1 //===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for OpenMP runtime code generation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGOpenMPRuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/OpenMPClause.h"
21 #include "clang/AST/StmtOpenMP.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/BitmaskEnum.h"
24 #include "clang/CodeGen/ConstantInitBuilder.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/SetOperations.h"
27 #include "llvm/Bitcode/BitcodeReader.h"
28 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/Support/Format.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <cassert>
35 
36 using namespace clang;
37 using namespace CodeGen;
38 using namespace llvm::omp;
39 
40 namespace {
41 /// Base class for handling code generation inside OpenMP regions.
42 class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
43 public:
44   /// Kinds of OpenMP regions used in codegen.
45   enum CGOpenMPRegionKind {
46     /// Region with outlined function for standalone 'parallel'
47     /// directive.
48     ParallelOutlinedRegion,
49     /// Region with outlined function for standalone 'task' directive.
50     TaskOutlinedRegion,
51     /// Region for constructs that do not require function outlining,
52     /// like 'for', 'sections', 'atomic' etc. directives.
53     InlinedRegion,
54     /// Region with outlined function for standalone 'target' directive.
55     TargetRegion,
56   };
57 
CGOpenMPRegionInfo(const CapturedStmt & CS,const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)58   CGOpenMPRegionInfo(const CapturedStmt &CS,
59                      const CGOpenMPRegionKind RegionKind,
60                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
61                      bool HasCancel)
62       : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
63         CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
64 
CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)65   CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
66                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
67                      bool HasCancel)
68       : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
69         Kind(Kind), HasCancel(HasCancel) {}
70 
71   /// Get a variable or parameter for storing global thread id
72   /// inside OpenMP construct.
73   virtual const VarDecl *getThreadIDVariable() const = 0;
74 
75   /// Emit the captured statement body.
76   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
77 
78   /// Get an LValue for the current ThreadID variable.
79   /// \return LValue for thread id variable. This LValue always has type int32*.
80   virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
81 
emitUntiedSwitch(CodeGenFunction &)82   virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
83 
getRegionKind() const84   CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
85 
getDirectiveKind() const86   OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
87 
hasCancel() const88   bool hasCancel() const { return HasCancel; }
89 
classof(const CGCapturedStmtInfo * Info)90   static bool classof(const CGCapturedStmtInfo *Info) {
91     return Info->getKind() == CR_OpenMP;
92   }
93 
94   ~CGOpenMPRegionInfo() override = default;
95 
96 protected:
97   CGOpenMPRegionKind RegionKind;
98   RegionCodeGenTy CodeGen;
99   OpenMPDirectiveKind Kind;
100   bool HasCancel;
101 };
102 
103 /// API for captured statement code generation in OpenMP constructs.
104 class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
105 public:
CGOpenMPOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,StringRef HelperName)106   CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
107                              const RegionCodeGenTy &CodeGen,
108                              OpenMPDirectiveKind Kind, bool HasCancel,
109                              StringRef HelperName)
110       : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
111                            HasCancel),
112         ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
113     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
114   }
115 
116   /// Get a variable or parameter for storing global thread id
117   /// inside OpenMP construct.
getThreadIDVariable() const118   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
119 
120   /// Get the name of the capture helper.
getHelperName() const121   StringRef getHelperName() const override { return HelperName; }
122 
classof(const CGCapturedStmtInfo * Info)123   static bool classof(const CGCapturedStmtInfo *Info) {
124     return CGOpenMPRegionInfo::classof(Info) &&
125            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
126                ParallelOutlinedRegion;
127   }
128 
129 private:
130   /// A variable or parameter storing global thread id for OpenMP
131   /// constructs.
132   const VarDecl *ThreadIDVar;
133   StringRef HelperName;
134 };
135 
136 /// API for captured statement code generation in OpenMP constructs.
137 class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
138 public:
139   class UntiedTaskActionTy final : public PrePostActionTy {
140     bool Untied;
141     const VarDecl *PartIDVar;
142     const RegionCodeGenTy UntiedCodeGen;
143     llvm::SwitchInst *UntiedSwitch = nullptr;
144 
145   public:
UntiedTaskActionTy(bool Tied,const VarDecl * PartIDVar,const RegionCodeGenTy & UntiedCodeGen)146     UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
147                        const RegionCodeGenTy &UntiedCodeGen)
148         : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
Enter(CodeGenFunction & CGF)149     void Enter(CodeGenFunction &CGF) override {
150       if (Untied) {
151         // Emit task switching point.
152         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
153             CGF.GetAddrOfLocalVar(PartIDVar),
154             PartIDVar->getType()->castAs<PointerType>());
155         llvm::Value *Res =
156             CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation());
157         llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done.");
158         UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
159         CGF.EmitBlock(DoneBB);
160         CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
161         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
162         UntiedSwitch->addCase(CGF.Builder.getInt32(0),
163                               CGF.Builder.GetInsertBlock());
164         emitUntiedSwitch(CGF);
165       }
166     }
emitUntiedSwitch(CodeGenFunction & CGF) const167     void emitUntiedSwitch(CodeGenFunction &CGF) const {
168       if (Untied) {
169         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
170             CGF.GetAddrOfLocalVar(PartIDVar),
171             PartIDVar->getType()->castAs<PointerType>());
172         CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
173                               PartIdLVal);
174         UntiedCodeGen(CGF);
175         CodeGenFunction::JumpDest CurPoint =
176             CGF.getJumpDestInCurrentScope(".untied.next.");
177         CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
178         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
179         UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
180                               CGF.Builder.GetInsertBlock());
181         CGF.EmitBranchThroughCleanup(CurPoint);
182         CGF.EmitBlock(CurPoint.getBlock());
183       }
184     }
getNumberOfParts() const185     unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
186   };
CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,const UntiedTaskActionTy & Action)187   CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
188                                  const VarDecl *ThreadIDVar,
189                                  const RegionCodeGenTy &CodeGen,
190                                  OpenMPDirectiveKind Kind, bool HasCancel,
191                                  const UntiedTaskActionTy &Action)
192       : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
193         ThreadIDVar(ThreadIDVar), Action(Action) {
194     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
195   }
196 
197   /// Get a variable or parameter for storing global thread id
198   /// inside OpenMP construct.
getThreadIDVariable() const199   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
200 
201   /// Get an LValue for the current ThreadID variable.
202   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
203 
204   /// Get the name of the capture helper.
getHelperName() const205   StringRef getHelperName() const override { return ".omp_outlined."; }
206 
emitUntiedSwitch(CodeGenFunction & CGF)207   void emitUntiedSwitch(CodeGenFunction &CGF) override {
208     Action.emitUntiedSwitch(CGF);
209   }
210 
classof(const CGCapturedStmtInfo * Info)211   static bool classof(const CGCapturedStmtInfo *Info) {
212     return CGOpenMPRegionInfo::classof(Info) &&
213            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
214                TaskOutlinedRegion;
215   }
216 
217 private:
218   /// A variable or parameter storing global thread id for OpenMP
219   /// constructs.
220   const VarDecl *ThreadIDVar;
221   /// Action for emitting code for untied tasks.
222   const UntiedTaskActionTy &Action;
223 };
224 
225 /// API for inlined captured statement code generation in OpenMP
226 /// constructs.
227 class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
228 public:
CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo * OldCSI,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)229   CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
230                             const RegionCodeGenTy &CodeGen,
231                             OpenMPDirectiveKind Kind, bool HasCancel)
232       : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
233         OldCSI(OldCSI),
234         OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
235 
236   // Retrieve the value of the context parameter.
getContextValue() const237   llvm::Value *getContextValue() const override {
238     if (OuterRegionInfo)
239       return OuterRegionInfo->getContextValue();
240     llvm_unreachable("No context value for inlined OpenMP region");
241   }
242 
setContextValue(llvm::Value * V)243   void setContextValue(llvm::Value *V) override {
244     if (OuterRegionInfo) {
245       OuterRegionInfo->setContextValue(V);
246       return;
247     }
248     llvm_unreachable("No context value for inlined OpenMP region");
249   }
250 
251   /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const252   const FieldDecl *lookup(const VarDecl *VD) const override {
253     if (OuterRegionInfo)
254       return OuterRegionInfo->lookup(VD);
255     // If there is no outer outlined region,no need to lookup in a list of
256     // captured variables, we can use the original one.
257     return nullptr;
258   }
259 
getThisFieldDecl() const260   FieldDecl *getThisFieldDecl() const override {
261     if (OuterRegionInfo)
262       return OuterRegionInfo->getThisFieldDecl();
263     return nullptr;
264   }
265 
266   /// Get a variable or parameter for storing global thread id
267   /// inside OpenMP construct.
getThreadIDVariable() const268   const VarDecl *getThreadIDVariable() const override {
269     if (OuterRegionInfo)
270       return OuterRegionInfo->getThreadIDVariable();
271     return nullptr;
272   }
273 
274   /// Get an LValue for the current ThreadID variable.
getThreadIDVariableLValue(CodeGenFunction & CGF)275   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override {
276     if (OuterRegionInfo)
277       return OuterRegionInfo->getThreadIDVariableLValue(CGF);
278     llvm_unreachable("No LValue for inlined OpenMP construct");
279   }
280 
281   /// Get the name of the capture helper.
getHelperName() const282   StringRef getHelperName() const override {
283     if (auto *OuterRegionInfo = getOldCSI())
284       return OuterRegionInfo->getHelperName();
285     llvm_unreachable("No helper name for inlined OpenMP construct");
286   }
287 
emitUntiedSwitch(CodeGenFunction & CGF)288   void emitUntiedSwitch(CodeGenFunction &CGF) override {
289     if (OuterRegionInfo)
290       OuterRegionInfo->emitUntiedSwitch(CGF);
291   }
292 
getOldCSI() const293   CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
294 
classof(const CGCapturedStmtInfo * Info)295   static bool classof(const CGCapturedStmtInfo *Info) {
296     return CGOpenMPRegionInfo::classof(Info) &&
297            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
298   }
299 
300   ~CGOpenMPInlinedRegionInfo() override = default;
301 
302 private:
303   /// CodeGen info about outer OpenMP region.
304   CodeGenFunction::CGCapturedStmtInfo *OldCSI;
305   CGOpenMPRegionInfo *OuterRegionInfo;
306 };
307 
308 /// API for captured statement code generation in OpenMP target
309 /// constructs. For this captures, implicit parameters are used instead of the
310 /// captured fields. The name of the target region has to be unique in a given
311 /// application so it is provided by the client, because only the client has
312 /// the information to generate that.
313 class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
314 public:
CGOpenMPTargetRegionInfo(const CapturedStmt & CS,const RegionCodeGenTy & CodeGen,StringRef HelperName)315   CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
316                            const RegionCodeGenTy &CodeGen, StringRef HelperName)
317       : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
318                            /*HasCancel=*/false),
319         HelperName(HelperName) {}
320 
321   /// This is unused for target regions because each starts executing
322   /// with a single thread.
getThreadIDVariable() const323   const VarDecl *getThreadIDVariable() const override { return nullptr; }
324 
325   /// Get the name of the capture helper.
getHelperName() const326   StringRef getHelperName() const override { return HelperName; }
327 
classof(const CGCapturedStmtInfo * Info)328   static bool classof(const CGCapturedStmtInfo *Info) {
329     return CGOpenMPRegionInfo::classof(Info) &&
330            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
331   }
332 
333 private:
334   StringRef HelperName;
335 };
336 
EmptyCodeGen(CodeGenFunction &,PrePostActionTy &)337 static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
338   llvm_unreachable("No codegen for expressions");
339 }
340 /// API for generation of expressions captured in a innermost OpenMP
341 /// region.
342 class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
343 public:
CGOpenMPInnerExprInfo(CodeGenFunction & CGF,const CapturedStmt & CS)344   CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
345       : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
346                                   OMPD_unknown,
347                                   /*HasCancel=*/false),
348         PrivScope(CGF) {
349     // Make sure the globals captured in the provided statement are local by
350     // using the privatization logic. We assume the same variable is not
351     // captured more than once.
352     for (const auto &C : CS.captures()) {
353       if (!C.capturesVariable() && !C.capturesVariableByCopy())
354         continue;
355 
356       const VarDecl *VD = C.getCapturedVar();
357       if (VD->isLocalVarDeclOrParm())
358         continue;
359 
360       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
361                       /*RefersToEnclosingVariableOrCapture=*/false,
362                       VD->getType().getNonReferenceType(), VK_LValue,
363                       C.getLocation());
364       PrivScope.addPrivate(
365           VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(CGF); });
366     }
367     (void)PrivScope.Privatize();
368   }
369 
370   /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const371   const FieldDecl *lookup(const VarDecl *VD) const override {
372     if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
373       return FD;
374     return nullptr;
375   }
376 
377   /// Emit the captured statement body.
EmitBody(CodeGenFunction & CGF,const Stmt * S)378   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
379     llvm_unreachable("No body for expressions");
380   }
381 
382   /// Get a variable or parameter for storing global thread id
383   /// inside OpenMP construct.
getThreadIDVariable() const384   const VarDecl *getThreadIDVariable() const override {
385     llvm_unreachable("No thread id for expressions");
386   }
387 
388   /// Get the name of the capture helper.
getHelperName() const389   StringRef getHelperName() const override {
390     llvm_unreachable("No helper name for expressions");
391   }
392 
classof(const CGCapturedStmtInfo * Info)393   static bool classof(const CGCapturedStmtInfo *Info) { return false; }
394 
395 private:
396   /// Private scope to capture global variables.
397   CodeGenFunction::OMPPrivateScope PrivScope;
398 };
399 
400 /// RAII for emitting code of OpenMP constructs.
401 class InlinedOpenMPRegionRAII {
402   CodeGenFunction &CGF;
403   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
404   FieldDecl *LambdaThisCaptureField = nullptr;
405   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
406 
407 public:
408   /// Constructs region for combined constructs.
409   /// \param CodeGen Code generation sequence for combined directives. Includes
410   /// a list of functions used for code generation of implicitly inlined
411   /// regions.
InlinedOpenMPRegionRAII(CodeGenFunction & CGF,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)412   InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
413                           OpenMPDirectiveKind Kind, bool HasCancel)
414       : CGF(CGF) {
415     // Start emission for the construct.
416     CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
417         CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
418     std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
419     LambdaThisCaptureField = CGF.LambdaThisCaptureField;
420     CGF.LambdaThisCaptureField = nullptr;
421     BlockInfo = CGF.BlockInfo;
422     CGF.BlockInfo = nullptr;
423   }
424 
~InlinedOpenMPRegionRAII()425   ~InlinedOpenMPRegionRAII() {
426     // Restore original CapturedStmtInfo only if we're done with code emission.
427     auto *OldCSI =
428         cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
429     delete CGF.CapturedStmtInfo;
430     CGF.CapturedStmtInfo = OldCSI;
431     std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
432     CGF.LambdaThisCaptureField = LambdaThisCaptureField;
433     CGF.BlockInfo = BlockInfo;
434   }
435 };
436 
437 /// Values for bit flags used in the ident_t to describe the fields.
438 /// All enumeric elements are named and described in accordance with the code
439 /// from https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
440 enum OpenMPLocationFlags : unsigned {
441   /// Use trampoline for internal microtask.
442   OMP_IDENT_IMD = 0x01,
443   /// Use c-style ident structure.
444   OMP_IDENT_KMPC = 0x02,
445   /// Atomic reduction option for kmpc_reduce.
446   OMP_ATOMIC_REDUCE = 0x10,
447   /// Explicit 'barrier' directive.
448   OMP_IDENT_BARRIER_EXPL = 0x20,
449   /// Implicit barrier in code.
450   OMP_IDENT_BARRIER_IMPL = 0x40,
451   /// Implicit barrier in 'for' directive.
452   OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
453   /// Implicit barrier in 'sections' directive.
454   OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
455   /// Implicit barrier in 'single' directive.
456   OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140,
457   /// Call of __kmp_for_static_init for static loop.
458   OMP_IDENT_WORK_LOOP = 0x200,
459   /// Call of __kmp_for_static_init for sections.
460   OMP_IDENT_WORK_SECTIONS = 0x400,
461   /// Call of __kmp_for_static_init for distribute.
462   OMP_IDENT_WORK_DISTRIBUTE = 0x800,
463   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)
464 };
465 
466 namespace {
467 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
468 /// Values for bit flags for marking which requires clauses have been used.
469 enum OpenMPOffloadingRequiresDirFlags : int64_t {
470   /// flag undefined.
471   OMP_REQ_UNDEFINED               = 0x000,
472   /// no requires clause present.
473   OMP_REQ_NONE                    = 0x001,
474   /// reverse_offload clause.
475   OMP_REQ_REVERSE_OFFLOAD         = 0x002,
476   /// unified_address clause.
477   OMP_REQ_UNIFIED_ADDRESS         = 0x004,
478   /// unified_shared_memory clause.
479   OMP_REQ_UNIFIED_SHARED_MEMORY   = 0x008,
480   /// dynamic_allocators clause.
481   OMP_REQ_DYNAMIC_ALLOCATORS      = 0x010,
482   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)
483 };
484 
485 enum OpenMPOffloadingReservedDeviceIDs {
486   /// Device ID if the device was not defined, runtime should get it
487   /// from environment variables in the spec.
488   OMP_DEVICEID_UNDEF = -1,
489 };
490 } // anonymous namespace
491 
492 /// Describes ident structure that describes a source location.
493 /// All descriptions are taken from
494 /// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
495 /// Original structure:
496 /// typedef struct ident {
497 ///    kmp_int32 reserved_1;   /**<  might be used in Fortran;
498 ///                                  see above  */
499 ///    kmp_int32 flags;        /**<  also f.flags; KMP_IDENT_xxx flags;
500 ///                                  KMP_IDENT_KMPC identifies this union
501 ///                                  member  */
502 ///    kmp_int32 reserved_2;   /**<  not really used in Fortran any more;
503 ///                                  see above */
504 ///#if USE_ITT_BUILD
505 ///                            /*  but currently used for storing
506 ///                                region-specific ITT */
507 ///                            /*  contextual information. */
508 ///#endif /* USE_ITT_BUILD */
509 ///    kmp_int32 reserved_3;   /**< source[4] in Fortran, do not use for
510 ///                                 C++  */
511 ///    char const *psource;    /**< String describing the source location.
512 ///                            The string is composed of semi-colon separated
513 //                             fields which describe the source file,
514 ///                            the function and a pair of line numbers that
515 ///                            delimit the construct.
516 ///                             */
517 /// } ident_t;
518 enum IdentFieldIndex {
519   /// might be used in Fortran
520   IdentField_Reserved_1,
521   /// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
522   IdentField_Flags,
523   /// Not really used in Fortran any more
524   IdentField_Reserved_2,
525   /// Source[4] in Fortran, do not use for C++
526   IdentField_Reserved_3,
527   /// String describing the source location. The string is composed of
528   /// semi-colon separated fields which describe the source file, the function
529   /// and a pair of line numbers that delimit the construct.
530   IdentField_PSource
531 };
532 
533 /// Schedule types for 'omp for' loops (these enumerators are taken from
534 /// the enum sched_type in kmp.h).
535 enum OpenMPSchedType {
536   /// Lower bound for default (unordered) versions.
537   OMP_sch_lower = 32,
538   OMP_sch_static_chunked = 33,
539   OMP_sch_static = 34,
540   OMP_sch_dynamic_chunked = 35,
541   OMP_sch_guided_chunked = 36,
542   OMP_sch_runtime = 37,
543   OMP_sch_auto = 38,
544   /// static with chunk adjustment (e.g., simd)
545   OMP_sch_static_balanced_chunked = 45,
546   /// Lower bound for 'ordered' versions.
547   OMP_ord_lower = 64,
548   OMP_ord_static_chunked = 65,
549   OMP_ord_static = 66,
550   OMP_ord_dynamic_chunked = 67,
551   OMP_ord_guided_chunked = 68,
552   OMP_ord_runtime = 69,
553   OMP_ord_auto = 70,
554   OMP_sch_default = OMP_sch_static,
555   /// dist_schedule types
556   OMP_dist_sch_static_chunked = 91,
557   OMP_dist_sch_static = 92,
558   /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
559   /// Set if the monotonic schedule modifier was present.
560   OMP_sch_modifier_monotonic = (1 << 29),
561   /// Set if the nonmonotonic schedule modifier was present.
562   OMP_sch_modifier_nonmonotonic = (1 << 30),
563 };
564 
565 enum OpenMPRTLFunction {
566   /// Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc,
567   /// kmpc_micro microtask, ...);
568   OMPRTL__kmpc_fork_call,
569   /// Call to void *__kmpc_threadprivate_cached(ident_t *loc,
570   /// kmp_int32 global_tid, void *data, size_t size, void ***cache);
571   OMPRTL__kmpc_threadprivate_cached,
572   /// Call to void __kmpc_threadprivate_register( ident_t *,
573   /// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
574   OMPRTL__kmpc_threadprivate_register,
575   // Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc);
576   OMPRTL__kmpc_global_thread_num,
577   // Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
578   // kmp_critical_name *crit);
579   OMPRTL__kmpc_critical,
580   // Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32
581   // global_tid, kmp_critical_name *crit, uintptr_t hint);
582   OMPRTL__kmpc_critical_with_hint,
583   // Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
584   // kmp_critical_name *crit);
585   OMPRTL__kmpc_end_critical,
586   // Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
587   // global_tid);
588   OMPRTL__kmpc_cancel_barrier,
589   // Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
590   OMPRTL__kmpc_barrier,
591   // Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
592   OMPRTL__kmpc_for_static_fini,
593   // Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
594   // global_tid);
595   OMPRTL__kmpc_serialized_parallel,
596   // Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
597   // global_tid);
598   OMPRTL__kmpc_end_serialized_parallel,
599   // Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
600   // kmp_int32 num_threads);
601   OMPRTL__kmpc_push_num_threads,
602   // Call to void __kmpc_flush(ident_t *loc);
603   OMPRTL__kmpc_flush,
604   // Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
605   OMPRTL__kmpc_master,
606   // Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
607   OMPRTL__kmpc_end_master,
608   // Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
609   // int end_part);
610   OMPRTL__kmpc_omp_taskyield,
611   // Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
612   OMPRTL__kmpc_single,
613   // Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
614   OMPRTL__kmpc_end_single,
615   // Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
616   // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
617   // kmp_routine_entry_t *task_entry);
618   OMPRTL__kmpc_omp_task_alloc,
619   // Call to kmp_task_t * __kmpc_omp_target_task_alloc(ident_t *,
620   // kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
621   // size_t sizeof_shareds, kmp_routine_entry_t *task_entry,
622   // kmp_int64 device_id);
623   OMPRTL__kmpc_omp_target_task_alloc,
624   // Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *
625   // new_task);
626   OMPRTL__kmpc_omp_task,
627   // Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
628   // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
629   // kmp_int32 didit);
630   OMPRTL__kmpc_copyprivate,
631   // Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
632   // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
633   // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
634   OMPRTL__kmpc_reduce,
635   // Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
636   // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
637   // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
638   // *lck);
639   OMPRTL__kmpc_reduce_nowait,
640   // Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
641   // kmp_critical_name *lck);
642   OMPRTL__kmpc_end_reduce,
643   // Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
644   // kmp_critical_name *lck);
645   OMPRTL__kmpc_end_reduce_nowait,
646   // Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
647   // kmp_task_t * new_task);
648   OMPRTL__kmpc_omp_task_begin_if0,
649   // Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
650   // kmp_task_t * new_task);
651   OMPRTL__kmpc_omp_task_complete_if0,
652   // Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
653   OMPRTL__kmpc_ordered,
654   // Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
655   OMPRTL__kmpc_end_ordered,
656   // Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
657   // global_tid);
658   OMPRTL__kmpc_omp_taskwait,
659   // Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
660   OMPRTL__kmpc_taskgroup,
661   // Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
662   OMPRTL__kmpc_end_taskgroup,
663   // Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
664   // int proc_bind);
665   OMPRTL__kmpc_push_proc_bind,
666   // Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32
667   // gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t
668   // *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
669   OMPRTL__kmpc_omp_task_with_deps,
670   // Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32
671   // gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
672   // ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
673   OMPRTL__kmpc_omp_wait_deps,
674   // Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
675   // global_tid, kmp_int32 cncl_kind);
676   OMPRTL__kmpc_cancellationpoint,
677   // Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
678   // kmp_int32 cncl_kind);
679   OMPRTL__kmpc_cancel,
680   // Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
681   // kmp_int32 num_teams, kmp_int32 thread_limit);
682   OMPRTL__kmpc_push_num_teams,
683   // Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
684   // microtask, ...);
685   OMPRTL__kmpc_fork_teams,
686   // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
687   // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
688   // sched, kmp_uint64 grainsize, void *task_dup);
689   OMPRTL__kmpc_taskloop,
690   // Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
691   // num_dims, struct kmp_dim *dims);
692   OMPRTL__kmpc_doacross_init,
693   // Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
694   OMPRTL__kmpc_doacross_fini,
695   // Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
696   // *vec);
697   OMPRTL__kmpc_doacross_post,
698   // Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
699   // *vec);
700   OMPRTL__kmpc_doacross_wait,
701   // Call to void *__kmpc_task_reduction_init(int gtid, int num_data, void
702   // *data);
703   OMPRTL__kmpc_task_reduction_init,
704   // Call to void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
705   // *d);
706   OMPRTL__kmpc_task_reduction_get_th_data,
707   // Call to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
708   OMPRTL__kmpc_alloc,
709   // Call to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
710   OMPRTL__kmpc_free,
711 
712   //
713   // Offloading related calls
714   //
715   // Call to void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
716   // size);
717   OMPRTL__kmpc_push_target_tripcount,
718   // Call to int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
719   // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
720   // *arg_types);
721   OMPRTL__tgt_target,
722   // Call to int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
723   // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
724   // *arg_types);
725   OMPRTL__tgt_target_nowait,
726   // Call to int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
727   // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
728   // *arg_types, int32_t num_teams, int32_t thread_limit);
729   OMPRTL__tgt_target_teams,
730   // Call to int32_t __tgt_target_teams_nowait(int64_t device_id, void
731   // *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t
732   // *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
733   OMPRTL__tgt_target_teams_nowait,
734   // Call to void __tgt_register_requires(int64_t flags);
735   OMPRTL__tgt_register_requires,
736   // Call to void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
737   // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
738   OMPRTL__tgt_target_data_begin,
739   // Call to void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
740   // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
741   // *arg_types);
742   OMPRTL__tgt_target_data_begin_nowait,
743   // Call to void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
744   // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
745   OMPRTL__tgt_target_data_end,
746   // Call to void __tgt_target_data_end_nowait(int64_t device_id, int32_t
747   // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
748   // *arg_types);
749   OMPRTL__tgt_target_data_end_nowait,
750   // Call to void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
751   // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
752   OMPRTL__tgt_target_data_update,
753   // Call to void __tgt_target_data_update_nowait(int64_t device_id, int32_t
754   // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
755   // *arg_types);
756   OMPRTL__tgt_target_data_update_nowait,
757   // Call to int64_t __tgt_mapper_num_components(void *rt_mapper_handle);
758   OMPRTL__tgt_mapper_num_components,
759   // Call to void __tgt_push_mapper_component(void *rt_mapper_handle, void
760   // *base, void *begin, int64_t size, int64_t type);
761   OMPRTL__tgt_push_mapper_component,
762 };
763 
764 /// A basic class for pre|post-action for advanced codegen sequence for OpenMP
765 /// region.
766 class CleanupTy final : public EHScopeStack::Cleanup {
767   PrePostActionTy *Action;
768 
769 public:
CleanupTy(PrePostActionTy * Action)770   explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
Emit(CodeGenFunction & CGF,Flags)771   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
772     if (!CGF.HaveInsertPoint())
773       return;
774     Action->Exit(CGF);
775   }
776 };
777 
778 } // anonymous namespace
779 
operator ()(CodeGenFunction & CGF) const780 void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
781   CodeGenFunction::RunCleanupsScope Scope(CGF);
782   if (PrePostAction) {
783     CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
784     Callback(CodeGen, CGF, *PrePostAction);
785   } else {
786     PrePostActionTy Action;
787     Callback(CodeGen, CGF, Action);
788   }
789 }
790 
791 /// Check if the combiner is a call to UDR combiner and if it is so return the
792 /// UDR decl used for reduction.
793 static const OMPDeclareReductionDecl *
getReductionInit(const Expr * ReductionOp)794 getReductionInit(const Expr *ReductionOp) {
795   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
796     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
797       if (const auto *DRE =
798               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
799         if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
800           return DRD;
801   return nullptr;
802 }
803 
emitInitWithReductionInitializer(CodeGenFunction & CGF,const OMPDeclareReductionDecl * DRD,const Expr * InitOp,Address Private,Address Original,QualType Ty)804 static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
805                                              const OMPDeclareReductionDecl *DRD,
806                                              const Expr *InitOp,
807                                              Address Private, Address Original,
808                                              QualType Ty) {
809   if (DRD->getInitializer()) {
810     std::pair<llvm::Function *, llvm::Function *> Reduction =
811         CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
812     const auto *CE = cast<CallExpr>(InitOp);
813     const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
814     const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
815     const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
816     const auto *LHSDRE =
817         cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
818     const auto *RHSDRE =
819         cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
820     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
821     PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
822                             [=]() { return Private; });
823     PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
824                             [=]() { return Original; });
825     (void)PrivateScope.Privatize();
826     RValue Func = RValue::get(Reduction.second);
827     CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
828     CGF.EmitIgnoredExpr(InitOp);
829   } else {
830     llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
831     std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"});
832     auto *GV = new llvm::GlobalVariable(
833         CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
834         llvm::GlobalValue::PrivateLinkage, Init, Name);
835     LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
836     RValue InitRVal;
837     switch (CGF.getEvaluationKind(Ty)) {
838     case TEK_Scalar:
839       InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation());
840       break;
841     case TEK_Complex:
842       InitRVal =
843           RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation()));
844       break;
845     case TEK_Aggregate:
846       InitRVal = RValue::getAggregate(LV.getAddress(CGF));
847       break;
848     }
849     OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue);
850     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
851     CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
852                          /*IsInitializer=*/false);
853   }
854 }
855 
856 /// Emit initialization of arrays of complex types.
857 /// \param DestAddr Address of the array.
858 /// \param Type Type of array.
859 /// \param Init Initial expression of array.
860 /// \param SrcAddr Address of the original array.
EmitOMPAggregateInit(CodeGenFunction & CGF,Address DestAddr,QualType Type,bool EmitDeclareReductionInit,const Expr * Init,const OMPDeclareReductionDecl * DRD,Address SrcAddr=Address::invalid ())861 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
862                                  QualType Type, bool EmitDeclareReductionInit,
863                                  const Expr *Init,
864                                  const OMPDeclareReductionDecl *DRD,
865                                  Address SrcAddr = Address::invalid()) {
866   // Perform element-by-element initialization.
867   QualType ElementTy;
868 
869   // Drill down to the base element type on both arrays.
870   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
871   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
872   DestAddr =
873       CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
874   if (DRD)
875     SrcAddr =
876         CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
877 
878   llvm::Value *SrcBegin = nullptr;
879   if (DRD)
880     SrcBegin = SrcAddr.getPointer();
881   llvm::Value *DestBegin = DestAddr.getPointer();
882   // Cast from pointer to array type to pointer to single element.
883   llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
884   // The basic structure here is a while-do loop.
885   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
886   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
887   llvm::Value *IsEmpty =
888       CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
889   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
890 
891   // Enter the loop body, making that address the current address.
892   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
893   CGF.EmitBlock(BodyBB);
894 
895   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
896 
897   llvm::PHINode *SrcElementPHI = nullptr;
898   Address SrcElementCurrent = Address::invalid();
899   if (DRD) {
900     SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
901                                           "omp.arraycpy.srcElementPast");
902     SrcElementPHI->addIncoming(SrcBegin, EntryBB);
903     SrcElementCurrent =
904         Address(SrcElementPHI,
905                 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
906   }
907   llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
908       DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
909   DestElementPHI->addIncoming(DestBegin, EntryBB);
910   Address DestElementCurrent =
911       Address(DestElementPHI,
912               DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
913 
914   // Emit copy.
915   {
916     CodeGenFunction::RunCleanupsScope InitScope(CGF);
917     if (EmitDeclareReductionInit) {
918       emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
919                                        SrcElementCurrent, ElementTy);
920     } else
921       CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
922                            /*IsInitializer=*/false);
923   }
924 
925   if (DRD) {
926     // Shift the address forward by one element.
927     llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32(
928         SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
929     SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
930   }
931 
932   // Shift the address forward by one element.
933   llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32(
934       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
935   // Check whether we've reached the end.
936   llvm::Value *Done =
937       CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
938   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
939   DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
940 
941   // Done.
942   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
943 }
944 
emitSharedLValue(CodeGenFunction & CGF,const Expr * E)945 LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) {
946   return CGF.EmitOMPSharedLValue(E);
947 }
948 
emitSharedLValueUB(CodeGenFunction & CGF,const Expr * E)949 LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF,
950                                             const Expr *E) {
951   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E))
952     return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
953   return LValue();
954 }
955 
emitAggregateInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,LValue SharedLVal,const OMPDeclareReductionDecl * DRD)956 void ReductionCodeGen::emitAggregateInitialization(
957     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
958     const OMPDeclareReductionDecl *DRD) {
959   // Emit VarDecl with copy init for arrays.
960   // Get the address of the original variable captured in current
961   // captured region.
962   const auto *PrivateVD =
963       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
964   bool EmitDeclareReductionInit =
965       DRD && (DRD->getInitializer() || !PrivateVD->hasInit());
966   EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(),
967                        EmitDeclareReductionInit,
968                        EmitDeclareReductionInit ? ClausesData[N].ReductionOp
969                                                 : PrivateVD->getInit(),
970                        DRD, SharedLVal.getAddress(CGF));
971 }
972 
ReductionCodeGen(ArrayRef<const Expr * > Shareds,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > ReductionOps)973 ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds,
974                                    ArrayRef<const Expr *> Privates,
975                                    ArrayRef<const Expr *> ReductionOps) {
976   ClausesData.reserve(Shareds.size());
977   SharedAddresses.reserve(Shareds.size());
978   Sizes.reserve(Shareds.size());
979   BaseDecls.reserve(Shareds.size());
980   auto IPriv = Privates.begin();
981   auto IRed = ReductionOps.begin();
982   for (const Expr *Ref : Shareds) {
983     ClausesData.emplace_back(Ref, *IPriv, *IRed);
984     std::advance(IPriv, 1);
985     std::advance(IRed, 1);
986   }
987 }
988 
emitSharedLValue(CodeGenFunction & CGF,unsigned N)989 void ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, unsigned N) {
990   assert(SharedAddresses.size() == N &&
991          "Number of generated lvalues must be exactly N.");
992   LValue First = emitSharedLValue(CGF, ClausesData[N].Ref);
993   LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref);
994   SharedAddresses.emplace_back(First, Second);
995 }
996 
emitAggregateType(CodeGenFunction & CGF,unsigned N)997 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) {
998   const auto *PrivateVD =
999       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1000   QualType PrivateType = PrivateVD->getType();
1001   bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref);
1002   if (!PrivateType->isVariablyModifiedType()) {
1003     Sizes.emplace_back(
1004         CGF.getTypeSize(
1005             SharedAddresses[N].first.getType().getNonReferenceType()),
1006         nullptr);
1007     return;
1008   }
1009   llvm::Value *Size;
1010   llvm::Value *SizeInChars;
1011   auto *ElemType = cast<llvm::PointerType>(
1012                        SharedAddresses[N].first.getPointer(CGF)->getType())
1013                        ->getElementType();
1014   auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType);
1015   if (AsArraySection) {
1016     Size = CGF.Builder.CreatePtrDiff(SharedAddresses[N].second.getPointer(CGF),
1017                                      SharedAddresses[N].first.getPointer(CGF));
1018     Size = CGF.Builder.CreateNUWAdd(
1019         Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
1020     SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf);
1021   } else {
1022     SizeInChars = CGF.getTypeSize(
1023         SharedAddresses[N].first.getType().getNonReferenceType());
1024     Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf);
1025   }
1026   Sizes.emplace_back(SizeInChars, Size);
1027   CodeGenFunction::OpaqueValueMapping OpaqueMap(
1028       CGF,
1029       cast<OpaqueValueExpr>(
1030           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
1031       RValue::get(Size));
1032   CGF.EmitVariablyModifiedType(PrivateType);
1033 }
1034 
emitAggregateType(CodeGenFunction & CGF,unsigned N,llvm::Value * Size)1035 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N,
1036                                          llvm::Value *Size) {
1037   const auto *PrivateVD =
1038       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1039   QualType PrivateType = PrivateVD->getType();
1040   if (!PrivateType->isVariablyModifiedType()) {
1041     assert(!Size && !Sizes[N].second &&
1042            "Size should be nullptr for non-variably modified reduction "
1043            "items.");
1044     return;
1045   }
1046   CodeGenFunction::OpaqueValueMapping OpaqueMap(
1047       CGF,
1048       cast<OpaqueValueExpr>(
1049           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
1050       RValue::get(Size));
1051   CGF.EmitVariablyModifiedType(PrivateType);
1052 }
1053 
emitInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,LValue SharedLVal,llvm::function_ref<bool (CodeGenFunction &)> DefaultInit)1054 void ReductionCodeGen::emitInitialization(
1055     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
1056     llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) {
1057   assert(SharedAddresses.size() > N && "No variable was generated");
1058   const auto *PrivateVD =
1059       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1060   const OMPDeclareReductionDecl *DRD =
1061       getReductionInit(ClausesData[N].ReductionOp);
1062   QualType PrivateType = PrivateVD->getType();
1063   PrivateAddr = CGF.Builder.CreateElementBitCast(
1064       PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
1065   QualType SharedType = SharedAddresses[N].first.getType();
1066   SharedLVal = CGF.MakeAddrLValue(
1067       CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(CGF),
1068                                        CGF.ConvertTypeForMem(SharedType)),
1069       SharedType, SharedAddresses[N].first.getBaseInfo(),
1070       CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType));
1071   if (CGF.getContext().getAsArrayType(PrivateVD->getType())) {
1072     emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD);
1073   } else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
1074     emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp,
1075                                      PrivateAddr, SharedLVal.getAddress(CGF),
1076                                      SharedLVal.getType());
1077   } else if (!DefaultInit(CGF) && PrivateVD->hasInit() &&
1078              !CGF.isTrivialInitializer(PrivateVD->getInit())) {
1079     CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr,
1080                          PrivateVD->getType().getQualifiers(),
1081                          /*IsInitializer=*/false);
1082   }
1083 }
1084 
needCleanups(unsigned N)1085 bool ReductionCodeGen::needCleanups(unsigned N) {
1086   const auto *PrivateVD =
1087       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1088   QualType PrivateType = PrivateVD->getType();
1089   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
1090   return DTorKind != QualType::DK_none;
1091 }
1092 
emitCleanups(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)1093 void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N,
1094                                     Address PrivateAddr) {
1095   const auto *PrivateVD =
1096       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
1097   QualType PrivateType = PrivateVD->getType();
1098   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
1099   if (needCleanups(N)) {
1100     PrivateAddr = CGF.Builder.CreateElementBitCast(
1101         PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
1102     CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType);
1103   }
1104 }
1105 
loadToBegin(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,LValue BaseLV)1106 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
1107                           LValue BaseLV) {
1108   BaseTy = BaseTy.getNonReferenceType();
1109   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
1110          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
1111     if (const auto *PtrTy = BaseTy->getAs<PointerType>()) {
1112       BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(CGF), PtrTy);
1113     } else {
1114       LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(CGF), BaseTy);
1115       BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal);
1116     }
1117     BaseTy = BaseTy->getPointeeType();
1118   }
1119   return CGF.MakeAddrLValue(
1120       CGF.Builder.CreateElementBitCast(BaseLV.getAddress(CGF),
1121                                        CGF.ConvertTypeForMem(ElTy)),
1122       BaseLV.getType(), BaseLV.getBaseInfo(),
1123       CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType()));
1124 }
1125 
castToBase(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,llvm::Type * BaseLVType,CharUnits BaseLVAlignment,llvm::Value * Addr)1126 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
1127                           llvm::Type *BaseLVType, CharUnits BaseLVAlignment,
1128                           llvm::Value *Addr) {
1129   Address Tmp = Address::invalid();
1130   Address TopTmp = Address::invalid();
1131   Address MostTopTmp = Address::invalid();
1132   BaseTy = BaseTy.getNonReferenceType();
1133   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
1134          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
1135     Tmp = CGF.CreateMemTemp(BaseTy);
1136     if (TopTmp.isValid())
1137       CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
1138     else
1139       MostTopTmp = Tmp;
1140     TopTmp = Tmp;
1141     BaseTy = BaseTy->getPointeeType();
1142   }
1143   llvm::Type *Ty = BaseLVType;
1144   if (Tmp.isValid())
1145     Ty = Tmp.getElementType();
1146   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
1147   if (Tmp.isValid()) {
1148     CGF.Builder.CreateStore(Addr, Tmp);
1149     return MostTopTmp;
1150   }
1151   return Address(Addr, BaseLVAlignment);
1152 }
1153 
getBaseDecl(const Expr * Ref,const DeclRefExpr * & DE)1154 static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) {
1155   const VarDecl *OrigVD = nullptr;
1156   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) {
1157     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
1158     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
1159       Base = TempOASE->getBase()->IgnoreParenImpCasts();
1160     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
1161       Base = TempASE->getBase()->IgnoreParenImpCasts();
1162     DE = cast<DeclRefExpr>(Base);
1163     OrigVD = cast<VarDecl>(DE->getDecl());
1164   } else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) {
1165     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
1166     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
1167       Base = TempASE->getBase()->IgnoreParenImpCasts();
1168     DE = cast<DeclRefExpr>(Base);
1169     OrigVD = cast<VarDecl>(DE->getDecl());
1170   }
1171   return OrigVD;
1172 }
1173 
adjustPrivateAddress(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)1174 Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N,
1175                                                Address PrivateAddr) {
1176   const DeclRefExpr *DE;
1177   if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) {
1178     BaseDecls.emplace_back(OrigVD);
1179     LValue OriginalBaseLValue = CGF.EmitLValue(DE);
1180     LValue BaseLValue =
1181         loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(),
1182                     OriginalBaseLValue);
1183     llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff(
1184         BaseLValue.getPointer(CGF), SharedAddresses[N].first.getPointer(CGF));
1185     llvm::Value *PrivatePointer =
1186         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1187             PrivateAddr.getPointer(),
1188             SharedAddresses[N].first.getAddress(CGF).getType());
1189     llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment);
1190     return castToBase(CGF, OrigVD->getType(),
1191                       SharedAddresses[N].first.getType(),
1192                       OriginalBaseLValue.getAddress(CGF).getType(),
1193                       OriginalBaseLValue.getAlignment(), Ptr);
1194   }
1195   BaseDecls.emplace_back(
1196       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl()));
1197   return PrivateAddr;
1198 }
1199 
usesReductionInitializer(unsigned N) const1200 bool ReductionCodeGen::usesReductionInitializer(unsigned N) const {
1201   const OMPDeclareReductionDecl *DRD =
1202       getReductionInit(ClausesData[N].ReductionOp);
1203   return DRD && DRD->getInitializer();
1204 }
1205 
getThreadIDVariableLValue(CodeGenFunction & CGF)1206 LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
1207   return CGF.EmitLoadOfPointerLValue(
1208       CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1209       getThreadIDVariable()->getType()->castAs<PointerType>());
1210 }
1211 
EmitBody(CodeGenFunction & CGF,const Stmt *)1212 void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
1213   if (!CGF.HaveInsertPoint())
1214     return;
1215   // 1.2.2 OpenMP Language Terminology
1216   // Structured block - An executable statement with a single entry at the
1217   // top and a single exit at the bottom.
1218   // The point of exit cannot be a branch out of the structured block.
1219   // longjmp() and throw() must not violate the entry/exit criteria.
1220   CGF.EHStack.pushTerminate();
1221   CodeGen(CGF);
1222   CGF.EHStack.popTerminate();
1223 }
1224 
getThreadIDVariableLValue(CodeGenFunction & CGF)1225 LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
1226     CodeGenFunction &CGF) {
1227   return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1228                             getThreadIDVariable()->getType(),
1229                             AlignmentSource::Decl);
1230 }
1231 
addFieldToRecordDecl(ASTContext & C,DeclContext * DC,QualType FieldTy)1232 static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
1233                                        QualType FieldTy) {
1234   auto *Field = FieldDecl::Create(
1235       C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
1236       C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
1237       /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
1238   Field->setAccess(AS_public);
1239   DC->addDecl(Field);
1240   return Field;
1241 }
1242 
CGOpenMPRuntime(CodeGenModule & CGM,StringRef FirstSeparator,StringRef Separator)1243 CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator,
1244                                  StringRef Separator)
1245     : CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator),
1246       OffloadEntriesInfoManager(CGM) {
1247   ASTContext &C = CGM.getContext();
1248   RecordDecl *RD = C.buildImplicitRecord("ident_t");
1249   QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
1250   RD->startDefinition();
1251   // reserved_1
1252   addFieldToRecordDecl(C, RD, KmpInt32Ty);
1253   // flags
1254   addFieldToRecordDecl(C, RD, KmpInt32Ty);
1255   // reserved_2
1256   addFieldToRecordDecl(C, RD, KmpInt32Ty);
1257   // reserved_3
1258   addFieldToRecordDecl(C, RD, KmpInt32Ty);
1259   // psource
1260   addFieldToRecordDecl(C, RD, C.VoidPtrTy);
1261   RD->completeDefinition();
1262   IdentQTy = C.getRecordType(RD);
1263   IdentTy = CGM.getTypes().ConvertRecordDeclType(RD);
1264   KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
1265 
1266   loadOffloadInfoMetadata();
1267 }
1268 
tryEmitDeclareVariant(const GlobalDecl & NewGD,const GlobalDecl & OldGD,llvm::GlobalValue * OrigAddr,bool IsForDefinition)1269 bool CGOpenMPRuntime::tryEmitDeclareVariant(const GlobalDecl &NewGD,
1270                                             const GlobalDecl &OldGD,
1271                                             llvm::GlobalValue *OrigAddr,
1272                                             bool IsForDefinition) {
1273   // Emit at least a definition for the aliasee if the the address of the
1274   // original function is requested.
1275   if (IsForDefinition || OrigAddr)
1276     (void)CGM.GetAddrOfGlobal(NewGD);
1277   StringRef NewMangledName = CGM.getMangledName(NewGD);
1278   llvm::GlobalValue *Addr = CGM.GetGlobalValue(NewMangledName);
1279   if (Addr && !Addr->isDeclaration()) {
1280     const auto *D = cast<FunctionDecl>(OldGD.getDecl());
1281     const CGFunctionInfo &FI = CGM.getTypes().arrangeGlobalDeclaration(NewGD);
1282     llvm::Type *DeclTy = CGM.getTypes().GetFunctionType(FI);
1283 
1284     // Create a reference to the named value.  This ensures that it is emitted
1285     // if a deferred decl.
1286     llvm::GlobalValue::LinkageTypes LT = CGM.getFunctionLinkage(OldGD);
1287 
1288     // Create the new alias itself, but don't set a name yet.
1289     auto *GA =
1290         llvm::GlobalAlias::create(DeclTy, 0, LT, "", Addr, &CGM.getModule());
1291 
1292     if (OrigAddr) {
1293       assert(OrigAddr->isDeclaration() && "Expected declaration");
1294 
1295       GA->takeName(OrigAddr);
1296       OrigAddr->replaceAllUsesWith(
1297           llvm::ConstantExpr::getBitCast(GA, OrigAddr->getType()));
1298       OrigAddr->eraseFromParent();
1299     } else {
1300       GA->setName(CGM.getMangledName(OldGD));
1301     }
1302 
1303     // Set attributes which are particular to an alias; this is a
1304     // specialization of the attributes which may be set on a global function.
1305     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
1306         D->isWeakImported())
1307       GA->setLinkage(llvm::Function::WeakAnyLinkage);
1308 
1309     CGM.SetCommonAttributes(OldGD, GA);
1310     return true;
1311   }
1312   return false;
1313 }
1314 
clear()1315 void CGOpenMPRuntime::clear() {
1316   InternalVars.clear();
1317   // Clean non-target variable declarations possibly used only in debug info.
1318   for (const auto &Data : EmittedNonTargetVariables) {
1319     if (!Data.getValue().pointsToAliveValue())
1320       continue;
1321     auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue());
1322     if (!GV)
1323       continue;
1324     if (!GV->isDeclaration() || GV->getNumUses() > 0)
1325       continue;
1326     GV->eraseFromParent();
1327   }
1328   // Emit aliases for the deferred aliasees.
1329   for (const auto &Pair : DeferredVariantFunction) {
1330     StringRef MangledName = CGM.getMangledName(Pair.second.second);
1331     llvm::GlobalValue *Addr = CGM.GetGlobalValue(MangledName);
1332     // If not able to emit alias, just emit original declaration.
1333     (void)tryEmitDeclareVariant(Pair.second.first, Pair.second.second, Addr,
1334                                 /*IsForDefinition=*/false);
1335   }
1336 }
1337 
getName(ArrayRef<StringRef> Parts) const1338 std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const {
1339   SmallString<128> Buffer;
1340   llvm::raw_svector_ostream OS(Buffer);
1341   StringRef Sep = FirstSeparator;
1342   for (StringRef Part : Parts) {
1343     OS << Sep << Part;
1344     Sep = Separator;
1345   }
1346   return OS.str();
1347 }
1348 
1349 static llvm::Function *
emitCombinerOrInitializer(CodeGenModule & CGM,QualType Ty,const Expr * CombinerInitializer,const VarDecl * In,const VarDecl * Out,bool IsCombiner)1350 emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
1351                           const Expr *CombinerInitializer, const VarDecl *In,
1352                           const VarDecl *Out, bool IsCombiner) {
1353   // void .omp_combiner.(Ty *in, Ty *out);
1354   ASTContext &C = CGM.getContext();
1355   QualType PtrTy = C.getPointerType(Ty).withRestrict();
1356   FunctionArgList Args;
1357   ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
1358                                /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1359   ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
1360                               /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1361   Args.push_back(&OmpOutParm);
1362   Args.push_back(&OmpInParm);
1363   const CGFunctionInfo &FnInfo =
1364       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1365   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
1366   std::string Name = CGM.getOpenMPRuntime().getName(
1367       {IsCombiner ? "omp_combiner" : "omp_initializer", ""});
1368   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
1369                                     Name, &CGM.getModule());
1370   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
1371   if (CGM.getLangOpts().Optimize) {
1372     Fn->removeFnAttr(llvm::Attribute::NoInline);
1373     Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
1374     Fn->addFnAttr(llvm::Attribute::AlwaysInline);
1375   }
1376   CodeGenFunction CGF(CGM);
1377   // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
1378   // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
1379   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(),
1380                     Out->getLocation());
1381   CodeGenFunction::OMPPrivateScope Scope(CGF);
1382   Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
1383   Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() {
1384     return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
1385         .getAddress(CGF);
1386   });
1387   Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
1388   Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() {
1389     return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
1390         .getAddress(CGF);
1391   });
1392   (void)Scope.Privatize();
1393   if (!IsCombiner && Out->hasInit() &&
1394       !CGF.isTrivialInitializer(Out->getInit())) {
1395     CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out),
1396                          Out->getType().getQualifiers(),
1397                          /*IsInitializer=*/true);
1398   }
1399   if (CombinerInitializer)
1400     CGF.EmitIgnoredExpr(CombinerInitializer);
1401   Scope.ForceCleanup();
1402   CGF.FinishFunction();
1403   return Fn;
1404 }
1405 
emitUserDefinedReduction(CodeGenFunction * CGF,const OMPDeclareReductionDecl * D)1406 void CGOpenMPRuntime::emitUserDefinedReduction(
1407     CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
1408   if (UDRMap.count(D) > 0)
1409     return;
1410   llvm::Function *Combiner = emitCombinerOrInitializer(
1411       CGM, D->getType(), D->getCombiner(),
1412       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()),
1413       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()),
1414       /*IsCombiner=*/true);
1415   llvm::Function *Initializer = nullptr;
1416   if (const Expr *Init = D->getInitializer()) {
1417     Initializer = emitCombinerOrInitializer(
1418         CGM, D->getType(),
1419         D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init
1420                                                                      : nullptr,
1421         cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()),
1422         cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()),
1423         /*IsCombiner=*/false);
1424   }
1425   UDRMap.try_emplace(D, Combiner, Initializer);
1426   if (CGF) {
1427     auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
1428     Decls.second.push_back(D);
1429   }
1430 }
1431 
1432 std::pair<llvm::Function *, llvm::Function *>
getUserDefinedReduction(const OMPDeclareReductionDecl * D)1433 CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
1434   auto I = UDRMap.find(D);
1435   if (I != UDRMap.end())
1436     return I->second;
1437   emitUserDefinedReduction(/*CGF=*/nullptr, D);
1438   return UDRMap.lookup(D);
1439 }
1440 
1441 namespace {
1442 // Temporary RAII solution to perform a push/pop stack event on the OpenMP IR
1443 // Builder if one is present.
1444 struct PushAndPopStackRAII {
PushAndPopStackRAII__anona2876c6b0811::PushAndPopStackRAII1445   PushAndPopStackRAII(llvm::OpenMPIRBuilder *OMPBuilder, CodeGenFunction &CGF,
1446                       bool HasCancel)
1447       : OMPBuilder(OMPBuilder) {
1448     if (!OMPBuilder)
1449       return;
1450 
1451     // The following callback is the crucial part of clangs cleanup process.
1452     //
1453     // NOTE:
1454     // Once the OpenMPIRBuilder is used to create parallel regions (and
1455     // similar), the cancellation destination (Dest below) is determined via
1456     // IP. That means if we have variables to finalize we split the block at IP,
1457     // use the new block (=BB) as destination to build a JumpDest (via
1458     // getJumpDestInCurrentScope(BB)) which then is fed to
1459     // EmitBranchThroughCleanup. Furthermore, there will not be the need
1460     // to push & pop an FinalizationInfo object.
1461     // The FiniCB will still be needed but at the point where the
1462     // OpenMPIRBuilder is asked to construct a parallel (or similar) construct.
1463     auto FiniCB = [&CGF](llvm::OpenMPIRBuilder::InsertPointTy IP) {
1464       assert(IP.getBlock()->end() == IP.getPoint() &&
1465              "Clang CG should cause non-terminated block!");
1466       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1467       CGF.Builder.restoreIP(IP);
1468       CodeGenFunction::JumpDest Dest =
1469           CGF.getOMPCancelDestination(OMPD_parallel);
1470       CGF.EmitBranchThroughCleanup(Dest);
1471     };
1472 
1473     // TODO: Remove this once we emit parallel regions through the
1474     //       OpenMPIRBuilder as it can do this setup internally.
1475     llvm::OpenMPIRBuilder::FinalizationInfo FI(
1476         {FiniCB, OMPD_parallel, HasCancel});
1477     OMPBuilder->pushFinalizationCB(std::move(FI));
1478   }
~PushAndPopStackRAII__anona2876c6b0811::PushAndPopStackRAII1479   ~PushAndPopStackRAII() {
1480     if (OMPBuilder)
1481       OMPBuilder->popFinalizationCB();
1482   }
1483   llvm::OpenMPIRBuilder *OMPBuilder;
1484 };
1485 } // namespace
1486 
emitParallelOrTeamsOutlinedFunction(CodeGenModule & CGM,const OMPExecutableDirective & D,const CapturedStmt * CS,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const StringRef OutlinedHelperName,const RegionCodeGenTy & CodeGen)1487 static llvm::Function *emitParallelOrTeamsOutlinedFunction(
1488     CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
1489     const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
1490     const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
1491   assert(ThreadIDVar->getType()->isPointerType() &&
1492          "thread id variable must be of type kmp_int32 *");
1493   CodeGenFunction CGF(CGM, true);
1494   bool HasCancel = false;
1495   if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D))
1496     HasCancel = OPD->hasCancel();
1497   else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
1498     HasCancel = OPSD->hasCancel();
1499   else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
1500     HasCancel = OPFD->hasCancel();
1501   else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D))
1502     HasCancel = OPFD->hasCancel();
1503   else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D))
1504     HasCancel = OPFD->hasCancel();
1505   else if (const auto *OPFD =
1506                dyn_cast<OMPTeamsDistributeParallelForDirective>(&D))
1507     HasCancel = OPFD->hasCancel();
1508   else if (const auto *OPFD =
1509                dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D))
1510     HasCancel = OPFD->hasCancel();
1511 
1512   // TODO: Temporarily inform the OpenMPIRBuilder, if any, about the new
1513   //       parallel region to make cancellation barriers work properly.
