1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/MC/MCRegisterInfo.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/FormattedStream.h"
65 #include "llvm/Support/LowLevelTypeImpl.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetIntrinsicInfo.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <cstring>
75 #include <iterator>
76 #include <utility>
77 
78 using namespace llvm;
79 
getMFIfAvailable(const MachineInstr & MI)80 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
81   if (const MachineBasicBlock *MBB = MI.getParent())
82     if (const MachineFunction *MF = MBB->getParent())
83       return MF;
84   return nullptr;
85 }
86 
87 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
88 // it.
tryToGetTargetInfo(const MachineInstr & MI,const TargetRegisterInfo * & TRI,const MachineRegisterInfo * & MRI,const TargetIntrinsicInfo * & IntrinsicInfo,const TargetInstrInfo * & TII)89 static void tryToGetTargetInfo(const MachineInstr &MI,
90                                const TargetRegisterInfo *&TRI,
91                                const MachineRegisterInfo *&MRI,
92                                const TargetIntrinsicInfo *&IntrinsicInfo,
93                                const TargetInstrInfo *&TII) {
94 
95   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
96     TRI = MF->getSubtarget().getRegisterInfo();
97     MRI = &MF->getRegInfo();
98     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
99     TII = MF->getSubtarget().getInstrInfo();
100   }
101 }
102 
addImplicitDefUseOperands(MachineFunction & MF)103 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
104   if (MCID->ImplicitDefs)
105     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
106            ++ImpDefs)
107       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
108   if (MCID->ImplicitUses)
109     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
110            ++ImpUses)
111       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
112 }
113 
114 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
115 /// implicit operands. It reserves space for the number of operands specified by
116 /// the MCInstrDesc.
MachineInstr(MachineFunction & MF,const MCInstrDesc & tid,DebugLoc dl,bool NoImp)117 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
118                            DebugLoc dl, bool NoImp)
119     : MCID(&tid), debugLoc(std::move(dl)) {
120   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
121 
122   // Reserve space for the expected number of operands.
123   if (unsigned NumOps = MCID->getNumOperands() +
124     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
125     CapOperands = OperandCapacity::get(NumOps);
126     Operands = MF.allocateOperandArray(CapOperands);
127   }
128 
129   if (!NoImp)
130     addImplicitDefUseOperands(MF);
131 }
132 
133 /// MachineInstr ctor - Copies MachineInstr arg exactly
134 ///
MachineInstr(MachineFunction & MF,const MachineInstr & MI)135 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
136     : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) {
137   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
138 
139   CapOperands = OperandCapacity::get(MI.getNumOperands());
140   Operands = MF.allocateOperandArray(CapOperands);
141 
142   // Copy operands.
143   for (const MachineOperand &MO : MI.operands())
144     addOperand(MF, MO);
145 
146   // Copy all the sensible flags.
147   setFlags(MI.Flags);
148 }
149 
150 /// getRegInfo - If this instruction is embedded into a MachineFunction,
151 /// return the MachineRegisterInfo object for the current function, otherwise
152 /// return null.
getRegInfo()153 MachineRegisterInfo *MachineInstr::getRegInfo() {
154   if (MachineBasicBlock *MBB = getParent())
155     return &MBB->getParent()->getRegInfo();
156   return nullptr;
157 }
158 
159 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
160 /// this instruction from their respective use lists.  This requires that the
161 /// operands already be on their use lists.
RemoveRegOperandsFromUseLists(MachineRegisterInfo & MRI)162 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
163   for (MachineOperand &MO : operands())
164     if (MO.isReg())
165       MRI.removeRegOperandFromUseList(&MO);
166 }
167 
168 /// AddRegOperandsToUseLists - Add all of the register operands in
169 /// this instruction from their respective use lists.  This requires that the
170 /// operands not be on their use lists yet.
AddRegOperandsToUseLists(MachineRegisterInfo & MRI)171 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
172   for (MachineOperand &MO : operands())
173     if (MO.isReg())
174       MRI.addRegOperandToUseList(&MO);
175 }
176 
addOperand(const MachineOperand & Op)177 void MachineInstr::addOperand(const MachineOperand &Op) {
178   MachineBasicBlock *MBB = getParent();
179   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
180   MachineFunction *MF = MBB->getParent();
181   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
182   addOperand(*MF, Op);
183 }
184 
185 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
186 /// ranges. If MRI is non-null also update use-def chains.
moveOperands(MachineOperand * Dst,MachineOperand * Src,unsigned NumOps,MachineRegisterInfo * MRI)187 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
188                          unsigned NumOps, MachineRegisterInfo *MRI) {
189   if (MRI)
190     return MRI->moveOperands(Dst, Src, NumOps);
191   // MachineOperand is a trivially copyable type so we can just use memmove.
192   assert(Dst && Src && "Unknown operands");
193   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
194 }
195 
196 /// addOperand - Add the specified operand to the instruction.  If it is an
197 /// implicit operand, it is added to the end of the operand list.  If it is
198 /// an explicit operand it is added at the end of the explicit operand list
199 /// (before the first implicit operand).
addOperand(MachineFunction & MF,const MachineOperand & Op)200 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
201   assert(MCID && "Cannot add operands before providing an instr descriptor");
202 
203   // Check if we're adding one of our existing operands.
204   if (&Op >= Operands && &Op < Operands + NumOperands) {
205     // This is unusual: MI->addOperand(MI->getOperand(i)).
206     // If adding Op requires reallocating or moving existing operands around,
207     // the Op reference could go stale. Support it by copying Op.
208     MachineOperand CopyOp(Op);
209     return addOperand(MF, CopyOp);
210   }
211 
212   // Find the insert location for the new operand.  Implicit registers go at
213   // the end, everything else goes before the implicit regs.
214   //
215   // FIXME: Allow mixed explicit and implicit operands on inline asm.
216   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
217   // implicit-defs, but they must not be moved around.  See the FIXME in
218   // InstrEmitter.cpp.
219   unsigned OpNo = getNumOperands();
220   bool isImpReg = Op.isReg() && Op.isImplicit();
221   if (!isImpReg && !isInlineAsm()) {
222     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
223       --OpNo;
224       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
225     }
226   }
227 
228 #ifndef NDEBUG
229   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
230                    Op.getType() == MachineOperand::MO_MCSymbol;
231   // OpNo now points as the desired insertion point.  Unless this is a variadic
232   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
233   // RegMask operands go between the explicit and implicit operands.
234   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
235           OpNo < MCID->getNumOperands() || isDebugOp) &&
236          "Trying to add an operand to a machine instr that is already done!");
237 #endif
238 
239   MachineRegisterInfo *MRI = getRegInfo();
240 
241   // Determine if the Operands array needs to be reallocated.
242   // Save the old capacity and operand array.
243   OperandCapacity OldCap = CapOperands;
244   MachineOperand *OldOperands = Operands;
245   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
246     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
247     Operands = MF.allocateOperandArray(CapOperands);
248     // Move the operands before the insertion point.
249     if (OpNo)
250       moveOperands(Operands, OldOperands, OpNo, MRI);
251   }
252 
253   // Move the operands following the insertion point.
254   if (OpNo != NumOperands)
255     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
256                  MRI);
257   ++NumOperands;
258 
259   // Deallocate the old operand array.
260   if (OldOperands != Operands && OldOperands)
261     MF.deallocateOperandArray(OldCap, OldOperands);
262 
263   // Copy Op into place. It still needs to be inserted into the MRI use lists.
264   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
265   NewMO->ParentMI = this;
266 
267   // When adding a register operand, tell MRI about it.
268   if (NewMO->isReg()) {
269     // Ensure isOnRegUseList() returns false, regardless of Op's status.
270     NewMO->Contents.Reg.Prev = nullptr;
271     // Ignore existing ties. This is not a property that can be copied.
272     NewMO->TiedTo = 0;
273     // Add the new operand to MRI, but only for instructions in an MBB.
274     if (MRI)
275       MRI->addRegOperandToUseList(NewMO);
276     // The MCID operand information isn't accurate until we start adding
277     // explicit operands. The implicit operands are added first, then the
278     // explicits are inserted before them.
279     if (!isImpReg) {
280       // Tie uses to defs as indicated in MCInstrDesc.
281       if (NewMO->isUse()) {
282         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
283         if (DefIdx != -1)
284           tieOperands(DefIdx, OpNo);
285       }
286       // If the register operand is flagged as early, mark the operand as such.
287       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
288         NewMO->setIsEarlyClobber(true);
289     }
290   }
291 }
292 
293 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
294 /// fewer operand than it started with.
295 ///
RemoveOperand(unsigned OpNo)296 void MachineInstr::RemoveOperand(unsigned OpNo) {
297   assert(OpNo < getNumOperands() && "Invalid operand number");
298   untieRegOperand(OpNo);
299 
300 #ifndef NDEBUG
301   // Moving tied operands would break the ties.
302   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
303     if (Operands[i].isReg())
304       assert(!Operands[i].isTied() && "Cannot move tied operands");
305 #endif
306 
307   MachineRegisterInfo *MRI = getRegInfo();
308   if (MRI && Operands[OpNo].isReg())
309     MRI->removeRegOperandFromUseList(Operands + OpNo);
310 
311   // Don't call the MachineOperand destructor. A lot of this code depends on
312   // MachineOperand having a trivial destructor anyway, and adding a call here
313   // wouldn't make it 'destructor-correct'.
