddToGEP(const SCEV * const * op_begin,const SCEV * const * op_end,PointerType * PTy,Type * Ty,Value * V)402 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
403                                     const SCEV *const *op_end,
404                                     PointerType *PTy,
405                                     Type *Ty,
406                                     Value *V) {
407   Type *OriginalElTy = PTy->getElementType();
408   Type *ElTy = OriginalElTy;
409   SmallVector<Value *, 4> GepIndices;
410   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
411   bool AnyNonZeroIndices = false;
412 
413   // Split AddRecs up into parts as either of the parts may be usable
414   // without the other.
415   SplitAddRecs(Ops, Ty, SE);
416 
417   Type *IntIdxTy = DL.getIndexType(PTy);
418 
419   // Descend down the pointer's type and attempt to convert the other
420   // operands into GEP indices, at each level. The first index in a GEP
421   // indexes into the array implied by the pointer operand; the rest of
422   // the indices index into the element or field type selected by the
423   // preceding index.
424   for (;;) {
425     // If the scale size is not 0, attempt to factor out a scale for
426     // array indexing.
427     SmallVector<const SCEV *, 8> ScaledOps;
428     if (ElTy->isSized()) {
429       const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
430       if (!ElSize->isZero()) {
431         SmallVector<const SCEV *, 8> NewOps;
432         for (const SCEV *Op : Ops) {
433           const SCEV *Remainder = SE.getConstant(Ty, 0);
434           if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
435             // Op now has ElSize factored out.
436             ScaledOps.push_back(Op);
437             if (!Remainder->isZero())
438               NewOps.push_back(Remainder);
439             AnyNonZeroIndices = true;
440           } else {
441             // The operand was not divisible, so add it to the list of operands
442             // we'll scan next iteration.
443             NewOps.push_back(Op);
444           }
445         }
446         // If we made any changes, update Ops.
447         if (!ScaledOps.empty()) {
448           Ops = NewOps;
449           SimplifyAddOperands(Ops, Ty, SE);
450         }
451       }
452     }
453 
454     // Record the scaled array index for this level of the type. If
455     // we didn't find any operands that could be factored, tentatively
456     // assume that element zero was selected (since the zero offset
457     // would obviously be folded away).
458     Value *Scaled = ScaledOps.empty() ?
459                     Constant::getNullValue(Ty) :
460                     expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
461     GepIndices.push_back(Scaled);
462 
463     // Collect struct field index operands.
464     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
465       bool FoundFieldNo = false;
466       // An empty struct has no fields.
467       if (STy->getNumElements() == 0) break;
468       // Field offsets are known. See if a constant offset falls within any of
469       // the struct fields.
470       if (Ops.empty())
471         break;
472       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
473         if (SE.getTypeSizeInBits(C->getType()) <= 64) {
474           const StructLayout &SL = *DL.getStructLayout(STy);
475           uint64_t FullOffset = C->getValue()->getZExtValue();
476           if (FullOffset < SL.getSizeInBytes()) {
477             unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
478             GepIndices.push_back(
479                 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
480             ElTy = STy->getTypeAtIndex(ElIdx);
481             Ops[0] =
482                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
483             AnyNonZeroIndices = true;
484             FoundFieldNo = true;
485           }
486         }
487       // If no struct field offsets were found, tentatively assume that
488       // field zero was selected (since the zero offset would obviously
489       // be folded away).
490       if (!FoundFieldNo) {
491         ElTy = STy->getTypeAtIndex(0u);
492         GepIndices.push_back(
493           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
494       }
495     }
496 
497     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
498       ElTy = ATy->getElementType();
499     else
500       break;
501   }
502 
503   // If none of the operands were convertible to proper GEP indices, cast
504   // the base to i8* and do an ugly getelementptr with that. It's still
505   // better than ptrtoint+arithmetic+inttoptr at least.
506   if (!AnyNonZeroIndices) {
507     // Cast the base to i8*.
508     V = InsertNoopCastOfTo(V,
509        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
510 
511     assert(!isa<Instruction>(V) ||
512            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
513 
514     // Expand the operands for a plain byte offset.
515     Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
516 
517     // Fold a GEP with constant operands.
518     if (Constant *CLHS = dyn_cast<Constant>(V))
519       if (Constant *CRHS = dyn_cast<Constant>(Idx))
520         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
521                                               CLHS, CRHS);
522 
523     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
524     unsigned ScanLimit = 6;
525     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
526     // Scanning starts from the last instruction before the insertion point.
527     BasicBlock::iterator IP = Builder.GetInsertPoint();
528     if (IP != BlockBegin) {
529       --IP;
530       for (; ScanLimit; --IP, --ScanLimit) {
531         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
532         // generated code.
533         if (isa<DbgInfoIntrinsic>(IP))
534           ScanLimit++;
535         if (IP->getOpcode() == Instruction::GetElementPtr &&
536             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
537           return &*IP;
538         if (IP == BlockBegin) break;
539       }
540     }
541 
542     // Save the original insertion point so we can restore it when we're done.
543     SCEVInsertPointGuard Guard(Builder, this);
544 
545     // Move the insertion point out of as many loops as we can.
546     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
547       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
548       BasicBlock *Preheader = L->getLoopPreheader();
549       if (!Preheader) break;
550 
551       // Ok, move up a level.
552       Builder.SetInsertPoint(Preheader->getTerminator());
553     }
554 
555     // Emit a GEP.
556     Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
557     rememberInstruction(GEP);
558 
559     return GEP;
560   }
561 
562   {
563     SCEVInsertPointGuard Guard(Builder, this);
564 
565     // Move the insertion point out of as many loops as we can.
566     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
567       if (!L->isLoopInvariant(V)) break;
568 
569       bool AnyIndexNotLoopInvariant = any_of(
570           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
571 
572       if (AnyIndexNotLoopInvariant)
573         break;
574 
575       BasicBlock *Preheader = L->getLoopPreheader();
576       if (!Preheader) break;
577 
578       // Ok, move up a level.
579       Builder.SetInsertPoint(Preheader->getTerminator());
580     }
581 
582     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
583     // because ScalarEvolution may have changed the address arithmetic to
584     // compute a value which is beyond the end of the allocated object.
585     Value *Casted = V;
586     if (V->getType() != PTy)
587       Casted = InsertNoopCastOfTo(Casted, PTy);
588     Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
589     Ops.push_back(SE.getUnknown(GEP));
590     rememberInstruction(GEP);
591   }
592 
593   return expand(SE.getAddExpr(Ops));
594 }
595 
expandAddToGEP(const SCEV * Op,PointerType * PTy,Type * Ty,Value * V)596 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
597                                     Value *V) {
598   const SCEV *const Ops[1] = {Op};
599   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
600 }
601 
602 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
603 /// SCEV expansion. If they are nested, this is the most nested. If they are
604 /// neighboring, pick the later.
PickMostRelevantLoop(const Loop * A,const Loop * B,DominatorTree & DT)605 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
606                                         DominatorTree &DT) {
607   if (!A) return B;
608   if (!B) return A;
609   if (A->contains(B)) return B;
610   if (B->contains(A)) return A;
611   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
612   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
613   return A; // Arbitrarily break the tie.
614 }
615 
616 /// getRelevantLoop - Get the most relevant loop associated with the given
617 /// expression, according to PickMostRelevantLoop.
getRelevantLoop(const SCEV * S)618 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
619   // Test whether we've already computed the most relevant loop for this SCEV.
620   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
621   if (!Pair.second)
622     return Pair.first->second;
623 
624   if (isa<SCEVConstant>(S))
625     // A constant has no relevant loops.
626     return nullptr;
627   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
628     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
629       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
630     // A non-instruction has no relevant loops.
631     return nullptr;
632   }
633   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
634     const Loop *L = nullptr;
635     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
636       L = AR->getLoop();
637     for (const SCEV *Op : N->operands())
638       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
639     return RelevantLoops[N] = L;
640   }
641   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
642     const Loop *Result = getRelevantLoop(C->getOperand());
643     return RelevantLoops[C] = Result;
644   }
645   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
646     const Loop *Result = PickMostRelevantLoop(
647         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
648     return RelevantLoops[D] = Result;
649   }
650   llvm_unreachable("Unexpected SCEV type!");
651 }
652 
653 namespace {
654 
655 /// LoopCompare - Compare loops by PickMostRelevantLoop.
656 class LoopCompare {
657   DominatorTree &DT;
658 public:
LoopCompare(DominatorTree & dt)659   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
660 
operator ()(std::pair<const Loop *,const SCEV * > LHS,std::pair<const Loop *,const SCEV * > RHS) const661   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
662                   std::pair<const Loop *, const SCEV *> RHS) const {
663     // Keep pointer operands sorted at the end.
664     if (LHS.second->getType()->isPointerTy() !=
665         RHS.second->getType()->isPointerTy())
666       return LHS.second->getType()->isPointerTy();
667 
668     // Compare loops with PickMostRelevantLoop.
