1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges. It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
13 //
14 // len = < known positive >
15 // for (i = 0; i < n; i++) {
16 // if (0 <= i && i < len) {
17 // do_something();
18 // } else {
19 // throw_out_of_bounds();
20 // }
21 // }
22 //
23 // to
24 //
25 // len = < known positive >
26 // limit = smin(n, len)
27 // // no first segment
28 // for (i = 0; i < limit; i++) {
29 // if (0 <= i && i < len) { // this check is fully redundant
30 // do_something();
31 // } else {
32 // throw_out_of_bounds();
33 // }
34 // }
35 // for (i = limit; i < n; i++) {
36 // if (0 <= i && i < len) {
37 // do_something();
38 // } else {
39 // throw_out_of_bounds();
40 // }
41 // }
42 //
43 //===----------------------------------------------------------------------===//
44
45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46 #include "llvm/ADT/APInt.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/None.h"
49 #include "llvm/ADT/Optional.h"
50 #include "llvm/ADT/PriorityWorklist.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringRef.h"
54 #include "llvm/ADT/Twine.h"
55 #include "llvm/Analysis/BranchProbabilityInfo.h"
56 #include "llvm/Analysis/LoopAnalysisManager.h"
57 #include "llvm/Analysis/LoopInfo.h"
58 #include "llvm/Analysis/LoopPass.h"
59 #include "llvm/Analysis/PostDominators.h"
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/CFG.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DerivedTypes.h"
66 #include "llvm/IR/Dominators.h"
67 #include "llvm/IR/Function.h"
68 #include "llvm/IR/IRBuilder.h"
69 #include "llvm/IR/InstrTypes.h"
70 #include "llvm/IR/Instructions.h"
71 #include "llvm/IR/Metadata.h"
72 #include "llvm/IR/Module.h"
73 #include "llvm/IR/PatternMatch.h"
74 #include "llvm/IR/Type.h"
75 #include "llvm/IR/Use.h"
76 #include "llvm/IR/User.h"
77 #include "llvm/IR/Value.h"
78 #include "llvm/InitializePasses.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Transforms/Scalar.h"
88 #include "llvm/Transforms/Utils/Cloning.h"
89 #include "llvm/Transforms/Utils/LoopSimplify.h"
90 #include "llvm/Transforms/Utils/LoopUtils.h"
91 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
92 #include "llvm/Transforms/Utils/ValueMapper.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <iterator>
96 #include <limits>
97 #include <utility>
98 #include <vector>
99
100 using namespace llvm;
101 using namespace llvm::PatternMatch;
102
103 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
104 cl::init(64));
105
106 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
107 cl::init(false));
108
109 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
110 cl::init(false));
111
112 static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
113 cl::Hidden, cl::init(10));
114
115 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
116 cl::Hidden, cl::init(false));
117
118 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
119 cl::Hidden, cl::init(true));
120
121 static cl::opt<bool> AllowNarrowLatchCondition(
122 "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
123 cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
124 "with narrow latch condition."));
125
126 static const char *ClonedLoopTag = "irce.loop.clone";
127
128 #define DEBUG_TYPE "irce"
129
130 namespace {
131
132 /// An inductive range check is conditional branch in a loop with
133 ///
134 /// 1. a very cold successor (i.e. the branch jumps to that successor very
135 /// rarely)
136 ///
137 /// and
138 ///
139 /// 2. a condition that is provably true for some contiguous range of values
140 /// taken by the containing loop's induction variable.
141 ///
142 class InductiveRangeCheck {
143
144 const SCEV *Begin = nullptr;
145 const SCEV *Step = nullptr;
146 const SCEV *End = nullptr;
147 Use *CheckUse = nullptr;
148 bool IsSigned = true;
149
150 static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
151 Value *&Index, Value *&Length,
152 bool &IsSigned);
153
154 static void
155 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
156 SmallVectorImpl<InductiveRangeCheck> &Checks,
157 SmallPtrSetImpl<Value *> &Visited);
158
159 public:
getBegin() const160 const SCEV *getBegin() const { return Begin; }
getStep() const161 const SCEV *getStep() const { return Step; }
getEnd() const162 const SCEV *getEnd() const { return End; }
isSigned() const163 bool isSigned() const { return IsSigned; }
164
print(raw_ostream & OS) const165 void print(raw_ostream &OS) const {
166 OS << "InductiveRangeCheck:\n";
167 OS << " Begin: ";
168 Begin->print(OS);
169 OS << " Step: ";
170 Step->print(OS);
171 OS << " End: ";
172 End->print(OS);
173 OS << "\n CheckUse: ";
174 getCheckUse()->getUser()->print(OS);
175 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
176 }
177
178 LLVM_DUMP_METHOD
dump()179 void dump() {
180 print(dbgs());
181 }
182
getCheckUse() const183 Use *getCheckUse() const { return CheckUse; }
184
185 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
186 /// R.getEnd() le R.getBegin(), then R denotes the empty range.
187
188 class Range {
189 const SCEV *Begin;
190 const SCEV *End;
191
192 public:
Range(const SCEV * Begin,const SCEV * End)193 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
194 assert(Begin->getType() == End->getType() && "ill-typed range!");
195 }
196
getType() const197 Type *getType() const { return Begin->getType(); }
getBegin() const198 const SCEV *getBegin() const { return Begin; }
getEnd() const199 const SCEV *getEnd() const { return End; }
isEmpty(ScalarEvolution & SE,bool IsSigned) const200 bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
201 if (Begin == End)
202 return true;
203 if (IsSigned)
204 return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
205 else
206 return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
207 }
208 };
209
210 /// This is the value the condition of the branch needs to evaluate to for the
211 /// branch to take the hot successor (see (1) above).
getPassingDirection()212 bool getPassingDirection() { return true; }
213
214 /// Computes a range for the induction variable (IndVar) in which the range
215 /// check is redundant and can be constant-folded away. The induction
216 /// variable is not required to be the canonical {0,+,1} induction variable.
217 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
218 const SCEVAddRecExpr *IndVar,
219 bool IsLatchSigned) const;
220
221 /// Parse out a set of inductive range checks from \p BI and append them to \p
222 /// Checks.
223 ///
224 /// NB! There may be conditions feeding into \p BI that aren't inductive range
225 /// checks, and hence don't end up in \p Checks.
226 static void
227 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
228 BranchProbabilityInfo *BPI,
229 SmallVectorImpl<InductiveRangeCheck> &Checks);
230 };
231
232 class InductiveRangeCheckElimination {
233 ScalarEvolution &SE;
234 BranchProbabilityInfo *BPI;
235 DominatorTree &DT;
236 LoopInfo &LI;
237
238 public:
InductiveRangeCheckElimination(ScalarEvolution & SE,BranchProbabilityInfo * BPI,DominatorTree & DT,LoopInfo & LI)239 InductiveRangeCheckElimination(ScalarEvolution &SE,
240 BranchProbabilityInfo *BPI, DominatorTree &DT,
241 LoopInfo &LI)
242 : SE(SE), BPI(BPI), DT(DT), LI(LI) {}
243
244 bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
245 };
246
247 class IRCELegacyPass : public FunctionPass {
248 public:
249 static char ID;
250
IRCELegacyPass()251 IRCELegacyPass() : FunctionPass(ID) {
252 initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
253 }
254
getAnalysisUsage(AnalysisUsage & AU) const255 void getAnalysisUsage(AnalysisUsage &AU) const override {
256 AU.addRequired<BranchProbabilityInfoWrapperPass>();
257 AU.addRequired<DominatorTreeWrapperPass>();
258 AU.addPreserved<DominatorTreeWrapperPass>();
259 AU.addRequired<LoopInfoWrapperPass>();
260 AU.addPreserved<LoopInfoWrapperPass>();
261 AU.addRequired<ScalarEvolutionWrapperPass>();
262 AU.addPreserved<ScalarEvolutionWrapperPass>();
263 }
264
265 bool runOnFunction(Function &F) override;
266 };
267
268 } // end anonymous namespace
269
270 char IRCELegacyPass::ID = 0;
271
272 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
273 "Inductive range check elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)274 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
275 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
276 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
277 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
278 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
279 false, false)
280
281 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot
282 /// be interpreted as a range check, return false and set `Index` and `Length`
283 /// to `nullptr`. Otherwise set `Index` to the value being range checked, and
284 /// set `Length` to the upper limit `Index` is being range checked.
