1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/ConstantFolding.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PatternMatch.h"
18 using namespace llvm;
19 using namespace PatternMatch;
20
21 #define DEBUG_TYPE "instcombine"
22
23 // Given pattern:
24 // (x shiftopcode Q) shiftopcode K
25 // we should rewrite it as
26 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and
27 //
28 // This is valid for any shift, but they must be identical, and we must be
29 // careful in case we have (zext(Q)+zext(K)) and look past extensions,
30 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
31 //
32 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
33 // pattern has any 2 right-shifts that sum to 1 less than original bit width.
reassociateShiftAmtsOfTwoSameDirectionShifts(BinaryOperator * Sh0,const SimplifyQuery & SQ,bool AnalyzeForSignBitExtraction)34 Value *InstCombiner::reassociateShiftAmtsOfTwoSameDirectionShifts(
35 BinaryOperator *Sh0, const SimplifyQuery &SQ,
36 bool AnalyzeForSignBitExtraction) {
37 // Look for a shift of some instruction, ignore zext of shift amount if any.
38 Instruction *Sh0Op0;
39 Value *ShAmt0;
40 if (!match(Sh0,
41 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
42 return nullptr;
43
44 // If there is a truncation between the two shifts, we must make note of it
45 // and look through it. The truncation imposes additional constraints on the
46 // transform.
47 Instruction *Sh1;
48 Value *Trunc = nullptr;
49 match(Sh0Op0,
50 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
51 m_Instruction(Sh1)));
52
53 // Inner shift: (x shiftopcode ShAmt1)
54 // Like with other shift, ignore zext of shift amount if any.
55 Value *X, *ShAmt1;
56 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
57 return nullptr;
58
59 // We have two shift amounts from two different shifts. The types of those
60 // shift amounts may not match. If that's the case let's bailout now..
61 if (ShAmt0->getType() != ShAmt1->getType())
62 return nullptr;
63
64 // As input, we have the following pattern:
65 // Sh0 (Sh1 X, Q), K
66 // We want to rewrite that as:
67 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x)
68 // While we know that originally (Q+K) would not overflow
69 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
70 // shift amounts. so it may now overflow in smaller bitwidth.
71 // To ensure that does not happen, we need to ensure that the total maximal
72 // shift amount is still representable in that smaller bit width.
73 unsigned MaximalPossibleTotalShiftAmount =
74 (Sh0->getType()->getScalarSizeInBits() - 1) +
75 (Sh1->getType()->getScalarSizeInBits() - 1);
76 APInt MaximalRepresentableShiftAmount =
77 APInt::getAllOnesValue(ShAmt0->getType()->getScalarSizeInBits());
78 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
79 return nullptr;
80
81 // We are only looking for signbit extraction if we have two right shifts.
82 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
83 match(Sh1, m_Shr(m_Value(), m_Value()));
84 // ... and if it's not two right-shifts, we know the answer already.
85 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
86 return nullptr;
87
88 // The shift opcodes must be identical, unless we are just checking whether
89 // this pattern can be interpreted as a sign-bit-extraction.
90 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
91 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
92 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
93 return nullptr;
94
95 // If we saw truncation, we'll need to produce extra instruction,
96 // and for that one of the operands of the shift must be one-use,
97 // unless of course we don't actually plan to produce any instructions here.
98 if (Trunc && !AnalyzeForSignBitExtraction &&
99 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
100 return nullptr;
101
102 // Can we fold (ShAmt0+ShAmt1) ?
103 auto *NewShAmt = dyn_cast_or_null<Constant>(
104 SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
105 SQ.getWithInstruction(Sh0)));
106 if (!NewShAmt)
107 return nullptr; // Did not simplify.
108 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
109 unsigned XBitWidth = X->getType()->getScalarSizeInBits();
110 // Is the new shift amount smaller than the bit width of inner/new shift?
111 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
112 APInt(NewShAmtBitWidth, XBitWidth))))
113 return nullptr; // FIXME: could perform constant-folding.
114
115 // If there was a truncation, and we have a right-shift, we can only fold if
116 // we are left with the original sign bit. Likewise, if we were just checking
117 // that this is a sighbit extraction, this is the place to check it.
118 // FIXME: zero shift amount is also legal here, but we can't *easily* check
119 // more than one predicate so it's not really worth it.
120 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
121 // If it's not a sign bit extraction, then we're done.
122 if (!match(NewShAmt,
123 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
124 APInt(NewShAmtBitWidth, XBitWidth - 1))))
125 return nullptr;
126 // If it is, and that was the question, return the base value.
127 if (AnalyzeForSignBitExtraction)
128 return X;
129 }
130
131 assert(IdenticalShOpcodes && "Should not get here with different shifts.");
132
133 // All good, we can do this fold.
134 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
135
136 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
137
138 // The flags can only be propagated if there wasn't a trunc.
139 if (!Trunc) {
140 // If the pattern did not involve trunc, and both of the original shifts
141 // had the same flag set, preserve the flag.
142 if (ShiftOpcode == Instruction::BinaryOps::Shl) {
143 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
144 Sh1->hasNoUnsignedWrap());
145 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
146 Sh1->hasNoSignedWrap());
147 } else {
148 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
149 }
150 }
151
152 Instruction *Ret = NewShift;
153 if (Trunc) {
154 Builder.Insert(NewShift);
155 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
156 }
157
158 return Ret;
159 }
160
161 // If we have some pattern that leaves only some low bits set, and then performs
162 // left-shift of those bits, if none of the bits that are left after the final
163 // shift are modified by the mask, we can omit the mask.