669     if (LHS.first != RHS.first)
670       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
671 
672     // If one operand is a non-constant negative and the other is not,
673     // put the non-constant negative on the right so that a sub can
674     // be used instead of a negate and add.
675     if (LHS.second->isNonConstantNegative()) {
676       if (!RHS.second->isNonConstantNegative())
677         return false;
678     } else if (RHS.second->isNonConstantNegative())
679       return true;
680 
681     // Otherwise they are equivalent according to this comparison.
682     return false;
683   }
684 };
685 
686 }
687 
visitAddExpr(const SCEVAddExpr * S)688 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
689   Type *Ty = SE.getEffectiveSCEVType(S->getType());
690 
691   // Collect all the add operands in a loop, along with their associated loops.
692   // Iterate in reverse so that constants are emitted last, all else equal, and
693   // so that pointer operands are inserted first, which the code below relies on
694   // to form more involved GEPs.
695   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
696   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
697        E(S->op_begin()); I != E; ++I)
698     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
699 
700   // Sort by loop. Use a stable sort so that constants follow non-constants and
701   // pointer operands precede non-pointer operands.
702   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
703 
704   // Emit instructions to add all the operands. Hoist as much as possible
705   // out of loops, and form meaningful getelementptrs where possible.
706   Value *Sum = nullptr;
707   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
708     const Loop *CurLoop = I->first;
709     const SCEV *Op = I->second;
710     if (!Sum) {
711       // This is the first operand. Just expand it.
712       Sum = expand(Op);
713       ++I;
714     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
715       // The running sum expression is a pointer. Try to form a getelementptr
716       // at this level with that as the base.
717       SmallVector<const SCEV *, 4> NewOps;
718       for (; I != E && I->first == CurLoop; ++I) {
719         // If the operand is SCEVUnknown and not instructions, peek through
720         // it, to enable more of it to be folded into the GEP.
721         const SCEV *X = I->second;
722         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
723           if (!isa<Instruction>(U->getValue()))
724             X = SE.getSCEV(U->getValue());
725         NewOps.push_back(X);
726       }
727       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
728     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
729       // The running sum is an integer, and there's a pointer at this level.
730       // Try to form a getelementptr. If the running sum is instructions,
731       // use a SCEVUnknown to avoid re-analyzing them.
732       SmallVector<const SCEV *, 4> NewOps;
733       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
734                                                SE.getSCEV(Sum));
735       for (++I; I != E && I->first == CurLoop; ++I)
736         NewOps.push_back(I->second);
737       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
738     } else if (Op->isNonConstantNegative()) {
739       // Instead of doing a negate and add, just do a subtract.
740       Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
741       Sum = InsertNoopCastOfTo(Sum, Ty);
742       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
743                         /*IsSafeToHoist*/ true);
744       ++I;
745     } else {
746       // A simple add.
747       Value *W = expandCodeFor(Op, Ty);
748       Sum = InsertNoopCastOfTo(Sum, Ty);
749       // Canonicalize a constant to the RHS.
750       if (isa<Constant>(Sum)) std::swap(Sum, W);
751       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
752                         /*IsSafeToHoist*/ true);
753       ++I;
754     }
755   }
756 
757   return Sum;
758 }
759 
visitMulExpr(const SCEVMulExpr * S)760 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
761   Type *Ty = SE.getEffectiveSCEVType(S->getType());
762 
763   // Collect all the mul operands in a loop, along with their associated loops.
764   // Iterate in reverse so that constants are emitted last, all else equal.
765   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
766   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
767        E(S->op_begin()); I != E; ++I)
768     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
769 
770   // Sort by loop. Use a stable sort so that constants follow non-constants.
771   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
772 
773   // Emit instructions to mul all the operands. Hoist as much as possible
774   // out of loops.
775   Value *Prod = nullptr;
776   auto I = OpsAndLoops.begin();
777 
778   // Expand the calculation of X pow N in the following manner:
779   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
780   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
781   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
782     auto E = I;
783     // Calculate how many times the same operand from the same loop is included
784     // into this power.
785     uint64_t Exponent = 0;
786     const uint64_t MaxExponent = UINT64_MAX >> 1;
787     // No one sane will ever try to calculate such huge exponents, but if we
788     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
789     // below when the power of 2 exceeds our Exponent, and we want it to be
790     // 1u << 31 at most to not deal with unsigned overflow.
791     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
792       ++Exponent;
793       ++E;
794     }
795     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
796 
797     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
798     // that are needed into the result.
799     Value *P = expandCodeFor(I->second, Ty);
800     Value *Result = nullptr;
801     if (Exponent & 1)
802       Result = P;
803     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
804       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
805                       /*IsSafeToHoist*/ true);
806       if (Exponent & BinExp)
807         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
808                                       SCEV::FlagAnyWrap,
809                                       /*IsSafeToHoist*/ true)
810                         : P;
811     }
812 
813     I = E;
814     assert(Result && "Nothing was expanded?");
815     return Result;
816   };
817 
818   while (I != OpsAndLoops.end()) {
819     if (!Prod) {
820       // This is the first operand. Just expand it.
821       Prod = ExpandOpBinPowN();
822     } else if (I->second->isAllOnesValue()) {
823       // Instead of doing a multiply by negative one, just do a negate.
824       Prod = InsertNoopCastOfTo(Prod, Ty);
825       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
826                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
827       ++I;
828     } else {
829       // A simple mul.
830       Value *W = ExpandOpBinPowN();
831       Prod = InsertNoopCastOfTo(Prod, Ty);
832       // Canonicalize a constant to the RHS.
833       if (isa<Constant>(Prod)) std::swap(Prod, W);
834       const APInt *RHS;
835       if (match(W, m_Power2(RHS))) {
836         // Canonicalize Prod*(1<<C) to Prod<<C.
837         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
838         auto NWFlags = S->getNoWrapFlags();
839         // clear nsw flag if shl will produce poison value.
840         if (RHS->logBase2() == RHS->getBitWidth() - 1)
841           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
842         Prod = InsertBinop(Instruction::Shl, Prod,
843                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
844                            /*IsSafeToHoist*/ true);
845       } else {
846         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
847                            /*IsSafeToHoist*/ true);
848       }
849     }
850   }
851 
852   return Prod;
853 }
854 
visitUDivExpr(const SCEVUDivExpr * S)855 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
856   Type *Ty = SE.getEffectiveSCEVType(S->getType());
857 
858   Value *LHS = expandCodeFor(S->getLHS(), Ty);
859   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
860     const APInt &RHS = SC->getAPInt();
861     if (RHS.isPowerOf2())
862       return InsertBinop(Instruction::LShr, LHS,
863                          ConstantInt::get(Ty, RHS.logBase2()),
864                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
865   }
866 
867   Value *RHS = expandCodeFor(S->getRHS(), Ty);
868   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
869                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
870 }
871 
872 /// Move parts of Base into Rest to leave Base with the minimal
873 /// expression that provides a pointer operand suitable for a
874 /// GEP expansion.
ExposePointerBase(const SCEV * & Base,const SCEV * & Rest,ScalarEvolution & SE)875 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
876                               ScalarEvolution &SE) {
877   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
878     Base = A->getStart();
879     Rest = SE.getAddExpr(Rest,
880                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
881                                           A->getStepRecurrence(SE),
882                                           A->getLoop(),
883                                           A->getNoWrapFlags(SCEV::FlagNW)));
884   }
885   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
886     Base = A->getOperand(A->getNumOperands()-1);
887     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
888     NewAddOps.back() = Rest;
889     Rest = SE.getAddExpr(NewAddOps);
890     ExposePointerBase(Base, Rest, SE);
891   }
892 }
893 
894 /// Determine if this is a well-behaved chain of instructions leading back to
895 /// the PHI. If so, it may be reused by expanded expressions.
isNormalAddRecExprPHI(PHINode * PN,Instruction * IncV,const Loop * L)896 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
897                                          const Loop *L) {
898   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
899       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
900     return false;
901   // If any of the operands don't dominate the insert position, bail.
902   // Addrec operands are always loop-invariant, so this can only happen
903   // if there are instructions which haven't been hoisted.
904   if (L == IVIncInsertLoop) {
905     for (User::op_iterator OI = IncV->op_begin()+1,
906            OE = IncV->op_end(); OI != OE; ++OI)
907       if (Instruction *OInst = dyn_cast<Instruction>(OI))
908         if (!SE.DT.dominates(OInst, IVIncInsertPos))
909           return false;
910   }
911   // Advance to the next instruction.
912   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
913   if (!IncV)
914     return false;
915 
916   if (IncV->mayHaveSideEffects())
917     return false;
918 
919   if (IncV == PN)
920     return true;
921 
922   return isNormalAddRecExprPHI(PN, IncV, L);
923 }
924 
925 /// getIVIncOperand returns an induction variable increment's induction
926 /// variable operand.
927 ///
928 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
929 /// operands dominate InsertPos.