1514   llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder();
1515   PushAndPopStackRAII PSR(OMPBuilder, CGF, HasCancel);
1516   CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
1517                                     HasCancel, OutlinedHelperName);
1518   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1519   return CGF.GenerateOpenMPCapturedStmtFunction(*CS);
1520 }
1521 
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1522 llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction(
1523     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1524     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1525   const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
1526   return emitParallelOrTeamsOutlinedFunction(
1527       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1528 }
1529 
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1530 llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction(
1531     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1532     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1533   const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
1534   return emitParallelOrTeamsOutlinedFunction(
1535       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1536 }
1537 
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)1538 llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction(
1539     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1540     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
1541     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1542     bool Tied, unsigned &NumberOfParts) {
1543   auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
1544                                               PrePostActionTy &) {
1545     llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc());
1546     llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc());
1547     llvm::Value *TaskArgs[] = {
1548         UpLoc, ThreadID,
1549         CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
1550                                     TaskTVar->getType()->castAs<PointerType>())
1551             .getPointer(CGF)};
1552     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs);
1553   };
1554   CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
1555                                                             UntiedCodeGen);
1556   CodeGen.setAction(Action);
1557   assert(!ThreadIDVar->getType()->isPointerType() &&
1558          "thread id variable must be of type kmp_int32 for tasks");
1559   const OpenMPDirectiveKind Region =
1560       isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop
1561                                                       : OMPD_task;
1562   const CapturedStmt *CS = D.getCapturedStmt(Region);
1563   const auto *TD = dyn_cast<OMPTaskDirective>(&D);
1564   CodeGenFunction CGF(CGM, true);
1565   CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
1566                                         InnermostKind,
1567                                         TD ? TD->hasCancel() : false, Action);
1568   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1569   llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS);
1570   if (!Tied)
1571     NumberOfParts = Action.getNumberOfParts();
1572   return Res;
1573 }
1574 
buildStructValue(ConstantStructBuilder & Fields,CodeGenModule & CGM,const RecordDecl * RD,const CGRecordLayout & RL,ArrayRef<llvm::Constant * > Data)1575 static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM,
1576                              const RecordDecl *RD, const CGRecordLayout &RL,
1577                              ArrayRef<llvm::Constant *> Data) {
1578   llvm::StructType *StructTy = RL.getLLVMType();
1579   unsigned PrevIdx = 0;
1580   ConstantInitBuilder CIBuilder(CGM);
1581   auto DI = Data.begin();
1582   for (const FieldDecl *FD : RD->fields()) {
1583     unsigned Idx = RL.getLLVMFieldNo(FD);
1584     // Fill the alignment.
1585     for (unsigned I = PrevIdx; I < Idx; ++I)
1586       Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I)));
1587     PrevIdx = Idx + 1;
1588     Fields.add(*DI);
1589     ++DI;
1590   }
1591 }
1592 
1593 template <class... As>
1594 static llvm::GlobalVariable *
createGlobalStruct(CodeGenModule & CGM,QualType Ty,bool IsConstant,ArrayRef<llvm::Constant * > Data,const Twine & Name,As &&...Args)1595 createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant,
1596                    ArrayRef<llvm::Constant *> Data, const Twine &Name,
1597                    As &&... Args) {
1598   const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1599   const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1600   ConstantInitBuilder CIBuilder(CGM);
1601   ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType());
1602   buildStructValue(Fields, CGM, RD, RL, Data);
1603   return Fields.finishAndCreateGlobal(
1604       Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant,
1605       std::forward<As>(Args)...);
1606 }
1607 
1608 template <typename T>
1609 static void
createConstantGlobalStructAndAddToParent(CodeGenModule & CGM,QualType Ty,ArrayRef<llvm::Constant * > Data,T & Parent)1610 createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty,
1611                                          ArrayRef<llvm::Constant *> Data,
1612                                          T &Parent) {
1613   const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1614   const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1615   ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType());
1616   buildStructValue(Fields, CGM, RD, RL, Data);
1617   Fields.finishAndAddTo(Parent);
1618 }
1619 
getOrCreateDefaultLocation(unsigned Flags)1620 Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) {
1621   CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
1622   unsigned Reserved2Flags = getDefaultLocationReserved2Flags();
1623   FlagsTy FlagsKey(Flags, Reserved2Flags);
1624   llvm::Value *Entry = OpenMPDefaultLocMap.lookup(FlagsKey);
1625   if (!Entry) {
1626     if (!DefaultOpenMPPSource) {
1627       // Initialize default location for psource field of ident_t structure of
1628       // all ident_t objects. Format is ";file;function;line;column;;".
1629       // Taken from
1630       // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp_str.cpp
1631       DefaultOpenMPPSource =
1632           CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer();
1633       DefaultOpenMPPSource =
1634           llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy);
1635     }
1636 
1637     llvm::Constant *Data[] = {
1638         llvm::ConstantInt::getNullValue(CGM.Int32Ty),
1639         llvm::ConstantInt::get(CGM.Int32Ty, Flags),
1640         llvm::ConstantInt::get(CGM.Int32Ty, Reserved2Flags),
1641         llvm::ConstantInt::getNullValue(CGM.Int32Ty), DefaultOpenMPPSource};
1642     llvm::GlobalValue *DefaultOpenMPLocation =
1643         createGlobalStruct(CGM, IdentQTy, isDefaultLocationConstant(), Data, "",
1644                            llvm::GlobalValue::PrivateLinkage);
1645     DefaultOpenMPLocation->setUnnamedAddr(
1646         llvm::GlobalValue::UnnamedAddr::Global);
1647 
1648     OpenMPDefaultLocMap[FlagsKey] = Entry = DefaultOpenMPLocation;
1649   }
1650   return Address(Entry, Align);
1651 }
1652 
setLocThreadIdInsertPt(CodeGenFunction & CGF,bool AtCurrentPoint)1653 void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF,
1654                                              bool AtCurrentPoint) {
1655   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1656   assert(!Elem.second.ServiceInsertPt && "Insert point is set already.");
1657 
1658   llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty);
1659   if (AtCurrentPoint) {
1660     Elem.second.ServiceInsertPt = new llvm::BitCastInst(
1661         Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock());
1662   } else {
1663     Elem.second.ServiceInsertPt =
1664         new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt");
1665     Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt);
1666   }
1667 }
1668 
clearLocThreadIdInsertPt(CodeGenFunction & CGF)1669 void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) {
1670   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1671   if (Elem.second.ServiceInsertPt) {
1672     llvm::Instruction *Ptr = Elem.second.ServiceInsertPt;
1673     Elem.second.ServiceInsertPt = nullptr;
1674     Ptr->eraseFromParent();
1675   }
1676 }
1677 
emitUpdateLocation(CodeGenFunction & CGF,SourceLocation Loc,unsigned Flags)1678 llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
1679                                                  SourceLocation Loc,
1680                                                  unsigned Flags) {
1681   Flags |= OMP_IDENT_KMPC;
1682   // If no debug info is generated - return global default location.
1683   if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
1684       Loc.isInvalid())
1685     return getOrCreateDefaultLocation(Flags).getPointer();
1686 
1687   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1688 
1689   CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
1690   Address LocValue = Address::invalid();
1691   auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
1692   if (I != OpenMPLocThreadIDMap.end())
1693     LocValue = Address(I->second.DebugLoc, Align);
1694 
1695   // OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if
1696   // GetOpenMPThreadID was called before this routine.
1697   if (!LocValue.isValid()) {
1698     // Generate "ident_t .kmpc_loc.addr;"
1699     Address AI = CGF.CreateMemTemp(IdentQTy, ".kmpc_loc.addr");
1700     auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1701     Elem.second.DebugLoc = AI.getPointer();
1702     LocValue = AI;
1703 
1704     if (!Elem.second.ServiceInsertPt)
1705       setLocThreadIdInsertPt(CGF);
1706     CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1707     CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
1708     CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags),
1709                              CGF.getTypeSize(IdentQTy));
1710   }
1711 
1712   // char **psource = &.kmpc_loc_<flags>.addr.psource;
1713   LValue Base = CGF.MakeAddrLValue(LocValue, IdentQTy);
1714   auto Fields = cast<RecordDecl>(IdentQTy->getAsTagDecl())->field_begin();
1715   LValue PSource =
1716       CGF.EmitLValueForField(Base, *std::next(Fields, IdentField_PSource));
1717 
1718   llvm::Value *OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding());
1719   if (OMPDebugLoc == nullptr) {
1720     SmallString<128> Buffer2;
1721     llvm::raw_svector_ostream OS2(Buffer2);
1722     // Build debug location
1723     PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
1724     OS2 << ";" << PLoc.getFilename() << ";";
1725     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
1726       OS2 << FD->getQualifiedNameAsString();
1727     OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
1728     OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str());
1729     OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc;
1730   }
1731   // *psource = ";<File>;<Function>;<Line>;<Column>;;";
1732   CGF.EmitStoreOfScalar(OMPDebugLoc, PSource);
1733 
1734   // Our callers always pass this to a runtime function, so for
1735   // convenience, go ahead and return a naked pointer.
1736   return LocValue.getPointer();
1737 }
1738 
getThreadID(CodeGenFunction & CGF,SourceLocation Loc)1739 llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
1740                                           SourceLocation Loc) {
1741   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1742 
1743   llvm::Value *ThreadID = nullptr;
1744   // Check whether we've already cached a load of the thread id in this
1745   // function.
1746   auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
1747   if (I != OpenMPLocThreadIDMap.end()) {
1748     ThreadID = I->second.ThreadID;
1749     if (ThreadID != nullptr)
1750       return ThreadID;
1751   }
1752   // If exceptions are enabled, do not use parameter to avoid possible crash.
1753   if (auto *OMPRegionInfo =
1754           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
1755     if (OMPRegionInfo->getThreadIDVariable()) {
1756       // Check if this an outlined function with thread id passed as argument.
1757       LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
1758       llvm::BasicBlock *TopBlock = CGF.AllocaInsertPt->getParent();
1759       if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions ||
1760           !CGF.getLangOpts().CXXExceptions ||
1761           CGF.Builder.GetInsertBlock() == TopBlock ||
1762           !isa<llvm::Instruction>(LVal.getPointer(CGF)) ||
1763           cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
1764               TopBlock ||
1765           cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
1766               CGF.Builder.GetInsertBlock()) {
1767         ThreadID = CGF.EmitLoadOfScalar(LVal, Loc);
1768         // If value loaded in entry block, cache it and use it everywhere in
1769         // function.
1770         if (CGF.Builder.GetInsertBlock() == TopBlock) {
1771           auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1772           Elem.second.ThreadID = ThreadID;
1773         }
1774         return ThreadID;
1775       }
1776     }
1777   }
1778 
1779   // This is not an outlined function region - need to call __kmpc_int32
1780   // kmpc_global_thread_num(ident_t *loc).
1781   // Generate thread id value and cache this value for use across the
1782   // function.
1783   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1784   if (!Elem.second.ServiceInsertPt)
1785     setLocThreadIdInsertPt(CGF);
1786   CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1787   CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
1788   llvm::CallInst *Call = CGF.Builder.CreateCall(
1789       createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
1790       emitUpdateLocation(CGF, Loc));
1791   Call->setCallingConv(CGF.getRuntimeCC());
1792   Elem.second.ThreadID = Call;
1793   return Call;
1794 }
1795 
functionFinished(CodeGenFunction & CGF)1796 void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
1797   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1798   if (OpenMPLocThreadIDMap.count(CGF.CurFn)) {
1799     clearLocThreadIdInsertPt(CGF);
1800     OpenMPLocThreadIDMap.erase(CGF.CurFn);
1801   }
1802   if (FunctionUDRMap.count(CGF.CurFn) > 0) {
1803     for(auto *D : FunctionUDRMap[CGF.CurFn])
1804       UDRMap.erase(D);
1805     FunctionUDRMap.erase(CGF.CurFn);
1806   }
1807   auto I = FunctionUDMMap.find(CGF.CurFn);
1808   if (I != FunctionUDMMap.end()) {
1809     for(auto *D : I->second)
1810       UDMMap.erase(D);
1811     FunctionUDMMap.erase(I);
1812   }
1813 }
1814 
getIdentTyPointerTy()1815 llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
1816   return IdentTy->getPointerTo();
1817 }
1818 
getKmpc_MicroPointerTy()1819 llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
1820   if (!Kmpc_MicroTy) {
1821     // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
1822     llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
1823                                  llvm::PointerType::getUnqual(CGM.Int32Ty)};
1824     Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
1825   }
1826   return llvm::PointerType::getUnqual(Kmpc_MicroTy);
1827 }
1828 
createRuntimeFunction(unsigned Function)1829 llvm::FunctionCallee CGOpenMPRuntime::createRuntimeFunction(unsigned Function) {
1830   llvm::FunctionCallee RTLFn = nullptr;
1831   switch (static_cast<OpenMPRTLFunction>(Function)) {
1832   case OMPRTL__kmpc_fork_call: {
1833     // Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro
1834     // microtask, ...);
1835     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1836                                 getKmpc_MicroPointerTy()};
1837     auto *FnTy =
1838         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
1839     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call");
1840     if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
1841       if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
1842         llvm::LLVMContext &Ctx = F->getContext();
1843         llvm::MDBuilder MDB(Ctx);
1844         // Annotate the callback behavior of the __kmpc_fork_call:
1845         //  - The callback callee is argument number 2 (microtask).
1846         //  - The first two arguments of the callback callee are unknown (-1).
1847         //  - All variadic arguments to the __kmpc_fork_call are passed to the
1848         //    callback callee.
1849         F->addMetadata(
1850             llvm::LLVMContext::MD_callback,
1851             *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1852                                         2, {-1, -1},
1853                                         /* VarArgsArePassed */ true)}));
1854       }
1855     }
1856     break;
1857   }
1858   case OMPRTL__kmpc_global_thread_num: {
1859     // Build kmp_int32 __kmpc_global_thread_num(ident_t *loc);
1860     llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
1861     auto *FnTy =
1862         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1863     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num");
1864     break;
1865   }
1866   case OMPRTL__kmpc_threadprivate_cached: {
1867     // Build void *__kmpc_threadprivate_cached(ident_t *loc,
1868     // kmp_int32 global_tid, void *data, size_t size, void ***cache);
1869     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1870                                 CGM.VoidPtrTy, CGM.SizeTy,
1871                                 CGM.VoidPtrTy->getPointerTo()->getPointerTo()};
1872     auto *FnTy =
1873         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false);
1874     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached");
1875     break;
1876   }
1877   case OMPRTL__kmpc_critical: {
1878     // Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
1879     // kmp_critical_name *crit);
1880     llvm::Type *TypeParams[] = {
1881         getIdentTyPointerTy(), CGM.Int32Ty,
1882         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1883     auto *FnTy =
1884         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1885     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical");
1886     break;
1887   }
1888   case OMPRTL__kmpc_critical_with_hint: {
1889     // Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid,
1890     // kmp_critical_name *crit, uintptr_t hint);
1891     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1892                                 llvm::PointerType::getUnqual(KmpCriticalNameTy),
1893                                 CGM.IntPtrTy};
1894     auto *FnTy =
1895         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1896     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint");
1897     break;
1898   }
1899   case OMPRTL__kmpc_threadprivate_register: {
1900     // Build void __kmpc_threadprivate_register(ident_t *, void *data,
1901     // kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
1902     // typedef void *(*kmpc_ctor)(void *);
1903     auto *KmpcCtorTy =
1904         llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
1905                                 /*isVarArg*/ false)->getPointerTo();
1906     // typedef void *(*kmpc_cctor)(void *, void *);
1907     llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1908     auto *KmpcCopyCtorTy =
1909         llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs,
1910                                 /*isVarArg*/ false)
1911             ->getPointerTo();
1912     // typedef void (*kmpc_dtor)(void *);
1913     auto *KmpcDtorTy =
1914         llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false)
1915             ->getPointerTo();
1916     llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy,
1917                               KmpcCopyCtorTy, KmpcDtorTy};
1918     auto *FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs,
1919                                         /*isVarArg*/ false);
1920     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register");
1921     break;
1922   }
1923   case OMPRTL__kmpc_end_critical: {
1924     // Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
1925     // kmp_critical_name *crit);
1926     llvm::Type *TypeParams[] = {
1927         getIdentTyPointerTy(), CGM.Int32Ty,
1928         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
1929     auto *FnTy =
1930         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1931     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical");
1932     break;
1933   }
1934   case OMPRTL__kmpc_cancel_barrier: {
1935     // Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
1936     // global_tid);
1937     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1938     auto *FnTy =
1939         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1940     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier");
1941     break;
1942   }
1943   case OMPRTL__kmpc_barrier: {
1944     // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
1945     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1946     auto *FnTy =
1947         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1948     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
1949     break;
1950   }
1951   case OMPRTL__kmpc_for_static_fini: {
1952     // Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
1953     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1954     auto *FnTy =
1955         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1956     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini");
1957     break;
1958   }
1959   case OMPRTL__kmpc_push_num_threads: {
1960     // Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
1961     // kmp_int32 num_threads)
1962     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
1963                                 CGM.Int32Ty};
1964     auto *FnTy =
1965         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1966     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads");
1967     break;
1968   }
1969   case OMPRTL__kmpc_serialized_parallel: {
1970     // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
1971     // global_tid);
1972     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1973     auto *FnTy =
1974         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1975     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
1976     break;
1977   }
1978   case OMPRTL__kmpc_end_serialized_parallel: {
1979     // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
1980     // global_tid);
1981     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1982     auto *FnTy =
1983         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1984     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
1985     break;
1986   }
1987   case OMPRTL__kmpc_flush: {
1988     // Build void __kmpc_flush(ident_t *loc);
1989     llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
1990     auto *FnTy =
1991         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1992     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush");
1993     break;
1994   }
1995   case OMPRTL__kmpc_master: {
1996     // Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid);
1997     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
1998     auto *FnTy =
1999         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
2000     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master");
2001     break;
2002   }
2003   case OMPRTL__kmpc_end_master: {
2004     // Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid);
2005     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2006     auto *FnTy =
2007         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2008     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master");
2009     break;
2010   }
2011   case OMPRTL__kmpc_omp_taskyield: {
2012     // Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
2013     // int end_part);
2014     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
2015     auto *FnTy =
2016         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
2017     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield");
2018     break;
2019   }
2020   case OMPRTL__kmpc_single: {
2021     // Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid);
2022     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2023     auto *FnTy =
2024         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
2025     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single");
2026     break;
2027   }
2028   case OMPRTL__kmpc_end_single: {
2029     // Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid);
2030     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2031     auto *FnTy =
2032         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2033     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single");
2034     break;
2035   }
2036   case OMPRTL__kmpc_omp_task_alloc: {
2037     // Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
2038     // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
2039     // kmp_routine_entry_t *task_entry);
2040     assert(KmpRoutineEntryPtrTy != nullptr &&
2041            "Type kmp_routine_entry_t must be created.");
2042     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
2043                                 CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy};
2044     // Return void * and then cast to particular kmp_task_t type.
2045     auto *FnTy =
2046         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
2047     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc");
2048     break;
2049   }
2050   case OMPRTL__kmpc_omp_target_task_alloc: {
2051     // Build kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *, kmp_int32 gtid,
2052     // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
2053     // kmp_routine_entry_t *task_entry, kmp_int64 device_id);
2054     assert(KmpRoutineEntryPtrTy != nullptr &&
2055            "Type kmp_routine_entry_t must be created.");
2056     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
2057                                 CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy,
2058                                 CGM.Int64Ty};
2059     // Return void * and then cast to particular kmp_task_t type.
2060     auto *FnTy =
2061         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
2062     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_target_task_alloc");
2063     break;
2064   }
2065   case OMPRTL__kmpc_omp_task: {
2066     // Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
2067     // *new_task);
2068     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2069                                 CGM.VoidPtrTy};
2070     auto *FnTy =
2071         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
2072     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task");
2073     break;
2074   }
2075   case OMPRTL__kmpc_copyprivate: {
2076     // Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
2077     // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
2078     // kmp_int32 didit);
2079     llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
2080     auto *CpyFnTy =
2081         llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false);
2082     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy,
2083                                 CGM.VoidPtrTy, CpyFnTy->getPointerTo(),
2084                                 CGM.Int32Ty};
2085     auto *FnTy =
2086         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2087     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate");
2088     break;
2089   }
2090   case OMPRTL__kmpc_reduce: {
2091     // Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
2092     // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
2093     // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
2094     llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
2095     auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
2096                                                /*isVarArg=*/false);
2097     llvm::Type *TypeParams[] = {
2098         getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
2099         CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
2100         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
2101     auto *FnTy =
2102         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
2103     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce");
2104     break;
2105   }
2106   case OMPRTL__kmpc_reduce_nowait: {
2107     // Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
2108     // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
2109     // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
2110     // *lck);
2111     llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
2112     auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
2113                                                /*isVarArg=*/false);
2114     llvm::Type *TypeParams[] = {
2115         getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
2116         CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
2117         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
2118     auto *FnTy =
2119         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
2120     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait");
2121     break;
2122   }
2123   case OMPRTL__kmpc_end_reduce: {
2124     // Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
2125     // kmp_critical_name *lck);
2126     llvm::Type *TypeParams[] = {
2127         getIdentTyPointerTy(), CGM.Int32Ty,
2128         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
2129     auto *FnTy =
2130         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2131     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce");
2132     break;
2133   }
2134   case OMPRTL__kmpc_end_reduce_nowait: {
2135     // Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
2136     // kmp_critical_name *lck);
2137     llvm::Type *TypeParams[] = {
2138         getIdentTyPointerTy(), CGM.Int32Ty,
2139         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
2140     auto *FnTy =
2141         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2142     RTLFn =
2143         CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait");
2144     break;
2145   }
2146   case OMPRTL__kmpc_omp_task_begin_if0: {
2147     // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
2148     // *new_task);
2149     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2150                                 CGM.VoidPtrTy};
2151     auto *FnTy =
2152         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2153     RTLFn =
2154         CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0");
2155     break;
2156   }
2157   case OMPRTL__kmpc_omp_task_complete_if0: {
2158     // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
2159     // *new_task);
2160     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2161                                 CGM.VoidPtrTy};
2162     auto *FnTy =
2163         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2164     RTLFn = CGM.CreateRuntimeFunction(FnTy,
2165                                       /*Name=*/"__kmpc_omp_task_complete_if0");
2166     break;
2167   }
2168   case OMPRTL__kmpc_ordered: {
2169     // Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
2170     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2171     auto *FnTy =
2172         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2173     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered");
2174     break;
2175   }
2176   case OMPRTL__kmpc_end_ordered: {
2177     // Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
2178     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2179     auto *FnTy =
2180         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2181     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered");
2182     break;
2183   }
2184   case OMPRTL__kmpc_omp_taskwait: {
2185     // Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid);
2186     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2187     auto *FnTy =
2188         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
2189     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait");
2190     break;
2191   }
2192   case OMPRTL__kmpc_taskgroup: {
2193     // Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
2194     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2195     auto *FnTy =
2196         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2197     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup");
2198     break;
2199   }
2200   case OMPRTL__kmpc_end_taskgroup: {
2201     // Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
2202     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2203     auto *FnTy =
2204         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2205     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup");
2206     break;
2207   }
2208   case OMPRTL__kmpc_push_proc_bind: {
2209     // Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
2210     // int proc_bind)
2211     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
2212     auto *FnTy =
2213         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2214     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind");
2215     break;
2216   }
2217   case OMPRTL__kmpc_omp_task_with_deps: {
2218     // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
2219     // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
2220     // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
2221     llvm::Type *TypeParams[] = {
2222         getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty,
2223         CGM.VoidPtrTy,         CGM.Int32Ty, CGM.VoidPtrTy};
2224     auto *FnTy =
2225         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
2226     RTLFn =
2227         CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps");
2228     break;
2229   }
2230   case OMPRTL__kmpc_omp_wait_deps: {
2231     // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
2232     // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
2233     // kmp_depend_info_t *noalias_dep_list);
2234     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2235                                 CGM.Int32Ty,           CGM.VoidPtrTy,
2236                                 CGM.Int32Ty,           CGM.VoidPtrTy};
2237     auto *FnTy =
2238         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2239     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps");
2240     break;
2241   }
2242   case OMPRTL__kmpc_cancellationpoint: {
2243     // Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
2244     // global_tid, kmp_int32 cncl_kind)
2245     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
2246     auto *FnTy =
2247         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2248     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint");
2249     break;
2250   }
2251   case OMPRTL__kmpc_cancel: {
2252     // Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
2253     // kmp_int32 cncl_kind)
2254     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
2255     auto *FnTy =
2256         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2257     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel");
2258     break;
2259   }
2260   case OMPRTL__kmpc_push_num_teams: {
2261     // Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid,
2262     // kmp_int32 num_teams, kmp_int32 num_threads)
2263     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
2264         CGM.Int32Ty};
2265     auto *FnTy =
2266         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2267     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams");
2268     break;
2269   }
2270   case OMPRTL__kmpc_fork_teams: {
2271     // Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
2272     // microtask, ...);
2273     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2274                                 getKmpc_MicroPointerTy()};
2275     auto *FnTy =
2276         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
2277     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams");
2278     if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
2279       if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
2280         llvm::LLVMContext &Ctx = F->getContext();
2281         llvm::MDBuilder MDB(Ctx);
2282         // Annotate the callback behavior of the __kmpc_fork_teams:
2283         //  - The callback callee is argument number 2 (microtask).
2284         //  - The first two arguments of the callback callee are unknown (-1).
2285         //  - All variadic arguments to the __kmpc_fork_teams are passed to the
2286         //    callback callee.
2287         F->addMetadata(
2288             llvm::LLVMContext::MD_callback,
2289             *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2290                                         2, {-1, -1},
2291                                         /* VarArgsArePassed */ true)}));
2292       }
2293     }
2294     break;
2295   }
2296   case OMPRTL__kmpc_taskloop: {
2297     // Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
2298     // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
2299     // sched, kmp_uint64 grainsize, void *task_dup);
2300     llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
2301                                 CGM.IntTy,
2302                                 CGM.VoidPtrTy,
2303                                 CGM.IntTy,
2304                                 CGM.Int64Ty->getPointerTo(),
2305                                 CGM.Int64Ty->getPointerTo(),
2306                                 CGM.Int64Ty,
2307                                 CGM.IntTy,
2308                                 CGM.IntTy,
2309                                 CGM.Int64Ty,
2310                                 CGM.VoidPtrTy};
2311     auto *FnTy =
2312         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2313     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop");
2314     break;
2315   }
2316   case OMPRTL__kmpc_doacross_init: {
2317     // Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
2318     // num_dims, struct kmp_dim *dims);
2319     llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
2320                                 CGM.Int32Ty,
2321                                 CGM.Int32Ty,
2322                                 CGM.VoidPtrTy};
2323     auto *FnTy =
2324         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2325     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init");
2326     break;
2327   }
2328   case OMPRTL__kmpc_doacross_fini: {
2329     // Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
2330     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
2331     auto *FnTy =
2332         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2333     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini");
2334     break;
2335   }
2336   case OMPRTL__kmpc_doacross_post: {
2337     // Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
2338     // *vec);
2339     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2340                                 CGM.Int64Ty->getPointerTo()};
2341     auto *FnTy =
2342         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2343     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post");
2344     break;
2345   }
2346   case OMPRTL__kmpc_doacross_wait: {
2347     // Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
2348     // *vec);
2349     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
2350                                 CGM.Int64Ty->getPointerTo()};
2351     auto *FnTy =
2352         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2353     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait");
2354     break;
2355   }
2356   case OMPRTL__kmpc_task_reduction_init: {
2357     // Build void *__kmpc_task_reduction_init(int gtid, int num_data, void
2358     // *data);
2359     llvm::Type *TypeParams[] = {CGM.IntTy, CGM.IntTy, CGM.VoidPtrTy};
2360     auto *FnTy =
2361         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
2362     RTLFn =
2363         CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_task_reduction_init");
2364     break;
2365   }
2366   case OMPRTL__kmpc_task_reduction_get_th_data: {
2367     // Build void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
2368     // *d);
2369     llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy};
2370     auto *FnTy =
2371         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
2372     RTLFn = CGM.CreateRuntimeFunction(
2373         FnTy, /*Name=*/"__kmpc_task_reduction_get_th_data");
2374     break;
2375   }
2376   case OMPRTL__kmpc_alloc: {
2377     // Build to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t
2378     // al); omp_allocator_handle_t type is void *.
2379     llvm::Type *TypeParams[] = {CGM.IntTy, CGM.SizeTy, CGM.VoidPtrTy};
2380     auto *FnTy =
2381         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
2382     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_alloc");
2383     break;
2384   }
2385   case OMPRTL__kmpc_free: {
2386     // Build to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t
2387     // al); omp_allocator_handle_t type is void *.
2388     llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy};
2389     auto *FnTy =
2390         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2391     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_free");
2392     break;
2393   }
2394   case OMPRTL__kmpc_push_target_tripcount: {
2395     // Build void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
2396     // size);
2397     llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int64Ty};
2398     llvm::FunctionType *FnTy =
2399         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2400     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_target_tripcount");
2401     break;
2402   }
2403   case OMPRTL__tgt_target: {
2404     // Build int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
2405     // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
2406     // *arg_types);
2407     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2408                                 CGM.VoidPtrTy,
2409                                 CGM.Int32Ty,
2410                                 CGM.VoidPtrPtrTy,
2411                                 CGM.VoidPtrPtrTy,
2412                                 CGM.Int64Ty->getPointerTo(),
2413                                 CGM.Int64Ty->getPointerTo()};
2414     auto *FnTy =
2415         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2416     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target");
2417     break;
2418   }
2419   case OMPRTL__tgt_target_nowait: {
2420     // Build int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
2421     // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes,
2422     // int64_t *arg_types);
2423     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2424                                 CGM.VoidPtrTy,
2425                                 CGM.Int32Ty,
2426                                 CGM.VoidPtrPtrTy,
2427                                 CGM.VoidPtrPtrTy,
2428                                 CGM.Int64Ty->getPointerTo(),
2429                                 CGM.Int64Ty->getPointerTo()};
2430     auto *FnTy =
2431         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2432     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_nowait");
2433     break;
2434   }
2435   case OMPRTL__tgt_target_teams: {
2436     // Build int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
2437     // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes,
2438     // int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
2439     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2440                                 CGM.VoidPtrTy,
2441                                 CGM.Int32Ty,
2442                                 CGM.VoidPtrPtrTy,
2443                                 CGM.VoidPtrPtrTy,
2444                                 CGM.Int64Ty->getPointerTo(),
2445                                 CGM.Int64Ty->getPointerTo(),
2446                                 CGM.Int32Ty,
2447                                 CGM.Int32Ty};
2448     auto *FnTy =
2449         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2450     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams");
2451     break;
2452   }
2453   case OMPRTL__tgt_target_teams_nowait: {
2454     // Build int32_t __tgt_target_teams_nowait(int64_t device_id, void
2455     // *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t
2456     // *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
2457     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2458                                 CGM.VoidPtrTy,
2459                                 CGM.Int32Ty,
2460                                 CGM.VoidPtrPtrTy,
2461                                 CGM.VoidPtrPtrTy,
2462                                 CGM.Int64Ty->getPointerTo(),
2463                                 CGM.Int64Ty->getPointerTo(),
2464                                 CGM.Int32Ty,
2465                                 CGM.Int32Ty};
2466     auto *FnTy =
2467         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2468     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams_nowait");
2469     break;
2470   }
2471   case OMPRTL__tgt_register_requires: {
2472     // Build void __tgt_register_requires(int64_t flags);
2473     llvm::Type *TypeParams[] = {CGM.Int64Ty};
2474     auto *FnTy =
2475         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2476     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_requires");
2477     break;
2478   }
2479   case OMPRTL__tgt_target_data_begin: {
2480     // Build void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
2481     // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
2482     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2483                                 CGM.Int32Ty,
2484                                 CGM.VoidPtrPtrTy,
2485                                 CGM.VoidPtrPtrTy,
2486                                 CGM.Int64Ty->getPointerTo(),
2487                                 CGM.Int64Ty->getPointerTo()};
2488     auto *FnTy =
2489         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2490     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin");
2491     break;
2492   }
2493   case OMPRTL__tgt_target_data_begin_nowait: {
2494     // Build void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
2495     // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
2496     // *arg_types);
2497     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2498                                 CGM.Int32Ty,
2499                                 CGM.VoidPtrPtrTy,
2500                                 CGM.VoidPtrPtrTy,
2501                                 CGM.Int64Ty->getPointerTo(),
2502                                 CGM.Int64Ty->getPointerTo()};
2503     auto *FnTy =
2504         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2505     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin_nowait");
2506     break;
2507   }
2508   case OMPRTL__tgt_target_data_end: {
2509     // Build void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
2510     // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
2511     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2512                                 CGM.Int32Ty,
2513                                 CGM.VoidPtrPtrTy,
2514                                 CGM.VoidPtrPtrTy,
2515                                 CGM.Int64Ty->getPointerTo(),
2516                                 CGM.Int64Ty->getPointerTo()};
2517     auto *FnTy =
2518         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2519     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end");
2520     break;
2521   }
2522   case OMPRTL__tgt_target_data_end_nowait: {
2523     // Build void __tgt_target_data_end_nowait(int64_t device_id, int32_t
2524     // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
2525     // *arg_types);
2526     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2527                                 CGM.Int32Ty,
2528                                 CGM.VoidPtrPtrTy,
2529                                 CGM.VoidPtrPtrTy,
2530                                 CGM.Int64Ty->getPointerTo(),
2531                                 CGM.Int64Ty->getPointerTo()};
2532     auto *FnTy =
2533         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2534     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end_nowait");
2535     break;
2536   }
2537   case OMPRTL__tgt_target_data_update: {
2538     // Build void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
2539     // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
2540     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2541                                 CGM.Int32Ty,
2542                                 CGM.VoidPtrPtrTy,
2543                                 CGM.VoidPtrPtrTy,
2544                                 CGM.Int64Ty->getPointerTo(),
2545                                 CGM.Int64Ty->getPointerTo()};
2546     auto *FnTy =
2547         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2548     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update");
2549     break;
2550   }
2551   case OMPRTL__tgt_target_data_update_nowait: {
2552     // Build void __tgt_target_data_update_nowait(int64_t device_id, int32_t
2553     // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
2554     // *arg_types);
2555     llvm::Type *TypeParams[] = {CGM.Int64Ty,
2556                                 CGM.Int32Ty,
2557                                 CGM.VoidPtrPtrTy,
2558                                 CGM.VoidPtrPtrTy,
2559                                 CGM.Int64Ty->getPointerTo(),
2560                                 CGM.Int64Ty->getPointerTo()};
2561     auto *FnTy =
2562         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2563     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update_nowait");
2564     break;
2565   }
2566   case OMPRTL__tgt_mapper_num_components: {
2567     // Build int64_t __tgt_mapper_num_components(void *rt_mapper_handle);
2568     llvm::Type *TypeParams[] = {CGM.VoidPtrTy};
2569     auto *FnTy =
2570         llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false);
2571     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_mapper_num_components");
2572     break;
2573   }
2574   case OMPRTL__tgt_push_mapper_component: {
2575     // Build void __tgt_push_mapper_component(void *rt_mapper_handle, void
2576     // *base, void *begin, int64_t size, int64_t type);
2577     llvm::Type *TypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy, CGM.VoidPtrTy,
2578                                 CGM.Int64Ty, CGM.Int64Ty};
2579     auto *FnTy =
2580         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2581     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_push_mapper_component");
2582     break;
2583   }
2584   }
2585   assert(RTLFn && "Unable to find OpenMP runtime function");
2586   return RTLFn;
2587 }
2588 
2589 llvm::FunctionCallee
createForStaticInitFunction(unsigned IVSize,bool IVSigned)2590 CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) {
2591   assert((IVSize == 32 || IVSize == 64) &&
2592          "IV size is not compatible with the omp runtime");
2593   StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
2594                                             : "__kmpc_for_static_init_4u")
2595                                 : (IVSigned ? "__kmpc_for_static_init_8"
2596                                             : "__kmpc_for_static_init_8u");
2597   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
2598   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
2599   llvm::Type *TypeParams[] = {
2600     getIdentTyPointerTy(),                     // loc
2601     CGM.Int32Ty,                               // tid
2602     CGM.Int32Ty,                               // schedtype
2603     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
2604     PtrTy,                                     // p_lower
2605     PtrTy,                                     // p_upper
2606     PtrTy,                                     // p_stride
2607     ITy,                                       // incr
2608     ITy                                        // chunk
2609   };
2610   auto *FnTy =
2611       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2612   return CGM.CreateRuntimeFunction(FnTy, Name);
2613 }
2614 
2615 llvm::FunctionCallee
createDispatchInitFunction(unsigned IVSize,bool IVSigned)2616 CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) {
2617   assert((IVSize == 32 || IVSize == 64) &&
2618          "IV size is not compatible with the omp runtime");
2619   StringRef Name =
2620       IVSize == 32
2621           ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
2622           : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
2623   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
2624   llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
2625                                CGM.Int32Ty,           // tid
2626                                CGM.Int32Ty,           // schedtype
2627                                ITy,                   // lower
2628                                ITy,                   // upper
2629                                ITy,                   // stride
2630                                ITy                    // chunk
2631   };
2632   auto *FnTy =
2633       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
2634   return CGM.CreateRuntimeFunction(FnTy, Name);
2635 }
2636 
2637 llvm::FunctionCallee
createDispatchFiniFunction(unsigned IVSize,bool IVSigned)2638 CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) {
2639   assert((IVSize == 32 || IVSize == 64) &&
2640          "IV size is not compatible with the omp runtime");
2641   StringRef Name =
2642       IVSize == 32
2643           ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
2644           : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
2645   llvm::Type *TypeParams[] = {
2646       getIdentTyPointerTy(), // loc
2647       CGM.Int32Ty,           // tid
2648   };
2649   auto *FnTy =
2650       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
2651   return CGM.CreateRuntimeFunction(FnTy, Name);
2652 }
2653 
2654 llvm::FunctionCallee
createDispatchNextFunction(unsigned IVSize,bool IVSigned)2655 CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) {
2656   assert((IVSize == 32 || IVSize == 64) &&
2657          "IV size is not compatible with the omp runtime");
2658   StringRef Name =
2659       IVSize == 32
2660           ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
2661           : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
2662   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
2663   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
2664   llvm::Type *TypeParams[] = {
2665     getIdentTyPointerTy(),                     // loc
2666     CGM.Int32Ty,                               // tid
2667     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
2668     PtrTy,                                     // p_lower
2669     PtrTy,                                     // p_upper
2670     PtrTy                                      // p_stride
2671   };
2672   auto *FnTy =
2673       llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
2674   return CGM.CreateRuntimeFunction(FnTy, Name);
2675 }
2676 
2677 /// Obtain information that uniquely identifies a target entry. This
2678 /// consists of the file and device IDs as well as line number associated with
2679 /// the relevant entry source location.
getTargetEntryUniqueInfo(ASTContext & C,SourceLocation Loc,unsigned & DeviceID,unsigned & FileID,unsigned & LineNum)2680 static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
2681                                      unsigned &DeviceID, unsigned &FileID,
2682                                      unsigned &LineNum) {
2683   SourceManager &SM = C.getSourceManager();
2684 
2685   // The loc should be always valid and have a file ID (the user cannot use
2686   // #pragma directives in macros)
2687 
2688   assert(Loc.isValid() && "Source location is expected to be always valid.");
2689 
2690   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2691   assert(PLoc.isValid() && "Source location is expected to be always valid.");
2692 
2693   llvm::sys::fs::UniqueID ID;
2694   if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
2695     SM.getDiagnostics().Report(diag::err_cannot_open_file)
2696         << PLoc.getFilename() << EC.message();
2697 
2698   DeviceID = ID.getDevice();
2699   FileID = ID.getFile();
2700   LineNum = PLoc.getLine();
2701 }
2702 
getAddrOfDeclareTargetVar(const VarDecl * VD)2703 Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) {
2704   if (CGM.getLangOpts().OpenMPSimd)
2705     return Address::invalid();
2706   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2707       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2708   if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link ||
2709               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2710                HasRequiresUnifiedSharedMemory))) {
2711     SmallString<64> PtrName;
2712     {
2713       llvm::raw_svector_ostream OS(PtrName);
2714       OS << CGM.getMangledName(GlobalDecl(VD));
2715       if (!VD->isExternallyVisible()) {
2716         unsigned DeviceID, FileID, Line;
2717         getTargetEntryUniqueInfo(CGM.getContext(),
2718                                  VD->getCanonicalDecl()->getBeginLoc(),
2719                                  DeviceID, FileID, Line);
2720         OS << llvm::format("_%x", FileID);
2721       }
2722       OS << "_decl_tgt_ref_ptr";
2723     }
2724     llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName);
2725     if (!Ptr) {
2726       QualType PtrTy = CGM.getContext().getPointerType(VD->getType());
2727       Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy),
2728                                         PtrName);
2729 
2730       auto *GV = cast<llvm::GlobalVariable>(Ptr);
2731       GV->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
2732 
2733       if (!CGM.getLangOpts().OpenMPIsDevice)
2734         GV->setInitializer(CGM.GetAddrOfGlobal(VD));
2735       registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr));
2736     }
2737     return Address(Ptr, CGM.getContext().getDeclAlign(VD));
2738   }
2739   return Address::invalid();
2740 }
2741 
2742 llvm::Constant *
getOrCreateThreadPrivateCache(const VarDecl * VD)2743 CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
2744   assert(!CGM.getLangOpts().OpenMPUseTLS ||
2745          !CGM.getContext().getTargetInfo().isTLSSupported());
2746   // Lookup the entry, lazily creating it if necessary.
2747   std::string Suffix = getName({"cache", ""});
2748   return getOrCreateInternalVariable(
2749       CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix));
2750 }
2751 
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)2752 Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
2753                                                 const VarDecl *VD,
2754                                                 Address VDAddr,
2755                                                 SourceLocation Loc) {
2756   if (CGM.getLangOpts().OpenMPUseTLS &&
2757       CGM.getContext().getTargetInfo().isTLSSupported())
2758     return VDAddr;
2759 
2760   llvm::Type *VarTy = VDAddr.getElementType();
2761   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2762                          CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
2763                                                        CGM.Int8PtrTy),
2764                          CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
2765                          getOrCreateThreadPrivateCache(VD)};
2766   return Address(CGF.EmitRuntimeCall(
2767       createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
2768                  VDAddr.getAlignment());
2769 }
2770 
emitThreadPrivateVarInit(CodeGenFunction & CGF,Address VDAddr,llvm::Value * Ctor,llvm::Value * CopyCtor,llvm::Value * Dtor,SourceLocation Loc)2771 void CGOpenMPRuntime::emitThreadPrivateVarInit(
2772     CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
2773     llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
2774   // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
2775   // library.
2776   llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc);
2777   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
2778                       OMPLoc);
2779   // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
2780   // to register constructor/destructor for variable.
2781   llvm::Value *Args[] = {
2782       OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy),
2783       Ctor, CopyCtor, Dtor};
2784   CGF.EmitRuntimeCall(
2785       createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args);
2786 }
2787 
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)2788 llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
2789     const VarDecl *VD, Address VDAddr, SourceLocation Loc,
2790     bool PerformInit, CodeGenFunction *CGF) {
2791   if (CGM.getLangOpts().OpenMPUseTLS &&
2792       CGM.getContext().getTargetInfo().isTLSSupported())
2793     return nullptr;
2794 
2795   VD = VD->getDefinition(CGM.getContext());
2796   if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) {
2797     QualType ASTTy = VD->getType();
2798 
2799     llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
2800     const Expr *Init = VD->getAnyInitializer();
2801     if (CGM.getLangOpts().CPlusPlus && PerformInit) {
2802       // Generate function that re-emits the declaration's initializer into the
2803       // threadprivate copy of the variable VD
2804       CodeGenFunction CtorCGF(CGM);
2805       FunctionArgList Args;
2806       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
2807                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
2808                             ImplicitParamDecl::Other);
2809       Args.push_back(&Dst);
2810 
2811       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
2812           CGM.getContext().VoidPtrTy, Args);
2813       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2814       std::string Name = getName({"__kmpc_global_ctor_", ""});
2815       llvm::Function *Fn =
2816           CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
2817       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
2818                             Args, Loc, Loc);
2819       llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar(
2820           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
2821           CGM.getContext().VoidPtrTy, Dst.getLocation());
2822       Address Arg = Address(ArgVal, VDAddr.getAlignment());
2823       Arg = CtorCGF.Builder.CreateElementBitCast(
2824           Arg, CtorCGF.ConvertTypeForMem(ASTTy));
2825       CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
2826                                /*IsInitializer=*/true);
2827       ArgVal = CtorCGF.EmitLoadOfScalar(
2828           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
2829           CGM.getContext().VoidPtrTy, Dst.getLocation());
2830       CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
2831       CtorCGF.FinishFunction();
2832       Ctor = Fn;
2833     }
2834     if (VD->getType().isDestructedType() != QualType::DK_none) {
2835       // Generate function that emits destructor call for the threadprivate copy
2836       // of the variable VD
2837       CodeGenFunction DtorCGF(CGM);
2838       FunctionArgList Args;
2839       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
2840                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
2841                             ImplicitParamDecl::Other);
2842       Args.push_back(&Dst);
2843 
2844       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
2845           CGM.getContext().VoidTy, Args);
2846       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2847       std::string Name = getName({"__kmpc_global_dtor_", ""});
2848       llvm::Function *Fn =
2849           CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
2850       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
2851       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
2852                             Loc, Loc);
2853       // Create a scope with an artificial location for the body of this function.
2854       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
2855       llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar(
2856           DtorCGF.GetAddrOfLocalVar(&Dst),
2857           /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
2858       DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
2859                           DtorCGF.getDestroyer(ASTTy.isDestructedType()),
2860                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
2861       DtorCGF.FinishFunction();
2862       Dtor = Fn;
2863     }
2864     // Do not emit init function if it is not required.
2865     if (!Ctor && !Dtor)
2866       return nullptr;
2867 
2868     llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
2869     auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
2870                                                /*isVarArg=*/false)
2871                            ->getPointerTo();
2872     // Copying constructor for the threadprivate variable.
2873     // Must be NULL - reserved by runtime, but currently it requires that this
2874     // parameter is always NULL. Otherwise it fires assertion.
2875     CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
2876     if (Ctor == nullptr) {
2877       auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
2878                                              /*isVarArg=*/false)
2879                          ->getPointerTo();
2880       Ctor = llvm::Constant::getNullValue(CtorTy);
2881     }
2882     if (Dtor == nullptr) {
2883       auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
2884                                              /*isVarArg=*/false)
2885                          ->getPointerTo();
2886       Dtor = llvm::Constant::getNullValue(DtorTy);
2887     }
2888     if (!CGF) {
2889       auto *InitFunctionTy =
2890           llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
2891       std::string Name = getName({"__omp_threadprivate_init_", ""});
2892       llvm::Function *InitFunction = CGM.CreateGlobalInitOrDestructFunction(
2893           InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction());
2894       CodeGenFunction InitCGF(CGM);
2895       FunctionArgList ArgList;
2896       InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
2897                             CGM.getTypes().arrangeNullaryFunction(), ArgList,
2898                             Loc, Loc);
2899       emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
2900       InitCGF.FinishFunction();
2901       return InitFunction;
2902     }
2903     emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
2904   }
2905   return nullptr;
2906 }
2907 
emitDeclareTargetVarDefinition(const VarDecl * VD,llvm::GlobalVariable * Addr,bool PerformInit)2908 bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD,
2909                                                      llvm::GlobalVariable *Addr,
2910                                                      bool PerformInit) {
2911   if (CGM.getLangOpts().OMPTargetTriples.empty() &&
2912       !CGM.getLangOpts().OpenMPIsDevice)
2913     return false;
2914   Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2915       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2916   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
2917       (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2918        HasRequiresUnifiedSharedMemory))
2919     return CGM.getLangOpts().OpenMPIsDevice;
2920   VD = VD->getDefinition(CGM.getContext());
2921   if (VD && !DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second)
2922     return CGM.getLangOpts().OpenMPIsDevice;
2923 
2924   QualType ASTTy = VD->getType();
2925 
2926   SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc();
2927   // Produce the unique prefix to identify the new target regions. We use
2928   // the source location of the variable declaration which we know to not
2929   // conflict with any target region.
2930   unsigned DeviceID;
2931   unsigned FileID;
2932   unsigned Line;
2933   getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line);
2934   SmallString<128> Buffer, Out;
2935   {
2936     llvm::raw_svector_ostream OS(Buffer);
2937     OS << "__omp_offloading_" << llvm::format("_%x", DeviceID)
2938        << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
2939   }
2940 
2941   const Expr *Init = VD->getAnyInitializer();
2942   if (CGM.getLangOpts().CPlusPlus && PerformInit) {
2943     llvm::Constant *Ctor;
2944     llvm::Constant *ID;
2945     if (CGM.getLangOpts().OpenMPIsDevice) {
2946       // Generate function that re-emits the declaration's initializer into
2947       // the threadprivate copy of the variable VD
2948       CodeGenFunction CtorCGF(CGM);
2949 
2950       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
2951       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2952       llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
2953           FTy, Twine(Buffer, "_ctor"), FI, Loc);
2954       auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF);
2955       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
2956                             FunctionArgList(), Loc, Loc);
2957       auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF);
2958       CtorCGF.EmitAnyExprToMem(Init,
2959                                Address(Addr, CGM.getContext().getDeclAlign(VD)),
2960                                Init->getType().getQualifiers(),
2961                                /*IsInitializer=*/true);
2962       CtorCGF.FinishFunction();
2963       Ctor = Fn;
2964       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
2965       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor));
2966     } else {
2967       Ctor = new llvm::GlobalVariable(
2968           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
2969           llvm::GlobalValue::PrivateLinkage,
2970           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor"));
2971       ID = Ctor;
2972     }
2973 
2974     // Register the information for the entry associated with the constructor.
2975     Out.clear();
2976     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
2977         DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor,
2978         ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor);
2979   }
2980   if (VD->getType().isDestructedType() != QualType::DK_none) {
2981     llvm::Constant *Dtor;
2982     llvm::Constant *ID;
2983     if (CGM.getLangOpts().OpenMPIsDevice) {
2984       // Generate function that emits destructor call for the threadprivate
2985       // copy of the variable VD
2986       CodeGenFunction DtorCGF(CGM);
2987 
2988       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
2989       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
2990       llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
2991           FTy, Twine(Buffer, "_dtor"), FI, Loc);
2992       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
2993       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
2994                             FunctionArgList(), Loc, Loc);
2995       // Create a scope with an artificial location for the body of this
2996       // function.
2997       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
2998       DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)),
2999                           ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()),
3000                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
3001       DtorCGF.FinishFunction();
3002       Dtor = Fn;
3003       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
3004       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor));
3005     } else {
3006       Dtor = new llvm::GlobalVariable(
3007           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
3008           llvm::GlobalValue::PrivateLinkage,
3009           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor"));
3010       ID = Dtor;
3011     }
3012     // Register the information for the entry associated with the destructor.
3013     Out.clear();
3014     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
3015         DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor,
3016         ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor);
3017   }
3018   return CGM.getLangOpts().OpenMPIsDevice;
3019 }
3020 
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)3021 Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF,
3022                                                           QualType VarType,
3023                                                           StringRef Name) {
3024   std::string Suffix = getName({"artificial", ""});
3025   llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType);
3026   llvm::Value *GAddr =
3027       getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix));
3028   if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPUseTLS &&
3029       CGM.getTarget().isTLSSupported()) {
3030     cast<llvm::GlobalVariable>(GAddr)->setThreadLocal(/*Val=*/true);
3031     return Address(GAddr, CGM.getContext().getTypeAlignInChars(VarType));
3032   }
3033   std::string CacheSuffix = getName({"cache", ""});
3034   llvm::Value *Args[] = {
3035       emitUpdateLocation(CGF, SourceLocation()),
3036       getThreadID(CGF, SourceLocation()),
3037       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy),
3038       CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy,
3039                                 /*isSigned=*/false),
3040       getOrCreateInternalVariable(
3041           CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))};
3042   return Address(
3043       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3044           CGF.EmitRuntimeCall(
3045               createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
3046           VarLVType->getPointerTo(/*AddrSpace=*/0)),
3047       CGM.getContext().getTypeAlignInChars(VarType));
3048 }
3049 
emitIfClause(CodeGenFunction & CGF,const Expr * Cond,const RegionCodeGenTy & ThenGen,const RegionCodeGenTy & ElseGen)3050 void CGOpenMPRuntime::emitIfClause(CodeGenFunction &CGF, const Expr *Cond,
3051                                    const RegionCodeGenTy &ThenGen,
3052                                    const RegionCodeGenTy &ElseGen) {
3053   CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
3054 
3055   // If the condition constant folds and can be elided, try to avoid emitting
3056   // the condition and the dead arm of the if/else.
3057   bool CondConstant;
3058   if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
3059     if (CondConstant)
3060       ThenGen(CGF);
3061     else
3062       ElseGen(CGF);
3063     return;
3064   }
3065 
3066   // Otherwise, the condition did not fold, or we couldn't elide it.  Just
3067   // emit the conditional branch.
3068   llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then");
3069   llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else");
3070   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end");
3071   CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
3072 
3073   // Emit the 'then' code.
3074   CGF.EmitBlock(ThenBlock);
3075   ThenGen(CGF);
3076   CGF.EmitBranch(ContBlock);
3077   // Emit the 'else' code if present.
3078   // There is no need to emit line number for unconditional branch.
3079   (void)ApplyDebugLocation::CreateEmpty(CGF);
3080   CGF.EmitBlock(ElseBlock);
3081   ElseGen(CGF);
3082   // There is no need to emit line number for unconditional branch.
3083   (void)ApplyDebugLocation::CreateEmpty(CGF);
3084   CGF.EmitBranch(ContBlock);
3085   // Emit the continuation block for code after the if.
3086   CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
3087 }
3088 
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)3089 void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
3090                                        llvm::Function *OutlinedFn,
3091                                        ArrayRef<llvm::Value *> CapturedVars,
3092                                        const Expr *IfCond) {
3093   if (!CGF.HaveInsertPoint())
3094     return;
3095   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
3096   auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF,
3097                                                      PrePostActionTy &) {
3098     // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
3099     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
3100     llvm::Value *Args[] = {
3101         RTLoc,
3102         CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
3103         CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
3104     llvm::SmallVector<llvm::Value *, 16> RealArgs;
3105     RealArgs.append(std::begin(Args), std::end(Args));
3106     RealArgs.append(CapturedVars.begin(), CapturedVars.end());
3107 
3108     llvm::FunctionCallee RTLFn =
3109         RT.createRuntimeFunction(OMPRTL__kmpc_fork_call);
3110     CGF.EmitRuntimeCall(RTLFn, RealArgs);
3111   };
3112   auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF,
3113                                                           PrePostActionTy &) {
3114     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
3115     llvm::Value *ThreadID = RT.getThreadID(CGF, Loc);
3116     // Build calls:
3117     // __kmpc_serialized_parallel(&Loc, GTid);
3118     llvm::Value *Args[] = {RTLoc, ThreadID};
3119     CGF.EmitRuntimeCall(
3120         RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args);
3121 
3122     // OutlinedFn(&GTid, &zero_bound, CapturedStruct);
3123     Address ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc);
3124     Address ZeroAddrBound =
3125         CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
3126                                          /*Name=*/".bound.zero.addr");
3127     CGF.InitTempAlloca(ZeroAddrBound, CGF.Builder.getInt32(/*C*/ 0));
3128     llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
3129     // ThreadId for serialized parallels is 0.
3130     OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
3131     OutlinedFnArgs.push_back(ZeroAddrBound.getPointer());
3132     OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
3133     RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
3134 
3135     // __kmpc_end_serialized_parallel(&Loc, GTid);
3136     llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
3137     CGF.EmitRuntimeCall(
3138         RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel),
3139         EndArgs);
3140   };
3141   if (IfCond) {
3142     emitIfClause(CGF, IfCond, ThenGen, ElseGen);
3143   } else {
3144     RegionCodeGenTy ThenRCG(ThenGen);
3145     ThenRCG(CGF);
3146   }
3147 }
3148 
3149 // If we're inside an (outlined) parallel region, use the region info's
3150 // thread-ID variable (it is passed in a first argument of the outlined function
3151 // as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
3152 // regular serial code region, get thread ID by calling kmp_int32
3153 // kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
3154 // return the address of that temp.
emitThreadIDAddress(CodeGenFunction & CGF,SourceLocation Loc)3155 Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
3156                                              SourceLocation Loc) {
3157   if (auto *OMPRegionInfo =
3158           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
3159     if (OMPRegionInfo->getThreadIDVariable())
3160       return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(CGF);
3161 
3162   llvm::Value *ThreadID = getThreadID(CGF, Loc);
3163   QualType Int32Ty =
3164       CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
3165   Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
3166   CGF.EmitStoreOfScalar(ThreadID,
3167                         CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
3168 
3169   return ThreadIDTemp;
3170 }
3171 
getOrCreateInternalVariable(llvm::Type * Ty,const llvm::Twine & Name,unsigned AddressSpace)3172 llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable(
3173     llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) {
3174   SmallString<256> Buffer;
3175   llvm::raw_svector_ostream Out(Buffer);
3176   Out << Name;
3177   StringRef RuntimeName = Out.str();
3178   auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first;
3179   if (Elem.second) {
3180     assert(Elem.second->getType()->getPointerElementType() == Ty &&
3181            "OMP internal variable has different type than requested");
3182     return &*Elem.second;
3183   }
3184 
3185   return Elem.second = new llvm::GlobalVariable(
3186              CGM.getModule(), Ty, /*IsConstant*/ false,
3187              llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
3188              Elem.first(), /*InsertBefore=*/nullptr,
3189              llvm::GlobalValue::NotThreadLocal, AddressSpace);
3190 }
3191 
getCriticalRegionLock(StringRef CriticalName)3192 llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
3193   std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
3194   std::string Name = getName({Prefix, "var"});
3195   return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
3196 }
3197 
3198 namespace {
3199 /// Common pre(post)-action for different OpenMP constructs.