164 //
165 // There are many variants to this pattern:
166 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
167 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
168 // c) (x & (-1 >> MaskShAmt)) << ShiftShAmt
169 // d) (x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt
170 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
171 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
172 // All these patterns can be simplified to just:
173 // x << ShiftShAmt
174 // iff:
175 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
176 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
177 static Instruction *
dropRedundantMaskingOfLeftShiftInput(BinaryOperator * OuterShift,const SimplifyQuery & Q,InstCombiner::BuilderTy & Builder)178 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
179 const SimplifyQuery &Q,
180 InstCombiner::BuilderTy &Builder) {
181 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
182 "The input must be 'shl'!");
183
184 Value *Masked, *ShiftShAmt;
185 match(OuterShift,
186 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
187
188 // *If* there is a truncation between an outer shift and a possibly-mask,
189 // then said truncation *must* be one-use, else we can't perform the fold.
190 Value *Trunc;
191 if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
192 !Trunc->hasOneUse())
193 return nullptr;
194
195 Type *NarrowestTy = OuterShift->getType();
196 Type *WidestTy = Masked->getType();
197 bool HadTrunc = WidestTy != NarrowestTy;
198
199 // The mask must be computed in a type twice as wide to ensure
200 // that no bits are lost if the sum-of-shifts is wider than the base type.
201 Type *ExtendedTy = WidestTy->getExtendedType();
202
203 Value *MaskShAmt;
204
205 // ((1 << MaskShAmt) - 1)
206 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
207 // (~(-1 << maskNbits))
208 auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
209 // (-1 >> MaskShAmt)
210 auto MaskC = m_Shr(m_AllOnes(), m_Value(MaskShAmt));
211 // ((-1 << MaskShAmt) >> MaskShAmt)
212 auto MaskD =
213 m_Shr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
214
215 Value *X;
216 Constant *NewMask;
217
218 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
219 // Peek through an optional zext of the shift amount.
220 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
221
222 // We have two shift amounts from two different shifts. The types of those
223 // shift amounts may not match. If that's the case let's bailout now.
224 if (MaskShAmt->getType() != ShiftShAmt->getType())
225 return nullptr;
226
227 // Can we simplify (MaskShAmt+ShiftShAmt) ?
228 auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst(
229 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
230 if (!SumOfShAmts)
231 return nullptr; // Did not simplify.
232 // In this pattern SumOfShAmts correlates with the number of low bits
233 // that shall remain in the root value (OuterShift).
234
235 // An extend of an undef value becomes zero because the high bits are never
236 // completely unknown. Replace the the `undef` shift amounts with final
237 // shift bitwidth to ensure that the value remains undef when creating the
238 // subsequent shift op.
239 SumOfShAmts = Constant::replaceUndefsWith(
240 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
241 ExtendedTy->getScalarSizeInBits()));
242 auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
243 // And compute the mask as usual: ~(-1 << (SumOfShAmts))
244 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
245 auto *ExtendedInvertedMask =
246 ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
247 NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
248 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
249 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
250 m_Deferred(MaskShAmt)))) {
251 // Peek through an optional zext of the shift amount.
252 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
253
254 // We have two shift amounts from two different shifts. The types of those
255 // shift amounts may not match. If that's the case let's bailout now.
256 if (MaskShAmt->getType() != ShiftShAmt->getType())
257 return nullptr;
258
259 // Can we simplify (ShiftShAmt-MaskShAmt) ?
260 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst(
261 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
262 if (!ShAmtsDiff)
263 return nullptr; // Did not simplify.
264 // In this pattern ShAmtsDiff correlates with the number of high bits that
265 // shall be unset in the root value (OuterShift).
266
267 // An extend of an undef value becomes zero because the high bits are never
268 // completely unknown. Replace the the `undef` shift amounts with negated
269 // bitwidth of innermost shift to ensure that the value remains undef when
270 // creating the subsequent shift op.
271 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
272 ShAmtsDiff = Constant::replaceUndefsWith(
273 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
274 -WidestTyBitWidth));
275 auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
276 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
277 WidestTyBitWidth,
278 /*isSigned=*/false),
279 ShAmtsDiff),
280 ExtendedTy);
281 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
282 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
283 NewMask =
284 ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
285 } else
286 return nullptr; // Don't know anything about this pattern.
287
288 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
289
290 // Does this mask has any unset bits? If not then we can just not apply it.
291 bool NeedMask = !match(NewMask, m_AllOnes());
292
293 // If we need to apply a mask, there are several more restrictions we have.
294 if (NeedMask) {
295 // The old masking instruction must go away.
296 if (!Masked->hasOneUse())
297 return nullptr;
298 // The original "masking" instruction must not have been`ashr`.
299 if (match(Masked, m_AShr(m_Value(), m_Value())))
300 return nullptr;
301 }
302
303 // If we need to apply truncation, let's do it first, since we can.
304 // We have already ensured that the old truncation will go away.
305 if (HadTrunc)
306 X = Builder.CreateTrunc(X, NarrowestTy);
307
308 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
309 // We didn't change the Type of this outermost shift, so we can just do it.