314 
315   if (unsigned N = NumOperands - 1 - OpNo)
316     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
317   --NumOperands;
318 }
319 
setExtraInfo(MachineFunction & MF,ArrayRef<MachineMemOperand * > MMOs,MCSymbol * PreInstrSymbol,MCSymbol * PostInstrSymbol,MDNode * HeapAllocMarker)320 void MachineInstr::setExtraInfo(MachineFunction &MF,
321                                 ArrayRef<MachineMemOperand *> MMOs,
322                                 MCSymbol *PreInstrSymbol,
323                                 MCSymbol *PostInstrSymbol,
324                                 MDNode *HeapAllocMarker) {
325   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
326   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
327   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
328   int NumPointers =
329       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
330 
331   // Drop all extra info if there is none.
332   if (NumPointers <= 0) {
333     Info.clear();
334     return;
335   }
336 
337   // If more than one pointer, then store out of line. Store heap alloc markers
338   // out of line because PointerSumType cannot hold more than 4 tag types with
339   // 32-bit pointers.
340   // FIXME: Maybe we should make the symbols in the extra info mutable?
341   else if (NumPointers > 1 || HasHeapAllocMarker) {
342     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
343         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
344     return;
345   }
346 
347   // Otherwise store the single pointer inline.
348   if (HasPreInstrSymbol)
349     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
350   else if (HasPostInstrSymbol)
351     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
352   else
353     Info.set<EIIK_MMO>(MMOs[0]);
354 }
355 
dropMemRefs(MachineFunction & MF)356 void MachineInstr::dropMemRefs(MachineFunction &MF) {
357   if (memoperands_empty())
358     return;
359 
360   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
361                getHeapAllocMarker());
362 }
363 
setMemRefs(MachineFunction & MF,ArrayRef<MachineMemOperand * > MMOs)364 void MachineInstr::setMemRefs(MachineFunction &MF,
365                               ArrayRef<MachineMemOperand *> MMOs) {
366   if (MMOs.empty()) {
367     dropMemRefs(MF);
368     return;
369   }
370 
371   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
372                getHeapAllocMarker());
373 }
374 
addMemOperand(MachineFunction & MF,MachineMemOperand * MO)375 void MachineInstr::addMemOperand(MachineFunction &MF,
376                                  MachineMemOperand *MO) {
377   SmallVector<MachineMemOperand *, 2> MMOs;
378   MMOs.append(memoperands_begin(), memoperands_end());
379   MMOs.push_back(MO);
380   setMemRefs(MF, MMOs);
381 }
382 
cloneMemRefs(MachineFunction & MF,const MachineInstr & MI)383 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
384   if (this == &MI)
385     // Nothing to do for a self-clone!
386     return;
387 
388   assert(&MF == MI.getMF() &&
389          "Invalid machine functions when cloning memory refrences!");
390   // See if we can just steal the extra info already allocated for the
391   // instruction. We can do this whenever the pre- and post-instruction symbols
392   // are the same (including null).
393   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
394       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
395       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
396     Info = MI.Info;
397     return;
398   }
399 
400   // Otherwise, fall back on a copy-based clone.
401   setMemRefs(MF, MI.memoperands());
402 }
403 
404 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
405 /// identical.
hasIdenticalMMOs(ArrayRef<MachineMemOperand * > LHS,ArrayRef<MachineMemOperand * > RHS)406 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
407                              ArrayRef<MachineMemOperand *> RHS) {
408   if (LHS.size() != RHS.size())
409     return false;
410 
411   auto LHSPointees = make_pointee_range(LHS);
412   auto RHSPointees = make_pointee_range(RHS);
413   return std::equal(LHSPointees.begin(), LHSPointees.end(),
414                     RHSPointees.begin());
415 }
416 
cloneMergedMemRefs(MachineFunction & MF,ArrayRef<const MachineInstr * > MIs)417 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
418                                       ArrayRef<const MachineInstr *> MIs) {
419   // Try handling easy numbers of MIs with simpler mechanisms.
420   if (MIs.empty()) {
421     dropMemRefs(MF);
422     return;
423   }
424   if (MIs.size() == 1) {
425     cloneMemRefs(MF, *MIs[0]);
426     return;
427   }
428   // Because an empty memoperands list provides *no* information and must be
429   // handled conservatively (assuming the instruction can do anything), the only
430   // way to merge with it is to drop all other memoperands.
431   if (MIs[0]->memoperands_empty()) {
432     dropMemRefs(MF);
433     return;
434   }
435 
436   // Handle the general case.
437   SmallVector<MachineMemOperand *, 2> MergedMMOs;
438   // Start with the first instruction.
439   assert(&MF == MIs[0]->getMF() &&
440          "Invalid machine functions when cloning memory references!");
441   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
442   // Now walk all the other instructions and accumulate any different MMOs.
443   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
444     assert(&MF == MI.getMF() &&
445            "Invalid machine functions when cloning memory references!");
446 
447     // Skip MIs with identical operands to the first. This is a somewhat
448     // arbitrary hack but will catch common cases without being quadratic.
449     // TODO: We could fully implement merge semantics here if needed.
450     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
451       continue;
452 
453     // Because an empty memoperands list provides *no* information and must be
454     // handled conservatively (assuming the instruction can do anything), the
455     // only way to merge with it is to drop all other memoperands.
456     if (MI.memoperands_empty()) {
457       dropMemRefs(MF);
458       return;
459     }
460 
461     // Otherwise accumulate these into our temporary buffer of the merged state.
462     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
463   }
464 
465   setMemRefs(MF, MergedMMOs);
466 }
467 
setPreInstrSymbol(MachineFunction & MF,MCSymbol * Symbol)468 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
469   // Do nothing if old and new symbols are the same.
470   if (Symbol == getPreInstrSymbol())
471     return;
472 
473   // If there was only one symbol and we're removing it, just clear info.
474   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
475     Info.clear();
476     return;
477   }
478 
479   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
480                getHeapAllocMarker());
481 }
482 
setPostInstrSymbol(MachineFunction & MF,MCSymbol * Symbol)483 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
484   // Do nothing if old and new symbols are the same.
485   if (Symbol == getPostInstrSymbol())
486     return;
487 
488   // If there was only one symbol and we're removing it, just clear info.
489   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
490     Info.clear();
491     return;
492   }
493 
494   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
495                getHeapAllocMarker());
496 }
497 
setHeapAllocMarker(MachineFunction & MF,MDNode * Marker)498 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
499   // Do nothing if old and new symbols are the same.
500   if (Marker == getHeapAllocMarker())
501     return;
502 
503   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
504                Marker);
505 }
506 
cloneInstrSymbols(MachineFunction & MF,const MachineInstr & MI)507 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
508                                      const MachineInstr &MI) {
509   if (this == &MI)
510     // Nothing to do for a self-clone!
511     return;
512 
513   assert(&MF == MI.getMF() &&
514          "Invalid machine functions when cloning instruction symbols!");
515 
516   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
517   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
518   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
519 }
520 
mergeFlagsWith(const MachineInstr & Other) const521 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
522   // For now, the just return the union of the flags. If the flags get more
523   // complicated over time, we might need more logic here.
524   return getFlags() | Other.getFlags();
525 }
526 
copyFlagsFromInstruction(const Instruction & I)527 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
528   uint16_t MIFlags = 0;
529   // Copy the wrapping flags.
530   if (const OverflowingBinaryOperator *OB =
531           dyn_cast<OverflowingBinaryOperator>(&I)) {
532     if (OB->hasNoSignedWrap())
533       MIFlags |= MachineInstr::MIFlag::NoSWrap;
534     if (OB->hasNoUnsignedWrap())
535       MIFlags |= MachineInstr::MIFlag::NoUWrap;
536   }
537 
538   // Copy the exact flag.
539   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
540     if (PE->isExact())
541       MIFlags |= MachineInstr::MIFlag::IsExact;
542 
543   // Copy the fast-math flags.
544   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
545     const FastMathFlags Flags = FP->getFastMathFlags();
546     if (Flags.noNaNs())
547       MIFlags |= MachineInstr::MIFlag::FmNoNans;
548     if (Flags.noInfs())
549       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
550     if (Flags.noSignedZeros())
551       MIFlags |= MachineInstr::MIFlag::FmNsz;
552     if (Flags.allowReciprocal())
553       MIFlags |= MachineInstr::MIFlag::FmArcp;
554     if (Flags.allowContract())
555       MIFlags |= MachineInstr::MIFlag::FmContract;
556     if (Flags.approxFunc())
557       MIFlags |= MachineInstr::MIFlag::FmAfn;
558     if (Flags.allowReassoc())
559       MIFlags |= MachineInstr::MIFlag::FmReassoc;
560   }
561 
562   return MIFlags;
563 }
564 
copyIRFlags(const Instruction & I)565 void MachineInstr::copyIRFlags(const Instruction &I) {
566   Flags = copyFlagsFromInstruction(I);
567 }
568 
hasPropertyInBundle(uint64_t Mask,QueryType Type) const569 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
570   assert(!isBundledWithPred() && "Must be called on bundle header");
571   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
572     if (MII->getDesc().getFlags() & Mask) {
573       if (Type == AnyInBundle)
574         return true;
575     } else {
576       if (Type == AllInBundle && !MII->isBundle())
577         return false;
578     }
579     // This was the last instruction in the bundle.
