1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25
26 #define DEBUG_TYPE "call-lowering"
27
28 using namespace llvm;
29
anchor()30 void CallLowering::anchor() {}
31
lowerCall(MachineIRBuilder & MIRBuilder,ImmutableCallSite CS,ArrayRef<Register> ResRegs,ArrayRef<ArrayRef<Register>> ArgRegs,Register SwiftErrorVReg,std::function<unsigned ()> GetCalleeReg) const32 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, ImmutableCallSite CS,
33 ArrayRef<Register> ResRegs,
34 ArrayRef<ArrayRef<Register>> ArgRegs,
35 Register SwiftErrorVReg,
36 std::function<unsigned()> GetCalleeReg) const {
37 CallLoweringInfo Info;
38 auto &DL = CS.getParent()->getParent()->getParent()->getDataLayout();
39
40 // First step is to marshall all the function's parameters into the correct
41 // physregs and memory locations. Gather the sequence of argument types that
42 // we'll pass to the assigner function.
43 unsigned i = 0;
44 unsigned NumFixedArgs = CS.getFunctionType()->getNumParams();
45 for (auto &Arg : CS.args()) {
46 ArgInfo OrigArg{ArgRegs[i], Arg->getType(), ISD::ArgFlagsTy{},
47 i < NumFixedArgs};
48 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CS);
49 Info.OrigArgs.push_back(OrigArg);
50 ++i;
51 }
52
53 if (const Function *F = CS.getCalledFunction())
54 Info.Callee = MachineOperand::CreateGA(F, 0);
55 else
56 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
57
58 Info.OrigRet = ArgInfo{ResRegs, CS.getType(), ISD::ArgFlagsTy{}};
59 if (!Info.OrigRet.Ty->isVoidTy())
60 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CS);
61
62 Info.KnownCallees =
63 CS.getInstruction()->getMetadata(LLVMContext::MD_callees);
64 Info.CallConv = CS.getCallingConv();
65 Info.SwiftErrorVReg = SwiftErrorVReg;
66 Info.IsMustTailCall = CS.isMustTailCall();
67 Info.IsTailCall = CS.isTailCall() &&
68 isInTailCallPosition(CS, MIRBuilder.getMF().getTarget()) &&
69 (MIRBuilder.getMF()
70 .getFunction()
71 .getFnAttribute("disable-tail-calls")
72 .getValueAsString() != "true");
73 Info.IsVarArg = CS.getFunctionType()->isVarArg();
74 return lowerCall(MIRBuilder, Info);
75 }
76
77 template <typename FuncInfoTy>
setArgFlags(CallLowering::ArgInfo & Arg,unsigned OpIdx,const DataLayout & DL,const FuncInfoTy & FuncInfo) const78 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
79 const DataLayout &DL,
80 const FuncInfoTy &FuncInfo) const {
81 auto &Flags = Arg.Flags[0];
82 const AttributeList &Attrs = FuncInfo.getAttributes();
83 if (Attrs.hasAttribute(OpIdx, Attribute::ZExt))
84 Flags.setZExt();
85 if (Attrs.hasAttribute(OpIdx, Attribute::SExt))
86 Flags.setSExt();
87 if (Attrs.hasAttribute(OpIdx, Attribute::InReg))
88 Flags.setInReg();
89 if (Attrs.hasAttribute(OpIdx, Attribute::StructRet))
90 Flags.setSRet();
91 if (Attrs.hasAttribute(OpIdx, Attribute::SwiftSelf))
92 Flags.setSwiftSelf();
93 if (Attrs.hasAttribute(OpIdx, Attribute::SwiftError))
94 Flags.setSwiftError();
95 if (Attrs.hasAttribute(OpIdx, Attribute::ByVal))
96 Flags.setByVal();
97 if (Attrs.hasAttribute(OpIdx, Attribute::InAlloca))
98 Flags.setInAlloca();
99
100 if (Flags.isByVal() || Flags.isInAlloca()) {
101 Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
102
103 auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
104 Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
105
106 // For ByVal, alignment should be passed from FE. BE will guess if
107 // this info is not there but there are cases it cannot get right.