310 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
311 OuterShift->getOperand(1));
312 if (!NeedMask)
313 return NewShift;
314
315 Builder.Insert(NewShift);
316 return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
317 }
318
319 /// If we have a shift-by-constant of a bitwise logic op that itself has a
320 /// shift-by-constant operand with identical opcode, we may be able to convert
321 /// that into 2 independent shifts followed by the logic op. This eliminates a
322 /// a use of an intermediate value (reduces dependency chain).
foldShiftOfShiftedLogic(BinaryOperator & I,InstCombiner::BuilderTy & Builder)323 static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I,
324 InstCombiner::BuilderTy &Builder) {
325 assert(I.isShift() && "Expected a shift as input");
326 auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
327 if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
328 return nullptr;
329
330 const APInt *C0, *C1;
331 if (!match(I.getOperand(1), m_APInt(C1)))
332 return nullptr;
333
334 Instruction::BinaryOps ShiftOpcode = I.getOpcode();
335 Type *Ty = I.getType();
336
337 // Find a matching one-use shift by constant. The fold is not valid if the sum
338 // of the shift values equals or exceeds bitwidth.
339 // TODO: Remove the one-use check if the other logic operand (Y) is constant.
340 Value *X, *Y;
341 auto matchFirstShift = [&](Value *V) {
342 return !isa<ConstantExpr>(V) &&
343 match(V, m_OneUse(m_Shift(m_Value(X), m_APInt(C0)))) &&
344 cast<BinaryOperator>(V)->getOpcode() == ShiftOpcode &&
345 (*C0 + *C1).ult(Ty->getScalarSizeInBits());
346 };
347
348 // Logic ops are commutative, so check each operand for a match.
349 if (matchFirstShift(LogicInst->getOperand(0)))
350 Y = LogicInst->getOperand(1);
351 else if (matchFirstShift(LogicInst->getOperand(1)))
352 Y = LogicInst->getOperand(0);
353 else
354 return nullptr;
355
356 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
357 Constant *ShiftSumC = ConstantInt::get(Ty, *C0 + *C1);
358 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
359 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1));
360 return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
361 }
362
commonShiftTransforms(BinaryOperator & I)363 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
364 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
365 assert(Op0->getType() == Op1->getType());
366
367 // If the shift amount is a one-use `sext`, we can demote it to `zext`.
368 Value *Y;
369 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
370 Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName());
371 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
372 }
373
374 // See if we can fold away this shift.
375 if (SimplifyDemandedInstructionBits(I))
376 return &I;
377
378 // Try to fold constant and into select arguments.
379 if (isa<Constant>(Op0))
380 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
381 if (Instruction *R = FoldOpIntoSelect(I, SI))
382 return R;
383
384 if (Constant *CUI = dyn_cast<Constant>(Op1))
385 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
386 return Res;
387
388 if (auto *NewShift = cast_or_null<Instruction>(
389 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
390 return NewShift;
391
392 // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
393 // iff A and C2 are both positive.
394 Value *A;
395 Constant *C;
396 if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
397 if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
398 isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
399 return BinaryOperator::Create(
400 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
401
402 // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
403 // Because shifts by negative values (which could occur if A were negative)
404 // are undefined.
405 const APInt *B;
406 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
407 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
408 // demand the sign bit (and many others) here??
409 Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1),
410 Op1->getName());
411 I.setOperand(1, Rem);
412 return &I;
413 }
414
415 if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder))
416 return Logic;
417
418 return nullptr;
419 }
420
421 /// Return true if we can simplify two logical (either left or right) shifts
422 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
canEvaluateShiftedShift(unsigned OuterShAmt,bool IsOuterShl,Instruction * InnerShift,InstCombiner & IC,Instruction * CxtI)423 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
424 Instruction *InnerShift, InstCombiner &IC,
425 Instruction *CxtI) {
426 assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
427
428 // We need constant scalar or constant splat shifts.
429 const APInt *InnerShiftConst;
430 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
431 return false;
432
433 // Two logical shifts in the same direction:
434 // shl (shl X, C1), C2 --> shl X, C1 + C2
435 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
436 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
437 if (IsInnerShl == IsOuterShl)
438 return true;
439
440 // Equal shift amounts in opposite directions become bitwise 'and':
441 // lshr (shl X, C), C --> and X, C'
442 // shl (lshr X, C), C --> and X, C'
443 if (*InnerShiftConst == OuterShAmt)
444 return true;
445
446 // If the 2nd shift is bigger than the 1st, we can fold:
447 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
448 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
449 // but it isn't profitable unless we know the and'd out bits are already zero.
450 // Also, check that the inner shift is valid (less than the type width) or
451 // we'll crash trying to produce the bit mask for the 'and'.
452 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
453 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
454 unsigned InnerShAmt = InnerShiftConst->getZExtValue();
455 unsigned MaskShift =
456 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
457 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
458 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
459 return true;
460 }
461
462 return false;
463 }
464
465 /// See if we can compute the specified value, but shifted logically to the left
466 /// or right by some number of bits. This should return true if the expression
467 /// can be computed for the same cost as the current expression tree. This is
468 /// used to eliminate extraneous shifting from things like:
469 /// %C = shl i128 %A, 64
470 /// %D = shl i128 %B, 96
471 /// %E = or i128 %C, %D
472 /// %F = lshr i128 %E, 64
473 /// where the client will ask if E can be computed shifted right by 64-bits. If
474 /// this succeeds, getShiftedValue() will be called to produce the value.
canEvaluateShifted(Value * V,unsigned NumBits,bool IsLeftShift,InstCombiner & IC,Instruction * CxtI)475 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
476 InstCombiner &IC, Instruction *CxtI) {
477 // We can always evaluate constants shifted.