580     if (!MII->isBundledWithSucc())
581       return Type == AllInBundle;
582   }
583 }
584 
isIdenticalTo(const MachineInstr & Other,MICheckType Check) const585 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
586                                  MICheckType Check) const {
587   // If opcodes or number of operands are not the same then the two
588   // instructions are obviously not identical.
589   if (Other.getOpcode() != getOpcode() ||
590       Other.getNumOperands() != getNumOperands())
591     return false;
592 
593   if (isBundle()) {
594     // We have passed the test above that both instructions have the same
595     // opcode, so we know that both instructions are bundles here. Let's compare
596     // MIs inside the bundle.
597     assert(Other.isBundle() && "Expected that both instructions are bundles.");
598     MachineBasicBlock::const_instr_iterator I1 = getIterator();
599     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
600     // Loop until we analysed the last intruction inside at least one of the
601     // bundles.
602     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
603       ++I1;
604       ++I2;
605       if (!I1->isIdenticalTo(*I2, Check))
606         return false;
607     }
608     // If we've reached the end of just one of the two bundles, but not both,
609     // the instructions are not identical.
610     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
611       return false;
612   }
613 
614   // Check operands to make sure they match.
615   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
616     const MachineOperand &MO = getOperand(i);
617     const MachineOperand &OMO = Other.getOperand(i);
618     if (!MO.isReg()) {
619       if (!MO.isIdenticalTo(OMO))
620         return false;
621       continue;
622     }
623 
624     // Clients may or may not want to ignore defs when testing for equality.
625     // For example, machine CSE pass only cares about finding common
626     // subexpressions, so it's safe to ignore virtual register defs.
627     if (MO.isDef()) {
628       if (Check == IgnoreDefs)
629         continue;
630       else if (Check == IgnoreVRegDefs) {
631         if (!Register::isVirtualRegister(MO.getReg()) ||
632             !Register::isVirtualRegister(OMO.getReg()))
633           if (!MO.isIdenticalTo(OMO))
634             return false;
635       } else {
636         if (!MO.isIdenticalTo(OMO))
637           return false;
638         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
639           return false;
640       }
641     } else {
642       if (!MO.isIdenticalTo(OMO))
643         return false;
644       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
645         return false;
646     }
647   }
648   // If DebugLoc does not match then two debug instructions are not identical.
649   if (isDebugInstr())
650     if (getDebugLoc() && Other.getDebugLoc() &&
651         getDebugLoc() != Other.getDebugLoc())
652       return false;
653   return true;
654 }
655 
getMF() const656 const MachineFunction *MachineInstr::getMF() const {
657   return getParent()->getParent();
658 }
659 
removeFromParent()660 MachineInstr *MachineInstr::removeFromParent() {
661   assert(getParent() && "Not embedded in a basic block!");
662   return getParent()->remove(this);
663 }
664 
removeFromBundle()665 MachineInstr *MachineInstr::removeFromBundle() {
666   assert(getParent() && "Not embedded in a basic block!");
667   return getParent()->remove_instr(this);
668 }
669 
eraseFromParent()670 void MachineInstr::eraseFromParent() {
671   assert(getParent() && "Not embedded in a basic block!");
672   getParent()->erase(this);
673 }
674 
eraseFromParentAndMarkDBGValuesForRemoval()675 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
676   assert(getParent() && "Not embedded in a basic block!");
677   MachineBasicBlock *MBB = getParent();
678   MachineFunction *MF = MBB->getParent();
679   assert(MF && "Not embedded in a function!");
680 
681   MachineInstr *MI = (MachineInstr *)this;
682   MachineRegisterInfo &MRI = MF->getRegInfo();
683 
684   for (const MachineOperand &MO : MI->operands()) {
685     if (!MO.isReg() || !MO.isDef())
686       continue;
687     Register Reg = MO.getReg();
688     if (!Reg.isVirtual())
689       continue;
690     MRI.markUsesInDebugValueAsUndef(Reg);
691   }
692   MI->eraseFromParent();
693 }
694 
eraseFromBundle()695 void MachineInstr::eraseFromBundle() {
696   assert(getParent() && "Not embedded in a basic block!");
697   getParent()->erase_instr(this);
698 }
699 
isCandidateForCallSiteEntry(QueryType Type) const700 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
701   if (!isCall(Type))
702     return false;
703   switch (getOpcode()) {
704   case TargetOpcode::PATCHABLE_EVENT_CALL:
705   case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
706   case TargetOpcode::PATCHPOINT:
707   case TargetOpcode::STACKMAP:
708   case TargetOpcode::STATEPOINT:
709     return false;
710   }
711   return true;
712 }
713 
shouldUpdateCallSiteInfo() const714 bool MachineInstr::shouldUpdateCallSiteInfo() const {
715   if (isBundle())
716     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
717   return isCandidateForCallSiteEntry();
718 }
719 
getNumExplicitOperands() const720 unsigned MachineInstr::getNumExplicitOperands() const {
721   unsigned NumOperands = MCID->getNumOperands();
722   if (!MCID->isVariadic())
723     return NumOperands;
724 
725   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
726     const MachineOperand &MO = getOperand(I);
727     // The operands must always be in the following order:
728     // - explicit reg defs,
729     // - other explicit operands (reg uses, immediates, etc.),
730     // - implicit reg defs
731     // - implicit reg uses
732     if (MO.isReg() && MO.isImplicit())
733       break;
734     ++NumOperands;
735   }
736   return NumOperands;
737 }
738 
getNumExplicitDefs() const739 unsigned MachineInstr::getNumExplicitDefs() const {
740   unsigned NumDefs = MCID->getNumDefs();
741   if (!MCID->isVariadic())
742     return NumDefs;
743 
744   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
745     const MachineOperand &MO = getOperand(I);
746     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
747       break;
748     ++NumDefs;
749   }
750   return NumDefs;
751 }
752 
bundleWithPred()753 void MachineInstr::bundleWithPred() {
754   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
755   setFlag(BundledPred);
756   MachineBasicBlock::instr_iterator Pred = getIterator();
757   --Pred;
758   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
759   Pred->setFlag(BundledSucc);
760 }
761 
bundleWithSucc()762 void MachineInstr::bundleWithSucc() {
763   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
764   setFlag(BundledSucc);
765   MachineBasicBlock::instr_iterator Succ = getIterator();
766   ++Succ;
767   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
768   Succ->setFlag(BundledPred);
769 }
770 
unbundleFromPred()771 void MachineInstr::unbundleFromPred() {
772   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
773   clearFlag(BundledPred);
774   MachineBasicBlock::instr_iterator Pred = getIterator();
775   --Pred;
776   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
777   Pred->clearFlag(BundledSucc);
778 }
779 
unbundleFromSucc()780 void MachineInstr::unbundleFromSucc() {
781   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
782   clearFlag(BundledSucc);
783   MachineBasicBlock::instr_iterator Succ = getIterator();
784   ++Succ;
785   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
786   Succ->clearFlag(BundledPred);
787 }
788 
isStackAligningInlineAsm() const789 bool MachineInstr::isStackAligningInlineAsm() const {
790   if (isInlineAsm()) {
791     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
792     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
793       return true;
794   }
795   return false;
796 }
797 
getInlineAsmDialect() const798 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
799   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
800   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
801   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
802 }
803 
findInlineAsmFlagIdx(unsigned OpIdx,unsigned * GroupNo) const804 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
805                                        unsigned *GroupNo) const {
806   assert(isInlineAsm() && "Expected an inline asm instruction");
807   assert(OpIdx < getNumOperands() && "OpIdx out of range");
808 
809   // Ignore queries about the initial operands.
810   if (OpIdx < InlineAsm::MIOp_FirstOperand)
811     return -1;
812 
813   unsigned Group = 0;
814   unsigned NumOps;
815   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
816        i += NumOps) {
817     const MachineOperand &FlagMO = getOperand(i);
818     // If we reach the implicit register operands, stop looking.
819     if (!FlagMO.isImm())
820       return -1;
821     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
822     if (i + NumOps > OpIdx) {
823       if (GroupNo)
824         *GroupNo = Group;
825       return i;
826     }
827     ++Group;
828   }
829   return -1;
830 }
831 
getDebugLabel() const832 const DILabel *MachineInstr::getDebugLabel() const {
833   assert(isDebugLabel() && "not a DBG_LABEL");
834   return cast<DILabel>(getOperand(0).getMetadata());
835 }
836 
getDebugVariableOp() const837 const MachineOperand &MachineInstr::getDebugVariableOp() const {
838   assert(isDebugValue() && "not a DBG_VALUE");
839   return getOperand(2);
840 }
841 
getDebugVariableOp()842 MachineOperand &MachineInstr::getDebugVariableOp() {
843   assert(isDebugValue() && "not a DBG_VALUE");
844   return getOperand(2);
845 }
846 
getDebugVariable() const847 const DILocalVariable *MachineInstr::getDebugVariable() const {
848   assert(isDebugValue() && "not a DBG_VALUE");
849   return cast<DILocalVariable>(getOperand(2).getMetadata());
850 }
851 
getDebugExpressionOp()852 MachineOperand &MachineInstr::getDebugExpressionOp() {
853   assert(isDebugValue() && "not a DBG_VALUE");
854   return getOperand(3);
855 }
856 
getDebugExpression() const857 const DIExpression *MachineInstr::getDebugExpression() const {
858   assert(isDebugValue() && "not a DBG_VALUE");
859   return cast<DIExpression>(getOperand(3).getMetadata());
860 }
861 
isDebugEntryValue() const862 bool MachineInstr::isDebugEntryValue() const {
863   return isDebugValue() && getDebugExpression()->isEntryValue();
864 }
865 
866 const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const867 MachineInstr::getRegClassConstraint(unsigned OpIdx,
868                                     const TargetInstrInfo *TII,
869                                     const TargetRegisterInfo *TRI) const {
870   assert(getParent() && "Can't have an MBB reference here!");
871   assert(getMF() && "Can't have an MF reference here!");
872   const MachineFunction &MF = *getMF();
873 
874   // Most opcodes have fixed constraints in their MCInstrDesc.