285 bool
286 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
287 ScalarEvolution &SE, Value *&Index,
288 Value *&Length, bool &IsSigned) {
289 auto IsLoopInvariant = [&SE, L](Value *V) {
290 return SE.isLoopInvariant(SE.getSCEV(V), L);
291 };
292
293 ICmpInst::Predicate Pred = ICI->getPredicate();
294 Value *LHS = ICI->getOperand(0);
295 Value *RHS = ICI->getOperand(1);
296
297 switch (Pred) {
298 default:
299 return false;
300
301 case ICmpInst::ICMP_SLE:
302 std::swap(LHS, RHS);
303 LLVM_FALLTHROUGH;
304 case ICmpInst::ICMP_SGE:
305 IsSigned = true;
306 if (match(RHS, m_ConstantInt<0>())) {
307 Index = LHS;
308 return true; // Lower.
309 }
310 return false;
311
312 case ICmpInst::ICMP_SLT:
313 std::swap(LHS, RHS);
314 LLVM_FALLTHROUGH;
315 case ICmpInst::ICMP_SGT:
316 IsSigned = true;
317 if (match(RHS, m_ConstantInt<-1>())) {
318 Index = LHS;
319 return true; // Lower.
320 }
321
322 if (IsLoopInvariant(LHS)) {
323 Index = RHS;
324 Length = LHS;
325 return true; // Upper.
326 }
327 return false;
328
329 case ICmpInst::ICMP_ULT:
330 std::swap(LHS, RHS);
331 LLVM_FALLTHROUGH;
332 case ICmpInst::ICMP_UGT:
333 IsSigned = false;
334 if (IsLoopInvariant(LHS)) {
335 Index = RHS;
336 Length = LHS;
337 return true; // Both lower and upper.
338 }
339 return false;
340 }
341
342 llvm_unreachable("default clause returns!");
343 }
344
extractRangeChecksFromCond(Loop * L,ScalarEvolution & SE,Use & ConditionUse,SmallVectorImpl<InductiveRangeCheck> & Checks,SmallPtrSetImpl<Value * > & Visited)345 void InductiveRangeCheck::extractRangeChecksFromCond(
346 Loop *L, ScalarEvolution &SE, Use &ConditionUse,
347 SmallVectorImpl<InductiveRangeCheck> &Checks,
348 SmallPtrSetImpl<Value *> &Visited) {
349 Value *Condition = ConditionUse.get();
350 if (!Visited.insert(Condition).second)
351 return;
352
353 // TODO: Do the same for OR, XOR, NOT etc?
354 if (match(Condition, m_And(m_Value(), m_Value()))) {
355 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
356 Checks, Visited);
357 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
358 Checks, Visited);
359 return;
360 }
361
362 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
363 if (!ICI)
364 return;
365
366 Value *Length = nullptr, *Index;
367 bool IsSigned;
368 if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
369 return;
370
371 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
372 bool IsAffineIndex =
373 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
374
375 if (!IsAffineIndex)
376 return;
377
378 const SCEV *End = nullptr;
379 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
380 // We can potentially do much better here.
381 if (Length)
382 End = SE.getSCEV(Length);
383 else {
384 // So far we can only reach this point for Signed range check. This may
385 // change in future. In this case we will need to pick Unsigned max for the
386 // unsigned range check.
387 unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
388 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
389 End = SIntMax;
390 }
391
392 InductiveRangeCheck IRC;
393 IRC.End = End;
394 IRC.Begin = IndexAddRec->getStart();
395 IRC.Step = IndexAddRec->getStepRecurrence(SE);
396 IRC.CheckUse = &ConditionUse;
397 IRC.IsSigned = IsSigned;
398 Checks.push_back(IRC);
399 }
400
extractRangeChecksFromBranch(BranchInst * BI,Loop * L,ScalarEvolution & SE,BranchProbabilityInfo * BPI,SmallVectorImpl<InductiveRangeCheck> & Checks)401 void InductiveRangeCheck::extractRangeChecksFromBranch(
402 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
403 SmallVectorImpl<InductiveRangeCheck> &Checks) {
404 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
405 return;
406
407 BranchProbability LikelyTaken(15, 16);
408
409 if (!SkipProfitabilityChecks && BPI &&
410 BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
411 return;
412
413 SmallPtrSet<Value *, 8> Visited;
414 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
415 Checks, Visited);
416 }
417
418 // Add metadata to the loop L to disable loop optimizations. Callers need to
419 // confirm that optimizing loop L is not beneficial.
DisableAllLoopOptsOnLoop(Loop & L)420 static void DisableAllLoopOptsOnLoop(Loop &L) {
421 // We do not care about any existing loopID related metadata for L, since we
422 // are setting all loop metadata to false.
423 LLVMContext &Context = L.getHeader()->getContext();
424 // Reserve first location for self reference to the LoopID metadata node.
425 MDNode *Dummy = MDNode::get(Context, {});
426 MDNode *DisableUnroll = MDNode::get(
427 Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
428 Metadata *FalseVal =
429 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
430 MDNode *DisableVectorize = MDNode::get(
431 Context,
432 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
433 MDNode *DisableLICMVersioning = MDNode::get(
434 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
435 MDNode *DisableDistribution= MDNode::get(
436 Context,
437 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
438 MDNode *NewLoopID =
439 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
440 DisableLICMVersioning, DisableDistribution});
441 // Set operand 0 to refer to the loop id itself.
442 NewLoopID->replaceOperandWith(0, NewLoopID);
443 L.setLoopID(NewLoopID);
444 }
445
446 namespace {
447
448 // Keeps track of the structure of a loop. This is similar to llvm::Loop,
449 // except that it is more lightweight and can track the state of a loop through
450 // changing and potentially invalid IR. This structure also formalizes the
451 // kinds of loops we can deal with -- ones that have a single latch that is also
452 // an exiting block *and* have a canonical induction variable.
453 struct LoopStructure {
454 const char *Tag = "";
455
456 BasicBlock *Header = nullptr;
457 BasicBlock *Latch = nullptr;
458
459 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
460 // successor is `LatchExit', the exit block of the loop.
461 BranchInst *LatchBr = nullptr;
462 BasicBlock *LatchExit = nullptr;
463 unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
464
465 // The loop represented by this instance of LoopStructure is semantically
466 // equivalent to:
467 //
468 // intN_ty inc = IndVarIncreasing ? 1 : -1;
469 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
470 //
471 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
472 // ... body ...