930 ///
931 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
932 /// simple patterns generated by getAddRecExprPHILiterally and
933 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
getIVIncOperand(Instruction * IncV,Instruction * InsertPos,bool allowScale)934 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
935                                            Instruction *InsertPos,
936                                            bool allowScale) {
937   if (IncV == InsertPos)
938     return nullptr;
939 
940   switch (IncV->getOpcode()) {
941   default:
942     return nullptr;
943   // Check for a simple Add/Sub or GEP of a loop invariant step.
944   case Instruction::Add:
945   case Instruction::Sub: {
946     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
947     if (!OInst || SE.DT.dominates(OInst, InsertPos))
948       return dyn_cast<Instruction>(IncV->getOperand(0));
949     return nullptr;
950   }
951   case Instruction::BitCast:
952     return dyn_cast<Instruction>(IncV->getOperand(0));
953   case Instruction::GetElementPtr:
954     for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
955       if (isa<Constant>(*I))
956         continue;
957       if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
958         if (!SE.DT.dominates(OInst, InsertPos))
959           return nullptr;
960       }
961       if (allowScale) {
962         // allow any kind of GEP as long as it can be hoisted.
963         continue;
964       }
965       // This must be a pointer addition of constants (pretty), which is already
966       // handled, or some number of address-size elements (ugly). Ugly geps
967       // have 2 operands. i1* is used by the expander to represent an
968       // address-size element.
969       if (IncV->getNumOperands() != 2)
970         return nullptr;
971       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
972       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
973           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
974         return nullptr;
975       break;
976     }
977     return dyn_cast<Instruction>(IncV->getOperand(0));
978   }
979 }
980 
981 /// If the insert point of the current builder or any of the builders on the
982 /// stack of saved builders has 'I' as its insert point, update it to point to
983 /// the instruction after 'I'.  This is intended to be used when the instruction
984 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
985 /// different block, the inconsistent insert point (with a mismatched
986 /// Instruction and Block) can lead to an instruction being inserted in a block
987 /// other than its parent.
fixupInsertPoints(Instruction * I)988 void SCEVExpander::fixupInsertPoints(Instruction *I) {
989   BasicBlock::iterator It(*I);
990   BasicBlock::iterator NewInsertPt = std::next(It);
991   if (Builder.GetInsertPoint() == It)
992     Builder.SetInsertPoint(&*NewInsertPt);
993   for (auto *InsertPtGuard : InsertPointGuards)
994     if (InsertPtGuard->GetInsertPoint() == It)
995       InsertPtGuard->SetInsertPoint(NewInsertPt);
996 }
997 
998 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
999 /// it available to other uses in this loop. Recursively hoist any operands,
1000 /// until we reach a value that dominates InsertPos.
hoistIVInc(Instruction * IncV,Instruction * InsertPos)1001 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1002   if (SE.DT.dominates(IncV, InsertPos))
1003       return true;
1004 
1005   // InsertPos must itself dominate IncV so that IncV's new position satisfies
1006   // its existing users.
1007   if (isa<PHINode>(InsertPos) ||
1008       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1009     return false;
1010 
1011   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1012     return false;
1013 
1014   // Check that the chain of IV operands leading back to Phi can be hoisted.
1015   SmallVector<Instruction*, 4> IVIncs;
1016   for(;;) {
1017     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1018     if (!Oper)
1019       return false;
1020     // IncV is safe to hoist.
1021     IVIncs.push_back(IncV);
1022     IncV = Oper;
1023     if (SE.DT.dominates(IncV, InsertPos))
1024       break;
1025   }
1026   for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1027     fixupInsertPoints(*I);
1028     (*I)->moveBefore(InsertPos);
1029   }
1030   return true;
1031 }
1032 
1033 /// Determine if this cyclic phi is in a form that would have been generated by
1034 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1035 /// as it is in a low-cost form, for example, no implied multiplication. This
1036 /// should match any patterns generated by getAddRecExprPHILiterally and
1037 /// expandAddtoGEP.
isExpandedAddRecExprPHI(PHINode * PN,Instruction * IncV,const Loop * L)1038 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1039                                            const Loop *L) {
1040   for(Instruction *IVOper = IncV;
1041       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1042                                 /*allowScale=*/false));) {
1043     if (IVOper == PN)
1044       return true;
1045   }
1046   return false;
1047 }
1048 
1049 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1050 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1051 /// need to materialize IV increments elsewhere to handle difficult situations.
expandIVInc(PHINode * PN,Value * StepV,const Loop * L,Type * ExpandTy,Type * IntTy,bool useSubtract)1052 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1053                                  Type *ExpandTy, Type *IntTy,
1054                                  bool useSubtract) {
1055   Value *IncV;
1056   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1057   if (ExpandTy->isPointerTy()) {
1058     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1059     // If the step isn't constant, don't use an implicitly scaled GEP, because
1060     // that would require a multiply inside the loop.
1061     if (!isa<ConstantInt>(StepV))
1062       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1063                                   GEPPtrTy->getAddressSpace());
1064     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1065     if (IncV->getType() != PN->getType()) {
1066       IncV = Builder.CreateBitCast(IncV, PN->getType());
1067       rememberInstruction(IncV);
1068     }
1069   } else {
1070     IncV = useSubtract ?
1071       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1072       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1073     rememberInstruction(IncV);
1074   }
1075   return IncV;
1076 }
1077 
1078 /// Hoist the addrec instruction chain rooted in the loop phi above the
1079 /// position. This routine assumes that this is possible (has been checked).
hoistBeforePos(DominatorTree * DT,Instruction * InstToHoist,Instruction * Pos,PHINode * LoopPhi)1080 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1081                                   Instruction *Pos, PHINode *LoopPhi) {
1082   do {
1083     if (DT->dominates(InstToHoist, Pos))
1084       break;
1085     // Make sure the increment is where we want it. But don't move it
1086     // down past a potential existing post-inc user.
1087     fixupInsertPoints(InstToHoist);
1088     InstToHoist->moveBefore(Pos);
1089     Pos = InstToHoist;
1090     InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1091   } while (InstToHoist != LoopPhi);
1092 }
1093 
1094 /// Check whether we can cheaply express the requested SCEV in terms of
1095 /// the available PHI SCEV by truncation and/or inversion of the step.
canBeCheaplyTransformed(ScalarEvolution & SE,const SCEVAddRecExpr * Phi,const SCEVAddRecExpr * Requested,bool & InvertStep)1096 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1097                                     const SCEVAddRecExpr *Phi,
1098                                     const SCEVAddRecExpr *Requested,
1099                                     bool &InvertStep) {
1100   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1101   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1102 
1103   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1104     return false;
1105 
1106   // Try truncate it if necessary.
1107   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1108   if (!Phi)
1109     return false;
1110 
1111   // Check whether truncation will help.
1112   if (Phi == Requested) {
1113     InvertStep = false;
1114     return true;
1115   }
1116 
1117   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1118   if (SE.getAddExpr(Requested->getStart(),
1119                     SE.getNegativeSCEV(Requested)) == Phi) {
1120     InvertStep = true;
1121     return true;
1122   }
1123 
1124   return false;
1125 }
1126 
IsIncrementNSW(ScalarEvolution & SE,const SCEVAddRecExpr * AR)1127 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1128   if (!isa<IntegerType>(AR->getType()))
1129     return false;
1130 
1131   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1132   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1133   const SCEV *Step = AR->getStepRecurrence(SE);
1134   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1135                                             SE.getSignExtendExpr(AR, WideTy));
1136   const SCEV *ExtendAfterOp =
1137     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1138   return ExtendAfterOp == OpAfterExtend;
1139 }
1140 
IsIncrementNUW(ScalarEvolution & SE,const SCEVAddRecExpr * AR)1141 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1142   if (!isa<IntegerType>(AR->getType()))
1143     return false;
1144 
1145   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1146   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1147   const SCEV *Step = AR->getStepRecurrence(SE);
1148   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1149                                             SE.getZeroExtendExpr(AR, WideTy));
1150   const SCEV *ExtendAfterOp =
1151     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1152   return ExtendAfterOp == OpAfterExtend;
1153 }
1154 
1155 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1156 /// the base addrec, which is the addrec without any non-loop-dominating
1157 /// values, and return the PHI.
1158 PHINode *
getAddRecExprPHILiterally(const SCEVAddRecExpr * Normalized,const Loop * L,Type * ExpandTy,Type * IntTy,Type * & TruncTy,bool & InvertStep)1159 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1160                                         const Loop *L,
1161                                         Type *ExpandTy,
1162                                         Type *IntTy,
1163                                         Type *&TruncTy,
1164                                         bool &InvertStep) {
1165   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1166 
1167   // Reuse a previously-inserted PHI, if present.
1168   BasicBlock *LatchBlock = L->getLoopLatch();
1169   if (LatchBlock) {
1170     PHINode *AddRecPhiMatch = nullptr;
1171     Instruction *IncV = nullptr;
1172     TruncTy = nullptr;
1173     InvertStep = false;
1174 
1175     // Only try partially matching scevs that need truncation and/or
1176     // step-inversion if we know this loop is outside the current loop.