875   if (!isInlineAsm())
876     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
877 
878   if (!getOperand(OpIdx).isReg())
879     return nullptr;
880 
881   // For tied uses on inline asm, get the constraint from the def.
882   unsigned DefIdx;
883   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
884     OpIdx = DefIdx;
885 
886   // Inline asm stores register class constraints in the flag word.
887   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
888   if (FlagIdx < 0)
889     return nullptr;
890 
891   unsigned Flag = getOperand(FlagIdx).getImm();
892   unsigned RCID;
893   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
894        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
895        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
896       InlineAsm::hasRegClassConstraint(Flag, RCID))
897     return TRI->getRegClass(RCID);
898 
899   // Assume that all registers in a memory operand are pointers.
900   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
901     return TRI->getPointerRegClass(MF);
902 
903   return nullptr;
904 }
905 
getRegClassConstraintEffectForVReg(Register Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,bool ExploreBundle) const906 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
907     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
908     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
909   // Check every operands inside the bundle if we have
910   // been asked to.
911   if (ExploreBundle)
912     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
913          ++OpndIt)
914       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
915           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
916   else
917     // Otherwise, just check the current operands.
918     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
919       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
920   return CurRC;
921 }
922 
getRegClassConstraintEffectForVRegImpl(unsigned OpIdx,Register Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const923 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
924     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
925     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
926   assert(CurRC && "Invalid initial register class");
927   // Check if Reg is constrained by some of its use/def from MI.
928   const MachineOperand &MO = getOperand(OpIdx);
929   if (!MO.isReg() || MO.getReg() != Reg)
930     return CurRC;
931   // If yes, accumulate the constraints through the operand.
932   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
933 }
934 
getRegClassConstraintEffect(unsigned OpIdx,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const935 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
936     unsigned OpIdx, const TargetRegisterClass *CurRC,
937     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
938   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
939   const MachineOperand &MO = getOperand(OpIdx);
940   assert(MO.isReg() &&
941          "Cannot get register constraints for non-register operand");
942   assert(CurRC && "Invalid initial register class");
943   if (unsigned SubIdx = MO.getSubReg()) {
944     if (OpRC)
945       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
946     else
947       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
948   } else if (OpRC)
949     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
950   return CurRC;
951 }
952 
953 /// Return the number of instructions inside the MI bundle, not counting the
954 /// header instruction.
getBundleSize() const955 unsigned MachineInstr::getBundleSize() const {
956   MachineBasicBlock::const_instr_iterator I = getIterator();
957   unsigned Size = 0;
958   while (I->isBundledWithSucc()) {
959     ++Size;
960     ++I;
961   }
962   return Size;
963 }
964 
965 /// Returns true if the MachineInstr has an implicit-use operand of exactly
966 /// the given register (not considering sub/super-registers).
hasRegisterImplicitUseOperand(Register Reg) const967 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
968   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
969     const MachineOperand &MO = getOperand(i);
970     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
971       return true;
972   }
973   return false;
974 }
975 
976 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
977 /// the specific register or -1 if it is not found. It further tightens
978 /// the search criteria to a use that kills the register if isKill is true.
findRegisterUseOperandIdx(Register Reg,bool isKill,const TargetRegisterInfo * TRI) const979 int MachineInstr::findRegisterUseOperandIdx(
980     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
981   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
982     const MachineOperand &MO = getOperand(i);
983     if (!MO.isReg() || !MO.isUse())
984       continue;
985     Register MOReg = MO.getReg();
986     if (!MOReg)
987       continue;
988     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
989       if (!isKill || MO.isKill())
990         return i;
991   }
992   return -1;
993 }
994 
995 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
996 /// indicating if this instruction reads or writes Reg. This also considers
997 /// partial defines.
998 std::pair<bool,bool>
readsWritesVirtualRegister(Register Reg,SmallVectorImpl<unsigned> * Ops) const999 MachineInstr::readsWritesVirtualRegister(Register Reg,
1000                                          SmallVectorImpl<unsigned> *Ops) const {
1001   bool PartDef = false; // Partial redefine.
1002   bool FullDef = false; // Full define.
1003   bool Use = false;
1004 
1005   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1006     const MachineOperand &MO = getOperand(i);
1007     if (!MO.isReg() || MO.getReg() != Reg)
1008       continue;
1009     if (Ops)
1010       Ops->push_back(i);
1011     if (MO.isUse())
1012       Use |= !MO.isUndef();
1013     else if (MO.getSubReg() && !MO.isUndef())
1014       // A partial def undef doesn't count as reading the register.
1015       PartDef = true;
1016     else
1017       FullDef = true;
1018   }
1019   // A partial redefine uses Reg unless there is also a full define.
1020   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1021 }
1022 
1023 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1024 /// the specified register or -1 if it is not found. If isDead is true, defs
1025 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1026 /// also checks if there is a def of a super-register.
1027 int
findRegisterDefOperandIdx(Register Reg,bool isDead,bool Overlap,const TargetRegisterInfo * TRI) const1028 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1029                                         const TargetRegisterInfo *TRI) const {
1030   bool isPhys = Register::isPhysicalRegister(Reg);
1031   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1032     const MachineOperand &MO = getOperand(i);
1033     // Accept regmask operands when Overlap is set.
1034     // Ignore them when looking for a specific def operand (Overlap == false).
1035     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1036       return i;
1037     if (!MO.isReg() || !MO.isDef())
1038       continue;
1039     Register MOReg = MO.getReg();
1040     bool Found = (MOReg == Reg);
1041     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1042       if (Overlap)
1043         Found = TRI->regsOverlap(MOReg, Reg);
1044       else
1045         Found = TRI->isSubRegister(MOReg, Reg);
1046     }
1047     if (Found && (!isDead || MO.isDead()))
1048       return i;
1049   }
1050   return -1;
1051 }
1052 
1053 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1054 /// operand list that is used to represent the predicate. It returns -1 if
1055 /// none is found.
findFirstPredOperandIdx() const1056 int MachineInstr::findFirstPredOperandIdx() const {
1057   // Don't call MCID.findFirstPredOperandIdx() because this variant
1058   // is sometimes called on an instruction that's not yet complete, and
1059   // so the number of operands is less than the MCID indicates. In
1060   // particular, the PTX target does this.
1061   const MCInstrDesc &MCID = getDesc();
1062   if (MCID.isPredicable()) {
1063     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1064       if (MCID.OpInfo[i].isPredicate())
1065         return i;
1066   }
1067 
1068   return -1;
1069 }
1070 
1071 // MachineOperand::TiedTo is 4 bits wide.
1072 const unsigned TiedMax = 15;
1073 
1074 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1075 ///
1076 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1077 /// field. TiedTo can have these values:
1078 ///
1079 /// 0:              Operand is not tied to anything.
1080 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1081 /// TiedMax:        Tied to an operand >= TiedMax-1.
1082 ///
1083 /// The tied def must be one of the first TiedMax operands on a normal
1084 /// instruction. INLINEASM instructions allow more tied defs.
1085 ///
tieOperands(unsigned DefIdx,unsigned UseIdx)1086 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1087   MachineOperand &DefMO = getOperand(DefIdx);
1088   MachineOperand &UseMO = getOperand(UseIdx);
1089   assert(DefMO.isDef() && "DefIdx must be a def operand");
1090   assert(UseMO.isUse() && "UseIdx must be a use operand");
1091   assert(!DefMO.isTied() && "Def is already tied to another use");
1092   assert(!UseMO.isTied() && "Use is already tied to another def");
1093 
1094   if (DefIdx < TiedMax)
1095     UseMO.TiedTo = DefIdx + 1;
1096   else {
1097     // Inline asm can use the group descriptors to find tied operands, but on
1098     // normal instruction, the tied def must be within the first TiedMax
1099     // operands.
1100     assert(isInlineAsm() && "DefIdx out of range");
1101     UseMO.TiedTo = TiedMax;
1102   }
1103 
1104   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1105   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1106 }
1107 
1108 /// Given the index of a tied register operand, find the operand it is tied to.
1109 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1110 /// which must exist.
findTiedOperandIdx(unsigned OpIdx) const1111 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1112   const MachineOperand &MO = getOperand(OpIdx);
1113   assert(MO.isTied() && "Operand isn't tied");
1114 
1115   // Normally TiedTo is in range.
1116   if (MO.TiedTo < TiedMax)
1117     return MO.TiedTo - 1;
1118 
1119   // Uses on normal instructions can be out of range.
1120   if (!isInlineAsm()) {
1121     // Normal tied defs must be in the 0..TiedMax-1 range.
1122     if (MO.isUse())
1123       return TiedMax - 1;
1124     // MO is a def. Search for the tied use.
1125     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1126       const MachineOperand &UseMO = getOperand(i);
1127       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1128         return i;
1129     }
1130     llvm_unreachable("Can't find tied use");
1131   }
1132 
1133   // Now deal with inline asm by parsing the operand group descriptor flags.