473
474 Value *IndVarBase = nullptr;
475 Value *IndVarStart = nullptr;
476 Value *IndVarStep = nullptr;
477 Value *LoopExitAt = nullptr;
478 bool IndVarIncreasing = false;
479 bool IsSignedPredicate = true;
480
481 LoopStructure() = default;
482
map__anon1247118a0311::LoopStructure483 template <typename M> LoopStructure map(M Map) const {
484 LoopStructure Result;
485 Result.Tag = Tag;
486 Result.Header = cast<BasicBlock>(Map(Header));
487 Result.Latch = cast<BasicBlock>(Map(Latch));
488 Result.LatchBr = cast<BranchInst>(Map(LatchBr));
489 Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
490 Result.LatchBrExitIdx = LatchBrExitIdx;
491 Result.IndVarBase = Map(IndVarBase);
492 Result.IndVarStart = Map(IndVarStart);
493 Result.IndVarStep = Map(IndVarStep);
494 Result.LoopExitAt = Map(LoopExitAt);
495 Result.IndVarIncreasing = IndVarIncreasing;
496 Result.IsSignedPredicate = IsSignedPredicate;
497 return Result;
498 }
499
500 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
501 BranchProbabilityInfo *BPI,
502 Loop &, const char *&);
503 };
504
505 /// This class is used to constrain loops to run within a given iteration space.
506 /// The algorithm this class implements is given a Loop and a range [Begin,
507 /// End). The algorithm then tries to break out a "main loop" out of the loop
508 /// it is given in a way that the "main loop" runs with the induction variable
509 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post
510 /// loops to run any remaining iterations. The pre loop runs any iterations in
511 /// which the induction variable is < Begin, and the post loop runs any
512 /// iterations in which the induction variable is >= End.
513 class LoopConstrainer {
514 // The representation of a clone of the original loop we started out with.
515 struct ClonedLoop {
516 // The cloned blocks
517 std::vector<BasicBlock *> Blocks;
518
519 // `Map` maps values in the clonee into values in the cloned version
520 ValueToValueMapTy Map;
521
522 // An instance of `LoopStructure` for the cloned loop
523 LoopStructure Structure;
524 };
525
526 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for
527 // more details on what these fields mean.
528 struct RewrittenRangeInfo {
529 BasicBlock *PseudoExit = nullptr;
530 BasicBlock *ExitSelector = nullptr;
531 std::vector<PHINode *> PHIValuesAtPseudoExit;
532 PHINode *IndVarEnd = nullptr;
533
534 RewrittenRangeInfo() = default;
535 };
536
537 // Calculated subranges we restrict the iteration space of the main loop to.
538 // See the implementation of `calculateSubRanges' for more details on how
539 // these fields are computed. `LowLimit` is None if there is no restriction
540 // on low end of the restricted iteration space of the main loop. `HighLimit`
541 // is None if there is no restriction on high end of the restricted iteration
542 // space of the main loop.
543
544 struct SubRanges {
545 Optional<const SCEV *> LowLimit;
546 Optional<const SCEV *> HighLimit;
547 };
548
549 // Compute a safe set of limits for the main loop to run in -- effectively the
550 // intersection of `Range' and the iteration space of the original loop.
551 // Return None if unable to compute the set of subranges.
552 Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
553
554 // Clone `OriginalLoop' and return the result in CLResult. The IR after
555 // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
556 // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
557 // but there is no such edge.
558 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
559
560 // Create the appropriate loop structure needed to describe a cloned copy of
561 // `Original`. The clone is described by `VM`.
562 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
563 ValueToValueMapTy &VM, bool IsSubloop);
564
565 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
566 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the
567 // iteration space is not changed. `ExitLoopAt' is assumed to be slt
568 // `OriginalHeaderCount'.
569 //
570 // If there are iterations left to execute, control is made to jump to
571 // `ContinuationBlock', otherwise they take the normal loop exit. The
572 // returned `RewrittenRangeInfo' object is populated as follows:
573 //
574 // .PseudoExit is a basic block that unconditionally branches to
575 // `ContinuationBlock'.
576 //
577 // .ExitSelector is a basic block that decides, on exit from the loop,
578 // whether to branch to the "true" exit or to `PseudoExit'.
579 //
580 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
581 // for each PHINode in the loop header on taking the pseudo exit.
582 //
583 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
584 // preheader because it is made to branch to the loop header only
585 // conditionally.
586 RewrittenRangeInfo
587 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
588 Value *ExitLoopAt,
589 BasicBlock *ContinuationBlock) const;
590
591 // The loop denoted by `LS' has `OldPreheader' as its preheader. This
592 // function creates a new preheader for `LS' and returns it.
593 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
594 const char *Tag) const;
595
596 // `ContinuationBlockAndPreheader' was the continuation block for some call to
597 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
598 // This function rewrites the PHI nodes in `LS.Header' to start with the
599 // correct value.
600 void rewriteIncomingValuesForPHIs(
601 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
602 const LoopConstrainer::RewrittenRangeInfo &RRI) const;
603
604 // Even though we do not preserve any passes at this time, we at least need to
605 // keep the parent loop structure consistent. The `LPPassManager' seems to
606 // verify this after running a loop pass. This function adds the list of
607 // blocks denoted by BBs to this loops parent loop if required.
608 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
609
610 // Some global state.
611 Function &F;
612 LLVMContext &Ctx;
613 ScalarEvolution &SE;
614 DominatorTree &DT;
615 LoopInfo &LI;
616 function_ref<void(Loop *, bool)> LPMAddNewLoop;
617
618 // Information about the original loop we started out with.
619 Loop &OriginalLoop;
620
621 const SCEV *LatchTakenCount = nullptr;
622 BasicBlock *OriginalPreheader = nullptr;
623
624 // The preheader of the main loop. This may or may not be different from
625 // `OriginalPreheader'.
626 BasicBlock *MainLoopPreheader = nullptr;
627
628 // The range we need to run the main loop in.
629 InductiveRangeCheck::Range Range;
630
631 // The structure of the main loop (see comment at the beginning of this class
632 // for a definition)
633 LoopStructure MainLoopStructure;
634
635 public:
LoopConstrainer(Loop & L,LoopInfo & LI,function_ref<void (Loop *,bool)> LPMAddNewLoop,const LoopStructure & LS,ScalarEvolution & SE,DominatorTree & DT,InductiveRangeCheck::Range R)636 LoopConstrainer(Loop &L, LoopInfo &LI,
637 function_ref<void(Loop *, bool)> LPMAddNewLoop,
638 const LoopStructure &LS, ScalarEvolution &SE,
639 DominatorTree &DT, InductiveRangeCheck::Range R)
640 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
641 SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
642 Range(R), MainLoopStructure(LS) {}
643
644 // Entry point for the algorithm. Returns true on success.
645 bool run();
646 };
647
648 } // end anonymous namespace
649
650 /// Given a loop with an deccreasing induction variable, is it possible to
651 /// safely calculate the bounds of a new loop using the given Predicate.
isSafeDecreasingBound(const SCEV * Start,const SCEV * BoundSCEV,const SCEV * Step,ICmpInst::Predicate Pred,unsigned LatchBrExitIdx,Loop * L,ScalarEvolution & SE)652 static bool isSafeDecreasingBound(const SCEV *Start,
653 const SCEV *BoundSCEV, const SCEV *Step,
654 ICmpInst::Predicate Pred,
655 unsigned LatchBrExitIdx,
656 Loop *L, ScalarEvolution &SE) {
657 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
658 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
659 return false;
660
661 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
662 return false;
663
664 assert(SE.isKnownNegative(Step) && "expecting negative step");
665
666 LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
667 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
668 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
669 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
670 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
671 << "\n");
672 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
673
674 bool IsSigned = ICmpInst::isSigned(Pred);
675 // The predicate that we need to check that the induction variable lies
676 // within bounds.