1177     bool TryNonMatchingSCEV =
1178         IVIncInsertLoop &&
1179         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1180 
1181     for (PHINode &PN : L->getHeader()->phis()) {
1182       if (!SE.isSCEVable(PN.getType()))
1183         continue;
1184 
1185       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1186       if (!PhiSCEV)
1187         continue;
1188 
1189       bool IsMatchingSCEV = PhiSCEV == Normalized;
1190       // We only handle truncation and inversion of phi recurrences for the
1191       // expanded expression if the expanded expression's loop dominates the
1192       // loop we insert to. Check now, so we can bail out early.
1193       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1194           continue;
1195 
1196       // TODO: this possibly can be reworked to avoid this cast at all.
1197       Instruction *TempIncV =
1198           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1199       if (!TempIncV)
1200         continue;
1201 
1202       // Check whether we can reuse this PHI node.
1203       if (LSRMode) {
1204         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1205           continue;
1206         if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1207           continue;
1208       } else {
1209         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1210           continue;
1211       }
1212 
1213       // Stop if we have found an exact match SCEV.
1214       if (IsMatchingSCEV) {
1215         IncV = TempIncV;
1216         TruncTy = nullptr;
1217         InvertStep = false;
1218         AddRecPhiMatch = &PN;
1219         break;
1220       }
1221 
1222       // Try whether the phi can be translated into the requested form
1223       // (truncated and/or offset by a constant).
1224       if ((!TruncTy || InvertStep) &&
1225           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1226         // Record the phi node. But don't stop we might find an exact match
1227         // later.
1228         AddRecPhiMatch = &PN;
1229         IncV = TempIncV;
1230         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1231       }
1232     }
1233 
1234     if (AddRecPhiMatch) {
1235       // Potentially, move the increment. We have made sure in
1236       // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1237       if (L == IVIncInsertLoop)
1238         hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1239 
1240       // Ok, the add recurrence looks usable.
1241       // Remember this PHI, even in post-inc mode.
1242       InsertedValues.insert(AddRecPhiMatch);
1243       // Remember the increment.
1244       rememberInstruction(IncV);
1245       return AddRecPhiMatch;
1246     }
1247   }
1248 
1249   // Save the original insertion point so we can restore it when we're done.
1250   SCEVInsertPointGuard Guard(Builder, this);
1251 
1252   // Another AddRec may need to be recursively expanded below. For example, if
1253   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1254   // loop. Remove this loop from the PostIncLoops set before expanding such
1255   // AddRecs. Otherwise, we cannot find a valid position for the step
1256   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1257   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1258   // so it's not worth implementing SmallPtrSet::swap.
1259   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1260   PostIncLoops.clear();
1261 
1262   // Expand code for the start value into the loop preheader.
1263   assert(L->getLoopPreheader() &&
1264          "Can't expand add recurrences without a loop preheader!");
1265   Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1266                                 L->getLoopPreheader()->getTerminator());
1267 
1268   // StartV must have been be inserted into L's preheader to dominate the new
1269   // phi.
1270   assert(!isa<Instruction>(StartV) ||
1271          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1272                                  L->getHeader()));
1273 
1274   // Expand code for the step value. Do this before creating the PHI so that PHI
1275   // reuse code doesn't see an incomplete PHI.
1276   const SCEV *Step = Normalized->getStepRecurrence(SE);
1277   // If the stride is negative, insert a sub instead of an add for the increment
1278   // (unless it's a constant, because subtracts of constants are canonicalized
1279   // to adds).
1280   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1281   if (useSubtract)
1282     Step = SE.getNegativeSCEV(Step);
1283   // Expand the step somewhere that dominates the loop header.
1284   Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1285 
1286   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1287   // we actually do emit an addition.  It does not apply if we emit a
1288   // subtraction.
1289   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1290   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1291 
1292   // Create the PHI.
1293   BasicBlock *Header = L->getHeader();
1294   Builder.SetInsertPoint(Header, Header->begin());
1295   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1296   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1297                                   Twine(IVName) + ".iv");
1298   rememberInstruction(PN);
1299 
1300   // Create the step instructions and populate the PHI.
1301   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1302     BasicBlock *Pred = *HPI;
1303 
1304     // Add a start value.
1305     if (!L->contains(Pred)) {
1306       PN->addIncoming(StartV, Pred);
1307       continue;
1308     }
1309 
1310     // Create a step value and add it to the PHI.
1311     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1312     // instructions at IVIncInsertPos.
1313     Instruction *InsertPos = L == IVIncInsertLoop ?
1314       IVIncInsertPos : Pred->getTerminator();
1315     Builder.SetInsertPoint(InsertPos);
1316     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1317 
1318     if (isa<OverflowingBinaryOperator>(IncV)) {
1319       if (IncrementIsNUW)
1320         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1321       if (IncrementIsNSW)
1322         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1323     }
1324     PN->addIncoming(IncV, Pred);
1325   }
1326 
1327   // After expanding subexpressions, restore the PostIncLoops set so the caller
1328   // can ensure that IVIncrement dominates the current uses.
1329   PostIncLoops = SavedPostIncLoops;
1330 
1331   // Remember this PHI, even in post-inc mode.
1332   InsertedValues.insert(PN);
1333 
1334   return PN;
1335 }
1336 
expandAddRecExprLiterally(const SCEVAddRecExpr * S)1337 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1338   Type *STy = S->getType();
1339   Type *IntTy = SE.getEffectiveSCEVType(STy);
1340   const Loop *L = S->getLoop();
1341 
1342   // Determine a normalized form of this expression, which is the expression
1343   // before any post-inc adjustment is made.
1344   const SCEVAddRecExpr *Normalized = S;
1345   if (PostIncLoops.count(L)) {
1346     PostIncLoopSet Loops;
1347     Loops.insert(L);
1348     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1349   }
1350 
1351   // Strip off any non-loop-dominating component from the addrec start.
1352   const SCEV *Start = Normalized->getStart();
1353   const SCEV *PostLoopOffset = nullptr;
1354   if (!SE.properlyDominates(Start, L->getHeader())) {
1355     PostLoopOffset = Start;
1356     Start = SE.getConstant(Normalized->getType(), 0);
1357     Normalized = cast<SCEVAddRecExpr>(
1358       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1359                        Normalized->getLoop(),
1360                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1361   }
1362 
1363   // Strip off any non-loop-dominating component from the addrec step.
1364   const SCEV *Step = Normalized->getStepRecurrence(SE);
1365   const SCEV *PostLoopScale = nullptr;
1366   if (!SE.dominates(Step, L->getHeader())) {
1367     PostLoopScale = Step;
1368     Step = SE.getConstant(Normalized->getType(), 1);
1369     if (!Start->isZero()) {
1370         // The normalization below assumes that Start is constant zero, so if
1371         // it isn't re-associate Start to PostLoopOffset.
1372         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1373         PostLoopOffset = Start;
1374         Start = SE.getConstant(Normalized->getType(), 0);
1375     }
1376     Normalized =
1377       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1378                              Start, Step, Normalized->getLoop(),
1379                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1380   }
1381 
1382   // Expand the core addrec. If we need post-loop scaling, force it to
1383   // expand to an integer type to avoid the need for additional casting.
1384   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1385   // We can't use a pointer type for the addrec if the pointer type is
1386   // non-integral.
1387   Type *AddRecPHIExpandTy =
1388       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1389 
1390   // In some cases, we decide to reuse an existing phi node but need to truncate
1391   // it and/or invert the step.
1392   Type *TruncTy = nullptr;
1393   bool InvertStep = false;
1394   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1395                                           IntTy, TruncTy, InvertStep);
1396 
1397   // Accommodate post-inc mode, if necessary.
1398   Value *Result;
1399   if (!PostIncLoops.count(L))
1400     Result = PN;
1401   else {
1402     // In PostInc mode, use the post-incremented value.
1403     BasicBlock *LatchBlock = L->getLoopLatch();
1404     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1405     Result = PN->getIncomingValueForBlock(LatchBlock);
1406 
1407     // For an expansion to use the postinc form, the client must call
1408     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1409     // or dominated by IVIncInsertPos.
1410     if (isa<Instruction>(Result) &&
1411         !SE.DT.dominates(cast<Instruction>(Result),
1412                          &*Builder.GetInsertPoint())) {
1413       // The induction variable's postinc expansion does not dominate this use.
1414       // IVUsers tries to prevent this case, so it is rare. However, it can
1415       // happen when an IVUser outside the loop is not dominated by the latch
1416       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1417       // all cases. Consider a phi outside whose operand is replaced during
1418       // expansion with the value of the postinc user. Without fundamentally
1419       // changing the way postinc users are tracked, the only remedy is
1420       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1421       // but hopefully expandCodeFor handles that.
1422       bool useSubtract =
1423         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1424       if (useSubtract)
1425         Step = SE.getNegativeSCEV(Step);
1426       Value *StepV;
1427       {
1428         // Expand the step somewhere that dominates the loop header.