3200 class CommonActionTy final : public PrePostActionTy {
3201   llvm::FunctionCallee EnterCallee;
3202   ArrayRef<llvm::Value *> EnterArgs;
3203   llvm::FunctionCallee ExitCallee;
3204   ArrayRef<llvm::Value *> ExitArgs;
3205   bool Conditional;
3206   llvm::BasicBlock *ContBlock = nullptr;
3207 
3208 public:
CommonActionTy(llvm::FunctionCallee EnterCallee,ArrayRef<llvm::Value * > EnterArgs,llvm::FunctionCallee ExitCallee,ArrayRef<llvm::Value * > ExitArgs,bool Conditional=false)3209   CommonActionTy(llvm::FunctionCallee EnterCallee,
3210                  ArrayRef<llvm::Value *> EnterArgs,
3211                  llvm::FunctionCallee ExitCallee,
3212                  ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
3213       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
3214         ExitArgs(ExitArgs), Conditional(Conditional) {}
Enter(CodeGenFunction & CGF)3215   void Enter(CodeGenFunction &CGF) override {
3216     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
3217     if (Conditional) {
3218       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
3219       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
3220       ContBlock = CGF.createBasicBlock("omp_if.end");
3221       // Generate the branch (If-stmt)
3222       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
3223       CGF.EmitBlock(ThenBlock);
3224     }
3225   }
Done(CodeGenFunction & CGF)3226   void Done(CodeGenFunction &CGF) {
3227     // Emit the rest of blocks/branches
3228     CGF.EmitBranch(ContBlock);
3229     CGF.EmitBlock(ContBlock, true);
3230   }
Exit(CodeGenFunction & CGF)3231   void Exit(CodeGenFunction &CGF) override {
3232     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
3233   }
3234 };
3235 } // anonymous namespace
3236 
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)3237 void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
3238                                          StringRef CriticalName,
3239                                          const RegionCodeGenTy &CriticalOpGen,
3240                                          SourceLocation Loc, const Expr *Hint) {
3241   // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
3242   // CriticalOpGen();
3243   // __kmpc_end_critical(ident_t *, gtid, Lock);
3244   // Prepare arguments and build a call to __kmpc_critical
3245   if (!CGF.HaveInsertPoint())
3246     return;
3247   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3248                          getCriticalRegionLock(CriticalName)};
3249   llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
3250                                                 std::end(Args));
3251   if (Hint) {
3252     EnterArgs.push_back(CGF.Builder.CreateIntCast(
3253         CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false));
3254   }
3255   CommonActionTy Action(
3256       createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint
3257                                  : OMPRTL__kmpc_critical),
3258       EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args);
3259   CriticalOpGen.setAction(Action);
3260   emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
3261 }
3262 
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)3263 void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
3264                                        const RegionCodeGenTy &MasterOpGen,
3265                                        SourceLocation Loc) {
3266   if (!CGF.HaveInsertPoint())
3267     return;
3268   // if(__kmpc_master(ident_t *, gtid)) {
3269   //   MasterOpGen();
3270   //   __kmpc_end_master(ident_t *, gtid);
3271   // }
3272   // Prepare arguments and build a call to __kmpc_master
3273   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3274   CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args,
3275                         createRuntimeFunction(OMPRTL__kmpc_end_master), Args,
3276                         /*Conditional=*/true);
3277   MasterOpGen.setAction(Action);
3278   emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
3279   Action.Done(CGF);
3280 }
3281 
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)3282 void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
3283                                         SourceLocation Loc) {
3284   if (!CGF.HaveInsertPoint())
3285     return;
3286   // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
3287   llvm::Value *Args[] = {
3288       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3289       llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
3290   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args);
3291   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
3292     Region->emitUntiedSwitch(CGF);
3293 }
3294 
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)3295 void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
3296                                           const RegionCodeGenTy &TaskgroupOpGen,
3297                                           SourceLocation Loc) {
3298   if (!CGF.HaveInsertPoint())
3299     return;
3300   // __kmpc_taskgroup(ident_t *, gtid);
3301   // TaskgroupOpGen();
3302   // __kmpc_end_taskgroup(ident_t *, gtid);
3303   // Prepare arguments and build a call to __kmpc_taskgroup
3304   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3305   CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args,
3306                         createRuntimeFunction(OMPRTL__kmpc_end_taskgroup),
3307                         Args);
3308   TaskgroupOpGen.setAction(Action);
3309   emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
3310 }
3311 
3312 /// Given an array of pointers to variables, project the address of a
3313 /// given variable.
emitAddrOfVarFromArray(CodeGenFunction & CGF,Address Array,unsigned Index,const VarDecl * Var)3314 static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
3315                                       unsigned Index, const VarDecl *Var) {
3316   // Pull out the pointer to the variable.
3317   Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index);
3318   llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
3319 
3320   Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
3321   Addr = CGF.Builder.CreateElementBitCast(
3322       Addr, CGF.ConvertTypeForMem(Var->getType()));
3323   return Addr;
3324 }
3325 
emitCopyprivateCopyFunction(CodeGenModule & CGM,llvm::Type * ArgsType,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps,SourceLocation Loc)3326 static llvm::Value *emitCopyprivateCopyFunction(
3327     CodeGenModule &CGM, llvm::Type *ArgsType,
3328     ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
3329     ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps,
3330     SourceLocation Loc) {
3331   ASTContext &C = CGM.getContext();
3332   // void copy_func(void *LHSArg, void *RHSArg);
3333   FunctionArgList Args;
3334   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
3335                            ImplicitParamDecl::Other);
3336   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
3337                            ImplicitParamDecl::Other);
3338   Args.push_back(&LHSArg);
3339   Args.push_back(&RHSArg);
3340   const auto &CGFI =
3341       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3342   std::string Name =
3343       CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"});
3344   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
3345                                     llvm::GlobalValue::InternalLinkage, Name,
3346                                     &CGM.getModule());
3347   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3348   Fn->setDoesNotRecurse();
3349   CodeGenFunction CGF(CGM);
3350   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3351   // Dest = (void*[n])(LHSArg);
3352   // Src = (void*[n])(RHSArg);
3353   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3354       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
3355       ArgsType), CGF.getPointerAlign());
3356   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3357       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
3358       ArgsType), CGF.getPointerAlign());
3359   // *(Type0*)Dst[0] = *(Type0*)Src[0];
3360   // *(Type1*)Dst[1] = *(Type1*)Src[1];
3361   // ...
3362   // *(Typen*)Dst[n] = *(Typen*)Src[n];
3363   for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
3364     const auto *DestVar =
3365         cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
3366     Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
3367 
3368     const auto *SrcVar =
3369         cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
3370     Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
3371 
3372     const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
3373     QualType Type = VD->getType();
3374     CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
3375   }
3376   CGF.FinishFunction();
3377   return Fn;
3378 }
3379 
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > DstExprs,ArrayRef<const Expr * > AssignmentOps)3380 void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
3381                                        const RegionCodeGenTy &SingleOpGen,
3382                                        SourceLocation Loc,
3383                                        ArrayRef<const Expr *> CopyprivateVars,
3384                                        ArrayRef<const Expr *> SrcExprs,
3385                                        ArrayRef<const Expr *> DstExprs,
3386                                        ArrayRef<const Expr *> AssignmentOps) {
3387   if (!CGF.HaveInsertPoint())
3388     return;
3389   assert(CopyprivateVars.size() == SrcExprs.size() &&
3390          CopyprivateVars.size() == DstExprs.size() &&
3391          CopyprivateVars.size() == AssignmentOps.size());
3392   ASTContext &C = CGM.getContext();
3393   // int32 did_it = 0;
3394   // if(__kmpc_single(ident_t *, gtid)) {
3395   //   SingleOpGen();
3396   //   __kmpc_end_single(ident_t *, gtid);
3397   //   did_it = 1;
3398   // }
3399   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
3400   // <copy_func>, did_it);
3401 
3402   Address DidIt = Address::invalid();
3403   if (!CopyprivateVars.empty()) {
3404     // int32 did_it = 0;
3405     QualType KmpInt32Ty =
3406         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
3407     DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
3408     CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
3409   }
3410   // Prepare arguments and build a call to __kmpc_single
3411   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3412   CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args,
3413                         createRuntimeFunction(OMPRTL__kmpc_end_single), Args,
3414                         /*Conditional=*/true);
3415   SingleOpGen.setAction(Action);
3416   emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
3417   if (DidIt.isValid()) {
3418     // did_it = 1;
3419     CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
3420   }
3421   Action.Done(CGF);
3422   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
3423   // <copy_func>, did_it);
3424   if (DidIt.isValid()) {
3425     llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
3426     QualType CopyprivateArrayTy = C.getConstantArrayType(
3427         C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
3428         /*IndexTypeQuals=*/0);
3429     // Create a list of all private variables for copyprivate.
3430     Address CopyprivateList =
3431         CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
3432     for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
3433       Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I);
3434       CGF.Builder.CreateStore(
3435           CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3436               CGF.EmitLValue(CopyprivateVars[I]).getPointer(CGF),
3437               CGF.VoidPtrTy),
3438           Elem);
3439     }
3440     // Build function that copies private values from single region to all other
3441     // threads in the corresponding parallel region.
3442     llvm::Value *CpyFn = emitCopyprivateCopyFunction(
3443         CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
3444         CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc);
3445     llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
3446     Address CL =
3447       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
3448                                                       CGF.VoidPtrTy);
3449     llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt);
3450     llvm::Value *Args[] = {
3451         emitUpdateLocation(CGF, Loc), // ident_t *<loc>
3452         getThreadID(CGF, Loc),        // i32 <gtid>
3453         BufSize,                      // size_t <buf_size>
3454         CL.getPointer(),              // void *<copyprivate list>
3455         CpyFn,                        // void (*) (void *, void *) <copy_func>
3456         DidItVal                      // i32 did_it
3457     };
3458     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args);
3459   }
3460 }
3461 
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)3462 void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
3463                                         const RegionCodeGenTy &OrderedOpGen,
3464                                         SourceLocation Loc, bool IsThreads) {
3465   if (!CGF.HaveInsertPoint())
3466     return;
3467   // __kmpc_ordered(ident_t *, gtid);
3468   // OrderedOpGen();
3469   // __kmpc_end_ordered(ident_t *, gtid);
3470   // Prepare arguments and build a call to __kmpc_ordered
3471   if (IsThreads) {
3472     llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3473     CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args,
3474                           createRuntimeFunction(OMPRTL__kmpc_end_ordered),
3475                           Args);
3476     OrderedOpGen.setAction(Action);
3477     emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
3478     return;
3479   }
3480   emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
3481 }
3482 
getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind)3483 unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) {
3484   unsigned Flags;
3485   if (Kind == OMPD_for)
3486     Flags = OMP_IDENT_BARRIER_IMPL_FOR;
3487   else if (Kind == OMPD_sections)
3488     Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
3489   else if (Kind == OMPD_single)
3490     Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
3491   else if (Kind == OMPD_barrier)
3492     Flags = OMP_IDENT_BARRIER_EXPL;
3493   else
3494     Flags = OMP_IDENT_BARRIER_IMPL;
3495   return Flags;
3496 }
3497 
getDefaultScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPScheduleClauseKind & ScheduleKind,const Expr * & ChunkExpr) const3498 void CGOpenMPRuntime::getDefaultScheduleAndChunk(
3499     CodeGenFunction &CGF, const OMPLoopDirective &S,
3500     OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const {
3501   // Check if the loop directive is actually a doacross loop directive. In this
3502   // case choose static, 1 schedule.
3503   if (llvm::any_of(
3504           S.getClausesOfKind<OMPOrderedClause>(),
3505           [](const OMPOrderedClause *C) { return C->getNumForLoops(); })) {
3506     ScheduleKind = OMPC_SCHEDULE_static;
3507     // Chunk size is 1 in this case.
3508     llvm::APInt ChunkSize(32, 1);
3509     ChunkExpr = IntegerLiteral::Create(
3510         CGF.getContext(), ChunkSize,
3511         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3512         SourceLocation());
3513   }
3514 }
3515 
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)3516 void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
3517                                       OpenMPDirectiveKind Kind, bool EmitChecks,
3518                                       bool ForceSimpleCall) {
3519   // Check if we should use the OMPBuilder
3520   auto *OMPRegionInfo =
3521       dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo);
3522   llvm::OpenMPIRBuilder *OMPBuilder = CGF.CGM.getOpenMPIRBuilder();
3523   if (OMPBuilder) {
3524     CGF.Builder.restoreIP(OMPBuilder->CreateBarrier(
3525         CGF.Builder, Kind, ForceSimpleCall, EmitChecks));
3526     return;
3527   }
3528 
3529   if (!CGF.HaveInsertPoint())
3530     return;
3531   // Build call __kmpc_cancel_barrier(loc, thread_id);
3532   // Build call __kmpc_barrier(loc, thread_id);
3533   unsigned Flags = getDefaultFlagsForBarriers(Kind);
3534   // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
3535   // thread_id);
3536   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
3537                          getThreadID(CGF, Loc)};
3538   if (OMPRegionInfo) {
3539     if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
3540       llvm::Value *Result = CGF.EmitRuntimeCall(
3541           createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args);
3542       if (EmitChecks) {
3543         // if (__kmpc_cancel_barrier()) {
3544         //   exit from construct;
3545         // }
3546         llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
3547         llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
3548         llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
3549         CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
3550         CGF.EmitBlock(ExitBB);
3551         //   exit from construct;
3552         CodeGenFunction::JumpDest CancelDestination =
3553             CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
3554         CGF.EmitBranchThroughCleanup(CancelDestination);
3555         CGF.EmitBlock(ContBB, /*IsFinished=*/true);
3556       }
3557       return;
3558     }
3559   }
3560   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args);
3561 }
3562 
3563 /// Map the OpenMP loop schedule to the runtime enumeration.
getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,bool Chunked,bool Ordered)3564 static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
3565                                           bool Chunked, bool Ordered) {
3566   switch (ScheduleKind) {
3567   case OMPC_SCHEDULE_static:
3568     return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
3569                    : (Ordered ? OMP_ord_static : OMP_sch_static);
3570   case OMPC_SCHEDULE_dynamic:
3571     return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
3572   case OMPC_SCHEDULE_guided:
3573     return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
3574   case OMPC_SCHEDULE_runtime:
3575     return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
3576   case OMPC_SCHEDULE_auto:
3577     return Ordered ? OMP_ord_auto : OMP_sch_auto;
3578   case OMPC_SCHEDULE_unknown:
3579     assert(!Chunked && "chunk was specified but schedule kind not known");
3580     return Ordered ? OMP_ord_static : OMP_sch_static;
3581   }
3582   llvm_unreachable("Unexpected runtime schedule");
3583 }
3584 
3585 /// Map the OpenMP distribute schedule to the runtime enumeration.
3586 static OpenMPSchedType
getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked)3587 getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
3588   // only static is allowed for dist_schedule
3589   return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
3590 }
3591 
isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const3592 bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
3593                                          bool Chunked) const {
3594   OpenMPSchedType Schedule =
3595       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
3596   return Schedule == OMP_sch_static;
3597 }
3598 
isStaticNonchunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const3599 bool CGOpenMPRuntime::isStaticNonchunked(
3600     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
3601   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
3602   return Schedule == OMP_dist_sch_static;
3603 }
3604 
isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const3605 bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,
3606                                       bool Chunked) const {
3607   OpenMPSchedType Schedule =
3608       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
3609   return Schedule == OMP_sch_static_chunked;
3610 }
3611 
isStaticChunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const3612 bool CGOpenMPRuntime::isStaticChunked(
3613     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
3614   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
3615   return Schedule == OMP_dist_sch_static_chunked;
3616 }
3617 
isDynamic(OpenMPScheduleClauseKind ScheduleKind) const3618 bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
3619   OpenMPSchedType Schedule =
3620       getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
3621   assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
3622   return Schedule != OMP_sch_static;
3623 }
3624 
addMonoNonMonoModifier(CodeGenModule & CGM,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2)3625 static int addMonoNonMonoModifier(CodeGenModule &CGM, OpenMPSchedType Schedule,
3626                                   OpenMPScheduleClauseModifier M1,
3627                                   OpenMPScheduleClauseModifier M2) {
3628   int Modifier = 0;
3629   switch (M1) {
3630   case OMPC_SCHEDULE_MODIFIER_monotonic:
3631     Modifier = OMP_sch_modifier_monotonic;
3632     break;
3633   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
3634     Modifier = OMP_sch_modifier_nonmonotonic;
3635     break;
3636   case OMPC_SCHEDULE_MODIFIER_simd:
3637     if (Schedule == OMP_sch_static_chunked)
3638       Schedule = OMP_sch_static_balanced_chunked;
3639     break;
3640   case OMPC_SCHEDULE_MODIFIER_last:
3641   case OMPC_SCHEDULE_MODIFIER_unknown:
3642     break;
3643   }
3644   switch (M2) {
3645   case OMPC_SCHEDULE_MODIFIER_monotonic:
3646     Modifier = OMP_sch_modifier_monotonic;
3647     break;
3648   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
3649     Modifier = OMP_sch_modifier_nonmonotonic;
3650     break;
3651   case OMPC_SCHEDULE_MODIFIER_simd:
3652     if (Schedule == OMP_sch_static_chunked)
3653       Schedule = OMP_sch_static_balanced_chunked;
3654     break;
3655   case OMPC_SCHEDULE_MODIFIER_last:
3656   case OMPC_SCHEDULE_MODIFIER_unknown:
3657     break;
3658   }
3659   // OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Desription.
3660   // If the static schedule kind is specified or if the ordered clause is
3661   // specified, and if the nonmonotonic modifier is not specified, the effect is
3662   // as if the monotonic modifier is specified. Otherwise, unless the monotonic
3663   // modifier is specified, the effect is as if the nonmonotonic modifier is
3664   // specified.
3665   if (CGM.getLangOpts().OpenMP >= 50 && Modifier == 0) {
3666     if (!(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static ||
3667           Schedule == OMP_sch_static_balanced_chunked ||
3668           Schedule == OMP_ord_static_chunked || Schedule == OMP_ord_static ||
3669           Schedule == OMP_dist_sch_static_chunked ||
3670           Schedule == OMP_dist_sch_static))
3671       Modifier = OMP_sch_modifier_nonmonotonic;
3672   }
3673   return Schedule | Modifier;
3674 }
3675 
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)3676 void CGOpenMPRuntime::emitForDispatchInit(
3677     CodeGenFunction &CGF, SourceLocation Loc,
3678     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
3679     bool Ordered, const DispatchRTInput &DispatchValues) {
3680   if (!CGF.HaveInsertPoint())
3681     return;
3682   OpenMPSchedType Schedule = getRuntimeSchedule(
3683       ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
3684   assert(Ordered ||
3685          (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
3686           Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
3687           Schedule != OMP_sch_static_balanced_chunked));
3688   // Call __kmpc_dispatch_init(
3689   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
3690   //          kmp_int[32|64] lower, kmp_int[32|64] upper,
3691   //          kmp_int[32|64] stride, kmp_int[32|64] chunk);
3692 
3693   // If the Chunk was not specified in the clause - use default value 1.
3694   llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
3695                                             : CGF.Builder.getIntN(IVSize, 1);
3696   llvm::Value *Args[] = {
3697       emitUpdateLocation(CGF, Loc),
3698       getThreadID(CGF, Loc),
3699       CGF.Builder.getInt32(addMonoNonMonoModifier(
3700           CGM, Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
3701       DispatchValues.LB,                                     // Lower
3702       DispatchValues.UB,                                     // Upper
3703       CGF.Builder.getIntN(IVSize, 1),                        // Stride
3704       Chunk                                                  // Chunk
3705   };
3706   CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
3707 }
3708 
emitForStaticInitCall(CodeGenFunction & CGF,llvm::Value * UpdateLocation,llvm::Value * ThreadId,llvm::FunctionCallee ForStaticInitFunction,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2,const CGOpenMPRuntime::StaticRTInput & Values)3709 static void emitForStaticInitCall(
3710     CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
3711     llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule,
3712     OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
3713     const CGOpenMPRuntime::StaticRTInput &Values) {
3714   if (!CGF.HaveInsertPoint())
3715     return;
3716 
3717   assert(!Values.Ordered);
3718   assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
3719          Schedule == OMP_sch_static_balanced_chunked ||
3720          Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
3721          Schedule == OMP_dist_sch_static ||
3722          Schedule == OMP_dist_sch_static_chunked);
3723 
3724   // Call __kmpc_for_static_init(
3725   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
3726   //          kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
3727   //          kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
3728   //          kmp_int[32|64] incr, kmp_int[32|64] chunk);
3729   llvm::Value *Chunk = Values.Chunk;
3730   if (Chunk == nullptr) {
3731     assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
3732             Schedule == OMP_dist_sch_static) &&
3733            "expected static non-chunked schedule");
3734     // If the Chunk was not specified in the clause - use default value 1.
3735     Chunk = CGF.Builder.getIntN(Values.IVSize, 1);
3736   } else {
3737     assert((Schedule == OMP_sch_static_chunked ||
3738             Schedule == OMP_sch_static_balanced_chunked ||
3739             Schedule == OMP_ord_static_chunked ||
3740             Schedule == OMP_dist_sch_static_chunked) &&
3741            "expected static chunked schedule");
3742   }
3743   llvm::Value *Args[] = {
3744       UpdateLocation,
3745       ThreadId,
3746       CGF.Builder.getInt32(addMonoNonMonoModifier(CGF.CGM, Schedule, M1,
3747                                                   M2)), // Schedule type
3748       Values.IL.getPointer(),                           // &isLastIter
3749       Values.LB.getPointer(),                           // &LB
3750       Values.UB.getPointer(),                           // &UB
3751       Values.ST.getPointer(),                           // &Stride
3752       CGF.Builder.getIntN(Values.IVSize, 1),            // Incr
3753       Chunk                                             // Chunk
3754   };
3755   CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
3756 }
3757 
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)3758 void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
3759                                         SourceLocation Loc,
3760                                         OpenMPDirectiveKind DKind,
3761                                         const OpenMPScheduleTy &ScheduleKind,
3762                                         const StaticRTInput &Values) {
3763   OpenMPSchedType ScheduleNum = getRuntimeSchedule(
3764       ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered);
3765   assert(isOpenMPWorksharingDirective(DKind) &&
3766          "Expected loop-based or sections-based directive.");
3767   llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc,
3768                                              isOpenMPLoopDirective(DKind)
3769                                                  ? OMP_IDENT_WORK_LOOP
3770                                                  : OMP_IDENT_WORK_SECTIONS);
3771   llvm::Value *ThreadId = getThreadID(CGF, Loc);
3772   llvm::FunctionCallee StaticInitFunction =
3773       createForStaticInitFunction(Values.IVSize, Values.IVSigned);
3774   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
3775                         ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values);
3776 }
3777 
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const CGOpenMPRuntime::StaticRTInput & Values)3778 void CGOpenMPRuntime::emitDistributeStaticInit(
3779     CodeGenFunction &CGF, SourceLocation Loc,
3780     OpenMPDistScheduleClauseKind SchedKind,
3781     const CGOpenMPRuntime::StaticRTInput &Values) {
3782   OpenMPSchedType ScheduleNum =
3783       getRuntimeSchedule(SchedKind, Values.Chunk != nullptr);
3784   llvm::Value *UpdatedLocation =
3785       emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE);
3786   llvm::Value *ThreadId = getThreadID(CGF, Loc);
3787   llvm::FunctionCallee StaticInitFunction =
3788       createForStaticInitFunction(Values.IVSize, Values.IVSigned);
3789   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
3790                         ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
3791                         OMPC_SCHEDULE_MODIFIER_unknown, Values);
3792 }
3793 
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)3794 void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
3795                                           SourceLocation Loc,
3796                                           OpenMPDirectiveKind DKind) {
3797   if (!CGF.HaveInsertPoint())
3798     return;
3799   // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
3800   llvm::Value *Args[] = {
3801       emitUpdateLocation(CGF, Loc,
3802                          isOpenMPDistributeDirective(DKind)
3803                              ? OMP_IDENT_WORK_DISTRIBUTE
3804                              : isOpenMPLoopDirective(DKind)
3805                                    ? OMP_IDENT_WORK_LOOP
3806                                    : OMP_IDENT_WORK_SECTIONS),
3807       getThreadID(CGF, Loc)};
3808   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini),
3809                       Args);
3810 }
3811 
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)3812 void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
3813                                                  SourceLocation Loc,
3814                                                  unsigned IVSize,
3815                                                  bool IVSigned) {
3816   if (!CGF.HaveInsertPoint())
3817     return;
3818   // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
3819   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
3820   CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
3821 }
3822 
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)3823 llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
3824                                           SourceLocation Loc, unsigned IVSize,
3825                                           bool IVSigned, Address IL,
3826                                           Address LB, Address UB,
3827                                           Address ST) {
3828   // Call __kmpc_dispatch_next(
3829   //          ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
3830   //          kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
3831   //          kmp_int[32|64] *p_stride);
3832   llvm::Value *Args[] = {
3833       emitUpdateLocation(CGF, Loc),
3834       getThreadID(CGF, Loc),
3835       IL.getPointer(), // &isLastIter
3836       LB.getPointer(), // &Lower
3837       UB.getPointer(), // &Upper
3838       ST.getPointer()  // &Stride
3839   };
3840   llvm::Value *Call =
3841       CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
3842   return CGF.EmitScalarConversion(
3843       Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1),
3844       CGF.getContext().BoolTy, Loc);
3845 }
3846 
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)3847 void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
3848                                            llvm::Value *NumThreads,
3849                                            SourceLocation Loc) {
3850   if (!CGF.HaveInsertPoint())
3851     return;
3852   // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
3853   llvm::Value *Args[] = {
3854       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3855       CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
3856   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads),
3857                       Args);
3858 }
3859 
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)3860 void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
3861                                          ProcBindKind ProcBind,
3862                                          SourceLocation Loc) {
3863   if (!CGF.HaveInsertPoint())
3864     return;
3865   assert(ProcBind != OMP_PROC_BIND_unknown && "Unsupported proc_bind value.");
3866   // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
3867   llvm::Value *Args[] = {
3868       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
3869       llvm::ConstantInt::get(CGM.IntTy, unsigned(ProcBind), /*isSigned=*/true)};
3870   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args);
3871 }
3872 
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * >,SourceLocation Loc)3873 void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
3874                                 SourceLocation Loc) {
3875   if (!CGF.HaveInsertPoint())
3876     return;
3877   // Build call void __kmpc_flush(ident_t *loc)
3878   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush),
3879                       emitUpdateLocation(CGF, Loc));
3880 }
3881 
3882 namespace {
3883 /// Indexes of fields for type kmp_task_t.
3884 enum KmpTaskTFields {
3885   /// List of shared variables.
3886   KmpTaskTShareds,
3887   /// Task routine.
3888   KmpTaskTRoutine,
3889   /// Partition id for the untied tasks.
3890   KmpTaskTPartId,
3891   /// Function with call of destructors for private variables.
3892   Data1,
3893   /// Task priority.
3894   Data2,
3895   /// (Taskloops only) Lower bound.
3896   KmpTaskTLowerBound,
3897   /// (Taskloops only) Upper bound.
3898   KmpTaskTUpperBound,
3899   /// (Taskloops only) Stride.
3900   KmpTaskTStride,
3901   /// (Taskloops only) Is last iteration flag.
3902   KmpTaskTLastIter,
3903   /// (Taskloops only) Reduction data.
3904   KmpTaskTReductions,
3905 };
3906 } // anonymous namespace
3907 
empty() const3908 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
3909   return OffloadEntriesTargetRegion.empty() &&
3910          OffloadEntriesDeviceGlobalVar.empty();
3911 }
3912 
3913 /// Initialize target region entry.
3914 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,unsigned Order)3915     initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
3916                                     StringRef ParentName, unsigned LineNum,
3917                                     unsigned Order) {
3918   assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
3919                                              "only required for the device "
3920                                              "code generation.");
3921   OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
3922       OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
3923                                    OMPTargetRegionEntryTargetRegion);
3924   ++OffloadingEntriesNum;
3925 }
3926 
3927 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,llvm::Constant * Addr,llvm::Constant * ID,OMPTargetRegionEntryKind Flags)3928     registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
3929                                   StringRef ParentName, unsigned LineNum,
3930                                   llvm::Constant *Addr, llvm::Constant *ID,
3931                                   OMPTargetRegionEntryKind Flags) {
3932   // If we are emitting code for a target, the entry is already initialized,
3933   // only has to be registered.
3934   if (CGM.getLangOpts().OpenMPIsDevice) {
3935     if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) {
3936       unsigned DiagID = CGM.getDiags().getCustomDiagID(
3937           DiagnosticsEngine::Error,
3938           "Unable to find target region on line '%0' in the device code.");
3939       CGM.getDiags().Report(DiagID) << LineNum;
3940       return;
3941     }
3942     auto &Entry =
3943         OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
3944     assert(Entry.isValid() && "Entry not initialized!");
3945     Entry.setAddress(Addr);
3946     Entry.setID(ID);
3947     Entry.setFlags(Flags);
3948   } else {
3949     OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
3950     OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
3951     ++OffloadingEntriesNum;
3952   }
3953 }
3954 
hasTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum) const3955 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
3956     unsigned DeviceID, unsigned FileID, StringRef ParentName,
3957     unsigned LineNum) const {
3958   auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
3959   if (PerDevice == OffloadEntriesTargetRegion.end())
3960     return false;
3961   auto PerFile = PerDevice->second.find(FileID);
3962   if (PerFile == PerDevice->second.end())
3963     return false;
3964   auto PerParentName = PerFile->second.find(ParentName);
3965   if (PerParentName == PerFile->second.end())
3966     return false;
3967   auto PerLine = PerParentName->second.find(LineNum);
3968   if (PerLine == PerParentName->second.end())
3969     return false;
3970   // Fail if this entry is already registered.
3971   if (PerLine->second.getAddress() || PerLine->second.getID())
3972     return false;
3973   return true;
3974 }
3975 
actOnTargetRegionEntriesInfo(const OffloadTargetRegionEntryInfoActTy & Action)3976 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
3977     const OffloadTargetRegionEntryInfoActTy &Action) {
3978   // Scan all target region entries and perform the provided action.
3979   for (const auto &D : OffloadEntriesTargetRegion)
3980     for (const auto &F : D.second)
3981       for (const auto &P : F.second)
3982         for (const auto &L : P.second)
3983           Action(D.first, F.first, P.first(), L.first, L.second);
3984 }
3985 
3986 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeDeviceGlobalVarEntryInfo(StringRef Name,OMPTargetGlobalVarEntryKind Flags,unsigned Order)3987     initializeDeviceGlobalVarEntryInfo(StringRef Name,
3988                                        OMPTargetGlobalVarEntryKind Flags,
3989                                        unsigned Order) {
3990   assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
3991                                              "only required for the device "
3992                                              "code generation.");
3993   OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
3994   ++OffloadingEntriesNum;
3995 }
3996 
3997 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerDeviceGlobalVarEntryInfo(StringRef VarName,llvm::Constant * Addr,CharUnits VarSize,OMPTargetGlobalVarEntryKind Flags,llvm::GlobalValue::LinkageTypes Linkage)3998     registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr,
3999                                      CharUnits VarSize,
4000                                      OMPTargetGlobalVarEntryKind Flags,
4001                                      llvm::GlobalValue::LinkageTypes Linkage) {
4002   if (CGM.getLangOpts().OpenMPIsDevice) {
4003     auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
4004     assert(Entry.isValid() && Entry.getFlags() == Flags &&
4005            "Entry not initialized!");
4006     assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
4007            "Resetting with the new address.");
4008     if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
4009       if (Entry.getVarSize().isZero()) {
4010         Entry.setVarSize(VarSize);
4011         Entry.setLinkage(Linkage);
4012       }
4013       return;
4014     }
4015     Entry.setVarSize(VarSize);
4016     Entry.setLinkage(Linkage);
4017     Entry.setAddress(Addr);
4018   } else {
4019     if (hasDeviceGlobalVarEntryInfo(VarName)) {
4020       auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
4021       assert(Entry.isValid() && Entry.getFlags() == Flags &&
4022              "Entry not initialized!");
4023       assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
4024              "Resetting with the new address.");
4025       if (Entry.getVarSize().isZero()) {
4026         Entry.setVarSize(VarSize);
4027         Entry.setLinkage(Linkage);
4028       }
4029       return;
4030     }
4031     OffloadEntriesDeviceGlobalVar.try_emplace(
4032         VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage);
4033     ++OffloadingEntriesNum;
4034   }
4035 }
4036 
4037 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
actOnDeviceGlobalVarEntriesInfo(const OffloadDeviceGlobalVarEntryInfoActTy & Action)4038     actOnDeviceGlobalVarEntriesInfo(
4039         const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
4040   // Scan all target region entries and perform the provided action.
4041   for (const auto &E : OffloadEntriesDeviceGlobalVar)
4042     Action(E.getKey(), E.getValue());
4043 }
4044 
createOffloadEntry(llvm::Constant * ID,llvm::Constant * Addr,uint64_t Size,int32_t Flags,llvm::GlobalValue::LinkageTypes Linkage)4045 void CGOpenMPRuntime::createOffloadEntry(
4046     llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags,
4047     llvm::GlobalValue::LinkageTypes Linkage) {
4048   StringRef Name = Addr->getName();
4049   llvm::Module &M = CGM.getModule();
4050   llvm::LLVMContext &C = M.getContext();
4051 
4052   // Create constant string with the name.
4053   llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
4054 
4055   std::string StringName = getName({"omp_offloading", "entry_name"});
4056   auto *Str = new llvm::GlobalVariable(
4057       M, StrPtrInit->getType(), /*isConstant=*/true,
4058       llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName);
4059   Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4060 
4061   llvm::Constant *Data[] = {llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy),
4062                             llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy),
4063                             llvm::ConstantInt::get(CGM.SizeTy, Size),
4064                             llvm::ConstantInt::get(CGM.Int32Ty, Flags),
4065                             llvm::ConstantInt::get(CGM.Int32Ty, 0)};
4066   std::string EntryName = getName({"omp_offloading", "entry", ""});
4067   llvm::GlobalVariable *Entry = createGlobalStruct(
4068       CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data,
4069       Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage);
4070 
4071   // The entry has to be created in the section the linker expects it to be.
4072   Entry->setSection("omp_offloading_entries");
4073 }
4074 
createOffloadEntriesAndInfoMetadata()4075 void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
4076   // Emit the offloading entries and metadata so that the device codegen side
4077   // can easily figure out what to emit. The produced metadata looks like
4078   // this:
4079   //
4080   // !omp_offload.info = !{!1, ...}
4081   //
4082   // Right now we only generate metadata for function that contain target
4083   // regions.
4084 
4085   // If we are in simd mode or there are no entries, we don't need to do
4086   // anything.
4087   if (CGM.getLangOpts().OpenMPSimd || OffloadEntriesInfoManager.empty())
4088     return;
4089 
4090   llvm::Module &M = CGM.getModule();
4091   llvm::LLVMContext &C = M.getContext();
4092   SmallVector<std::tuple<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *,
4093                          SourceLocation, StringRef>,
4094               16>
4095       OrderedEntries(OffloadEntriesInfoManager.size());
4096   llvm::SmallVector<StringRef, 16> ParentFunctions(
4097       OffloadEntriesInfoManager.size());
4098 
4099   // Auxiliary methods to create metadata values and strings.
4100   auto &&GetMDInt = [this](unsigned V) {
4101     return llvm::ConstantAsMetadata::get(
4102         llvm::ConstantInt::get(CGM.Int32Ty, V));
4103   };
4104 
4105   auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); };
4106 
4107   // Create the offloading info metadata node.
4108   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
4109 
4110   // Create function that emits metadata for each target region entry;
4111   auto &&TargetRegionMetadataEmitter =
4112       [this, &C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt,
4113        &GetMDString](
4114           unsigned DeviceID, unsigned FileID, StringRef ParentName,
4115           unsigned Line,
4116           const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
4117         // Generate metadata for target regions. Each entry of this metadata
4118         // contains:
4119         // - Entry 0 -> Kind of this type of metadata (0).
4120         // - Entry 1 -> Device ID of the file where the entry was identified.
4121         // - Entry 2 -> File ID of the file where the entry was identified.
4122         // - Entry 3 -> Mangled name of the function where the entry was
4123         // identified.
4124         // - Entry 4 -> Line in the file where the entry was identified.
4125         // - Entry 5 -> Order the entry was created.
4126         // The first element of the metadata node is the kind.
4127         llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID),
4128                                  GetMDInt(FileID),      GetMDString(ParentName),
4129                                  GetMDInt(Line),        GetMDInt(E.getOrder())};
4130 
4131         SourceLocation Loc;
4132         for (auto I = CGM.getContext().getSourceManager().fileinfo_begin(),
4133                   E = CGM.getContext().getSourceManager().fileinfo_end();
4134              I != E; ++I) {
4135           if (I->getFirst()->getUniqueID().getDevice() == DeviceID &&
4136               I->getFirst()->getUniqueID().getFile() == FileID) {
4137             Loc = CGM.getContext().getSourceManager().translateFileLineCol(
4138                 I->getFirst(), Line, 1);
4139             break;
4140           }
4141         }
4142         // Save this entry in the right position of the ordered entries array.
4143         OrderedEntries[E.getOrder()] = std::make_tuple(&E, Loc, ParentName);
4144         ParentFunctions[E.getOrder()] = ParentName;
4145 
4146         // Add metadata to the named metadata node.
4147         MD->addOperand(llvm::MDNode::get(C, Ops));
4148       };
4149 
4150   OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
4151       TargetRegionMetadataEmitter);
4152 
4153   // Create function that emits metadata for each device global variable entry;
4154   auto &&DeviceGlobalVarMetadataEmitter =
4155       [&C, &OrderedEntries, &GetMDInt, &GetMDString,
4156        MD](StringRef MangledName,
4157            const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar
4158                &E) {
4159         // Generate metadata for global variables. Each entry of this metadata
4160         // contains:
4161         // - Entry 0 -> Kind of this type of metadata (1).
4162         // - Entry 1 -> Mangled name of the variable.
4163         // - Entry 2 -> Declare target kind.
4164         // - Entry 3 -> Order the entry was created.
4165         // The first element of the metadata node is the kind.
4166         llvm::Metadata *Ops[] = {
4167             GetMDInt(E.getKind()), GetMDString(MangledName),
4168             GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
4169 
4170         // Save this entry in the right position of the ordered entries array.
4171         OrderedEntries[E.getOrder()] =
4172             std::make_tuple(&E, SourceLocation(), MangledName);
4173 
4174         // Add metadata to the named metadata node.
4175         MD->addOperand(llvm::MDNode::get(C, Ops));
4176       };
4177 
4178   OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo(
4179       DeviceGlobalVarMetadataEmitter);
4180 
4181   for (const auto &E : OrderedEntries) {
4182     assert(std::get<0>(E) && "All ordered entries must exist!");
4183     if (const auto *CE =
4184             dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
4185                 std::get<0>(E))) {
4186       if (!CE->getID() || !CE->getAddress()) {
4187         // Do not blame the entry if the parent funtion is not emitted.
4188         StringRef FnName = ParentFunctions[CE->getOrder()];
4189         if (!CGM.GetGlobalValue(FnName))
4190           continue;
4191         unsigned DiagID = CGM.getDiags().getCustomDiagID(
4192             DiagnosticsEngine::Error,
4193             "Offloading entry for target region in %0 is incorrect: either the "
4194             "address or the ID is invalid.");
4195         CGM.getDiags().Report(std::get<1>(E), DiagID) << FnName;
4196         continue;
4197       }
4198       createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0,
4199                          CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage);
4200     } else if (const auto *CE = dyn_cast<OffloadEntriesInfoManagerTy::
4201                                              OffloadEntryInfoDeviceGlobalVar>(
4202                    std::get<0>(E))) {
4203       OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags =
4204           static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
4205               CE->getFlags());
4206       switch (Flags) {
4207       case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: {
4208         if (CGM.getLangOpts().OpenMPIsDevice &&
4209             CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())
4210           continue;
4211         if (!CE->getAddress()) {
4212           unsigned DiagID = CGM.getDiags().getCustomDiagID(
4213               DiagnosticsEngine::Error, "Offloading entry for declare target "
4214                                         "variable %0 is incorrect: the "
4215                                         "address is invalid.");
4216           CGM.getDiags().Report(std::get<1>(E), DiagID) << std::get<2>(E);
4217           continue;
4218         }
4219         // The vaiable has no definition - no need to add the entry.
4220         if (CE->getVarSize().isZero())
4221           continue;
4222         break;
4223       }
4224       case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink:
4225         assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) ||
4226                 (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) &&
4227                "Declaret target link address is set.");
4228         if (CGM.getLangOpts().OpenMPIsDevice)
4229           continue;
4230         if (!CE->getAddress()) {
4231           unsigned DiagID = CGM.getDiags().getCustomDiagID(
4232               DiagnosticsEngine::Error,
4233               "Offloading entry for declare target variable is incorrect: the "
4234               "address is invalid.");
4235           CGM.getDiags().Report(DiagID);
4236           continue;
4237         }
4238         break;
4239       }
4240       createOffloadEntry(CE->getAddress(), CE->getAddress(),
4241                          CE->getVarSize().getQuantity(), Flags,
4242                          CE->getLinkage());
4243     } else {
4244       llvm_unreachable("Unsupported entry kind.");
4245     }
4246   }
4247 }
4248 
4249 /// Loads all the offload entries information from the host IR
4250 /// metadata.
loadOffloadInfoMetadata()4251 void CGOpenMPRuntime::loadOffloadInfoMetadata() {
4252   // If we are in target mode, load the metadata from the host IR. This code has
4253   // to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
4254 
4255   if (!CGM.getLangOpts().OpenMPIsDevice)
4256     return;
4257 
4258   if (CGM.getLangOpts().OMPHostIRFile.empty())
4259     return;
4260 
4261   auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
4262   if (auto EC = Buf.getError()) {
4263     CGM.getDiags().Report(diag::err_cannot_open_file)
4264         << CGM.getLangOpts().OMPHostIRFile << EC.message();
4265     return;
4266   }
4267 
4268   llvm::LLVMContext C;
4269   auto ME = expectedToErrorOrAndEmitErrors(
4270       C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
4271 
4272   if (auto EC = ME.getError()) {
4273     unsigned DiagID = CGM.getDiags().getCustomDiagID(
4274         DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'");
4275     CGM.getDiags().Report(DiagID)
4276         << CGM.getLangOpts().OMPHostIRFile << EC.message();
4277     return;
4278   }
4279 
4280   llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
4281   if (!MD)
4282     return;
4283 
4284   for (llvm::MDNode *MN : MD->operands()) {
4285     auto &&GetMDInt = [MN](unsigned Idx) {
4286       auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
4287       return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
4288     };
4289 
4290     auto &&GetMDString = [MN](unsigned Idx) {
4291       auto *V = cast<llvm::MDString>(MN->getOperand(Idx));
4292       return V->getString();
4293     };
4294 
4295     switch (GetMDInt(0)) {
4296     default:
4297       llvm_unreachable("Unexpected metadata!");
4298       break;
4299     case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
4300         OffloadingEntryInfoTargetRegion:
4301       OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
4302           /*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2),
4303           /*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4),
4304           /*Order=*/GetMDInt(5));
4305       break;
4306     case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
4307         OffloadingEntryInfoDeviceGlobalVar:
4308       OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo(
4309           /*MangledName=*/GetMDString(1),
4310           static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
4311               /*Flags=*/GetMDInt(2)),
4312           /*Order=*/GetMDInt(3));
4313       break;
4314     }
4315   }
4316 }
4317 
emitKmpRoutineEntryT(QualType KmpInt32Ty)4318 void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
4319   if (!KmpRoutineEntryPtrTy) {
4320     // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
4321     ASTContext &C = CGM.getContext();
4322     QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
4323     FunctionProtoType::ExtProtoInfo EPI;
4324     KmpRoutineEntryPtrQTy = C.getPointerType(
4325         C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
4326     KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
4327   }
4328 }
4329 
getTgtOffloadEntryQTy()4330 QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
4331   // Make sure the type of the entry is already created. This is the type we
4332   // have to create:
4333   // struct __tgt_offload_entry{
4334   //   void      *addr;       // Pointer to the offload entry info.
4335   //                          // (function or global)
4336   //   char      *name;       // Name of the function or global.
4337   //   size_t     size;       // Size of the entry info (0 if it a function).
4338   //   int32_t    flags;      // Flags associated with the entry, e.g. 'link'.
4339   //   int32_t    reserved;   // Reserved, to use by the runtime library.
4340   // };
4341   if (TgtOffloadEntryQTy.isNull()) {
4342     ASTContext &C = CGM.getContext();
4343     RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry");
4344     RD->startDefinition();
4345     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4346     addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
4347     addFieldToRecordDecl(C, RD, C.getSizeType());
4348     addFieldToRecordDecl(
4349         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
4350     addFieldToRecordDecl(
4351         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
4352     RD->completeDefinition();
4353     RD->addAttr(PackedAttr::CreateImplicit(C));
4354     TgtOffloadEntryQTy = C.getRecordType(RD);
4355   }
4356   return TgtOffloadEntryQTy;
4357 }
4358 
4359 namespace {
4360 struct PrivateHelpersTy {
PrivateHelpersTy__anona2876c6b1611::PrivateHelpersTy4361   PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy,
4362                    const VarDecl *PrivateElemInit)
4363       : Original(Original), PrivateCopy(PrivateCopy),
4364         PrivateElemInit(PrivateElemInit) {}
4365   const VarDecl *Original;
4366   const VarDecl *PrivateCopy;
4367   const VarDecl *PrivateElemInit;
4368 };
4369 typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
4370 } // anonymous namespace
4371 
4372 static RecordDecl *
createPrivatesRecordDecl(CodeGenModule & CGM,ArrayRef<PrivateDataTy> Privates)4373 createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
4374   if (!Privates.empty()) {
4375     ASTContext &C = CGM.getContext();
4376     // Build struct .kmp_privates_t. {
4377     //         /*  private vars  */
4378     //       };
4379     RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t");
4380     RD->startDefinition();
4381     for (const auto &Pair : Privates) {
4382       const VarDecl *VD = Pair.second.Original;
4383       QualType Type = VD->getType().getNonReferenceType();
4384       FieldDecl *FD = addFieldToRecordDecl(C, RD, Type);
4385       if (VD->hasAttrs()) {
4386         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
4387              E(VD->getAttrs().end());
4388              I != E; ++I)
4389           FD->addAttr(*I);
4390       }
4391     }
4392     RD->completeDefinition();
4393     return RD;
4394   }
4395   return nullptr;
4396 }
4397 
4398 static RecordDecl *
createKmpTaskTRecordDecl(CodeGenModule & CGM,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpRoutineEntryPointerQTy)4399 createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
4400                          QualType KmpInt32Ty,
4401                          QualType KmpRoutineEntryPointerQTy) {
4402   ASTContext &C = CGM.getContext();
4403   // Build struct kmp_task_t {
4404   //         void *              shareds;
4405   //         kmp_routine_entry_t routine;
4406   //         kmp_int32           part_id;
4407   //         kmp_cmplrdata_t data1;
4408   //         kmp_cmplrdata_t data2;
4409   // For taskloops additional fields:
4410   //         kmp_uint64          lb;
4411   //         kmp_uint64          ub;
4412   //         kmp_int64           st;
4413   //         kmp_int32           liter;
4414   //         void *              reductions;
4415   //       };
4416   RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
4417   UD->startDefinition();
4418   addFieldToRecordDecl(C, UD, KmpInt32Ty);
4419   addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
4420   UD->completeDefinition();
4421   QualType KmpCmplrdataTy = C.getRecordType(UD);
4422   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t");
4423   RD->startDefinition();
4424   addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4425   addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
4426   addFieldToRecordDecl(C, RD, KmpInt32Ty);
4427   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
4428   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
4429   if (isOpenMPTaskLoopDirective(Kind)) {
4430     QualType KmpUInt64Ty =
4431         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
4432     QualType KmpInt64Ty =
4433         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
4434     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
4435     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
4436     addFieldToRecordDecl(C, RD, KmpInt64Ty);
4437     addFieldToRecordDecl(C, RD, KmpInt32Ty);
4438     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
4439   }
4440   RD->completeDefinition();
4441   return RD;
4442 }
4443 
4444 static RecordDecl *
createKmpTaskTWithPrivatesRecordDecl(CodeGenModule & CGM,QualType KmpTaskTQTy,ArrayRef<PrivateDataTy> Privates)4445 createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
4446                                      ArrayRef<PrivateDataTy> Privates) {
4447   ASTContext &C = CGM.getContext();
4448   // Build struct kmp_task_t_with_privates {
4449   //         kmp_task_t task_data;
4450   //         .kmp_privates_t. privates;
4451   //       };
4452   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
4453   RD->startDefinition();
4454   addFieldToRecordDecl(C, RD, KmpTaskTQTy);
4455   if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates))
4456     addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
4457   RD->completeDefinition();
4458   return RD;
4459 }
4460 
4461 /// Emit a proxy function which accepts kmp_task_t as the second
4462 /// argument.
4463 /// \code
4464 /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
4465 ///   TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
4466 ///   For taskloops:
4467 ///   tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
4468 ///   tt->reductions, tt->shareds);
4469 ///   return 0;
4470 /// }
4471 /// \endcode
4472 static llvm::Function *
emitProxyTaskFunction(CodeGenModule & CGM,SourceLocation Loc,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy,QualType KmpTaskTQTy,QualType SharedsPtrTy,llvm::Function * TaskFunction,llvm::Value * TaskPrivatesMap)4473 emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
4474                       OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
4475                       QualType KmpTaskTWithPrivatesPtrQTy,
4476                       QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
4477                       QualType SharedsPtrTy, llvm::Function *TaskFunction,
4478                       llvm::Value *TaskPrivatesMap) {
4479   ASTContext &C = CGM.getContext();
4480   FunctionArgList Args;
4481   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
4482                             ImplicitParamDecl::Other);
4483   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4484                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
4485                                 ImplicitParamDecl::Other);
4486   Args.push_back(&GtidArg);
4487   Args.push_back(&TaskTypeArg);
4488   const auto &TaskEntryFnInfo =
4489       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
4490   llvm::FunctionType *TaskEntryTy =
4491       CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
4492   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""});
4493   auto *TaskEntry = llvm::Function::Create(
4494       TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
4495   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo);
4496   TaskEntry->setDoesNotRecurse();
4497   CodeGenFunction CGF(CGM);
4498   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args,
4499                     Loc, Loc);
4500 
4501   // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
4502   // tt,
4503   // For taskloops:
4504   // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
4505   // tt->task_data.shareds);
4506   llvm::Value *GtidParam = CGF.EmitLoadOfScalar(
4507       CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
4508   LValue TDBase = CGF.EmitLoadOfPointerLValue(
4509       CGF.GetAddrOfLocalVar(&TaskTypeArg),
4510       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4511   const auto *KmpTaskTWithPrivatesQTyRD =
4512       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
4513   LValue Base =
4514       CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
4515   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
4516   auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
4517   LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
4518   llvm::Value *PartidParam = PartIdLVal.getPointer(CGF);
4519 
4520   auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
4521   LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
4522   llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4523       CGF.EmitLoadOfScalar(SharedsLVal, Loc),
4524       CGF.ConvertTypeForMem(SharedsPtrTy));
4525 
4526   auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
4527   llvm::Value *PrivatesParam;
4528   if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
4529     LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
4530     PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4531         PrivatesLVal.getPointer(CGF), CGF.VoidPtrTy);
4532   } else {
4533     PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4534   }
4535 
4536   llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
4537                                TaskPrivatesMap,
4538                                CGF.Builder
4539                                    .CreatePointerBitCastOrAddrSpaceCast(
4540                                        TDBase.getAddress(CGF), CGF.VoidPtrTy)
4541                                    .getPointer()};
4542   SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
4543                                           std::end(CommonArgs));
4544   if (isOpenMPTaskLoopDirective(Kind)) {
4545     auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
4546     LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI);
4547     llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc);
4548     auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
4549     LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI);
4550     llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc);
4551     auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
4552     LValue StLVal = CGF.EmitLValueForField(Base, *StFI);
4553     llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc);
4554     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
4555     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
4556     llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc);
4557     auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions);
4558     LValue RLVal = CGF.EmitLValueForField(Base, *RFI);
4559     llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc);
4560     CallArgs.push_back(LBParam);
4561     CallArgs.push_back(UBParam);
4562     CallArgs.push_back(StParam);
4563     CallArgs.push_back(LIParam);
4564     CallArgs.push_back(RParam);
4565   }
4566   CallArgs.push_back(SharedsParam);
4567 
4568   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction,
4569                                                   CallArgs);
4570   CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)),
4571                              CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
4572   CGF.FinishFunction();
4573   return TaskEntry;
4574 }
4575 
emitDestructorsFunction(CodeGenModule & CGM,SourceLocation Loc,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy)4576 static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
4577                                             SourceLocation Loc,
4578                                             QualType KmpInt32Ty,
4579                                             QualType KmpTaskTWithPrivatesPtrQTy,
4580                                             QualType KmpTaskTWithPrivatesQTy) {
4581   ASTContext &C = CGM.getContext();
4582   FunctionArgList Args;
4583   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
4584                             ImplicitParamDecl::Other);
4585   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4586                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
4587                                 ImplicitParamDecl::Other);
4588   Args.push_back(&GtidArg);
4589   Args.push_back(&TaskTypeArg);
4590   const auto &DestructorFnInfo =
4591       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
4592   llvm::FunctionType *DestructorFnTy =
4593       CGM.getTypes().GetFunctionType(DestructorFnInfo);
4594   std::string Name =
4595       CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""});
4596   auto *DestructorFn =
4597       llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
4598                              Name, &CGM.getModule());
4599   CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn,
4600                                     DestructorFnInfo);
4601   DestructorFn->setDoesNotRecurse();
4602   CodeGenFunction CGF(CGM);
4603   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
4604                     Args, Loc, Loc);
4605 
4606   LValue Base = CGF.EmitLoadOfPointerLValue(
4607       CGF.GetAddrOfLocalVar(&TaskTypeArg),
4608       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4609   const auto *KmpTaskTWithPrivatesQTyRD =
4610       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
4611   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
4612   Base = CGF.EmitLValueForField(Base, *FI);
4613   for (const auto *Field :
4614        cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
4615     if (QualType::DestructionKind DtorKind =
4616             Field->getType().isDestructedType()) {
4617       LValue FieldLValue = CGF.EmitLValueForField(Base, Field);
4618       CGF.pushDestroy(DtorKind, FieldLValue.getAddress(CGF), Field->getType());
4619     }
4620   }
4621   CGF.FinishFunction();
4622   return DestructorFn;
4623 }
4624 
4625 /// Emit a privates mapping function for correct handling of private and
4626 /// firstprivate variables.
4627 /// \code
4628 /// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
4629 /// **noalias priv1,...,  <tyn> **noalias privn) {
4630 ///   *priv1 = &.privates.priv1;
4631 ///   ...;
4632 ///   *privn = &.privates.privn;
4633 /// }
4634 /// \endcode
4635 static llvm::Value *
emitTaskPrivateMappingFunction(CodeGenModule & CGM,SourceLocation Loc,ArrayRef<const Expr * > PrivateVars,ArrayRef<const Expr * > FirstprivateVars,ArrayRef<const Expr * > LastprivateVars,QualType PrivatesQTy,ArrayRef<PrivateDataTy> Privates)4636 emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
4637                                ArrayRef<const Expr *> PrivateVars,
4638                                ArrayRef<const Expr *> FirstprivateVars,
4639                                ArrayRef<const Expr *> LastprivateVars,
4640                                QualType PrivatesQTy,
4641                                ArrayRef<PrivateDataTy> Privates) {
4642   ASTContext &C = CGM.getContext();
4643   FunctionArgList Args;
4644   ImplicitParamDecl TaskPrivatesArg(
4645       C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4646       C.getPointerType(PrivatesQTy).withConst().withRestrict(),
4647       ImplicitParamDecl::Other);
4648   Args.push_back(&TaskPrivatesArg);
4649   llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos;
4650   unsigned Counter = 1;
4651   for (const Expr *E : PrivateVars) {
4652     Args.push_back(ImplicitParamDecl::Create(
4653         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4654         C.getPointerType(C.getPointerType(E->getType()))
4655             .withConst()
4656             .withRestrict(),
4657         ImplicitParamDecl::Other));
4658     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4659     PrivateVarsPos[VD] = Counter;
4660     ++Counter;
4661   }
4662   for (const Expr *E : FirstprivateVars) {
4663     Args.push_back(ImplicitParamDecl::Create(
4664         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4665         C.getPointerType(C.getPointerType(E->getType()))
4666             .withConst()
4667             .withRestrict(),
4668         ImplicitParamDecl::Other));
4669     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4670     PrivateVarsPos[VD] = Counter;
4671     ++Counter;
4672   }
4673   for (const Expr *E : LastprivateVars) {
4674     Args.push_back(ImplicitParamDecl::Create(
4675         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4676         C.getPointerType(C.getPointerType(E->getType()))
4677             .withConst()
4678             .withRestrict(),
4679         ImplicitParamDecl::Other));
4680     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4681     PrivateVarsPos[VD] = Counter;
4682     ++Counter;
4683   }
4684   const auto &TaskPrivatesMapFnInfo =
4685       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
4686   llvm::FunctionType *TaskPrivatesMapTy =
4687       CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
4688   std::string Name =
4689       CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""});
4690   auto *TaskPrivatesMap = llvm::Function::Create(
4691       TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name,
4692       &CGM.getModule());
4693   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap,
4694                                     TaskPrivatesMapFnInfo);
4695   if (CGM.getLangOpts().Optimize) {
4696     TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
4697     TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone);
4698     TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
4699   }
4700   CodeGenFunction CGF(CGM);
4701   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
4702                     TaskPrivatesMapFnInfo, Args, Loc, Loc);
4703 
4704   // *privi = &.privates.privi;
4705   LValue Base = CGF.EmitLoadOfPointerLValue(
4706       CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
4707       TaskPrivatesArg.getType()->castAs<PointerType>());
4708   const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
4709   Counter = 0;
4710   for (const FieldDecl *Field : PrivatesQTyRD->fields()) {
4711     LValue FieldLVal = CGF.EmitLValueForField(Base, Field);
4712     const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
4713     LValue RefLVal =
4714         CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
4715     LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue(
4716         RefLVal.getAddress(CGF), RefLVal.getType()->castAs<PointerType>());
4717     CGF.EmitStoreOfScalar(FieldLVal.getPointer(CGF), RefLoadLVal);
4718     ++Counter;
4719   }
4720   CGF.FinishFunction();
4721   return TaskPrivatesMap;
4722 }
4723 
4724 /// Emit initialization for private variables in task-based directives.
emitPrivatesInit(CodeGenFunction & CGF,const OMPExecutableDirective & D,Address KmpTaskSharedsPtr,LValue TDBase,const RecordDecl * KmpTaskTWithPrivatesQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool ForDup)4725 static void emitPrivatesInit(CodeGenFunction &CGF,
4726                              const OMPExecutableDirective &D,
4727                              Address KmpTaskSharedsPtr, LValue TDBase,
4728                              const RecordDecl *KmpTaskTWithPrivatesQTyRD,
4729                              QualType SharedsTy, QualType SharedsPtrTy,
4730                              const OMPTaskDataTy &Data,
4731                              ArrayRef<PrivateDataTy> Privates, bool ForDup) {
4732   ASTContext &C = CGF.getContext();
4733   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
4734   LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
4735   OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind())
4736                                  ? OMPD_taskloop
4737                                  : OMPD_task;
4738   const CapturedStmt &CS = *D.getCapturedStmt(Kind);
4739   CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS);
4740   LValue SrcBase;
4741   bool IsTargetTask =
4742       isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) ||
4743       isOpenMPTargetExecutionDirective(D.getDirectiveKind());
4744   // For target-based directives skip 3 firstprivate arrays BasePointersArray,
4745   // PointersArray and SizesArray. The original variables for these arrays are
4746   // not captured and we get their addresses explicitly.