478 if (isa<Constant>(V))
479 return true;
480
481 Instruction *I = dyn_cast<Instruction>(V);
482 if (!I) return false;
483
484 // If this is the opposite shift, we can directly reuse the input of the shift
485 // if the needed bits are already zero in the input. This allows us to reuse
486 // the value which means that we don't care if the shift has multiple uses.
487 // TODO: Handle opposite shift by exact value.
488 ConstantInt *CI = nullptr;
489 if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
490 (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
491 if (CI->getValue() == NumBits) {
492 // TODO: Check that the input bits are already zero with MaskedValueIsZero
493 #if 0
494 // If this is a truncate of a logical shr, we can truncate it to a smaller
495 // lshr iff we know that the bits we would otherwise be shifting in are
496 // already zeros.
497 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
498 uint32_t BitWidth = Ty->getScalarSizeInBits();
499 if (MaskedValueIsZero(I->getOperand(0),
500 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
501 CI->getLimitedValue(BitWidth) < BitWidth) {
502 return CanEvaluateTruncated(I->getOperand(0), Ty);
503 }
504 #endif
505
506 }
507 }
508
509 // We can't mutate something that has multiple uses: doing so would
510 // require duplicating the instruction in general, which isn't profitable.
511 if (!I->hasOneUse()) return false;
512
513 switch (I->getOpcode()) {
514 default: return false;
515 case Instruction::And:
516 case Instruction::Or:
517 case Instruction::Xor:
518 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
519 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
520 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
521
522 case Instruction::Shl:
523 case Instruction::LShr:
524 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
525
526 case Instruction::Select: {
527 SelectInst *SI = cast<SelectInst>(I);
528 Value *TrueVal = SI->getTrueValue();
529 Value *FalseVal = SI->getFalseValue();
530 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
531 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
532 }
533 case Instruction::PHI: {
534 // We can change a phi if we can change all operands. Note that we never
535 // get into trouble with cyclic PHIs here because we only consider
536 // instructions with a single use.
537 PHINode *PN = cast<PHINode>(I);
538 for (Value *IncValue : PN->incoming_values())
539 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
540 return false;
541 return true;
542 }
543 }
544 }
545
546 /// Fold OuterShift (InnerShift X, C1), C2.
547 /// See canEvaluateShiftedShift() for the constraints on these instructions.
foldShiftedShift(BinaryOperator * InnerShift,unsigned OuterShAmt,bool IsOuterShl,InstCombiner::BuilderTy & Builder)548 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
549 bool IsOuterShl,
550 InstCombiner::BuilderTy &Builder) {
551 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
552 Type *ShType = InnerShift->getType();
553 unsigned TypeWidth = ShType->getScalarSizeInBits();
554
555 // We only accept shifts-by-a-constant in canEvaluateShifted().
556 const APInt *C1;
557 match(InnerShift->getOperand(1), m_APInt(C1));
558 unsigned InnerShAmt = C1->getZExtValue();
559
560 // Change the shift amount and clear the appropriate IR flags.
561 auto NewInnerShift = [&](unsigned ShAmt) {
562 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
563 if (IsInnerShl) {
564 InnerShift->setHasNoUnsignedWrap(false);
565 InnerShift->setHasNoSignedWrap(false);
566 } else {
567 InnerShift->setIsExact(false);
568 }
569 return InnerShift;
570 };
571
572 // Two logical shifts in the same direction:
573 // shl (shl X, C1), C2 --> shl X, C1 + C2
574 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
575 if (IsInnerShl == IsOuterShl) {
576 // If this is an oversized composite shift, then unsigned shifts get 0.
577 if (InnerShAmt + OuterShAmt >= TypeWidth)
578 return Constant::getNullValue(ShType);
579
580 return NewInnerShift(InnerShAmt + OuterShAmt);
581 }
582
583 // Equal shift amounts in opposite directions become bitwise 'and':
584 // lshr (shl X, C), C --> and X, C'
585 // shl (lshr X, C), C --> and X, C'
586 if (InnerShAmt == OuterShAmt) {
587 APInt Mask = IsInnerShl
588 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
589 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
590 Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
591 ConstantInt::get(ShType, Mask));
592 if (auto *AndI = dyn_cast<Instruction>(And)) {
593 AndI->moveBefore(InnerShift);
594 AndI->takeName(InnerShift);
595 }
596 return And;
597 }
598
599 assert(InnerShAmt > OuterShAmt &&
600 "Unexpected opposite direction logical shift pair");
601
602 // In general, we would need an 'and' for this transform, but
603 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
604 // lshr (shl X, C1), C2 --> shl X, C1 - C2
605 // shl (lshr X, C1), C2 --> lshr X, C1 - C2
606 return NewInnerShift(InnerShAmt - OuterShAmt);
607 }
608
609 /// When canEvaluateShifted() returns true for an expression, this function
610 /// inserts the new computation that produces the shifted value.
getShiftedValue(Value * V,unsigned NumBits,bool isLeftShift,InstCombiner & IC,const DataLayout & DL)611 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
612 InstCombiner &IC, const DataLayout &DL) {
613 // We can always evaluate constants shifted.