108 unsigned FrameAlign;
109 if (FuncInfo.getParamAlignment(OpIdx - 2))
110 FrameAlign = FuncInfo.getParamAlignment(OpIdx - 2);
111 else
112 FrameAlign = getTLI()->getByValTypeAlignment(ElementTy, DL);
113 Flags.setByValAlign(Align(FrameAlign));
114 }
115 if (Attrs.hasAttribute(OpIdx, Attribute::Nest))
116 Flags.setNest();
117 Flags.setOrigAlign(Align(DL.getABITypeAlignment(Arg.Ty)));
118 }
119
120 template void
121 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
122 const DataLayout &DL,
123 const Function &FuncInfo) const;
124
125 template void
126 CallLowering::setArgFlags<CallInst>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
127 const DataLayout &DL,
128 const CallInst &FuncInfo) const;
129
packRegs(ArrayRef<Register> SrcRegs,Type * PackedTy,MachineIRBuilder & MIRBuilder) const130 Register CallLowering::packRegs(ArrayRef<Register> SrcRegs, Type *PackedTy,
131 MachineIRBuilder &MIRBuilder) const {
132 assert(SrcRegs.size() > 1 && "Nothing to pack");
133
134 const DataLayout &DL = MIRBuilder.getMF().getDataLayout();
135 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
136
137 LLT PackedLLT = getLLTForType(*PackedTy, DL);
138
139 SmallVector<LLT, 8> LLTs;
140 SmallVector<uint64_t, 8> Offsets;
141 computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
142 assert(LLTs.size() == SrcRegs.size() && "Regs / types mismatch");
143
144 Register Dst = MRI->createGenericVirtualRegister(PackedLLT);
145 MIRBuilder.buildUndef(Dst);
146 for (unsigned i = 0; i < SrcRegs.size(); ++i) {
147 Register NewDst = MRI->createGenericVirtualRegister(PackedLLT);
148 MIRBuilder.buildInsert(NewDst, Dst, SrcRegs[i], Offsets[i]);
149 Dst = NewDst;
150 }
151
152 return Dst;
153 }
154
unpackRegs(ArrayRef<Register> DstRegs,Register SrcReg,Type * PackedTy,MachineIRBuilder & MIRBuilder) const155 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
156 Type *PackedTy,
157 MachineIRBuilder &MIRBuilder) const {
158 assert(DstRegs.size() > 1 && "Nothing to unpack");
159
160 const DataLayout &DL = MIRBuilder.getMF().getDataLayout();
161
162 SmallVector<LLT, 8> LLTs;
163 SmallVector<uint64_t, 8> Offsets;
164 computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
165 assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");
166
167 for (unsigned i = 0; i < DstRegs.size(); ++i)
168 MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
169 }
170
handleAssignments(MachineIRBuilder & MIRBuilder,SmallVectorImpl<ArgInfo> & Args,ValueHandler & Handler) const171 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
172 SmallVectorImpl<ArgInfo> &Args,
173 ValueHandler &Handler) const {
174 MachineFunction &MF = MIRBuilder.getMF();
175 const Function &F = MF.getFunction();
176 SmallVector<CCValAssign, 16> ArgLocs;
177 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
178 return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler);
179 }
180
handleAssignments(CCState & CCInfo,SmallVectorImpl<CCValAssign> & ArgLocs,MachineIRBuilder & MIRBuilder,SmallVectorImpl<ArgInfo> & Args,ValueHandler & Handler) const181 bool CallLowering::handleAssignments(CCState &CCInfo,
182 SmallVectorImpl<CCValAssign> &ArgLocs,
183 MachineIRBuilder &MIRBuilder,
184 SmallVectorImpl<ArgInfo> &Args,
185 ValueHandler &Handler) const {
186 MachineFunction &MF = MIRBuilder.getMF();
187 const Function &F = MF.getFunction();
188 const DataLayout &DL = F.getParent()->getDataLayout();
189
190 unsigned NumArgs = Args.size();
191 for (unsigned i = 0; i != NumArgs; ++i) {
192 MVT CurVT = MVT::getVT(Args[i].Ty);
193 if (Handler.assignArg(i, CurVT, CurVT, CCValAssign::Full, Args[i],
194 Args[i].Flags[0], CCInfo)) {
195 if (!CurVT.isValid())
196 return false;
197 MVT NewVT = TLI->getRegisterTypeForCallingConv(
198 F.getContext(), F.getCallingConv(), EVT(CurVT));
199
200 // If we need to split the type over multiple regs, check it's a scenario
201 // we currently support.