677 ICmpInst::Predicate BoundPred =
678 IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
679
680 if (LatchBrExitIdx == 1)
681 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
682
683 assert(LatchBrExitIdx == 0 &&
684 "LatchBrExitIdx should be either 0 or 1");
685
686 const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
687 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
688 APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
689 APInt::getMinValue(BitWidth);
690 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
691
692 const SCEV *MinusOne =
693 SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
694
695 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
696 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
697
698 }
699
700 /// Given a loop with an increasing induction variable, is it possible to
701 /// safely calculate the bounds of a new loop using the given Predicate.
isSafeIncreasingBound(const SCEV * Start,const SCEV * BoundSCEV,const SCEV * Step,ICmpInst::Predicate Pred,unsigned LatchBrExitIdx,Loop * L,ScalarEvolution & SE)702 static bool isSafeIncreasingBound(const SCEV *Start,
703 const SCEV *BoundSCEV, const SCEV *Step,
704 ICmpInst::Predicate Pred,
705 unsigned LatchBrExitIdx,
706 Loop *L, ScalarEvolution &SE) {
707 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
708 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
709 return false;
710
711 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
712 return false;
713
714 LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
715 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
716 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
717 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
718 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
719 << "\n");
720 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
721
722 bool IsSigned = ICmpInst::isSigned(Pred);
723 // The predicate that we need to check that the induction variable lies
724 // within bounds.
725 ICmpInst::Predicate BoundPred =
726 IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
727
728 if (LatchBrExitIdx == 1)
729 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
730
731 assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
732
733 const SCEV *StepMinusOne =
734 SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
735 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
736 APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
737 APInt::getMaxValue(BitWidth);
738 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
739
740 return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
741 SE.getAddExpr(BoundSCEV, Step)) &&
742 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
743 }
744
745 Optional<LoopStructure>
parseLoopStructure(ScalarEvolution & SE,BranchProbabilityInfo * BPI,Loop & L,const char * & FailureReason)746 LoopStructure::parseLoopStructure(ScalarEvolution &SE,
747 BranchProbabilityInfo *BPI, Loop &L,
748 const char *&FailureReason) {
749 if (!L.isLoopSimplifyForm()) {
750 FailureReason = "loop not in LoopSimplify form";
751 return None;
752 }
753
754 BasicBlock *Latch = L.getLoopLatch();
755 assert(Latch && "Simplified loops only have one latch!");
756
757 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
758 FailureReason = "loop has already been cloned";
759 return None;
760 }
761
762 if (!L.isLoopExiting(Latch)) {
763 FailureReason = "no loop latch";
764 return None;
765 }
766
767 BasicBlock *Header = L.getHeader();
768 BasicBlock *Preheader = L.getLoopPreheader();
769 if (!Preheader) {
770 FailureReason = "no preheader";
771 return None;
772 }
773
774 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
775 if (!LatchBr || LatchBr->isUnconditional()) {
776 FailureReason = "latch terminator not conditional branch";
777 return None;
778 }
779
780 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
781
782 BranchProbability ExitProbability =
783 BPI ? BPI->getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx)
784 : BranchProbability::getZero();
785
786 if (!SkipProfitabilityChecks &&
787 ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
788 FailureReason = "short running loop, not profitable";
789 return None;
790 }
791
792 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
793 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
794 FailureReason = "latch terminator branch not conditional on integral icmp";
795 return None;
796 }
797
798 const SCEV *LatchCount = SE.getExitCount(&L, Latch);
799 if (isa<SCEVCouldNotCompute>(LatchCount)) {
800 FailureReason = "could not compute latch count";
801 return None;
802 }
803
804 ICmpInst::Predicate Pred = ICI->getPredicate();
805 Value *LeftValue = ICI->getOperand(0);
806 const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
807 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
808
809 Value *RightValue = ICI->getOperand(1);
810 const SCEV *RightSCEV = SE.getSCEV(RightValue);
811
812 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
813 if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
814 if (isa<SCEVAddRecExpr>(RightSCEV)) {
815 std::swap(LeftSCEV, RightSCEV);
816 std::swap(LeftValue, RightValue);
817 Pred = ICmpInst::getSwappedPredicate(Pred);
818 } else {
819 FailureReason = "no add recurrences in the icmp";
820 return None;
821 }
822 }
823
824 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
825 if (AR->getNoWrapFlags(SCEV::FlagNSW))
826 return true;
827
828 IntegerType *Ty = cast<IntegerType>(AR->getType());
829 IntegerType *WideTy =
830 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
831
832 const SCEVAddRecExpr *ExtendAfterOp =
833 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
834 if (ExtendAfterOp) {
835 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
836 const SCEV *ExtendedStep =
837 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
838
839 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
840 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
841
842 if (NoSignedWrap)
843 return true;
844 }
845
846 // We may have proved this when computing the sign extension above.
847 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
848 };
849
850 // `ICI` is interpreted as taking the backedge if the *next* value of the
851 // induction variable satisfies some constraint.
852
853 const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
854 if (!IndVarBase->isAffine()) {
855 FailureReason = "LHS in icmp not induction variable";
856 return None;
857 }
858 const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
859 if (!isa<SCEVConstant>(StepRec)) {
860 FailureReason = "LHS in icmp not induction variable";
861 return None;
862 }
863 ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
864
865 if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
866 FailureReason = "LHS in icmp needs nsw for equality predicates";
867 return None;
868 }
869
870 assert(!StepCI->isZero() && "Zero step?");
871 bool IsIncreasing = !StepCI->isNegative();
872 bool IsSignedPredicate;
873 const SCEV *StartNext = IndVarBase->getStart();
874 const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
875 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
876 const SCEV *Step = SE.getSCEV(StepCI);
877
878 const SCEV *FixedRightSCEV = nullptr;
879
880 // If RightValue resides within loop (but still being loop invariant),
881 // regenerate it as preheader.
882 if (auto *I = dyn_cast<Instruction>(RightValue))
883 if (L.contains(I->getParent()))
884 FixedRightSCEV = RightSCEV;
885
886 if (IsIncreasing) {
887 bool DecreasedRightValueByOne = false;
888 if (StepCI->isOne()) {
889 // Try to turn eq/ne predicates to those we can work with.
890 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
891 // while (++i != len) { while (++i < len) {
892 // ... ---> ...
893 // } }
894 // If both parts are known non-negative, it is profitable to use
895 // unsigned comparison in increasing loop. This allows us to make the
896 // comparison check against "RightSCEV + 1" more optimistic.
897 if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
898 isKnownNonNegativeInLoop(RightSCEV, &L, SE))
899 Pred = ICmpInst::ICMP_ULT;
900 else
901 Pred = ICmpInst::ICMP_SLT;
902 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
903 // while (true) { while (true) {
904 // if (++i == len) ---> if (++i > len - 1)
905 // break; break;
906 // ... ...
907 // } }
908 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
909 cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
910 Pred = ICmpInst::ICMP_UGT;
911 RightSCEV = SE.getMinusSCEV(RightSCEV,
912 SE.getOne(RightSCEV->getType()));
913 DecreasedRightValueByOne = true;
914 } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
915 Pred = ICmpInst::ICMP_SGT;
916 RightSCEV = SE.getMinusSCEV(RightSCEV,
917 SE.getOne(RightSCEV->getType()));
918 DecreasedRightValueByOne = true;
919 }
920 }
921 }
922
923 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
924 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
925 bool FoundExpectedPred =
926 (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
927
928 if (!FoundExpectedPred) {
929 FailureReason = "expected icmp slt semantically, found something else";
930 return None;
931 }
932
933 IsSignedPredicate = ICmpInst::isSigned(Pred);
934 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
935 FailureReason = "unsigned latch conditions are explicitly prohibited";
936 return None;
937 }
938
939 if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
940 LatchBrExitIdx, &L, SE)) {
941 FailureReason = "Unsafe loop bounds";
942 return None;
943 }
944 if (LatchBrExitIdx == 0) {
945 // We need to increase the right value unless we have already decreased
946 // it virtually when we replaced EQ with SGT.