1134   // Find the beginning of each operand group.
1135   SmallVector<unsigned, 8> GroupIdx;
1136   unsigned OpIdxGroup = ~0u;
1137   unsigned NumOps;
1138   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1139        i += NumOps) {
1140     const MachineOperand &FlagMO = getOperand(i);
1141     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1142     unsigned CurGroup = GroupIdx.size();
1143     GroupIdx.push_back(i);
1144     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1145     // OpIdx belongs to this operand group.
1146     if (OpIdx > i && OpIdx < i + NumOps)
1147       OpIdxGroup = CurGroup;
1148     unsigned TiedGroup;
1149     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1150       continue;
1151     // Operands in this group are tied to operands in TiedGroup which must be
1152     // earlier. Find the number of operands between the two groups.
1153     unsigned Delta = i - GroupIdx[TiedGroup];
1154 
1155     // OpIdx is a use tied to TiedGroup.
1156     if (OpIdxGroup == CurGroup)
1157       return OpIdx - Delta;
1158 
1159     // OpIdx is a def tied to this use group.
1160     if (OpIdxGroup == TiedGroup)
1161       return OpIdx + Delta;
1162   }
1163   llvm_unreachable("Invalid tied operand on inline asm");
1164 }
1165 
1166 /// clearKillInfo - Clears kill flags on all operands.
1167 ///
clearKillInfo()1168 void MachineInstr::clearKillInfo() {
1169   for (MachineOperand &MO : operands()) {
1170     if (MO.isReg() && MO.isUse())
1171       MO.setIsKill(false);
1172   }
1173 }
1174 
substituteRegister(Register FromReg,Register ToReg,unsigned SubIdx,const TargetRegisterInfo & RegInfo)1175 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1176                                       unsigned SubIdx,
1177                                       const TargetRegisterInfo &RegInfo) {
1178   if (Register::isPhysicalRegister(ToReg)) {
1179     if (SubIdx)
1180       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1181     for (MachineOperand &MO : operands()) {
1182       if (!MO.isReg() || MO.getReg() != FromReg)
1183         continue;
1184       MO.substPhysReg(ToReg, RegInfo);
1185     }
1186   } else {
1187     for (MachineOperand &MO : operands()) {
1188       if (!MO.isReg() || MO.getReg() != FromReg)
1189         continue;
1190       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1191     }
1192   }
1193 }
1194 
1195 /// isSafeToMove - Return true if it is safe to move this instruction. If
1196 /// SawStore is set to true, it means that there is a store (or call) between
1197 /// the instruction's location and its intended destination.
isSafeToMove(AAResults * AA,bool & SawStore) const1198 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1199   // Ignore stuff that we obviously can't move.
1200   //
1201   // Treat volatile loads as stores. This is not strictly necessary for
1202   // volatiles, but it is required for atomic loads. It is not allowed to move
1203   // a load across an atomic load with Ordering > Monotonic.
1204   if (mayStore() || isCall() || isPHI() ||
1205       (mayLoad() && hasOrderedMemoryRef())) {
1206     SawStore = true;
1207     return false;
1208   }
1209 
1210   if (isPosition() || isDebugInstr() || isTerminator() ||
1211       mayRaiseFPException() || hasUnmodeledSideEffects())
1212     return false;
1213 
1214   // See if this instruction does a load.  If so, we have to guarantee that the
1215   // loaded value doesn't change between the load and the its intended
1216   // destination. The check for isInvariantLoad gives the targe the chance to
1217   // classify the load as always returning a constant, e.g. a constant pool
1218   // load.
1219   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1220     // Otherwise, this is a real load.  If there is a store between the load and
1221     // end of block, we can't move it.
1222     return !SawStore;
1223 
1224   return true;
1225 }
1226 
mayAlias(AAResults * AA,const MachineInstr & Other,bool UseTBAA) const1227 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1228                             bool UseTBAA) const {
1229   const MachineFunction *MF = getMF();
1230   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1231   const MachineFrameInfo &MFI = MF->getFrameInfo();
1232 
1233   // If neither instruction stores to memory, they can't alias in any
1234   // meaningful way, even if they read from the same address.
1235   if (!mayStore() && !Other.mayStore())
1236     return false;
1237 
1238   // Both instructions must be memory operations to be able to alias.
1239   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1240     return false;
1241 
1242   // Let the target decide if memory accesses cannot possibly overlap.
1243   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1244     return false;
1245 
1246   // FIXME: Need to handle multiple memory operands to support all targets.
1247   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1248     return true;
1249 
1250   MachineMemOperand *MMOa = *memoperands_begin();
1251   MachineMemOperand *MMOb = *Other.memoperands_begin();
1252 
1253   // The following interface to AA is fashioned after DAGCombiner::isAlias
1254   // and operates with MachineMemOperand offset with some important
1255   // assumptions:
1256   //   - LLVM fundamentally assumes flat address spaces.
1257   //   - MachineOperand offset can *only* result from legalization and
1258   //     cannot affect queries other than the trivial case of overlap
1259   //     checking.
1260   //   - These offsets never wrap and never step outside
1261   //     of allocated objects.
1262   //   - There should never be any negative offsets here.
1263   //
1264   // FIXME: Modify API to hide this math from "user"
1265   // Even before we go to AA we can reason locally about some
1266   // memory objects. It can save compile time, and possibly catch some
1267   // corner cases not currently covered.
1268 
1269   int64_t OffsetA = MMOa->getOffset();
1270   int64_t OffsetB = MMOb->getOffset();
1271   int64_t MinOffset = std::min(OffsetA, OffsetB);
1272 
1273   uint64_t WidthA = MMOa->getSize();
1274   uint64_t WidthB = MMOb->getSize();
1275   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1276   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1277 
1278   const Value *ValA = MMOa->getValue();
1279   const Value *ValB = MMOb->getValue();
1280   bool SameVal = (ValA && ValB && (ValA == ValB));
1281   if (!SameVal) {
1282     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1283     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1284     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1285       return false;
1286     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1287       return false;
1288     if (PSVa && PSVb && (PSVa == PSVb))
1289       SameVal = true;
1290   }
1291 
1292   if (SameVal) {
1293     if (!KnownWidthA || !KnownWidthB)
1294       return true;
1295     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1296     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1297     return (MinOffset + LowWidth > MaxOffset);
1298   }
1299 
1300   if (!AA)
1301     return true;
1302 
1303   if (!ValA || !ValB)
1304     return true;
1305 
1306   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1307   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1308 
1309   int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1310                                  : MemoryLocation::UnknownSize;
1311   int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1312                                  : MemoryLocation::UnknownSize;
1313 
1314   AliasResult AAResult = AA->alias(
1315       MemoryLocation(ValA, OverlapA,
1316                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1317       MemoryLocation(ValB, OverlapB,
1318                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1319 
1320   return (AAResult != NoAlias);
1321 }
1322 
1323 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1324 /// or volatile memory reference, or if the information describing the memory
1325 /// reference is not available. Return false if it is known to have no ordered
1326 /// memory references.
hasOrderedMemoryRef() const1327 bool MachineInstr::hasOrderedMemoryRef() const {
1328   // An instruction known never to access memory won't have a volatile access.
1329   if (!mayStore() &&
1330       !mayLoad() &&
1331       !isCall() &&
1332       !hasUnmodeledSideEffects())
1333     return false;
1334 
1335   // Otherwise, if the instruction has no memory reference information,
1336   // conservatively assume it wasn't preserved.
1337   if (memoperands_empty())
1338     return true;
1339 
1340   // Check if any of our memory operands are ordered.
1341   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1342     return !MMO->isUnordered();
1343   });
1344 }
1345 
1346 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1347 /// trap and is loading from a location whose value is invariant across a run of
1348 /// this function.
isDereferenceableInvariantLoad(AAResults * AA) const1349 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1350   // If the instruction doesn't load at all, it isn't an invariant load.
1351   if (!mayLoad())
1352     return false;
1353 
1354   // If the instruction has lost its memoperands, conservatively assume that
1355   // it may not be an invariant load.
1356   if (memoperands_empty())
1357     return false;
1358 
1359   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1360 
1361   for (MachineMemOperand *MMO : memoperands()) {
1362     if (!MMO->isUnordered())
1363       // If the memory operand has ordering side effects, we can't move the
1364       // instruction.  Such an instruction is technically an invariant load,
1365       // but the caller code would need updated to expect that.
1366       return false;
1367     if (MMO->isStore()) return false;
1368     if (MMO->isInvariant() && MMO->isDereferenceable())
1369       continue;
1370 
1371     // A load from a constant PseudoSourceValue is invariant.
1372     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1373       if (PSV->isConstant(&MFI))
1374         continue;
1375 
1376     if (const Value *V = MMO->getValue()) {
1377       // If we have an AliasAnalysis, ask it whether the memory is constant.
1378       if (AA &&
1379           AA->pointsToConstantMemory(
1380               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1381         continue;
1382     }
1383 
1384     // Otherwise assume conservatively.
1385     return false;
1386   }
1387 
1388   // Everything checks out.