4747   if ((!IsTargetTask && !Data.FirstprivateVars.empty()) ||
4748       (IsTargetTask && KmpTaskSharedsPtr.isValid())) {
4749     SrcBase = CGF.MakeAddrLValue(
4750         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4751             KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
4752         SharedsTy);
4753   }
4754   FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
4755   for (const PrivateDataTy &Pair : Privates) {
4756     const VarDecl *VD = Pair.second.PrivateCopy;
4757     const Expr *Init = VD->getAnyInitializer();
4758     if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
4759                              !CGF.isTrivialInitializer(Init)))) {
4760       LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
4761       if (const VarDecl *Elem = Pair.second.PrivateElemInit) {
4762         const VarDecl *OriginalVD = Pair.second.Original;
4763         // Check if the variable is the target-based BasePointersArray,
4764         // PointersArray or SizesArray.
4765         LValue SharedRefLValue;
4766         QualType Type = PrivateLValue.getType();
4767         const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD);
4768         if (IsTargetTask && !SharedField) {
4769           assert(isa<ImplicitParamDecl>(OriginalVD) &&
4770                  isa<CapturedDecl>(OriginalVD->getDeclContext()) &&
4771                  cast<CapturedDecl>(OriginalVD->getDeclContext())
4772                          ->getNumParams() == 0 &&
4773                  isa<TranslationUnitDecl>(
4774                      cast<CapturedDecl>(OriginalVD->getDeclContext())
4775                          ->getDeclContext()) &&
4776                  "Expected artificial target data variable.");
4777           SharedRefLValue =
4778               CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type);
4779         } else {
4780           SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
4781           SharedRefLValue = CGF.MakeAddrLValue(
4782               Address(SharedRefLValue.getPointer(CGF),
4783                       C.getDeclAlign(OriginalVD)),
4784               SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl),
4785               SharedRefLValue.getTBAAInfo());
4786         }
4787         if (Type->isArrayType()) {
4788           // Initialize firstprivate array.
4789           if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
4790             // Perform simple memcpy.
4791             CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type);
4792           } else {
4793             // Initialize firstprivate array using element-by-element
4794             // initialization.
4795             CGF.EmitOMPAggregateAssign(
4796                 PrivateLValue.getAddress(CGF), SharedRefLValue.getAddress(CGF),
4797                 Type,
4798                 [&CGF, Elem, Init, &CapturesInfo](Address DestElement,
4799                                                   Address SrcElement) {
4800                   // Clean up any temporaries needed by the initialization.
4801                   CodeGenFunction::OMPPrivateScope InitScope(CGF);
4802                   InitScope.addPrivate(
4803                       Elem, [SrcElement]() -> Address { return SrcElement; });
4804                   (void)InitScope.Privatize();
4805                   // Emit initialization for single element.
4806                   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
4807                       CGF, &CapturesInfo);
4808                   CGF.EmitAnyExprToMem(Init, DestElement,
4809                                        Init->getType().getQualifiers(),
4810                                        /*IsInitializer=*/false);
4811                 });
4812           }
4813         } else {
4814           CodeGenFunction::OMPPrivateScope InitScope(CGF);
4815           InitScope.addPrivate(Elem, [SharedRefLValue, &CGF]() -> Address {
4816             return SharedRefLValue.getAddress(CGF);
4817           });
4818           (void)InitScope.Privatize();
4819           CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
4820           CGF.EmitExprAsInit(Init, VD, PrivateLValue,
4821                              /*capturedByInit=*/false);
4822         }
4823       } else {
4824         CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
4825       }
4826     }
4827     ++FI;
4828   }
4829 }
4830 
4831 /// Check if duplication function is required for taskloops.
checkInitIsRequired(CodeGenFunction & CGF,ArrayRef<PrivateDataTy> Privates)4832 static bool checkInitIsRequired(CodeGenFunction &CGF,
4833                                 ArrayRef<PrivateDataTy> Privates) {
4834   bool InitRequired = false;
4835   for (const PrivateDataTy &Pair : Privates) {
4836     const VarDecl *VD = Pair.second.PrivateCopy;
4837     const Expr *Init = VD->getAnyInitializer();
4838     InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
4839                                     !CGF.isTrivialInitializer(Init));
4840     if (InitRequired)
4841       break;
4842   }
4843   return InitRequired;
4844 }
4845 
4846 
4847 /// Emit task_dup function (for initialization of
4848 /// private/firstprivate/lastprivate vars and last_iter flag)
4849 /// \code
4850 /// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
4851 /// lastpriv) {
4852 /// // setup lastprivate flag
4853 ///    task_dst->last = lastpriv;
4854 /// // could be constructor calls here...
4855 /// }
4856 /// \endcode
4857 static llvm::Value *
emitTaskDupFunction(CodeGenModule & CGM,SourceLocation Loc,const OMPExecutableDirective & D,QualType KmpTaskTWithPrivatesPtrQTy,const RecordDecl * KmpTaskTWithPrivatesQTyRD,const RecordDecl * KmpTaskTQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool WithLastIter)4858 emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
4859                     const OMPExecutableDirective &D,
4860                     QualType KmpTaskTWithPrivatesPtrQTy,
4861                     const RecordDecl *KmpTaskTWithPrivatesQTyRD,
4862                     const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
4863                     QualType SharedsPtrTy, const OMPTaskDataTy &Data,
4864                     ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
4865   ASTContext &C = CGM.getContext();
4866   FunctionArgList Args;
4867   ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4868                            KmpTaskTWithPrivatesPtrQTy,
4869                            ImplicitParamDecl::Other);
4870   ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
4871                            KmpTaskTWithPrivatesPtrQTy,
4872                            ImplicitParamDecl::Other);
4873   ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
4874                                 ImplicitParamDecl::Other);
4875   Args.push_back(&DstArg);
4876   Args.push_back(&SrcArg);
4877   Args.push_back(&LastprivArg);
4878   const auto &TaskDupFnInfo =
4879       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
4880   llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
4881   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""});
4882   auto *TaskDup = llvm::Function::Create(
4883       TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
4884   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo);
4885   TaskDup->setDoesNotRecurse();
4886   CodeGenFunction CGF(CGM);
4887   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc,
4888                     Loc);
4889 
4890   LValue TDBase = CGF.EmitLoadOfPointerLValue(
4891       CGF.GetAddrOfLocalVar(&DstArg),
4892       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4893   // task_dst->liter = lastpriv;
4894   if (WithLastIter) {
4895     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
4896     LValue Base = CGF.EmitLValueForField(
4897         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
4898     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
4899     llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
4900         CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
4901     CGF.EmitStoreOfScalar(Lastpriv, LILVal);
4902   }
4903 
4904   // Emit initial values for private copies (if any).
4905   assert(!Privates.empty());
4906   Address KmpTaskSharedsPtr = Address::invalid();
4907   if (!Data.FirstprivateVars.empty()) {
4908     LValue TDBase = CGF.EmitLoadOfPointerLValue(
4909         CGF.GetAddrOfLocalVar(&SrcArg),
4910         KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
4911     LValue Base = CGF.EmitLValueForField(
4912         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
4913     KmpTaskSharedsPtr = Address(
4914         CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
4915                                  Base, *std::next(KmpTaskTQTyRD->field_begin(),
4916                                                   KmpTaskTShareds)),
4917                              Loc),
4918         CGF.getNaturalTypeAlignment(SharedsTy));
4919   }
4920   emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
4921                    SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
4922   CGF.FinishFunction();
4923   return TaskDup;
4924 }
4925 
4926 /// Checks if destructor function is required to be generated.
4927 /// \return true if cleanups are required, false otherwise.
4928 static bool
checkDestructorsRequired(const RecordDecl * KmpTaskTWithPrivatesQTyRD)4929 checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) {
4930   bool NeedsCleanup = false;
4931   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
4932   const auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl());
4933   for (const FieldDecl *FD : PrivateRD->fields()) {
4934     NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType();
4935     if (NeedsCleanup)
4936       break;
4937   }
4938   return NeedsCleanup;
4939 }
4940 
4941 CGOpenMPRuntime::TaskResultTy
emitTaskInit(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const OMPTaskDataTy & Data)4942 CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
4943                               const OMPExecutableDirective &D,
4944                               llvm::Function *TaskFunction, QualType SharedsTy,
4945                               Address Shareds, const OMPTaskDataTy &Data) {
4946   ASTContext &C = CGM.getContext();
4947   llvm::SmallVector<PrivateDataTy, 4> Privates;
4948   // Aggregate privates and sort them by the alignment.
4949   auto I = Data.PrivateCopies.begin();
4950   for (const Expr *E : Data.PrivateVars) {
4951     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4952     Privates.emplace_back(
4953         C.getDeclAlign(VD),
4954         PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4955                          /*PrivateElemInit=*/nullptr));
4956     ++I;
4957   }
4958   I = Data.FirstprivateCopies.begin();
4959   auto IElemInitRef = Data.FirstprivateInits.begin();
4960   for (const Expr *E : Data.FirstprivateVars) {
4961     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4962     Privates.emplace_back(
4963         C.getDeclAlign(VD),
4964         PrivateHelpersTy(
4965             VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4966             cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())));
4967     ++I;
4968     ++IElemInitRef;
4969   }
4970   I = Data.LastprivateCopies.begin();
4971   for (const Expr *E : Data.LastprivateVars) {
4972     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4973     Privates.emplace_back(
4974         C.getDeclAlign(VD),
4975         PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4976                          /*PrivateElemInit=*/nullptr));
4977     ++I;
4978   }
4979   llvm::stable_sort(Privates, [](PrivateDataTy L, PrivateDataTy R) {
4980     return L.first > R.first;
4981   });
4982   QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
4983   // Build type kmp_routine_entry_t (if not built yet).
4984   emitKmpRoutineEntryT(KmpInt32Ty);
4985   // Build type kmp_task_t (if not built yet).
4986   if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) {
4987     if (SavedKmpTaskloopTQTy.isNull()) {
4988       SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl(
4989           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
4990     }
4991     KmpTaskTQTy = SavedKmpTaskloopTQTy;
4992   } else {
4993     assert((D.getDirectiveKind() == OMPD_task ||
4994             isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||
4995             isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&
4996            "Expected taskloop, task or target directive");
4997     if (SavedKmpTaskTQTy.isNull()) {
4998       SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
4999           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
5000     }
5001     KmpTaskTQTy = SavedKmpTaskTQTy;
5002   }
5003   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
5004   // Build particular struct kmp_task_t for the given task.
5005   const RecordDecl *KmpTaskTWithPrivatesQTyRD =
5006       createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
5007   QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
5008   QualType KmpTaskTWithPrivatesPtrQTy =
5009       C.getPointerType(KmpTaskTWithPrivatesQTy);
5010   llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
5011   llvm::Type *KmpTaskTWithPrivatesPtrTy =
5012       KmpTaskTWithPrivatesTy->getPointerTo();
5013   llvm::Value *KmpTaskTWithPrivatesTySize =
5014       CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
5015   QualType SharedsPtrTy = C.getPointerType(SharedsTy);
5016 
5017   // Emit initial values for private copies (if any).
5018   llvm::Value *TaskPrivatesMap = nullptr;
5019   llvm::Type *TaskPrivatesMapTy =
5020       std::next(TaskFunction->arg_begin(), 3)->getType();
5021   if (!Privates.empty()) {
5022     auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
5023     TaskPrivatesMap = emitTaskPrivateMappingFunction(
5024         CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars,
5025         FI->getType(), Privates);
5026     TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5027         TaskPrivatesMap, TaskPrivatesMapTy);
5028   } else {
5029     TaskPrivatesMap = llvm::ConstantPointerNull::get(
5030         cast<llvm::PointerType>(TaskPrivatesMapTy));
5031   }
5032   // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
5033   // kmp_task_t *tt);
5034   llvm::Function *TaskEntry = emitProxyTaskFunction(
5035       CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
5036       KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
5037       TaskPrivatesMap);
5038 
5039   // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
5040   // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
5041   // kmp_routine_entry_t *task_entry);
5042   // Task flags. Format is taken from
5043   // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h,
5044   // description of kmp_tasking_flags struct.
5045   enum {
5046     TiedFlag = 0x1,
5047     FinalFlag = 0x2,
5048     DestructorsFlag = 0x8,
5049     PriorityFlag = 0x20
5050   };
5051   unsigned Flags = Data.Tied ? TiedFlag : 0;
5052   bool NeedsCleanup = false;
5053   if (!Privates.empty()) {
5054     NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD);
5055     if (NeedsCleanup)
5056       Flags = Flags | DestructorsFlag;
5057   }
5058   if (Data.Priority.getInt())
5059     Flags = Flags | PriorityFlag;
5060   llvm::Value *TaskFlags =
5061       Data.Final.getPointer()
5062           ? CGF.Builder.CreateSelect(Data.Final.getPointer(),
5063                                      CGF.Builder.getInt32(FinalFlag),
5064                                      CGF.Builder.getInt32(/*C=*/0))
5065           : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
5066   TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
5067   llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
5068   SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc),
5069       getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize,
5070       SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5071           TaskEntry, KmpRoutineEntryPtrTy)};
5072   llvm::Value *NewTask;
5073   if (D.hasClausesOfKind<OMPNowaitClause>()) {
5074     // Check if we have any device clause associated with the directive.
5075     const Expr *Device = nullptr;
5076     if (auto *C = D.getSingleClause<OMPDeviceClause>())
5077       Device = C->getDevice();
5078     // Emit device ID if any otherwise use default value.
5079     llvm::Value *DeviceID;
5080     if (Device)
5081       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
5082                                            CGF.Int64Ty, /*isSigned=*/true);
5083     else
5084       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
5085     AllocArgs.push_back(DeviceID);
5086     NewTask = CGF.EmitRuntimeCall(
5087       createRuntimeFunction(OMPRTL__kmpc_omp_target_task_alloc), AllocArgs);
5088   } else {
5089     NewTask = CGF.EmitRuntimeCall(
5090       createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs);
5091   }
5092   llvm::Value *NewTaskNewTaskTTy =
5093       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5094           NewTask, KmpTaskTWithPrivatesPtrTy);
5095   LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
5096                                                KmpTaskTWithPrivatesQTy);
5097   LValue TDBase =
5098       CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
5099   // Fill the data in the resulting kmp_task_t record.
5100   // Copy shareds if there are any.
5101   Address KmpTaskSharedsPtr = Address::invalid();
5102   if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
5103     KmpTaskSharedsPtr =
5104         Address(CGF.EmitLoadOfScalar(
5105                     CGF.EmitLValueForField(
5106                         TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
5107                                            KmpTaskTShareds)),
5108                     Loc),
5109                 CGF.getNaturalTypeAlignment(SharedsTy));
5110     LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy);
5111     LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy);
5112     CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap);
5113   }
5114   // Emit initial values for private copies (if any).
5115   TaskResultTy Result;
5116   if (!Privates.empty()) {
5117     emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
5118                      SharedsTy, SharedsPtrTy, Data, Privates,
5119                      /*ForDup=*/false);
5120     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
5121         (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
5122       Result.TaskDupFn = emitTaskDupFunction(
5123           CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
5124           KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
5125           /*WithLastIter=*/!Data.LastprivateVars.empty());
5126     }
5127   }
5128   // Fields of union "kmp_cmplrdata_t" for destructors and priority.
5129   enum { Priority = 0, Destructors = 1 };
5130   // Provide pointer to function with destructors for privates.
5131   auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
5132   const RecordDecl *KmpCmplrdataUD =
5133       (*FI)->getType()->getAsUnionType()->getDecl();
5134   if (NeedsCleanup) {
5135     llvm::Value *DestructorFn = emitDestructorsFunction(
5136         CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
5137         KmpTaskTWithPrivatesQTy);
5138     LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
5139     LValue DestructorsLV = CGF.EmitLValueForField(
5140         Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
5141     CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5142                               DestructorFn, KmpRoutineEntryPtrTy),
5143                           DestructorsLV);
5144   }
5145   // Set priority.
5146   if (Data.Priority.getInt()) {
5147     LValue Data2LV = CGF.EmitLValueForField(
5148         TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
5149     LValue PriorityLV = CGF.EmitLValueForField(
5150         Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
5151     CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
5152   }
5153   Result.NewTask = NewTask;
5154   Result.TaskEntry = TaskEntry;
5155   Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
5156   Result.TDBase = TDBase;
5157   Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
5158   return Result;
5159 }
5160 
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)5161 void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
5162                                    const OMPExecutableDirective &D,
5163                                    llvm::Function *TaskFunction,
5164                                    QualType SharedsTy, Address Shareds,
5165                                    const Expr *IfCond,
5166                                    const OMPTaskDataTy &Data) {
5167   if (!CGF.HaveInsertPoint())
5168     return;
5169 
5170   TaskResultTy Result =
5171       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5172   llvm::Value *NewTask = Result.NewTask;
5173   llvm::Function *TaskEntry = Result.TaskEntry;
5174   llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
5175   LValue TDBase = Result.TDBase;
5176   const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
5177   ASTContext &C = CGM.getContext();
5178   // Process list of dependences.
5179   Address DependenciesArray = Address::invalid();
5180   unsigned NumDependencies = Data.Dependences.size();
5181   if (NumDependencies) {
5182     // Dependence kind for RTL.
5183     enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3, DepMutexInOutSet = 0x4 };
5184     enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
5185     RecordDecl *KmpDependInfoRD;
5186     QualType FlagsTy =
5187         C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
5188     llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
5189     if (KmpDependInfoTy.isNull()) {
5190       KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
5191       KmpDependInfoRD->startDefinition();
5192       addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
5193       addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
5194       addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
5195       KmpDependInfoRD->completeDefinition();
5196       KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
5197     } else {
5198       KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
5199     }
5200     // Define type kmp_depend_info[<Dependences.size()>];
5201     QualType KmpDependInfoArrayTy = C.getConstantArrayType(
5202         KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies),
5203         nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
5204     // kmp_depend_info[<Dependences.size()>] deps;
5205     DependenciesArray =
5206         CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
5207     for (unsigned I = 0; I < NumDependencies; ++I) {
5208       const Expr *E = Data.Dependences[I].second;
5209       LValue Addr = CGF.EmitLValue(E);
5210       llvm::Value *Size;
5211       QualType Ty = E->getType();
5212       if (const auto *ASE =
5213               dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
5214         LValue UpAddrLVal =
5215             CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false);
5216         llvm::Value *UpAddr = CGF.Builder.CreateConstGEP1_32(
5217             UpAddrLVal.getPointer(CGF), /*Idx0=*/1);
5218         llvm::Value *LowIntPtr =
5219             CGF.Builder.CreatePtrToInt(Addr.getPointer(CGF), CGM.SizeTy);
5220         llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy);
5221         Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
5222       } else {
5223         Size = CGF.getTypeSize(Ty);
5224       }
5225       LValue Base = CGF.MakeAddrLValue(
5226           CGF.Builder.CreateConstArrayGEP(DependenciesArray, I),
5227           KmpDependInfoTy);
5228       // deps[i].base_addr = &<Dependences[i].second>;
5229       LValue BaseAddrLVal = CGF.EmitLValueForField(
5230           Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
5231       CGF.EmitStoreOfScalar(
5232           CGF.Builder.CreatePtrToInt(Addr.getPointer(CGF), CGF.IntPtrTy),
5233           BaseAddrLVal);
5234       // deps[i].len = sizeof(<Dependences[i].second>);
5235       LValue LenLVal = CGF.EmitLValueForField(
5236           Base, *std::next(KmpDependInfoRD->field_begin(), Len));
5237       CGF.EmitStoreOfScalar(Size, LenLVal);
5238       // deps[i].flags = <Dependences[i].first>;
5239       RTLDependenceKindTy DepKind;
5240       switch (Data.Dependences[I].first) {
5241       case OMPC_DEPEND_in:
5242         DepKind = DepIn;
5243         break;
5244       // Out and InOut dependencies must use the same code.
5245       case OMPC_DEPEND_out:
5246       case OMPC_DEPEND_inout:
5247         DepKind = DepInOut;
5248         break;
5249       case OMPC_DEPEND_mutexinoutset:
5250         DepKind = DepMutexInOutSet;
5251         break;
5252       case OMPC_DEPEND_source:
5253       case OMPC_DEPEND_sink:
5254       case OMPC_DEPEND_unknown:
5255         llvm_unreachable("Unknown task dependence type");
5256       }
5257       LValue FlagsLVal = CGF.EmitLValueForField(
5258           Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
5259       CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
5260                             FlagsLVal);
5261     }
5262     DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5263         CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0), CGF.VoidPtrTy);
5264   }
5265 
5266   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5267   // libcall.
5268   // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
5269   // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
5270   // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
5271   // list is not empty
5272   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5273   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5274   llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
5275   llvm::Value *DepTaskArgs[7];
5276   if (NumDependencies) {
5277     DepTaskArgs[0] = UpLoc;
5278     DepTaskArgs[1] = ThreadID;
5279     DepTaskArgs[2] = NewTask;
5280     DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies);
5281     DepTaskArgs[4] = DependenciesArray.getPointer();
5282     DepTaskArgs[5] = CGF.Builder.getInt32(0);
5283     DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5284   }
5285   auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, NumDependencies,
5286                         &TaskArgs,
5287                         &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
5288     if (!Data.Tied) {
5289       auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
5290       LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
5291       CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
5292     }
5293     if (NumDependencies) {
5294       CGF.EmitRuntimeCall(
5295           createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs);
5296     } else {
5297       CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task),
5298                           TaskArgs);
5299     }
5300     // Check if parent region is untied and build return for untied task;
5301     if (auto *Region =
5302             dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
5303       Region->emitUntiedSwitch(CGF);
5304   };
5305 
5306   llvm::Value *DepWaitTaskArgs[6];
5307   if (NumDependencies) {
5308     DepWaitTaskArgs[0] = UpLoc;
5309     DepWaitTaskArgs[1] = ThreadID;
5310     DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies);
5311     DepWaitTaskArgs[3] = DependenciesArray.getPointer();
5312     DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
5313     DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5314   }
5315   auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry,
5316                         NumDependencies, &DepWaitTaskArgs,
5317                         Loc](CodeGenFunction &CGF, PrePostActionTy &) {
5318     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5319     CodeGenFunction::RunCleanupsScope LocalScope(CGF);
5320     // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
5321     // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
5322     // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
5323     // is specified.
5324     if (NumDependencies)
5325       CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps),
5326                           DepWaitTaskArgs);
5327     // Call proxy_task_entry(gtid, new_task);
5328     auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy,
5329                       Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
5330       Action.Enter(CGF);
5331       llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
5332       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry,
5333                                                           OutlinedFnArgs);
5334     };
5335 
5336     // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
5337     // kmp_task_t *new_task);
5338     // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
5339     // kmp_task_t *new_task);
5340     RegionCodeGenTy RCG(CodeGen);
5341     CommonActionTy Action(
5342         RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs,
5343         RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs);
5344     RCG.setAction(Action);
5345     RCG(CGF);
5346   };
5347 
5348   if (IfCond) {
5349     emitIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
5350   } else {
5351     RegionCodeGenTy ThenRCG(ThenCodeGen);
5352     ThenRCG(CGF);
5353   }
5354 }
5355 
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)5356 void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
5357                                        const OMPLoopDirective &D,
5358                                        llvm::Function *TaskFunction,
5359                                        QualType SharedsTy, Address Shareds,
5360                                        const Expr *IfCond,
5361                                        const OMPTaskDataTy &Data) {
5362   if (!CGF.HaveInsertPoint())
5363     return;
5364   TaskResultTy Result =
5365       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5366   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5367   // libcall.
5368   // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
5369   // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
5370   // sched, kmp_uint64 grainsize, void *task_dup);
5371   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5372   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5373   llvm::Value *IfVal;
5374   if (IfCond) {
5375     IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
5376                                       /*isSigned=*/true);
5377   } else {
5378     IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
5379   }
5380 
5381   LValue LBLVal = CGF.EmitLValueForField(
5382       Result.TDBase,
5383       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
5384   const auto *LBVar =
5385       cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
5386   CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(CGF),
5387                        LBLVal.getQuals(),
5388                        /*IsInitializer=*/true);
5389   LValue UBLVal = CGF.EmitLValueForField(
5390       Result.TDBase,
5391       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
5392   const auto *UBVar =
5393       cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
5394   CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(CGF),
5395                        UBLVal.getQuals(),
5396                        /*IsInitializer=*/true);
5397   LValue StLVal = CGF.EmitLValueForField(
5398       Result.TDBase,
5399       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
5400   const auto *StVar =
5401       cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
5402   CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(CGF),
5403                        StLVal.getQuals(),
5404                        /*IsInitializer=*/true);
5405   // Store reductions address.
5406   LValue RedLVal = CGF.EmitLValueForField(
5407       Result.TDBase,
5408       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions));
5409   if (Data.Reductions) {
5410     CGF.EmitStoreOfScalar(Data.Reductions, RedLVal);
5411   } else {
5412     CGF.EmitNullInitialization(RedLVal.getAddress(CGF),
5413                                CGF.getContext().VoidPtrTy);
5414   }
5415   enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
5416   llvm::Value *TaskArgs[] = {
5417       UpLoc,
5418       ThreadID,
5419       Result.NewTask,
5420       IfVal,
5421       LBLVal.getPointer(CGF),
5422       UBLVal.getPointer(CGF),
5423       CGF.EmitLoadOfScalar(StLVal, Loc),
5424       llvm::ConstantInt::getSigned(
5425           CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler
5426       llvm::ConstantInt::getSigned(
5427           CGF.IntTy, Data.Schedule.getPointer()
5428                          ? Data.Schedule.getInt() ? NumTasks : Grainsize
5429                          : NoSchedule),
5430       Data.Schedule.getPointer()
5431           ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
5432                                       /*isSigned=*/false)
5433           : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
5434       Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5435                              Result.TaskDupFn, CGF.VoidPtrTy)
5436                        : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
5437   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs);
5438 }
5439 
5440 /// Emit reduction operation for each element of array (required for
5441 /// array sections) LHS op = RHS.
5442 /// \param Type Type of array.
5443 /// \param LHSVar Variable on the left side of the reduction operation
5444 /// (references element of array in original variable).
5445 /// \param RHSVar Variable on the right side of the reduction operation
5446 /// (references element of array in original variable).
5447 /// \param RedOpGen Generator of reduction operation with use of LHSVar and
5448 /// RHSVar.
EmitOMPAggregateReduction(CodeGenFunction & CGF,QualType Type,const VarDecl * LHSVar,const VarDecl * RHSVar,const llvm::function_ref<void (CodeGenFunction & CGF,const Expr *,const Expr *,const Expr *)> & RedOpGen,const Expr * XExpr=nullptr,const Expr * EExpr=nullptr,const Expr * UpExpr=nullptr)5449 static void EmitOMPAggregateReduction(
5450     CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
5451     const VarDecl *RHSVar,
5452     const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
5453                                   const Expr *, const Expr *)> &RedOpGen,
5454     const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
5455     const Expr *UpExpr = nullptr) {
5456   // Perform element-by-element initialization.
5457   QualType ElementTy;
5458   Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
5459   Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
5460 
5461   // Drill down to the base element type on both arrays.
5462   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
5463   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
5464 
5465   llvm::Value *RHSBegin = RHSAddr.getPointer();
5466   llvm::Value *LHSBegin = LHSAddr.getPointer();
5467   // Cast from pointer to array type to pointer to single element.
5468   llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
5469   // The basic structure here is a while-do loop.
5470   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
5471   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
5472   llvm::Value *IsEmpty =
5473       CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
5474   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
5475 
5476   // Enter the loop body, making that address the current address.
5477   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
5478   CGF.EmitBlock(BodyBB);
5479 
5480   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
5481 
5482   llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
5483       RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
5484   RHSElementPHI->addIncoming(RHSBegin, EntryBB);
5485   Address RHSElementCurrent =
5486       Address(RHSElementPHI,
5487               RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5488 
5489   llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
5490       LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
5491   LHSElementPHI->addIncoming(LHSBegin, EntryBB);
5492   Address LHSElementCurrent =
5493       Address(LHSElementPHI,
5494               LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5495 
5496   // Emit copy.
5497   CodeGenFunction::OMPPrivateScope Scope(CGF);
5498   Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; });
5499   Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; });
5500   Scope.Privatize();
5501   RedOpGen(CGF, XExpr, EExpr, UpExpr);
5502   Scope.ForceCleanup();
5503 
5504   // Shift the address forward by one element.
5505   llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32(
5506       LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
5507   llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32(
5508       RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
5509   // Check whether we've reached the end.
5510   llvm::Value *Done =
5511       CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
5512   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
5513   LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
5514   RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
5515 
5516   // Done.
5517   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
5518 }
5519 
5520 /// Emit reduction combiner. If the combiner is a simple expression emit it as
5521 /// is, otherwise consider it as combiner of UDR decl and emit it as a call of
5522 /// UDR combiner function.
emitReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp)5523 static void emitReductionCombiner(CodeGenFunction &CGF,
5524                                   const Expr *ReductionOp) {
5525   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
5526     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
5527       if (const auto *DRE =
5528               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
5529         if (const auto *DRD =
5530                 dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
5531           std::pair<llvm::Function *, llvm::Function *> Reduction =
5532               CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
5533           RValue Func = RValue::get(Reduction.first);
5534           CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
5535           CGF.EmitIgnoredExpr(ReductionOp);
5536           return;
5537         }
5538   CGF.EmitIgnoredExpr(ReductionOp);
5539 }
5540 
emitReductionFunction(SourceLocation Loc,llvm::Type * ArgsType,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps)5541 llvm::Function *CGOpenMPRuntime::emitReductionFunction(
5542     SourceLocation Loc, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates,
5543     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
5544     ArrayRef<const Expr *> ReductionOps) {
5545   ASTContext &C = CGM.getContext();
5546 
5547   // void reduction_func(void *LHSArg, void *RHSArg);
5548   FunctionArgList Args;
5549   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5550                            ImplicitParamDecl::Other);
5551   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5552                            ImplicitParamDecl::Other);
5553   Args.push_back(&LHSArg);
5554   Args.push_back(&RHSArg);
5555   const auto &CGFI =
5556       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5557   std::string Name = getName({"omp", "reduction", "reduction_func"});
5558   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
5559                                     llvm::GlobalValue::InternalLinkage, Name,
5560                                     &CGM.getModule());
5561   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
5562   Fn->setDoesNotRecurse();
5563   CodeGenFunction CGF(CGM);
5564   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
5565 
5566   // Dst = (void*[n])(LHSArg);
5567   // Src = (void*[n])(RHSArg);
5568   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5569       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
5570       ArgsType), CGF.getPointerAlign());
5571   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5572       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
5573       ArgsType), CGF.getPointerAlign());
5574 
5575   //  ...
5576   //  *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
5577   //  ...
5578   CodeGenFunction::OMPPrivateScope Scope(CGF);
5579   auto IPriv = Privates.begin();
5580   unsigned Idx = 0;
5581   for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
5582     const auto *RHSVar =
5583         cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
5584     Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() {
5585       return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
5586     });
5587     const auto *LHSVar =
5588         cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
5589     Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() {
5590       return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
5591     });
5592     QualType PrivTy = (*IPriv)->getType();
5593     if (PrivTy->isVariablyModifiedType()) {
5594       // Get array size and emit VLA type.
5595       ++Idx;
5596       Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx);
5597       llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
5598       const VariableArrayType *VLA =
5599           CGF.getContext().getAsVariableArrayType(PrivTy);
5600       const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
5601       CodeGenFunction::OpaqueValueMapping OpaqueMap(
5602           CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
5603       CGF.EmitVariablyModifiedType(PrivTy);
5604     }
5605   }
5606   Scope.Privatize();
5607   IPriv = Privates.begin();
5608   auto ILHS = LHSExprs.begin();
5609   auto IRHS = RHSExprs.begin();
5610   for (const Expr *E : ReductionOps) {
5611     if ((*IPriv)->getType()->isArrayType()) {
5612       // Emit reduction for array section.
5613       const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5614       const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5615       EmitOMPAggregateReduction(
5616           CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5617           [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5618             emitReductionCombiner(CGF, E);
5619           });
5620     } else {
5621       // Emit reduction for array subscript or single variable.
5622       emitReductionCombiner(CGF, E);
5623     }
5624     ++IPriv;
5625     ++ILHS;
5626     ++IRHS;
5627   }
5628   Scope.ForceCleanup();
5629   CGF.FinishFunction();
5630   return Fn;
5631 }
5632 
emitSingleReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp,const Expr * PrivateRef,const DeclRefExpr * LHS,const DeclRefExpr * RHS)5633 void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
5634                                                   const Expr *ReductionOp,
5635                                                   const Expr *PrivateRef,
5636                                                   const DeclRefExpr *LHS,
5637                                                   const DeclRefExpr *RHS) {
5638   if (PrivateRef->getType()->isArrayType()) {
5639     // Emit reduction for array section.
5640     const auto *LHSVar = cast<VarDecl>(LHS->getDecl());
5641     const auto *RHSVar = cast<VarDecl>(RHS->getDecl());
5642     EmitOMPAggregateReduction(
5643         CGF, PrivateRef->getType(), LHSVar, RHSVar,
5644         [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5645           emitReductionCombiner(CGF, ReductionOp);
5646         });
5647   } else {
5648     // Emit reduction for array subscript or single variable.
5649     emitReductionCombiner(CGF, ReductionOp);
5650   }
5651 }
5652 
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)5653 void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
5654                                     ArrayRef<const Expr *> Privates,
5655                                     ArrayRef<const Expr *> LHSExprs,
5656                                     ArrayRef<const Expr *> RHSExprs,
5657                                     ArrayRef<const Expr *> ReductionOps,
5658                                     ReductionOptionsTy Options) {
5659   if (!CGF.HaveInsertPoint())
5660     return;
5661 
5662   bool WithNowait = Options.WithNowait;
5663   bool SimpleReduction = Options.SimpleReduction;
5664 
5665   // Next code should be emitted for reduction:
5666   //
5667   // static kmp_critical_name lock = { 0 };
5668   //
5669   // void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
5670   //  *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
5671   //  ...
5672   //  *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
5673   //  *(Type<n>-1*)rhs[<n>-1]);
5674   // }
5675   //
5676   // ...
5677   // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
5678   // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5679   // RedList, reduce_func, &<lock>)) {
5680   // case 1:
5681   //  ...
5682   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5683   //  ...
5684   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5685   // break;
5686   // case 2:
5687   //  ...
5688   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5689   //  ...
5690   // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
5691   // break;
5692   // default:;
5693   // }
5694   //
5695   // if SimpleReduction is true, only the next code is generated:
5696   //  ...
5697   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5698   //  ...
5699 
5700   ASTContext &C = CGM.getContext();
5701 
5702   if (SimpleReduction) {
5703     CodeGenFunction::RunCleanupsScope Scope(CGF);
5704     auto IPriv = Privates.begin();
5705     auto ILHS = LHSExprs.begin();
5706     auto IRHS = RHSExprs.begin();
5707     for (const Expr *E : ReductionOps) {
5708       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5709                                   cast<DeclRefExpr>(*IRHS));
5710       ++IPriv;
5711       ++ILHS;
5712       ++IRHS;
5713     }
5714     return;
5715   }
5716 
5717   // 1. Build a list of reduction variables.
5718   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
5719   auto Size = RHSExprs.size();
5720   for (const Expr *E : Privates) {
5721     if (E->getType()->isVariablyModifiedType())
5722       // Reserve place for array size.
5723       ++Size;
5724   }
5725   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
5726   QualType ReductionArrayTy =
5727       C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
5728                              /*IndexTypeQuals=*/0);
5729   Address ReductionList =
5730       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
5731   auto IPriv = Privates.begin();
5732   unsigned Idx = 0;
5733   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
5734     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5735     CGF.Builder.CreateStore(
5736         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5737             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
5738         Elem);
5739     if ((*IPriv)->getType()->isVariablyModifiedType()) {
5740       // Store array size.
5741       ++Idx;
5742       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5743       llvm::Value *Size = CGF.Builder.CreateIntCast(
5744           CGF.getVLASize(
5745                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
5746               .NumElts,
5747           CGF.SizeTy, /*isSigned=*/false);
5748       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
5749                               Elem);
5750     }
5751   }
5752 
5753   // 2. Emit reduce_func().
5754   llvm::Function *ReductionFn = emitReductionFunction(
5755       Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
5756       LHSExprs, RHSExprs, ReductionOps);
5757 
5758   // 3. Create static kmp_critical_name lock = { 0 };
5759   std::string Name = getName({"reduction"});
5760   llvm::Value *Lock = getCriticalRegionLock(Name);
5761 
5762   // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5763   // RedList, reduce_func, &<lock>);
5764   llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
5765   llvm::Value *ThreadId = getThreadID(CGF, Loc);
5766   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
5767   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5768       ReductionList.getPointer(), CGF.VoidPtrTy);
5769   llvm::Value *Args[] = {
5770       IdentTLoc,                             // ident_t *<loc>
5771       ThreadId,                              // i32 <gtid>
5772       CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
5773       ReductionArrayTySize,                  // size_type sizeof(RedList)
5774       RL,                                    // void *RedList
5775       ReductionFn, // void (*) (void *, void *) <reduce_func>
5776       Lock         // kmp_critical_name *&<lock>
5777   };
5778   llvm::Value *Res = CGF.EmitRuntimeCall(
5779       createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait
5780                                        : OMPRTL__kmpc_reduce),
5781       Args);
5782 
5783   // 5. Build switch(res)
5784   llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
5785   llvm::SwitchInst *SwInst =
5786       CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
5787 
5788   // 6. Build case 1:
5789   //  ...
5790   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5791   //  ...
5792   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5793   // break;
5794   llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
5795   SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
5796   CGF.EmitBlock(Case1BB);
5797 
5798   // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5799   llvm::Value *EndArgs[] = {
5800       IdentTLoc, // ident_t *<loc>
5801       ThreadId,  // i32 <gtid>
5802       Lock       // kmp_critical_name *&<lock>
5803   };
5804   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps](
5805                        CodeGenFunction &CGF, PrePostActionTy &Action) {
5806     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5807     auto IPriv = Privates.begin();
5808     auto ILHS = LHSExprs.begin();
5809     auto IRHS = RHSExprs.begin();
5810     for (const Expr *E : ReductionOps) {
5811       RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5812                                      cast<DeclRefExpr>(*IRHS));
5813       ++IPriv;
5814       ++ILHS;
5815       ++IRHS;
5816     }
5817   };
5818   RegionCodeGenTy RCG(CodeGen);
5819   CommonActionTy Action(
5820       nullptr, llvm::None,
5821       createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait
5822                                        : OMPRTL__kmpc_end_reduce),
5823       EndArgs);
5824   RCG.setAction(Action);
5825   RCG(CGF);
5826 
5827   CGF.EmitBranch(DefaultBB);
5828 
5829   // 7. Build case 2:
5830   //  ...
5831   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5832   //  ...
5833   // break;
5834   llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
5835   SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
5836   CGF.EmitBlock(Case2BB);
5837 
5838   auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps](
5839                              CodeGenFunction &CGF, PrePostActionTy &Action) {
5840     auto ILHS = LHSExprs.begin();
5841     auto IRHS = RHSExprs.begin();
5842     auto IPriv = Privates.begin();
5843     for (const Expr *E : ReductionOps) {
5844       const Expr *XExpr = nullptr;
5845       const Expr *EExpr = nullptr;
5846       const Expr *UpExpr = nullptr;
5847       BinaryOperatorKind BO = BO_Comma;
5848       if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
5849         if (BO->getOpcode() == BO_Assign) {
5850           XExpr = BO->getLHS();
5851           UpExpr = BO->getRHS();
5852         }
5853       }
5854       // Try to emit update expression as a simple atomic.
5855       const Expr *RHSExpr = UpExpr;
5856       if (RHSExpr) {
5857         // Analyze RHS part of the whole expression.
5858         if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(
5859                 RHSExpr->IgnoreParenImpCasts())) {
5860           // If this is a conditional operator, analyze its condition for
5861           // min/max reduction operator.
5862           RHSExpr = ACO->getCond();
5863         }
5864         if (const auto *BORHS =
5865                 dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
5866           EExpr = BORHS->getRHS();
5867           BO = BORHS->getOpcode();
5868         }
5869       }
5870       if (XExpr) {
5871         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5872         auto &&AtomicRedGen = [BO, VD,
5873                                Loc](CodeGenFunction &CGF, const Expr *XExpr,
5874                                     const Expr *EExpr, const Expr *UpExpr) {
5875           LValue X = CGF.EmitLValue(XExpr);
5876           RValue E;
5877           if (EExpr)
5878             E = CGF.EmitAnyExpr(EExpr);
5879           CGF.EmitOMPAtomicSimpleUpdateExpr(
5880               X, E, BO, /*IsXLHSInRHSPart=*/true,
5881               llvm::AtomicOrdering::Monotonic, Loc,
5882               [&CGF, UpExpr, VD, Loc](RValue XRValue) {
5883                 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5884                 PrivateScope.addPrivate(
5885                     VD, [&CGF, VD, XRValue, Loc]() {
5886                       Address LHSTemp = CGF.CreateMemTemp(VD->getType());
5887                       CGF.emitOMPSimpleStore(
5888                           CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
5889                           VD->getType().getNonReferenceType(), Loc);
5890                       return LHSTemp;
5891                     });
5892                 (void)PrivateScope.Privatize();
5893                 return CGF.EmitAnyExpr(UpExpr);
5894               });
5895         };
5896         if ((*IPriv)->getType()->isArrayType()) {
5897           // Emit atomic reduction for array section.
5898           const auto *RHSVar =
5899               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5900           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
5901                                     AtomicRedGen, XExpr, EExpr, UpExpr);
5902         } else {
5903           // Emit atomic reduction for array subscript or single variable.
5904           AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
5905         }
5906       } else {
5907         // Emit as a critical region.
5908         auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
5909                                            const Expr *, const Expr *) {
5910           CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5911           std::string Name = RT.getName({"atomic_reduction"});
5912           RT.emitCriticalRegion(
5913               CGF, Name,
5914               [=](CodeGenFunction &CGF, PrePostActionTy &Action) {
5915                 Action.Enter(CGF);
5916                 emitReductionCombiner(CGF, E);
5917               },
5918               Loc);
5919         };
5920         if ((*IPriv)->getType()->isArrayType()) {
5921           const auto *LHSVar =
5922               cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5923           const auto *RHSVar =
5924               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5925           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5926                                     CritRedGen);
5927         } else {
5928           CritRedGen(CGF, nullptr, nullptr, nullptr);
5929         }
5930       }
5931       ++ILHS;
5932       ++IRHS;
5933       ++IPriv;
5934     }
5935   };
5936   RegionCodeGenTy AtomicRCG(AtomicCodeGen);
5937   if (!WithNowait) {
5938     // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
5939     llvm::Value *EndArgs[] = {
5940         IdentTLoc, // ident_t *<loc>
5941         ThreadId,  // i32 <gtid>
5942         Lock       // kmp_critical_name *&<lock>
5943     };
5944     CommonActionTy Action(nullptr, llvm::None,
5945                           createRuntimeFunction(OMPRTL__kmpc_end_reduce),
5946                           EndArgs);
5947     AtomicRCG.setAction(Action);
5948     AtomicRCG(CGF);
5949   } else {
5950     AtomicRCG(CGF);
5951   }
5952 
5953   CGF.EmitBranch(DefaultBB);
5954   CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
5955 }
5956 
5957 /// Generates unique name for artificial threadprivate variables.
5958 /// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>"
generateUniqueName(CodeGenModule & CGM,StringRef Prefix,const Expr * Ref)5959 static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix,
5960                                       const Expr *Ref) {
5961   SmallString<256> Buffer;
5962   llvm::raw_svector_ostream Out(Buffer);
5963   const clang::DeclRefExpr *DE;
5964   const VarDecl *D = ::getBaseDecl(Ref, DE);
5965   if (!D)
5966     D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl());
5967   D = D->getCanonicalDecl();
5968   std::string Name = CGM.getOpenMPRuntime().getName(
5969       {D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)});
5970   Out << Prefix << Name << "_"
5971       << D->getCanonicalDecl()->getBeginLoc().getRawEncoding();
5972   return Out.str();
5973 }
5974 
5975 /// Emits reduction initializer function:
5976 /// \code
5977 /// void @.red_init(void* %arg) {
5978 /// %0 = bitcast void* %arg to <type>*
5979 /// store <type> <init>, <type>* %0
5980 /// ret void
5981 /// }
5982 /// \endcode
emitReduceInitFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)5983 static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM,
5984                                            SourceLocation Loc,
5985                                            ReductionCodeGen &RCG, unsigned N) {
5986   ASTContext &C = CGM.getContext();
5987   FunctionArgList Args;
5988   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5989                           ImplicitParamDecl::Other);
5990   Args.emplace_back(&Param);
5991   const auto &FnInfo =
5992       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5993   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5994   std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""});
5995   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5996                                     Name, &CGM.getModule());
5997   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5998   Fn->setDoesNotRecurse();
5999   CodeGenFunction CGF(CGM);
6000   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
6001   Address PrivateAddr = CGF.EmitLoadOfPointer(
6002       CGF.GetAddrOfLocalVar(&Param),
6003       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
6004   llvm::Value *Size = nullptr;
6005   // If the size of the reduction item is non-constant, load it from global
6006   // threadprivate variable.
6007   if (RCG.getSizes(N).second) {
6008     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
6009         CGF, CGM.getContext().getSizeType(),
6010         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6011     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
6012                                 CGM.getContext().getSizeType(), Loc);
6013   }
6014   RCG.emitAggregateType(CGF, N, Size);
6015   LValue SharedLVal;
6016   // If initializer uses initializer from declare reduction construct, emit a
6017   // pointer to the address of the original reduction item (reuired by reduction
6018   // initializer)
6019   if (RCG.usesReductionInitializer(N)) {
6020     Address SharedAddr =
6021         CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
6022             CGF, CGM.getContext().VoidPtrTy,
6023             generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
6024     SharedAddr = CGF.EmitLoadOfPointer(
6025         SharedAddr,
6026         CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr());
6027     SharedLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy);
6028   } else {
6029     SharedLVal = CGF.MakeNaturalAlignAddrLValue(
6030         llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
6031         CGM.getContext().VoidPtrTy);
6032   }
6033   // Emit the initializer:
6034   // %0 = bitcast void* %arg to <type>*
6035   // store <type> <init>, <type>* %0
6036   RCG.emitInitialization(CGF, N, PrivateAddr, SharedLVal,
6037                          [](CodeGenFunction &) { return false; });
6038   CGF.FinishFunction();
6039   return Fn;
6040 }
6041 
6042 /// Emits reduction combiner function:
6043 /// \code
6044 /// void @.red_comb(void* %arg0, void* %arg1) {
6045 /// %lhs = bitcast void* %arg0 to <type>*
6046 /// %rhs = bitcast void* %arg1 to <type>*
6047 /// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs)
6048 /// store <type> %2, <type>* %lhs
6049 /// ret void
6050 /// }
6051 /// \endcode
emitReduceCombFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N,const Expr * ReductionOp,const Expr * LHS,const Expr * RHS,const Expr * PrivateRef)6052 static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM,
6053                                            SourceLocation Loc,
6054                                            ReductionCodeGen &RCG, unsigned N,
6055                                            const Expr *ReductionOp,
6056                                            const Expr *LHS, const Expr *RHS,
6057                                            const Expr *PrivateRef) {
6058   ASTContext &C = CGM.getContext();
6059   const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl());
6060   const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl());
6061   FunctionArgList Args;
6062   ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
6063                                C.VoidPtrTy, ImplicitParamDecl::Other);
6064   ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
6065                             ImplicitParamDecl::Other);
6066   Args.emplace_back(&ParamInOut);
6067   Args.emplace_back(&ParamIn);
6068   const auto &FnInfo =
6069       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
6070   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
6071   std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""});
6072   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
6073                                     Name, &CGM.getModule());
6074   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
6075   Fn->setDoesNotRecurse();
6076   CodeGenFunction CGF(CGM);
6077   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
6078   llvm::Value *Size = nullptr;
6079   // If the size of the reduction item is non-constant, load it from global
6080   // threadprivate variable.
6081   if (RCG.getSizes(N).second) {
6082     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
6083         CGF, CGM.getContext().getSizeType(),
6084         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6085     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
6086                                 CGM.getContext().getSizeType(), Loc);
6087   }
6088   RCG.emitAggregateType(CGF, N, Size);
6089   // Remap lhs and rhs variables to the addresses of the function arguments.
6090   // %lhs = bitcast void* %arg0 to <type>*
6091   // %rhs = bitcast void* %arg1 to <type>*
6092   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
6093   PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() {
6094     // Pull out the pointer to the variable.
6095     Address PtrAddr = CGF.EmitLoadOfPointer(
6096         CGF.GetAddrOfLocalVar(&ParamInOut),
6097         C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
6098     return CGF.Builder.CreateElementBitCast(
6099         PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType()));
6100   });
6101   PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() {
6102     // Pull out the pointer to the variable.
6103     Address PtrAddr = CGF.EmitLoadOfPointer(
6104         CGF.GetAddrOfLocalVar(&ParamIn),
6105         C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
6106     return CGF.Builder.CreateElementBitCast(
6107         PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType()));
6108   });
6109   PrivateScope.Privatize();
6110   // Emit the combiner body:
6111   // %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs)
6112   // store <type> %2, <type>* %lhs
6113   CGM.getOpenMPRuntime().emitSingleReductionCombiner(
6114       CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS),
6115       cast<DeclRefExpr>(RHS));
6116   CGF.FinishFunction();
6117   return Fn;
6118 }
6119 
6120 /// Emits reduction finalizer function:
6121 /// \code
6122 /// void @.red_fini(void* %arg) {
6123 /// %0 = bitcast void* %arg to <type>*
6124 /// <destroy>(<type>* %0)
6125 /// ret void
6126 /// }
6127 /// \endcode
emitReduceFiniFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)6128 static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM,
6129                                            SourceLocation Loc,
6130                                            ReductionCodeGen &RCG, unsigned N) {
6131   if (!RCG.needCleanups(N))
6132     return nullptr;
6133   ASTContext &C = CGM.getContext();
6134   FunctionArgList Args;
6135   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
6136                           ImplicitParamDecl::Other);
6137   Args.emplace_back(&Param);
6138   const auto &FnInfo =
6139       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
6140   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
6141   std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""});
6142   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
6143                                     Name, &CGM.getModule());
6144   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
6145   Fn->setDoesNotRecurse();
6146   CodeGenFunction CGF(CGM);
6147   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
6148   Address PrivateAddr = CGF.EmitLoadOfPointer(
6149       CGF.GetAddrOfLocalVar(&Param),
6150       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
6151   llvm::Value *Size = nullptr;
6152   // If the size of the reduction item is non-constant, load it from global
6153   // threadprivate variable.
6154   if (RCG.getSizes(N).second) {
6155     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
6156         CGF, CGM.getContext().getSizeType(),
6157         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6158     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
6159                                 CGM.getContext().getSizeType(), Loc);
6160   }
6161   RCG.emitAggregateType(CGF, N, Size);
6162   // Emit the finalizer body:
6163   // <destroy>(<type>* %0)
6164   RCG.emitCleanups(CGF, N, PrivateAddr);
6165   CGF.FinishFunction(Loc);
6166   return Fn;
6167 }
6168 
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)6169 llvm::Value *CGOpenMPRuntime::emitTaskReductionInit(
6170     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
6171     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
6172   if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty())
6173     return nullptr;
6174 
6175   // Build typedef struct:
6176   // kmp_task_red_input {
6177   //   void *reduce_shar; // shared reduction item
6178   //   size_t reduce_size; // size of data item
6179   //   void *reduce_init; // data initialization routine
6180   //   void *reduce_fini; // data finalization routine
6181   //   void *reduce_comb; // data combiner routine
6182   //   kmp_task_red_flags_t flags; // flags for additional info from compiler
6183   // } kmp_task_red_input_t;
6184   ASTContext &C = CGM.getContext();
6185   RecordDecl *RD = C.buildImplicitRecord("kmp_task_red_input_t");
6186   RD->startDefinition();
6187   const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6188   const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType());
6189   const FieldDecl *InitFD  = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6190   const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6191   const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6192   const FieldDecl *FlagsFD = addFieldToRecordDecl(
6193       C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false));
6194   RD->completeDefinition();
6195   QualType RDType = C.getRecordType(RD);
6196   unsigned Size = Data.ReductionVars.size();
6197   llvm::APInt ArraySize(/*numBits=*/64, Size);
6198   QualType ArrayRDType = C.getConstantArrayType(
6199       RDType, ArraySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
6200   // kmp_task_red_input_t .rd_input.[Size];
6201   Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input.");
6202   ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionCopies,
6203                        Data.ReductionOps);
6204   for (unsigned Cnt = 0; Cnt < Size; ++Cnt) {
6205     // kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt];
6206     llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0),
6207                            llvm::ConstantInt::get(CGM.SizeTy, Cnt)};
6208     llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP(
6209         TaskRedInput.getPointer(), Idxs,
6210         /*SignedIndices=*/false, /*IsSubtraction=*/false, Loc,
6211         ".rd_input.gep.");
6212     LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType);
6213     // ElemLVal.reduce_shar = &Shareds[Cnt];
6214     LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD);
6215     RCG.emitSharedLValue(CGF, Cnt);
6216     llvm::Value *CastedShared =
6217         CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer(CGF));
6218     CGF.EmitStoreOfScalar(CastedShared, SharedLVal);
6219     RCG.emitAggregateType(CGF, Cnt);
6220     llvm::Value *SizeValInChars;
6221     llvm::Value *SizeVal;
6222     std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt);
6223     // We use delayed creation/initialization for VLAs, array sections and
6224     // custom reduction initializations. It is required because runtime does not
6225     // provide the way to pass the sizes of VLAs/array sections to
6226     // initializer/combiner/finalizer functions and does not pass the pointer to
6227     // original reduction item to the initializer. Instead threadprivate global
6228     // variables are used to store these values and use them in the functions.
6229     bool DelayedCreation = !!SizeVal;
6230     SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy,
6231                                                /*isSigned=*/false);
6232     LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD);
6233     CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal);
6234     // ElemLVal.reduce_init = init;
6235     LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD);
6236     llvm::Value *InitAddr =
6237         CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt));
6238     CGF.EmitStoreOfScalar(InitAddr, InitLVal);
6239     DelayedCreation = DelayedCreation || RCG.usesReductionInitializer(Cnt);
6240     // ElemLVal.reduce_fini = fini;
6241     LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD);
6242     llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt);
6243     llvm::Value *FiniAddr = Fini
6244                                 ? CGF.EmitCastToVoidPtr(Fini)
6245                                 : llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
6246     CGF.EmitStoreOfScalar(FiniAddr, FiniLVal);
6247     // ElemLVal.reduce_comb = comb;
6248     LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD);
6249     llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction(
6250         CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt],
6251         RHSExprs[Cnt], Data.ReductionCopies[Cnt]));
6252     CGF.EmitStoreOfScalar(CombAddr, CombLVal);
6253     // ElemLVal.flags = 0;
6254     LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD);
6255     if (DelayedCreation) {
6256       CGF.EmitStoreOfScalar(
6257           llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true),
6258           FlagsLVal);
6259     } else
6260       CGF.EmitNullInitialization(FlagsLVal.getAddress(CGF),
6261                                  FlagsLVal.getType());
6262   }
6263   // Build call void *__kmpc_task_reduction_init(int gtid, int num_data, void
6264   // *data);
6265   llvm::Value *Args[] = {
6266       CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
6267                                 /*isSigned=*/true),
6268       llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
6269       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(),
6270                                                       CGM.VoidPtrTy)};
6271   return CGF.EmitRuntimeCall(
6272       createRuntimeFunction(OMPRTL__kmpc_task_reduction_init), Args);
6273 }
6274 
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)6275 void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
6276                                               SourceLocation Loc,
6277                                               ReductionCodeGen &RCG,
6278                                               unsigned N) {
6279   auto Sizes = RCG.getSizes(N);
6280   // Emit threadprivate global variable if the type is non-constant
6281   // (Sizes.second = nullptr).