947 if (!DecreasedRightValueByOne)
948 FixedRightSCEV =
949 SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
950 } else {
951 assert(!DecreasedRightValueByOne &&
952 "Right value can be decreased only for LatchBrExitIdx == 0!");
953 }
954 } else {
955 bool IncreasedRightValueByOne = false;
956 if (StepCI->isMinusOne()) {
957 // Try to turn eq/ne predicates to those we can work with.
958 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
959 // while (--i != len) { while (--i > len) {
960 // ... ---> ...
961 // } }
962 // We intentionally don't turn the predicate into UGT even if we know
963 // that both operands are non-negative, because it will only pessimize
964 // our check against "RightSCEV - 1".
965 Pred = ICmpInst::ICMP_SGT;
966 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
967 // while (true) { while (true) {
968 // if (--i == len) ---> if (--i < len + 1)
969 // break; break;
970 // ... ...
971 // } }
972 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
973 cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
974 Pred = ICmpInst::ICMP_ULT;
975 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
976 IncreasedRightValueByOne = true;
977 } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
978 Pred = ICmpInst::ICMP_SLT;
979 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
980 IncreasedRightValueByOne = true;
981 }
982 }
983 }
984
985 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
986 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
987
988 bool FoundExpectedPred =
989 (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
990
991 if (!FoundExpectedPred) {
992 FailureReason = "expected icmp sgt semantically, found something else";
993 return None;
994 }
995
996 IsSignedPredicate =
997 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
998
999 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
1000 FailureReason = "unsigned latch conditions are explicitly prohibited";
1001 return None;
1002 }
1003
1004 if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
1005 LatchBrExitIdx, &L, SE)) {
1006 FailureReason = "Unsafe bounds";
1007 return None;
1008 }
1009
1010 if (LatchBrExitIdx == 0) {
1011 // We need to decrease the right value unless we have already increased
1012 // it virtually when we replaced EQ with SLT.
1013 if (!IncreasedRightValueByOne)
1014 FixedRightSCEV =
1015 SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
1016 } else {
1017 assert(!IncreasedRightValueByOne &&
1018 "Right value can be increased only for LatchBrExitIdx == 0!");
1019 }
1020 }
1021 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1022
1023 assert(SE.getLoopDisposition(LatchCount, &L) ==
1024 ScalarEvolution::LoopInvariant &&
1025 "loop variant exit count doesn't make sense!");
1026
1027 assert(!L.contains(LatchExit) && "expected an exit block!");
1028 const DataLayout &DL = Preheader->getModule()->getDataLayout();
1029 SCEVExpander Expander(SE, DL, "irce");
1030 Instruction *Ins = Preheader->getTerminator();
1031
1032 if (FixedRightSCEV)
1033 RightValue =
1034 Expander.expandCodeFor(FixedRightSCEV, FixedRightSCEV->getType(), Ins);
1035
1036 Value *IndVarStartV = Expander.expandCodeFor(IndVarStart, IndVarTy, Ins);
1037 IndVarStartV->setName("indvar.start");
1038
1039 LoopStructure Result;
1040
1041 Result.Tag = "main";
1042 Result.Header = Header;
1043 Result.Latch = Latch;
1044 Result.LatchBr = LatchBr;
1045 Result.LatchExit = LatchExit;
1046 Result.LatchBrExitIdx = LatchBrExitIdx;
1047 Result.IndVarStart = IndVarStartV;
1048 Result.IndVarStep = StepCI;
1049 Result.IndVarBase = LeftValue;
1050 Result.IndVarIncreasing = IsIncreasing;
1051 Result.LoopExitAt = RightValue;
1052 Result.IsSignedPredicate = IsSignedPredicate;
1053
1054 FailureReason = nullptr;
1055
1056 return Result;
1057 }
1058
1059 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
1060 /// signed or unsigned extension of \p S to type \p Ty.
NoopOrExtend(const SCEV * S,Type * Ty,ScalarEvolution & SE,bool Signed)1061 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
1062 bool Signed) {
1063 return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
1064 }
1065
1066 Optional<LoopConstrainer::SubRanges>
calculateSubRanges(bool IsSignedPredicate) const1067 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1068 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1069
1070 auto *RTy = cast<IntegerType>(Range.getType());
1071
1072 // We only support wide range checks and narrow latches.
1073 if (!AllowNarrowLatchCondition && RTy != Ty)
1074 return None;
1075 if (RTy->getBitWidth() < Ty->getBitWidth())
1076 return None;
1077
1078 LoopConstrainer::SubRanges Result;
1079
1080 // I think we can be more aggressive here and make this nuw / nsw if the
1081 // addition that feeds into the icmp for the latch's terminating branch is nuw
1082 // / nsw. In any case, a wrapping 2's complement addition is safe.
1083 const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
1084 RTy, SE, IsSignedPredicate);
1085 const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
1086 SE, IsSignedPredicate);
1087
1088 bool Increasing = MainLoopStructure.IndVarIncreasing;
1089
1090 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1091 // [Smallest, GreatestSeen] is the range of values the induction variable
1092 // takes.
1093
1094 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1095
1096 const SCEV *One = SE.getOne(RTy);
1097 if (Increasing) {
1098 Smallest = Start;
1099 Greatest = End;
1100 // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1101 GreatestSeen = SE.getMinusSCEV(End, One);
1102 } else {
1103 // These two computations may sign-overflow. Here is why that is okay:
1104 //
1105 // We know that the induction variable does not sign-overflow on any
1106 // iteration except the last one, and it starts at `Start` and ends at
1107 // `End`, decrementing by one every time.
1108 //
1109 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1110 // induction variable is decreasing we know that that the smallest value
1111 // the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1112 //
1113 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In
1114 // that case, `Clamp` will always return `Smallest` and
1115 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1116 // will be an empty range. Returning an empty range is always safe.
1117
1118 Smallest = SE.getAddExpr(End, One);
1119 Greatest = SE.getAddExpr(Start, One);
1120 GreatestSeen = Start;
1121 }
1122
1123 auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1124 return IsSignedPredicate
1125 ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1126 : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1127 };
1128
1129 // In some cases we can prove that we don't need a pre or post loop.
1130 ICmpInst::Predicate PredLE =
1131 IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1132 ICmpInst::Predicate PredLT =
1133 IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1134
1135 bool ProvablyNoPreloop =
1136 SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1137 if (!ProvablyNoPreloop)
1138 Result.LowLimit = Clamp(Range.getBegin());
1139
1140 bool ProvablyNoPostLoop =
1141 SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1142 if (!ProvablyNoPostLoop)
1143 Result.HighLimit = Clamp(Range.getEnd());
1144
1145 return Result;
1146 }
1147
cloneLoop(LoopConstrainer::ClonedLoop & Result,const char * Tag) const1148 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1149 const char *Tag) const {
1150 for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1151 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1152 Result.Blocks.push_back(Clone);
1153 Result.Map[BB] = Clone;
1154 }
1155
1156 auto GetClonedValue = [&Result](Value *V) {
1157 assert(V && "null values not in domain!");
1158 auto It = Result.Map.find(V);
1159 if (It == Result.Map.end())
1160 return V;
1161 return static_cast<Value *>(It->second);
1162 };
1163
1164 auto *ClonedLatch =
1165 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1166 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1167 MDNode::get(Ctx, {}));
1168
1169 Result.Structure = MainLoopStructure.map(GetClonedValue);
1170 Result.Structure.Tag = Tag;
1171
1172 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1173 BasicBlock *ClonedBB = Result.Blocks[i];
1174 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1175
1176 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1177
1178 for (Instruction &I : *ClonedBB)
1179 RemapInstruction(&I, Result.Map,
1180 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1181
1182 // Exit blocks will now have one more predecessor and their PHI nodes need
1183 // to be edited to reflect that. No phi nodes need to be introduced because
1184 // the loop is in LCSSA.