1389   return true;
1390 }
1391 
1392 /// isConstantValuePHI - If the specified instruction is a PHI that always
1393 /// merges together the same virtual register, return the register, otherwise
1394 /// return 0.
isConstantValuePHI() const1395 unsigned MachineInstr::isConstantValuePHI() const {
1396   if (!isPHI())
1397     return 0;
1398   assert(getNumOperands() >= 3 &&
1399          "It's illegal to have a PHI without source operands");
1400 
1401   Register Reg = getOperand(1).getReg();
1402   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1403     if (getOperand(i).getReg() != Reg)
1404       return 0;
1405   return Reg;
1406 }
1407 
hasUnmodeledSideEffects() const1408 bool MachineInstr::hasUnmodeledSideEffects() const {
1409   if (hasProperty(MCID::UnmodeledSideEffects))
1410     return true;
1411   if (isInlineAsm()) {
1412     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1413     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1414       return true;
1415   }
1416 
1417   return false;
1418 }
1419 
isLoadFoldBarrier() const1420 bool MachineInstr::isLoadFoldBarrier() const {
1421   return mayStore() || isCall() || hasUnmodeledSideEffects();
1422 }
1423 
1424 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1425 ///
allDefsAreDead() const1426 bool MachineInstr::allDefsAreDead() const {
1427   for (const MachineOperand &MO : operands()) {
1428     if (!MO.isReg() || MO.isUse())
1429       continue;
1430     if (!MO.isDead())
1431       return false;
1432   }
1433   return true;
1434 }
1435 
1436 /// copyImplicitOps - Copy implicit register operands from specified
1437 /// instruction to this instruction.
copyImplicitOps(MachineFunction & MF,const MachineInstr & MI)1438 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1439                                    const MachineInstr &MI) {
1440   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1441        i != e; ++i) {
1442     const MachineOperand &MO = MI.getOperand(i);
1443     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1444       addOperand(MF, MO);
1445   }
1446 }
1447 
hasComplexRegisterTies() const1448 bool MachineInstr::hasComplexRegisterTies() const {
1449   const MCInstrDesc &MCID = getDesc();
1450   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1451     const auto &Operand = getOperand(I);
1452     if (!Operand.isReg() || Operand.isDef())
1453       // Ignore the defined registers as MCID marks only the uses as tied.
1454       continue;
1455     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1456     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1457     if (ExpectedTiedIdx != TiedIdx)
1458       return true;
1459   }
1460   return false;
1461 }
1462 
getTypeToPrint(unsigned OpIdx,SmallBitVector & PrintedTypes,const MachineRegisterInfo & MRI) const1463 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1464                                  const MachineRegisterInfo &MRI) const {
1465   const MachineOperand &Op = getOperand(OpIdx);
1466   if (!Op.isReg())
1467     return LLT{};
1468 
1469   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1470     return MRI.getType(Op.getReg());
1471 
1472   auto &OpInfo = getDesc().OpInfo[OpIdx];
1473   if (!OpInfo.isGenericType())
1474     return MRI.getType(Op.getReg());
1475 
1476   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1477     return LLT{};
1478 
1479   LLT TypeToPrint = MRI.getType(Op.getReg());
1480   // Don't mark the type index printed if it wasn't actually printed: maybe
1481   // another operand with the same type index has an actual type attached:
1482   if (TypeToPrint.isValid())
1483     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1484   return TypeToPrint;
1485 }
1486 
1487 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1488 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1489   dbgs() << "  ";
1490   print(dbgs());
1491 }
1492 
dumprImpl(const MachineRegisterInfo & MRI,unsigned Depth,unsigned MaxDepth,SmallPtrSetImpl<const MachineInstr * > & AlreadySeenInstrs) const1493 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1494     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1495     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1496   if (Depth >= MaxDepth)
1497     return;
1498   if (!AlreadySeenInstrs.insert(this).second)
1499     return;
1500   // PadToColumn always inserts at least one space.
1501   // Don't mess up the alignment if we don't want any space.
1502   if (Depth)
1503     fdbgs().PadToColumn(Depth * 2);
1504   print(fdbgs());
1505   for (const MachineOperand &MO : operands()) {
1506     if (!MO.isReg() || MO.isDef())
1507       continue;
1508     Register Reg = MO.getReg();
1509     if (Reg.isPhysical())
1510       continue;
1511     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1512     if (NewMI == nullptr)
1513       continue;
1514     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1515   }
1516 }
1517 
dumpr(const MachineRegisterInfo & MRI,unsigned MaxDepth) const1518 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1519                                           unsigned MaxDepth) const {
1520   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1521   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1522 }
1523 #endif
1524 
print(raw_ostream & OS,bool IsStandalone,bool SkipOpers,bool SkipDebugLoc,bool AddNewLine,const TargetInstrInfo * TII) const1525 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1526                          bool SkipDebugLoc, bool AddNewLine,
1527                          const TargetInstrInfo *TII) const {
1528   const Module *M = nullptr;
1529   const Function *F = nullptr;
1530   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1531     F = &MF->getFunction();
1532     M = F->getParent();
1533     if (!TII)
1534       TII = MF->getSubtarget().getInstrInfo();
1535   }
1536 
1537   ModuleSlotTracker MST(M);
1538   if (F)
1539     MST.incorporateFunction(*F);
1540   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1541 }
1542 
print(raw_ostream & OS,ModuleSlotTracker & MST,bool IsStandalone,bool SkipOpers,bool SkipDebugLoc,bool AddNewLine,const TargetInstrInfo * TII) const1543 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1544                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1545                          bool AddNewLine, const TargetInstrInfo *TII) const {
1546   // We can be a bit tidier if we know the MachineFunction.
1547   const TargetRegisterInfo *TRI = nullptr;
1548   const MachineRegisterInfo *MRI = nullptr;
1549   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1550   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1551 
1552   if (isCFIInstruction())
1553     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1554 
1555   SmallBitVector PrintedTypes(8);
1556   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1557   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1558     if (!ShouldPrintRegisterTies)
1559       return 0U;
1560     const MachineOperand &MO = getOperand(OpIdx);
1561     if (MO.isReg() && MO.isTied() && !MO.isDef())
1562       return findTiedOperandIdx(OpIdx);
1563     return 0U;
1564   };
1565   unsigned StartOp = 0;
1566   unsigned e = getNumOperands();
1567 
1568   // Print explicitly defined operands on the left of an assignment syntax.
1569   while (StartOp < e) {
1570     const MachineOperand &MO = getOperand(StartOp);
1571     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1572       break;
1573 
1574     if (StartOp != 0)
1575       OS << ", ";
1576 
1577     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1578     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1579     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1580              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1581     ++StartOp;
1582   }
1583 
1584   if (StartOp != 0)
1585     OS << " = ";
1586 
1587   if (getFlag(MachineInstr::FrameSetup))
1588     OS << "frame-setup ";
1589   if (getFlag(MachineInstr::FrameDestroy))
1590     OS << "frame-destroy ";
1591   if (getFlag(MachineInstr::FmNoNans))
1592     OS << "nnan ";
1593   if (getFlag(MachineInstr::FmNoInfs))
1594     OS << "ninf ";
1595   if (getFlag(MachineInstr::FmNsz))
1596     OS << "nsz ";
1597   if (getFlag(MachineInstr::FmArcp))
1598     OS << "arcp ";
1599   if (getFlag(MachineInstr::FmContract))
1600     OS << "contract ";
1601   if (getFlag(MachineInstr::FmAfn))
1602     OS << "afn ";
1603   if (getFlag(MachineInstr::FmReassoc))
1604     OS << "reassoc ";
1605   if (getFlag(MachineInstr::NoUWrap))
1606     OS << "nuw ";
1607   if (getFlag(MachineInstr::NoSWrap))
1608     OS << "nsw ";
1609   if (getFlag(MachineInstr::IsExact))
1610     OS << "exact ";
1611   if (getFlag(MachineInstr::NoFPExcept))
1612     OS << "nofpexcept ";
1613   if (getFlag(MachineInstr::NoMerge))
1614     OS << "nomerge ";
1615 
1616   // Print the opcode name.
1617   if (TII)
1618     OS << TII->getName(getOpcode());
1619   else
1620     OS << "UNKNOWN";
1621 
1622   if (SkipOpers)
1623     return;
1624 
1625   // Print the rest of the operands.
1626   bool FirstOp = true;
1627   unsigned AsmDescOp = ~0u;
1628   unsigned AsmOpCount = 0;
1629 
1630   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1631     // Print asm string.
1632     OS << " ";
1633     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1634     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1635     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1636     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1637                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1638                             IntrinsicInfo);
1639 
1640     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1641     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1642     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1643       OS << " [sideeffect]";
1644     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1645       OS << " [mayload]";
1646     if (ExtraInfo & InlineAsm::Extra_MayStore)
1647       OS << " [maystore]";
1648     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1649       OS << " [isconvergent]";
1650     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1651       OS << " [alignstack]";
1652     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1653       OS << " [attdialect]";
1654     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1655       OS << " [inteldialect]";
1656 
1657     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1658     FirstOp = false;
1659   }
1660 
1661   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1662     const MachineOperand &MO = getOperand(i);
1663 
1664     if (FirstOp) FirstOp = false; else OS << ",";
1665     OS << " ";
1666 
1667     if (isDebugValue() && MO.isMetadata()) {
1668       // Pretty print DBG_VALUE instructions.
1669       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1670       if (DIV && !DIV->getName().empty())
1671         OS << "!\"" << DIV->getName() << '\"';
1672       else {
1673         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1674         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1675         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1676                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1677       }
1678     } else if (isDebugLabel() && MO.isMetadata()) {
1679       // Pretty print DBG_LABEL instructions.
