1 //===- Localizer.cpp ---------------------- Localize some instrs -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the Localizer class.
10 //===----------------------------------------------------------------------===//
11
12 #include "llvm/CodeGen/GlobalISel/Localizer.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/Analysis/TargetTransformInfo.h"
15 #include "llvm/CodeGen/MachineRegisterInfo.h"
16 #include "llvm/InitializePasses.h"
17 #include "llvm/Support/Debug.h"
18
19 #define DEBUG_TYPE "localizer"
20
21 using namespace llvm;
22
23 char Localizer::ID = 0;
24 INITIALIZE_PASS_BEGIN(Localizer, DEBUG_TYPE,
25 "Move/duplicate certain instructions close to their use",
26 false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)27 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
28 INITIALIZE_PASS_END(Localizer, DEBUG_TYPE,
29 "Move/duplicate certain instructions close to their use",
30 false, false)
31
32 Localizer::Localizer(std::function<bool(const MachineFunction &)> F)
33 : MachineFunctionPass(ID), DoNotRunPass(F) {}
34
Localizer()35 Localizer::Localizer()
36 : Localizer([](const MachineFunction &) { return false; }) {}
37
init(MachineFunction & MF)38 void Localizer::init(MachineFunction &MF) {
39 MRI = &MF.getRegInfo();
40 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(MF.getFunction());
41 }
42
shouldLocalize(const MachineInstr & MI)43 bool Localizer::shouldLocalize(const MachineInstr &MI) {
44 // Assuming a spill and reload of a value has a cost of 1 instruction each,
45 // this helper function computes the maximum number of uses we should consider
46 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
47 // break even in terms of code size when the original MI has 2 users vs
48 // choosing to potentially spill. Any more than 2 users we we have a net code
49 // size increase. This doesn't take into account register pressure though.
50 auto maxUses = [](unsigned RematCost) {
51 // A cost of 1 means remats are basically free.
52 if (RematCost == 1)
53 return UINT_MAX;
54 if (RematCost == 2)
55 return 2U;
56
57 // Remat is too expensive, only sink if there's one user.
58 if (RematCost > 2)
59 return 1U;
60 llvm_unreachable("Unexpected remat cost");
61 };
62
63 // Helper to walk through uses and terminate if we've reached a limit. Saves
64 // us spending time traversing uses if all we want to know is if it's >= min.
65 auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
66 unsigned NumUses = 0;
67 auto UI = MRI->use_instr_nodbg_begin(Reg), UE = MRI->use_instr_nodbg_end();
68 for (; UI != UE && NumUses < MaxUses; ++UI) {
69 NumUses++;
70 }
71 // If we haven't reached the end yet then there are more than MaxUses users.
72 return UI == UE;
73 };
74
75 switch (MI.getOpcode()) {
76 default:
77 return false;
78 // Constants-like instructions should be close to their users.
79 // We don't want long live-ranges for them.
80 case TargetOpcode::G_CONSTANT:
81 case TargetOpcode::G_FCONSTANT:
82 case TargetOpcode::G_FRAME_INDEX:
83 case TargetOpcode::G_INTTOPTR:
84 return true;
85 case TargetOpcode::G_GLOBAL_VALUE: {
86 unsigned RematCost = TTI->getGISelRematGlobalCost();
87 Register Reg = MI.getOperand(0).getReg();
88 unsigned MaxUses = maxUses(RematCost);
89 if (MaxUses == UINT_MAX)
90 return true; // Remats are "free" so always localize.
91 bool B = isUsesAtMost(Reg, MaxUses);
92 return B;
93 }
94 }
95 }
96
getAnalysisUsage(AnalysisUsage & AU) const97 void Localizer::getAnalysisUsage(AnalysisUsage &AU) const {
98 AU.addRequired<TargetTransformInfoWrapperPass>();
99 getSelectionDAGFallbackAnalysisUsage(AU);
100 MachineFunctionPass::getAnalysisUsage(AU);
101 }
102
isLocalUse(MachineOperand & MOUse,const MachineInstr & Def,MachineBasicBlock * & InsertMBB)103 bool Localizer::isLocalUse(MachineOperand &MOUse, const MachineInstr &Def,
104 MachineBasicBlock *&InsertMBB) {
105 MachineInstr &MIUse = *MOUse.getParent();
106 InsertMBB = MIUse.getParent();
107 if (MIUse.isPHI())
108 InsertMBB = MIUse.getOperand(MIUse.getOperandNo(&MOUse) + 1).getMBB();
109 return InsertMBB == Def.getParent();
110 }
111
localizeInterBlock(MachineFunction & MF,LocalizedSetVecT & LocalizedInstrs)112 bool Localizer::localizeInterBlock(MachineFunction &MF,
113 LocalizedSetVecT &LocalizedInstrs) {
114 bool Changed = false;
115 DenseMap<std::pair<MachineBasicBlock *, unsigned>, unsigned> MBBWithLocalDef;
116
117 // Since the IRTranslator only emits constants into the entry block, and the
118 // rest of the GISel pipeline generally emits constants close to their users,
119 // we only localize instructions in the entry block here. This might change if
120 // we start doing CSE across blocks.