1185
1186 for (auto *SBB : successors(OriginalBB)) {
1187 if (OriginalLoop.contains(SBB))
1188 continue; // not an exit block
1189
1190 for (PHINode &PN : SBB->phis()) {
1191 Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
1192 PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1193 }
1194 }
1195 }
1196 }
1197
changeIterationSpaceEnd(const LoopStructure & LS,BasicBlock * Preheader,Value * ExitSubloopAt,BasicBlock * ContinuationBlock) const1198 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1199 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1200 BasicBlock *ContinuationBlock) const {
1201 // We start with a loop with a single latch:
1202 //
1203 // +--------------------+
1204 // | |
1205 // | preheader |
1206 // | |
1207 // +--------+-----------+
1208 // | ----------------\
1209 // | / |
1210 // +--------v----v------+ |
1211 // | | |
1212 // | header | |
1213 // | | |
1214 // +--------------------+ |
1215 // |
1216 // ..... |
1217 // |
1218 // +--------------------+ |
1219 // | | |
1220 // | latch >----------/
1221 // | |
1222 // +-------v------------+
1223 // |
1224 // |
1225 // | +--------------------+
1226 // | | |
1227 // +---> original exit |
1228 // | |
1229 // +--------------------+
1230 //
1231 // We change the control flow to look like
1232 //
1233 //
1234 // +--------------------+
1235 // | |
1236 // | preheader >-------------------------+
1237 // | | |
1238 // +--------v-----------+ |
1239 // | /-------------+ |
1240 // | / | |
1241 // +--------v--v--------+ | |
1242 // | | | |
1243 // | header | | +--------+ |
1244 // | | | | | |
1245 // +--------------------+ | | +-----v-----v-----------+
1246 // | | | |
1247 // | | | .pseudo.exit |
1248 // | | | |
1249 // | | +-----------v-----------+
1250 // | | |
1251 // ..... | | |
1252 // | | +--------v-------------+
1253 // +--------------------+ | | | |
1254 // | | | | | ContinuationBlock |
1255 // | latch >------+ | | |
1256 // | | | +----------------------+
1257 // +---------v----------+ |
1258 // | |
1259 // | |
1260 // | +---------------^-----+
1261 // | | |
1262 // +-----> .exit.selector |
1263 // | |
1264 // +----------v----------+
1265 // |
1266 // +--------------------+ |
1267 // | | |
1268 // | original exit <----+
1269 // | |
1270 // +--------------------+
1271
1272 RewrittenRangeInfo RRI;
1273
1274 BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1275 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1276 &F, BBInsertLocation);
1277 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1278 BBInsertLocation);
1279
1280 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1281 bool Increasing = LS.IndVarIncreasing;
1282 bool IsSignedPredicate = LS.IsSignedPredicate;
1283
1284 IRBuilder<> B(PreheaderJump);
1285 auto *RangeTy = Range.getBegin()->getType();
1286 auto NoopOrExt = [&](Value *V) {
1287 if (V->getType() == RangeTy)
1288 return V;
1289 return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName())
1290 : B.CreateZExt(V, RangeTy, "wide." + V->getName());
1291 };
1292
1293 // EnterLoopCond - is it okay to start executing this `LS'?
1294 Value *EnterLoopCond = nullptr;
1295 auto Pred =
1296 Increasing
1297 ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
1298 : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
1299 Value *IndVarStart = NoopOrExt(LS.IndVarStart);
1300 EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
1301
1302 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1303 PreheaderJump->eraseFromParent();
1304
1305 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1306 B.SetInsertPoint(LS.LatchBr);
1307 Value *IndVarBase = NoopOrExt(LS.IndVarBase);
1308 Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
1309
1310 Value *CondForBranch = LS.LatchBrExitIdx == 1
1311 ? TakeBackedgeLoopCond
1312 : B.CreateNot(TakeBackedgeLoopCond);
1313
1314 LS.LatchBr->setCondition(CondForBranch);
1315
1316 B.SetInsertPoint(RRI.ExitSelector);
1317
1318 // IterationsLeft - are there any more iterations left, given the original
1319 // upper bound on the induction variable? If not, we branch to the "real"
1320 // exit.
1321 Value *LoopExitAt = NoopOrExt(LS.LoopExitAt);
1322 Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt);
1323 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1324
1325 BranchInst *BranchToContinuation =
1326 BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1327
1328 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1329 // each of the PHI nodes in the loop header. This feeds into the initial
1330 // value of the same PHI nodes if/when we continue execution.
1331 for (PHINode &PN : LS.Header->phis()) {
1332 PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
1333 BranchToContinuation);
1334
1335 NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
1336 NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
1337 RRI.ExitSelector);
1338 RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1339 }
1340
1341 RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end",
1342 BranchToContinuation);
1343 RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
1344 RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
1345
1346 // The latch exit now has a branch from `RRI.ExitSelector' instead of
1347 // `LS.Latch'. The PHI nodes need to be updated to reflect that.
1348 LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector);
1349
1350 return RRI;
1351 }
1352
rewriteIncomingValuesForPHIs(LoopStructure & LS,BasicBlock * ContinuationBlock,const LoopConstrainer::RewrittenRangeInfo & RRI) const1353 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1354 LoopStructure &LS, BasicBlock *ContinuationBlock,
1355 const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1356 unsigned PHIIndex = 0;
1357 for (PHINode &PN : LS.Header->phis())
1358 PN.setIncomingValueForBlock(ContinuationBlock,
1359 RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1360
1361 LS.IndVarStart = RRI.IndVarEnd;
1362 }
1363
createPreheader(const LoopStructure & LS,BasicBlock * OldPreheader,const char * Tag) const1364 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1365 BasicBlock *OldPreheader,
1366 const char *Tag) const {
1367 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1368 BranchInst::Create(LS.Header, Preheader);
1369
1370 LS.Header->replacePhiUsesWith(OldPreheader, Preheader);
1371
1372 return Preheader;
1373 }
1374
addToParentLoopIfNeeded(ArrayRef<BasicBlock * > BBs)1375 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1376 Loop *ParentLoop = OriginalLoop.getParentLoop();
1377 if (!ParentLoop)
1378 return;
1379
1380 for (BasicBlock *BB : BBs)
1381 ParentLoop->addBasicBlockToLoop(BB, LI);
1382 }
1383
createClonedLoopStructure(Loop * Original,Loop * Parent,ValueToValueMapTy & VM,bool IsSubloop)1384 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1385 ValueToValueMapTy &VM,
1386 bool IsSubloop) {
1387 Loop &New = *LI.AllocateLoop();
1388 if (Parent)
1389 Parent->addChildLoop(&New);
1390 else
1391 LI.addTopLevelLoop(&New);
1392 LPMAddNewLoop(&New, IsSubloop);
1393
1394 // Add all of the blocks in Original to the new loop.