1680       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1681       if (DIL && !DIL->getName().empty())
1682         OS << "\"" << DIL->getName() << '\"';
1683       else {
1684         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1685         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1686         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1687                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1688       }
1689     } else if (i == AsmDescOp && MO.isImm()) {
1690       // Pretty print the inline asm operand descriptor.
1691       OS << '$' << AsmOpCount++;
1692       unsigned Flag = MO.getImm();
1693       OS << ":[";
1694       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1695 
1696       unsigned RCID = 0;
1697       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1698           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1699         if (TRI) {
1700           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1701         } else
1702           OS << ":RC" << RCID;
1703       }
1704 
1705       if (InlineAsm::isMemKind(Flag)) {
1706         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1707         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1708       }
1709 
1710       unsigned TiedTo = 0;
1711       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1712         OS << " tiedto:$" << TiedTo;
1713 
1714       OS << ']';
1715 
1716       // Compute the index of the next operand descriptor.
1717       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1718     } else {
1719       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1720       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1721       if (MO.isImm() && isOperandSubregIdx(i))
1722         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1723       else
1724         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1725                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1726     }
1727   }
1728 
1729   // Print any optional symbols attached to this instruction as-if they were
1730   // operands.
1731   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1732     if (!FirstOp) {
1733       FirstOp = false;
1734       OS << ',';
1735     }
1736     OS << " pre-instr-symbol ";
1737     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1738   }
1739   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1740     if (!FirstOp) {
1741       FirstOp = false;
1742       OS << ',';
1743     }
1744     OS << " post-instr-symbol ";
1745     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1746   }
1747   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1748     if (!FirstOp) {
1749       FirstOp = false;
1750       OS << ',';
1751     }
1752     OS << " heap-alloc-marker ";
1753     HeapAllocMarker->printAsOperand(OS, MST);
1754   }
1755 
1756   if (!SkipDebugLoc) {
1757     if (const DebugLoc &DL = getDebugLoc()) {
1758       if (!FirstOp)
1759         OS << ',';
1760       OS << " debug-location ";
1761       DL->printAsOperand(OS, MST);
1762     }
1763   }
1764 
1765   if (!memoperands_empty()) {
1766     SmallVector<StringRef, 0> SSNs;
1767     const LLVMContext *Context = nullptr;
1768     std::unique_ptr<LLVMContext> CtxPtr;
1769     const MachineFrameInfo *MFI = nullptr;
1770     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1771       MFI = &MF->getFrameInfo();
1772       Context = &MF->getFunction().getContext();
1773     } else {
1774       CtxPtr = std::make_unique<LLVMContext>();
1775       Context = CtxPtr.get();
1776     }
1777 
1778     OS << " :: ";
1779     bool NeedComma = false;
1780     for (const MachineMemOperand *Op : memoperands()) {
1781       if (NeedComma)
1782         OS << ", ";
1783       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1784       NeedComma = true;
1785     }
1786   }
1787 
1788   if (SkipDebugLoc)
1789     return;
1790 
1791   bool HaveSemi = false;
1792 
1793   // Print debug location information.
1794   if (const DebugLoc &DL = getDebugLoc()) {
1795     if (!HaveSemi) {
1796       OS << ';';
1797       HaveSemi = true;
1798     }
1799     OS << ' ';
1800     DL.print(OS);
1801   }
1802 
1803   // Print extra comments for DEBUG_VALUE.
1804   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1805     if (!HaveSemi) {
1806       OS << ";";
1807       HaveSemi = true;
1808     }
1809     auto *DV = getDebugVariable();
1810     OS << " line no:" <<  DV->getLine();
1811     if (isIndirectDebugValue())
1812       OS << " indirect";
1813   }
1814   // TODO: DBG_LABEL
1815 
1816   if (AddNewLine)
1817     OS << '\n';
1818 }
1819 
addRegisterKilled(Register IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1820 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1821                                      const TargetRegisterInfo *RegInfo,
1822                                      bool AddIfNotFound) {
1823   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1824   bool hasAliases = isPhysReg &&
1825     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1826   bool Found = false;
1827   SmallVector<unsigned,4> DeadOps;
1828   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1829     MachineOperand &MO = getOperand(i);
1830     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1831       continue;
1832 
1833     // DEBUG_VALUE nodes do not contribute to code generation and should
1834     // always be ignored. Failure to do so may result in trying to modify
1835     // KILL flags on DEBUG_VALUE nodes.
1836     if (MO.isDebug())
1837       continue;
1838 
1839     Register Reg = MO.getReg();
1840     if (!Reg)
1841       continue;
1842 
1843     if (Reg == IncomingReg) {
1844       if (!Found) {
1845         if (MO.isKill())
1846           // The register is already marked kill.
1847           return true;
1848         if (isPhysReg && isRegTiedToDefOperand(i))
1849           // Two-address uses of physregs must not be marked kill.
1850           return true;
1851         MO.setIsKill();
1852         Found = true;
1853       }
1854     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1855       // A super-register kill already exists.
1856       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1857         return true;
1858       if (RegInfo->isSubRegister(IncomingReg, Reg))
1859         DeadOps.push_back(i);
1860     }
1861   }
1862 
1863   // Trim unneeded kill operands.
1864   while (!DeadOps.empty()) {
1865     unsigned OpIdx = DeadOps.back();
1866     if (getOperand(OpIdx).isImplicit() &&
1867         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1868       RemoveOperand(OpIdx);
1869     else
1870       getOperand(OpIdx).setIsKill(false);
1871     DeadOps.pop_back();
1872   }
1873 
1874   // If not found, this means an alias of one of the operands is killed. Add a
1875   // new implicit operand if required.
1876   if (!Found && AddIfNotFound) {
1877     addOperand(MachineOperand::CreateReg(IncomingReg,
1878                                          false /*IsDef*/,
1879                                          true  /*IsImp*/,
1880                                          true  /*IsKill*/));
1881     return true;
1882   }
1883   return Found;
1884 }
1885 
clearRegisterKills(Register Reg,const TargetRegisterInfo * RegInfo)1886 void MachineInstr::clearRegisterKills(Register Reg,
1887                                       const TargetRegisterInfo *RegInfo) {
1888   if (!Register::isPhysicalRegister(Reg))
1889     RegInfo = nullptr;
1890   for (MachineOperand &MO : operands()) {
1891     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1892       continue;
1893     Register OpReg = MO.getReg();
1894     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1895       MO.setIsKill(false);
1896   }
1897 }
1898 
addRegisterDead(Register Reg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1899 bool MachineInstr::addRegisterDead(Register Reg,
1900                                    const TargetRegisterInfo *RegInfo,
1901                                    bool AddIfNotFound) {
1902   bool isPhysReg = Register::isPhysicalRegister(Reg);
1903   bool hasAliases = isPhysReg &&
1904     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1905   bool Found = false;
1906   SmallVector<unsigned,4> DeadOps;
1907   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1908     MachineOperand &MO = getOperand(i);
1909     if (!MO.isReg() || !MO.isDef())
1910       continue;
1911     Register MOReg = MO.getReg();
1912     if (!MOReg)
1913       continue;
1914 
1915     if (MOReg == Reg) {
1916       MO.setIsDead();
1917       Found = true;
1918     } else if (hasAliases && MO.isDead() &&
1919                Register::isPhysicalRegister(MOReg)) {
1920       // There exists a super-register that's marked dead.
1921       if (RegInfo->isSuperRegister(Reg, MOReg))
1922         return true;
1923       if (RegInfo->isSubRegister(Reg, MOReg))
1924         DeadOps.push_back(i);
1925     }
1926   }
1927 
1928   // Trim unneeded dead operands.
1929   while (!DeadOps.empty()) {
1930     unsigned OpIdx = DeadOps.back();
1931     if (getOperand(OpIdx).isImplicit() &&
1932         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1933       RemoveOperand(OpIdx);
1934     else
1935       getOperand(OpIdx).setIsDead(false);
1936     DeadOps.pop_back();
1937   }
1938 
1939   // If not found, this means an alias of one of the operands is dead. Add a
1940   // new implicit operand if required.
1941   if (Found || !AddIfNotFound)
1942     return Found;
1943 
1944   addOperand(MachineOperand::CreateReg(Reg,
1945                                        true  /*IsDef*/,
1946                                        true  /*IsImp*/,
1947                                        false /*IsKill*/,
1948                                        true  /*IsDead*/));
1949   return true;
1950 }
1951 
clearRegisterDeads(Register Reg)1952 void MachineInstr::clearRegisterDeads(Register Reg) {
1953   for (MachineOperand &MO : operands()) {
1954     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1955       continue;
1956     MO.setIsDead(false);
1957   }
1958 }
1959 
setRegisterDefReadUndef(Register Reg,bool IsUndef)1960 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
1961   for (MachineOperand &MO : operands()) {
1962     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1963       continue;
1964     MO.setIsUndef(IsUndef);
1965   }
1966 }
1967 
addRegisterDefined(Register Reg,const TargetRegisterInfo * RegInfo)1968 void MachineInstr::addRegisterDefined(Register Reg,
1969                                       const TargetRegisterInfo *RegInfo) {
1970   if (Register::isPhysicalRegister(Reg)) {
1971     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
1972     if (MO)
1973       return;
1974   } else {
1975     for (const MachineOperand &MO : operands()) {
1976       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1977           MO.getSubReg() == 0)
1978         return;
1979     }
1980   }
1981   addOperand(MachineOperand::CreateReg(Reg,
1982                                        true  /*IsDef*/,
1983                                        true  /*IsImp*/));
1984 }
1985 
setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,const TargetRegisterInfo & TRI)1986 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1987                                          const TargetRegisterInfo &TRI) {
1988   bool HasRegMask = false;
1989   for (MachineOperand &MO : operands()) {
1990     if (MO.isRegMask()) {
1991       HasRegMask = true;
1992       continue;
1993     }
1994     if (!MO.isReg() || !MO.isDef()) continue;
1995     Register Reg = MO.getReg();
1996     if (!Reg.isPhysical())
1997       continue;
1998     // If there are no uses, including partial uses, the def is dead.