6282   if (Sizes.second) {
6283     llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy,
6284                                                      /*isSigned=*/false);
6285     Address SizeAddr = getAddrOfArtificialThreadPrivate(
6286         CGF, CGM.getContext().getSizeType(),
6287         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6288     CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false);
6289   }
6290   // Store address of the original reduction item if custom initializer is used.
6291   if (RCG.usesReductionInitializer(N)) {
6292     Address SharedAddr = getAddrOfArtificialThreadPrivate(
6293         CGF, CGM.getContext().VoidPtrTy,
6294         generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
6295     CGF.Builder.CreateStore(
6296         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6297             RCG.getSharedLValue(N).getPointer(CGF), CGM.VoidPtrTy),
6298         SharedAddr, /*IsVolatile=*/false);
6299   }
6300 }
6301 
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)6302 Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF,
6303                                               SourceLocation Loc,
6304                                               llvm::Value *ReductionsPtr,
6305                                               LValue SharedLVal) {
6306   // Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
6307   // *d);
6308   llvm::Value *Args[] = {CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6309                                                    CGM.IntTy,
6310                                                    /*isSigned=*/true),
6311                          ReductionsPtr,
6312                          CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6313                              SharedLVal.getPointer(CGF), CGM.VoidPtrTy)};
6314   return Address(
6315       CGF.EmitRuntimeCall(
6316           createRuntimeFunction(OMPRTL__kmpc_task_reduction_get_th_data), Args),
6317       SharedLVal.getAlignment());
6318 }
6319 
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc)6320 void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
6321                                        SourceLocation Loc) {
6322   if (!CGF.HaveInsertPoint())
6323     return;
6324   // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
6325   // global_tid);
6326   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
6327   // Ignore return result until untied tasks are supported.
6328   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args);
6329   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
6330     Region->emitUntiedSwitch(CGF);
6331 }
6332 
emitInlinedDirective(CodeGenFunction & CGF,OpenMPDirectiveKind InnerKind,const RegionCodeGenTy & CodeGen,bool HasCancel)6333 void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
6334                                            OpenMPDirectiveKind InnerKind,
6335                                            const RegionCodeGenTy &CodeGen,
6336                                            bool HasCancel) {
6337   if (!CGF.HaveInsertPoint())
6338     return;
6339   InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
6340   CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
6341 }
6342 
6343 namespace {
6344 enum RTCancelKind {
6345   CancelNoreq = 0,
6346   CancelParallel = 1,
6347   CancelLoop = 2,
6348   CancelSections = 3,
6349   CancelTaskgroup = 4
6350 };
6351 } // anonymous namespace
6352 
getCancellationKind(OpenMPDirectiveKind CancelRegion)6353 static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
6354   RTCancelKind CancelKind = CancelNoreq;
6355   if (CancelRegion == OMPD_parallel)
6356     CancelKind = CancelParallel;
6357   else if (CancelRegion == OMPD_for)
6358     CancelKind = CancelLoop;
6359   else if (CancelRegion == OMPD_sections)
6360     CancelKind = CancelSections;
6361   else {
6362     assert(CancelRegion == OMPD_taskgroup);
6363     CancelKind = CancelTaskgroup;
6364   }
6365   return CancelKind;
6366 }
6367 
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)6368 void CGOpenMPRuntime::emitCancellationPointCall(
6369     CodeGenFunction &CGF, SourceLocation Loc,
6370     OpenMPDirectiveKind CancelRegion) {
6371   if (!CGF.HaveInsertPoint())
6372     return;
6373   // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
6374   // global_tid, kmp_int32 cncl_kind);
6375   if (auto *OMPRegionInfo =
6376           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6377     // For 'cancellation point taskgroup', the task region info may not have a
6378     // cancel. This may instead happen in another adjacent task.
6379     if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
6380       llvm::Value *Args[] = {
6381           emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
6382           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6383       // Ignore return result until untied tasks are supported.
6384       llvm::Value *Result = CGF.EmitRuntimeCall(
6385           createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args);
6386       // if (__kmpc_cancellationpoint()) {
6387       //   exit from construct;
6388       // }
6389       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6390       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6391       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6392       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6393       CGF.EmitBlock(ExitBB);
6394       // exit from construct;
6395       CodeGenFunction::JumpDest CancelDest =
6396           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6397       CGF.EmitBranchThroughCleanup(CancelDest);
6398       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6399     }
6400   }
6401 }
6402 
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)6403 void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
6404                                      const Expr *IfCond,
6405                                      OpenMPDirectiveKind CancelRegion) {
6406   if (!CGF.HaveInsertPoint())
6407     return;
6408   // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
6409   // kmp_int32 cncl_kind);
6410   if (auto *OMPRegionInfo =
6411           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6412     auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF,
6413                                                         PrePostActionTy &) {
6414       CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
6415       llvm::Value *Args[] = {
6416           RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
6417           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6418       // Ignore return result until untied tasks are supported.
6419       llvm::Value *Result = CGF.EmitRuntimeCall(
6420           RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args);
6421       // if (__kmpc_cancel()) {
6422       //   exit from construct;
6423       // }
6424       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6425       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6426       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6427       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6428       CGF.EmitBlock(ExitBB);
6429       // exit from construct;
6430       CodeGenFunction::JumpDest CancelDest =
6431           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6432       CGF.EmitBranchThroughCleanup(CancelDest);
6433       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6434     };
6435     if (IfCond) {
6436       emitIfClause(CGF, IfCond, ThenGen,
6437                    [](CodeGenFunction &, PrePostActionTy &) {});
6438     } else {
6439       RegionCodeGenTy ThenRCG(ThenGen);
6440       ThenRCG(CGF);
6441     }
6442   }
6443 }
6444 
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6445 void CGOpenMPRuntime::emitTargetOutlinedFunction(
6446     const OMPExecutableDirective &D, StringRef ParentName,
6447     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6448     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6449   assert(!ParentName.empty() && "Invalid target region parent name!");
6450   HasEmittedTargetRegion = true;
6451   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
6452                                    IsOffloadEntry, CodeGen);
6453 }
6454 
emitTargetOutlinedFunctionHelper(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6455 void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
6456     const OMPExecutableDirective &D, StringRef ParentName,
6457     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6458     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6459   // Create a unique name for the entry function using the source location
6460   // information of the current target region. The name will be something like:
6461   //
6462   // __omp_offloading_DD_FFFF_PP_lBB
6463   //
6464   // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
6465   // mangled name of the function that encloses the target region and BB is the
6466   // line number of the target region.
6467 
6468   unsigned DeviceID;
6469   unsigned FileID;
6470   unsigned Line;
6471   getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID,
6472                            Line);
6473   SmallString<64> EntryFnName;
6474   {
6475     llvm::raw_svector_ostream OS(EntryFnName);
6476     OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
6477        << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
6478   }
6479 
6480   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
6481 
6482   CodeGenFunction CGF(CGM, true);
6483   CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
6484   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6485 
6486   OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS);
6487 
6488   // If this target outline function is not an offload entry, we don't need to
6489   // register it.
6490   if (!IsOffloadEntry)
6491     return;
6492 
6493   // The target region ID is used by the runtime library to identify the current
6494   // target region, so it only has to be unique and not necessarily point to
6495   // anything. It could be the pointer to the outlined function that implements
6496   // the target region, but we aren't using that so that the compiler doesn't
6497   // need to keep that, and could therefore inline the host function if proven
6498   // worthwhile during optimization. In the other hand, if emitting code for the
6499   // device, the ID has to be the function address so that it can retrieved from
6500   // the offloading entry and launched by the runtime library. We also mark the
6501   // outlined function to have external linkage in case we are emitting code for
6502   // the device, because these functions will be entry points to the device.
6503 
6504   if (CGM.getLangOpts().OpenMPIsDevice) {
6505     OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
6506     OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
6507     OutlinedFn->setDSOLocal(false);
6508   } else {
6509     std::string Name = getName({EntryFnName, "region_id"});
6510     OutlinedFnID = new llvm::GlobalVariable(
6511         CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
6512         llvm::GlobalValue::WeakAnyLinkage,
6513         llvm::Constant::getNullValue(CGM.Int8Ty), Name);
6514   }
6515 
6516   // Register the information for the entry associated with this target region.
6517   OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
6518       DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID,
6519       OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion);
6520 }
6521 
6522 /// Checks if the expression is constant or does not have non-trivial function
6523 /// calls.
isTrivial(ASTContext & Ctx,const Expr * E)6524 static bool isTrivial(ASTContext &Ctx, const Expr * E) {
6525   // We can skip constant expressions.
6526   // We can skip expressions with trivial calls or simple expressions.
6527   return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
6528           !E->hasNonTrivialCall(Ctx)) &&
6529          !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
6530 }
6531 
getSingleCompoundChild(ASTContext & Ctx,const Stmt * Body)6532 const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx,
6533                                                     const Stmt *Body) {
6534   const Stmt *Child = Body->IgnoreContainers();
6535   while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) {
6536     Child = nullptr;
6537     for (const Stmt *S : C->body()) {
6538       if (const auto *E = dyn_cast<Expr>(S)) {
6539         if (isTrivial(Ctx, E))
6540           continue;
6541       }
6542       // Some of the statements can be ignored.
6543       if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
6544           isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
6545         continue;
6546       // Analyze declarations.
6547       if (const auto *DS = dyn_cast<DeclStmt>(S)) {
6548         if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) {
6549               if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
6550                   isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
6551                   isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
6552                   isa<UsingDirectiveDecl>(D) ||
6553                   isa<OMPDeclareReductionDecl>(D) ||
6554                   isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D))
6555                 return true;
6556               const auto *VD = dyn_cast<VarDecl>(D);
6557               if (!VD)
6558                 return false;
6559               return VD->isConstexpr() ||
6560                      ((VD->getType().isTrivialType(Ctx) ||
6561                        VD->getType()->isReferenceType()) &&
6562                       (!VD->hasInit() || isTrivial(Ctx, VD->getInit())));
6563             }))
6564           continue;
6565       }
6566       // Found multiple children - cannot get the one child only.
6567       if (Child)
6568         return nullptr;
6569       Child = S;
6570     }
6571     if (Child)
6572       Child = Child->IgnoreContainers();
6573   }
6574   return Child;
6575 }
6576 
6577 /// Emit the number of teams for a target directive.  Inspect the num_teams
6578 /// clause associated with a teams construct combined or closely nested
6579 /// with the target directive.
6580 ///
6581 /// Emit a team of size one for directives such as 'target parallel' that
6582 /// have no associated teams construct.
6583 ///
6584 /// Otherwise, return nullptr.
6585 static llvm::Value *
emitNumTeamsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6586 emitNumTeamsForTargetDirective(CodeGenFunction &CGF,
6587                                const OMPExecutableDirective &D) {
6588   assert(!CGF.getLangOpts().OpenMPIsDevice &&
6589          "Clauses associated with the teams directive expected to be emitted "
6590          "only for the host!");
6591   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6592   assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6593          "Expected target-based executable directive.");
6594   CGBuilderTy &Bld = CGF.Builder;
6595   switch (DirectiveKind) {
6596   case OMPD_target: {
6597     const auto *CS = D.getInnermostCapturedStmt();
6598     const auto *Body =
6599         CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
6600     const Stmt *ChildStmt =
6601         CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body);
6602     if (const auto *NestedDir =
6603             dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
6604       if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) {
6605         if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) {
6606           CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6607           CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6608           const Expr *NumTeams =
6609               NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6610           llvm::Value *NumTeamsVal =
6611               CGF.EmitScalarExpr(NumTeams,
6612                                  /*IgnoreResultAssign*/ true);
6613           return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6614                                    /*isSigned=*/true);
6615         }
6616         return Bld.getInt32(0);
6617       }
6618       if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) ||
6619           isOpenMPSimdDirective(NestedDir->getDirectiveKind()))
6620         return Bld.getInt32(1);
6621       return Bld.getInt32(0);
6622     }
6623     return nullptr;
6624   }
6625   case OMPD_target_teams:
6626   case OMPD_target_teams_distribute:
6627   case OMPD_target_teams_distribute_simd:
6628   case OMPD_target_teams_distribute_parallel_for:
6629   case OMPD_target_teams_distribute_parallel_for_simd: {
6630     if (D.hasClausesOfKind<OMPNumTeamsClause>()) {
6631       CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
6632       const Expr *NumTeams =
6633           D.getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6634       llvm::Value *NumTeamsVal =
6635           CGF.EmitScalarExpr(NumTeams,
6636                              /*IgnoreResultAssign*/ true);
6637       return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6638                                /*isSigned=*/true);
6639     }
6640     return Bld.getInt32(0);
6641   }
6642   case OMPD_target_parallel:
6643   case OMPD_target_parallel_for:
6644   case OMPD_target_parallel_for_simd:
6645   case OMPD_target_simd:
6646     return Bld.getInt32(1);
6647   case OMPD_parallel:
6648   case OMPD_for:
6649   case OMPD_parallel_for:
6650   case OMPD_parallel_master:
6651   case OMPD_parallel_sections:
6652   case OMPD_for_simd:
6653   case OMPD_parallel_for_simd:
6654   case OMPD_cancel:
6655   case OMPD_cancellation_point:
6656   case OMPD_ordered:
6657   case OMPD_threadprivate:
6658   case OMPD_allocate:
6659   case OMPD_task:
6660   case OMPD_simd:
6661   case OMPD_sections:
6662   case OMPD_section:
6663   case OMPD_single:
6664   case OMPD_master:
6665   case OMPD_critical:
6666   case OMPD_taskyield:
6667   case OMPD_barrier:
6668   case OMPD_taskwait:
6669   case OMPD_taskgroup:
6670   case OMPD_atomic:
6671   case OMPD_flush:
6672   case OMPD_teams:
6673   case OMPD_target_data:
6674   case OMPD_target_exit_data:
6675   case OMPD_target_enter_data:
6676   case OMPD_distribute:
6677   case OMPD_distribute_simd:
6678   case OMPD_distribute_parallel_for:
6679   case OMPD_distribute_parallel_for_simd:
6680   case OMPD_teams_distribute:
6681   case OMPD_teams_distribute_simd:
6682   case OMPD_teams_distribute_parallel_for:
6683   case OMPD_teams_distribute_parallel_for_simd:
6684   case OMPD_target_update:
6685   case OMPD_declare_simd:
6686   case OMPD_declare_variant:
6687   case OMPD_declare_target:
6688   case OMPD_end_declare_target:
6689   case OMPD_declare_reduction:
6690   case OMPD_declare_mapper:
6691   case OMPD_taskloop:
6692   case OMPD_taskloop_simd:
6693   case OMPD_master_taskloop:
6694   case OMPD_master_taskloop_simd:
6695   case OMPD_parallel_master_taskloop:
6696   case OMPD_parallel_master_taskloop_simd:
6697   case OMPD_requires:
6698   case OMPD_unknown:
6699     break;
6700   }
6701   llvm_unreachable("Unexpected directive kind.");
6702 }
6703 
getNumThreads(CodeGenFunction & CGF,const CapturedStmt * CS,llvm::Value * DefaultThreadLimitVal)6704 static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS,
6705                                   llvm::Value *DefaultThreadLimitVal) {
6706   const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6707       CGF.getContext(), CS->getCapturedStmt());
6708   if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6709     if (isOpenMPParallelDirective(Dir->getDirectiveKind())) {
6710       llvm::Value *NumThreads = nullptr;
6711       llvm::Value *CondVal = nullptr;
6712       // Handle if clause. If if clause present, the number of threads is
6713       // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6714       if (Dir->hasClausesOfKind<OMPIfClause>()) {
6715         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6716         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6717         const OMPIfClause *IfClause = nullptr;
6718         for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) {
6719           if (C->getNameModifier() == OMPD_unknown ||
6720               C->getNameModifier() == OMPD_parallel) {
6721             IfClause = C;
6722             break;
6723           }
6724         }
6725         if (IfClause) {
6726           const Expr *Cond = IfClause->getCondition();
6727           bool Result;
6728           if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6729             if (!Result)
6730               return CGF.Builder.getInt32(1);
6731           } else {
6732             CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange());
6733             if (const auto *PreInit =
6734                     cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) {
6735               for (const auto *I : PreInit->decls()) {
6736                 if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6737                   CGF.EmitVarDecl(cast<VarDecl>(*I));
6738                 } else {
6739                   CodeGenFunction::AutoVarEmission Emission =
6740                       CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6741                   CGF.EmitAutoVarCleanups(Emission);
6742                 }
6743               }
6744             }
6745             CondVal = CGF.EvaluateExprAsBool(Cond);
6746           }
6747         }
6748       }
6749       // Check the value of num_threads clause iff if clause was not specified
6750       // or is not evaluated to false.
6751       if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) {
6752         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6753         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6754         const auto *NumThreadsClause =
6755             Dir->getSingleClause<OMPNumThreadsClause>();
6756         CodeGenFunction::LexicalScope Scope(
6757             CGF, NumThreadsClause->getNumThreads()->getSourceRange());
6758         if (const auto *PreInit =
6759                 cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) {
6760           for (const auto *I : PreInit->decls()) {
6761             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6762               CGF.EmitVarDecl(cast<VarDecl>(*I));
6763             } else {
6764               CodeGenFunction::AutoVarEmission Emission =
6765                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6766               CGF.EmitAutoVarCleanups(Emission);
6767             }
6768           }
6769         }
6770         NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads());
6771         NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty,
6772                                                /*isSigned=*/false);
6773         if (DefaultThreadLimitVal)
6774           NumThreads = CGF.Builder.CreateSelect(
6775               CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads),
6776               DefaultThreadLimitVal, NumThreads);
6777       } else {
6778         NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal
6779                                            : CGF.Builder.getInt32(0);
6780       }
6781       // Process condition of the if clause.
6782       if (CondVal) {
6783         NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads,
6784                                               CGF.Builder.getInt32(1));
6785       }
6786       return NumThreads;
6787     }
6788     if (isOpenMPSimdDirective(Dir->getDirectiveKind()))
6789       return CGF.Builder.getInt32(1);
6790     return DefaultThreadLimitVal;
6791   }
6792   return DefaultThreadLimitVal ? DefaultThreadLimitVal
6793                                : CGF.Builder.getInt32(0);
6794 }
6795 
6796 /// Emit the number of threads for a target directive.  Inspect the
6797 /// thread_limit clause associated with a teams construct combined or closely
6798 /// nested with the target directive.
6799 ///
6800 /// Emit the num_threads clause for directives such as 'target parallel' that
6801 /// have no associated teams construct.
6802 ///
6803 /// Otherwise, return nullptr.
6804 static llvm::Value *
emitNumThreadsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6805 emitNumThreadsForTargetDirective(CodeGenFunction &CGF,
6806                                  const OMPExecutableDirective &D) {
6807   assert(!CGF.getLangOpts().OpenMPIsDevice &&
6808          "Clauses associated with the teams directive expected to be emitted "
6809          "only for the host!");
6810   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6811   assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6812          "Expected target-based executable directive.");
6813   CGBuilderTy &Bld = CGF.Builder;
6814   llvm::Value *ThreadLimitVal = nullptr;
6815   llvm::Value *NumThreadsVal = nullptr;
6816   switch (DirectiveKind) {
6817   case OMPD_target: {
6818     const CapturedStmt *CS = D.getInnermostCapturedStmt();
6819     if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6820       return NumThreads;
6821     const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6822         CGF.getContext(), CS->getCapturedStmt());
6823     if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6824       if (Dir->hasClausesOfKind<OMPThreadLimitClause>()) {
6825         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6826         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6827         const auto *ThreadLimitClause =
6828             Dir->getSingleClause<OMPThreadLimitClause>();
6829         CodeGenFunction::LexicalScope Scope(
6830             CGF, ThreadLimitClause->getThreadLimit()->getSourceRange());
6831         if (const auto *PreInit =
6832                 cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) {
6833           for (const auto *I : PreInit->decls()) {
6834             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6835               CGF.EmitVarDecl(cast<VarDecl>(*I));
6836             } else {
6837               CodeGenFunction::AutoVarEmission Emission =
6838                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6839               CGF.EmitAutoVarCleanups(Emission);
6840             }
6841           }
6842         }
6843         llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6844             ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6845         ThreadLimitVal =
6846             Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6847       }
6848       if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) &&
6849           !isOpenMPDistributeDirective(Dir->getDirectiveKind())) {
6850         CS = Dir->getInnermostCapturedStmt();
6851         const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6852             CGF.getContext(), CS->getCapturedStmt());
6853         Dir = dyn_cast_or_null<OMPExecutableDirective>(Child);
6854       }
6855       if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) &&
6856           !isOpenMPSimdDirective(Dir->getDirectiveKind())) {
6857         CS = Dir->getInnermostCapturedStmt();
6858         if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6859           return NumThreads;
6860       }
6861       if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind()))
6862         return Bld.getInt32(1);
6863     }
6864     return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6865   }
6866   case OMPD_target_teams: {
6867     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6868       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6869       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6870       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6871           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6872       ThreadLimitVal =
6873           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6874     }
6875     const CapturedStmt *CS = D.getInnermostCapturedStmt();
6876     if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6877       return NumThreads;
6878     const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6879         CGF.getContext(), CS->getCapturedStmt());
6880     if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6881       if (Dir->getDirectiveKind() == OMPD_distribute) {
6882         CS = Dir->getInnermostCapturedStmt();
6883         if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6884           return NumThreads;
6885       }
6886     }
6887     return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6888   }
6889   case OMPD_target_teams_distribute:
6890     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6891       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6892       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6893       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6894           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6895       ThreadLimitVal =
6896           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6897     }
6898     return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal);
6899   case OMPD_target_parallel:
6900   case OMPD_target_parallel_for:
6901   case OMPD_target_parallel_for_simd:
6902   case OMPD_target_teams_distribute_parallel_for:
6903   case OMPD_target_teams_distribute_parallel_for_simd: {
6904     llvm::Value *CondVal = nullptr;
6905     // Handle if clause. If if clause present, the number of threads is
6906     // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6907     if (D.hasClausesOfKind<OMPIfClause>()) {
6908       const OMPIfClause *IfClause = nullptr;
6909       for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
6910         if (C->getNameModifier() == OMPD_unknown ||
6911             C->getNameModifier() == OMPD_parallel) {
6912           IfClause = C;
6913           break;
6914         }
6915       }
6916       if (IfClause) {
6917         const Expr *Cond = IfClause->getCondition();
6918         bool Result;
6919         if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6920           if (!Result)
6921             return Bld.getInt32(1);
6922         } else {
6923           CodeGenFunction::RunCleanupsScope Scope(CGF);
6924           CondVal = CGF.EvaluateExprAsBool(Cond);
6925         }
6926       }
6927     }
6928     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6929       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6930       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6931       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6932           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6933       ThreadLimitVal =
6934           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6935     }
6936     if (D.hasClausesOfKind<OMPNumThreadsClause>()) {
6937       CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
6938       const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>();
6939       llvm::Value *NumThreads = CGF.EmitScalarExpr(
6940           NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true);
6941       NumThreadsVal =
6942           Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false);
6943       ThreadLimitVal = ThreadLimitVal
6944                            ? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal,
6945                                                                 ThreadLimitVal),
6946                                               NumThreadsVal, ThreadLimitVal)
6947                            : NumThreadsVal;
6948     }
6949     if (!ThreadLimitVal)
6950       ThreadLimitVal = Bld.getInt32(0);
6951     if (CondVal)
6952       return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1));
6953     return ThreadLimitVal;
6954   }
6955   case OMPD_target_teams_distribute_simd:
6956   case OMPD_target_simd:
6957     return Bld.getInt32(1);
6958   case OMPD_parallel:
6959   case OMPD_for:
6960   case OMPD_parallel_for:
6961   case OMPD_parallel_master:
6962   case OMPD_parallel_sections:
6963   case OMPD_for_simd:
6964   case OMPD_parallel_for_simd:
6965   case OMPD_cancel:
6966   case OMPD_cancellation_point:
6967   case OMPD_ordered:
6968   case OMPD_threadprivate:
6969   case OMPD_allocate:
6970   case OMPD_task:
6971   case OMPD_simd:
6972   case OMPD_sections:
6973   case OMPD_section:
6974   case OMPD_single:
6975   case OMPD_master:
6976   case OMPD_critical:
6977   case OMPD_taskyield:
6978   case OMPD_barrier:
6979   case OMPD_taskwait:
6980   case OMPD_taskgroup:
6981   case OMPD_atomic:
6982   case OMPD_flush:
6983   case OMPD_teams:
6984   case OMPD_target_data:
6985   case OMPD_target_exit_data:
6986   case OMPD_target_enter_data:
6987   case OMPD_distribute:
6988   case OMPD_distribute_simd:
6989   case OMPD_distribute_parallel_for:
6990   case OMPD_distribute_parallel_for_simd:
6991   case OMPD_teams_distribute:
6992   case OMPD_teams_distribute_simd:
6993   case OMPD_teams_distribute_parallel_for:
6994   case OMPD_teams_distribute_parallel_for_simd:
6995   case OMPD_target_update:
6996   case OMPD_declare_simd:
6997   case OMPD_declare_variant:
6998   case OMPD_declare_target:
6999   case OMPD_end_declare_target:
7000   case OMPD_declare_reduction:
7001   case OMPD_declare_mapper:
7002   case OMPD_taskloop:
7003   case OMPD_taskloop_simd:
7004   case OMPD_master_taskloop:
7005   case OMPD_master_taskloop_simd:
7006   case OMPD_parallel_master_taskloop:
7007   case OMPD_parallel_master_taskloop_simd:
7008   case OMPD_requires:
7009   case OMPD_unknown:
7010     break;
7011   }
7012   llvm_unreachable("Unsupported directive kind.");
7013 }
7014 
7015 namespace {
7016 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
7017 
7018 // Utility to handle information from clauses associated with a given
7019 // construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
7020 // It provides a convenient interface to obtain the information and generate
7021 // code for that information.
7022 class MappableExprsHandler {
7023 public:
7024   /// Values for bit flags used to specify the mapping type for
7025   /// offloading.
7026   enum OpenMPOffloadMappingFlags : uint64_t {
7027     /// No flags
7028     OMP_MAP_NONE = 0x0,
7029     /// Allocate memory on the device and move data from host to device.
7030     OMP_MAP_TO = 0x01,
7031     /// Allocate memory on the device and move data from device to host.
7032     OMP_MAP_FROM = 0x02,
7033     /// Always perform the requested mapping action on the element, even
7034     /// if it was already mapped before.
7035     OMP_MAP_ALWAYS = 0x04,
7036     /// Delete the element from the device environment, ignoring the
7037     /// current reference count associated with the element.
7038     OMP_MAP_DELETE = 0x08,
7039     /// The element being mapped is a pointer-pointee pair; both the
7040     /// pointer and the pointee should be mapped.
7041     OMP_MAP_PTR_AND_OBJ = 0x10,
7042     /// This flags signals that the base address of an entry should be
7043     /// passed to the target kernel as an argument.
7044     OMP_MAP_TARGET_PARAM = 0x20,
7045     /// Signal that the runtime library has to return the device pointer
7046     /// in the current position for the data being mapped. Used when we have the
7047     /// use_device_ptr clause.
7048     OMP_MAP_RETURN_PARAM = 0x40,
7049     /// This flag signals that the reference being passed is a pointer to
7050     /// private data.
7051     OMP_MAP_PRIVATE = 0x80,
7052     /// Pass the element to the device by value.
7053     OMP_MAP_LITERAL = 0x100,
7054     /// Implicit map
7055     OMP_MAP_IMPLICIT = 0x200,
7056     /// Close is a hint to the runtime to allocate memory close to
7057     /// the target device.
7058     OMP_MAP_CLOSE = 0x400,
7059     /// The 16 MSBs of the flags indicate whether the entry is member of some
7060     /// struct/class.
7061     OMP_MAP_MEMBER_OF = 0xffff000000000000,
7062     LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF),
7063   };
7064 
7065   /// Get the offset of the OMP_MAP_MEMBER_OF field.
getFlagMemberOffset()7066   static unsigned getFlagMemberOffset() {
7067     unsigned Offset = 0;
7068     for (uint64_t Remain = OMP_MAP_MEMBER_OF; !(Remain & 1);
7069          Remain = Remain >> 1)
7070       Offset++;
7071     return Offset;
7072   }
7073 
7074   /// Class that associates information with a base pointer to be passed to the
7075   /// runtime library.
7076   class BasePointerInfo {
7077     /// The base pointer.
7078     llvm::Value *Ptr = nullptr;
7079     /// The base declaration that refers to this device pointer, or null if
7080     /// there is none.
7081     const ValueDecl *DevPtrDecl = nullptr;
7082 
7083   public:
BasePointerInfo(llvm::Value * Ptr,const ValueDecl * DevPtrDecl=nullptr)7084     BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
7085         : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
operator *() const7086     llvm::Value *operator*() const { return Ptr; }
getDevicePtrDecl() const7087     const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
setDevicePtrDecl(const ValueDecl * D)7088     void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
7089   };
7090 
7091   using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>;
7092   using MapValuesArrayTy = SmallVector<llvm::Value *, 4>;
7093   using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>;
7094 
7095   /// Map between a struct and the its lowest & highest elements which have been
7096   /// mapped.
7097   /// [ValueDecl *] --> {LE(FieldIndex, Pointer),
7098   ///                    HE(FieldIndex, Pointer)}
7099   struct StructRangeInfoTy {
7100     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = {
7101         0, Address::invalid()};
7102     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = {
7103         0, Address::invalid()};
7104     Address Base = Address::invalid();
7105   };
7106 
7107 private:
7108   /// Kind that defines how a device pointer has to be returned.
7109   struct MapInfo {
7110     OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
7111     OpenMPMapClauseKind MapType = OMPC_MAP_unknown;
7112     ArrayRef<OpenMPMapModifierKind> MapModifiers;
7113     bool ReturnDevicePointer = false;
7114     bool IsImplicit = false;
7115 
7116     MapInfo() = default;
MapInfo__anona2876c6b3511::MappableExprsHandler::MapInfo7117     MapInfo(
7118         OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7119         OpenMPMapClauseKind MapType,
7120         ArrayRef<OpenMPMapModifierKind> MapModifiers,
7121         bool ReturnDevicePointer, bool IsImplicit)
7122         : Components(Components), MapType(MapType), MapModifiers(MapModifiers),
7123           ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit) {}
7124   };
7125 
7126   /// If use_device_ptr is used on a pointer which is a struct member and there
7127   /// is no map information about it, then emission of that entry is deferred
7128   /// until the whole struct has been processed.
7129   struct DeferredDevicePtrEntryTy {
7130     const Expr *IE = nullptr;
7131     const ValueDecl *VD = nullptr;
7132 
DeferredDevicePtrEntryTy__anona2876c6b3511::MappableExprsHandler::DeferredDevicePtrEntryTy7133     DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD)
7134         : IE(IE), VD(VD) {}
7135   };
7136 
7137   /// The target directive from where the mappable clauses were extracted. It
7138   /// is either a executable directive or a user-defined mapper directive.
7139   llvm::PointerUnion<const OMPExecutableDirective *,
7140                      const OMPDeclareMapperDecl *>
7141       CurDir;
7142 
7143   /// Function the directive is being generated for.
7144   CodeGenFunction &CGF;
7145 
7146   /// Set of all first private variables in the current directive.
7147   /// bool data is set to true if the variable is implicitly marked as
7148   /// firstprivate, false otherwise.
7149   llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls;
7150 
7151   /// Map between device pointer declarations and their expression components.
7152   /// The key value for declarations in 'this' is null.
7153   llvm::DenseMap<
7154       const ValueDecl *,
7155       SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
7156       DevPointersMap;
7157 
getExprTypeSize(const Expr * E) const7158   llvm::Value *getExprTypeSize(const Expr *E) const {
7159     QualType ExprTy = E->getType().getCanonicalType();
7160 
7161     // Reference types are ignored for mapping purposes.
7162     if (const auto *RefTy = ExprTy->getAs<ReferenceType>())
7163       ExprTy = RefTy->getPointeeType().getCanonicalType();
7164 
7165     // Given that an array section is considered a built-in type, we need to
7166     // do the calculation based on the length of the section instead of relying
7167     // on CGF.getTypeSize(E->getType()).
7168     if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
7169       QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
7170                             OAE->getBase()->IgnoreParenImpCasts())
7171                             .getCanonicalType();
7172 
7173       // If there is no length associated with the expression and lower bound is
7174       // not specified too, that means we are using the whole length of the
7175       // base.
7176       if (!OAE->getLength() && OAE->getColonLoc().isValid() &&
7177           !OAE->getLowerBound())
7178         return CGF.getTypeSize(BaseTy);
7179 
7180       llvm::Value *ElemSize;
7181       if (const auto *PTy = BaseTy->getAs<PointerType>()) {
7182         ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
7183       } else {
7184         const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
7185         assert(ATy && "Expecting array type if not a pointer type.");
7186         ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
7187       }
7188 
7189       // If we don't have a length at this point, that is because we have an
7190       // array section with a single element.
7191       if (!OAE->getLength() && OAE->getColonLoc().isInvalid())
7192         return ElemSize;
7193 
7194       if (const Expr *LenExpr = OAE->getLength()) {
7195         llvm::Value *LengthVal = CGF.EmitScalarExpr(LenExpr);
7196         LengthVal = CGF.EmitScalarConversion(LengthVal, LenExpr->getType(),
7197                                              CGF.getContext().getSizeType(),
7198                                              LenExpr->getExprLoc());
7199         return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
7200       }
7201       assert(!OAE->getLength() && OAE->getColonLoc().isValid() &&
7202              OAE->getLowerBound() && "expected array_section[lb:].");
7203       // Size = sizetype - lb * elemtype;
7204       llvm::Value *LengthVal = CGF.getTypeSize(BaseTy);
7205       llvm::Value *LBVal = CGF.EmitScalarExpr(OAE->getLowerBound());
7206       LBVal = CGF.EmitScalarConversion(LBVal, OAE->getLowerBound()->getType(),
7207                                        CGF.getContext().getSizeType(),
7208                                        OAE->getLowerBound()->getExprLoc());
7209       LBVal = CGF.Builder.CreateNUWMul(LBVal, ElemSize);
7210       llvm::Value *Cmp = CGF.Builder.CreateICmpUGT(LengthVal, LBVal);
7211       llvm::Value *TrueVal = CGF.Builder.CreateNUWSub(LengthVal, LBVal);
7212       LengthVal = CGF.Builder.CreateSelect(
7213           Cmp, TrueVal, llvm::ConstantInt::get(CGF.SizeTy, 0));
7214       return LengthVal;
7215     }
7216     return CGF.getTypeSize(ExprTy);
7217   }
7218 
7219   /// Return the corresponding bits for a given map clause modifier. Add
7220   /// a flag marking the map as a pointer if requested. Add a flag marking the
7221   /// map as the first one of a series of maps that relate to the same map
7222   /// expression.
getMapTypeBits(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,bool IsImplicit,bool AddPtrFlag,bool AddIsTargetParamFlag) const7223   OpenMPOffloadMappingFlags getMapTypeBits(
7224       OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
7225       bool IsImplicit, bool AddPtrFlag, bool AddIsTargetParamFlag) const {
7226     OpenMPOffloadMappingFlags Bits =
7227         IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE;
7228     switch (MapType) {
7229     case OMPC_MAP_alloc:
7230     case OMPC_MAP_release:
7231       // alloc and release is the default behavior in the runtime library,  i.e.
7232       // if we don't pass any bits alloc/release that is what the runtime is
7233       // going to do. Therefore, we don't need to signal anything for these two
7234       // type modifiers.
7235       break;
7236     case OMPC_MAP_to:
7237       Bits |= OMP_MAP_TO;
7238       break;
7239     case OMPC_MAP_from:
7240       Bits |= OMP_MAP_FROM;
7241       break;
7242     case OMPC_MAP_tofrom:
7243       Bits |= OMP_MAP_TO | OMP_MAP_FROM;
7244       break;
7245     case OMPC_MAP_delete:
7246       Bits |= OMP_MAP_DELETE;
7247       break;
7248     case OMPC_MAP_unknown:
7249       llvm_unreachable("Unexpected map type!");
7250     }
7251     if (AddPtrFlag)
7252       Bits |= OMP_MAP_PTR_AND_OBJ;
7253     if (AddIsTargetParamFlag)
7254       Bits |= OMP_MAP_TARGET_PARAM;
7255     if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always)
7256         != MapModifiers.end())
7257       Bits |= OMP_MAP_ALWAYS;
7258     if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_close)
7259         != MapModifiers.end())
7260       Bits |= OMP_MAP_CLOSE;
7261     return Bits;
7262   }
7263 
7264   /// Return true if the provided expression is a final array section. A
7265   /// final array section, is one whose length can't be proved to be one.
isFinalArraySectionExpression(const Expr * E) const7266   bool isFinalArraySectionExpression(const Expr *E) const {
7267     const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
7268 
7269     // It is not an array section and therefore not a unity-size one.
7270     if (!OASE)
7271       return false;
7272 
7273     // An array section with no colon always refer to a single element.
7274     if (OASE->getColonLoc().isInvalid())
7275       return false;
7276 
7277     const Expr *Length = OASE->getLength();
7278 
7279     // If we don't have a length we have to check if the array has size 1
7280     // for this dimension. Also, we should always expect a length if the
7281     // base type is pointer.
7282     if (!Length) {
7283       QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
7284                              OASE->getBase()->IgnoreParenImpCasts())
7285                              .getCanonicalType();
7286       if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
7287         return ATy->getSize().getSExtValue() != 1;
7288       // If we don't have a constant dimension length, we have to consider
7289       // the current section as having any size, so it is not necessarily
7290       // unitary. If it happen to be unity size, that's user fault.
7291       return true;
7292     }
7293 
7294     // Check if the length evaluates to 1.
7295     Expr::EvalResult Result;
7296     if (!Length->EvaluateAsInt(Result, CGF.getContext()))
7297       return true; // Can have more that size 1.
7298 
7299     llvm::APSInt ConstLength = Result.Val.getInt();
7300     return ConstLength.getSExtValue() != 1;
7301   }
7302 
7303   /// Generate the base pointers, section pointers, sizes and map type
7304   /// bits for the provided map type, map modifier, and expression components.
7305   /// \a IsFirstComponent should be set to true if the provided set of
7306   /// components is the first associated with a capture.
generateInfoForComponentList(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,OMPClauseMappableExprCommon::MappableExprComponentListRef Components,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types,StructRangeInfoTy & PartialStruct,bool IsFirstComponentList,bool IsImplicit,ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef> OverlappedElements=llvm::None) const7307   void generateInfoForComponentList(
7308       OpenMPMapClauseKind MapType,
7309       ArrayRef<OpenMPMapModifierKind> MapModifiers,
7310       OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7311       MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
7312       MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
7313       StructRangeInfoTy &PartialStruct, bool IsFirstComponentList,
7314       bool IsImplicit,
7315       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
7316           OverlappedElements = llvm::None) const {
7317     // The following summarizes what has to be generated for each map and the
7318     // types below. The generated information is expressed in this order:
7319     // base pointer, section pointer, size, flags
7320     // (to add to the ones that come from the map type and modifier).
7321     //
7322     // double d;
7323     // int i[100];
7324     // float *p;
7325     //
7326     // struct S1 {
7327     //   int i;
7328     //   float f[50];
7329     // }
7330     // struct S2 {
7331     //   int i;
7332     //   float f[50];
7333     //   S1 s;
7334     //   double *p;
7335     //   struct S2 *ps;
7336     // }
7337     // S2 s;
7338     // S2 *ps;
7339     //
7340     // map(d)
7341     // &d, &d, sizeof(double), TARGET_PARAM | TO | FROM
7342     //
7343     // map(i)
7344     // &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM
7345     //
7346     // map(i[1:23])
7347     // &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM
7348     //
7349     // map(p)
7350     // &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM
7351     //
7352     // map(p[1:24])
7353     // p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM
7354     //
7355     // map(s)
7356     // &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM
7357     //
7358     // map(s.i)
7359     // &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM
7360     //
7361     // map(s.s.f)
7362     // &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7363     //
7364     // map(s.p)
7365     // &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM
7366     //
7367     // map(to: s.p[:22])
7368     // &s, &(s.p), sizeof(double*), TARGET_PARAM (*)
7369     // &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**)
7370     // &(s.p), &(s.p[0]), 22*sizeof(double),
7371     //   MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
7372     // (*) alloc space for struct members, only this is a target parameter
7373     // (**) map the pointer (nothing to be mapped in this example) (the compiler
7374     //      optimizes this entry out, same in the examples below)
7375     // (***) map the pointee (map: to)
7376     //
7377     // map(s.ps)
7378     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7379     //
7380     // map(from: s.ps->s.i)
7381     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7382     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7383     // &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ  | FROM
7384     //
7385     // map(to: s.ps->ps)
7386     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7387     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7388     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ  | TO
7389     //
7390     // map(s.ps->ps->ps)
7391     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7392     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7393     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7394     // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7395     //
7396     // map(to: s.ps->ps->s.f[:22])
7397     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7398     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7399     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7400     // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7401     //
7402     // map(ps)
7403     // &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM
7404     //
7405     // map(ps->i)
7406     // ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM
7407     //
7408     // map(ps->s.f)
7409     // ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7410     //
7411     // map(from: ps->p)
7412     // ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM
7413     //
7414     // map(to: ps->p[:22])
7415     // ps, &(ps->p), sizeof(double*), TARGET_PARAM
7416     // ps, &(ps->p), sizeof(double*), MEMBER_OF(1)
7417     // &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO
7418     //
7419     // map(ps->ps)
7420     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7421     //
7422     // map(from: ps->ps->s.i)
7423     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7424     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7425     // &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7426     //
7427     // map(from: ps->ps->ps)
7428     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7429     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7430     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7431     //
7432     // map(ps->ps->ps->ps)
7433     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7434     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7435     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7436     // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7437     //
7438     // map(to: ps->ps->ps->s.f[:22])
7439     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7440     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7441     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7442     // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7443     //
7444     // map(to: s.f[:22]) map(from: s.p[:33])
7445     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) +
7446     //     sizeof(double*) (**), TARGET_PARAM
7447     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO
7448     // &s, &(s.p), sizeof(double*), MEMBER_OF(1)
7449     // &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7450     // (*) allocate contiguous space needed to fit all mapped members even if
7451     //     we allocate space for members not mapped (in this example,
7452     //     s.f[22..49] and s.s are not mapped, yet we must allocate space for
7453     //     them as well because they fall between &s.f[0] and &s.p)
7454     //
7455     // map(from: s.f[:22]) map(to: ps->p[:33])
7456     // &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM
7457     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7458     // ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*)
7459     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO
7460     // (*) the struct this entry pertains to is the 2nd element in the list of
7461     //     arguments, hence MEMBER_OF(2)
7462     //
7463     // map(from: s.f[:22], s.s) map(to: ps->p[:33])
7464     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM
7465     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM
7466     // &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM
7467     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7468     // ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*)
7469     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO
7470     // (*) the struct this entry pertains to is the 4th element in the list
7471     //     of arguments, hence MEMBER_OF(4)
7472 
7473     // Track if the map information being generated is the first for a capture.
7474     bool IsCaptureFirstInfo = IsFirstComponentList;
7475     // When the variable is on a declare target link or in a to clause with
7476     // unified memory, a reference is needed to hold the host/device address
7477     // of the variable.
7478     bool RequiresReference = false;
7479 
7480     // Scan the components from the base to the complete expression.
7481     auto CI = Components.rbegin();
7482     auto CE = Components.rend();
7483     auto I = CI;
7484 
7485     // Track if the map information being generated is the first for a list of
7486     // components.
7487     bool IsExpressionFirstInfo = true;
7488     Address BP = Address::invalid();
7489     const Expr *AssocExpr = I->getAssociatedExpression();
7490     const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr);
7491     const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7492 
7493     if (isa<MemberExpr>(AssocExpr)) {
7494       // The base is the 'this' pointer. The content of the pointer is going
7495       // to be the base of the field being mapped.
7496       BP = CGF.LoadCXXThisAddress();
7497     } else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) ||
7498                (OASE &&
7499                 isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) {
7500       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
7501     } else {
7502       // The base is the reference to the variable.
7503       // BP = &Var.
7504       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
7505       if (const auto *VD =
7506               dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) {
7507         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
7508                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
7509           if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
7510               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
7511                CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) {
7512             RequiresReference = true;
7513             BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
7514           }
7515         }
7516       }
7517 
7518       // If the variable is a pointer and is being dereferenced (i.e. is not
7519       // the last component), the base has to be the pointer itself, not its
7520       // reference. References are ignored for mapping purposes.
7521       QualType Ty =
7522           I->getAssociatedDeclaration()->getType().getNonReferenceType();
7523       if (Ty->isAnyPointerType() && std::next(I) != CE) {
7524         BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7525 
7526         // We do not need to generate individual map information for the
7527         // pointer, it can be associated with the combined storage.
7528         ++I;
7529       }
7530     }
7531 
7532     // Track whether a component of the list should be marked as MEMBER_OF some
7533     // combined entry (for partial structs). Only the first PTR_AND_OBJ entry
7534     // in a component list should be marked as MEMBER_OF, all subsequent entries
7535     // do not belong to the base struct. E.g.
7536     // struct S2 s;
7537     // s.ps->ps->ps->f[:]
7538     //   (1) (2) (3) (4)
7539     // ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a
7540     // PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3)
7541     // is the pointee of ps(2) which is not member of struct s, so it should not
7542     // be marked as such (it is still PTR_AND_OBJ).
7543     // The variable is initialized to false so that PTR_AND_OBJ entries which
7544     // are not struct members are not considered (e.g. array of pointers to
7545     // data).
7546     bool ShouldBeMemberOf = false;
7547 
7548     // Variable keeping track of whether or not we have encountered a component
7549     // in the component list which is a member expression. Useful when we have a
7550     // pointer or a final array section, in which case it is the previous
7551     // component in the list which tells us whether we have a member expression.
7552     // E.g. X.f[:]
7553     // While processing the final array section "[:]" it is "f" which tells us
7554     // whether we are dealing with a member of a declared struct.
7555     const MemberExpr *EncounteredME = nullptr;
7556 
7557     for (; I != CE; ++I) {
7558       // If the current component is member of a struct (parent struct) mark it.
7559       if (!EncounteredME) {
7560         EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression());
7561         // If we encounter a PTR_AND_OBJ entry from now on it should be marked
7562         // as MEMBER_OF the parent struct.
7563         if (EncounteredME)
7564           ShouldBeMemberOf = true;
7565       }
7566 
7567       auto Next = std::next(I);
7568 
7569       // We need to generate the addresses and sizes if this is the last
7570       // component, if the component is a pointer or if it is an array section
7571       // whose length can't be proved to be one. If this is a pointer, it
7572       // becomes the base address for the following components.
7573 
7574       // A final array section, is one whose length can't be proved to be one.
7575       bool IsFinalArraySection =
7576           isFinalArraySectionExpression(I->getAssociatedExpression());
7577 
7578       // Get information on whether the element is a pointer. Have to do a
7579       // special treatment for array sections given that they are built-in
7580       // types.
7581       const auto *OASE =
7582           dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
7583       bool IsPointer =
7584           (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE)
7585                        .getCanonicalType()
7586                        ->isAnyPointerType()) ||
7587           I->getAssociatedExpression()->getType()->isAnyPointerType();
7588 
7589       if (Next == CE || IsPointer || IsFinalArraySection) {
7590         // If this is not the last component, we expect the pointer to be
7591         // associated with an array expression or member expression.
7592         assert((Next == CE ||
7593                 isa<MemberExpr>(Next->getAssociatedExpression()) ||
7594                 isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
7595                 isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) &&
7596                "Unexpected expression");
7597 
7598         Address LB = CGF.EmitOMPSharedLValue(I->getAssociatedExpression())
7599                          .getAddress(CGF);
7600 
7601         // If this component is a pointer inside the base struct then we don't
7602         // need to create any entry for it - it will be combined with the object
7603         // it is pointing to into a single PTR_AND_OBJ entry.
7604         bool IsMemberPointer =
7605             IsPointer && EncounteredME &&
7606             (dyn_cast<MemberExpr>(I->getAssociatedExpression()) ==
7607              EncounteredME);
7608         if (!OverlappedElements.empty()) {
7609           // Handle base element with the info for overlapped elements.
7610           assert(!PartialStruct.Base.isValid() && "The base element is set.");
7611           assert(Next == CE &&
7612                  "Expected last element for the overlapped elements.");
7613           assert(!IsPointer &&
7614                  "Unexpected base element with the pointer type.");
7615           // Mark the whole struct as the struct that requires allocation on the
7616           // device.
7617           PartialStruct.LowestElem = {0, LB};
7618           CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(
7619               I->getAssociatedExpression()->getType());
7620           Address HB = CGF.Builder.CreateConstGEP(
7621               CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LB,
7622                                                               CGF.VoidPtrTy),
7623               TypeSize.getQuantity() - 1);
7624           PartialStruct.HighestElem = {
7625               std::numeric_limits<decltype(
7626                   PartialStruct.HighestElem.first)>::max(),
7627               HB};
7628           PartialStruct.Base = BP;
7629           // Emit data for non-overlapped data.
7630           OpenMPOffloadMappingFlags Flags =
7631               OMP_MAP_MEMBER_OF |
7632               getMapTypeBits(MapType, MapModifiers, IsImplicit,
7633                              /*AddPtrFlag=*/false,
7634                              /*AddIsTargetParamFlag=*/false);
7635           LB = BP;
7636           llvm::Value *Size = nullptr;
7637           // Do bitcopy of all non-overlapped structure elements.
7638           for (OMPClauseMappableExprCommon::MappableExprComponentListRef
7639                    Component : OverlappedElements) {
7640             Address ComponentLB = Address::invalid();
7641             for (const OMPClauseMappableExprCommon::MappableComponent &MC :
7642                  Component) {
7643               if (MC.getAssociatedDeclaration()) {
7644                 ComponentLB =
7645                     CGF.EmitOMPSharedLValue(MC.getAssociatedExpression())
7646                         .getAddress(CGF);
7647                 Size = CGF.Builder.CreatePtrDiff(
7648                     CGF.EmitCastToVoidPtr(ComponentLB.getPointer()),
7649                     CGF.EmitCastToVoidPtr(LB.getPointer()));
7650                 break;
7651               }
7652             }
7653             BasePointers.push_back(BP.getPointer());
7654             Pointers.push_back(LB.getPointer());
7655             Sizes.push_back(CGF.Builder.CreateIntCast(Size, CGF.Int64Ty,
7656                                                       /*isSigned=*/true));
7657             Types.push_back(Flags);
7658             LB = CGF.Builder.CreateConstGEP(ComponentLB, 1);
7659           }
7660           BasePointers.push_back(BP.getPointer());
7661           Pointers.push_back(LB.getPointer());
7662           Size = CGF.Builder.CreatePtrDiff(
7663               CGF.EmitCastToVoidPtr(
7664                   CGF.Builder.CreateConstGEP(HB, 1).getPointer()),
7665               CGF.EmitCastToVoidPtr(LB.getPointer()));
7666           Sizes.push_back(
7667               CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7668           Types.push_back(Flags);
7669           break;
7670         }
7671         llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression());
7672         if (!IsMemberPointer) {
7673           BasePointers.push_back(BP.getPointer());
7674           Pointers.push_back(LB.getPointer());
7675           Sizes.push_back(
7676               CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7677 
7678           // We need to add a pointer flag for each map that comes from the
7679           // same expression except for the first one. We also need to signal
7680           // this map is the first one that relates with the current capture
7681           // (there is a set of entries for each capture).
7682           OpenMPOffloadMappingFlags Flags = getMapTypeBits(
7683               MapType, MapModifiers, IsImplicit,
7684               !IsExpressionFirstInfo || RequiresReference,
7685               IsCaptureFirstInfo && !RequiresReference);
7686 
7687           if (!IsExpressionFirstInfo) {
7688             // If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well,
7689             // then we reset the TO/FROM/ALWAYS/DELETE/CLOSE flags.
7690             if (IsPointer)
7691               Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS |
7692                          OMP_MAP_DELETE | OMP_MAP_CLOSE);
7693 
7694             if (ShouldBeMemberOf) {
7695               // Set placeholder value MEMBER_OF=FFFF to indicate that the flag
7696               // should be later updated with the correct value of MEMBER_OF.
7697               Flags |= OMP_MAP_MEMBER_OF;
7698               // From now on, all subsequent PTR_AND_OBJ entries should not be
7699               // marked as MEMBER_OF.
7700               ShouldBeMemberOf = false;
7701             }
7702           }
7703 
7704           Types.push_back(Flags);
7705         }
7706 
7707         // If we have encountered a member expression so far, keep track of the
7708         // mapped member. If the parent is "*this", then the value declaration
7709         // is nullptr.
7710         if (EncounteredME) {
7711           const auto *FD = dyn_cast<FieldDecl>(EncounteredME->getMemberDecl());
7712           unsigned FieldIndex = FD->getFieldIndex();
7713 
7714           // Update info about the lowest and highest elements for this struct
7715           if (!PartialStruct.Base.isValid()) {
7716             PartialStruct.LowestElem = {FieldIndex, LB};
7717             PartialStruct.HighestElem = {FieldIndex, LB};
7718             PartialStruct.Base = BP;
7719           } else if (FieldIndex < PartialStruct.LowestElem.first) {
7720             PartialStruct.LowestElem = {FieldIndex, LB};
7721           } else if (FieldIndex > PartialStruct.HighestElem.first) {
7722             PartialStruct.HighestElem = {FieldIndex, LB};
7723           }
7724         }
7725 
7726         // If we have a final array section, we are done with this expression.
7727         if (IsFinalArraySection)
7728           break;
7729 
7730         // The pointer becomes the base for the next element.
7731         if (Next != CE)
7732           BP = LB;
7733 
7734         IsExpressionFirstInfo = false;
7735         IsCaptureFirstInfo = false;
7736       }
7737     }
7738   }
7739 
7740   /// Return the adjusted map modifiers if the declaration a capture refers to
7741   /// appears in a first-private clause. This is expected to be used only with
7742   /// directives that start with 'target'.
7743   MappableExprsHandler::OpenMPOffloadMappingFlags
getMapModifiersForPrivateClauses(const CapturedStmt::Capture & Cap) const7744   getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const {
7745     assert(Cap.capturesVariable() && "Expected capture by reference only!");
7746 
7747     // A first private variable captured by reference will use only the
7748     // 'private ptr' and 'map to' flag. Return the right flags if the captured
7749     // declaration is known as first-private in this handler.
7750     if (FirstPrivateDecls.count(Cap.getCapturedVar())) {
7751       if (Cap.getCapturedVar()->getType().isConstant(CGF.getContext()) &&
7752           Cap.getCaptureKind() == CapturedStmt::VCK_ByRef)
7753         return MappableExprsHandler::OMP_MAP_ALWAYS |
7754                MappableExprsHandler::OMP_MAP_TO;
7755       if (Cap.getCapturedVar()->getType()->isAnyPointerType())
7756         return MappableExprsHandler::OMP_MAP_TO |
7757                MappableExprsHandler::OMP_MAP_PTR_AND_OBJ;
7758       return MappableExprsHandler::OMP_MAP_PRIVATE |
7759              MappableExprsHandler::OMP_MAP_TO;
7760     }
7761     return MappableExprsHandler::OMP_MAP_TO |
7762            MappableExprsHandler::OMP_MAP_FROM;
7763   }
7764 
getMemberOfFlag(unsigned Position)7765   static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) {
7766     // Rotate by getFlagMemberOffset() bits.
7767     return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
7768                                                   << getFlagMemberOffset());
7769   }
7770 
setCorrectMemberOfFlag(OpenMPOffloadMappingFlags & Flags,OpenMPOffloadMappingFlags MemberOfFlag)7771   static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags,
7772                                      OpenMPOffloadMappingFlags MemberOfFlag) {
7773     // If the entry is PTR_AND_OBJ but has not been marked with the special
7774     // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
7775     // marked as MEMBER_OF.
7776     if ((Flags & OMP_MAP_PTR_AND_OBJ) &&
7777         ((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF))
7778       return;
7779 
7780     // Reset the placeholder value to prepare the flag for the assignment of the
7781     // proper MEMBER_OF value.
7782     Flags &= ~OMP_MAP_MEMBER_OF;
7783     Flags |= MemberOfFlag;
7784   }
7785 
getPlainLayout(const CXXRecordDecl * RD,llvm::SmallVectorImpl<const FieldDecl * > & Layout,bool AsBase) const7786   void getPlainLayout(const CXXRecordDecl *RD,
7787                       llvm::SmallVectorImpl<const FieldDecl *> &Layout,
7788                       bool AsBase) const {
7789     const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD);
7790 
7791     llvm::StructType *St =
7792         AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType();
7793 
7794     unsigned NumElements = St->getNumElements();
7795     llvm::SmallVector<
7796         llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4>
7797         RecordLayout(NumElements);
7798 
7799     // Fill bases.
7800     for (const auto &I : RD->bases()) {
7801       if (I.isVirtual())
7802         continue;
7803       const auto *Base = I.getType()->getAsCXXRecordDecl();
7804       // Ignore empty bases.
7805       if (Base->isEmpty() || CGF.getContext()
7806                                  .getASTRecordLayout(Base)
7807                                  .getNonVirtualSize()
7808                                  .isZero())
7809         continue;
7810 
7811       unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base);
7812       RecordLayout[FieldIndex] = Base;
7813     }
7814     // Fill in virtual bases.