1395 for (auto *BB : Original->blocks())
1396 if (LI.getLoopFor(BB) == Original)
1397 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1398
1399 // Add all of the subloops to the new loop.
1400 for (Loop *SubLoop : *Original)
1401 createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
1402
1403 return &New;
1404 }
1405
run()1406 bool LoopConstrainer::run() {
1407 BasicBlock *Preheader = nullptr;
1408 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1409 Preheader = OriginalLoop.getLoopPreheader();
1410 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1411 "preconditions!");
1412
1413 OriginalPreheader = Preheader;
1414 MainLoopPreheader = Preheader;
1415
1416 bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1417 Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1418 if (!MaybeSR.hasValue()) {
1419 LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1420 return false;
1421 }
1422
1423 SubRanges SR = MaybeSR.getValue();
1424 bool Increasing = MainLoopStructure.IndVarIncreasing;
1425 IntegerType *IVTy =
1426 cast<IntegerType>(Range.getBegin()->getType());
1427
1428 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1429 Instruction *InsertPt = OriginalPreheader->getTerminator();
1430
1431 // It would have been better to make `PreLoop' and `PostLoop'
1432 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1433 // constructor.
1434 ClonedLoop PreLoop, PostLoop;
1435 bool NeedsPreLoop =
1436 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1437 bool NeedsPostLoop =
1438 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1439
1440 Value *ExitPreLoopAt = nullptr;
1441 Value *ExitMainLoopAt = nullptr;
1442 const SCEVConstant *MinusOneS =
1443 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1444
1445 if (NeedsPreLoop) {
1446 const SCEV *ExitPreLoopAtSCEV = nullptr;
1447
1448 if (Increasing)
1449 ExitPreLoopAtSCEV = *SR.LowLimit;
1450 else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
1451 IsSignedPredicate))
1452 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1453 else {
1454 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1455 << "preloop exit limit. HighLimit = "
1456 << *(*SR.HighLimit) << "\n");
1457 return false;
1458 }
1459
1460 if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) {
1461 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1462 << " preloop exit limit " << *ExitPreLoopAtSCEV
1463 << " at block " << InsertPt->getParent()->getName()
1464 << "\n");
1465 return false;
1466 }
1467
1468 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1469 ExitPreLoopAt->setName("exit.preloop.at");
1470 }
1471
1472 if (NeedsPostLoop) {
1473 const SCEV *ExitMainLoopAtSCEV = nullptr;
1474
1475 if (Increasing)
1476 ExitMainLoopAtSCEV = *SR.HighLimit;
1477 else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
1478 IsSignedPredicate))
1479 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1480 else {
1481 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1482 << "mainloop exit limit. LowLimit = "
1483 << *(*SR.LowLimit) << "\n");
1484 return false;
1485 }
1486
1487 if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) {
1488 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1489 << " main loop exit limit " << *ExitMainLoopAtSCEV
1490 << " at block " << InsertPt->getParent()->getName()
1491 << "\n");
1492 return false;
1493 }
1494
1495 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1496 ExitMainLoopAt->setName("exit.mainloop.at");
1497 }
1498
1499 // We clone these ahead of time so that we don't have to deal with changing
1500 // and temporarily invalid IR as we transform the loops.
1501 if (NeedsPreLoop)
1502 cloneLoop(PreLoop, "preloop");
1503 if (NeedsPostLoop)
1504 cloneLoop(PostLoop, "postloop");
1505
1506 RewrittenRangeInfo PreLoopRRI;
1507
1508 if (NeedsPreLoop) {
1509 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1510 PreLoop.Structure.Header);
1511
1512 MainLoopPreheader =
1513 createPreheader(MainLoopStructure, Preheader, "mainloop");
1514 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1515 ExitPreLoopAt, MainLoopPreheader);
1516 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1517 PreLoopRRI);
1518 }
1519
1520 BasicBlock *PostLoopPreheader = nullptr;
1521 RewrittenRangeInfo PostLoopRRI;
1522
1523 if (NeedsPostLoop) {
1524 PostLoopPreheader =
1525 createPreheader(PostLoop.Structure, Preheader, "postloop");
1526 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1527 ExitMainLoopAt, PostLoopPreheader);
1528 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1529 PostLoopRRI);
1530 }
1531
1532 BasicBlock *NewMainLoopPreheader =
1533 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1534 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
1535 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
1536 PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1537
1538 // Some of the above may be nullptr, filter them out before passing to
1539 // addToParentLoopIfNeeded.
1540 auto NewBlocksEnd =
1541 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1542
1543 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1544
1545 DT.recalculate(F);
1546
1547 // We need to first add all the pre and post loop blocks into the loop
1548 // structures (as part of createClonedLoopStructure), and then update the
1549 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1550 // LI when LoopSimplifyForm is generated.
1551 Loop *PreL = nullptr, *PostL = nullptr;
1552 if (!PreLoop.Blocks.empty()) {
1553 PreL = createClonedLoopStructure(&OriginalLoop,
1554 OriginalLoop.getParentLoop(), PreLoop.Map,
1555 /* IsSubLoop */ false);
1556 }
1557
1558 if (!PostLoop.Blocks.empty()) {
1559 PostL =
1560 createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
1561 PostLoop.Map, /* IsSubLoop */ false);
1562 }
1563
1564 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1565 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1566 formLCSSARecursively(*L, DT, &LI, &SE);
1567 simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true);
1568 // Pre/post loops are slow paths, we do not need to perform any loop
1569 // optimizations on them.
1570 if (!IsOriginalLoop)
1571 DisableAllLoopOptsOnLoop(*L);
1572 };
1573 if (PreL)
1574 CanonicalizeLoop(PreL, false);
1575 if (PostL)
1576 CanonicalizeLoop(PostL, false);
1577 CanonicalizeLoop(&OriginalLoop, true);
1578
1579 return true;
1580 }
1581
1582 /// Computes and returns a range of values for the induction variable (IndVar)
1583 /// in which the range check can be safely elided. If it cannot compute such a
1584 /// range, returns None.
1585 Optional<InductiveRangeCheck::Range>
computeSafeIterationSpace(ScalarEvolution & SE,const SCEVAddRecExpr * IndVar,bool IsLatchSigned) const1586 InductiveRangeCheck::computeSafeIterationSpace(
1587 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar,
1588 bool IsLatchSigned) const {
1589 // We can deal when types of latch check and range checks don't match in case
1590 // if latch check is more narrow.
1591 auto *IVType = cast<IntegerType>(IndVar->getType());
1592 auto *RCType = cast<IntegerType>(getBegin()->getType());
1593 if (IVType->getBitWidth() > RCType->getBitWidth())
1594 return None;
1595 // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1596 // variable, that may or may not exist as a real llvm::Value in the loop) and
1597 // this inductive range check is a range check on the "C + D * I" ("C" is
1598 // getBegin() and "D" is getStep()). We rewrite the value being range
1599 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1600 //
1601 // The actual inequalities we solve are of the form
1602 //
1603 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
1604 //
1605 // Here L stands for upper limit of the safe iteration space.
1606 // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
1607 // overflows when calculating (0 - M) and (L - M) we, depending on type of
1608 // IV's iteration space, limit the calculations by borders of the iteration
1609 // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
1610 // If we figured out that "anything greater than (-M) is safe", we strengthen
1611 // this to "everything greater than 0 is safe", assuming that values between
1612 // -M and 0 just do not exist in unsigned iteration space, and we don't want
1613 // to deal with overflown values.