1429         SCEVInsertPointGuard Guard(Builder, this);
1430         StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1431       }
1432       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1433     }
1434   }
1435 
1436   // We have decided to reuse an induction variable of a dominating loop. Apply
1437   // truncation and/or inversion of the step.
1438   if (TruncTy) {
1439     Type *ResTy = Result->getType();
1440     // Normalize the result type.
1441     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1442       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1443     // Truncate the result.
1444     if (TruncTy != Result->getType()) {
1445       Result = Builder.CreateTrunc(Result, TruncTy);
1446       rememberInstruction(Result);
1447     }
1448     // Invert the result.
1449     if (InvertStep) {
1450       Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
1451                                  Result);
1452       rememberInstruction(Result);
1453     }
1454   }
1455 
1456   // Re-apply any non-loop-dominating scale.
1457   if (PostLoopScale) {
1458     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1459     Result = InsertNoopCastOfTo(Result, IntTy);
1460     Result = Builder.CreateMul(Result,
1461                                expandCodeFor(PostLoopScale, IntTy));
1462     rememberInstruction(Result);
1463   }
1464 
1465   // Re-apply any non-loop-dominating offset.
1466   if (PostLoopOffset) {
1467     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1468       if (Result->getType()->isIntegerTy()) {
1469         Value *Base = expandCodeFor(PostLoopOffset, ExpandTy);
1470         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1471       } else {
1472         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1473       }
1474     } else {
1475       Result = InsertNoopCastOfTo(Result, IntTy);
1476       Result = Builder.CreateAdd(Result,
1477                                  expandCodeFor(PostLoopOffset, IntTy));
1478       rememberInstruction(Result);
1479     }
1480   }
1481 
1482   return Result;
1483 }
1484 
visitAddRecExpr(const SCEVAddRecExpr * S)1485 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1486   // In canonical mode we compute the addrec as an expression of a canonical IV
1487   // using evaluateAtIteration and expand the resulting SCEV expression. This
1488   // way we avoid introducing new IVs to carry on the comutation of the addrec
1489   // throughout the loop.
1490   //
1491   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1492   // type wider than the addrec itself. Emitting a canonical IV of the
1493   // proper type might produce non-legal types, for example expanding an i64
1494   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1495   // back to non-canonical mode for nested addrecs.
1496   if (!CanonicalMode || (S->getNumOperands() > 2))
1497     return expandAddRecExprLiterally(S);
1498 
1499   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1500   const Loop *L = S->getLoop();
1501 
1502   // First check for an existing canonical IV in a suitable type.
1503   PHINode *CanonicalIV = nullptr;
1504   if (PHINode *PN = L->getCanonicalInductionVariable())
1505     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1506       CanonicalIV = PN;
1507 
1508   // Rewrite an AddRec in terms of the canonical induction variable, if
1509   // its type is more narrow.
1510   if (CanonicalIV &&
1511       SE.getTypeSizeInBits(CanonicalIV->getType()) >
1512       SE.getTypeSizeInBits(Ty)) {
1513     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1514     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1515       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1516     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1517                                        S->getNoWrapFlags(SCEV::FlagNW)));
1518     BasicBlock::iterator NewInsertPt =
1519         findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
1520     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1521                       &*NewInsertPt);
1522     return V;
1523   }
1524 
1525   // {X,+,F} --> X + {0,+,F}
1526   if (!S->getStart()->isZero()) {
1527     SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1528     NewOps[0] = SE.getConstant(Ty, 0);
1529     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1530                                         S->getNoWrapFlags(SCEV::FlagNW));
1531 
1532     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1533     // comments on expandAddToGEP for details.
1534     const SCEV *Base = S->getStart();
1535     // Dig into the expression to find the pointer base for a GEP.
1536     const SCEV *ExposedRest = Rest;
1537     ExposePointerBase(Base, ExposedRest, SE);
1538     // If we found a pointer, expand the AddRec with a GEP.
1539     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1540       // Make sure the Base isn't something exotic, such as a multiplied
1541       // or divided pointer value. In those cases, the result type isn't
1542       // actually a pointer type.
1543       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1544         Value *StartV = expand(Base);
1545         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1546         return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
1547       }
1548     }
1549 
1550     // Just do a normal add. Pre-expand the operands to suppress folding.
1551     //
1552     // The LHS and RHS values are factored out of the expand call to make the
1553     // output independent of the argument evaluation order.
1554     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1555     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1556     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1557   }
1558 
1559   // If we don't yet have a canonical IV, create one.
1560   if (!CanonicalIV) {
1561     // Create and insert the PHI node for the induction variable in the
1562     // specified loop.
1563     BasicBlock *Header = L->getHeader();
1564     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1565     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1566                                   &Header->front());
1567     rememberInstruction(CanonicalIV);
1568 
1569     SmallSet<BasicBlock *, 4> PredSeen;
1570     Constant *One = ConstantInt::get(Ty, 1);
1571     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1572       BasicBlock *HP = *HPI;
1573       if (!PredSeen.insert(HP).second) {
1574         // There must be an incoming value for each predecessor, even the
1575         // duplicates!
1576         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1577         continue;
1578       }
1579 
1580       if (L->contains(HP)) {
1581         // Insert a unit add instruction right before the terminator
1582         // corresponding to the back-edge.
1583         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1584                                                      "indvar.next",
1585                                                      HP->getTerminator());
1586         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1587         rememberInstruction(Add);
1588         CanonicalIV->addIncoming(Add, HP);
1589       } else {
1590         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1591       }
1592     }
1593   }
1594 
1595   // {0,+,1} --> Insert a canonical induction variable into the loop!
1596   if (S->isAffine() && S->getOperand(1)->isOne()) {
1597     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1598            "IVs with types different from the canonical IV should "
1599            "already have been handled!");
1600     return CanonicalIV;
1601   }
1602 
1603   // {0,+,F} --> {0,+,1} * F
1604 
1605   // If this is a simple linear addrec, emit it now as a special case.
1606   if (S->isAffine())    // {0,+,F} --> i*F
1607     return
1608       expand(SE.getTruncateOrNoop(
1609         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1610                       SE.getNoopOrAnyExtend(S->getOperand(1),
1611                                             CanonicalIV->getType())),
1612         Ty));
1613 
1614   // If this is a chain of recurrences, turn it into a closed form, using the
1615   // folders, then expandCodeFor the closed form.  This allows the folders to
1616   // simplify the expression without having to build a bunch of special code
1617   // into this folder.
1618   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1619 
1620   // Promote S up to the canonical IV type, if the cast is foldable.
1621   const SCEV *NewS = S;
1622   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1623   if (isa<SCEVAddRecExpr>(Ext))
1624     NewS = Ext;
1625 
1626   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1627   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1628 
1629   // Truncate the result down to the original type, if needed.
1630   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1631   return expand(T);
1632 }
1633 
visitTruncateExpr(const SCEVTruncateExpr * S)1634 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1635   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1636   Value *V = expandCodeFor(S->getOperand(),
1637                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1638   Value *I = Builder.CreateTrunc(V, Ty);
1639   rememberInstruction(I);
1640   return I;
1641 }
1642 
visitZeroExtendExpr(const SCEVZeroExtendExpr * S)1643 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1644   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1645   Value *V = expandCodeFor(S->getOperand(),
1646                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1647   Value *I = Builder.CreateZExt(V, Ty);
1648   rememberInstruction(I);
1649   return I;
1650 }
1651 
visitSignExtendExpr(const SCEVSignExtendExpr * S)1652 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1653   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1654   Value *V = expandCodeFor(S->getOperand(),
1655                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1656   Value *I = Builder.CreateSExt(V, Ty);
1657   rememberInstruction(I);
1658   return I;
1659 }
1660 
visitSMaxExpr(const SCEVSMaxExpr * S)1661 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1662   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1663   Type *Ty = LHS->getType();
1664   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1665     // In the case of mixed integer and pointer types, do the
1666     // rest of the comparisons as integer.
1667     Type *OpTy = S->getOperand(i)->getType();
1668     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1669       Ty = SE.getEffectiveSCEVType(Ty);
1670       LHS = InsertNoopCastOfTo(LHS, Ty);
1671     }
1672     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1673     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1674     rememberInstruction(ICmp);
1675     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1676     rememberInstruction(Sel);
1677     LHS = Sel;
1678   }
1679   // In the case of mixed integer and pointer types, cast the
1680   // final result back to the pointer type.
1681   if (LHS->getType() != S->getType())
1682     LHS = InsertNoopCastOfTo(LHS, S->getType());
1683   return LHS;
1684 }
1685 
visitUMaxExpr(const SCEVUMaxExpr * S)1686 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1687   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1688   Type *Ty = LHS->getType();
1689   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1690     // In the case of mixed integer and pointer types, do the
1691     // rest of the comparisons as integer.