202 unsigned NumParts = TLI->getNumRegistersForCallingConv(
203 F.getContext(), F.getCallingConv(), CurVT);
204 if (NumParts > 1) {
205 // For now only handle exact splits.
206 if (NewVT.getSizeInBits() * NumParts != CurVT.getSizeInBits())
207 return false;
208 }
209
210 // For incoming arguments (physregs to vregs), we could have values in
211 // physregs (or memlocs) which we want to extract and copy to vregs.
212 // During this, we might have to deal with the LLT being split across
213 // multiple regs, so we have to record this information for later.
214 //
215 // If we have outgoing args, then we have the opposite case. We have a
216 // vreg with an LLT which we want to assign to a physical location, and
217 // we might have to record that the value has to be split later.
218 if (Handler.isIncomingArgumentHandler()) {
219 if (NumParts == 1) {
220 // Try to use the register type if we couldn't assign the VT.
221 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
222 Args[i].Flags[0], CCInfo))
223 return false;
224 } else {
225 // We're handling an incoming arg which is split over multiple regs.
226 // E.g. passing an s128 on AArch64.
227 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
228 Args[i].OrigRegs.push_back(Args[i].Regs[0]);
229 Args[i].Regs.clear();
230 Args[i].Flags.clear();
231 LLT NewLLT = getLLTForMVT(NewVT);
232 // For each split register, create and assign a vreg that will store
233 // the incoming component of the larger value. These will later be
234 // merged to form the final vreg.
235 for (unsigned Part = 0; Part < NumParts; ++Part) {
236 Register Reg =
237 MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT);
238 ISD::ArgFlagsTy Flags = OrigFlags;
239 if (Part == 0) {
240 Flags.setSplit();
241 } else {
242 Flags.setOrigAlign(Align::None());
243 if (Part == NumParts - 1)
244 Flags.setSplitEnd();
245 }
246 Args[i].Regs.push_back(Reg);
247 Args[i].Flags.push_back(Flags);
248 if (Handler.assignArg(i + Part, NewVT, NewVT, CCValAssign::Full,
249 Args[i], Args[i].Flags[Part], CCInfo)) {
250 // Still couldn't assign this smaller part type for some reason.
251 return false;
252 }
253 }
254 }
255 } else {
256 // Handling an outgoing arg that might need to be split.
257 if (NumParts < 2)
258 return false; // Don't know how to deal with this type combination.
259
260 // This type is passed via multiple registers in the calling convention.
261 // We need to extract the individual parts.
262 Register LargeReg = Args[i].Regs[0];
263 LLT SmallTy = LLT::scalar(NewVT.getSizeInBits());
264 auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg);
265 assert(Unmerge->getNumOperands() == NumParts + 1);
266 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
267 // We're going to replace the regs and flags with the split ones.
268 Args[i].Regs.clear();
269 Args[i].Flags.clear();
270 for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) {
271 ISD::ArgFlagsTy Flags = OrigFlags;
272 if (PartIdx == 0) {
273 Flags.setSplit();
274 } else {
275 Flags.setOrigAlign(Align::None());
276 if (PartIdx == NumParts - 1)
277 Flags.setSplitEnd();
278 }
279 Args[i].Regs.push_back(Unmerge.getReg(PartIdx));
280 Args[i].Flags.push_back(Flags);
281 if (Handler.assignArg(i + PartIdx, NewVT, NewVT, CCValAssign::Full,
282 Args[i], Args[i].Flags[PartIdx], CCInfo))
283 return false;
284 }
285 }
286 }
287 }
288
289 for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) {
290 assert(j < ArgLocs.size() && "Skipped too many arg locs");
291
292 CCValAssign &VA = ArgLocs[j];
293 assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
294
295 if (VA.needsCustom()) {
296 j += Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
297 continue;
298 }
299
300 // FIXME: Pack registers if we have more than one.