614 if (Constant *C = dyn_cast<Constant>(V)) {
615 if (isLeftShift)
616 V = IC.Builder.CreateShl(C, NumBits);
617 else
618 V = IC.Builder.CreateLShr(C, NumBits);
619 // If we got a constantexpr back, try to simplify it with TD info.
620 if (auto *C = dyn_cast<Constant>(V))
621 if (auto *FoldedC =
622 ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo()))
623 V = FoldedC;
624 return V;
625 }
626
627 Instruction *I = cast<Instruction>(V);
628 IC.Worklist.Add(I);
629
630 switch (I->getOpcode()) {
631 default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
632 case Instruction::And:
633 case Instruction::Or:
634 case Instruction::Xor:
635 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
636 I->setOperand(
637 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
638 I->setOperand(
639 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
640 return I;
641
642 case Instruction::Shl:
643 case Instruction::LShr:
644 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
645 IC.Builder);
646
647 case Instruction::Select:
648 I->setOperand(
649 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
650 I->setOperand(
651 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
652 return I;
653 case Instruction::PHI: {
654 // We can change a phi if we can change all operands. Note that we never
655 // get into trouble with cyclic PHIs here because we only consider
656 // instructions with a single use.
657 PHINode *PN = cast<PHINode>(I);
658 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
659 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
660 isLeftShift, IC, DL));
661 return PN;
662 }
663 }
664 }
665
666 // If this is a bitwise operator or add with a constant RHS we might be able
667 // to pull it through a shift.
canShiftBinOpWithConstantRHS(BinaryOperator & Shift,BinaryOperator * BO)668 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
669 BinaryOperator *BO) {
670 switch (BO->getOpcode()) {
671 default:
672 return false; // Do not perform transform!
673 case Instruction::Add:
674 return Shift.getOpcode() == Instruction::Shl;
675 case Instruction::Or:
676 case Instruction::Xor:
677 case Instruction::And:
678 return true;
679 }
680 }
681
FoldShiftByConstant(Value * Op0,Constant * Op1,BinaryOperator & I)682 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
683 BinaryOperator &I) {
684 bool isLeftShift = I.getOpcode() == Instruction::Shl;
685
686 const APInt *Op1C;
687 if (!match(Op1, m_APInt(Op1C)))
688 return nullptr;
689
690 // See if we can propagate this shift into the input, this covers the trivial
691 // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
692 if (I.getOpcode() != Instruction::AShr &&
693 canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
694 LLVM_DEBUG(
695 dbgs() << "ICE: GetShiftedValue propagating shift through expression"
696 " to eliminate shift:\n IN: "
697 << *Op0 << "\n SH: " << I << "\n");
698
699 return replaceInstUsesWith(
700 I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
701 }
702
703 // See if we can simplify any instructions used by the instruction whose sole
704 // purpose is to compute bits we don't care about.
705 unsigned TypeBits = Op0->getType()->getScalarSizeInBits();
706
707 assert(!Op1C->uge(TypeBits) &&
708 "Shift over the type width should have been removed already");
709
710 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
711 return FoldedShift;
712
713 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
714 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
715 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
716 // If 'shift2' is an ashr, we would have to get the sign bit into a funny
717 // place. Don't try to do this transformation in this case. Also, we
718 // require that the input operand is a shift-by-constant so that we have
719 // confidence that the shifts will get folded together. We could do this
720 // xform in more cases, but it is unlikely to be profitable.
721 if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
722 isa<ConstantInt>(TrOp->getOperand(1))) {
723 // Okay, we'll do this xform. Make the shift of shift.
724 Constant *ShAmt =
725 ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType());
726 // (shift2 (shift1 & 0x00FF), c2)
727 Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName());
728
729 // For logical shifts, the truncation has the effect of making the high
730 // part of the register be zeros. Emulate this by inserting an AND to
731 // clear the top bits as needed. This 'and' will usually be zapped by
732 // other xforms later if dead.
733 unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
734 unsigned DstSize = TI->getType()->getScalarSizeInBits();
735 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
736
737 // The mask we constructed says what the trunc would do if occurring
738 // between the shifts. We want to know the effect *after* the second
739 // shift. We know that it is a logical shift by a constant, so adjust the
740 // mask as appropriate.
741 if (I.getOpcode() == Instruction::Shl)
742 MaskV <<= Op1C->getZExtValue();
743 else {
744 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
745 MaskV.lshrInPlace(Op1C->getZExtValue());
746 }
747
748 // shift1 & 0x00FF
749 Value *And = Builder.CreateAnd(NSh,
750 ConstantInt::get(I.getContext(), MaskV),
751 TI->getName());
752
753 // Return the value truncated to the interesting size.
754 return new TruncInst(And, I.getType());
755 }
756 }
757
758 if (Op0->hasOneUse()) {
759 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
760 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
761 Value *V1, *V2;
762 ConstantInt *CC;
763 switch (Op0BO->getOpcode()) {
764 default: break;
765 case Instruction::Add:
766 case Instruction::And:
767 case Instruction::Or:
768 case Instruction::Xor: {
769 // These operators commute.