1692     Type *OpTy = S->getOperand(i)->getType();
1693     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1694       Ty = SE.getEffectiveSCEVType(Ty);
1695       LHS = InsertNoopCastOfTo(LHS, Ty);
1696     }
1697     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1698     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1699     rememberInstruction(ICmp);
1700     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1701     rememberInstruction(Sel);
1702     LHS = Sel;
1703   }
1704   // In the case of mixed integer and pointer types, cast the
1705   // final result back to the pointer type.
1706   if (LHS->getType() != S->getType())
1707     LHS = InsertNoopCastOfTo(LHS, S->getType());
1708   return LHS;
1709 }
1710 
visitSMinExpr(const SCEVSMinExpr * S)1711 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1712   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1713   Type *Ty = LHS->getType();
1714   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1715     // In the case of mixed integer and pointer types, do the
1716     // rest of the comparisons as integer.
1717     Type *OpTy = S->getOperand(i)->getType();
1718     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1719       Ty = SE.getEffectiveSCEVType(Ty);
1720       LHS = InsertNoopCastOfTo(LHS, Ty);
1721     }
1722     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1723     Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1724     rememberInstruction(ICmp);
1725     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1726     rememberInstruction(Sel);
1727     LHS = Sel;
1728   }
1729   // In the case of mixed integer and pointer types, cast the
1730   // final result back to the pointer type.
1731   if (LHS->getType() != S->getType())
1732     LHS = InsertNoopCastOfTo(LHS, S->getType());
1733   return LHS;
1734 }
1735 
visitUMinExpr(const SCEVUMinExpr * S)1736 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1737   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1738   Type *Ty = LHS->getType();
1739   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1740     // In the case of mixed integer and pointer types, do the
1741     // rest of the comparisons as integer.
1742     Type *OpTy = S->getOperand(i)->getType();
1743     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1744       Ty = SE.getEffectiveSCEVType(Ty);
1745       LHS = InsertNoopCastOfTo(LHS, Ty);
1746     }
1747     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1748     Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1749     rememberInstruction(ICmp);
1750     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1751     rememberInstruction(Sel);
1752     LHS = Sel;
1753   }
1754   // In the case of mixed integer and pointer types, cast the
1755   // final result back to the pointer type.
1756   if (LHS->getType() != S->getType())
1757     LHS = InsertNoopCastOfTo(LHS, S->getType());
1758   return LHS;
1759 }
1760 
expandCodeFor(const SCEV * SH,Type * Ty,Instruction * IP)1761 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1762                                    Instruction *IP) {
1763   setInsertPoint(IP);
1764   return expandCodeFor(SH, Ty);
1765 }
1766 
expandCodeFor(const SCEV * SH,Type * Ty)1767 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1768   // Expand the code for this SCEV.
1769   Value *V = expand(SH);
1770   if (Ty) {
1771     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1772            "non-trivial casts should be done with the SCEVs directly!");
1773     V = InsertNoopCastOfTo(V, Ty);
1774   }
1775   return V;
1776 }
1777 
1778 ScalarEvolution::ValueOffsetPair
FindValueInExprValueMap(const SCEV * S,const Instruction * InsertPt)1779 SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1780                                       const Instruction *InsertPt) {
1781   SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
1782   // If the expansion is not in CanonicalMode, and the SCEV contains any
1783   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1784   if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1785     // If S is scConstant, it may be worse to reuse an existing Value.
1786     if (S->getSCEVType() != scConstant && Set) {
1787       // Choose a Value from the set which dominates the insertPt.
1788       // insertPt should be inside the Value's parent loop so as not to break
1789       // the LCSSA form.
1790       for (auto const &VOPair : *Set) {
1791         Value *V = VOPair.first;
1792         ConstantInt *Offset = VOPair.second;
1793         Instruction *EntInst = nullptr;
1794         if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1795             S->getType() == V->getType() &&
1796             EntInst->getFunction() == InsertPt->getFunction() &&
1797             SE.DT.dominates(EntInst, InsertPt) &&
1798             (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1799              SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1800           return {V, Offset};
1801       }
1802     }
1803   }
1804   return {nullptr, nullptr};
1805 }
1806 
1807 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1808 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1809 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1810 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1811 // the expansion will try to reuse Value from ExprValueMap, and only when it
1812 // fails, expand the SCEV literally.
expand(const SCEV * S)1813 Value *SCEVExpander::expand(const SCEV *S) {
1814   // Compute an insertion point for this SCEV object. Hoist the instructions
1815   // as far out in the loop nest as possible.
1816   Instruction *InsertPt = &*Builder.GetInsertPoint();
1817 
1818   // We can move insertion point only if there is no div or rem operations
1819   // otherwise we are risky to move it over the check for zero denominator.
1820   auto SafeToHoist = [](const SCEV *S) {
1821     return !SCEVExprContains(S, [](const SCEV *S) {
1822               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1823                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1824                   // Division by non-zero constants can be hoisted.
1825                   return SC->getValue()->isZero();
1826                 // All other divisions should not be moved as they may be
1827                 // divisions by zero and should be kept within the
1828                 // conditions of the surrounding loops that guard their
1829                 // execution (see PR35406).
1830                 return true;
1831               }
1832               return false;
1833             });
1834   };
1835   if (SafeToHoist(S)) {
1836     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1837          L = L->getParentLoop()) {
1838       if (SE.isLoopInvariant(S, L)) {
1839         if (!L) break;
1840         if (BasicBlock *Preheader = L->getLoopPreheader())
1841           InsertPt = Preheader->getTerminator();
1842         else
1843           // LSR sets the insertion point for AddRec start/step values to the
1844           // block start to simplify value reuse, even though it's an invalid
1845           // position. SCEVExpander must correct for this in all cases.
1846           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1847       } else {
1848         // If the SCEV is computable at this level, insert it into the header
1849         // after the PHIs (and after any other instructions that we've inserted
1850         // there) so that it is guaranteed to dominate any user inside the loop.
1851         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1852           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1853         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1854                (isInsertedInstruction(InsertPt) ||
1855                 isa<DbgInfoIntrinsic>(InsertPt)))
1856           InsertPt = &*std::next(InsertPt->getIterator());
1857         break;
1858       }
1859     }
1860   }
1861 
1862   // IndVarSimplify sometimes sets the insertion point at the block start, even
1863   // when there are PHIs at that point.  We must correct for this.
1864   if (isa<PHINode>(*InsertPt))
1865     InsertPt = &*InsertPt->getParent()->getFirstInsertionPt();
1866 
1867   // Check to see if we already expanded this here.
1868   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1869   if (I != InsertedExpressions.end())
1870     return I->second;
1871 
1872   SCEVInsertPointGuard Guard(Builder, this);
1873   Builder.SetInsertPoint(InsertPt);
1874 
1875   // Expand the expression into instructions.
1876   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1877   Value *V = VO.first;
1878 
1879   if (!V)
1880     V = visit(S);
1881   else if (VO.second) {
1882     if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1883       Type *Ety = Vty->getPointerElementType();
1884       int64_t Offset = VO.second->getSExtValue();
1885       int64_t ESize = SE.getTypeSizeInBits(Ety);
1886       if ((Offset * 8) % ESize == 0) {
1887         ConstantInt *Idx =
1888             ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
1889         V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
1890       } else {
1891         ConstantInt *Idx =
1892             ConstantInt::getSigned(VO.second->getType(), -Offset);
1893         unsigned AS = Vty->getAddressSpace();
1894         V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
1895         V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
1896                               "uglygep");
1897         V = Builder.CreateBitCast(V, Vty);
1898       }
1899     } else {
1900       V = Builder.CreateSub(V, VO.second);
1901     }
1902   }
1903   // Remember the expanded value for this SCEV at this location.
1904   //
1905   // This is independent of PostIncLoops. The mapped value simply materializes
1906   // the expression at this insertion point. If the mapped value happened to be
1907   // a postinc expansion, it could be reused by a non-postinc user, but only if
1908   // its insertion point was already at the head of the loop.
1909   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1910   return V;
1911 }
1912 
rememberInstruction(Value * I)1913 void SCEVExpander::rememberInstruction(Value *I) {
1914   if (!PostIncLoops.empty())
1915     InsertedPostIncValues.insert(I);
1916   else
1917     InsertedValues.insert(I);
1918 }
1919 
1920 /// getOrInsertCanonicalInductionVariable - This method returns the
1921 /// canonical induction variable of the specified type for the specified
1922 /// loop (inserting one if there is none).  A canonical induction variable
1923 /// starts at zero and steps by one on each iteration.
1924 PHINode *
getOrInsertCanonicalInductionVariable(const Loop * L,Type * Ty)1925 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1926                                                     Type *Ty) {
1927   assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1928 
1929   // Build a SCEV for {0,+,1}<L>.
1930   // Conservatively use FlagAnyWrap for now.
1931   const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1932                                    SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1933 
1934   // Emit code for it.
1935   SCEVInsertPointGuard Guard(Builder, this);
1936   PHINode *V =
1937       cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front()));
1938 
1939   return V;
1940 }
1941 
1942 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1943 /// replace them with their most canonical representative. Return the number of
1944 /// phis eliminated.