121 auto &MBB = MF.front();
122 for (auto RI = MBB.rbegin(), RE = MBB.rend(); RI != RE; ++RI) {
123 MachineInstr &MI = *RI;
124 if (!shouldLocalize(MI))
125 continue;
126 LLVM_DEBUG(dbgs() << "Should localize: " << MI);
127 assert(MI.getDesc().getNumDefs() == 1 &&
128 "More than one definition not supported yet");
129 Register Reg = MI.getOperand(0).getReg();
130 // Check if all the users of MI are local.
131 // We are going to invalidation the list of use operands, so we
132 // can't use range iterator.
133 for (auto MOIt = MRI->use_begin(Reg), MOItEnd = MRI->use_end();
134 MOIt != MOItEnd;) {
135 MachineOperand &MOUse = *MOIt++;
136 // Check if the use is already local.
137 MachineBasicBlock *InsertMBB;
138 LLVM_DEBUG(MachineInstr &MIUse = *MOUse.getParent();
139 dbgs() << "Checking use: " << MIUse
140 << " #Opd: " << MIUse.getOperandNo(&MOUse) << '\n');
141 if (isLocalUse(MOUse, MI, InsertMBB))
142 continue;
143 LLVM_DEBUG(dbgs() << "Fixing non-local use\n");
144 Changed = true;
145 auto MBBAndReg = std::make_pair(InsertMBB, Reg);
146 auto NewVRegIt = MBBWithLocalDef.find(MBBAndReg);
147 if (NewVRegIt == MBBWithLocalDef.end()) {
148 // Create the localized instruction.
149 MachineInstr *LocalizedMI = MF.CloneMachineInstr(&MI);
150 LocalizedInstrs.insert(LocalizedMI);
151 MachineInstr &UseMI = *MOUse.getParent();
152 if (MRI->hasOneUse(Reg) && !UseMI.isPHI())
153 InsertMBB->insert(InsertMBB->SkipPHIsAndLabels(UseMI), LocalizedMI);
154 else
155 InsertMBB->insert(InsertMBB->SkipPHIsAndLabels(InsertMBB->begin()),
156 LocalizedMI);
157
158 // Set a new register for the definition.
159 Register NewReg = MRI->createGenericVirtualRegister(MRI->getType(Reg));
160 MRI->setRegClassOrRegBank(NewReg, MRI->getRegClassOrRegBank(Reg));
161 LocalizedMI->getOperand(0).setReg(NewReg);
162 NewVRegIt =
163 MBBWithLocalDef.insert(std::make_pair(MBBAndReg, NewReg)).first;
164 LLVM_DEBUG(dbgs() << "Inserted: " << *LocalizedMI);
165 }
166 LLVM_DEBUG(dbgs() << "Update use with: " << printReg(NewVRegIt->second)
167 << '\n');
168 // Update the user reg.
169 MOUse.setReg(NewVRegIt->second);
170 }
171 }
172 return Changed;
173 }
174
localizeIntraBlock(LocalizedSetVecT & LocalizedInstrs)175 bool Localizer::localizeIntraBlock(LocalizedSetVecT &LocalizedInstrs) {
176 bool Changed = false;
177
178 // For each already-localized instruction which has multiple users, then we
179 // scan the block top down from the current position until we hit one of them.
180
181 // FIXME: Consider doing inst duplication if live ranges are very long due to
182 // many users, but this case may be better served by regalloc improvements.
183
184 for (MachineInstr *MI : LocalizedInstrs) {
185 Register Reg = MI->getOperand(0).getReg();
186 MachineBasicBlock &MBB = *MI->getParent();
187 // All of the user MIs of this reg.
188 SmallPtrSet<MachineInstr *, 32> Users;
189 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
190 if (!UseMI.isPHI())
191 Users.insert(&UseMI);
192 }
193 // If all the users were PHIs then they're not going to be in our block,
194 // don't try to move this instruction.
195 if (Users.empty())
196 continue;
197
198 MachineBasicBlock::iterator II(MI);
199 ++II;
200 while (II != MBB.end() && !Users.count(&*II))
201 ++II;
202
203 LLVM_DEBUG(dbgs() << "Intra-block: moving " << *MI << " before " << *&*II
204 << "\n");
205 assert(II != MBB.end() && "Didn't find the user in the MBB");
206 MI->removeFromParent();
207 MBB.insert(II, MI);
208 Changed = true;
209 }
210 return Changed;
211 }
212
runOnMachineFunction(MachineFunction & MF)213 bool Localizer::runOnMachineFunction(MachineFunction &MF) {
214 // If the ISel pipeline failed, do not bother running that pass.
215 if (MF.getProperties().hasProperty(
216 MachineFunctionProperties::Property::FailedISel))
217 return false;
218
219 // Don't run the pass if the target asked so.
220 if (DoNotRunPass(MF))
221 return false;
222
223 LLVM_DEBUG(dbgs() << "Localize instructions for: " << MF.getName() << '\n');
224
225 init(MF);
226
227 // Keep track of the instructions we localized. We'll do a second pass of
228 // intra-block localization to further reduce live ranges.
229 LocalizedSetVecT LocalizedInstrs;
230
231 bool Changed = localizeInterBlock(MF, LocalizedInstrs);
232 Changed |= localizeIntraBlock(LocalizedInstrs);
233 return Changed;
234 }
235