1 //===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an _extremely_ simple interprocedural constant
10 // propagation pass.  It could certainly be improved in many different ways,
11 // like using a worklist.  This pass makes arguments dead, but does not remove
12 // them.  The existing dead argument elimination pass should be run after this
13 // to clean up the mess.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/AbstractCallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Transforms/IPO.h"
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "ipconstprop"
30 
31 STATISTIC(NumArgumentsProped, "Number of args turned into constants");
32 STATISTIC(NumReturnValProped, "Number of return values turned into constants");
33 
34 namespace {
35   /// IPCP - The interprocedural constant propagation pass
36   ///
37   struct IPCP : public ModulePass {
38     static char ID; // Pass identification, replacement for typeid
IPCP__anonfdb364940111::IPCP39     IPCP() : ModulePass(ID) {
40       initializeIPCPPass(*PassRegistry::getPassRegistry());
41     }
42 
43     bool runOnModule(Module &M) override;
44   };
45 }
46 
47 /// PropagateConstantsIntoArguments - Look at all uses of the specified
48 /// function.  If all uses are direct call sites, and all pass a particular
49 /// constant in for an argument, propagate that constant in as the argument.
50 ///
PropagateConstantsIntoArguments(Function & F)51 static bool PropagateConstantsIntoArguments(Function &F) {
52   if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit.
53 
54   // For each argument, keep track of its constant value and whether it is a
55   // constant or not.  The bool is driven to true when found to be non-constant.
56   SmallVector<PointerIntPair<Constant *, 1, bool>, 16> ArgumentConstants;
57   ArgumentConstants.resize(F.arg_size());
58 
59   unsigned NumNonconstant = 0;
60   for (Use &U : F.uses()) {
61     User *UR = U.getUser();
62     // Ignore blockaddress uses.
63     if (isa<BlockAddress>(UR)) continue;
64 
65     // If no abstract call site was created we did not understand the use, bail.
66     AbstractCallSite ACS(&U);
67     if (!ACS)
68       return false;
69 
70     // Mismatched argument count is undefined behavior. Simply bail out to avoid
71     // handling of such situations below (avoiding asserts/crashes).
72     unsigned NumActualArgs = ACS.getNumArgOperands();
73     if (F.isVarArg() ? ArgumentConstants.size() > NumActualArgs
74                      : ArgumentConstants.size() != NumActualArgs)
75       return false;
76 
77     // Check out all of the potentially constant arguments.  Note that we don't
78     // inspect varargs here.
79     Function::arg_iterator Arg = F.arg_begin();
80     for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++Arg) {
81 
82       // If this argument is known non-constant, ignore it.
83       if (ArgumentConstants[i].getInt())
84         continue;
85 
86       Value *V = ACS.getCallArgOperand(i);
87       Constant *C = dyn_cast_or_null<Constant>(V);
88 
89       // Mismatched argument type is undefined behavior. Simply bail out to avoid
90       // handling of such situations below (avoiding asserts/crashes).
91       if (C && Arg->getType() != C->getType())
92         return false;
93 
94       // We can only propagate thread independent values through callbacks.
95       // This is different to direct/indirect call sites because for them we
96       // know the thread executing the caller and callee is the same. For
97       // callbacks this is not guaranteed, thus a thread dependent value could
98       // be different for the caller and callee, making it invalid to propagate.
99       if (C && ACS.isCallbackCall() && C->isThreadDependent()) {
100         // Argument became non-constant. If all arguments are non-constant now,
101         // give up on this function.
102         if (++NumNonconstant == ArgumentConstants.size())
103           return false;
104 
105         ArgumentConstants[i].setInt(true);
106         continue;
107       }
108 
109       if (C && ArgumentConstants[i].getPointer() == nullptr) {
110         ArgumentConstants[i].setPointer(C); // First constant seen.
111       } else if (C && ArgumentConstants[i].getPointer() == C) {
112         // Still the constant value we think it is.
113       } else if (V == &*Arg) {
114         // Ignore recursive calls passing argument down.
115       } else {
116         // Argument became non-constant.  If all arguments are non-constant now,
117         // give up on this function.
118         if (++NumNonconstant == ArgumentConstants.size())
119           return false;
120         ArgumentConstants[i].setInt(true);
121       }
122     }
123   }
124 
125   // If we got to this point, there is a constant argument!
126   assert(NumNonconstant != ArgumentConstants.size());
127   bool MadeChange = false;
128   Function::arg_iterator AI = F.arg_begin();
129   for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
130     // Do we have a constant argument?
131     if (ArgumentConstants[i].getInt() || AI->use_empty() ||
132         (AI->hasByValAttr() && !F.onlyReadsMemory()))
133       continue;
134 
135     Value *V = ArgumentConstants[i].getPointer();
136     if (!V) V = UndefValue::get(AI->getType());
137     AI->replaceAllUsesWith(V);
138     ++NumArgumentsProped;
139     MadeChange = true;
140   }
141   return MadeChange;
142 }
143 
144 
145 // Check to see if this function returns one or more constants. If so, replace
146 // all callers that use those return values with the constant value. This will
147 // leave in the actual return values and instructions, but deadargelim will
148 // clean that up.