770 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
771 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
772 match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
773 m_Specific(Op1)))) {
774 Value *YS = // (Y << C)
775 Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
776 // (X + (Y << C))
777 Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1,
778 Op0BO->getOperand(1)->getName());
779 unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
780
781 APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
782 Constant *Mask = ConstantInt::get(I.getContext(), Bits);
783 if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
784 Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
785 return BinaryOperator::CreateAnd(X, Mask);
786 }
787
788 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
789 Value *Op0BOOp1 = Op0BO->getOperand(1);
790 if (isLeftShift && Op0BOOp1->hasOneUse() &&
791 match(Op0BOOp1,
792 m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
793 m_ConstantInt(CC)))) {
794 Value *YS = // (Y << C)
795 Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
796 // X & (CC << C)
797 Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
798 V1->getName()+".mask");
799 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
800 }
801 LLVM_FALLTHROUGH;
802 }
803
804 case Instruction::Sub: {
805 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
806 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
807 match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
808 m_Specific(Op1)))) {
809 Value *YS = // (Y << C)
810 Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
811 // (X + (Y << C))
812 Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS,
813 Op0BO->getOperand(0)->getName());
814 unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
815
816 APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
817 Constant *Mask = ConstantInt::get(I.getContext(), Bits);
818 if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
819 Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
820 return BinaryOperator::CreateAnd(X, Mask);
821 }
822
823 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
824 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
825 match(Op0BO->getOperand(0),
826 m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
827 m_ConstantInt(CC))) && V2 == Op1) {
828 Value *YS = // (Y << C)
829 Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
830 // X & (CC << C)
831 Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
832 V1->getName()+".mask");
833
834 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
835 }
836
837 break;
838 }
839 }
840
841
842 // If the operand is a bitwise operator with a constant RHS, and the
843 // shift is the only use, we can pull it out of the shift.
844 const APInt *Op0C;
845 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
846 if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
847 Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
848 cast<Constant>(Op0BO->getOperand(1)), Op1);
849
850 Value *NewShift =
851 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
852 NewShift->takeName(Op0BO);
853
854 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
855 NewRHS);
856 }
857 }
858
859 // If the operand is a subtract with a constant LHS, and the shift
860 // is the only use, we can pull it out of the shift.
861 // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
862 if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub &&
863 match(Op0BO->getOperand(0), m_APInt(Op0C))) {
864 Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
865 cast<Constant>(Op0BO->getOperand(0)), Op1);
866
867 Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1);
868 NewShift->takeName(Op0BO);
869
870 return BinaryOperator::CreateSub(NewRHS, NewShift);
871 }
872 }
873
874 // If we have a select that conditionally executes some binary operator,
875 // see if we can pull it the select and operator through the shift.
876 //
877 // For example, turning:
878 // shl (select C, (add X, C1), X), C2
879 // Into:
880 // Y = shl X, C2
881 // select C, (add Y, C1 << C2), Y
882 Value *Cond;
883 BinaryOperator *TBO;
884 Value *FalseVal;
885 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
886 m_Value(FalseVal)))) {
887 const APInt *C;
888 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
889 match(TBO->getOperand(1), m_APInt(C)) &&
890 canShiftBinOpWithConstantRHS(I, TBO)) {
891 Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
892 cast<Constant>(TBO->getOperand(1)), Op1);
893
894 Value *NewShift =
895 Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
896 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift,
897 NewRHS);
898 return SelectInst::Create(Cond, NewOp, NewShift);
899 }
900 }
901
902 BinaryOperator *FBO;
903 Value *TrueVal;
904 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
905 m_OneUse(m_BinOp(FBO))))) {
906 const APInt *C;
907 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
908 match(FBO->getOperand(1), m_APInt(C)) &&
909 canShiftBinOpWithConstantRHS(I, FBO)) {
910 Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
911 cast<Constant>(FBO->getOperand(1)), Op1);
912
913 Value *NewShift =
914 Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
915 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift,
916 NewRHS);
917 return SelectInst::Create(Cond, NewShift, NewOp);
918 }
919 }
920 }
921
922 return nullptr;
923 }
924
visitShl(BinaryOperator & I)925 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
926 const SimplifyQuery Q = SQ.getWithInstruction(&I);
927
928 if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
929 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
930 return replaceInstUsesWith(I, V);
931
932 if (Instruction *X = foldVectorBinop(I))
933 return X;
934
935 if (Instruction *V = commonShiftTransforms(I))
936 return V;
937
938 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
939 return V;
940
941 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
942 Type *Ty = I.getType();
943 unsigned BitWidth = Ty->getScalarSizeInBits();
944
945 const APInt *ShAmtAPInt;
946 if (match(Op1, m_APInt(ShAmtAPInt))) {
947 unsigned ShAmt = ShAmtAPInt->getZExtValue();
948
949 // shl (zext X), ShAmt --> zext (shl X, ShAmt)
950 // This is only valid if X would have zeros shifted out.
951 Value *X;
952 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
953 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
954 if (ShAmt < SrcWidth &&
955 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
956 return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty);
957 }
958
959 // (X >> C) << C --> X & (-1 << C)
960 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
961 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
962 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
963 }
964
965 // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine)
966 // needs a few fixes for the rotate pattern recognition first.
967 const APInt *ShOp1;
968 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) {
969 unsigned ShrAmt = ShOp1->getZExtValue();
970 if (ShrAmt < ShAmt) {
971 // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
972 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
973 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
974 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
975 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
976 return NewShl;
977 }
978 if (ShrAmt > ShAmt) {
979 // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
980 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
981 auto *NewShr = BinaryOperator::Create(
982 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
983 NewShr->setIsExact(true);
984 return NewShr;
985 }
986 }
987
988 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) {
989 unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
990 // Oversized shifts are simplified to zero in InstSimplify.