301 Register ArgReg = Args[i].Regs[0];
302
303 MVT OrigVT = MVT::getVT(Args[i].Ty);
304 MVT VAVT = VA.getValVT();
305 if (VA.isRegLoc()) {
306 if (Handler.isIncomingArgumentHandler() && VAVT != OrigVT) {
307 if (VAVT.getSizeInBits() < OrigVT.getSizeInBits()) {
308 // Expected to be multiple regs for a single incoming arg.
309 unsigned NumArgRegs = Args[i].Regs.size();
310 if (NumArgRegs < 2)
311 return false;
312
313 assert((j + (NumArgRegs - 1)) < ArgLocs.size() &&
314 "Too many regs for number of args");
315 for (unsigned Part = 0; Part < NumArgRegs; ++Part) {
316 // There should be Regs.size() ArgLocs per argument.
317 VA = ArgLocs[j + Part];
318 Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
319 }
320 j += NumArgRegs - 1;
321 // Merge the split registers into the expected larger result vreg
322 // of the original call.
323 MIRBuilder.buildMerge(Args[i].OrigRegs[0], Args[i].Regs);
324 continue;
325 }
326 const LLT VATy(VAVT);
327 Register NewReg =
328 MIRBuilder.getMRI()->createGenericVirtualRegister(VATy);
329 Handler.assignValueToReg(NewReg, VA.getLocReg(), VA);
330 // If it's a vector type, we either need to truncate the elements
331 // or do an unmerge to get the lower block of elements.
332 if (VATy.isVector() &&
333 VATy.getNumElements() > OrigVT.getVectorNumElements()) {
334 const LLT OrigTy(OrigVT);
335 // Just handle the case where the VA type is 2 * original type.
336 if (VATy.getNumElements() != OrigVT.getVectorNumElements() * 2) {
337 LLVM_DEBUG(dbgs()
338 << "Incoming promoted vector arg has too many elts");
339 return false;
340 }
341 auto Unmerge = MIRBuilder.buildUnmerge({OrigTy, OrigTy}, {NewReg});
342 MIRBuilder.buildCopy(ArgReg, Unmerge.getReg(0));
343 } else {
344 MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0);
345 }
346 } else if (!Handler.isIncomingArgumentHandler()) {
347 assert((j + (Args[i].Regs.size() - 1)) < ArgLocs.size() &&
348 "Too many regs for number of args");
349 // This is an outgoing argument that might have been split.
350 for (unsigned Part = 0; Part < Args[i].Regs.size(); ++Part) {
351 // There should be Regs.size() ArgLocs per argument.
352 VA = ArgLocs[j + Part];
353 Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
354 }
355 j += Args[i].Regs.size() - 1;
356 } else {
357 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
358 }
359 } else if (VA.isMemLoc()) {
360 // Don't currently support loading/storing a type that needs to be split
361 // to the stack. Should be easy, just not implemented yet.
362 if (Args[i].Regs.size() > 1) {
363 LLVM_DEBUG(
364 dbgs()
365 << "Load/store a split arg to/from the stack not implemented yet");
366 return false;
367 }
368 MVT VT = MVT::getVT(Args[i].Ty);
369 unsigned Size = VT == MVT::iPTR ? DL.getPointerSize()
370 : alignTo(VT.getSizeInBits(), 8) / 8;
371 unsigned Offset = VA.getLocMemOffset();
372 MachinePointerInfo MPO;
373 Register StackAddr = Handler.getStackAddress(Size, Offset, MPO);
374 Handler.assignValueToAddress(ArgReg, StackAddr, Size, MPO, VA);
375 } else {
376 // FIXME: Support byvals and other weirdness
377 return false;
378 }
379 }
380 return true;
381 }
382
analyzeArgInfo(CCState & CCState,SmallVectorImpl<ArgInfo> & Args,CCAssignFn & AssignFnFixed,CCAssignFn & AssignFnVarArg) const383 bool CallLowering::analyzeArgInfo(CCState &CCState,
384 SmallVectorImpl<ArgInfo> &Args,
385 CCAssignFn &AssignFnFixed,
386 CCAssignFn &AssignFnVarArg) const {
387 for (unsigned i = 0, e = Args.size(); i < e; ++i) {
388 MVT VT = MVT::getVT(Args[i].Ty);
389 CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg;
390 if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) {
391 // Bail out on anything we can't handle.