149 //
150 // Additionally if a function always returns one of its arguments directly,
151 // callers will be updated to use the value they pass in directly instead of
152 // using the return value.
PropagateConstantReturn(Function & F)153 static bool PropagateConstantReturn(Function &F) {
154   if (F.getReturnType()->isVoidTy())
155     return false; // No return value.
156 
157   // We can infer and propagate the return value only when we know that the
158   // definition we'll get at link time is *exactly* the definition we see now.
159   // For more details, see GlobalValue::mayBeDerefined.
160   if (!F.isDefinitionExact())
161     return false;
162 
163   // Don't touch naked functions. The may contain asm returning
164   // value we don't see, so we may end up interprocedurally propagating
165   // the return value incorrectly.
166   if (F.hasFnAttribute(Attribute::Naked))
167     return false;
168 
169   // Check to see if this function returns a constant.
170   SmallVector<Value *,4> RetVals;
171   StructType *STy = dyn_cast<StructType>(F.getReturnType());
172   if (STy)
173     for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i)
174       RetVals.push_back(UndefValue::get(STy->getElementType(i)));
175   else
176     RetVals.push_back(UndefValue::get(F.getReturnType()));
177 
178   unsigned NumNonConstant = 0;
179   for (BasicBlock &BB : F)
180     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
181       for (unsigned i = 0, e = RetVals.size(); i != e; ++i) {
182         // Already found conflicting return values?
183         Value *RV = RetVals[i];
184         if (!RV)
185           continue;
186 
187         // Find the returned value
188         Value *V;
189         if (!STy)
190           V = RI->getOperand(0);
191         else
192           V = FindInsertedValue(RI->getOperand(0), i);
193 
194         if (V) {
195           // Ignore undefs, we can change them into anything
196           if (isa<UndefValue>(V))
197             continue;
198 
199           // Try to see if all the rets return the same constant or argument.
200           if (isa<Constant>(V) || isa<Argument>(V)) {
201             if (isa<UndefValue>(RV)) {
202               // No value found yet? Try the current one.
203               RetVals[i] = V;
204               continue;
205             }
206             // Returning the same value? Good.
207             if (RV == V)
208               continue;
209           }
210         }
211         // Different or no known return value? Don't propagate this return
212         // value.
213         RetVals[i] = nullptr;
214         // All values non-constant? Stop looking.
215         if (++NumNonConstant == RetVals.size())
216           return false;
217       }
218     }
219 
220   // If we got here, the function returns at least one constant value.  Loop
221   // over all users, replacing any uses of the return value with the returned
222   // constant.
223   bool MadeChange = false;
224   for (Use &U : F.uses()) {
225     CallBase *CB = dyn_cast<CallBase>(U.getUser());
226 
227     // Not a call instruction or a call instruction that's not calling F
228     // directly?
229     if (!CB || !CB->isCallee(&U))
230       continue;
231 
232     // Call result not used?
233     if (CB->use_empty())
234       continue;
235 
236     MadeChange = true;
237 
238     if (!STy) {
239       Value* New = RetVals[0];
240       if (Argument *A = dyn_cast<Argument>(New))
241         // Was an argument returned? Then find the corresponding argument in
242         // the call instruction and use that.
243         New = CB->getArgOperand(A->getArgNo());
244       CB->replaceAllUsesWith(New);
245       continue;
246     }
247 
248     for (auto I = CB->user_begin(), E = CB->user_end(); I != E;) {
249       Instruction *Ins = cast<Instruction>(*I);
250 
251       // Increment now, so we can remove the use
252       ++I;
253 
254       // Find the index of the retval to replace with
255       int index = -1;
256       if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Ins))
257         if (EV->getNumIndices() == 1)
258           index = *EV->idx_begin();
259 
260       // If this use uses a specific return value, and we have a replacement,
261       // replace it.
262       if (index != -1) {
263         Value *New = RetVals[index];
264         if (New) {
265           if (Argument *A = dyn_cast<Argument>(New))
266             // Was an argument returned? Then find the corresponding argument in
267             // the call instruction and use that.
268             New = CB->getArgOperand(A->getArgNo());
269           Ins->replaceAllUsesWith(New);
270           Ins->eraseFromParent();
271         }
272       }
273     }
274   }
275 
276   if (MadeChange) ++NumReturnValProped;
277   return MadeChange;
278 }
279 
280 char IPCP::ID = 0;
281 INITIALIZE_PASS(IPCP, "ipconstprop",
282                 "Interprocedural constant propagation", false, false)
283 
createIPConstantPropagationPass()284 ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
285 
runOnModule(Module & M)286 bool IPCP::runOnModule(Module &M) {
287   if (skipModule(M))
288     return false;
289 
290   bool Changed = false;
291   bool LocalChange = true;
292 
293   // FIXME: instead of using smart algorithms, we just iterate until we stop
294   // making changes.
295   while (LocalChange) {
296     LocalChange = false;
297     for (Function &F : M)
298       if (!F.isDeclaration()) {
299         // Delete any klingons.
300         F.removeDeadConstantUsers();
301         if (F.hasLocalLinkage())
302           LocalChange |= PropagateConstantsIntoArguments(F);
303         Changed |= PropagateConstantReturn(F);
304       }
305     Changed |= LocalChange;
306   }
307   return Changed;
308 }
309