7815     for (const auto &I : RD->vbases()) {
7816       const auto *Base = I.getType()->getAsCXXRecordDecl();
7817       // Ignore empty bases.
7818       if (Base->isEmpty())
7819         continue;
7820       unsigned FieldIndex = RL.getVirtualBaseIndex(Base);
7821       if (RecordLayout[FieldIndex])
7822         continue;
7823       RecordLayout[FieldIndex] = Base;
7824     }
7825     // Fill in all the fields.
7826     assert(!RD->isUnion() && "Unexpected union.");
7827     for (const auto *Field : RD->fields()) {
7828       // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
7829       // will fill in later.)
7830       if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) {
7831         unsigned FieldIndex = RL.getLLVMFieldNo(Field);
7832         RecordLayout[FieldIndex] = Field;
7833       }
7834     }
7835     for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>
7836              &Data : RecordLayout) {
7837       if (Data.isNull())
7838         continue;
7839       if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>())
7840         getPlainLayout(Base, Layout, /*AsBase=*/true);
7841       else
7842         Layout.push_back(Data.get<const FieldDecl *>());
7843     }
7844   }
7845 
7846 public:
MappableExprsHandler(const OMPExecutableDirective & Dir,CodeGenFunction & CGF)7847   MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
7848       : CurDir(&Dir), CGF(CGF) {
7849     // Extract firstprivate clause information.
7850     for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
7851       for (const auto *D : C->varlists())
7852         FirstPrivateDecls.try_emplace(
7853             cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit());
7854     // Extract device pointer clause information.
7855     for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
7856       for (auto L : C->component_lists())
7857         DevPointersMap[L.first].push_back(L.second);
7858   }
7859 
7860   /// Constructor for the declare mapper directive.
MappableExprsHandler(const OMPDeclareMapperDecl & Dir,CodeGenFunction & CGF)7861   MappableExprsHandler(const OMPDeclareMapperDecl &Dir, CodeGenFunction &CGF)
7862       : CurDir(&Dir), CGF(CGF) {}
7863 
7864   /// Generate code for the combined entry if we have a partially mapped struct
7865   /// and take care of the mapping flags of the arguments corresponding to
7866   /// individual struct members.
emitCombinedEntry(MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types,MapFlagsArrayTy & CurTypes,const StructRangeInfoTy & PartialStruct) const7867   void emitCombinedEntry(MapBaseValuesArrayTy &BasePointers,
7868                          MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
7869                          MapFlagsArrayTy &Types, MapFlagsArrayTy &CurTypes,
7870                          const StructRangeInfoTy &PartialStruct) const {
7871     // Base is the base of the struct
7872     BasePointers.push_back(PartialStruct.Base.getPointer());
7873     // Pointer is the address of the lowest element
7874     llvm::Value *LB = PartialStruct.LowestElem.second.getPointer();
7875     Pointers.push_back(LB);
7876     // Size is (addr of {highest+1} element) - (addr of lowest element)
7877     llvm::Value *HB = PartialStruct.HighestElem.second.getPointer();
7878     llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1);
7879     llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy);
7880     llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy);
7881     llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr);
7882     llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty,
7883                                                   /*isSigned=*/false);
7884     Sizes.push_back(Size);
7885     // Map type is always TARGET_PARAM
7886     Types.push_back(OMP_MAP_TARGET_PARAM);
7887     // Remove TARGET_PARAM flag from the first element
7888     (*CurTypes.begin()) &= ~OMP_MAP_TARGET_PARAM;
7889 
7890     // All other current entries will be MEMBER_OF the combined entry
7891     // (except for PTR_AND_OBJ entries which do not have a placeholder value
7892     // 0xFFFF in the MEMBER_OF field).
7893     OpenMPOffloadMappingFlags MemberOfFlag =
7894         getMemberOfFlag(BasePointers.size() - 1);
7895     for (auto &M : CurTypes)
7896       setCorrectMemberOfFlag(M, MemberOfFlag);
7897   }
7898 
7899   /// Generate all the base pointers, section pointers, sizes and map
7900   /// types for the extracted mappable expressions. Also, for each item that
7901   /// relates with a device pointer, a pair of the relevant declaration and
7902   /// index where it occurs is appended to the device pointers info array.
generateAllInfo(MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types) const7903   void generateAllInfo(MapBaseValuesArrayTy &BasePointers,
7904                        MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
7905                        MapFlagsArrayTy &Types) const {
7906     // We have to process the component lists that relate with the same
7907     // declaration in a single chunk so that we can generate the map flags
7908     // correctly. Therefore, we organize all lists in a map.
7909     llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
7910 
7911     // Helper function to fill the information map for the different supported
7912     // clauses.
7913     auto &&InfoGen = [&Info](
7914         const ValueDecl *D,
7915         OMPClauseMappableExprCommon::MappableExprComponentListRef L,
7916         OpenMPMapClauseKind MapType,
7917         ArrayRef<OpenMPMapModifierKind> MapModifiers,
7918         bool ReturnDevicePointer, bool IsImplicit) {
7919       const ValueDecl *VD =
7920           D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
7921       Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer,
7922                             IsImplicit);
7923     };
7924 
7925     assert(CurDir.is<const OMPExecutableDirective *>() &&
7926            "Expect a executable directive");
7927     const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
7928     for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>())
7929       for (const auto L : C->component_lists()) {
7930         InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifiers(),
7931             /*ReturnDevicePointer=*/false, C->isImplicit());
7932       }
7933     for (const auto *C : CurExecDir->getClausesOfKind<OMPToClause>())
7934       for (const auto L : C->component_lists()) {
7935         InfoGen(L.first, L.second, OMPC_MAP_to, llvm::None,
7936             /*ReturnDevicePointer=*/false, C->isImplicit());
7937       }
7938     for (const auto *C : CurExecDir->getClausesOfKind<OMPFromClause>())
7939       for (const auto L : C->component_lists()) {
7940         InfoGen(L.first, L.second, OMPC_MAP_from, llvm::None,
7941             /*ReturnDevicePointer=*/false, C->isImplicit());
7942       }
7943 
7944     // Look at the use_device_ptr clause information and mark the existing map
7945     // entries as such. If there is no map information for an entry in the
7946     // use_device_ptr list, we create one with map type 'alloc' and zero size
7947     // section. It is the user fault if that was not mapped before. If there is
7948     // no map information and the pointer is a struct member, then we defer the
7949     // emission of that entry until the whole struct has been processed.
7950     llvm::MapVector<const ValueDecl *, SmallVector<DeferredDevicePtrEntryTy, 4>>
7951         DeferredInfo;
7952 
7953     for (const auto *C :
7954          CurExecDir->getClausesOfKind<OMPUseDevicePtrClause>()) {
7955       for (const auto L : C->component_lists()) {
7956         assert(!L.second.empty() && "Not expecting empty list of components!");
7957         const ValueDecl *VD = L.second.back().getAssociatedDeclaration();
7958         VD = cast<ValueDecl>(VD->getCanonicalDecl());
7959         const Expr *IE = L.second.back().getAssociatedExpression();
7960         // If the first component is a member expression, we have to look into
7961         // 'this', which maps to null in the map of map information. Otherwise
7962         // look directly for the information.
7963         auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
7964 
7965         // We potentially have map information for this declaration already.
7966         // Look for the first set of components that refer to it.
7967         if (It != Info.end()) {
7968           auto CI = std::find_if(
7969               It->second.begin(), It->second.end(), [VD](const MapInfo &MI) {
7970                 return MI.Components.back().getAssociatedDeclaration() == VD;
7971               });
7972           // If we found a map entry, signal that the pointer has to be returned
7973           // and move on to the next declaration.
7974           if (CI != It->second.end()) {
7975             CI->ReturnDevicePointer = true;
7976             continue;
7977           }
7978         }
7979 
7980         // We didn't find any match in our map information - generate a zero
7981         // size array section - if the pointer is a struct member we defer this
7982         // action until the whole struct has been processed.
7983         if (isa<MemberExpr>(IE)) {
7984           // Insert the pointer into Info to be processed by
7985           // generateInfoForComponentList. Because it is a member pointer
7986           // without a pointee, no entry will be generated for it, therefore
7987           // we need to generate one after the whole struct has been processed.
7988           // Nonetheless, generateInfoForComponentList must be called to take
7989           // the pointer into account for the calculation of the range of the
7990           // partial struct.
7991           InfoGen(nullptr, L.second, OMPC_MAP_unknown, llvm::None,
7992                   /*ReturnDevicePointer=*/false, C->isImplicit());
7993           DeferredInfo[nullptr].emplace_back(IE, VD);
7994         } else {
7995           llvm::Value *Ptr =
7996               CGF.EmitLoadOfScalar(CGF.EmitLValue(IE), IE->getExprLoc());
7997           BasePointers.emplace_back(Ptr, VD);
7998           Pointers.push_back(Ptr);
7999           Sizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
8000           Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_TARGET_PARAM);
8001         }
8002       }
8003     }
8004 
8005     for (const auto &M : Info) {
8006       // We need to know when we generate information for the first component
8007       // associated with a capture, because the mapping flags depend on it.
8008       bool IsFirstComponentList = true;
8009 
8010       // Temporary versions of arrays
8011       MapBaseValuesArrayTy CurBasePointers;
8012       MapValuesArrayTy CurPointers;
8013       MapValuesArrayTy CurSizes;
8014       MapFlagsArrayTy CurTypes;
8015       StructRangeInfoTy PartialStruct;
8016 
8017       for (const MapInfo &L : M.second) {
8018         assert(!L.Components.empty() &&
8019                "Not expecting declaration with no component lists.");
8020 
8021         // Remember the current base pointer index.
8022         unsigned CurrentBasePointersIdx = CurBasePointers.size();
8023         generateInfoForComponentList(L.MapType, L.MapModifiers, L.Components,
8024                                      CurBasePointers, CurPointers, CurSizes,
8025                                      CurTypes, PartialStruct,
8026                                      IsFirstComponentList, L.IsImplicit);
8027 
8028         // If this entry relates with a device pointer, set the relevant
8029         // declaration and add the 'return pointer' flag.
8030         if (L.ReturnDevicePointer) {
8031           assert(CurBasePointers.size() > CurrentBasePointersIdx &&
8032                  "Unexpected number of mapped base pointers.");
8033 
8034           const ValueDecl *RelevantVD =
8035               L.Components.back().getAssociatedDeclaration();
8036           assert(RelevantVD &&
8037                  "No relevant declaration related with device pointer??");
8038 
8039           CurBasePointers[CurrentBasePointersIdx].setDevicePtrDecl(RelevantVD);
8040           CurTypes[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM;
8041         }
8042         IsFirstComponentList = false;
8043       }
8044 
8045       // Append any pending zero-length pointers which are struct members and
8046       // used with use_device_ptr.
8047       auto CI = DeferredInfo.find(M.first);
8048       if (CI != DeferredInfo.end()) {
8049         for (const DeferredDevicePtrEntryTy &L : CI->second) {
8050           llvm::Value *BasePtr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
8051           llvm::Value *Ptr = this->CGF.EmitLoadOfScalar(
8052               this->CGF.EmitLValue(L.IE), L.IE->getExprLoc());
8053           CurBasePointers.emplace_back(BasePtr, L.VD);
8054           CurPointers.push_back(Ptr);
8055           CurSizes.push_back(llvm::Constant::getNullValue(this->CGF.Int64Ty));
8056           // Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the placeholder
8057           // value MEMBER_OF=FFFF so that the entry is later updated with the
8058           // correct value of MEMBER_OF.
8059           CurTypes.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM |
8060                              OMP_MAP_MEMBER_OF);
8061         }
8062       }
8063 
8064       // If there is an entry in PartialStruct it means we have a struct with
8065       // individual members mapped. Emit an extra combined entry.
8066       if (PartialStruct.Base.isValid())
8067         emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes,
8068                           PartialStruct);
8069 
8070       // We need to append the results of this capture to what we already have.
8071       BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
8072       Pointers.append(CurPointers.begin(), CurPointers.end());
8073       Sizes.append(CurSizes.begin(), CurSizes.end());
8074       Types.append(CurTypes.begin(), CurTypes.end());
8075     }
8076   }
8077 
8078   /// Generate all the base pointers, section pointers, sizes and map types for
8079   /// the extracted map clauses of user-defined mapper.
generateAllInfoForMapper(MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types) const8080   void generateAllInfoForMapper(MapBaseValuesArrayTy &BasePointers,
8081                                 MapValuesArrayTy &Pointers,
8082                                 MapValuesArrayTy &Sizes,
8083                                 MapFlagsArrayTy &Types) const {
8084     assert(CurDir.is<const OMPDeclareMapperDecl *>() &&
8085            "Expect a declare mapper directive");
8086     const auto *CurMapperDir = CurDir.get<const OMPDeclareMapperDecl *>();
8087     // We have to process the component lists that relate with the same
8088     // declaration in a single chunk so that we can generate the map flags
8089     // correctly. Therefore, we organize all lists in a map.
8090     llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
8091 
8092     // Helper function to fill the information map for the different supported
8093     // clauses.
8094     auto &&InfoGen = [&Info](
8095         const ValueDecl *D,
8096         OMPClauseMappableExprCommon::MappableExprComponentListRef L,
8097         OpenMPMapClauseKind MapType,
8098         ArrayRef<OpenMPMapModifierKind> MapModifiers,
8099         bool ReturnDevicePointer, bool IsImplicit) {
8100       const ValueDecl *VD =
8101           D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
8102       Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer,
8103                             IsImplicit);
8104     };
8105 
8106     for (const auto *C : CurMapperDir->clauselists()) {
8107       const auto *MC = cast<OMPMapClause>(C);
8108       for (const auto L : MC->component_lists()) {
8109         InfoGen(L.first, L.second, MC->getMapType(), MC->getMapTypeModifiers(),
8110                 /*ReturnDevicePointer=*/false, MC->isImplicit());
8111       }
8112     }
8113 
8114     for (const auto &M : Info) {
8115       // We need to know when we generate information for the first component
8116       // associated with a capture, because the mapping flags depend on it.
8117       bool IsFirstComponentList = true;
8118 
8119       // Temporary versions of arrays
8120       MapBaseValuesArrayTy CurBasePointers;
8121       MapValuesArrayTy CurPointers;
8122       MapValuesArrayTy CurSizes;
8123       MapFlagsArrayTy CurTypes;
8124       StructRangeInfoTy PartialStruct;
8125 
8126       for (const MapInfo &L : M.second) {
8127         assert(!L.Components.empty() &&
8128                "Not expecting declaration with no component lists.");
8129         generateInfoForComponentList(L.MapType, L.MapModifiers, L.Components,
8130                                      CurBasePointers, CurPointers, CurSizes,
8131                                      CurTypes, PartialStruct,
8132                                      IsFirstComponentList, L.IsImplicit);
8133         IsFirstComponentList = false;
8134       }
8135 
8136       // If there is an entry in PartialStruct it means we have a struct with
8137       // individual members mapped. Emit an extra combined entry.
8138       if (PartialStruct.Base.isValid())
8139         emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes,
8140                           PartialStruct);
8141 
8142       // We need to append the results of this capture to what we already have.
8143       BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
8144       Pointers.append(CurPointers.begin(), CurPointers.end());
8145       Sizes.append(CurSizes.begin(), CurSizes.end());
8146       Types.append(CurTypes.begin(), CurTypes.end());
8147     }
8148   }
8149 
8150   /// Emit capture info for lambdas for variables captured by reference.
generateInfoForLambdaCaptures(const ValueDecl * VD,llvm::Value * Arg,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types,llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers) const8151   void generateInfoForLambdaCaptures(
8152       const ValueDecl *VD, llvm::Value *Arg, MapBaseValuesArrayTy &BasePointers,
8153       MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
8154       MapFlagsArrayTy &Types,
8155       llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const {
8156     const auto *RD = VD->getType()
8157                          .getCanonicalType()
8158                          .getNonReferenceType()
8159                          ->getAsCXXRecordDecl();
8160     if (!RD || !RD->isLambda())
8161       return;
8162     Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD));
8163     LValue VDLVal = CGF.MakeAddrLValue(
8164         VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
8165     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
8166     FieldDecl *ThisCapture = nullptr;
8167     RD->getCaptureFields(Captures, ThisCapture);
8168     if (ThisCapture) {
8169       LValue ThisLVal =
8170           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
8171       LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture);
8172       LambdaPointers.try_emplace(ThisLVal.getPointer(CGF),
8173                                  VDLVal.getPointer(CGF));
8174       BasePointers.push_back(ThisLVal.getPointer(CGF));
8175       Pointers.push_back(ThisLValVal.getPointer(CGF));
8176       Sizes.push_back(
8177           CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
8178                                     CGF.Int64Ty, /*isSigned=*/true));
8179       Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8180                       OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8181     }
8182     for (const LambdaCapture &LC : RD->captures()) {
8183       if (!LC.capturesVariable())
8184         continue;
8185       const VarDecl *VD = LC.getCapturedVar();
8186       if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType())
8187         continue;
8188       auto It = Captures.find(VD);
8189       assert(It != Captures.end() && "Found lambda capture without field.");
8190       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
8191       if (LC.getCaptureKind() == LCK_ByRef) {
8192         LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second);
8193         LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
8194                                    VDLVal.getPointer(CGF));
8195         BasePointers.push_back(VarLVal.getPointer(CGF));
8196         Pointers.push_back(VarLValVal.getPointer(CGF));
8197         Sizes.push_back(CGF.Builder.CreateIntCast(
8198             CGF.getTypeSize(
8199                 VD->getType().getCanonicalType().getNonReferenceType()),
8200             CGF.Int64Ty, /*isSigned=*/true));
8201       } else {
8202         RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation());
8203         LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
8204                                    VDLVal.getPointer(CGF));
8205         BasePointers.push_back(VarLVal.getPointer(CGF));
8206         Pointers.push_back(VarRVal.getScalarVal());
8207         Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0));
8208       }
8209       Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8210                       OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8211     }
8212   }
8213 
8214   /// Set correct indices for lambdas captures.
adjustMemberOfForLambdaCaptures(const llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapFlagsArrayTy & Types) const8215   void adjustMemberOfForLambdaCaptures(
8216       const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers,
8217       MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
8218       MapFlagsArrayTy &Types) const {
8219     for (unsigned I = 0, E = Types.size(); I < E; ++I) {
8220       // Set correct member_of idx for all implicit lambda captures.
8221       if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8222                        OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT))
8223         continue;
8224       llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]);
8225       assert(BasePtr && "Unable to find base lambda address.");
8226       int TgtIdx = -1;
8227       for (unsigned J = I; J > 0; --J) {
8228         unsigned Idx = J - 1;
8229         if (Pointers[Idx] != BasePtr)
8230           continue;
8231         TgtIdx = Idx;
8232         break;
8233       }
8234       assert(TgtIdx != -1 && "Unable to find parent lambda.");
8235       // All other current entries will be MEMBER_OF the combined entry
8236       // (except for PTR_AND_OBJ entries which do not have a placeholder value
8237       // 0xFFFF in the MEMBER_OF field).
8238       OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx);
8239       setCorrectMemberOfFlag(Types[I], MemberOfFlag);
8240     }
8241   }
8242 
8243   /// Generate the base pointers, section pointers, sizes and map types
8244   /// associated to a given capture.
generateInfoForCapture(const CapturedStmt::Capture * Cap,llvm::Value * Arg,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types,StructRangeInfoTy & PartialStruct) const8245   void generateInfoForCapture(const CapturedStmt::Capture *Cap,
8246                               llvm::Value *Arg,
8247                               MapBaseValuesArrayTy &BasePointers,
8248                               MapValuesArrayTy &Pointers,
8249                               MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
8250                               StructRangeInfoTy &PartialStruct) const {
8251     assert(!Cap->capturesVariableArrayType() &&
8252            "Not expecting to generate map info for a variable array type!");
8253 
8254     // We need to know when we generating information for the first component
8255     const ValueDecl *VD = Cap->capturesThis()
8256                               ? nullptr
8257                               : Cap->getCapturedVar()->getCanonicalDecl();
8258 
8259     // If this declaration appears in a is_device_ptr clause we just have to
8260     // pass the pointer by value. If it is a reference to a declaration, we just
8261     // pass its value.
8262     if (DevPointersMap.count(VD)) {
8263       BasePointers.emplace_back(Arg, VD);
8264       Pointers.push_back(Arg);
8265       Sizes.push_back(
8266           CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
8267                                     CGF.Int64Ty, /*isSigned=*/true));
8268       Types.push_back(OMP_MAP_LITERAL | OMP_MAP_TARGET_PARAM);
8269       return;
8270     }
8271 
8272     using MapData =
8273         std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef,
8274                    OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool>;
8275     SmallVector<MapData, 4> DeclComponentLists;
8276     assert(CurDir.is<const OMPExecutableDirective *>() &&
8277            "Expect a executable directive");
8278     const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
8279     for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
8280       for (const auto L : C->decl_component_lists(VD)) {
8281         assert(L.first == VD &&
8282                "We got information for the wrong declaration??");
8283         assert(!L.second.empty() &&
8284                "Not expecting declaration with no component lists.");
8285         DeclComponentLists.emplace_back(L.second, C->getMapType(),
8286                                         C->getMapTypeModifiers(),
8287                                         C->isImplicit());
8288       }
8289     }
8290 
8291     // Find overlapping elements (including the offset from the base element).
8292     llvm::SmallDenseMap<
8293         const MapData *,
8294         llvm::SmallVector<
8295             OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>,
8296         4>
8297         OverlappedData;
8298     size_t Count = 0;
8299     for (const MapData &L : DeclComponentLists) {
8300       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8301       OpenMPMapClauseKind MapType;
8302       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8303       bool IsImplicit;
8304       std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
8305       ++Count;
8306       for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) {
8307         OMPClauseMappableExprCommon::MappableExprComponentListRef Components1;
8308         std::tie(Components1, MapType, MapModifiers, IsImplicit) = L1;
8309         auto CI = Components.rbegin();
8310         auto CE = Components.rend();
8311         auto SI = Components1.rbegin();
8312         auto SE = Components1.rend();
8313         for (; CI != CE && SI != SE; ++CI, ++SI) {
8314           if (CI->getAssociatedExpression()->getStmtClass() !=
8315               SI->getAssociatedExpression()->getStmtClass())
8316             break;
8317           // Are we dealing with different variables/fields?
8318           if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
8319             break;
8320         }
8321         // Found overlapping if, at least for one component, reached the head of
8322         // the components list.
8323         if (CI == CE || SI == SE) {
8324           assert((CI != CE || SI != SE) &&
8325                  "Unexpected full match of the mapping components.");
8326           const MapData &BaseData = CI == CE ? L : L1;
8327           OMPClauseMappableExprCommon::MappableExprComponentListRef SubData =
8328               SI == SE ? Components : Components1;
8329           auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData);
8330           OverlappedElements.getSecond().push_back(SubData);
8331         }
8332       }
8333     }
8334     // Sort the overlapped elements for each item.
8335     llvm::SmallVector<const FieldDecl *, 4> Layout;
8336     if (!OverlappedData.empty()) {
8337       if (const auto *CRD =
8338               VD->getType().getCanonicalType()->getAsCXXRecordDecl())
8339         getPlainLayout(CRD, Layout, /*AsBase=*/false);
8340       else {
8341         const auto *RD = VD->getType().getCanonicalType()->getAsRecordDecl();
8342         Layout.append(RD->field_begin(), RD->field_end());
8343       }
8344     }
8345     for (auto &Pair : OverlappedData) {
8346       llvm::sort(
8347           Pair.getSecond(),
8348           [&Layout](
8349               OMPClauseMappableExprCommon::MappableExprComponentListRef First,
8350               OMPClauseMappableExprCommon::MappableExprComponentListRef
8351                   Second) {
8352             auto CI = First.rbegin();
8353             auto CE = First.rend();
8354             auto SI = Second.rbegin();
8355             auto SE = Second.rend();
8356             for (; CI != CE && SI != SE; ++CI, ++SI) {
8357               if (CI->getAssociatedExpression()->getStmtClass() !=
8358                   SI->getAssociatedExpression()->getStmtClass())
8359                 break;
8360               // Are we dealing with different variables/fields?
8361               if (CI->getAssociatedDeclaration() !=
8362                   SI->getAssociatedDeclaration())
8363                 break;
8364             }
8365 
8366             // Lists contain the same elements.
8367             if (CI == CE && SI == SE)
8368               return false;
8369 
8370             // List with less elements is less than list with more elements.
8371             if (CI == CE || SI == SE)
8372               return CI == CE;
8373 
8374             const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration());
8375             const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration());
8376             if (FD1->getParent() == FD2->getParent())
8377               return FD1->getFieldIndex() < FD2->getFieldIndex();
8378             const auto It =
8379                 llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) {
8380                   return FD == FD1 || FD == FD2;
8381                 });
8382             return *It == FD1;
8383           });
8384     }
8385 
8386     // Associated with a capture, because the mapping flags depend on it.
8387     // Go through all of the elements with the overlapped elements.
8388     for (const auto &Pair : OverlappedData) {
8389       const MapData &L = *Pair.getFirst();
8390       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8391       OpenMPMapClauseKind MapType;
8392       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8393       bool IsImplicit;
8394       std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
8395       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
8396           OverlappedComponents = Pair.getSecond();
8397       bool IsFirstComponentList = true;
8398       generateInfoForComponentList(MapType, MapModifiers, Components,
8399                                    BasePointers, Pointers, Sizes, Types,
8400                                    PartialStruct, IsFirstComponentList,
8401                                    IsImplicit, OverlappedComponents);
8402     }
8403     // Go through other elements without overlapped elements.
8404     bool IsFirstComponentList = OverlappedData.empty();
8405     for (const MapData &L : DeclComponentLists) {
8406       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8407       OpenMPMapClauseKind MapType;
8408       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8409       bool IsImplicit;
8410       std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
8411       auto It = OverlappedData.find(&L);
8412       if (It == OverlappedData.end())
8413         generateInfoForComponentList(MapType, MapModifiers, Components,
8414                                      BasePointers, Pointers, Sizes, Types,
8415                                      PartialStruct, IsFirstComponentList,
8416                                      IsImplicit);
8417       IsFirstComponentList = false;
8418     }
8419   }
8420 
8421   /// Generate the base pointers, section pointers, sizes and map types
8422   /// associated with the declare target link variables.
generateInfoForDeclareTargetLink(MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types) const8423   void generateInfoForDeclareTargetLink(MapBaseValuesArrayTy &BasePointers,
8424                                         MapValuesArrayTy &Pointers,
8425                                         MapValuesArrayTy &Sizes,
8426                                         MapFlagsArrayTy &Types) const {
8427     assert(CurDir.is<const OMPExecutableDirective *>() &&
8428            "Expect a executable directive");
8429     const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
8430     // Map other list items in the map clause which are not captured variables
8431     // but "declare target link" global variables.
8432     for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
8433       for (const auto L : C->component_lists()) {
8434         if (!L.first)
8435           continue;
8436         const auto *VD = dyn_cast<VarDecl>(L.first);
8437         if (!VD)
8438           continue;
8439         llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
8440             OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
8441         if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
8442             !Res || *Res != OMPDeclareTargetDeclAttr::MT_Link)
8443           continue;
8444         StructRangeInfoTy PartialStruct;
8445         generateInfoForComponentList(
8446             C->getMapType(), C->getMapTypeModifiers(), L.second, BasePointers,
8447             Pointers, Sizes, Types, PartialStruct,
8448             /*IsFirstComponentList=*/true, C->isImplicit());
8449         assert(!PartialStruct.Base.isValid() &&
8450                "No partial structs for declare target link expected.");
8451       }
8452     }
8453   }
8454 
8455   /// Generate the default map information for a given capture \a CI,
8456   /// record field declaration \a RI and captured value \a CV.
generateDefaultMapInfo(const CapturedStmt::Capture & CI,const FieldDecl & RI,llvm::Value * CV,MapBaseValuesArrayTy & CurBasePointers,MapValuesArrayTy & CurPointers,MapValuesArrayTy & CurSizes,MapFlagsArrayTy & CurMapTypes) const8457   void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
8458                               const FieldDecl &RI, llvm::Value *CV,
8459                               MapBaseValuesArrayTy &CurBasePointers,
8460                               MapValuesArrayTy &CurPointers,
8461                               MapValuesArrayTy &CurSizes,
8462                               MapFlagsArrayTy &CurMapTypes) const {
8463     bool IsImplicit = true;
8464     // Do the default mapping.
8465     if (CI.capturesThis()) {
8466       CurBasePointers.push_back(CV);
8467       CurPointers.push_back(CV);
8468       const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
8469       CurSizes.push_back(
8470           CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()),
8471                                     CGF.Int64Ty, /*isSigned=*/true));
8472       // Default map type.
8473       CurMapTypes.push_back(OMP_MAP_TO | OMP_MAP_FROM);
8474     } else if (CI.capturesVariableByCopy()) {
8475       CurBasePointers.push_back(CV);
8476       CurPointers.push_back(CV);
8477       if (!RI.getType()->isAnyPointerType()) {
8478         // We have to signal to the runtime captures passed by value that are
8479         // not pointers.
8480         CurMapTypes.push_back(OMP_MAP_LITERAL);
8481         CurSizes.push_back(CGF.Builder.CreateIntCast(
8482             CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true));
8483       } else {
8484         // Pointers are implicitly mapped with a zero size and no flags
8485         // (other than first map that is added for all implicit maps).
8486         CurMapTypes.push_back(OMP_MAP_NONE);
8487         CurSizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
8488       }
8489       const VarDecl *VD = CI.getCapturedVar();
8490       auto I = FirstPrivateDecls.find(VD);
8491       if (I != FirstPrivateDecls.end())
8492         IsImplicit = I->getSecond();
8493     } else {
8494       assert(CI.capturesVariable() && "Expected captured reference.");
8495       const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr());
8496       QualType ElementType = PtrTy->getPointeeType();
8497       CurSizes.push_back(CGF.Builder.CreateIntCast(
8498           CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true));
8499       // The default map type for a scalar/complex type is 'to' because by
8500       // default the value doesn't have to be retrieved. For an aggregate
8501       // type, the default is 'tofrom'.
8502       CurMapTypes.push_back(getMapModifiersForPrivateClauses(CI));
8503       const VarDecl *VD = CI.getCapturedVar();
8504       auto I = FirstPrivateDecls.find(VD);
8505       if (I != FirstPrivateDecls.end() &&
8506           VD->getType().isConstant(CGF.getContext())) {
8507         llvm::Constant *Addr =
8508             CGF.CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(CGF, VD);
8509         // Copy the value of the original variable to the new global copy.
8510         CGF.Builder.CreateMemCpy(
8511             CGF.MakeNaturalAlignAddrLValue(Addr, ElementType).getAddress(CGF),
8512             Address(CV, CGF.getContext().getTypeAlignInChars(ElementType)),
8513             CurSizes.back(), /*IsVolatile=*/false);
8514         // Use new global variable as the base pointers.
8515         CurBasePointers.push_back(Addr);
8516         CurPointers.push_back(Addr);
8517       } else {
8518         CurBasePointers.push_back(CV);
8519         if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) {
8520           Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue(
8521               CV, ElementType, CGF.getContext().getDeclAlign(VD),
8522               AlignmentSource::Decl));
8523           CurPointers.push_back(PtrAddr.getPointer());
8524         } else {
8525           CurPointers.push_back(CV);
8526         }
8527       }
8528       if (I != FirstPrivateDecls.end())
8529         IsImplicit = I->getSecond();
8530     }
8531     // Every default map produces a single argument which is a target parameter.
8532     CurMapTypes.back() |= OMP_MAP_TARGET_PARAM;
8533 
8534     // Add flag stating this is an implicit map.
8535     if (IsImplicit)
8536       CurMapTypes.back() |= OMP_MAP_IMPLICIT;
8537   }
8538 };
8539 } // anonymous namespace
8540 
8541 /// Emit the arrays used to pass the captures and map information to the
8542 /// offloading runtime library. If there is no map or capture information,
8543 /// return nullptr by reference.
8544 static void
emitOffloadingArrays(CodeGenFunction & CGF,MappableExprsHandler::MapBaseValuesArrayTy & BasePointers,MappableExprsHandler::MapValuesArrayTy & Pointers,MappableExprsHandler::MapValuesArrayTy & Sizes,MappableExprsHandler::MapFlagsArrayTy & MapTypes,CGOpenMPRuntime::TargetDataInfo & Info)8545 emitOffloadingArrays(CodeGenFunction &CGF,
8546                      MappableExprsHandler::MapBaseValuesArrayTy &BasePointers,
8547                      MappableExprsHandler::MapValuesArrayTy &Pointers,
8548                      MappableExprsHandler::MapValuesArrayTy &Sizes,
8549                      MappableExprsHandler::MapFlagsArrayTy &MapTypes,
8550                      CGOpenMPRuntime::TargetDataInfo &Info) {
8551   CodeGenModule &CGM = CGF.CGM;
8552   ASTContext &Ctx = CGF.getContext();
8553 
8554   // Reset the array information.
8555   Info.clearArrayInfo();
8556   Info.NumberOfPtrs = BasePointers.size();
8557 
8558   if (Info.NumberOfPtrs) {
8559     // Detect if we have any capture size requiring runtime evaluation of the
8560     // size so that a constant array could be eventually used.
8561     bool hasRuntimeEvaluationCaptureSize = false;
8562     for (llvm::Value *S : Sizes)
8563       if (!isa<llvm::Constant>(S)) {
8564         hasRuntimeEvaluationCaptureSize = true;
8565         break;
8566       }
8567 
8568     llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
8569     QualType PointerArrayType = Ctx.getConstantArrayType(
8570         Ctx.VoidPtrTy, PointerNumAP, nullptr, ArrayType::Normal,
8571         /*IndexTypeQuals=*/0);
8572 
8573     Info.BasePointersArray =
8574         CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
8575     Info.PointersArray =
8576         CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
8577 
8578     // If we don't have any VLA types or other types that require runtime
8579     // evaluation, we can use a constant array for the map sizes, otherwise we
8580     // need to fill up the arrays as we do for the pointers.
8581     QualType Int64Ty =
8582         Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
8583     if (hasRuntimeEvaluationCaptureSize) {
8584       QualType SizeArrayType = Ctx.getConstantArrayType(
8585           Int64Ty, PointerNumAP, nullptr, ArrayType::Normal,
8586           /*IndexTypeQuals=*/0);
8587       Info.SizesArray =
8588           CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
8589     } else {
8590       // We expect all the sizes to be constant, so we collect them to create
8591       // a constant array.
8592       SmallVector<llvm::Constant *, 16> ConstSizes;
8593       for (llvm::Value *S : Sizes)
8594         ConstSizes.push_back(cast<llvm::Constant>(S));
8595 
8596       auto *SizesArrayInit = llvm::ConstantArray::get(
8597           llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes);
8598       std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"});
8599       auto *SizesArrayGbl = new llvm::GlobalVariable(
8600           CGM.getModule(), SizesArrayInit->getType(),
8601           /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
8602           SizesArrayInit, Name);
8603       SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
8604       Info.SizesArray = SizesArrayGbl;
8605     }
8606 
8607     // The map types are always constant so we don't need to generate code to
8608     // fill arrays. Instead, we create an array constant.
8609     SmallVector<uint64_t, 4> Mapping(MapTypes.size(), 0);
8610     llvm::copy(MapTypes, Mapping.begin());
8611     llvm::Constant *MapTypesArrayInit =
8612         llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping);
8613     std::string MaptypesName =
8614         CGM.getOpenMPRuntime().getName({"offload_maptypes"});
8615     auto *MapTypesArrayGbl = new llvm::GlobalVariable(
8616         CGM.getModule(), MapTypesArrayInit->getType(),
8617         /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
8618         MapTypesArrayInit, MaptypesName);
8619     MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
8620     Info.MapTypesArray = MapTypesArrayGbl;
8621 
8622     for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
8623       llvm::Value *BPVal = *BasePointers[I];
8624       llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
8625           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8626           Info.BasePointersArray, 0, I);
8627       BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
8628           BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0));
8629       Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
8630       CGF.Builder.CreateStore(BPVal, BPAddr);
8631 
8632       if (Info.requiresDevicePointerInfo())
8633         if (const ValueDecl *DevVD = BasePointers[I].getDevicePtrDecl())
8634           Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr);
8635 
8636       llvm::Value *PVal = Pointers[I];
8637       llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
8638           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8639           Info.PointersArray, 0, I);
8640       P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
8641           P, PVal->getType()->getPointerTo(/*AddrSpace=*/0));
8642       Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
8643       CGF.Builder.CreateStore(PVal, PAddr);
8644 
8645       if (hasRuntimeEvaluationCaptureSize) {
8646         llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
8647             llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
8648             Info.SizesArray,
8649             /*Idx0=*/0,
8650             /*Idx1=*/I);
8651         Address SAddr(S, Ctx.getTypeAlignInChars(Int64Ty));
8652         CGF.Builder.CreateStore(
8653             CGF.Builder.CreateIntCast(Sizes[I], CGM.Int64Ty, /*isSigned=*/true),
8654             SAddr);
8655       }
8656     }
8657   }
8658 }
8659 
8660 /// Emit the arguments to be passed to the runtime library based on the
8661 /// arrays of pointers, sizes and map types.
emitOffloadingArraysArgument(CodeGenFunction & CGF,llvm::Value * & BasePointersArrayArg,llvm::Value * & PointersArrayArg,llvm::Value * & SizesArrayArg,llvm::Value * & MapTypesArrayArg,CGOpenMPRuntime::TargetDataInfo & Info)8662 static void emitOffloadingArraysArgument(
8663     CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
8664     llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
8665     llvm::Value *&MapTypesArrayArg, CGOpenMPRuntime::TargetDataInfo &Info) {
8666   CodeGenModule &CGM = CGF.CGM;
8667   if (Info.NumberOfPtrs) {
8668     BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8669         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8670         Info.BasePointersArray,
8671         /*Idx0=*/0, /*Idx1=*/0);
8672     PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8673         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8674         Info.PointersArray,
8675         /*Idx0=*/0,
8676         /*Idx1=*/0);
8677     SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8678         llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray,
8679         /*Idx0=*/0, /*Idx1=*/0);
8680     MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8681         llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
8682         Info.MapTypesArray,
8683         /*Idx0=*/0,
8684         /*Idx1=*/0);
8685   } else {
8686     BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
8687     PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
8688     SizesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
8689     MapTypesArrayArg =
8690         llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
8691   }
8692 }
8693 
8694 /// Check for inner distribute directive.
8695 static const OMPExecutableDirective *
getNestedDistributeDirective(ASTContext & Ctx,const OMPExecutableDirective & D)8696 getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) {
8697   const auto *CS = D.getInnermostCapturedStmt();
8698   const auto *Body =
8699       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
8700   const Stmt *ChildStmt =
8701       CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
8702 
8703   if (const auto *NestedDir =
8704           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
8705     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
8706     switch (D.getDirectiveKind()) {
8707     case OMPD_target:
8708       if (isOpenMPDistributeDirective(DKind))
8709         return NestedDir;
8710       if (DKind == OMPD_teams) {
8711         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
8712             /*IgnoreCaptured=*/true);
8713         if (!Body)
8714           return nullptr;
8715         ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
8716         if (const auto *NND =
8717                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
8718           DKind = NND->getDirectiveKind();
8719           if (isOpenMPDistributeDirective(DKind))
8720             return NND;
8721         }
8722       }
8723       return nullptr;
8724     case OMPD_target_teams:
8725       if (isOpenMPDistributeDirective(DKind))
8726         return NestedDir;
8727       return nullptr;
8728     case OMPD_target_parallel:
8729     case OMPD_target_simd:
8730     case OMPD_target_parallel_for:
8731     case OMPD_target_parallel_for_simd:
8732       return nullptr;
8733     case OMPD_target_teams_distribute:
8734     case OMPD_target_teams_distribute_simd:
8735     case OMPD_target_teams_distribute_parallel_for:
8736     case OMPD_target_teams_distribute_parallel_for_simd:
8737     case OMPD_parallel:
8738     case OMPD_for:
8739     case OMPD_parallel_for:
8740     case OMPD_parallel_master:
8741     case OMPD_parallel_sections:
8742     case OMPD_for_simd:
8743     case OMPD_parallel_for_simd:
8744     case OMPD_cancel:
8745     case OMPD_cancellation_point:
8746     case OMPD_ordered:
8747     case OMPD_threadprivate:
8748     case OMPD_allocate:
8749     case OMPD_task:
8750     case OMPD_simd:
8751     case OMPD_sections:
8752     case OMPD_section:
8753     case OMPD_single:
8754     case OMPD_master:
8755     case OMPD_critical:
8756     case OMPD_taskyield:
8757     case OMPD_barrier:
8758     case OMPD_taskwait:
8759     case OMPD_taskgroup:
8760     case OMPD_atomic:
8761     case OMPD_flush:
8762     case OMPD_teams:
8763     case OMPD_target_data:
8764     case OMPD_target_exit_data:
8765     case OMPD_target_enter_data:
8766     case OMPD_distribute:
8767     case OMPD_distribute_simd:
8768     case OMPD_distribute_parallel_for:
8769     case OMPD_distribute_parallel_for_simd:
8770     case OMPD_teams_distribute:
8771     case OMPD_teams_distribute_simd:
8772     case OMPD_teams_distribute_parallel_for:
8773     case OMPD_teams_distribute_parallel_for_simd:
8774     case OMPD_target_update:
8775     case OMPD_declare_simd:
8776     case OMPD_declare_variant:
8777     case OMPD_declare_target:
8778     case OMPD_end_declare_target:
8779     case OMPD_declare_reduction:
8780     case OMPD_declare_mapper:
8781     case OMPD_taskloop:
8782     case OMPD_taskloop_simd:
8783     case OMPD_master_taskloop:
8784     case OMPD_master_taskloop_simd:
8785     case OMPD_parallel_master_taskloop:
8786     case OMPD_parallel_master_taskloop_simd:
8787     case OMPD_requires:
8788     case OMPD_unknown:
8789       llvm_unreachable("Unexpected directive.");
8790     }
8791   }
8792 
8793   return nullptr;
8794 }
8795 
8796 /// Emit the user-defined mapper function. The code generation follows the
8797 /// pattern in the example below.
8798 /// \code
8799 /// void .omp_mapper.<type_name>.<mapper_id>.(void *rt_mapper_handle,
8800 ///                                           void *base, void *begin,
8801 ///                                           int64_t size, int64_t type) {
8802 ///   // Allocate space for an array section first.
8803 ///   if (size > 1 && !maptype.IsDelete)
8804 ///     __tgt_push_mapper_component(rt_mapper_handle, base, begin,
8805 ///                                 size*sizeof(Ty), clearToFrom(type));
8806 ///   // Map members.
8807 ///   for (unsigned i = 0; i < size; i++) {
8808 ///     // For each component specified by this mapper:
8809 ///     for (auto c : all_components) {
8810 ///       if (c.hasMapper())
8811 ///         (*c.Mapper())(rt_mapper_handle, c.arg_base, c.arg_begin, c.arg_size,
8812 ///                       c.arg_type);
8813 ///       else
8814 ///         __tgt_push_mapper_component(rt_mapper_handle, c.arg_base,
8815 ///                                     c.arg_begin, c.arg_size, c.arg_type);
8816 ///     }
8817 ///   }
8818 ///   // Delete the array section.
8819 ///   if (size > 1 && maptype.IsDelete)
8820 ///     __tgt_push_mapper_component(rt_mapper_handle, base, begin,
8821 ///                                 size*sizeof(Ty), clearToFrom(type));
8822 /// }
8823 /// \endcode
emitUserDefinedMapper(const OMPDeclareMapperDecl * D,CodeGenFunction * CGF)8824 void CGOpenMPRuntime::emitUserDefinedMapper(const OMPDeclareMapperDecl *D,
8825                                             CodeGenFunction *CGF) {
8826   if (UDMMap.count(D) > 0)
8827     return;
8828   ASTContext &C = CGM.getContext();
8829   QualType Ty = D->getType();
8830   QualType PtrTy = C.getPointerType(Ty).withRestrict();
8831   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
8832   auto *MapperVarDecl =
8833       cast<VarDecl>(cast<DeclRefExpr>(D->getMapperVarRef())->getDecl());
8834   SourceLocation Loc = D->getLocation();
8835   CharUnits ElementSize = C.getTypeSizeInChars(Ty);
8836 
8837   // Prepare mapper function arguments and attributes.
8838   ImplicitParamDecl HandleArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
8839                               C.VoidPtrTy, ImplicitParamDecl::Other);
8840   ImplicitParamDecl BaseArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
8841                             ImplicitParamDecl::Other);
8842   ImplicitParamDecl BeginArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
8843                              C.VoidPtrTy, ImplicitParamDecl::Other);
8844   ImplicitParamDecl SizeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
8845                             ImplicitParamDecl::Other);
8846   ImplicitParamDecl TypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
8847                             ImplicitParamDecl::Other);
8848   FunctionArgList Args;
8849   Args.push_back(&HandleArg);
8850   Args.push_back(&BaseArg);
8851   Args.push_back(&BeginArg);
8852   Args.push_back(&SizeArg);
8853   Args.push_back(&TypeArg);
8854   const CGFunctionInfo &FnInfo =
8855       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
8856   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
8857   SmallString<64> TyStr;
8858   llvm::raw_svector_ostream Out(TyStr);
8859   CGM.getCXXABI().getMangleContext().mangleTypeName(Ty, Out);
8860   std::string Name = getName({"omp_mapper", TyStr, D->getName()});
8861   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
8862                                     Name, &CGM.getModule());
8863   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
8864   Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
8865   // Start the mapper function code generation.
8866   CodeGenFunction MapperCGF(CGM);
8867   MapperCGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
8868   // Compute the starting and end addreses of array elements.
8869   llvm::Value *Size = MapperCGF.EmitLoadOfScalar(
8870       MapperCGF.GetAddrOfLocalVar(&SizeArg), /*Volatile=*/false,
8871       C.getPointerType(Int64Ty), Loc);
8872   llvm::Value *PtrBegin = MapperCGF.Builder.CreateBitCast(
8873       MapperCGF.GetAddrOfLocalVar(&BeginArg).getPointer(),
8874       CGM.getTypes().ConvertTypeForMem(C.getPointerType(PtrTy)));
8875   llvm::Value *PtrEnd = MapperCGF.Builder.CreateGEP(PtrBegin, Size);
8876   llvm::Value *MapType = MapperCGF.EmitLoadOfScalar(
8877       MapperCGF.GetAddrOfLocalVar(&TypeArg), /*Volatile=*/false,
8878       C.getPointerType(Int64Ty), Loc);
8879   // Prepare common arguments for array initiation and deletion.
8880   llvm::Value *Handle = MapperCGF.EmitLoadOfScalar(
8881       MapperCGF.GetAddrOfLocalVar(&HandleArg),
8882       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
8883   llvm::Value *BaseIn = MapperCGF.EmitLoadOfScalar(
8884       MapperCGF.GetAddrOfLocalVar(&BaseArg),
8885       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
8886   llvm::Value *BeginIn = MapperCGF.EmitLoadOfScalar(
8887       MapperCGF.GetAddrOfLocalVar(&BeginArg),
8888       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
8889 
8890   // Emit array initiation if this is an array section and \p MapType indicates
8891   // that memory allocation is required.
8892   llvm::BasicBlock *HeadBB = MapperCGF.createBasicBlock("omp.arraymap.head");
8893   emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
8894                              ElementSize, HeadBB, /*IsInit=*/true);
8895 
8896   // Emit a for loop to iterate through SizeArg of elements and map all of them.
8897 
8898   // Emit the loop header block.
8899   MapperCGF.EmitBlock(HeadBB);
8900   llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock("omp.arraymap.body");
8901   llvm::BasicBlock *DoneBB = MapperCGF.createBasicBlock("omp.done");
8902   // Evaluate whether the initial condition is satisfied.
8903   llvm::Value *IsEmpty =
8904       MapperCGF.Builder.CreateICmpEQ(PtrBegin, PtrEnd, "omp.arraymap.isempty");
8905   MapperCGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
8906   llvm::BasicBlock *EntryBB = MapperCGF.Builder.GetInsertBlock();
8907 
8908   // Emit the loop body block.
8909   MapperCGF.EmitBlock(BodyBB);
8910   llvm::PHINode *PtrPHI = MapperCGF.Builder.CreatePHI(
8911       PtrBegin->getType(), 2, "omp.arraymap.ptrcurrent");
8912   PtrPHI->addIncoming(PtrBegin, EntryBB);
8913   Address PtrCurrent =
8914       Address(PtrPHI, MapperCGF.GetAddrOfLocalVar(&BeginArg)
8915                           .getAlignment()
8916                           .alignmentOfArrayElement(ElementSize));
8917   // Privatize the declared variable of mapper to be the current array element.
8918   CodeGenFunction::OMPPrivateScope Scope(MapperCGF);
8919   Scope.addPrivate(MapperVarDecl, [&MapperCGF, PtrCurrent, PtrTy]() {
8920     return MapperCGF
8921         .EmitLoadOfPointerLValue(PtrCurrent, PtrTy->castAs<PointerType>())
8922         .getAddress(MapperCGF);
8923   });
8924   (void)Scope.Privatize();
8925 
8926   // Get map clause information. Fill up the arrays with all mapped variables.
8927   MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
8928   MappableExprsHandler::MapValuesArrayTy Pointers;
8929   MappableExprsHandler::MapValuesArrayTy Sizes;
8930   MappableExprsHandler::MapFlagsArrayTy MapTypes;
8931   MappableExprsHandler MEHandler(*D, MapperCGF);
8932   MEHandler.generateAllInfoForMapper(BasePointers, Pointers, Sizes, MapTypes);
8933 
8934   // Call the runtime API __tgt_mapper_num_components to get the number of
8935   // pre-existing components.
8936   llvm::Value *OffloadingArgs[] = {Handle};
8937   llvm::Value *PreviousSize = MapperCGF.EmitRuntimeCall(
8938       createRuntimeFunction(OMPRTL__tgt_mapper_num_components), OffloadingArgs);
8939   llvm::Value *ShiftedPreviousSize = MapperCGF.Builder.CreateShl(
8940       PreviousSize,
8941       MapperCGF.Builder.getInt64(MappableExprsHandler::getFlagMemberOffset()));
8942 
8943   // Fill up the runtime mapper handle for all components.
8944   for (unsigned I = 0; I < BasePointers.size(); ++I) {
8945     llvm::Value *CurBaseArg = MapperCGF.Builder.CreateBitCast(
8946         *BasePointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
8947     llvm::Value *CurBeginArg = MapperCGF.Builder.CreateBitCast(
8948         Pointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
8949     llvm::Value *CurSizeArg = Sizes[I];
8950 
8951     // Extract the MEMBER_OF field from the map type.
8952     llvm::BasicBlock *MemberBB = MapperCGF.createBasicBlock("omp.member");
8953     MapperCGF.EmitBlock(MemberBB);
8954     llvm::Value *OriMapType = MapperCGF.Builder.getInt64(MapTypes[I]);
8955     llvm::Value *Member = MapperCGF.Builder.CreateAnd(
8956         OriMapType,
8957         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_MEMBER_OF));
8958     llvm::BasicBlock *MemberCombineBB =
8959         MapperCGF.createBasicBlock("omp.member.combine");
8960     llvm::BasicBlock *TypeBB = MapperCGF.createBasicBlock("omp.type");
8961     llvm::Value *IsMember = MapperCGF.Builder.CreateIsNull(Member);
8962     MapperCGF.Builder.CreateCondBr(IsMember, TypeBB, MemberCombineBB);
8963     // Add the number of pre-existing components to the MEMBER_OF field if it
8964     // is valid.
8965     MapperCGF.EmitBlock(MemberCombineBB);
8966     llvm::Value *CombinedMember =
8967         MapperCGF.Builder.CreateNUWAdd(OriMapType, ShiftedPreviousSize);
8968     // Do nothing if it is not a member of previous components.
8969     MapperCGF.EmitBlock(TypeBB);
8970     llvm::PHINode *MemberMapType =
8971         MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.membermaptype");
8972     MemberMapType->addIncoming(OriMapType, MemberBB);
8973     MemberMapType->addIncoming(CombinedMember, MemberCombineBB);
8974 
8975     // Combine the map type inherited from user-defined mapper with that
8976     // specified in the program. According to the OMP_MAP_TO and OMP_MAP_FROM
8977     // bits of the \a MapType, which is the input argument of the mapper
8978     // function, the following code will set the OMP_MAP_TO and OMP_MAP_FROM
8979     // bits of MemberMapType.
8980     // [OpenMP 5.0], 1.2.6. map-type decay.
8981     //        | alloc |  to   | from  | tofrom | release | delete
8982     // ----------------------------------------------------------
8983     // alloc  | alloc | alloc | alloc | alloc  | release | delete
8984     // to     | alloc |  to   | alloc |   to   | release | delete
8985     // from   | alloc | alloc | from  |  from  | release | delete
8986     // tofrom | alloc |  to   | from  | tofrom | release | delete
8987     llvm::Value *LeftToFrom = MapperCGF.Builder.CreateAnd(
8988         MapType,
8989         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO |
8990                                    MappableExprsHandler::OMP_MAP_FROM));
8991     llvm::BasicBlock *AllocBB = MapperCGF.createBasicBlock("omp.type.alloc");
8992     llvm::BasicBlock *AllocElseBB =
8993         MapperCGF.createBasicBlock("omp.type.alloc.else");
8994     llvm::BasicBlock *ToBB = MapperCGF.createBasicBlock("omp.type.to");
8995     llvm::BasicBlock *ToElseBB = MapperCGF.createBasicBlock("omp.type.to.else");
8996     llvm::BasicBlock *FromBB = MapperCGF.createBasicBlock("omp.type.from");
8997     llvm::BasicBlock *EndBB = MapperCGF.createBasicBlock("omp.type.end");
8998     llvm::Value *IsAlloc = MapperCGF.Builder.CreateIsNull(LeftToFrom);
8999     MapperCGF.Builder.CreateCondBr(IsAlloc, AllocBB, AllocElseBB);
9000     // In case of alloc, clear OMP_MAP_TO and OMP_MAP_FROM.
9001     MapperCGF.EmitBlock(AllocBB);
9002     llvm::Value *AllocMapType = MapperCGF.Builder.CreateAnd(
9003         MemberMapType,
9004         MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
9005                                      MappableExprsHandler::OMP_MAP_FROM)));
9006     MapperCGF.Builder.CreateBr(EndBB);
9007     MapperCGF.EmitBlock(AllocElseBB);
9008     llvm::Value *IsTo = MapperCGF.Builder.CreateICmpEQ(
9009         LeftToFrom,
9010         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO));
9011     MapperCGF.Builder.CreateCondBr(IsTo, ToBB, ToElseBB);
9012     // In case of to, clear OMP_MAP_FROM.
9013     MapperCGF.EmitBlock(ToBB);
9014     llvm::Value *ToMapType = MapperCGF.Builder.CreateAnd(
9015         MemberMapType,
9016         MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_FROM));
9017     MapperCGF.Builder.CreateBr(EndBB);
9018     MapperCGF.EmitBlock(ToElseBB);
9019     llvm::Value *IsFrom = MapperCGF.Builder.CreateICmpEQ(
9020         LeftToFrom,
9021         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_FROM));
9022     MapperCGF.Builder.CreateCondBr(IsFrom, FromBB, EndBB);
9023     // In case of from, clear OMP_MAP_TO.
9024     MapperCGF.EmitBlock(FromBB);
9025     llvm::Value *FromMapType = MapperCGF.Builder.CreateAnd(
9026         MemberMapType,
9027         MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_TO));
9028     // In case of tofrom, do nothing.
9029     MapperCGF.EmitBlock(EndBB);
9030     llvm::PHINode *CurMapType =
9031         MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.maptype");
9032     CurMapType->addIncoming(AllocMapType, AllocBB);
9033     CurMapType->addIncoming(ToMapType, ToBB);
9034     CurMapType->addIncoming(FromMapType, FromBB);
9035     CurMapType->addIncoming(MemberMapType, ToElseBB);
9036 
9037     // TODO: call the corresponding mapper function if a user-defined mapper is
9038     // associated with this map clause.
9039     // Call the runtime API __tgt_push_mapper_component to fill up the runtime
9040     // data structure.
9041     llvm::Value *OffloadingArgs[] = {Handle, CurBaseArg, CurBeginArg,
9042                                      CurSizeArg, CurMapType};
9043     MapperCGF.EmitRuntimeCall(
9044         createRuntimeFunction(OMPRTL__tgt_push_mapper_component),
9045         OffloadingArgs);
9046   }
9047 
9048   // Update the pointer to point to the next element that needs to be mapped,
9049   // and check whether we have mapped all elements.
9050   llvm::Value *PtrNext = MapperCGF.Builder.CreateConstGEP1_32(
9051       PtrPHI, /*Idx0=*/1, "omp.arraymap.next");
9052   PtrPHI->addIncoming(PtrNext, BodyBB);
9053   llvm::Value *IsDone =
9054       MapperCGF.Builder.CreateICmpEQ(PtrNext, PtrEnd, "omp.arraymap.isdone");
9055   llvm::BasicBlock *ExitBB = MapperCGF.createBasicBlock("omp.arraymap.exit");
9056   MapperCGF.Builder.CreateCondBr(IsDone, ExitBB, BodyBB);
9057 
9058   MapperCGF.EmitBlock(ExitBB);
9059   // Emit array deletion if this is an array section and \p MapType indicates
9060   // that deletion is required.
9061   emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
9062                              ElementSize, DoneBB, /*IsInit=*/false);
9063 
9064   // Emit the function exit block.