991 if (AmtSum < BitWidth)
992 // (X << C1) << C2 --> X << (C1 + C2)
993 return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
994 }
995
996 // If the shifted-out value is known-zero, then this is a NUW shift.
997 if (!I.hasNoUnsignedWrap() &&
998 MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
999 I.setHasNoUnsignedWrap();
1000 return &I;
1001 }
1002
1003 // If the shifted-out value is all signbits, then this is a NSW shift.
1004 if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
1005 I.setHasNoSignedWrap();
1006 return &I;
1007 }
1008 }
1009
1010 // Transform (x >> y) << y to x & (-1 << y)
1011 // Valid for any type of right-shift.
1012 Value *X;
1013 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
1014 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1015 Value *Mask = Builder.CreateShl(AllOnes, Op1);
1016 return BinaryOperator::CreateAnd(Mask, X);
1017 }
1018
1019 Constant *C1;
1020 if (match(Op1, m_Constant(C1))) {
1021 Constant *C2;
1022 Value *X;
1023 // (C2 << X) << C1 --> (C2 << C1) << X
1024 if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
1025 return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
1026
1027 // (X * C2) << C1 --> X * (C2 << C1)
1028 if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
1029 return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
1030
1031 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
1032 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1033 auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
1034 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1035 }
1036 }
1037
1038 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
1039 if (match(Op0, m_One()) &&
1040 match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
1041 return BinaryOperator::CreateLShr(
1042 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
1043
1044 return nullptr;
1045 }
1046
visitLShr(BinaryOperator & I)1047 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
1048 if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1049 SQ.getWithInstruction(&I)))
1050 return replaceInstUsesWith(I, V);
1051
1052 if (Instruction *X = foldVectorBinop(I))
1053 return X;
1054
1055 if (Instruction *R = commonShiftTransforms(I))
1056 return R;
1057
1058 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1059 Type *Ty = I.getType();
1060 const APInt *ShAmtAPInt;
1061 if (match(Op1, m_APInt(ShAmtAPInt))) {
1062 unsigned ShAmt = ShAmtAPInt->getZExtValue();
1063 unsigned BitWidth = Ty->getScalarSizeInBits();
1064 auto *II = dyn_cast<IntrinsicInst>(Op0);
1065 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt &&
1066 (II->getIntrinsicID() == Intrinsic::ctlz ||
1067 II->getIntrinsicID() == Intrinsic::cttz ||
1068 II->getIntrinsicID() == Intrinsic::ctpop)) {
1069 // ctlz.i32(x)>>5 --> zext(x == 0)
1070 // cttz.i32(x)>>5 --> zext(x == 0)
1071 // ctpop.i32(x)>>5 --> zext(x == -1)
1072 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1073 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
1074 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
1075 return new ZExtInst(Cmp, Ty);
1076 }
1077
1078 Value *X;
1079 const APInt *ShOp1;
1080 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
1081 if (ShOp1->ult(ShAmt)) {
1082 unsigned ShlAmt = ShOp1->getZExtValue();
1083 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1084 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1085 // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
1086 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1087 NewLShr->setIsExact(I.isExact());
1088 return NewLShr;
1089 }
1090 // (X << C1) >>u C2 --> (X >>u (C2 - C1)) & (-1 >> C2)
1091 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1092 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1093 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1094 }
1095 if (ShOp1->ugt(ShAmt)) {
1096 unsigned ShlAmt = ShOp1->getZExtValue();
1097 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1098 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1099 // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
1100 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1101 NewShl->setHasNoUnsignedWrap(true);
1102 return NewShl;
1103 }
1104 // (X << C1) >>u C2 --> X << (C1 - C2) & (-1 >> C2)
1105 Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1106 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1107 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1108 }
1109 assert(*ShOp1 == ShAmt);
1110 // (X << C) >>u C --> X & (-1 >>u C)
1111 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1112 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1113 }
1114
1115 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1116 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1117 assert(ShAmt < X->getType()->getScalarSizeInBits() &&
1118 "Big shift not simplified to zero?");
1119 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1120 Value *NewLShr = Builder.CreateLShr(X, ShAmt);
1121 return new ZExtInst(NewLShr, Ty);
1122 }
1123
1124 if (match(Op0, m_SExt(m_Value(X))) &&
1125 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1126 // Are we moving the sign bit to the low bit and widening with high zeros?
1127 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1128 if (ShAmt == BitWidth - 1) {
1129 // lshr (sext i1 X to iN), N-1 --> zext X to iN
1130 if (SrcTyBitWidth == 1)
1131 return new ZExtInst(X, Ty);
1132
1133 // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1134 if (Op0->hasOneUse()) {
1135 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1136 return new ZExtInst(NewLShr, Ty);
1137 }
1138 }
1139
1140 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1141 if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) {
1142 // The new shift amount can't be more than the narrow source type.
1143 unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1);
1144 Value *AShr = Builder.CreateAShr(X, NewShAmt);
1145 return new ZExtInst(AShr, Ty);
1146 }
1147 }
1148
1149 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) {
1150 unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1151 // Oversized shifts are simplified to zero in InstSimplify.
