1 //===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an _extremely_ simple interprocedural constant
10 // propagation pass. It could certainly be improved in many different ways,
11 // like using a worklist. This pass makes arguments dead, but does not remove
12 // them. The existing dead argument elimination pass should be run after this
13 // to clean up the mess.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/AbstractCallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Transforms/IPO.h"
27 using namespace llvm;
28
29 #define DEBUG_TYPE "ipconstprop"
30
31 STATISTIC(NumArgumentsProped, "Number of args turned into constants");
32 STATISTIC(NumReturnValProped, "Number of return values turned into constants");
33
34 namespace {
35 /// IPCP - The interprocedural constant propagation pass
36 ///
37 struct IPCP : public ModulePass {
38 static char ID; // Pass identification, replacement for typeid
IPCP__anonfdb364940111::IPCP39 IPCP() : ModulePass(ID) {
40 initializeIPCPPass(*PassRegistry::getPassRegistry());
41 }
42
43 bool runOnModule(Module &M) override;
44 };
45 }
46
47 /// PropagateConstantsIntoArguments - Look at all uses of the specified
48 /// function. If all uses are direct call sites, and all pass a particular
49 /// constant in for an argument, propagate that constant in as the argument.
50 ///
PropagateConstantsIntoArguments(Function & F)51 static bool PropagateConstantsIntoArguments(Function &F) {
52 if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit.
53
54 // For each argument, keep track of its constant value and whether it is a
55 // constant or not. The bool is driven to true when found to be non-constant.
56 SmallVector<PointerIntPair<Constant *, 1, bool>, 16> ArgumentConstants;
57 ArgumentConstants.resize(F.arg_size());
58
59 unsigned NumNonconstant = 0;
60 for (Use &U : F.uses()) {
61 User *UR = U.getUser();
62 // Ignore blockaddress uses.
63 if (isa<BlockAddress>(UR)) continue;
64
65 // If no abstract call site was created we did not understand the use, bail.
66 AbstractCallSite ACS(&U);
67 if (!ACS)
68 return false;
69
70 // Mismatched argument count is undefined behavior. Simply bail out to avoid
71 // handling of such situations below (avoiding asserts/crashes).
72 unsigned NumActualArgs = ACS.getNumArgOperands();
73 if (F.isVarArg() ? ArgumentConstants.size() > NumActualArgs
74 : ArgumentConstants.size() != NumActualArgs)
75 return false;
76
77 // Check out all of the potentially constant arguments. Note that we don't
78 // inspect varargs here.
79 Function::arg_iterator Arg = F.arg_begin();
80 for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++Arg) {
81
82 // If this argument is known non-constant, ignore it.
83 if (ArgumentConstants[i].getInt())
84 continue;
85
86 Value *V = ACS.getCallArgOperand(i);
87 Constant *C = dyn_cast_or_null<Constant>(V);
88
89 // Mismatched argument type is undefined behavior. Simply bail out to avoid
90 // handling of such situations below (avoiding asserts/crashes).
91 if (C && Arg->getType() != C->getType())
92 return false;
93
94 // We can only propagate thread independent values through callbacks.
95 // This is different to direct/indirect call sites because for them we
96 // know the thread executing the caller and callee is the same. For
97 // callbacks this is not guaranteed, thus a thread dependent value could
98 // be different for the caller and callee, making it invalid to propagate.
99 if (C && ACS.isCallbackCall() && C->isThreadDependent()) {
100 // Argument became non-constant. If all arguments are non-constant now,
101 // give up on this function.
102 if (++NumNonconstant == ArgumentConstants.size())
103 return false;
104
105 ArgumentConstants[i].setInt(true);
106 continue;
107 }
108
109 if (C && ArgumentConstants[i].getPointer() == nullptr) {
110 ArgumentConstants[i].setPointer(C); // First constant seen.
111 } else if (C && ArgumentConstants[i].getPointer() == C) {
112 // Still the constant value we think it is.
113 } else if (V == &*Arg) {
114 // Ignore recursive calls passing argument down.
115 } else {
116 // Argument became non-constant. If all arguments are non-constant now,
117 // give up on this function.
118 if (++NumNonconstant == ArgumentConstants.size())
119 return false;
120 ArgumentConstants[i].setInt(true);
121 }
122 }
123 }
124
125 // If we got to this point, there is a constant argument!
126 assert(NumNonconstant != ArgumentConstants.size());
127 bool MadeChange = false;
128 Function::arg_iterator AI = F.arg_begin();
129 for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
130 // Do we have a constant argument?
131 if (ArgumentConstants[i].getInt() || AI->use_empty() ||
132 (AI->hasByValAttr() && !F.onlyReadsMemory()))
133 continue;
134
135 Value *V = ArgumentConstants[i].getPointer();
136 if (!V) V = UndefValue::get(AI->getType());
137 AI->replaceAllUsesWith(V);
138 ++NumArgumentsProped;
139 MadeChange = true;
140 }
141 return MadeChange;
142 }
143
144
145 // Check to see if this function returns one or more constants. If so, replace
146 // all callers that use those return values with the constant value. This will
147 // leave in the actual return values and instructions, but deadargelim will
148 // clean that up.