9065   MapperCGF.EmitBlock(DoneBB, /*IsFinished=*/true);
9066   MapperCGF.FinishFunction();
9067   UDMMap.try_emplace(D, Fn);
9068   if (CGF) {
9069     auto &Decls = FunctionUDMMap.FindAndConstruct(CGF->CurFn);
9070     Decls.second.push_back(D);
9071   }
9072 }
9073 
9074 /// Emit the array initialization or deletion portion for user-defined mapper
9075 /// code generation. First, it evaluates whether an array section is mapped and
9076 /// whether the \a MapType instructs to delete this section. If \a IsInit is
9077 /// true, and \a MapType indicates to not delete this array, array
9078 /// initialization code is generated. If \a IsInit is false, and \a MapType
9079 /// indicates to not this array, array deletion code is generated.
emitUDMapperArrayInitOrDel(CodeGenFunction & MapperCGF,llvm::Value * Handle,llvm::Value * Base,llvm::Value * Begin,llvm::Value * Size,llvm::Value * MapType,CharUnits ElementSize,llvm::BasicBlock * ExitBB,bool IsInit)9080 void CGOpenMPRuntime::emitUDMapperArrayInitOrDel(
9081     CodeGenFunction &MapperCGF, llvm::Value *Handle, llvm::Value *Base,
9082     llvm::Value *Begin, llvm::Value *Size, llvm::Value *MapType,
9083     CharUnits ElementSize, llvm::BasicBlock *ExitBB, bool IsInit) {
9084   StringRef Prefix = IsInit ? ".init" : ".del";
9085 
9086   // Evaluate if this is an array section.
9087   llvm::BasicBlock *IsDeleteBB =
9088       MapperCGF.createBasicBlock("omp.array" + Prefix + ".evaldelete");
9089   llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock("omp.array" + Prefix);
9090   llvm::Value *IsArray = MapperCGF.Builder.CreateICmpSGE(
9091       Size, MapperCGF.Builder.getInt64(1), "omp.arrayinit.isarray");
9092   MapperCGF.Builder.CreateCondBr(IsArray, IsDeleteBB, ExitBB);
9093 
9094   // Evaluate if we are going to delete this section.
9095   MapperCGF.EmitBlock(IsDeleteBB);
9096   llvm::Value *DeleteBit = MapperCGF.Builder.CreateAnd(
9097       MapType,
9098       MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_DELETE));
9099   llvm::Value *DeleteCond;
9100   if (IsInit) {
9101     DeleteCond = MapperCGF.Builder.CreateIsNull(
9102         DeleteBit, "omp.array" + Prefix + ".delete");
9103   } else {
9104     DeleteCond = MapperCGF.Builder.CreateIsNotNull(
9105         DeleteBit, "omp.array" + Prefix + ".delete");
9106   }
9107   MapperCGF.Builder.CreateCondBr(DeleteCond, BodyBB, ExitBB);
9108 
9109   MapperCGF.EmitBlock(BodyBB);
9110   // Get the array size by multiplying element size and element number (i.e., \p
9111   // Size).
9112   llvm::Value *ArraySize = MapperCGF.Builder.CreateNUWMul(
9113       Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity()));
9114   // Remove OMP_MAP_TO and OMP_MAP_FROM from the map type, so that it achieves
9115   // memory allocation/deletion purpose only.
9116   llvm::Value *MapTypeArg = MapperCGF.Builder.CreateAnd(
9117       MapType,
9118       MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
9119                                    MappableExprsHandler::OMP_MAP_FROM)));
9120   // Call the runtime API __tgt_push_mapper_component to fill up the runtime
9121   // data structure.
9122   llvm::Value *OffloadingArgs[] = {Handle, Base, Begin, ArraySize, MapTypeArg};
9123   MapperCGF.EmitRuntimeCall(
9124       createRuntimeFunction(OMPRTL__tgt_push_mapper_component), OffloadingArgs);
9125 }
9126 
emitTargetNumIterationsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Value * DeviceID,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)9127 void CGOpenMPRuntime::emitTargetNumIterationsCall(
9128     CodeGenFunction &CGF, const OMPExecutableDirective &D,
9129     llvm::Value *DeviceID,
9130     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
9131                                      const OMPLoopDirective &D)>
9132         SizeEmitter) {
9133   OpenMPDirectiveKind Kind = D.getDirectiveKind();
9134   const OMPExecutableDirective *TD = &D;
9135   // Get nested teams distribute kind directive, if any.
9136   if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind))
9137     TD = getNestedDistributeDirective(CGM.getContext(), D);
9138   if (!TD)
9139     return;
9140   const auto *LD = cast<OMPLoopDirective>(TD);
9141   auto &&CodeGen = [LD, DeviceID, SizeEmitter, this](CodeGenFunction &CGF,
9142                                                      PrePostActionTy &) {
9143     if (llvm::Value *NumIterations = SizeEmitter(CGF, *LD)) {
9144       llvm::Value *Args[] = {DeviceID, NumIterations};
9145       CGF.EmitRuntimeCall(
9146           createRuntimeFunction(OMPRTL__kmpc_push_target_tripcount), Args);
9147     }
9148   };
9149   emitInlinedDirective(CGF, OMPD_unknown, CodeGen);
9150 }
9151 
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,const Expr * Device,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)9152 void CGOpenMPRuntime::emitTargetCall(
9153     CodeGenFunction &CGF, const OMPExecutableDirective &D,
9154     llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
9155     const Expr *Device,
9156     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
9157                                      const OMPLoopDirective &D)>
9158         SizeEmitter) {
9159   if (!CGF.HaveInsertPoint())
9160     return;
9161 
9162   assert(OutlinedFn && "Invalid outlined function!");
9163 
9164   const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>();
9165   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
9166   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
9167   auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF,
9168                                             PrePostActionTy &) {
9169     CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9170   };
9171   emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen);
9172 
9173   CodeGenFunction::OMPTargetDataInfo InputInfo;
9174   llvm::Value *MapTypesArray = nullptr;
9175   // Fill up the pointer arrays and transfer execution to the device.
9176   auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo,
9177                     &MapTypesArray, &CS, RequiresOuterTask, &CapturedVars,
9178                     SizeEmitter](CodeGenFunction &CGF, PrePostActionTy &) {
9179     // On top of the arrays that were filled up, the target offloading call
9180     // takes as arguments the device id as well as the host pointer. The host
9181     // pointer is used by the runtime library to identify the current target
9182     // region, so it only has to be unique and not necessarily point to
9183     // anything. It could be the pointer to the outlined function that
9184     // implements the target region, but we aren't using that so that the
9185     // compiler doesn't need to keep that, and could therefore inline the host
9186     // function if proven worthwhile during optimization.
9187 
9188     // From this point on, we need to have an ID of the target region defined.
9189     assert(OutlinedFnID && "Invalid outlined function ID!");
9190 
9191     // Emit device ID if any.
9192     llvm::Value *DeviceID;
9193     if (Device) {
9194       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
9195                                            CGF.Int64Ty, /*isSigned=*/true);
9196     } else {
9197       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
9198     }
9199 
9200     // Emit the number of elements in the offloading arrays.
9201     llvm::Value *PointerNum =
9202         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
9203 
9204     // Return value of the runtime offloading call.
9205     llvm::Value *Return;
9206 
9207     llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D);
9208     llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D);
9209 
9210     // Emit tripcount for the target loop-based directive.
9211     emitTargetNumIterationsCall(CGF, D, DeviceID, SizeEmitter);
9212 
9213     bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
9214     // The target region is an outlined function launched by the runtime
9215     // via calls __tgt_target() or __tgt_target_teams().
9216     //
9217     // __tgt_target() launches a target region with one team and one thread,
9218     // executing a serial region.  This master thread may in turn launch
9219     // more threads within its team upon encountering a parallel region,
9220     // however, no additional teams can be launched on the device.
9221     //
9222     // __tgt_target_teams() launches a target region with one or more teams,
9223     // each with one or more threads.  This call is required for target
9224     // constructs such as:
9225     //  'target teams'
9226     //  'target' / 'teams'
9227     //  'target teams distribute parallel for'
9228     //  'target parallel'
9229     // and so on.
9230     //
9231     // Note that on the host and CPU targets, the runtime implementation of
9232     // these calls simply call the outlined function without forking threads.
9233     // The outlined functions themselves have runtime calls to
9234     // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
9235     // the compiler in emitTeamsCall() and emitParallelCall().
9236     //
9237     // In contrast, on the NVPTX target, the implementation of
9238     // __tgt_target_teams() launches a GPU kernel with the requested number
9239     // of teams and threads so no additional calls to the runtime are required.
9240     if (NumTeams) {
9241       // If we have NumTeams defined this means that we have an enclosed teams
9242       // region. Therefore we also expect to have NumThreads defined. These two
9243       // values should be defined in the presence of a teams directive,
9244       // regardless of having any clauses associated. If the user is using teams
9245       // but no clauses, these two values will be the default that should be
9246       // passed to the runtime library - a 32-bit integer with the value zero.
9247       assert(NumThreads && "Thread limit expression should be available along "
9248                            "with number of teams.");
9249       llvm::Value *OffloadingArgs[] = {DeviceID,
9250                                        OutlinedFnID,
9251                                        PointerNum,
9252                                        InputInfo.BasePointersArray.getPointer(),
9253                                        InputInfo.PointersArray.getPointer(),
9254                                        InputInfo.SizesArray.getPointer(),
9255                                        MapTypesArray,
9256                                        NumTeams,
9257                                        NumThreads};
9258       Return = CGF.EmitRuntimeCall(
9259           createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_teams_nowait
9260                                           : OMPRTL__tgt_target_teams),
9261           OffloadingArgs);
9262     } else {
9263       llvm::Value *OffloadingArgs[] = {DeviceID,
9264                                        OutlinedFnID,
9265                                        PointerNum,
9266                                        InputInfo.BasePointersArray.getPointer(),
9267                                        InputInfo.PointersArray.getPointer(),
9268                                        InputInfo.SizesArray.getPointer(),
9269                                        MapTypesArray};
9270       Return = CGF.EmitRuntimeCall(
9271           createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_nowait
9272                                           : OMPRTL__tgt_target),
9273           OffloadingArgs);
9274     }
9275 
9276     // Check the error code and execute the host version if required.
9277     llvm::BasicBlock *OffloadFailedBlock =
9278         CGF.createBasicBlock("omp_offload.failed");
9279     llvm::BasicBlock *OffloadContBlock =
9280         CGF.createBasicBlock("omp_offload.cont");
9281     llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return);
9282     CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
9283 
9284     CGF.EmitBlock(OffloadFailedBlock);
9285     if (RequiresOuterTask) {
9286       CapturedVars.clear();
9287       CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9288     }
9289     emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
9290     CGF.EmitBranch(OffloadContBlock);
9291 
9292     CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
9293   };
9294 
9295   // Notify that the host version must be executed.
9296   auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars,
9297                     RequiresOuterTask](CodeGenFunction &CGF,
9298                                        PrePostActionTy &) {
9299     if (RequiresOuterTask) {
9300       CapturedVars.clear();
9301       CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9302     }
9303     emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
9304   };
9305 
9306   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
9307                           &CapturedVars, RequiresOuterTask,
9308                           &CS](CodeGenFunction &CGF, PrePostActionTy &) {
9309     // Fill up the arrays with all the captured variables.
9310     MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
9311     MappableExprsHandler::MapValuesArrayTy Pointers;
9312     MappableExprsHandler::MapValuesArrayTy Sizes;
9313     MappableExprsHandler::MapFlagsArrayTy MapTypes;
9314 
9315     // Get mappable expression information.
9316     MappableExprsHandler MEHandler(D, CGF);
9317     llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers;
9318 
9319     auto RI = CS.getCapturedRecordDecl()->field_begin();
9320     auto CV = CapturedVars.begin();
9321     for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
9322                                               CE = CS.capture_end();
9323          CI != CE; ++CI, ++RI, ++CV) {
9324       MappableExprsHandler::MapBaseValuesArrayTy CurBasePointers;
9325       MappableExprsHandler::MapValuesArrayTy CurPointers;
9326       MappableExprsHandler::MapValuesArrayTy CurSizes;
9327       MappableExprsHandler::MapFlagsArrayTy CurMapTypes;
9328       MappableExprsHandler::StructRangeInfoTy PartialStruct;
9329 
9330       // VLA sizes are passed to the outlined region by copy and do not have map
9331       // information associated.
9332       if (CI->capturesVariableArrayType()) {
9333         CurBasePointers.push_back(*CV);
9334         CurPointers.push_back(*CV);
9335         CurSizes.push_back(CGF.Builder.CreateIntCast(
9336             CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true));
9337         // Copy to the device as an argument. No need to retrieve it.
9338         CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_LITERAL |
9339                               MappableExprsHandler::OMP_MAP_TARGET_PARAM |
9340                               MappableExprsHandler::OMP_MAP_IMPLICIT);
9341       } else {
9342         // If we have any information in the map clause, we use it, otherwise we
9343         // just do a default mapping.
9344         MEHandler.generateInfoForCapture(CI, *CV, CurBasePointers, CurPointers,
9345                                          CurSizes, CurMapTypes, PartialStruct);
9346         if (CurBasePointers.empty())
9347           MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers,
9348                                            CurPointers, CurSizes, CurMapTypes);
9349         // Generate correct mapping for variables captured by reference in
9350         // lambdas.
9351         if (CI->capturesVariable())
9352           MEHandler.generateInfoForLambdaCaptures(
9353               CI->getCapturedVar(), *CV, CurBasePointers, CurPointers, CurSizes,
9354               CurMapTypes, LambdaPointers);
9355       }
9356       // We expect to have at least an element of information for this capture.
9357       assert(!CurBasePointers.empty() &&
9358              "Non-existing map pointer for capture!");
9359       assert(CurBasePointers.size() == CurPointers.size() &&
9360              CurBasePointers.size() == CurSizes.size() &&
9361              CurBasePointers.size() == CurMapTypes.size() &&
9362              "Inconsistent map information sizes!");
9363 
9364       // If there is an entry in PartialStruct it means we have a struct with
9365       // individual members mapped. Emit an extra combined entry.
9366       if (PartialStruct.Base.isValid())
9367         MEHandler.emitCombinedEntry(BasePointers, Pointers, Sizes, MapTypes,
9368                                     CurMapTypes, PartialStruct);
9369 
9370       // We need to append the results of this capture to what we already have.
9371       BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
9372       Pointers.append(CurPointers.begin(), CurPointers.end());
9373       Sizes.append(CurSizes.begin(), CurSizes.end());
9374       MapTypes.append(CurMapTypes.begin(), CurMapTypes.end());
9375     }
9376     // Adjust MEMBER_OF flags for the lambdas captures.
9377     MEHandler.adjustMemberOfForLambdaCaptures(LambdaPointers, BasePointers,
9378                                               Pointers, MapTypes);
9379     // Map other list items in the map clause which are not captured variables
9380     // but "declare target link" global variables.
9381     MEHandler.generateInfoForDeclareTargetLink(BasePointers, Pointers, Sizes,
9382                                                MapTypes);
9383 
9384     TargetDataInfo Info;
9385     // Fill up the arrays and create the arguments.
9386     emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
9387     emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
9388                                  Info.PointersArray, Info.SizesArray,
9389                                  Info.MapTypesArray, Info);
9390     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
9391     InputInfo.BasePointersArray =
9392         Address(Info.BasePointersArray, CGM.getPointerAlign());
9393     InputInfo.PointersArray =
9394         Address(Info.PointersArray, CGM.getPointerAlign());
9395     InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign());
9396     MapTypesArray = Info.MapTypesArray;
9397     if (RequiresOuterTask)
9398       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
9399     else
9400       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
9401   };
9402 
9403   auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask](
9404                              CodeGenFunction &CGF, PrePostActionTy &) {
9405     if (RequiresOuterTask) {
9406       CodeGenFunction::OMPTargetDataInfo InputInfo;
9407       CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo);
9408     } else {
9409       emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen);
9410     }
9411   };
9412 
9413   // If we have a target function ID it means that we need to support
9414   // offloading, otherwise, just execute on the host. We need to execute on host
9415   // regardless of the conditional in the if clause if, e.g., the user do not
9416   // specify target triples.
9417   if (OutlinedFnID) {
9418     if (IfCond) {
9419       emitIfClause(CGF, IfCond, TargetThenGen, TargetElseGen);
9420     } else {
9421       RegionCodeGenTy ThenRCG(TargetThenGen);
9422       ThenRCG(CGF);
9423     }
9424   } else {
9425     RegionCodeGenTy ElseRCG(TargetElseGen);
9426     ElseRCG(CGF);
9427   }
9428 }
9429 
scanForTargetRegionsFunctions(const Stmt * S,StringRef ParentName)9430 void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
9431                                                     StringRef ParentName) {
9432   if (!S)
9433     return;
9434 
9435   // Codegen OMP target directives that offload compute to the device.
9436   bool RequiresDeviceCodegen =
9437       isa<OMPExecutableDirective>(S) &&
9438       isOpenMPTargetExecutionDirective(
9439           cast<OMPExecutableDirective>(S)->getDirectiveKind());
9440 
9441   if (RequiresDeviceCodegen) {
9442     const auto &E = *cast<OMPExecutableDirective>(S);
9443     unsigned DeviceID;
9444     unsigned FileID;
9445     unsigned Line;
9446     getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID,
9447                              FileID, Line);
9448 
9449     // Is this a target region that should not be emitted as an entry point? If
9450     // so just signal we are done with this target region.
9451     if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
9452                                                             ParentName, Line))
9453       return;
9454 
9455     switch (E.getDirectiveKind()) {
9456     case OMPD_target:
9457       CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName,
9458                                                    cast<OMPTargetDirective>(E));
9459       break;
9460     case OMPD_target_parallel:
9461       CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
9462           CGM, ParentName, cast<OMPTargetParallelDirective>(E));
9463       break;
9464     case OMPD_target_teams:
9465       CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
9466           CGM, ParentName, cast<OMPTargetTeamsDirective>(E));
9467       break;
9468     case OMPD_target_teams_distribute:
9469       CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
9470           CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E));
9471       break;
9472     case OMPD_target_teams_distribute_simd:
9473       CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
9474           CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E));
9475       break;
9476     case OMPD_target_parallel_for:
9477       CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
9478           CGM, ParentName, cast<OMPTargetParallelForDirective>(E));
9479       break;
9480     case OMPD_target_parallel_for_simd:
9481       CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
9482           CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E));
9483       break;
9484     case OMPD_target_simd:
9485       CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
9486           CGM, ParentName, cast<OMPTargetSimdDirective>(E));
9487       break;
9488     case OMPD_target_teams_distribute_parallel_for:
9489       CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
9490           CGM, ParentName,
9491           cast<OMPTargetTeamsDistributeParallelForDirective>(E));
9492       break;
9493     case OMPD_target_teams_distribute_parallel_for_simd:
9494       CodeGenFunction::
9495           EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
9496               CGM, ParentName,
9497               cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E));
9498       break;
9499     case OMPD_parallel:
9500     case OMPD_for:
9501     case OMPD_parallel_for:
9502     case OMPD_parallel_master:
9503     case OMPD_parallel_sections:
9504     case OMPD_for_simd:
9505     case OMPD_parallel_for_simd:
9506     case OMPD_cancel:
9507     case OMPD_cancellation_point:
9508     case OMPD_ordered:
9509     case OMPD_threadprivate:
9510     case OMPD_allocate:
9511     case OMPD_task:
9512     case OMPD_simd:
9513     case OMPD_sections:
9514     case OMPD_section:
9515     case OMPD_single:
9516     case OMPD_master:
9517     case OMPD_critical:
9518     case OMPD_taskyield:
9519     case OMPD_barrier:
9520     case OMPD_taskwait:
9521     case OMPD_taskgroup:
9522     case OMPD_atomic:
9523     case OMPD_flush:
9524     case OMPD_teams:
9525     case OMPD_target_data:
9526     case OMPD_target_exit_data:
9527     case OMPD_target_enter_data:
9528     case OMPD_distribute:
9529     case OMPD_distribute_simd:
9530     case OMPD_distribute_parallel_for:
9531     case OMPD_distribute_parallel_for_simd:
9532     case OMPD_teams_distribute:
9533     case OMPD_teams_distribute_simd:
9534     case OMPD_teams_distribute_parallel_for:
9535     case OMPD_teams_distribute_parallel_for_simd:
9536     case OMPD_target_update:
9537     case OMPD_declare_simd:
9538     case OMPD_declare_variant:
9539     case OMPD_declare_target:
9540     case OMPD_end_declare_target:
9541     case OMPD_declare_reduction:
9542     case OMPD_declare_mapper:
9543     case OMPD_taskloop:
9544     case OMPD_taskloop_simd:
9545     case OMPD_master_taskloop:
9546     case OMPD_master_taskloop_simd:
9547     case OMPD_parallel_master_taskloop:
9548     case OMPD_parallel_master_taskloop_simd:
9549     case OMPD_requires:
9550     case OMPD_unknown:
9551       llvm_unreachable("Unknown target directive for OpenMP device codegen.");
9552     }
9553     return;
9554   }
9555 
9556   if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) {
9557     if (!E->hasAssociatedStmt() || !E->getAssociatedStmt())
9558       return;
9559 
9560     scanForTargetRegionsFunctions(
9561         E->getInnermostCapturedStmt()->getCapturedStmt(), ParentName);
9562     return;
9563   }
9564 
9565   // If this is a lambda function, look into its body.
9566   if (const auto *L = dyn_cast<LambdaExpr>(S))
9567     S = L->getBody();
9568 
9569   // Keep looking for target regions recursively.
9570   for (const Stmt *II : S->children())
9571     scanForTargetRegionsFunctions(II, ParentName);
9572 }
9573 
emitTargetFunctions(GlobalDecl GD)9574 bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
9575   // If emitting code for the host, we do not process FD here. Instead we do
9576   // the normal code generation.
9577   if (!CGM.getLangOpts().OpenMPIsDevice) {
9578     if (const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) {
9579       Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
9580           OMPDeclareTargetDeclAttr::getDeviceType(FD);
9581       // Do not emit device_type(nohost) functions for the host.
9582       if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
9583         return true;
9584     }
9585     return false;
9586   }
9587 
9588   const ValueDecl *VD = cast<ValueDecl>(GD.getDecl());
9589   // Try to detect target regions in the function.
9590   if (const auto *FD = dyn_cast<FunctionDecl>(VD)) {
9591     StringRef Name = CGM.getMangledName(GD);
9592     scanForTargetRegionsFunctions(FD->getBody(), Name);
9593     Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
9594         OMPDeclareTargetDeclAttr::getDeviceType(FD);
9595     // Do not emit device_type(nohost) functions for the host.
9596     if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_Host)
9597       return true;
9598   }
9599 
9600   // Do not to emit function if it is not marked as declare target.
9601   return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) &&
9602          AlreadyEmittedTargetDecls.count(VD) == 0;
9603 }
9604 
emitTargetGlobalVariable(GlobalDecl GD)9605 bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
9606   if (!CGM.getLangOpts().OpenMPIsDevice)
9607     return false;
9608 
9609   // Check if there are Ctors/Dtors in this declaration and look for target
9610   // regions in it. We use the complete variant to produce the kernel name
9611   // mangling.
9612   QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
9613   if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
9614     for (const CXXConstructorDecl *Ctor : RD->ctors()) {
9615       StringRef ParentName =
9616           CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
9617       scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
9618     }
9619     if (const CXXDestructorDecl *Dtor = RD->getDestructor()) {
9620       StringRef ParentName =
9621           CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
9622       scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
9623     }
9624   }
9625 
9626   // Do not to emit variable if it is not marked as declare target.
9627   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
9628       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
9629           cast<VarDecl>(GD.getDecl()));
9630   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
9631       (*Res == OMPDeclareTargetDeclAttr::MT_To &&
9632        HasRequiresUnifiedSharedMemory)) {
9633     DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl()));
9634     return true;
9635   }
9636   return false;
9637 }
9638 
9639 llvm::Constant *
registerTargetFirstprivateCopy(CodeGenFunction & CGF,const VarDecl * VD)9640 CGOpenMPRuntime::registerTargetFirstprivateCopy(CodeGenFunction &CGF,
9641                                                 const VarDecl *VD) {
9642   assert(VD->getType().isConstant(CGM.getContext()) &&
9643          "Expected constant variable.");
9644   StringRef VarName;
9645   llvm::Constant *Addr;
9646   llvm::GlobalValue::LinkageTypes Linkage;
9647   QualType Ty = VD->getType();
9648   SmallString<128> Buffer;
9649   {
9650     unsigned DeviceID;
9651     unsigned FileID;
9652     unsigned Line;
9653     getTargetEntryUniqueInfo(CGM.getContext(), VD->getLocation(), DeviceID,
9654                              FileID, Line);
9655     llvm::raw_svector_ostream OS(Buffer);
9656     OS << "__omp_offloading_firstprivate_" << llvm::format("_%x", DeviceID)
9657        << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
9658     VarName = OS.str();
9659   }
9660   Linkage = llvm::GlobalValue::InternalLinkage;
9661   Addr =
9662       getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(Ty), VarName,
9663                                   getDefaultFirstprivateAddressSpace());
9664   cast<llvm::GlobalValue>(Addr)->setLinkage(Linkage);
9665   CharUnits VarSize = CGM.getContext().getTypeSizeInChars(Ty);
9666   CGM.addCompilerUsedGlobal(cast<llvm::GlobalValue>(Addr));
9667   OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
9668       VarName, Addr, VarSize,
9669       OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo, Linkage);
9670   return Addr;
9671 }
9672 
registerTargetGlobalVariable(const VarDecl * VD,llvm::Constant * Addr)9673 void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD,
9674                                                    llvm::Constant *Addr) {
9675   if (CGM.getLangOpts().OMPTargetTriples.empty() &&
9676       !CGM.getLangOpts().OpenMPIsDevice)
9677     return;
9678   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
9679       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
9680   if (!Res) {
9681     if (CGM.getLangOpts().OpenMPIsDevice) {
9682       // Register non-target variables being emitted in device code (debug info
9683       // may cause this).
9684       StringRef VarName = CGM.getMangledName(VD);
9685       EmittedNonTargetVariables.try_emplace(VarName, Addr);
9686     }
9687     return;
9688   }
9689   // Register declare target variables.
9690   OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags;
9691   StringRef VarName;
9692   CharUnits VarSize;
9693   llvm::GlobalValue::LinkageTypes Linkage;
9694 
9695   if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
9696       !HasRequiresUnifiedSharedMemory) {
9697     Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
9698     VarName = CGM.getMangledName(VD);
9699     if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) {
9700       VarSize = CGM.getContext().getTypeSizeInChars(VD->getType());
9701       assert(!VarSize.isZero() && "Expected non-zero size of the variable");
9702     } else {
9703       VarSize = CharUnits::Zero();
9704     }
9705     Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false);
9706     // Temp solution to prevent optimizations of the internal variables.
9707     if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) {
9708       std::string RefName = getName({VarName, "ref"});
9709       if (!CGM.GetGlobalValue(RefName)) {
9710         llvm::Constant *AddrRef =
9711             getOrCreateInternalVariable(Addr->getType(), RefName);
9712         auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef);
9713         GVAddrRef->setConstant(/*Val=*/true);
9714         GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage);
9715         GVAddrRef->setInitializer(Addr);
9716         CGM.addCompilerUsedGlobal(GVAddrRef);
9717       }
9718     }
9719   } else {
9720     assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
9721             (*Res == OMPDeclareTargetDeclAttr::MT_To &&
9722              HasRequiresUnifiedSharedMemory)) &&
9723            "Declare target attribute must link or to with unified memory.");
9724     if (*Res == OMPDeclareTargetDeclAttr::MT_Link)
9725       Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink;
9726     else
9727       Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
9728 
9729     if (CGM.getLangOpts().OpenMPIsDevice) {
9730       VarName = Addr->getName();
9731       Addr = nullptr;
9732     } else {
9733       VarName = getAddrOfDeclareTargetVar(VD).getName();
9734       Addr = cast<llvm::Constant>(getAddrOfDeclareTargetVar(VD).getPointer());
9735     }
9736     VarSize = CGM.getPointerSize();
9737     Linkage = llvm::GlobalValue::WeakAnyLinkage;
9738   }
9739 
9740   OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
9741       VarName, Addr, VarSize, Flags, Linkage);
9742 }
9743 
emitTargetGlobal(GlobalDecl GD)9744 bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
9745   if (isa<FunctionDecl>(GD.getDecl()) ||
9746       isa<OMPDeclareReductionDecl>(GD.getDecl()))
9747     return emitTargetFunctions(GD);
9748 
9749   return emitTargetGlobalVariable(GD);
9750 }
9751 
emitDeferredTargetDecls() const9752 void CGOpenMPRuntime::emitDeferredTargetDecls() const {
9753   for (const VarDecl *VD : DeferredGlobalVariables) {
9754     llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
9755         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
9756     if (!Res)
9757       continue;
9758     if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
9759         !HasRequiresUnifiedSharedMemory) {
9760       CGM.EmitGlobal(VD);
9761     } else {
9762       assert((*Res == OMPDeclareTargetDeclAttr::MT_Link ||
9763               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
9764                HasRequiresUnifiedSharedMemory)) &&
9765              "Expected link clause or to clause with unified memory.");
9766       (void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
9767     }
9768   }
9769 }
9770 
adjustTargetSpecificDataForLambdas(CodeGenFunction & CGF,const OMPExecutableDirective & D) const9771 void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas(
9772     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
9773   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
9774          " Expected target-based directive.");
9775 }
9776 
checkArchForUnifiedAddressing(const OMPRequiresDecl * D)9777 void CGOpenMPRuntime::checkArchForUnifiedAddressing(
9778     const OMPRequiresDecl *D) {
9779   for (const OMPClause *Clause : D->clauselists()) {
9780     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
9781       HasRequiresUnifiedSharedMemory = true;
9782       break;
9783     }
9784   }
9785 }
9786 
hasAllocateAttributeForGlobalVar(const VarDecl * VD,LangAS & AS)9787 bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
9788                                                        LangAS &AS) {
9789   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
9790     return false;
9791   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
9792   switch(A->getAllocatorType()) {
9793   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
9794   // Not supported, fallback to the default mem space.
9795   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
9796   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
9797   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
9798   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
9799   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
9800   case OMPAllocateDeclAttr::OMPConstMemAlloc:
9801   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
9802     AS = LangAS::Default;
9803     return true;
9804   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
9805     llvm_unreachable("Expected predefined allocator for the variables with the "
9806                      "static storage.");
9807   }
9808   return false;
9809 }
9810 
hasRequiresUnifiedSharedMemory() const9811 bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const {
9812   return HasRequiresUnifiedSharedMemory;
9813 }
9814 
DisableAutoDeclareTargetRAII(CodeGenModule & CGM)9815 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII(
9816     CodeGenModule &CGM)
9817     : CGM(CGM) {
9818   if (CGM.getLangOpts().OpenMPIsDevice) {
9819     SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal;
9820     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false;
9821   }
9822 }
9823 
~DisableAutoDeclareTargetRAII()9824 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() {
9825   if (CGM.getLangOpts().OpenMPIsDevice)
9826     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal;
9827 }
9828 
markAsGlobalTarget(GlobalDecl GD)9829 bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) {
9830   if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal)
9831     return true;
9832 
9833   const auto *D = cast<FunctionDecl>(GD.getDecl());
9834   // Do not to emit function if it is marked as declare target as it was already
9835   // emitted.
9836   if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) {
9837     if (D->hasBody() && AlreadyEmittedTargetDecls.count(D) == 0) {
9838       if (auto *F = dyn_cast_or_null<llvm::Function>(
9839               CGM.GetGlobalValue(CGM.getMangledName(GD))))
9840         return !F->isDeclaration();
9841       return false;
9842     }
9843     return true;
9844   }
9845 
9846   return !AlreadyEmittedTargetDecls.insert(D).second;
9847 }
9848 
emitRequiresDirectiveRegFun()9849 llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() {
9850   // If we don't have entries or if we are emitting code for the device, we
9851   // don't need to do anything.
9852   if (CGM.getLangOpts().OMPTargetTriples.empty() ||
9853       CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice ||
9854       (OffloadEntriesInfoManager.empty() &&
9855        !HasEmittedDeclareTargetRegion &&
9856        !HasEmittedTargetRegion))
9857     return nullptr;
9858 
9859   // Create and register the function that handles the requires directives.
9860   ASTContext &C = CGM.getContext();
9861 
9862   llvm::Function *RequiresRegFn;
9863   {
9864     CodeGenFunction CGF(CGM);
9865     const auto &FI = CGM.getTypes().arrangeNullaryFunction();
9866     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
9867     std::string ReqName = getName({"omp_offloading", "requires_reg"});
9868     RequiresRegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, ReqName, FI);
9869     CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {});
9870     OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE;
9871     // TODO: check for other requires clauses.
9872     // The requires directive takes effect only when a target region is
9873     // present in the compilation unit. Otherwise it is ignored and not
9874     // passed to the runtime. This avoids the runtime from throwing an error
9875     // for mismatching requires clauses across compilation units that don't
9876     // contain at least 1 target region.
9877     assert((HasEmittedTargetRegion ||
9878             HasEmittedDeclareTargetRegion ||
9879             !OffloadEntriesInfoManager.empty()) &&
9880            "Target or declare target region expected.");
9881     if (HasRequiresUnifiedSharedMemory)
9882       Flags = OMP_REQ_UNIFIED_SHARED_MEMORY;
9883     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_register_requires),
9884         llvm::ConstantInt::get(CGM.Int64Ty, Flags));
9885     CGF.FinishFunction();
9886   }
9887   return RequiresRegFn;
9888 }
9889 
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)9890 void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
9891                                     const OMPExecutableDirective &D,
9892                                     SourceLocation Loc,
9893                                     llvm::Function *OutlinedFn,
9894                                     ArrayRef<llvm::Value *> CapturedVars) {
9895   if (!CGF.HaveInsertPoint())
9896     return;
9897 
9898   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
9899   CodeGenFunction::RunCleanupsScope Scope(CGF);
9900 
9901   // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
9902   llvm::Value *Args[] = {
9903       RTLoc,
9904       CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
9905       CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
9906   llvm::SmallVector<llvm::Value *, 16> RealArgs;
9907   RealArgs.append(std::begin(Args), std::end(Args));
9908   RealArgs.append(CapturedVars.begin(), CapturedVars.end());
9909 
9910   llvm::FunctionCallee RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams);
9911   CGF.EmitRuntimeCall(RTLFn, RealArgs);
9912 }
9913 
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)9914 void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
9915                                          const Expr *NumTeams,
9916                                          const Expr *ThreadLimit,
9917                                          SourceLocation Loc) {
9918   if (!CGF.HaveInsertPoint())
9919     return;
9920 
9921   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
9922 
9923   llvm::Value *NumTeamsVal =
9924       NumTeams
9925           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
9926                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
9927           : CGF.Builder.getInt32(0);
9928 
9929   llvm::Value *ThreadLimitVal =
9930       ThreadLimit
9931           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
9932                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
9933           : CGF.Builder.getInt32(0);
9934 
9935   // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
9936   llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
9937                                      ThreadLimitVal};
9938   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams),
9939                       PushNumTeamsArgs);
9940 }
9941 
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,TargetDataInfo & Info)9942 void CGOpenMPRuntime::emitTargetDataCalls(
9943     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
9944     const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
9945   if (!CGF.HaveInsertPoint())
9946     return;
9947 
9948   // Action used to replace the default codegen action and turn privatization
9949   // off.
9950   PrePostActionTy NoPrivAction;
9951 
9952   // Generate the code for the opening of the data environment. Capture all the
9953   // arguments of the runtime call by reference because they are used in the
9954   // closing of the region.
9955   auto &&BeginThenGen = [this, &D, Device, &Info,
9956                          &CodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
9957     // Fill up the arrays with all the mapped variables.
9958     MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
9959     MappableExprsHandler::MapValuesArrayTy Pointers;
9960     MappableExprsHandler::MapValuesArrayTy Sizes;
9961     MappableExprsHandler::MapFlagsArrayTy MapTypes;
9962 
9963     // Get map clause information.
9964     MappableExprsHandler MCHandler(D, CGF);
9965     MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
9966 
9967     // Fill up the arrays and create the arguments.
9968     emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
9969 
9970     llvm::Value *BasePointersArrayArg = nullptr;
9971     llvm::Value *PointersArrayArg = nullptr;
9972     llvm::Value *SizesArrayArg = nullptr;
9973     llvm::Value *MapTypesArrayArg = nullptr;
9974     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
9975                                  SizesArrayArg, MapTypesArrayArg, Info);
9976 
9977     // Emit device ID if any.
9978     llvm::Value *DeviceID = nullptr;
9979     if (Device) {
9980       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
9981                                            CGF.Int64Ty, /*isSigned=*/true);
9982     } else {
9983       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
9984     }
9985 
9986     // Emit the number of elements in the offloading arrays.
9987     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
9988 
9989     llvm::Value *OffloadingArgs[] = {
9990         DeviceID,         PointerNum,    BasePointersArrayArg,
9991         PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
9992     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_begin),
9993                         OffloadingArgs);
9994 
9995     // If device pointer privatization is required, emit the body of the region
9996     // here. It will have to be duplicated: with and without privatization.
9997     if (!Info.CaptureDeviceAddrMap.empty())
9998       CodeGen(CGF);
9999   };
10000 
10001   // Generate code for the closing of the data region.
10002   auto &&EndThenGen = [this, Device, &Info](CodeGenFunction &CGF,
10003                                             PrePostActionTy &) {
10004     assert(Info.isValid() && "Invalid data environment closing arguments.");
10005 
10006     llvm::Value *BasePointersArrayArg = nullptr;
10007     llvm::Value *PointersArrayArg = nullptr;
10008     llvm::Value *SizesArrayArg = nullptr;
10009     llvm::Value *MapTypesArrayArg = nullptr;
10010     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
10011                                  SizesArrayArg, MapTypesArrayArg, Info);
10012 
10013     // Emit device ID if any.
10014     llvm::Value *DeviceID = nullptr;
10015     if (Device) {
10016       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10017                                            CGF.Int64Ty, /*isSigned=*/true);
10018     } else {
10019       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10020     }
10021 
10022     // Emit the number of elements in the offloading arrays.
10023     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
10024 
10025     llvm::Value *OffloadingArgs[] = {
10026         DeviceID,         PointerNum,    BasePointersArrayArg,
10027         PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
10028     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_end),
10029                         OffloadingArgs);
10030   };
10031 
10032   // If we need device pointer privatization, we need to emit the body of the
10033   // region with no privatization in the 'else' branch of the conditional.
10034   // Otherwise, we don't have to do anything.
10035   auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
10036                                                          PrePostActionTy &) {
10037     if (!Info.CaptureDeviceAddrMap.empty()) {
10038       CodeGen.setAction(NoPrivAction);
10039       CodeGen(CGF);
10040     }
10041   };
10042 
10043   // We don't have to do anything to close the region if the if clause evaluates
10044   // to false.
10045   auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
10046 
10047   if (IfCond) {
10048     emitIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
10049   } else {
10050     RegionCodeGenTy RCG(BeginThenGen);
10051     RCG(CGF);
10052   }
10053 
10054   // If we don't require privatization of device pointers, we emit the body in
10055   // between the runtime calls. This avoids duplicating the body code.
10056   if (Info.CaptureDeviceAddrMap.empty()) {
10057     CodeGen.setAction(NoPrivAction);
10058     CodeGen(CGF);
10059   }
10060 
10061   if (IfCond) {
10062     emitIfClause(CGF, IfCond, EndThenGen, EndElseGen);
10063   } else {
10064     RegionCodeGenTy RCG(EndThenGen);
10065     RCG(CGF);
10066   }
10067 }
10068 
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)10069 void CGOpenMPRuntime::emitTargetDataStandAloneCall(
10070     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10071     const Expr *Device) {
10072   if (!CGF.HaveInsertPoint())
10073     return;
10074 
10075   assert((isa<OMPTargetEnterDataDirective>(D) ||
10076           isa<OMPTargetExitDataDirective>(D) ||
10077           isa<OMPTargetUpdateDirective>(D)) &&
10078          "Expecting either target enter, exit data, or update directives.");
10079 
10080   CodeGenFunction::OMPTargetDataInfo InputInfo;
10081   llvm::Value *MapTypesArray = nullptr;
10082   // Generate the code for the opening of the data environment.
10083   auto &&ThenGen = [this, &D, Device, &InputInfo,
10084                     &MapTypesArray](CodeGenFunction &CGF, PrePostActionTy &) {
10085     // Emit device ID if any.
10086     llvm::Value *DeviceID = nullptr;
10087     if (Device) {
10088       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10089                                            CGF.Int64Ty, /*isSigned=*/true);
10090     } else {
10091       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10092     }
10093 
10094     // Emit the number of elements in the offloading arrays.
10095     llvm::Constant *PointerNum =
10096         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
10097 
10098     llvm::Value *OffloadingArgs[] = {DeviceID,
10099                                      PointerNum,
10100                                      InputInfo.BasePointersArray.getPointer(),
10101                                      InputInfo.PointersArray.getPointer(),
10102                                      InputInfo.SizesArray.getPointer(),
10103                                      MapTypesArray};
10104 
10105     // Select the right runtime function call for each expected standalone
10106     // directive.
10107     const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
10108     OpenMPRTLFunction RTLFn;
10109     switch (D.getDirectiveKind()) {
10110     case OMPD_target_enter_data:
10111       RTLFn = HasNowait ? OMPRTL__tgt_target_data_begin_nowait
10112                         : OMPRTL__tgt_target_data_begin;
10113       break;
10114     case OMPD_target_exit_data:
10115       RTLFn = HasNowait ? OMPRTL__tgt_target_data_end_nowait
10116                         : OMPRTL__tgt_target_data_end;
10117       break;
10118     case OMPD_target_update:
10119       RTLFn = HasNowait ? OMPRTL__tgt_target_data_update_nowait
10120                         : OMPRTL__tgt_target_data_update;
10121       break;
10122     case OMPD_parallel:
10123     case OMPD_for:
10124     case OMPD_parallel_for:
10125     case OMPD_parallel_master:
10126     case OMPD_parallel_sections:
10127     case OMPD_for_simd:
10128     case OMPD_parallel_for_simd:
10129     case OMPD_cancel:
10130     case OMPD_cancellation_point:
10131     case OMPD_ordered:
10132     case OMPD_threadprivate:
10133     case OMPD_allocate:
10134     case OMPD_task:
10135     case OMPD_simd:
10136     case OMPD_sections:
10137     case OMPD_section:
10138     case OMPD_single:
10139     case OMPD_master:
10140     case OMPD_critical:
10141     case OMPD_taskyield:
10142     case OMPD_barrier:
10143     case OMPD_taskwait:
10144     case OMPD_taskgroup:
10145     case OMPD_atomic:
10146     case OMPD_flush:
10147     case OMPD_teams:
10148     case OMPD_target_data:
10149     case OMPD_distribute:
10150     case OMPD_distribute_simd:
10151     case OMPD_distribute_parallel_for:
10152     case OMPD_distribute_parallel_for_simd:
10153     case OMPD_teams_distribute:
10154     case OMPD_teams_distribute_simd:
10155     case OMPD_teams_distribute_parallel_for:
10156     case OMPD_teams_distribute_parallel_for_simd:
10157     case OMPD_declare_simd:
10158     case OMPD_declare_variant:
10159     case OMPD_declare_target:
10160     case OMPD_end_declare_target:
10161     case OMPD_declare_reduction:
10162     case OMPD_declare_mapper:
10163     case OMPD_taskloop:
10164     case OMPD_taskloop_simd:
10165     case OMPD_master_taskloop:
10166     case OMPD_master_taskloop_simd:
10167     case OMPD_parallel_master_taskloop:
10168     case OMPD_parallel_master_taskloop_simd:
10169     case OMPD_target:
10170     case OMPD_target_simd:
10171     case OMPD_target_teams_distribute:
10172     case OMPD_target_teams_distribute_simd:
10173     case OMPD_target_teams_distribute_parallel_for:
10174     case OMPD_target_teams_distribute_parallel_for_simd:
10175     case OMPD_target_teams:
10176     case OMPD_target_parallel:
10177     case OMPD_target_parallel_for:
10178     case OMPD_target_parallel_for_simd:
10179     case OMPD_requires:
10180     case OMPD_unknown:
10181       llvm_unreachable("Unexpected standalone target data directive.");
10182       break;
10183     }
10184     CGF.EmitRuntimeCall(createRuntimeFunction(RTLFn), OffloadingArgs);
10185   };
10186 
10187   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray](
10188                              CodeGenFunction &CGF, PrePostActionTy &) {
10189     // Fill up the arrays with all the mapped variables.
10190     MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
10191     MappableExprsHandler::MapValuesArrayTy Pointers;
10192     MappableExprsHandler::MapValuesArrayTy Sizes;
10193     MappableExprsHandler::MapFlagsArrayTy MapTypes;
10194 
10195     // Get map clause information.
10196     MappableExprsHandler MEHandler(D, CGF);
10197     MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
10198 
10199     TargetDataInfo Info;
10200     // Fill up the arrays and create the arguments.
10201     emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
10202     emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
10203                                  Info.PointersArray, Info.SizesArray,
10204                                  Info.MapTypesArray, Info);
10205     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
10206     InputInfo.BasePointersArray =
10207         Address(Info.BasePointersArray, CGM.getPointerAlign());
10208     InputInfo.PointersArray =
10209         Address(Info.PointersArray, CGM.getPointerAlign());
10210     InputInfo.SizesArray =
10211         Address(Info.SizesArray, CGM.getPointerAlign());
10212     MapTypesArray = Info.MapTypesArray;
10213     if (D.hasClausesOfKind<OMPDependClause>())
10214       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
10215     else
10216       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
10217   };
10218 
10219   if (IfCond) {
10220     emitIfClause(CGF, IfCond, TargetThenGen,
10221                  [](CodeGenFunction &CGF, PrePostActionTy &) {});
10222   } else {
10223     RegionCodeGenTy ThenRCG(TargetThenGen);
10224     ThenRCG(CGF);
10225   }
10226 }
10227 
10228 namespace {
10229   /// Kind of parameter in a function with 'declare simd' directive.
10230   enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
10231   /// Attribute set of the parameter.
10232   struct ParamAttrTy {
10233     ParamKindTy Kind = Vector;
10234     llvm::APSInt StrideOrArg;
10235     llvm::APSInt Alignment;
10236   };
10237 } // namespace
10238 
evaluateCDTSize(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)10239 static unsigned evaluateCDTSize(const FunctionDecl *FD,
10240                                 ArrayRef<ParamAttrTy> ParamAttrs) {
10241   // Every vector variant of a SIMD-enabled function has a vector length (VLEN).
10242   // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
10243   // of that clause. The VLEN value must be power of 2.
10244   // In other case the notion of the function`s "characteristic data type" (CDT)
10245   // is used to compute the vector length.
10246   // CDT is defined in the following order:
10247   //   a) For non-void function, the CDT is the return type.
10248   //   b) If the function has any non-uniform, non-linear parameters, then the
10249   //   CDT is the type of the first such parameter.
10250   //   c) If the CDT determined by a) or b) above is struct, union, or class
10251   //   type which is pass-by-value (except for the type that maps to the
10252   //   built-in complex data type), the characteristic data type is int.
10253   //   d) If none of the above three cases is applicable, the CDT is int.
10254   // The VLEN is then determined based on the CDT and the size of vector
10255   // register of that ISA for which current vector version is generated. The
10256   // VLEN is computed using the formula below:
10257   //   VLEN  = sizeof(vector_register) / sizeof(CDT),
10258   // where vector register size specified in section 3.2.1 Registers and the
10259   // Stack Frame of original AMD64 ABI document.
10260   QualType RetType = FD->getReturnType();
10261   if (RetType.isNull())
10262     return 0;
10263   ASTContext &C = FD->getASTContext();
10264   QualType CDT;
10265   if (!RetType.isNull() && !RetType->isVoidType()) {
10266     CDT = RetType;
10267   } else {
10268     unsigned Offset = 0;
10269     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
10270       if (ParamAttrs[Offset].Kind == Vector)
10271         CDT = C.getPointerType(C.getRecordType(MD->getParent()));
10272       ++Offset;
10273     }
10274     if (CDT.isNull()) {
10275       for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
10276         if (ParamAttrs[I + Offset].Kind == Vector) {
10277           CDT = FD->getParamDecl(I)->getType();
10278           break;
10279         }
10280       }
10281     }
10282   }
10283   if (CDT.isNull())
10284     CDT = C.IntTy;
10285   CDT = CDT->getCanonicalTypeUnqualified();
10286   if (CDT->isRecordType() || CDT->isUnionType())
10287     CDT = C.IntTy;
10288   return C.getTypeSize(CDT);
10289 }
10290 
10291 static void
emitX86DeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn,const llvm::APSInt & VLENVal,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State)10292 emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
10293                            const llvm::APSInt &VLENVal,
10294                            ArrayRef<ParamAttrTy> ParamAttrs,
10295                            OMPDeclareSimdDeclAttr::BranchStateTy State) {
10296   struct ISADataTy {
10297     char ISA;
10298     unsigned VecRegSize;
10299   };
10300   ISADataTy ISAData[] = {
10301       {
10302           'b', 128
10303       }, // SSE
10304       {
10305           'c', 256
10306       }, // AVX
10307       {
10308           'd', 256
10309       }, // AVX2
10310       {
10311           'e', 512
10312       }, // AVX512
10313   };
10314   llvm::SmallVector<char, 2> Masked;
10315   switch (State) {
10316   case OMPDeclareSimdDeclAttr::BS_Undefined:
10317     Masked.push_back('N');
10318     Masked.push_back('M');
10319     break;
10320   case OMPDeclareSimdDeclAttr::BS_Notinbranch:
10321     Masked.push_back('N');
10322     break;
10323   case OMPDeclareSimdDeclAttr::BS_Inbranch:
10324     Masked.push_back('M');
10325     break;
10326   }
10327   for (char Mask : Masked) {
10328     for (const ISADataTy &Data : ISAData) {
10329       SmallString<256> Buffer;
10330       llvm::raw_svector_ostream Out(Buffer);
10331       Out << "_ZGV" << Data.ISA << Mask;
10332       if (!VLENVal) {
10333         unsigned NumElts = evaluateCDTSize(FD, ParamAttrs);
10334         assert(NumElts && "Non-zero simdlen/cdtsize expected");
10335         Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts);
10336       } else {
10337         Out << VLENVal;
10338       }
10339       for (const ParamAttrTy &ParamAttr : ParamAttrs) {
10340         switch (ParamAttr.Kind){
10341         case LinearWithVarStride:
10342           Out << 's' << ParamAttr.StrideOrArg;
10343           break;
10344         case Linear:
10345           Out << 'l';
10346           if (!!ParamAttr.StrideOrArg)
10347             Out << ParamAttr.StrideOrArg;
10348           break;
10349         case Uniform:
10350           Out << 'u';
10351           break;
10352         case Vector:
10353           Out << 'v';
10354           break;
10355         }
10356         if (!!ParamAttr.Alignment)
10357           Out << 'a' << ParamAttr.Alignment;
10358       }
10359       Out << '_' << Fn->getName();
10360       Fn->addFnAttr(Out.str());
10361     }
10362   }
10363 }
10364 
10365 // This are the Functions that are needed to mangle the name of the
10366 // vector functions generated by the compiler, according to the rules
10367 // defined in the "Vector Function ABI specifications for AArch64",
10368 // available at
10369 // https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
10370 
10371 /// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI.
10372 ///
10373 /// TODO: Need to implement the behavior for reference marked with a
10374 /// var or no linear modifiers (1.b in the section). For this, we
10375 /// need to extend ParamKindTy to support the linear modifiers.
getAArch64MTV(QualType QT,ParamKindTy Kind)10376 static bool getAArch64MTV(QualType QT, ParamKindTy Kind) {
10377   QT = QT.getCanonicalType();
10378 
10379   if (QT->isVoidType())
10380     return false;
10381 
10382   if (Kind == ParamKindTy::Uniform)
10383     return false;
10384 
10385   if (Kind == ParamKindTy::Linear)
10386     return false;
10387 
10388   // TODO: Handle linear references with modifiers
10389 
10390   if (Kind == ParamKindTy::LinearWithVarStride)
10391     return false;
10392 
10393   return true;
10394 }
10395 
10396 /// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI.
getAArch64PBV(QualType QT,ASTContext & C)10397 static bool getAArch64PBV(QualType QT, ASTContext &C) {
10398   QT = QT.getCanonicalType();
10399   unsigned Size = C.getTypeSize(QT);
10400 
10401   // Only scalars and complex within 16 bytes wide set PVB to true.
10402   if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128)
10403     return false;
10404 
10405   if (QT->isFloatingType())
10406     return true;
10407 
10408   if (QT->isIntegerType())
10409     return true;
10410 
10411   if (QT->isPointerType())
10412     return true;
10413 
10414   // TODO: Add support for complex types (section 3.1.2, item 2).
10415 
10416   return false;
10417 }
10418 
10419 /// Computes the lane size (LS) of a return type or of an input parameter,
10420 /// as defined by `LS(P)` in 3.2.1 of the AAVFABI.
10421 /// TODO: Add support for references, section 3.2.1, item 1.
getAArch64LS(QualType QT,ParamKindTy Kind,ASTContext & C)10422 static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) {
10423   if (getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) {
10424     QualType PTy = QT.getCanonicalType()->getPointeeType();
10425     if (getAArch64PBV(PTy, C))
10426       return C.getTypeSize(PTy);
10427   }
10428   if (getAArch64PBV(QT, C))
10429     return C.getTypeSize(QT);
10430 
10431   return C.getTypeSize(C.getUIntPtrType());
10432 }
10433 
10434 // Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the
10435 // signature of the scalar function, as defined in 3.2.2 of the
10436 // AAVFABI.
10437 static std::tuple<unsigned, unsigned, bool>
getNDSWDS(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)10438 getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) {
10439   QualType RetType = FD->getReturnType().getCanonicalType();
10440 
10441   ASTContext &C = FD->getASTContext();
10442 
10443   bool OutputBecomesInput = false;
10444 
10445   llvm::SmallVector<unsigned, 8> Sizes;
10446   if (!RetType->isVoidType()) {
10447     Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C));
10448     if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {}))
10449       OutputBecomesInput = true;
10450   }
10451   for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
10452     QualType QT = FD->getParamDecl(I)->getType().getCanonicalType();
10453     Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C));
10454   }
10455 
10456   assert(!Sizes.empty() && "Unable to determine NDS and WDS.");
10457   // The LS of a function parameter / return value can only be a power
10458   // of 2, starting from 8 bits, up to 128.
10459   assert(std::all_of(Sizes.begin(), Sizes.end(),
10460                      [](unsigned Size) {
10461                        return Size == 8 || Size == 16 || Size == 32 ||
10462                               Size == 64 || Size == 128;
10463                      }) &&
10464          "Invalid size");
10465 
10466   return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)),
10467                          *std::max_element(std::begin(Sizes), std::end(Sizes)),
10468                          OutputBecomesInput);
10469 }
10470 
10471 /// Mangle the parameter part of the vector function name according to
10472 /// their OpenMP classification. The mangling function is defined in
10473 /// section 3.5 of the AAVFABI.
mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs)10474 static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) {
10475   SmallString<256> Buffer;
10476   llvm::raw_svector_ostream Out(Buffer);
10477   for (const auto &ParamAttr : ParamAttrs) {
10478     switch (ParamAttr.Kind) {
10479     case LinearWithVarStride:
10480       Out << "ls" << ParamAttr.StrideOrArg;
10481       break;
10482     case Linear:
10483       Out << 'l';
10484       // Don't print the step value if it is not present or if it is
10485       // equal to 1.
10486       if (!!ParamAttr.StrideOrArg && ParamAttr.StrideOrArg != 1)
10487         Out << ParamAttr.StrideOrArg;
10488       break;
10489     case Uniform:
10490       Out << 'u';
10491       break;
10492     case Vector:
10493       Out << 'v';
10494       break;
10495     }
10496 
10497     if (!!ParamAttr.Alignment)
10498       Out << 'a' << ParamAttr.Alignment;
10499   }
10500 
10501   return Out.str();
10502 }
10503 
10504 // Function used to add the attribute. The parameter `VLEN` is
10505 // templated to allow the use of "x" when targeting scalable functions
10506 // for SVE.
10507 template <typename T>
addAArch64VectorName(T VLEN,StringRef LMask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)10508 static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix,
10509                                  char ISA, StringRef ParSeq,
10510                                  StringRef MangledName, bool OutputBecomesInput,
10511                                  llvm::Function *Fn) {
10512   SmallString<256> Buffer;
10513   llvm::raw_svector_ostream Out(Buffer);
10514   Out << Prefix << ISA << LMask << VLEN;
10515   if (OutputBecomesInput)
10516     Out << "v";
10517   Out << ParSeq << "_" << MangledName;
10518   Fn->addFnAttr(Out.str());
10519 }
10520 
10521 // Helper function to generate the Advanced SIMD names depending on
10522 // the value of the NDS when simdlen is not present.
addAArch64AdvSIMDNDSNames(unsigned NDS,StringRef Mask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)10523 static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask,
10524                                       StringRef Prefix, char ISA,
10525                                       StringRef ParSeq, StringRef MangledName,
10526                                       bool OutputBecomesInput,
10527                                       llvm::Function *Fn) {
10528   switch (NDS) {
10529   case 8:
10530     addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
10531                          OutputBecomesInput, Fn);
10532     addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName,
10533                          OutputBecomesInput, Fn);
10534     break;
10535   case 16:
10536     addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
10537                          OutputBecomesInput, Fn);
10538     addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
10539                          OutputBecomesInput, Fn);
10540     break;
10541   case 32:
10542     addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
10543                          OutputBecomesInput, Fn);
10544     addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
10545                          OutputBecomesInput, Fn);
10546     break;
10547   case 64:
10548   case 128:
10549     addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
10550                          OutputBecomesInput, Fn);
10551     break;
10552   default:
10553     llvm_unreachable("Scalar type is too wide.");
10554   }
10555 }
10556 
10557 /// Emit vector function attributes for AArch64, as defined in the AAVFABI.
emitAArch64DeclareSimdFunction(CodeGenModule & CGM,const FunctionDecl * FD,unsigned UserVLEN,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State,StringRef MangledName,char ISA,unsigned VecRegSize,llvm::Function * Fn,SourceLocation SLoc)10558 static void emitAArch64DeclareSimdFunction(
10559     CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN,
10560     ArrayRef<ParamAttrTy> ParamAttrs,
10561     OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName,
10562     char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) {
10563 
10564   // Get basic data for building the vector signature.