1152 if (AmtSum < BitWidth)
1153 // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
1154 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
1155 }
1156
1157 // If the shifted-out value is known-zero, then this is an exact shift.
1158 if (!I.isExact() &&
1159 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1160 I.setIsExact();
1161 return &I;
1162 }
1163 }
1164
1165 // Transform (x << y) >> y to x & (-1 >> y)
1166 Value *X;
1167 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1168 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1169 Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1170 return BinaryOperator::CreateAnd(Mask, X);
1171 }
1172
1173 return nullptr;
1174 }
1175
1176 Instruction *
foldVariableSignZeroExtensionOfVariableHighBitExtract(BinaryOperator & OldAShr)1177 InstCombiner::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1178 BinaryOperator &OldAShr) {
1179 assert(OldAShr.getOpcode() == Instruction::AShr &&
1180 "Must be called with arithmetic right-shift instruction only.");
1181
1182 // Check that constant C is a splat of the element-wise bitwidth of V.
1183 auto BitWidthSplat = [](Constant *C, Value *V) {
1184 return match(
1185 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1186 APInt(C->getType()->getScalarSizeInBits(),
1187 V->getType()->getScalarSizeInBits())));
1188 };
1189
1190 // It should look like variable-length sign-extension on the outside:
1191 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1192 Value *NBits;
1193 Instruction *MaybeTrunc;
1194 Constant *C1, *C2;
1195 if (!match(&OldAShr,
1196 m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1197 m_ZExtOrSelf(m_Sub(m_Constant(C1),
1198 m_ZExtOrSelf(m_Value(NBits))))),
1199 m_ZExtOrSelf(m_Sub(m_Constant(C2),
1200 m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1201 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1202 return nullptr;
1203
1204 // There may or may not be a truncation after outer two shifts.
1205 Instruction *HighBitExtract;
1206 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1207 bool HadTrunc = MaybeTrunc != HighBitExtract;
1208
1209 // And finally, the innermost part of the pattern must be a right-shift.
1210 Value *X, *NumLowBitsToSkip;
1211 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1212 return nullptr;
1213
1214 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1215 Constant *C0;
1216 if (!match(NumLowBitsToSkip,
1217 m_ZExtOrSelf(
1218 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1219 !BitWidthSplat(C0, HighBitExtract))
1220 return nullptr;
1221
1222 // Since the NBits is identical for all shifts, if the outermost and
1223 // innermost shifts are identical, then outermost shifts are redundant.
1224 // If we had truncation, do keep it though.
1225 if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1226 return replaceInstUsesWith(OldAShr, MaybeTrunc);
1227
1228 // Else, if there was a truncation, then we need to ensure that one
1229 // instruction will go away.
1230 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1231 return nullptr;
1232
1233 // Finally, bypass two innermost shifts, and perform the outermost shift on
1234 // the operands of the innermost shift.
1235 Instruction *NewAShr =
1236 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1237 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1238 if (!HadTrunc)
1239 return NewAShr;
1240
1241 Builder.Insert(NewAShr);
1242 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1243 }
1244
visitAShr(BinaryOperator & I)1245 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
1246 if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1247 SQ.getWithInstruction(&I)))
1248 return replaceInstUsesWith(I, V);
1249
1250 if (Instruction *X = foldVectorBinop(I))
1251 return X;
1252
1253 if (Instruction *R = commonShiftTransforms(I))
1254 return R;
1255
1256 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1257 Type *Ty = I.getType();
1258 unsigned BitWidth = Ty->getScalarSizeInBits();
1259 const APInt *ShAmtAPInt;
1260 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1261 unsigned ShAmt = ShAmtAPInt->getZExtValue();
1262
1263 // If the shift amount equals the difference in width of the destination
1264 // and source scalar types:
1265 // ashr (shl (zext X), C), C --> sext X
1266 Value *X;
1267 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1268 ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1269 return new SExtInst(X, Ty);
1270
1271 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1272 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1273 const APInt *ShOp1;
1274 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1275 ShOp1->ult(BitWidth)) {
1276 unsigned ShlAmt = ShOp1->getZExtValue();
1277 if (ShlAmt < ShAmt) {
1278 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1279 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1280 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1281 NewAShr->setIsExact(I.isExact());
1282 return NewAShr;
1283 }
1284 if (ShlAmt > ShAmt) {
1285 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1286 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1287 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1288 NewShl->setHasNoSignedWrap(true);
1289 return NewShl;
1290 }
1291 }
1292
1293 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1294 ShOp1->ult(BitWidth)) {
1295 unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1296 // Oversized arithmetic shifts replicate the sign bit.
1297 AmtSum = std::min(AmtSum, BitWidth - 1);
1298 // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1299 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1300 }
1301
1302 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1303 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1304 // ashr (sext X), C --> sext (ashr X, C')
1305 Type *SrcTy = X->getType();
1306 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1307 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1308 return new SExtInst(NewSh, Ty);
1309 }
1310
1311 // If the shifted-out value is known-zero, then this is an exact shift.
1312 if (!I.isExact() &&
1313 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1314 I.setIsExact();
1315 return &I;
1316 }
1317 }
1318
1319 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1320 return R;
1321
1322 // See if we can turn a signed shr into an unsigned shr.
1323 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
1324 return BinaryOperator::CreateLShr(Op0, Op1);
1325
1326 return nullptr;
1327 }
1328