1 //===-Config.h - LLVM Link Time Optimizer Configuration -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the lto::Config data structure, which allows clients to
10 // configure LTO.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LTO_CONFIG_H
15 #define LLVM_LTO_CONFIG_H
16 
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/IR/DiagnosticInfo.h"
19 #include "llvm/IR/GlobalValue.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/Passes/PassBuilder.h"
22 #include "llvm/Support/CodeGen.h"
23 #include "llvm/Target/TargetOptions.h"
24 
25 #include <functional>
26 
27 namespace llvm {
28 
29 class Error;
30 class Module;
31 class ModuleSummaryIndex;
32 class raw_pwrite_stream;
33 
34 namespace lto {
35 
36 /// LTO configuration. A linker can configure LTO by setting fields in this data
37 /// structure and passing it to the lto::LTO constructor.
38 struct Config {
39   // Note: when adding fields here, consider whether they need to be added to
40   // computeCacheKey in LTO.cpp.
41   std::string CPU;
42   TargetOptions Options;
43   std::vector<std::string> MAttrs;
44   std::vector<std::string> PassPlugins;
45   Optional<Reloc::Model> RelocModel = Reloc::PIC_;
46   Optional<CodeModel::Model> CodeModel = None;
47   CodeGenOpt::Level CGOptLevel = CodeGenOpt::Default;
48   CodeGenFileType CGFileType = CGFT_ObjectFile;
49   unsigned OptLevel = 2;
50   bool DisableVerify = false;
51 
52   /// Use the new pass manager
53   bool UseNewPM = false;
54 
55   /// Flag to indicate that the optimizer should not assume builtins are present
56   /// on the target.
57   bool Freestanding = false;
58 
59   /// Disable entirely the optimizer, including importing for ThinLTO
60   bool CodeGenOnly = false;
61 
62   /// Run PGO context sensitive IR instrumentation.
63   bool RunCSIRInstr = false;
64 
65   /// Asserts whether we can assume whole program visibility during the LTO
66   /// link.
67   bool HasWholeProgramVisibility = false;
68 
69   /// Always emit a Regular LTO object even when it is empty because no Regular
70   /// LTO modules were linked. This option is useful for some build system which
71   /// want to know a priori all possible output files.
72   bool AlwaysEmitRegularLTOObj = false;
73 
74   /// If this field is set, the set of passes run in the middle-end optimizer
75   /// will be the one specified by the string. Only works with the new pass
76   /// manager as the old one doesn't have this ability.
77   std::string OptPipeline;
78 
79   // If this field is set, it has the same effect of specifying an AA pipeline
80   // identified by the string. Only works with the new pass manager, in
81   // conjunction OptPipeline.
82   std::string AAPipeline;
83 
84   /// Setting this field will replace target triples in input files with this
85   /// triple.
86   std::string OverrideTriple;
87 
88   /// Setting this field will replace unspecified target triples in input files
89   /// with this triple.
90   std::string DefaultTriple;
91 
92   /// Context Sensitive PGO profile path.
93   std::string CSIRProfile;
94 
95   /// Sample PGO profile path.
96   std::string SampleProfile;
97 
98   /// Name remapping file for profile data.
99   std::string ProfileRemapping;
100 
101   /// The directory to store .dwo files.
102   std::string DwoDir;
103 
104   /// The name for the split debug info file used for the DW_AT_[GNU_]dwo_name
105   /// attribute in the skeleton CU. This should generally only be used when
106   /// running an individual backend directly via thinBackend(), as otherwise
107   /// all objects would use the same .dwo file. Not used as output path.
108   std::string SplitDwarfFile;
109 
110   /// The path to write a .dwo file to. This should generally only be used when
111   /// running an individual backend directly via thinBackend(), as otherwise
112   /// all .dwo files will be written to the same path. Not used in skeleton CU.
113   std::string SplitDwarfOutput;
114 
115   /// Optimization remarks file path.
116   std::string RemarksFilename = "";
117 
118   /// Optimization remarks pass filter.
119   std::string RemarksPasses = "";
120 
121   /// Whether to emit optimization remarks with hotness informations.
122   bool RemarksWithHotness = false;
123 
124   /// The format used for serializing remarks (default: YAML).
125   std::string RemarksFormat = "";
126 
127   /// Whether to emit the pass manager debuggging informations.
128   bool DebugPassManager = false;
129 
130   /// Statistics output file path.
131   std::string StatsFile;
132 
133   /// Specific thinLTO modules to compile.
134   std::vector<std::string> ThinLTOModulesToCompile;
135 
136   /// Time trace enabled.
137   bool TimeTraceEnabled = false;
138 
139   /// Time trace granularity.
140   unsigned TimeTraceGranularity = 500;
141 
142   bool ShouldDiscardValueNames = true;
143   DiagnosticHandlerFunction DiagHandler;
144 
145   /// If this field is set, LTO will write input file paths and symbol
146   /// resolutions here in llvm-lto2 command line flag format. This can be
147   /// used for testing and for running the LTO pipeline outside of the linker
148   /// with llvm-lto2.
149   std::unique_ptr<raw_ostream> ResolutionFile;
150 
151   /// Tunable parameters for passes in the default pipelines.