1999     if (llvm::none_of(UsedRegs,
2000                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2001       MO.setIsDead();
2002   }
2003 
2004   // This is a call with a register mask operand.
2005   // Mask clobbers are always dead, so add defs for the non-dead defines.
2006   if (HasRegMask)
2007     for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2008          I != E; ++I)
2009       addRegisterDefined(*I, &TRI);
2010 }
2011 
2012 unsigned
getHashValue(const MachineInstr * const & MI)2013 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2014   // Build up a buffer of hash code components.
2015   SmallVector<size_t, 16> HashComponents;
2016   HashComponents.reserve(MI->getNumOperands() + 1);
2017   HashComponents.push_back(MI->getOpcode());
2018   for (const MachineOperand &MO : MI->operands()) {
2019     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2020       continue;  // Skip virtual register defs.
2021 
2022     HashComponents.push_back(hash_value(MO));
2023   }
2024   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2025 }
2026 
emitError(StringRef Msg) const2027 void MachineInstr::emitError(StringRef Msg) const {
2028   // Find the source location cookie.
2029   unsigned LocCookie = 0;
2030   const MDNode *LocMD = nullptr;
2031   for (unsigned i = getNumOperands(); i != 0; --i) {
2032     if (getOperand(i-1).isMetadata() &&
2033         (LocMD = getOperand(i-1).getMetadata()) &&
2034         LocMD->getNumOperands() != 0) {
2035       if (const ConstantInt *CI =
2036               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2037         LocCookie = CI->getZExtValue();
2038         break;
2039       }
2040     }
2041   }
2042 
2043   if (const MachineBasicBlock *MBB = getParent())
2044     if (const MachineFunction *MF = MBB->getParent())
2045       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2046   report_fatal_error(Msg);
2047 }
2048 
BuildMI(MachineFunction & MF,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,Register Reg,const MDNode * Variable,const MDNode * Expr)2049 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2050                                   const MCInstrDesc &MCID, bool IsIndirect,
2051                                   Register Reg, const MDNode *Variable,
2052                                   const MDNode *Expr) {
2053   assert(isa<DILocalVariable>(Variable) && "not a variable");
2054   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2055   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2056          "Expected inlined-at fields to agree");
2057   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2058   if (IsIndirect)
2059     MIB.addImm(0U);
2060   else
2061     MIB.addReg(0U, RegState::Debug);
2062   return MIB.addMetadata(Variable).addMetadata(Expr);
2063 }
2064 
BuildMI(MachineFunction & MF,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,MachineOperand & MO,const MDNode * Variable,const MDNode * Expr)2065 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2066                                   const MCInstrDesc &MCID, bool IsIndirect,
2067                                   MachineOperand &MO, const MDNode *Variable,
2068                                   const MDNode *Expr) {
2069   assert(isa<DILocalVariable>(Variable) && "not a variable");
2070   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2071   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2072          "Expected inlined-at fields to agree");
2073   if (MO.isReg())
2074     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2075 
2076   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2077   if (IsIndirect)
2078     MIB.addImm(0U);
2079   else
2080     MIB.addReg(0U, RegState::Debug);
2081   return MIB.addMetadata(Variable).addMetadata(Expr);
2082  }
2083 
BuildMI(MachineBasicBlock & BB,MachineBasicBlock::iterator I,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,Register Reg,const MDNode * Variable,const MDNode * Expr)2084 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2085                                   MachineBasicBlock::iterator I,
2086                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2087                                   bool IsIndirect, Register Reg,
2088                                   const MDNode *Variable, const MDNode *Expr) {
2089   MachineFunction &MF = *BB.getParent();
2090   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2091   BB.insert(I, MI);
2092   return MachineInstrBuilder(MF, MI);
2093 }
2094 
BuildMI(MachineBasicBlock & BB,MachineBasicBlock::iterator I,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,MachineOperand & MO,const MDNode * Variable,const MDNode * Expr)2095 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2096                                   MachineBasicBlock::iterator I,
2097                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2098                                   bool IsIndirect, MachineOperand &MO,
2099                                   const MDNode *Variable, const MDNode *Expr) {
2100   MachineFunction &MF = *BB.getParent();
2101   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2102   BB.insert(I, MI);
2103   return MachineInstrBuilder(MF, *MI);
2104 }
2105 
2106 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2107 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
computeExprForSpill(const MachineInstr & MI)2108 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2109   assert(MI.getOperand(0).isReg() && "can't spill non-register");
2110   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2111          "Expected inlined-at fields to agree");
2112 
2113   const DIExpression *Expr = MI.getDebugExpression();
2114   if (MI.isIndirectDebugValue()) {
2115     assert(MI.getDebugOffset().getImm() == 0 &&
2116            "DBG_VALUE with nonzero offset");
2117     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2118   }
2119   return Expr;
2120 }
2121 
buildDbgValueForSpill(MachineBasicBlock & BB,MachineBasicBlock::iterator I,const MachineInstr & Orig,int FrameIndex)2122 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2123                                           MachineBasicBlock::iterator I,
2124                                           const MachineInstr &Orig,
2125                                           int FrameIndex) {
2126   const DIExpression *Expr = computeExprForSpill(Orig);
2127   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2128       .addFrameIndex(FrameIndex)
2129       .addImm(0U)
2130       .addMetadata(Orig.getDebugVariable())
2131       .addMetadata(Expr);
2132 }
2133 
updateDbgValueForSpill(MachineInstr & Orig,int FrameIndex)2134 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2135   const DIExpression *Expr = computeExprForSpill(Orig);
2136   Orig.getDebugOperand(0).ChangeToFrameIndex(FrameIndex);
2137   Orig.getDebugOffset().ChangeToImmediate(0U);
2138   Orig.getDebugExpressionOp().setMetadata(Expr);
2139 }
2140 
collectDebugValues(SmallVectorImpl<MachineInstr * > & DbgValues)2141 void MachineInstr::collectDebugValues(
2142                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2143   MachineInstr &MI = *this;
2144   if (!MI.getOperand(0).isReg())
2145     return;
2146 
2147   MachineBasicBlock::iterator DI = MI; ++DI;
2148   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2149        DI != DE; ++DI) {
2150     if (!DI->isDebugValue())
2151       return;
2152     if (DI->getDebugOperandForReg(MI.getOperand(0).getReg()))
2153       DbgValues.push_back(&*DI);
2154   }
2155 }
2156 
changeDebugValuesDefReg(Register Reg)2157 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2158   // Collect matching debug values.
2159   SmallVector<MachineInstr *, 2> DbgValues;
2160 
2161   if (!getOperand(0).isReg())
2162     return;
2163 
2164   Register DefReg = getOperand(0).getReg();
2165   auto *MRI = getRegInfo();
2166   for (auto &MO : MRI->use_operands(DefReg)) {
2167     auto *DI = MO.getParent();
2168     if (!DI->isDebugValue())
2169       continue;
2170     if (DI->getDebugOperandForReg(DefReg)) {
2171       DbgValues.push_back(DI);
2172     }
2173   }
2174 
2175   // Propagate Reg to debug value instructions.
2176   for (auto *DBI : DbgValues)
2177     DBI->getDebugOperandForReg(DefReg)->setReg(Reg);
2178 }
2179 
2180 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2181 
getSpillSlotSize(const MMOList & Accesses,const MachineFrameInfo & MFI)2182 static unsigned getSpillSlotSize(const MMOList &Accesses,
2183                                  const MachineFrameInfo &MFI) {
2184   unsigned Size = 0;
2185   for (auto A : Accesses)
2186     if (MFI.isSpillSlotObjectIndex(
2187             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2188                 ->getFrameIndex()))
2189       Size += A->getSize();
2190   return Size;
2191 }
2192 
2193 Optional<unsigned>
getSpillSize(const TargetInstrInfo * TII) const2194 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2195   int FI;
2196   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2197     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2198     if (MFI.isSpillSlotObjectIndex(FI))
2199       return (*memoperands_begin())->getSize();
2200   }
2201   return None;
2202 }
2203 
2204 Optional<unsigned>
getFoldedSpillSize(const TargetInstrInfo * TII) const2205 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2206   MMOList Accesses;
2207   if (TII->hasStoreToStackSlot(*this, Accesses))
2208     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2209   return None;
2210 }
2211 
2212 Optional<unsigned>
getRestoreSize(const TargetInstrInfo * TII) const2213 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2214   int FI;
2215   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2216     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2217     if (MFI.isSpillSlotObjectIndex(FI))
2218       return (*memoperands_begin())->getSize();
2219   }
2220   return None;
2221 }
2222 
2223 Optional<unsigned>
getFoldedRestoreSize(const TargetInstrInfo * TII) const2224 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2225   MMOList Accesses;
2226   if (TII->hasLoadFromStackSlot(*this, Accesses))
2227     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2228   return None;
2229 }
2230