10565   const auto Data = getNDSWDS(FD, ParamAttrs);
10566   const unsigned NDS = std::get<0>(Data);
10567   const unsigned WDS = std::get<1>(Data);
10568   const bool OutputBecomesInput = std::get<2>(Data);
10569 
10570   // Check the values provided via `simdlen` by the user.
10571   // 1. A `simdlen(1)` doesn't produce vector signatures,
10572   if (UserVLEN == 1) {
10573     unsigned DiagID = CGM.getDiags().getCustomDiagID(
10574         DiagnosticsEngine::Warning,
10575         "The clause simdlen(1) has no effect when targeting aarch64.");
10576     CGM.getDiags().Report(SLoc, DiagID);
10577     return;
10578   }
10579 
10580   // 2. Section 3.3.1, item 1: user input must be a power of 2 for
10581   // Advanced SIMD output.
10582   if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) {
10583     unsigned DiagID = CGM.getDiags().getCustomDiagID(
10584         DiagnosticsEngine::Warning, "The value specified in simdlen must be a "
10585                                     "power of 2 when targeting Advanced SIMD.");
10586     CGM.getDiags().Report(SLoc, DiagID);
10587     return;
10588   }
10589 
10590   // 3. Section 3.4.1. SVE fixed lengh must obey the architectural
10591   // limits.
10592   if (ISA == 's' && UserVLEN != 0) {
10593     if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) {
10594       unsigned DiagID = CGM.getDiags().getCustomDiagID(
10595           DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit "
10596                                       "lanes in the architectural constraints "
10597                                       "for SVE (min is 128-bit, max is "
10598                                       "2048-bit, by steps of 128-bit)");
10599       CGM.getDiags().Report(SLoc, DiagID) << WDS;
10600       return;
10601     }
10602   }
10603 
10604   // Sort out parameter sequence.
10605   const std::string ParSeq = mangleVectorParameters(ParamAttrs);
10606   StringRef Prefix = "_ZGV";
10607   // Generate simdlen from user input (if any).
10608   if (UserVLEN) {
10609     if (ISA == 's') {
10610       // SVE generates only a masked function.
10611       addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
10612                            OutputBecomesInput, Fn);
10613     } else {
10614       assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
10615       // Advanced SIMD generates one or two functions, depending on
10616       // the `[not]inbranch` clause.
10617       switch (State) {
10618       case OMPDeclareSimdDeclAttr::BS_Undefined:
10619         addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
10620                              OutputBecomesInput, Fn);
10621         addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
10622                              OutputBecomesInput, Fn);
10623         break;
10624       case OMPDeclareSimdDeclAttr::BS_Notinbranch:
10625         addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
10626                              OutputBecomesInput, Fn);
10627         break;
10628       case OMPDeclareSimdDeclAttr::BS_Inbranch:
10629         addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
10630                              OutputBecomesInput, Fn);
10631         break;
10632       }
10633     }
10634   } else {
10635     // If no user simdlen is provided, follow the AAVFABI rules for
10636     // generating the vector length.
10637     if (ISA == 's') {
10638       // SVE, section 3.4.1, item 1.
10639       addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName,
10640                            OutputBecomesInput, Fn);
10641     } else {
10642       assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
10643       // Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or
10644       // two vector names depending on the use of the clause
10645       // `[not]inbranch`.
10646       switch (State) {
10647       case OMPDeclareSimdDeclAttr::BS_Undefined:
10648         addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
10649                                   OutputBecomesInput, Fn);
10650         addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
10651                                   OutputBecomesInput, Fn);
10652         break;
10653       case OMPDeclareSimdDeclAttr::BS_Notinbranch:
10654         addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
10655                                   OutputBecomesInput, Fn);
10656         break;
10657       case OMPDeclareSimdDeclAttr::BS_Inbranch:
10658         addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
10659                                   OutputBecomesInput, Fn);
10660         break;
10661       }
10662     }
10663   }
10664 }
10665 
emitDeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn)10666 void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
10667                                               llvm::Function *Fn) {
10668   ASTContext &C = CGM.getContext();
10669   FD = FD->getMostRecentDecl();
10670   // Map params to their positions in function decl.
10671   llvm::DenseMap<const Decl *, unsigned> ParamPositions;
10672   if (isa<CXXMethodDecl>(FD))
10673     ParamPositions.try_emplace(FD, 0);
10674   unsigned ParamPos = ParamPositions.size();
10675   for (const ParmVarDecl *P : FD->parameters()) {
10676     ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos);
10677     ++ParamPos;
10678   }
10679   while (FD) {
10680     for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
10681       llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
10682       // Mark uniform parameters.
10683       for (const Expr *E : Attr->uniforms()) {
10684         E = E->IgnoreParenImpCasts();
10685         unsigned Pos;
10686         if (isa<CXXThisExpr>(E)) {
10687           Pos = ParamPositions[FD];
10688         } else {
10689           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
10690                                 ->getCanonicalDecl();
10691           Pos = ParamPositions[PVD];
10692         }
10693         ParamAttrs[Pos].Kind = Uniform;
10694       }
10695       // Get alignment info.
10696       auto NI = Attr->alignments_begin();
10697       for (const Expr *E : Attr->aligneds()) {
10698         E = E->IgnoreParenImpCasts();
10699         unsigned Pos;
10700         QualType ParmTy;
10701         if (isa<CXXThisExpr>(E)) {
10702           Pos = ParamPositions[FD];
10703           ParmTy = E->getType();
10704         } else {
10705           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
10706                                 ->getCanonicalDecl();
10707           Pos = ParamPositions[PVD];
10708           ParmTy = PVD->getType();
10709         }
10710         ParamAttrs[Pos].Alignment =
10711             (*NI)
10712                 ? (*NI)->EvaluateKnownConstInt(C)
10713                 : llvm::APSInt::getUnsigned(
10714                       C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
10715                           .getQuantity());
10716         ++NI;
10717       }
10718       // Mark linear parameters.
10719       auto SI = Attr->steps_begin();
10720       auto MI = Attr->modifiers_begin();
10721       for (const Expr *E : Attr->linears()) {
10722         E = E->IgnoreParenImpCasts();
10723         unsigned Pos;
10724         if (isa<CXXThisExpr>(E)) {
10725           Pos = ParamPositions[FD];
10726         } else {
10727           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
10728                                 ->getCanonicalDecl();
10729           Pos = ParamPositions[PVD];
10730         }
10731         ParamAttrTy &ParamAttr = ParamAttrs[Pos];
10732         ParamAttr.Kind = Linear;
10733         if (*SI) {
10734           Expr::EvalResult Result;
10735           if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) {
10736             if (const auto *DRE =
10737                     cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
10738               if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
10739                 ParamAttr.Kind = LinearWithVarStride;
10740                 ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
10741                     ParamPositions[StridePVD->getCanonicalDecl()]);
10742               }
10743             }
10744           } else {
10745             ParamAttr.StrideOrArg = Result.Val.getInt();
10746           }
10747         }
10748         ++SI;
10749         ++MI;
10750       }
10751       llvm::APSInt VLENVal;
10752       SourceLocation ExprLoc;
10753       const Expr *VLENExpr = Attr->getSimdlen();
10754       if (VLENExpr) {
10755         VLENVal = VLENExpr->EvaluateKnownConstInt(C);
10756         ExprLoc = VLENExpr->getExprLoc();
10757       }
10758       OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
10759       if (CGM.getTriple().isX86()) {
10760         emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
10761       } else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) {
10762         unsigned VLEN = VLENVal.getExtValue();
10763         StringRef MangledName = Fn->getName();
10764         if (CGM.getTarget().hasFeature("sve"))
10765           emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
10766                                          MangledName, 's', 128, Fn, ExprLoc);
10767         if (CGM.getTarget().hasFeature("neon"))
10768           emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
10769                                          MangledName, 'n', 128, Fn, ExprLoc);
10770       }
10771     }
10772     FD = FD->getPreviousDecl();
10773   }
10774 }
10775 
10776 namespace {
10777 /// Cleanup action for doacross support.
10778 class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
10779 public:
10780   static const int DoacrossFinArgs = 2;
10781 
10782 private:
10783   llvm::FunctionCallee RTLFn;
10784   llvm::Value *Args[DoacrossFinArgs];
10785 
10786 public:
DoacrossCleanupTy(llvm::FunctionCallee RTLFn,ArrayRef<llvm::Value * > CallArgs)10787   DoacrossCleanupTy(llvm::FunctionCallee RTLFn,
10788                     ArrayRef<llvm::Value *> CallArgs)
10789       : RTLFn(RTLFn) {
10790     assert(CallArgs.size() == DoacrossFinArgs);
10791     std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
10792   }
Emit(CodeGenFunction & CGF,Flags)10793   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
10794     if (!CGF.HaveInsertPoint())
10795       return;
10796     CGF.EmitRuntimeCall(RTLFn, Args);
10797   }
10798 };
10799 } // namespace
10800 
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)10801 void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
10802                                        const OMPLoopDirective &D,
10803                                        ArrayRef<Expr *> NumIterations) {
10804   if (!CGF.HaveInsertPoint())
10805     return;
10806 
10807   ASTContext &C = CGM.getContext();
10808   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
10809   RecordDecl *RD;
10810   if (KmpDimTy.isNull()) {
10811     // Build struct kmp_dim {  // loop bounds info casted to kmp_int64
10812     //  kmp_int64 lo; // lower
10813     //  kmp_int64 up; // upper
10814     //  kmp_int64 st; // stride
10815     // };
10816     RD = C.buildImplicitRecord("kmp_dim");
10817     RD->startDefinition();
10818     addFieldToRecordDecl(C, RD, Int64Ty);
10819     addFieldToRecordDecl(C, RD, Int64Ty);
10820     addFieldToRecordDecl(C, RD, Int64Ty);
10821     RD->completeDefinition();
10822     KmpDimTy = C.getRecordType(RD);
10823   } else {
10824     RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
10825   }
10826   llvm::APInt Size(/*numBits=*/32, NumIterations.size());
10827   QualType ArrayTy =
10828       C.getConstantArrayType(KmpDimTy, Size, nullptr, ArrayType::Normal, 0);
10829 
10830   Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
10831   CGF.EmitNullInitialization(DimsAddr, ArrayTy);
10832   enum { LowerFD = 0, UpperFD, StrideFD };
10833   // Fill dims with data.
10834   for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) {
10835     LValue DimsLVal = CGF.MakeAddrLValue(
10836         CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy);
10837     // dims.upper = num_iterations;
10838     LValue UpperLVal = CGF.EmitLValueForField(
10839         DimsLVal, *std::next(RD->field_begin(), UpperFD));
10840     llvm::Value *NumIterVal =
10841         CGF.EmitScalarConversion(CGF.EmitScalarExpr(NumIterations[I]),
10842                                  D.getNumIterations()->getType(), Int64Ty,
10843                                  D.getNumIterations()->getExprLoc());
10844     CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
10845     // dims.stride = 1;
10846     LValue StrideLVal = CGF.EmitLValueForField(
10847         DimsLVal, *std::next(RD->field_begin(), StrideFD));
10848     CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
10849                           StrideLVal);
10850   }
10851 
10852   // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
10853   // kmp_int32 num_dims, struct kmp_dim * dims);
10854   llvm::Value *Args[] = {
10855       emitUpdateLocation(CGF, D.getBeginLoc()),
10856       getThreadID(CGF, D.getBeginLoc()),
10857       llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()),
10858       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
10859           CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(),
10860           CGM.VoidPtrTy)};
10861 
10862   llvm::FunctionCallee RTLFn =
10863       createRuntimeFunction(OMPRTL__kmpc_doacross_init);
10864   CGF.EmitRuntimeCall(RTLFn, Args);
10865   llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
10866       emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())};
10867   llvm::FunctionCallee FiniRTLFn =
10868       createRuntimeFunction(OMPRTL__kmpc_doacross_fini);
10869   CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
10870                                              llvm::makeArrayRef(FiniArgs));
10871 }
10872 
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)10873 void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
10874                                           const OMPDependClause *C) {
10875   QualType Int64Ty =
10876       CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
10877   llvm::APInt Size(/*numBits=*/32, C->getNumLoops());
10878   QualType ArrayTy = CGM.getContext().getConstantArrayType(
10879       Int64Ty, Size, nullptr, ArrayType::Normal, 0);
10880   Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr");
10881   for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) {
10882     const Expr *CounterVal = C->getLoopData(I);
10883     assert(CounterVal);
10884     llvm::Value *CntVal = CGF.EmitScalarConversion(
10885         CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty,
10886         CounterVal->getExprLoc());
10887     CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I),
10888                           /*Volatile=*/false, Int64Ty);
10889   }
10890   llvm::Value *Args[] = {
10891       emitUpdateLocation(CGF, C->getBeginLoc()),
10892       getThreadID(CGF, C->getBeginLoc()),
10893       CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()};
10894   llvm::FunctionCallee RTLFn;
10895   if (C->getDependencyKind() == OMPC_DEPEND_source) {
10896     RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post);
10897   } else {
10898     assert(C->getDependencyKind() == OMPC_DEPEND_sink);
10899     RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait);
10900   }
10901   CGF.EmitRuntimeCall(RTLFn, Args);
10902 }
10903 
emitCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee Callee,ArrayRef<llvm::Value * > Args) const10904 void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc,
10905                                llvm::FunctionCallee Callee,
10906                                ArrayRef<llvm::Value *> Args) const {
10907   assert(Loc.isValid() && "Outlined function call location must be valid.");
10908   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
10909 
10910   if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) {
10911     if (Fn->doesNotThrow()) {
10912       CGF.EmitNounwindRuntimeCall(Fn, Args);
10913       return;
10914     }
10915   }
10916   CGF.EmitRuntimeCall(Callee, Args);
10917 }
10918 
emitOutlinedFunctionCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee OutlinedFn,ArrayRef<llvm::Value * > Args) const10919 void CGOpenMPRuntime::emitOutlinedFunctionCall(
10920     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
10921     ArrayRef<llvm::Value *> Args) const {
10922   emitCall(CGF, Loc, OutlinedFn, Args);
10923 }
10924 
emitFunctionProlog(CodeGenFunction & CGF,const Decl * D)10925 void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) {
10926   if (const auto *FD = dyn_cast<FunctionDecl>(D))
10927     if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD))
10928       HasEmittedDeclareTargetRegion = true;
10929 }
10930 
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const10931 Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF,
10932                                              const VarDecl *NativeParam,
10933                                              const VarDecl *TargetParam) const {
10934   return CGF.GetAddrOfLocalVar(NativeParam);
10935 }
10936 
10937 namespace {
10938 /// Cleanup action for allocate support.
10939 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
10940 public:
10941   static const int CleanupArgs = 3;
10942 
10943 private:
10944   llvm::FunctionCallee RTLFn;
10945   llvm::Value *Args[CleanupArgs];
10946 
10947 public:
OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn,ArrayRef<llvm::Value * > CallArgs)10948   OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn,
10949                        ArrayRef<llvm::Value *> CallArgs)
10950       : RTLFn(RTLFn) {
10951     assert(CallArgs.size() == CleanupArgs &&
10952            "Size of arguments does not match.");
10953     std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
10954   }
Emit(CodeGenFunction & CGF,Flags)10955   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
10956     if (!CGF.HaveInsertPoint())
10957       return;
10958     CGF.EmitRuntimeCall(RTLFn, Args);
10959   }
10960 };
10961 } // namespace
10962 
getAddressOfLocalVariable(CodeGenFunction & CGF,const VarDecl * VD)10963 Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF,
10964                                                    const VarDecl *VD) {
10965   if (!VD)
10966     return Address::invalid();
10967   const VarDecl *CVD = VD->getCanonicalDecl();
10968   if (!CVD->hasAttr<OMPAllocateDeclAttr>())
10969     return Address::invalid();
10970   const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
10971   // Use the default allocation.
10972   if (AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc &&
10973       !AA->getAllocator())
10974     return Address::invalid();
10975   llvm::Value *Size;
10976   CharUnits Align = CGM.getContext().getDeclAlign(CVD);
10977   if (CVD->getType()->isVariablyModifiedType()) {
10978     Size = CGF.getTypeSize(CVD->getType());
10979     // Align the size: ((size + align - 1) / align) * align
10980     Size = CGF.Builder.CreateNUWAdd(
10981         Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
10982     Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
10983     Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
10984   } else {
10985     CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
10986     Size = CGM.getSize(Sz.alignTo(Align));
10987   }
10988   llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc());
10989   assert(AA->getAllocator() &&
10990          "Expected allocator expression for non-default allocator.");
10991   llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
10992   // According to the standard, the original allocator type is a enum (integer).
10993   // Convert to pointer type, if required.
10994   if (Allocator->getType()->isIntegerTy())
10995     Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy);
10996   else if (Allocator->getType()->isPointerTy())
10997     Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator,
10998                                                                 CGM.VoidPtrTy);
10999   llvm::Value *Args[] = {ThreadID, Size, Allocator};
11000 
11001   llvm::Value *Addr =
11002       CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_alloc), Args,
11003                           CVD->getName() + ".void.addr");
11004   llvm::Value *FiniArgs[OMPAllocateCleanupTy::CleanupArgs] = {ThreadID, Addr,
11005                                                               Allocator};
11006   llvm::FunctionCallee FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_free);
11007 
11008   CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
11009                                                 llvm::makeArrayRef(FiniArgs));
11010   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11011       Addr,
11012       CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())),
11013       CVD->getName() + ".addr");
11014   return Address(Addr, Align);
11015 }
11016 
11017 namespace {
11018 using OMPContextSelectorData =
11019     OpenMPCtxSelectorData<ArrayRef<StringRef>, llvm::APSInt>;
11020 using CompleteOMPContextSelectorData = SmallVector<OMPContextSelectorData, 4>;
11021 } // anonymous namespace
11022 
11023 /// Checks current context and returns true if it matches the context selector.
11024 template <OpenMPContextSelectorSetKind CtxSet, OpenMPContextSelectorKind Ctx,
11025           typename... Arguments>
checkContext(const OMPContextSelectorData & Data,Arguments...Params)11026 static bool checkContext(const OMPContextSelectorData &Data,
11027                          Arguments... Params) {
11028   assert(Data.CtxSet != OMP_CTX_SET_unknown && Data.Ctx != OMP_CTX_unknown &&
11029          "Unknown context selector or context selector set.");
11030   return false;
11031 }
11032 
11033 /// Checks for implementation={vendor(<vendor>)} context selector.
11034 /// \returns true iff <vendor>="llvm", false otherwise.
11035 template <>
checkContext(const OMPContextSelectorData & Data)11036 bool checkContext<OMP_CTX_SET_implementation, OMP_CTX_vendor>(
11037     const OMPContextSelectorData &Data) {
11038   return llvm::all_of(Data.Names,
11039                       [](StringRef S) { return !S.compare_lower("llvm"); });
11040 }
11041 
11042 /// Checks for device={kind(<kind>)} context selector.
11043 /// \returns true if <kind>="host" and compilation is for host.
11044 /// true if <kind>="nohost" and compilation is for device.
11045 /// true if <kind>="cpu" and compilation is for Arm, X86 or PPC CPU.
11046 /// true if <kind>="gpu" and compilation is for NVPTX or AMDGCN.
11047 /// false otherwise.
11048 template <>
checkContext(const OMPContextSelectorData & Data,CodeGenModule & CGM)11049 bool checkContext<OMP_CTX_SET_device, OMP_CTX_kind, CodeGenModule &>(
11050     const OMPContextSelectorData &Data, CodeGenModule &CGM) {
11051   for (StringRef Name : Data.Names) {
11052     if (!Name.compare_lower("host")) {
11053       if (CGM.getLangOpts().OpenMPIsDevice)
11054         return false;
11055       continue;
11056     }
11057     if (!Name.compare_lower("nohost")) {
11058       if (!CGM.getLangOpts().OpenMPIsDevice)
11059         return false;
11060       continue;
11061     }
11062     switch (CGM.getTriple().getArch()) {
11063     case llvm::Triple::arm:
11064     case llvm::Triple::armeb:
11065     case llvm::Triple::aarch64:
11066     case llvm::Triple::aarch64_be:
11067     case llvm::Triple::aarch64_32:
11068     case llvm::Triple::ppc:
11069     case llvm::Triple::ppc64:
11070     case llvm::Triple::ppc64le:
11071     case llvm::Triple::x86:
11072     case llvm::Triple::x86_64:
11073       if (Name.compare_lower("cpu"))
11074         return false;
11075       break;
11076     case llvm::Triple::amdgcn:
11077     case llvm::Triple::nvptx:
11078     case llvm::Triple::nvptx64:
11079       if (Name.compare_lower("gpu"))
11080         return false;
11081       break;
11082     case llvm::Triple::UnknownArch:
11083     case llvm::Triple::arc:
11084     case llvm::Triple::avr:
11085     case llvm::Triple::bpfel:
11086     case llvm::Triple::bpfeb:
11087     case llvm::Triple::hexagon:
11088     case llvm::Triple::mips:
11089     case llvm::Triple::mipsel:
11090     case llvm::Triple::mips64:
11091     case llvm::Triple::mips64el:
11092     case llvm::Triple::msp430:
11093     case llvm::Triple::r600:
11094     case llvm::Triple::riscv32:
11095     case llvm::Triple::riscv64:
11096     case llvm::Triple::sparc:
11097     case llvm::Triple::sparcv9:
11098     case llvm::Triple::sparcel:
11099     case llvm::Triple::systemz:
11100     case llvm::Triple::tce:
11101     case llvm::Triple::tcele:
11102     case llvm::Triple::thumb:
11103     case llvm::Triple::thumbeb:
11104     case llvm::Triple::xcore:
11105     case llvm::Triple::le32:
11106     case llvm::Triple::le64:
11107     case llvm::Triple::amdil:
11108     case llvm::Triple::amdil64:
11109     case llvm::Triple::hsail:
11110     case llvm::Triple::hsail64:
11111     case llvm::Triple::spir:
11112     case llvm::Triple::spir64:
11113     case llvm::Triple::kalimba:
11114     case llvm::Triple::shave:
11115     case llvm::Triple::lanai:
11116     case llvm::Triple::wasm32:
11117     case llvm::Triple::wasm64:
11118     case llvm::Triple::renderscript32:
11119     case llvm::Triple::renderscript64:
11120     case llvm::Triple::ve:
11121       return false;
11122     }
11123   }
11124   return true;
11125 }
11126 
matchesContext(CodeGenModule & CGM,const CompleteOMPContextSelectorData & ContextData)11127 static bool matchesContext(CodeGenModule &CGM,
11128                            const CompleteOMPContextSelectorData &ContextData) {
11129   for (const OMPContextSelectorData &Data : ContextData) {
11130     switch (Data.Ctx) {
11131     case OMP_CTX_vendor:
11132       assert(Data.CtxSet == OMP_CTX_SET_implementation &&
11133              "Expected implementation context selector set.");
11134       if (!checkContext<OMP_CTX_SET_implementation, OMP_CTX_vendor>(Data))
11135         return false;
11136       break;
11137     case OMP_CTX_kind:
11138       assert(Data.CtxSet == OMP_CTX_SET_device &&
11139              "Expected device context selector set.");
11140       if (!checkContext<OMP_CTX_SET_device, OMP_CTX_kind, CodeGenModule &>(Data,
11141                                                                            CGM))
11142         return false;
11143       break;
11144     case OMP_CTX_unknown:
11145       llvm_unreachable("Unknown context selector kind.");
11146     }
11147   }
11148   return true;
11149 }
11150 
11151 static CompleteOMPContextSelectorData
translateAttrToContextSelectorData(ASTContext & C,const OMPDeclareVariantAttr * A)11152 translateAttrToContextSelectorData(ASTContext &C,
11153                                    const OMPDeclareVariantAttr *A) {
11154   CompleteOMPContextSelectorData Data;
11155   for (unsigned I = 0, E = A->scores_size(); I < E; ++I) {
11156     Data.emplace_back();
11157     auto CtxSet = static_cast<OpenMPContextSelectorSetKind>(
11158         *std::next(A->ctxSelectorSets_begin(), I));
11159     auto Ctx = static_cast<OpenMPContextSelectorKind>(
11160         *std::next(A->ctxSelectors_begin(), I));
11161     Data.back().CtxSet = CtxSet;
11162     Data.back().Ctx = Ctx;
11163     const Expr *Score = *std::next(A->scores_begin(), I);
11164     Data.back().Score = Score->EvaluateKnownConstInt(C);
11165     switch (Ctx) {
11166     case OMP_CTX_vendor:
11167       assert(CtxSet == OMP_CTX_SET_implementation &&
11168              "Expected implementation context selector set.");
11169       Data.back().Names =
11170           llvm::makeArrayRef(A->implVendors_begin(), A->implVendors_end());
11171       break;
11172     case OMP_CTX_kind:
11173       assert(CtxSet == OMP_CTX_SET_device &&
11174              "Expected device context selector set.");
11175       Data.back().Names =
11176           llvm::makeArrayRef(A->deviceKinds_begin(), A->deviceKinds_end());
11177       break;
11178     case OMP_CTX_unknown:
11179       llvm_unreachable("Unknown context selector kind.");
11180     }
11181   }
11182   return Data;
11183 }
11184 
isStrictSubset(const CompleteOMPContextSelectorData & LHS,const CompleteOMPContextSelectorData & RHS)11185 static bool isStrictSubset(const CompleteOMPContextSelectorData &LHS,
11186                            const CompleteOMPContextSelectorData &RHS) {
11187   llvm::SmallDenseMap<std::pair<int, int>, llvm::StringSet<>, 4> RHSData;
11188   for (const OMPContextSelectorData &D : RHS) {
11189     auto &Pair = RHSData.FindAndConstruct(std::make_pair(D.CtxSet, D.Ctx));
11190     Pair.getSecond().insert(D.Names.begin(), D.Names.end());
11191   }
11192   bool AllSetsAreEqual = true;
11193   for (const OMPContextSelectorData &D : LHS) {
11194     auto It = RHSData.find(std::make_pair(D.CtxSet, D.Ctx));
11195     if (It == RHSData.end())
11196       return false;
11197     if (D.Names.size() > It->getSecond().size())
11198       return false;
11199     if (llvm::set_union(It->getSecond(), D.Names))
11200       return false;
11201     AllSetsAreEqual =
11202         AllSetsAreEqual && (D.Names.size() == It->getSecond().size());
11203   }
11204 
11205   return LHS.size() != RHS.size() || !AllSetsAreEqual;
11206 }
11207 
greaterCtxScore(const CompleteOMPContextSelectorData & LHS,const CompleteOMPContextSelectorData & RHS)11208 static bool greaterCtxScore(const CompleteOMPContextSelectorData &LHS,
11209                             const CompleteOMPContextSelectorData &RHS) {
11210   // Score is calculated as sum of all scores + 1.
11211   llvm::APSInt LHSScore(llvm::APInt(64, 1), /*isUnsigned=*/false);
11212   bool RHSIsSubsetOfLHS = isStrictSubset(RHS, LHS);
11213   if (RHSIsSubsetOfLHS) {
11214     LHSScore = llvm::APSInt::get(0);
11215   } else {
11216     for (const OMPContextSelectorData &Data : LHS) {
11217       if (Data.Score.getBitWidth() > LHSScore.getBitWidth()) {
11218         LHSScore = LHSScore.extend(Data.Score.getBitWidth()) + Data.Score;
11219       } else if (Data.Score.getBitWidth() < LHSScore.getBitWidth()) {
11220         LHSScore += Data.Score.extend(LHSScore.getBitWidth());
11221       } else {
11222         LHSScore += Data.Score;
11223       }
11224     }
11225   }
11226   llvm::APSInt RHSScore(llvm::APInt(64, 1), /*isUnsigned=*/false);
11227   if (!RHSIsSubsetOfLHS && isStrictSubset(LHS, RHS)) {
11228     RHSScore = llvm::APSInt::get(0);
11229   } else {
11230     for (const OMPContextSelectorData &Data : RHS) {
11231       if (Data.Score.getBitWidth() > RHSScore.getBitWidth()) {
11232         RHSScore = RHSScore.extend(Data.Score.getBitWidth()) + Data.Score;
11233       } else if (Data.Score.getBitWidth() < RHSScore.getBitWidth()) {
11234         RHSScore += Data.Score.extend(RHSScore.getBitWidth());
11235       } else {
11236         RHSScore += Data.Score;
11237       }
11238     }
11239   }
11240   return llvm::APSInt::compareValues(LHSScore, RHSScore) >= 0;
11241 }
11242 
11243 /// Finds the variant function that matches current context with its context
11244 /// selector.
getDeclareVariantFunction(CodeGenModule & CGM,const FunctionDecl * FD)11245 static const FunctionDecl *getDeclareVariantFunction(CodeGenModule &CGM,
11246                                                      const FunctionDecl *FD) {
11247   if (!FD->hasAttrs() || !FD->hasAttr<OMPDeclareVariantAttr>())
11248     return FD;
11249   // Iterate through all DeclareVariant attributes and check context selectors.
11250   const OMPDeclareVariantAttr *TopMostAttr = nullptr;
11251   CompleteOMPContextSelectorData TopMostData;
11252   for (const auto *A : FD->specific_attrs<OMPDeclareVariantAttr>()) {
11253     CompleteOMPContextSelectorData Data =
11254         translateAttrToContextSelectorData(CGM.getContext(), A);
11255     if (!matchesContext(CGM, Data))
11256       continue;
11257     // If the attribute matches the context, find the attribute with the highest
11258     // score.
11259     if (!TopMostAttr || !greaterCtxScore(TopMostData, Data)) {
11260       TopMostAttr = A;
11261       TopMostData.swap(Data);
11262     }
11263   }
11264   if (!TopMostAttr)
11265     return FD;
11266   return cast<FunctionDecl>(
11267       cast<DeclRefExpr>(TopMostAttr->getVariantFuncRef()->IgnoreParenImpCasts())
11268           ->getDecl());
11269 }
11270 
emitDeclareVariant(GlobalDecl GD,bool IsForDefinition)11271 bool CGOpenMPRuntime::emitDeclareVariant(GlobalDecl GD, bool IsForDefinition) {
11272   const auto *D = cast<FunctionDecl>(GD.getDecl());
11273   // If the original function is defined already, use its definition.
11274   StringRef MangledName = CGM.getMangledName(GD);
11275   llvm::GlobalValue *Orig = CGM.GetGlobalValue(MangledName);
11276   if (Orig && !Orig->isDeclaration())
11277     return false;
11278   const FunctionDecl *NewFD = getDeclareVariantFunction(CGM, D);
11279   // Emit original function if it does not have declare variant attribute or the
11280   // context does not match.
11281   if (NewFD == D)
11282     return false;
11283   GlobalDecl NewGD = GD.getWithDecl(NewFD);
11284   if (tryEmitDeclareVariant(NewGD, GD, Orig, IsForDefinition)) {
11285     DeferredVariantFunction.erase(D);
11286     return true;
11287   }
11288   DeferredVariantFunction.insert(std::make_pair(D, std::make_pair(NewGD, GD)));
11289   return true;
11290 }
11291 
NontemporalDeclsRAII(CodeGenModule & CGM,const OMPLoopDirective & S)11292 CGOpenMPRuntime::NontemporalDeclsRAII::NontemporalDeclsRAII(
11293     CodeGenModule &CGM, const OMPLoopDirective &S)
11294     : CGM(CGM), NeedToPush(S.hasClausesOfKind<OMPNontemporalClause>()) {
11295   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11296   if (!NeedToPush)
11297     return;
11298   NontemporalDeclsSet &DS =
11299       CGM.getOpenMPRuntime().NontemporalDeclsStack.emplace_back();
11300   for (const auto *C : S.getClausesOfKind<OMPNontemporalClause>()) {
11301     for (const Stmt *Ref : C->private_refs()) {
11302       const auto *SimpleRefExpr = cast<Expr>(Ref)->IgnoreParenImpCasts();
11303       const ValueDecl *VD;
11304       if (const auto *DRE = dyn_cast<DeclRefExpr>(SimpleRefExpr)) {
11305         VD = DRE->getDecl();
11306       } else {
11307         const auto *ME = cast<MemberExpr>(SimpleRefExpr);
11308         assert((ME->isImplicitCXXThis() ||
11309                 isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts())) &&
11310                "Expected member of current class.");
11311         VD = ME->getMemberDecl();
11312       }
11313       DS.insert(VD);
11314     }
11315   }
11316 }
11317 
~NontemporalDeclsRAII()11318 CGOpenMPRuntime::NontemporalDeclsRAII::~NontemporalDeclsRAII() {
11319   if (!NeedToPush)
11320     return;
11321   CGM.getOpenMPRuntime().NontemporalDeclsStack.pop_back();
11322 }
11323 
isNontemporalDecl(const ValueDecl * VD) const11324 bool CGOpenMPRuntime::isNontemporalDecl(const ValueDecl *VD) const {
11325   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11326 
11327   return llvm::any_of(
11328       CGM.getOpenMPRuntime().NontemporalDeclsStack,
11329       [VD](const NontemporalDeclsSet &Set) { return Set.count(VD) > 0; });
11330 }
11331 
LastprivateConditionalRAII(CodeGenFunction & CGF,const OMPExecutableDirective & S,LValue IVLVal)11332 CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
11333     CodeGenFunction &CGF, const OMPExecutableDirective &S, LValue IVLVal)
11334     : CGM(CGF.CGM),
11335       NeedToPush(llvm::any_of(S.getClausesOfKind<OMPLastprivateClause>(),
11336                               [](const OMPLastprivateClause *C) {
11337                                 return C->getKind() ==
11338                                        OMPC_LASTPRIVATE_conditional;
11339                               })) {
11340   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11341   if (!NeedToPush)
11342     return;
11343   LastprivateConditionalData &Data =
11344       CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
11345   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
11346     if (C->getKind() != OMPC_LASTPRIVATE_conditional)
11347       continue;
11348 
11349     for (const Expr *Ref : C->varlists()) {
11350       Data.DeclToUniqeName.try_emplace(
11351           cast<DeclRefExpr>(Ref->IgnoreParenImpCasts())->getDecl(),
11352           generateUniqueName(CGM, "pl_cond", Ref));
11353     }
11354   }
11355   Data.IVLVal = IVLVal;
11356   // In simd only mode or for simd directives no need to generate threadprivate
11357   // references for the loop iteration counter, we can use the original one
11358   // since outlining cannot happen in simd regions.
11359   if (CGF.getLangOpts().OpenMPSimd ||
11360       isOpenMPSimdDirective(S.getDirectiveKind())) {
11361     Data.UseOriginalIV = true;
11362     return;
11363   }
11364   llvm::SmallString<16> Buffer;
11365   llvm::raw_svector_ostream OS(Buffer);
11366   PresumedLoc PLoc =
11367       CGM.getContext().getSourceManager().getPresumedLoc(S.getBeginLoc());
11368   assert(PLoc.isValid() && "Source location is expected to be always valid.");
11369 
11370   llvm::sys::fs::UniqueID ID;
11371   if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
11372     CGM.getDiags().Report(diag::err_cannot_open_file)
11373         << PLoc.getFilename() << EC.message();
11374   OS << "$pl_cond_" << ID.getDevice() << "_" << ID.getFile() << "_"
11375      << PLoc.getLine() << "_" << PLoc.getColumn() << "$iv";
11376   Data.IVName = OS.str();
11377 }
11378 
~LastprivateConditionalRAII()11379 CGOpenMPRuntime::LastprivateConditionalRAII::~LastprivateConditionalRAII() {
11380   if (!NeedToPush)
11381     return;
11382   CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
11383 }
11384 
initLastprivateConditionalCounter(CodeGenFunction & CGF,const OMPExecutableDirective & S)11385 void CGOpenMPRuntime::initLastprivateConditionalCounter(
11386     CodeGenFunction &CGF, const OMPExecutableDirective &S) {
11387   if (CGM.getLangOpts().OpenMPSimd ||
11388       !llvm::any_of(S.getClausesOfKind<OMPLastprivateClause>(),
11389                     [](const OMPLastprivateClause *C) {
11390                       return C->getKind() == OMPC_LASTPRIVATE_conditional;
11391                     }))
11392     return;
11393   const CGOpenMPRuntime::LastprivateConditionalData &Data =
11394       LastprivateConditionalStack.back();
11395   if (Data.UseOriginalIV)
11396     return;
11397   // Global loop counter. Required to handle inner parallel-for regions.
11398   // global_iv = iv;
11399   Address GlobIVAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
11400       CGF, Data.IVLVal.getType(), Data.IVName);
11401   LValue GlobIVLVal = CGF.MakeAddrLValue(GlobIVAddr, Data.IVLVal.getType());
11402   llvm::Value *IVVal = CGF.EmitLoadOfScalar(Data.IVLVal, S.getBeginLoc());
11403   CGF.EmitStoreOfScalar(IVVal, GlobIVLVal);
11404 }
11405 
11406 namespace {
11407 /// Checks if the lastprivate conditional variable is referenced in LHS.
11408 class LastprivateConditionalRefChecker final
11409     : public ConstStmtVisitor<LastprivateConditionalRefChecker, bool> {
11410   CodeGenFunction &CGF;
11411   ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM;
11412   const Expr *FoundE = nullptr;
11413   const Decl *FoundD = nullptr;
11414   StringRef UniqueDeclName;
11415   LValue IVLVal;
11416   StringRef IVName;
11417   SourceLocation Loc;
11418   bool UseOriginalIV = false;
11419 
11420 public:
VisitDeclRefExpr(const DeclRefExpr * E)11421   bool VisitDeclRefExpr(const DeclRefExpr *E) {
11422     for (const CGOpenMPRuntime::LastprivateConditionalData &D :
11423          llvm::reverse(LPM)) {
11424       auto It = D.DeclToUniqeName.find(E->getDecl());
11425       if (It == D.DeclToUniqeName.end())
11426         continue;
11427       FoundE = E;
11428       FoundD = E->getDecl()->getCanonicalDecl();
11429       UniqueDeclName = It->getSecond();
11430       IVLVal = D.IVLVal;
11431       IVName = D.IVName;
11432       UseOriginalIV = D.UseOriginalIV;
11433       break;
11434     }
11435     return FoundE == E;
11436   }
VisitMemberExpr(const MemberExpr * E)11437   bool VisitMemberExpr(const MemberExpr *E) {
11438     if (!CGF.IsWrappedCXXThis(E->getBase()))
11439       return false;
11440     for (const CGOpenMPRuntime::LastprivateConditionalData &D :
11441          llvm::reverse(LPM)) {
11442       auto It = D.DeclToUniqeName.find(E->getMemberDecl());
11443       if (It == D.DeclToUniqeName.end())
11444         continue;
11445       FoundE = E;
11446       FoundD = E->getMemberDecl()->getCanonicalDecl();
11447       UniqueDeclName = It->getSecond();
11448       IVLVal = D.IVLVal;
11449       IVName = D.IVName;
11450       UseOriginalIV = D.UseOriginalIV;
11451       break;
11452     }
11453     return FoundE == E;
11454   }
VisitStmt(const Stmt * S)11455   bool VisitStmt(const Stmt *S) {
11456     for (const Stmt *Child : S->children()) {
11457       if (!Child)
11458         continue;
11459       if (const auto *E = dyn_cast<Expr>(Child))
11460         if (!E->isGLValue())
11461           continue;
11462       if (Visit(Child))
11463         return true;
11464     }
11465     return false;
11466   }
LastprivateConditionalRefChecker(CodeGenFunction & CGF,ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)11467   explicit LastprivateConditionalRefChecker(
11468       CodeGenFunction &CGF,
11469       ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)
11470       : CGF(CGF), LPM(LPM) {}
11471   std::tuple<const Expr *, const Decl *, StringRef, LValue, StringRef, bool>
getFoundData() const11472   getFoundData() const {
11473     return std::make_tuple(FoundE, FoundD, UniqueDeclName, IVLVal, IVName,
11474                            UseOriginalIV);
11475   }
11476 };
11477 } // namespace
11478 
checkAndEmitLastprivateConditional(CodeGenFunction & CGF,const Expr * LHS)11479 void CGOpenMPRuntime::checkAndEmitLastprivateConditional(CodeGenFunction &CGF,
11480                                                          const Expr *LHS) {
11481   if (CGF.getLangOpts().OpenMP < 50)
11482     return;
11483   LastprivateConditionalRefChecker Checker(CGF, LastprivateConditionalStack);
11484   if (!Checker.Visit(LHS))
11485     return;
11486   const Expr *FoundE;
11487   const Decl *FoundD;
11488   StringRef UniqueDeclName;
11489   LValue IVLVal;
11490   StringRef IVName;
11491   bool UseOriginalIV;
11492   std::tie(FoundE, FoundD, UniqueDeclName, IVLVal, IVName, UseOriginalIV) =
11493       Checker.getFoundData();
11494 
11495   // Last updated loop counter for the lastprivate conditional var.
11496   // int<xx> last_iv = 0;
11497   llvm::Type *LLIVTy = CGF.ConvertTypeForMem(IVLVal.getType());
11498   llvm::Constant *LastIV =
11499       getOrCreateInternalVariable(LLIVTy, UniqueDeclName + "$iv");
11500   cast<llvm::GlobalVariable>(LastIV)->setAlignment(
11501       IVLVal.getAlignment().getAsAlign());
11502   LValue LastIVLVal = CGF.MakeNaturalAlignAddrLValue(LastIV, IVLVal.getType());
11503 
11504   // Private address of the lastprivate conditional in the current context.
11505   // priv_a
11506   LValue LVal = CGF.EmitLValue(FoundE);
11507   // Last value of the lastprivate conditional.
11508   // decltype(priv_a) last_a;
11509   llvm::Constant *Last = getOrCreateInternalVariable(
11510       LVal.getAddress(CGF).getElementType(), UniqueDeclName);
11511   cast<llvm::GlobalVariable>(Last)->setAlignment(
11512       LVal.getAlignment().getAsAlign());
11513   LValue LastLVal =
11514       CGF.MakeAddrLValue(Last, LVal.getType(), LVal.getAlignment());
11515 
11516   // Global loop counter. Required to handle inner parallel-for regions.
11517   // global_iv
11518   if (!UseOriginalIV) {
11519     Address IVAddr =
11520         getAddrOfArtificialThreadPrivate(CGF, IVLVal.getType(), IVName);
11521     IVLVal = CGF.MakeAddrLValue(IVAddr, IVLVal.getType());
11522   }
11523   llvm::Value *IVVal = CGF.EmitLoadOfScalar(IVLVal, FoundE->getExprLoc());
11524 
11525   // #pragma omp critical(a)
11526   // if (last_iv <= iv) {
11527   //   last_iv = iv;
11528   //   last_a = priv_a;
11529   // }
11530   auto &&CodeGen = [&LastIVLVal, &IVLVal, IVVal, &LVal, &LastLVal,
11531                     FoundE](CodeGenFunction &CGF, PrePostActionTy &Action) {
11532     Action.Enter(CGF);
11533     llvm::Value *LastIVVal =
11534         CGF.EmitLoadOfScalar(LastIVLVal, FoundE->getExprLoc());
11535     // (last_iv <= global_iv) ? Check if the variable is updated and store new
11536     // value in global var.
11537     llvm::Value *CmpRes;
11538     if (IVLVal.getType()->isSignedIntegerType()) {
11539       CmpRes = CGF.Builder.CreateICmpSLE(LastIVVal, IVVal);
11540     } else {
11541       assert(IVLVal.getType()->isUnsignedIntegerType() &&
11542              "Loop iteration variable must be integer.");
11543       CmpRes = CGF.Builder.CreateICmpULE(LastIVVal, IVVal);
11544     }
11545     llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lp_cond_then");
11546     llvm::BasicBlock *ExitBB = CGF.createBasicBlock("lp_cond_exit");
11547     CGF.Builder.CreateCondBr(CmpRes, ThenBB, ExitBB);
11548     // {
11549     CGF.EmitBlock(ThenBB);
11550 
11551     //   last_iv = global_iv;
11552     CGF.EmitStoreOfScalar(IVVal, LastIVLVal);
11553 
11554     //   last_a = priv_a;
11555     switch (CGF.getEvaluationKind(LVal.getType())) {
11556     case TEK_Scalar: {
11557       llvm::Value *PrivVal = CGF.EmitLoadOfScalar(LVal, FoundE->getExprLoc());
11558       CGF.EmitStoreOfScalar(PrivVal, LastLVal);
11559       break;
11560     }
11561     case TEK_Complex: {
11562       CodeGenFunction::ComplexPairTy PrivVal =
11563           CGF.EmitLoadOfComplex(LVal, FoundE->getExprLoc());
11564       CGF.EmitStoreOfComplex(PrivVal, LastLVal, /*isInit=*/false);
11565       break;
11566     }
11567     case TEK_Aggregate:
11568       llvm_unreachable(
11569           "Aggregates are not supported in lastprivate conditional.");
11570     }
11571     // }
11572     CGF.EmitBranch(ExitBB);
11573     // There is no need to emit line number for unconditional branch.
11574     (void)ApplyDebugLocation::CreateEmpty(CGF);
11575     CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
11576   };
11577 
11578   if (CGM.getLangOpts().OpenMPSimd) {
11579     // Do not emit as a critical region as no parallel region could be emitted.
11580     RegionCodeGenTy ThenRCG(CodeGen);
11581     ThenRCG(CGF);
11582   } else {
11583     emitCriticalRegion(CGF, UniqueDeclName, CodeGen, FoundE->getExprLoc());
11584   }
11585 }
11586 
emitLastprivateConditionalFinalUpdate(CodeGenFunction & CGF,LValue PrivLVal,const VarDecl * VD,SourceLocation Loc)11587 void CGOpenMPRuntime::emitLastprivateConditionalFinalUpdate(
11588     CodeGenFunction &CGF, LValue PrivLVal, const VarDecl *VD,
11589     SourceLocation Loc) {
11590   if (CGF.getLangOpts().OpenMP < 50)
11591     return;
11592   auto It = LastprivateConditionalStack.back().DeclToUniqeName.find(VD);
11593   assert(It != LastprivateConditionalStack.back().DeclToUniqeName.end() &&
11594          "Unknown lastprivate conditional variable.");
11595   StringRef UniqueName = It->getSecond();
11596   llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(UniqueName);
11597   // The variable was not updated in the region - exit.
11598   if (!GV)
11599     return;
11600   LValue LPLVal = CGF.MakeAddrLValue(
11601       GV, PrivLVal.getType().getNonReferenceType(), PrivLVal.getAlignment());
11602   llvm::Value *Res = CGF.EmitLoadOfScalar(LPLVal, Loc);
11603   CGF.EmitStoreOfScalar(Res, PrivLVal);
11604 }
11605 
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)11606 llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction(
11607     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
11608     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
11609   llvm_unreachable("Not supported in SIMD-only mode");
11610 }
11611 
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)11612 llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction(
11613     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
11614     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
11615   llvm_unreachable("Not supported in SIMD-only mode");
11616 }
11617 
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)11618 llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction(
11619     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
11620     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
11621     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
11622     bool Tied, unsigned &NumberOfParts) {
11623   llvm_unreachable("Not supported in SIMD-only mode");
11624 }
11625 
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)11626 void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF,
11627                                            SourceLocation Loc,
11628                                            llvm::Function *OutlinedFn,
11629                                            ArrayRef<llvm::Value *> CapturedVars,
11630                                            const Expr *IfCond) {
11631   llvm_unreachable("Not supported in SIMD-only mode");
11632 }
11633 
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)11634 void CGOpenMPSIMDRuntime::emitCriticalRegion(
11635     CodeGenFunction &CGF, StringRef CriticalName,
11636     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
11637     const Expr *Hint) {
11638   llvm_unreachable("Not supported in SIMD-only mode");
11639 }
11640 
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)11641 void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF,
11642                                            const RegionCodeGenTy &MasterOpGen,
11643                                            SourceLocation Loc) {
11644   llvm_unreachable("Not supported in SIMD-only mode");
11645 }
11646 
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)11647 void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
11648                                             SourceLocation Loc) {
11649   llvm_unreachable("Not supported in SIMD-only mode");
11650 }
11651 
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)11652 void CGOpenMPSIMDRuntime::emitTaskgroupRegion(
11653     CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen,
11654     SourceLocation Loc) {
11655   llvm_unreachable("Not supported in SIMD-only mode");
11656 }
11657 
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps)11658 void CGOpenMPSIMDRuntime::emitSingleRegion(
11659     CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen,
11660     SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars,
11661     ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs,
11662     ArrayRef<const Expr *> AssignmentOps) {
11663   llvm_unreachable("Not supported in SIMD-only mode");
11664 }
11665 
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)11666 void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF,
11667                                             const RegionCodeGenTy &OrderedOpGen,
11668                                             SourceLocation Loc,
11669                                             bool IsThreads) {
11670   llvm_unreachable("Not supported in SIMD-only mode");
11671 }
11672 
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)11673 void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF,
11674                                           SourceLocation Loc,
11675                                           OpenMPDirectiveKind Kind,
11676                                           bool EmitChecks,
11677                                           bool ForceSimpleCall) {
11678   llvm_unreachable("Not supported in SIMD-only mode");
11679 }
11680 
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)11681 void CGOpenMPSIMDRuntime::emitForDispatchInit(
11682     CodeGenFunction &CGF, SourceLocation Loc,
11683     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
11684     bool Ordered, const DispatchRTInput &DispatchValues) {
11685   llvm_unreachable("Not supported in SIMD-only mode");
11686 }
11687 
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)11688 void CGOpenMPSIMDRuntime::emitForStaticInit(
11689     CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind,
11690     const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) {
11691   llvm_unreachable("Not supported in SIMD-only mode");
11692 }
11693 
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const StaticRTInput & Values)11694 void CGOpenMPSIMDRuntime::emitDistributeStaticInit(
11695     CodeGenFunction &CGF, SourceLocation Loc,
11696     OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) {
11697   llvm_unreachable("Not supported in SIMD-only mode");
11698 }
11699 
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)11700 void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
11701                                                      SourceLocation Loc,
11702                                                      unsigned IVSize,
11703                                                      bool IVSigned) {
11704   llvm_unreachable("Not supported in SIMD-only mode");
11705 }
11706 
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)11707 void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF,
11708                                               SourceLocation Loc,
11709                                               OpenMPDirectiveKind DKind) {
11710   llvm_unreachable("Not supported in SIMD-only mode");
11711 }
11712 
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)11713 llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF,
11714                                               SourceLocation Loc,
11715                                               unsigned IVSize, bool IVSigned,
11716                                               Address IL, Address LB,
11717                                               Address UB, Address ST) {
11718   llvm_unreachable("Not supported in SIMD-only mode");
11719 }
11720 
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)11721 void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
11722                                                llvm::Value *NumThreads,
11723                                                SourceLocation Loc) {
11724   llvm_unreachable("Not supported in SIMD-only mode");
11725 }
11726 
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)11727 void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF,
11728                                              ProcBindKind ProcBind,
11729                                              SourceLocation Loc) {
11730   llvm_unreachable("Not supported in SIMD-only mode");
11731 }
11732 
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)11733 Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
11734                                                     const VarDecl *VD,
11735                                                     Address VDAddr,
11736                                                     SourceLocation Loc) {
11737   llvm_unreachable("Not supported in SIMD-only mode");
11738 }
11739 
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)11740 llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition(
11741     const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit,
11742     CodeGenFunction *CGF) {
11743   llvm_unreachable("Not supported in SIMD-only mode");
11744 }
11745 
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)11746 Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate(
11747     CodeGenFunction &CGF, QualType VarType, StringRef Name) {
11748   llvm_unreachable("Not supported in SIMD-only mode");
11749 }
11750 
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * > Vars,SourceLocation Loc)11751 void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF,
11752                                     ArrayRef<const Expr *> Vars,
11753                                     SourceLocation Loc) {
11754   llvm_unreachable("Not supported in SIMD-only mode");
11755 }
11756 
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)11757 void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
11758                                        const OMPExecutableDirective &D,
11759                                        llvm::Function *TaskFunction,
11760                                        QualType SharedsTy, Address Shareds,
11761                                        const Expr *IfCond,
11762                                        const OMPTaskDataTy &Data) {
11763   llvm_unreachable("Not supported in SIMD-only mode");
11764 }
11765 
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)11766 void CGOpenMPSIMDRuntime::emitTaskLoopCall(
11767     CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D,
11768     llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds,
11769     const Expr *IfCond, const OMPTaskDataTy &Data) {
11770   llvm_unreachable("Not supported in SIMD-only mode");
11771 }
11772 
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)11773 void CGOpenMPSIMDRuntime::emitReduction(
11774     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
11775     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
11776     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
11777   assert(Options.SimpleReduction && "Only simple reduction is expected.");
11778   CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
11779                                  ReductionOps, Options);
11780 }
11781 
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)11782 llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit(
11783     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
11784     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
11785   llvm_unreachable("Not supported in SIMD-only mode");
11786 }
11787 
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)11788 void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
11789                                                   SourceLocation Loc,
11790                                                   ReductionCodeGen &RCG,
11791                                                   unsigned N) {
11792   llvm_unreachable("Not supported in SIMD-only mode");
11793 }
11794 
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)11795 Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF,
11796                                                   SourceLocation Loc,
11797                                                   llvm::Value *ReductionsPtr,
11798                                                   LValue SharedLVal) {
11799   llvm_unreachable("Not supported in SIMD-only mode");
11800 }
11801 
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc)11802 void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
11803                                            SourceLocation Loc) {
11804   llvm_unreachable("Not supported in SIMD-only mode");
11805 }
11806 
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)11807 void CGOpenMPSIMDRuntime::emitCancellationPointCall(
11808     CodeGenFunction &CGF, SourceLocation Loc,
11809     OpenMPDirectiveKind CancelRegion) {
11810   llvm_unreachable("Not supported in SIMD-only mode");
11811 }
11812 
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)11813 void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF,
11814                                          SourceLocation Loc, const Expr *IfCond,
11815                                          OpenMPDirectiveKind CancelRegion) {
11816   llvm_unreachable("Not supported in SIMD-only mode");
11817 }
11818 
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)11819 void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction(
11820     const OMPExecutableDirective &D, StringRef ParentName,
11821     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
11822     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
11823   llvm_unreachable("Not supported in SIMD-only mode");
11824 }
11825 
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,const Expr * Device,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)11826 void CGOpenMPSIMDRuntime::emitTargetCall(
11827     CodeGenFunction &CGF, const OMPExecutableDirective &D,
11828     llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
11829     const Expr *Device,
11830     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
11831                                      const OMPLoopDirective &D)>
11832         SizeEmitter) {
11833   llvm_unreachable("Not supported in SIMD-only mode");
11834 }
11835 
emitTargetFunctions(GlobalDecl GD)11836 bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) {
11837   llvm_unreachable("Not supported in SIMD-only mode");
11838 }
11839 
emitTargetGlobalVariable(GlobalDecl GD)11840 bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
11841   llvm_unreachable("Not supported in SIMD-only mode");
11842 }
11843 
emitTargetGlobal(GlobalDecl GD)11844 bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) {
11845   return false;
11846 }
11847 
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)11848 void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF,
11849                                         const OMPExecutableDirective &D,
11850                                         SourceLocation Loc,
11851                                         llvm::Function *OutlinedFn,
11852                                         ArrayRef<llvm::Value *> CapturedVars) {
11853   llvm_unreachable("Not supported in SIMD-only mode");
11854 }
11855 
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)11856 void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
11857                                              const Expr *NumTeams,
11858                                              const Expr *ThreadLimit,
11859                                              SourceLocation Loc) {
11860   llvm_unreachable("Not supported in SIMD-only mode");
11861 }
11862 
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,TargetDataInfo & Info)11863 void CGOpenMPSIMDRuntime::emitTargetDataCalls(
11864     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
11865     const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
11866   llvm_unreachable("Not supported in SIMD-only mode");
11867 }
11868 
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)11869 void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall(
11870     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
11871     const Expr *Device) {
11872   llvm_unreachable("Not supported in SIMD-only mode");
11873 }
11874 
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)11875 void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF,
11876                                            const OMPLoopDirective &D,
11877                                            ArrayRef<Expr *> NumIterations) {
11878   llvm_unreachable("Not supported in SIMD-only mode");
11879 }
11880 
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)11881 void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
11882                                               const OMPDependClause *C) {
11883   llvm_unreachable("Not supported in SIMD-only mode");
11884 }
11885 
11886 const VarDecl *
translateParameter(const FieldDecl * FD,const VarDecl * NativeParam) const11887 CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD,
11888                                         const VarDecl *NativeParam) const {
11889   llvm_unreachable("Not supported in SIMD-only mode");
11890 }
11891 
11892 Address
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const11893 CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF,
11894                                          const VarDecl *NativeParam,
11895                                          const VarDecl *TargetParam) const {
11896   llvm_unreachable("Not supported in SIMD-only mode");
11897 }
11898