149 //
150 // Additionally if a function always returns one of its arguments directly,
151 // callers will be updated to use the value they pass in directly instead of
152 // using the return value.
PropagateConstantReturn(Function & F)153 static bool PropagateConstantReturn(Function &F) {
154 if (F.getReturnType()->isVoidTy())
155 return false; // No return value.
156
157 // We can infer and propagate the return value only when we know that the
158 // definition we'll get at link time is *exactly* the definition we see now.
159 // For more details, see GlobalValue::mayBeDerefined.
160 if (!F.isDefinitionExact())
161 return false;
162
163 // Don't touch naked functions. The may contain asm returning
164 // value we don't see, so we may end up interprocedurally propagating
165 // the return value incorrectly.
166 if (F.hasFnAttribute(Attribute::Naked))
167 return false;
168
169 // Check to see if this function returns a constant.
170 SmallVector<Value *,4> RetVals;
171 StructType *STy = dyn_cast<StructType>(F.getReturnType());
172 if (STy)
173 for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i)
174 RetVals.push_back(UndefValue::get(STy->getElementType(i)));
175 else
176 RetVals.push_back(UndefValue::get(F.getReturnType()));
177
178 unsigned NumNonConstant = 0;
179 for (BasicBlock &BB : F)
180 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
181 for (unsigned i = 0, e = RetVals.size(); i != e; ++i) {
182 // Already found conflicting return values?
183 Value *RV = RetVals[i];
184 if (!RV)
185 continue;
186
187 // Find the returned value
188 Value *V;
189 if (!STy)
190 V = RI->getOperand(0);
191 else
192 V = FindInsertedValue(RI->getOperand(0), i);
193
194 if (V) {
195 // Ignore undefs, we can change them into anything
196 if (isa<UndefValue>(V))
197 continue;
198
199 // Try to see if all the rets return the same constant or argument.
200 if (isa<Constant>(V) || isa<Argument>(V)) {
201 if (isa<UndefValue>(RV)) {
202 // No value found yet? Try the current one.
203 RetVals[i] = V;
204 continue;
205 }
206 // Returning the same value? Good.
207 if (RV == V)
208 continue;
209 }
210 }
211 // Different or no known return value? Don't propagate this return
212 // value.
213 RetVals[i] = nullptr;
214 // All values non-constant? Stop looking.
215 if (++NumNonConstant == RetVals.size())
216 return false;
217 }
218 }
219
220 // If we got here, the function returns at least one constant value. Loop
221 // over all users, replacing any uses of the return value with the returned
222 // constant.
223 bool MadeChange = false;
224 for (Use &U : F.uses()) {
225 CallBase *CB = dyn_cast<CallBase>(U.getUser());
226
227 // Not a call instruction or a call instruction that's not calling F
228 // directly?
229 if (!CB || !CB->isCallee(&U))
230 continue;
231
232 // Call result not used?
233 if (CB->use_empty())
234 continue;
235
236 MadeChange = true;
237
238 if (!STy) {
239 Value* New = RetVals[0];
240 if (Argument *A = dyn_cast<Argument>(New))
241 // Was an argument returned? Then find the corresponding argument in
242 // the call instruction and use that.
243 New = CB->getArgOperand(A->getArgNo());
244 CB->replaceAllUsesWith(New);
245 continue;
246 }
247
248 for (auto I = CB->user_begin(), E = CB->user_end(); I != E;) {
249 Instruction *Ins = cast<Instruction>(*I);
250
251 // Increment now, so we can remove the use
252 ++I;
253
254 // Find the index of the retval to replace with
255 int index = -1;
256 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Ins))
257 if (EV->getNumIndices() == 1)
258 index = *EV->idx_begin();
259
260 // If this use uses a specific return value, and we have a replacement,
261 // replace it.
262 if (index != -1) {
263 Value *New = RetVals[index];
264 if (New) {
265 if (Argument *A = dyn_cast<Argument>(New))
266 // Was an argument returned? Then find the corresponding argument in
267 // the call instruction and use that.
268 New = CB->getArgOperand(A->getArgNo());
269 Ins->replaceAllUsesWith(New);
270 Ins->eraseFromParent();
271 }
272 }
273 }
274 }
275
276 if (MadeChange) ++NumReturnValProped;
277 return MadeChange;
278 }
279
280 char IPCP::ID = 0;
281 INITIALIZE_PASS(IPCP, "ipconstprop",
282 "Interprocedural constant propagation", false, false)
283
createIPConstantPropagationPass()284 ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
285
runOnModule(Module & M)286 bool IPCP::runOnModule(Module &M) {
287 if (skipModule(M))
288 return false;
289
290 bool Changed = false;
291 bool LocalChange = true;
292
293 // FIXME: instead of using smart algorithms, we just iterate until we stop
294 // making changes.
295 while (LocalChange) {
296 LocalChange = false;
297 for (Function &F : M)
298 if (!F.isDeclaration()) {
299 // Delete any klingons.
300 F.removeDeadConstantUsers();
301 if (F.hasLocalLinkage())
302 LocalChange |= PropagateConstantsIntoArguments(F);
303 Changed |= PropagateConstantReturn(F);
304 }
305 Changed |= LocalChange;
306 }
307 return Changed;
308 }
309