1945 ///
1946 /// This does not depend on any SCEVExpander state but should be used in
1947 /// the same context that SCEVExpander is used.
1948 unsigned
replaceCongruentIVs(Loop * L,const DominatorTree * DT,SmallVectorImpl<WeakTrackingVH> & DeadInsts,const TargetTransformInfo * TTI)1949 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1950                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1951                                   const TargetTransformInfo *TTI) {
1952   // Find integer phis in order of increasing width.
1953   SmallVector<PHINode*, 8> Phis;
1954   for (PHINode &PN : L->getHeader()->phis())
1955     Phis.push_back(&PN);
1956 
1957   if (TTI)
1958     llvm::sort(Phis, [](Value *LHS, Value *RHS) {
1959       // Put pointers at the back and make sure pointer < pointer = false.
1960       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1961         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1962       return RHS->getType()->getPrimitiveSizeInBits() <
1963              LHS->getType()->getPrimitiveSizeInBits();
1964     });
1965 
1966   unsigned NumElim = 0;
1967   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1968   // Process phis from wide to narrow. Map wide phis to their truncation
1969   // so narrow phis can reuse them.
1970   for (PHINode *Phi : Phis) {
1971     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1972       if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1973         return V;
1974       if (!SE.isSCEVable(PN->getType()))
1975         return nullptr;
1976       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1977       if (!Const)
1978         return nullptr;
1979       return Const->getValue();
1980     };
1981 
1982     // Fold constant phis. They may be congruent to other constant phis and
1983     // would confuse the logic below that expects proper IVs.
1984     if (Value *V = SimplifyPHINode(Phi)) {
1985       if (V->getType() != Phi->getType())
1986         continue;
1987       Phi->replaceAllUsesWith(V);
1988       DeadInsts.emplace_back(Phi);
1989       ++NumElim;
1990       DEBUG_WITH_TYPE(DebugType, dbgs()
1991                       << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
1992       continue;
1993     }
1994 
1995     if (!SE.isSCEVable(Phi->getType()))
1996       continue;
1997 
1998     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1999     if (!OrigPhiRef) {
2000       OrigPhiRef = Phi;
2001       if (Phi->getType()->isIntegerTy() && TTI &&
2002           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
2003         // This phi can be freely truncated to the narrowest phi type. Map the
2004         // truncated expression to it so it will be reused for narrow types.
2005         const SCEV *TruncExpr =
2006           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
2007         ExprToIVMap[TruncExpr] = Phi;
2008       }
2009       continue;
2010     }
2011 
2012     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
2013     // sense.
2014     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
2015       continue;
2016 
2017     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
2018       Instruction *OrigInc = dyn_cast<Instruction>(
2019           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
2020       Instruction *IsomorphicInc =
2021           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
2022 
2023       if (OrigInc && IsomorphicInc) {
2024         // If this phi has the same width but is more canonical, replace the
2025         // original with it. As part of the "more canonical" determination,
2026         // respect a prior decision to use an IV chain.
2027         if (OrigPhiRef->getType() == Phi->getType() &&
2028             !(ChainedPhis.count(Phi) ||
2029               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
2030             (ChainedPhis.count(Phi) ||
2031              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
2032           std::swap(OrigPhiRef, Phi);
2033           std::swap(OrigInc, IsomorphicInc);
2034         }
2035         // Replacing the congruent phi is sufficient because acyclic
2036         // redundancy elimination, CSE/GVN, should handle the
2037         // rest. However, once SCEV proves that a phi is congruent,
2038         // it's often the head of an IV user cycle that is isomorphic
2039         // with the original phi. It's worth eagerly cleaning up the
2040         // common case of a single IV increment so that DeleteDeadPHIs
2041         // can remove cycles that had postinc uses.
2042         const SCEV *TruncExpr =
2043             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2044         if (OrigInc != IsomorphicInc &&
2045             TruncExpr == SE.getSCEV(IsomorphicInc) &&
2046             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2047             hoistIVInc(OrigInc, IsomorphicInc)) {
2048           DEBUG_WITH_TYPE(DebugType,
2049                           dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2050                                  << *IsomorphicInc << '\n');
2051           Value *NewInc = OrigInc;
2052           if (OrigInc->getType() != IsomorphicInc->getType()) {
2053             Instruction *IP = nullptr;
2054             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2055               IP = &*PN->getParent()->getFirstInsertionPt();
2056             else
2057               IP = OrigInc->getNextNode();
2058 
2059             IRBuilder<> Builder(IP);
2060             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2061             NewInc = Builder.CreateTruncOrBitCast(
2062                 OrigInc, IsomorphicInc->getType(), IVName);
2063           }
2064           IsomorphicInc->replaceAllUsesWith(NewInc);
2065           DeadInsts.emplace_back(IsomorphicInc);
2066         }
2067       }
2068     }
2069     DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
2070                                       << *Phi << '\n');
2071     ++NumElim;
2072     Value *NewIV = OrigPhiRef;
2073     if (OrigPhiRef->getType() != Phi->getType()) {
2074       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2075       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2076       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2077     }
2078     Phi->replaceAllUsesWith(NewIV);
2079     DeadInsts.emplace_back(Phi);
2080   }
2081   return NumElim;
2082 }
2083 
getExactExistingExpansion(const SCEV * S,const Instruction * At,Loop * L)2084 Value *SCEVExpander::getExactExistingExpansion(const SCEV *S,
2085                                                const Instruction *At, Loop *L) {
2086   Optional<ScalarEvolution::ValueOffsetPair> VO =
2087       getRelatedExistingExpansion(S, At, L);
2088   if (VO && VO.getValue().second == nullptr)
2089     return VO.getValue().first;
2090   return nullptr;
2091 }
2092 
2093 Optional<ScalarEvolution::ValueOffsetPair>
getRelatedExistingExpansion(const SCEV * S,const Instruction * At,Loop * L)2094 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2095                                           Loop *L) {
2096   using namespace llvm::PatternMatch;
2097 
2098   SmallVector<BasicBlock *, 4> ExitingBlocks;
2099   L->getExitingBlocks(ExitingBlocks);
2100 
2101   // Look for suitable value in simple conditions at the loop exits.
2102   for (BasicBlock *BB : ExitingBlocks) {
2103     ICmpInst::Predicate Pred;
2104     Instruction *LHS, *RHS;
2105 
2106     if (!match(BB->getTerminator(),
2107                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2108                     m_BasicBlock(), m_BasicBlock())))
2109       continue;
2110 
2111     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2112       return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2113 
2114     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2115       return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2116   }
2117 
2118   // Use expand's logic which is used for reusing a previous Value in
2119   // ExprValueMap.
2120   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2121   if (VO.first)
2122     return VO;
2123 
2124   // There is potential to make this significantly smarter, but this simple
2125   // heuristic already gets some interesting cases.
2126 
2127   // Can not find suitable value.
2128   return None;
2129 }
2130 
isHighCostExpansionHelper(const SCEV * S,Loop * L,const Instruction * At,SmallPtrSetImpl<const SCEV * > & Processed)2131 bool SCEVExpander::isHighCostExpansionHelper(
2132     const SCEV *S, Loop *L, const Instruction *At,
2133     SmallPtrSetImpl<const SCEV *> &Processed) {
2134 
2135   // If we can find an existing value for this scev available at the point "At"
2136   // then consider the expression cheap.
2137   if (At && getRelatedExistingExpansion(S, At, L))
2138     return false;
2139 
2140   // Zero/One operand expressions
2141   switch (S->getSCEVType()) {
2142   case scUnknown:
2143   case scConstant:
2144     return false;
2145   case scTruncate:
2146     return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(),
2147                                      L, At, Processed);
2148   case scZeroExtend:
2149     return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(),
2150                                      L, At, Processed);
2151   case scSignExtend:
2152     return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(),
2153                                      L, At, Processed);
2154   }
2155 
2156   if (!Processed.insert(S).second)
2157     return false;
2158 
2159   if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
2160     // If the divisor is a power of two and the SCEV type fits in a native
2161     // integer (and the LHS not expensive), consider the division cheap
2162     // irrespective of whether it occurs in the user code since it can be
2163     // lowered into a right shift.
2164     if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
2165       if (SC->getAPInt().isPowerOf2()) {
2166         if (isHighCostExpansionHelper(UDivExpr->getLHS(), L, At, Processed))
2167           return true;
2168         const DataLayout &DL =
2169             L->getHeader()->getParent()->getParent()->getDataLayout();
2170         unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
2171         return DL.isIllegalInteger(Width);
2172       }
2173 
2174     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2175     // HowManyLessThans produced to compute a precise expression, rather than a
2176     // UDiv from the user's code. If we can't find a UDiv in the code with some
2177     // simple searching, assume the former consider UDivExpr expensive to
2178     // compute.
2179     BasicBlock *ExitingBB = L->getExitingBlock();
2180     if (!ExitingBB)
2181       return true;
2182 
2183     // At the beginning of this function we already tried to find existing value
2184     // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
2185     // involving division. This is just a simple search heuristic.