392 LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString()
393 << " (arg number = " << i << "\n");
394 return false;
395 }
396 }
397 return true;
398 }
399
resultsCompatible(CallLoweringInfo & Info,MachineFunction & MF,SmallVectorImpl<ArgInfo> & InArgs,CCAssignFn & CalleeAssignFnFixed,CCAssignFn & CalleeAssignFnVarArg,CCAssignFn & CallerAssignFnFixed,CCAssignFn & CallerAssignFnVarArg) const400 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
401 MachineFunction &MF,
402 SmallVectorImpl<ArgInfo> &InArgs,
403 CCAssignFn &CalleeAssignFnFixed,
404 CCAssignFn &CalleeAssignFnVarArg,
405 CCAssignFn &CallerAssignFnFixed,
406 CCAssignFn &CallerAssignFnVarArg) const {
407 const Function &F = MF.getFunction();
408 CallingConv::ID CalleeCC = Info.CallConv;
409 CallingConv::ID CallerCC = F.getCallingConv();
410
411 if (CallerCC == CalleeCC)
412 return true;
413
414 SmallVector<CCValAssign, 16> ArgLocs1;
415 CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext());
416 if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed,
417 CalleeAssignFnVarArg))
418 return false;
419
420 SmallVector<CCValAssign, 16> ArgLocs2;
421 CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext());
422 if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed,
423 CalleeAssignFnVarArg))
424 return false;
425
426 // We need the argument locations to match up exactly. If there's more in
427 // one than the other, then we are done.
428 if (ArgLocs1.size() != ArgLocs2.size())
429 return false;
430
431 // Make sure that each location is passed in exactly the same way.
432 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
433 const CCValAssign &Loc1 = ArgLocs1[i];
434 const CCValAssign &Loc2 = ArgLocs2[i];
435
436 // We need both of them to be the same. So if one is a register and one
437 // isn't, we're done.
438 if (Loc1.isRegLoc() != Loc2.isRegLoc())
439 return false;
440
441 if (Loc1.isRegLoc()) {
442 // If they don't have the same register location, we're done.
443 if (Loc1.getLocReg() != Loc2.getLocReg())
444 return false;
445
446 // They matched, so we can move to the next ArgLoc.
447 continue;
448 }
449
450 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
451 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
452 return false;
453 }
454
455 return true;
456 }
457
extendRegister(Register ValReg,CCValAssign & VA)458 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
459 CCValAssign &VA) {
460 LLT LocTy{VA.getLocVT()};
461 if (LocTy.getSizeInBits() == MRI.getType(ValReg).getSizeInBits())
462 return ValReg;
463 switch (VA.getLocInfo()) {
464 default: break;
465 case CCValAssign::Full:
466 case CCValAssign::BCvt:
467 // FIXME: bitconverting between vector types may or may not be a
468 // nop in big-endian situations.
469 return ValReg;
470 case CCValAssign::AExt: {
471 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
472 return MIB->getOperand(0).getReg();
473 }
474 case CCValAssign::SExt: {
475 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
476 MIRBuilder.buildSExt(NewReg, ValReg);
477 return NewReg;
478 }
479 case CCValAssign::ZExt: {
480 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
481 MIRBuilder.buildZExt(NewReg, ValReg);
482 return NewReg;
483 }
484 }
485 llvm_unreachable("unable to extend register");
486 }
487
anchor()488 void CallLowering::ValueHandler::anchor() {}
489