152   PipelineTuningOptions PTO;
153 
154   /// The following callbacks deal with tasks, which normally represent the
155   /// entire optimization and code generation pipeline for what will become a
156   /// single native object file. Each task has a unique identifier between 0 and
157   /// getMaxTasks()-1, which is supplied to the callback via the Task parameter.
158   /// A task represents the entire pipeline for ThinLTO and regular
159   /// (non-parallel) LTO, but a parallel code generation task will be split into
160   /// N tasks before code generation, where N is the parallelism level.
161   ///
162   /// LTO may decide to stop processing a task at any time, for example if the
163   /// module is empty or if a module hook (see below) returns false. For this
164   /// reason, the client should not expect to receive exactly getMaxTasks()
165   /// native object files.
166 
167   /// A module hook may be used by a linker to perform actions during the LTO
168   /// pipeline. For example, a linker may use this function to implement
169   /// -save-temps. If this function returns false, any further processing for
170   /// that task is aborted.
171   ///
172   /// Module hooks must be thread safe with respect to the linker's internal
173   /// data structures. A module hook will never be called concurrently from
174   /// multiple threads with the same task ID, or the same module.
175   ///
176   /// Note that in out-of-process backend scenarios, none of the hooks will be
177   /// called for ThinLTO tasks.
178   using ModuleHookFn = std::function<bool(unsigned Task, const Module &)>;
179 
180   /// This module hook is called after linking (regular LTO) or loading
181   /// (ThinLTO) the module, before modifying it.
182   ModuleHookFn PreOptModuleHook;
183 
184   /// This hook is called after promoting any internal functions
185   /// (ThinLTO-specific).
186   ModuleHookFn PostPromoteModuleHook;
187 
188   /// This hook is called after internalizing the module.
189   ModuleHookFn PostInternalizeModuleHook;
190 
191   /// This hook is called after importing from other modules (ThinLTO-specific).
192   ModuleHookFn PostImportModuleHook;
193 
194   /// This module hook is called after optimization is complete.
195   ModuleHookFn PostOptModuleHook;
196 
197   /// This module hook is called before code generation. It is similar to the
198   /// PostOptModuleHook, but for parallel code generation it is called after
199   /// splitting the module.
200   ModuleHookFn PreCodeGenModuleHook;
201 
202   /// A combined index hook is called after all per-module indexes have been
203   /// combined (ThinLTO-specific). It can be used to implement -save-temps for
204   /// the combined index.
205   ///
206   /// If this function returns false, any further processing for ThinLTO tasks
207   /// is aborted.
208   ///
209   /// It is called regardless of whether the backend is in-process, although it
210   /// is not called from individual backend processes.
211   using CombinedIndexHookFn = std::function<bool(
212       const ModuleSummaryIndex &Index,
213       const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols)>;
214   CombinedIndexHookFn CombinedIndexHook;
215 
216   /// This is a convenience function that configures this Config object to write
217   /// temporary files named after the given OutputFileName for each of the LTO
218   /// phases to disk. A client can use this function to implement -save-temps.
219   ///
220   /// FIXME: Temporary files derived from ThinLTO backends are currently named
221   /// after the input file name, rather than the output file name, when
222   /// UseInputModulePath is set to true.
223   ///
224   /// Specifically, it (1) sets each of the above module hooks and the combined
225   /// index hook to a function that calls the hook function (if any) that was
226   /// present in the appropriate field when the addSaveTemps function was
227   /// called, and writes the module to a bitcode file with a name prefixed by
228   /// the given output file name, and (2) creates a resolution file whose name
229   /// is prefixed by the given output file name and sets ResolutionFile to its
230   /// file handle.
231   Error addSaveTemps(std::string OutputFileName,
232                      bool UseInputModulePath = false);
233 };
234 
235 struct LTOLLVMDiagnosticHandler : public DiagnosticHandler {
236   DiagnosticHandlerFunction *Fn;
LTOLLVMDiagnosticHandlerLTOLLVMDiagnosticHandler237   LTOLLVMDiagnosticHandler(DiagnosticHandlerFunction *DiagHandlerFn)
238       : Fn(DiagHandlerFn) {}
handleDiagnosticsLTOLLVMDiagnosticHandler239   bool handleDiagnostics(const DiagnosticInfo &DI) override {
240     (*Fn)(DI);
241     return true;
242   }
243 };
244 /// A derived class of LLVMContext that initializes itself according to a given
245 /// Config object. The purpose of this class is to tie ownership of the
246 /// diagnostic handler to the context, as opposed to the Config object (which
247 /// may be ephemeral).
248 // FIXME: This should not be required as diagnostic handler is not callback.
249 struct LTOLLVMContext : LLVMContext {
250 
LTOLLVMContextLTOLLVMContext251   LTOLLVMContext(const Config &C) : DiagHandler(C.DiagHandler) {
252     setDiscardValueNames(C.ShouldDiscardValueNames);
253     enableDebugTypeODRUniquing();
254     setDiagnosticHandler(
255         std::make_unique<LTOLLVMDiagnosticHandler>(&DiagHandler), true);
256   }
257   DiagnosticHandlerFunction DiagHandler;
258 };
259 
260 }
261 }
262 
263 #endif
264