2186     if (!At)
2187       At = &ExitingBB->back();
2188     if (!getRelatedExistingExpansion(
2189             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L))
2190       return true;
2191   }
2192 
2193   // HowManyLessThans uses a Max expression whenever the loop is not guarded by
2194   // the exit condition.
2195   if (isa<SCEVMinMaxExpr>(S))
2196     return true;
2197 
2198   // Recurse past nary expressions, which commonly occur in the
2199   // BackedgeTakenCount. They may already exist in program code, and if not,
2200   // they are not too expensive rematerialize.
2201   if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
2202     for (auto *Op : NAry->operands())
2203       if (isHighCostExpansionHelper(Op, L, At, Processed))
2204         return true;
2205   }
2206 
2207   // If we haven't recognized an expensive SCEV pattern, assume it's an
2208   // expression produced by program code.
2209   return false;
2210 }
2211 
expandCodeForPredicate(const SCEVPredicate * Pred,Instruction * IP)2212 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2213                                             Instruction *IP) {
2214   assert(IP);
2215   switch (Pred->getKind()) {
2216   case SCEVPredicate::P_Union:
2217     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2218   case SCEVPredicate::P_Equal:
2219     return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2220   case SCEVPredicate::P_Wrap: {
2221     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2222     return expandWrapPredicate(AddRecPred, IP);
2223   }
2224   }
2225   llvm_unreachable("Unknown SCEV predicate type");
2226 }
2227 
expandEqualPredicate(const SCEVEqualPredicate * Pred,Instruction * IP)2228 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2229                                           Instruction *IP) {
2230   Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2231   Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2232 
2233   Builder.SetInsertPoint(IP);
2234   auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2235   return I;
2236 }
2237 
generateOverflowCheck(const SCEVAddRecExpr * AR,Instruction * Loc,bool Signed)2238 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2239                                            Instruction *Loc, bool Signed) {
2240   assert(AR->isAffine() && "Cannot generate RT check for "
2241                            "non-affine expression");
2242 
2243   SCEVUnionPredicate Pred;
2244   const SCEV *ExitCount =
2245       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2246 
2247   assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");
2248 
2249   const SCEV *Step = AR->getStepRecurrence(SE);
2250   const SCEV *Start = AR->getStart();
2251 
2252   Type *ARTy = AR->getType();
2253   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2254   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2255 
2256   // The expression {Start,+,Step} has nusw/nssw if
2257   //   Step < 0, Start - |Step| * Backedge <= Start
2258   //   Step >= 0, Start + |Step| * Backedge > Start
2259   // and |Step| * Backedge doesn't unsigned overflow.
2260 
2261   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2262   Builder.SetInsertPoint(Loc);
2263   Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);
2264 
2265   IntegerType *Ty =
2266       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2267   Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
2268 
2269   Value *StepValue = expandCodeFor(Step, Ty, Loc);
2270   Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
2271   Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc);
2272 
2273   ConstantInt *Zero =
2274       ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2275 
2276   Builder.SetInsertPoint(Loc);
2277   // Compute |Step|
2278   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2279   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2280 
2281   // Get the backedge taken count and truncate or extended to the AR type.
2282   Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2283   auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2284                                          Intrinsic::umul_with_overflow, Ty);
2285 
2286   // Compute |Step| * Backedge
2287   CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2288   Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2289   Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2290 
2291   // Compute:
2292   //   Start + |Step| * Backedge < Start
2293   //   Start - |Step| * Backedge > Start
2294   Value *Add = nullptr, *Sub = nullptr;
2295   if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
2296     const SCEV *MulS = SE.getSCEV(MulV);
2297     const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
2298     Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
2299                                 ARPtrTy);
2300     Sub = Builder.CreateBitCast(
2301         expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
2302   } else {
2303     Add = Builder.CreateAdd(StartValue, MulV);
2304     Sub = Builder.CreateSub(StartValue, MulV);
2305   }
2306 
2307   Value *EndCompareGT = Builder.CreateICmp(
2308       Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2309 
2310   Value *EndCompareLT = Builder.CreateICmp(
2311       Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2312 
2313   // Select the answer based on the sign of Step.
2314   Value *EndCheck =
2315       Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2316 
2317   // If the backedge taken count type is larger than the AR type,
2318   // check that we don't drop any bits by truncating it. If we are
2319   // dropping bits, then we have overflow (unless the step is zero).
2320   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2321     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2322     auto *BackedgeCheck =
2323         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2324                            ConstantInt::get(Loc->getContext(), MaxVal));
2325     BackedgeCheck = Builder.CreateAnd(
2326         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2327 
2328     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2329   }
2330 
2331   EndCheck = Builder.CreateOr(EndCheck, OfMul);
2332   return EndCheck;
2333 }
2334 
expandWrapPredicate(const SCEVWrapPredicate * Pred,Instruction * IP)2335 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2336                                          Instruction *IP) {
2337   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2338   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2339 
2340   // Add a check for NUSW
2341   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2342     NUSWCheck = generateOverflowCheck(A, IP, false);
2343 
2344   // Add a check for NSSW
2345   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2346     NSSWCheck = generateOverflowCheck(A, IP, true);
2347 
2348   if (NUSWCheck && NSSWCheck)
2349     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2350 
2351   if (NUSWCheck)
2352     return NUSWCheck;
2353 
2354   if (NSSWCheck)
2355     return NSSWCheck;
2356 
2357   return ConstantInt::getFalse(IP->getContext());
2358 }
2359 
expandUnionPredicate(const SCEVUnionPredicate * Union,Instruction * IP)2360 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2361                                           Instruction *IP) {
2362   auto *BoolType = IntegerType::get(IP->getContext(), 1);
2363   Value *Check = ConstantInt::getNullValue(BoolType);
2364 
2365   // Loop over all checks in this set.
2366   for (auto Pred : Union->getPredicates()) {
2367     auto *NextCheck = expandCodeForPredicate(Pred, IP);
2368     Builder.SetInsertPoint(IP);
2369     Check = Builder.CreateOr(Check, NextCheck);
2370   }
2371 
2372   return Check;
2373 }
2374 
2375 namespace {
2376 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2377 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2378 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2379 // instruction, but the important thing is that we prove the denominator is
2380 // nonzero before expansion.
2381 //
2382 // IVUsers already checks that IV-derived expressions are safe. So this check is
2383 // only needed when the expression includes some subexpression that is not IV
2384 // derived.
2385 //
2386 // Currently, we only allow division by a nonzero constant here. If this is
2387 // inadequate, we could easily allow division by SCEVUnknown by using
2388 // ValueTracking to check isKnownNonZero().
2389 //
2390 // We cannot generally expand recurrences unless the step dominates the loop
2391 // header. The expander handles the special case of affine recurrences by
2392 // scaling the recurrence outside the loop, but this technique isn't generally
2393 // applicable. Expanding a nested recurrence outside a loop requires computing
2394 // binomial coefficients. This could be done, but the recurrence has to be in a
2395 // perfectly reduced form, which can't be guaranteed.
2396 struct SCEVFindUnsafe {
2397   ScalarEvolution &SE;
2398   bool IsUnsafe;
2399 
SCEVFindUnsafe__anon20dca2fb0911::SCEVFindUnsafe2400   SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2401 
follow__anon20dca2fb0911::SCEVFindUnsafe2402   bool follow(const SCEV *S) {
2403     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2404       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2405       if (!SC || SC->getValue()->isZero()) {
2406         IsUnsafe = true;
2407         return false;
2408       }
2409     }
2410     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2411       const SCEV *Step = AR->getStepRecurrence(SE);
2412       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2413         IsUnsafe = true;
2414         return false;
2415       }
2416     }
2417     return true;
2418   }
isDone__anon20dca2fb0911::SCEVFindUnsafe2419   bool isDone() const { return IsUnsafe; }
2420 };
2421 }
2422 
2423 namespace llvm {
isSafeToExpand(const SCEV * S,ScalarEvolution & SE)2424 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2425   SCEVFindUnsafe Search(SE);
2426   visitAll(S, Search);
2427   return !Search.IsUnsafe;
2428 }
2429 
isSafeToExpandAt(const SCEV * S,const Instruction * InsertionPoint,ScalarEvolution & SE)2430 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2431                       ScalarEvolution &SE) {
2432   if (!isSafeToExpand(S, SE))
2433     return false;
2434   // We have to prove that the expanded site of S dominates InsertionPoint.
2435   // This is easy when not in the same block, but hard when S is an instruction
2436   // to be expanded somewhere inside the same block as our insertion point.
2437   // What we really need here is something analogous to an OrderedBasicBlock,
2438   // but for the moment, we paper over the problem by handling two common and
2439   // cheap to check cases.
2440   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2441     return true;
2442   if (SE.dominates(S, InsertionPoint->getParent())) {
2443     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2444       return true;
2445     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2446       for (const Value *V : InsertionPoint->operand_values())
2447         if (V == U->getValue())
2448           return true;
2449   }
2450   return false;
2451 }
2452 }
2453