1614
1615 if (!IndVar->isAffine())
1616 return None;
1617
1618 const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
1619 const SCEVConstant *B = dyn_cast<SCEVConstant>(
1620 NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
1621 if (!B)
1622 return None;
1623 assert(!B->isZero() && "Recurrence with zero step?");
1624
1625 const SCEV *C = getBegin();
1626 const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
1627 if (D != B)
1628 return None;
1629
1630 assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1631 unsigned BitWidth = RCType->getBitWidth();
1632 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1633
1634 // Subtract Y from X so that it does not go through border of the IV
1635 // iteration space. Mathematically, it is equivalent to:
1636 //
1637 // ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1]
1638 //
1639 // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
1640 // any width of bit grid). But after we take min/max, the result is
1641 // guaranteed to be within [INT_MIN, INT_MAX].
1642 //
1643 // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
1644 // values, depending on type of latch condition that defines IV iteration
1645 // space.
1646 auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
1647 // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
1648 // This is required to ensure that SINT_MAX - X does not overflow signed and
1649 // that X - Y does not overflow unsigned if Y is negative. Can we lift this
1650 // restriction and make it work for negative X either?
1651 if (IsLatchSigned) {
1652 // X is a number from signed range, Y is interpreted as signed.
1653 // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
1654 // thing we should care about is that we didn't cross SINT_MAX.
1655 // So, if Y is positive, we subtract Y safely.
1656 // Rule 1: Y > 0 ---> Y.
1657 // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
1658 // Rule 2: Y >=s (X - SINT_MAX) ---> Y.
1659 // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
1660 // Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
1661 // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
1662 const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
1663 return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
1664 SCEV::FlagNSW);
1665 } else
1666 // X is a number from unsigned range, Y is interpreted as signed.
1667 // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
1668 // thing we should care about is that we didn't cross zero.
1669 // So, if Y is negative, we subtract Y safely.
1670 // Rule 1: Y <s 0 ---> Y.
1671 // If 0 <= Y <= X, we subtract Y safely.
1672 // Rule 2: Y <=s X ---> Y.
1673 // If 0 <= X < Y, we should stop at 0 and can only subtract X.
1674 // Rule 3: Y >s X ---> X.
1675 // It gives us smin(X, Y) to subtract in all cases.
1676 return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
1677 };
1678 const SCEV *M = SE.getMinusSCEV(C, A);
1679 const SCEV *Zero = SE.getZero(M->getType());
1680
1681 // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
1682 auto SCEVCheckNonNegative = [&](const SCEV *X) {
1683 const Loop *L = IndVar->getLoop();
1684 const SCEV *One = SE.getOne(X->getType());
1685 // Can we trivially prove that X is a non-negative or negative value?
1686 if (isKnownNonNegativeInLoop(X, L, SE))
1687 return One;
1688 else if (isKnownNegativeInLoop(X, L, SE))
1689 return Zero;
1690 // If not, we will have to figure it out during the execution.
1691 // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
1692 const SCEV *NegOne = SE.getNegativeSCEV(One);
1693 return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
1694 };
1695 // FIXME: Current implementation of ClampedSubtract implicitly assumes that
1696 // X is non-negative (in sense of a signed value). We need to re-implement
1697 // this function in a way that it will correctly handle negative X as well.
1698 // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
1699 // end up with a negative X and produce wrong results. So currently we ensure
1700 // that if getEnd() is negative then both ends of the safe range are zero.
1701 // Note that this may pessimize elimination of unsigned range checks against
1702 // negative values.
1703 const SCEV *REnd = getEnd();
1704 const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
1705
1706 const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
1707 const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
1708 return InductiveRangeCheck::Range(Begin, End);
1709 }
1710
1711 static Optional<InductiveRangeCheck::Range>
IntersectSignedRange(ScalarEvolution & SE,const Optional<InductiveRangeCheck::Range> & R1,const InductiveRangeCheck::Range & R2)1712 IntersectSignedRange(ScalarEvolution &SE,
1713 const Optional<InductiveRangeCheck::Range> &R1,
1714 const InductiveRangeCheck::Range &R2) {
1715 if (R2.isEmpty(SE, /* IsSigned */ true))
1716 return None;
1717 if (!R1.hasValue())
1718 return R2;
1719 auto &R1Value = R1.getValue();
1720 // We never return empty ranges from this function, and R1 is supposed to be
1721 // a result of intersection. Thus, R1 is never empty.
1722 assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
1723 "We should never have empty R1!");
1724
1725 // TODO: we could widen the smaller range and have this work; but for now we
1726 // bail out to keep things simple.
1727 if (R1Value.getType() != R2.getType())
1728 return None;
1729
1730 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1731 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1732
1733 // If the resulting range is empty, just return None.
1734 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1735 if (Ret.isEmpty(SE, /* IsSigned */ true))
1736 return None;
1737 return Ret;
1738 }
1739
1740 static Optional<InductiveRangeCheck::Range>
IntersectUnsignedRange(ScalarEvolution & SE,const Optional<InductiveRangeCheck::Range> & R1,const InductiveRangeCheck::Range & R2)1741 IntersectUnsignedRange(ScalarEvolution &SE,
1742 const Optional<InductiveRangeCheck::Range> &R1,
1743 const InductiveRangeCheck::Range &R2) {
1744 if (R2.isEmpty(SE, /* IsSigned */ false))
1745 return None;
1746 if (!R1.hasValue())
1747 return R2;
1748 auto &R1Value = R1.getValue();
1749 // We never return empty ranges from this function, and R1 is supposed to be
1750 // a result of intersection. Thus, R1 is never empty.
1751 assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
1752 "We should never have empty R1!");
1753
1754 // TODO: we could widen the smaller range and have this work; but for now we
1755 // bail out to keep things simple.
1756 if (R1Value.getType() != R2.getType())
1757 return None;
1758
1759 const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
1760 const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
1761
1762 // If the resulting range is empty, just return None.
1763 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1764 if (Ret.isEmpty(SE, /* IsSigned */ false))
1765 return None;
1766 return Ret;
1767 }
1768
run(Function & F,FunctionAnalysisManager & AM)1769 PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
1770 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1771 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1772 auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F);
1773 LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1774
1775 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1776
1777 bool Changed = false;
1778
1779 for (const auto &L : LI) {
1780 Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1781 /*PreserveLCSSA=*/false);
1782 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1783 }
1784
1785 SmallPriorityWorklist<Loop *, 4> Worklist;
1786 appendLoopsToWorklist(LI, Worklist);
1787 auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
1788 if (!IsSubloop)
1789 appendLoopsToWorklist(*NL, Worklist);
1790 };
1791
1792 while (!Worklist.empty()) {
1793 Loop *L = Worklist.pop_back_val();
1794 Changed |= IRCE.run(L, LPMAddNewLoop);
1795 }
1796
1797 if (!Changed)
1798 return PreservedAnalyses::all();
1799 return getLoopPassPreservedAnalyses();
1800 }
1801
runOnFunction(Function & F)1802 bool IRCELegacyPass::runOnFunction(Function &F) {
1803 if (skipFunction(F))
1804 return false;
1805
1806 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1807 BranchProbabilityInfo &BPI =
1808 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1809 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1810 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1811 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1812
1813 bool Changed = false;
1814
1815 for (const auto &L : LI) {
1816 Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1817 /*PreserveLCSSA=*/false);
1818 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1819 }
1820
1821 SmallPriorityWorklist<Loop *, 4> Worklist;
1822 appendLoopsToWorklist(LI, Worklist);
1823 auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) {
1824 if (!IsSubloop)
1825 appendLoopsToWorklist(*NL, Worklist);
1826 };
1827
1828 while (!Worklist.empty()) {
1829 Loop *L = Worklist.pop_back_val();
1830 Changed |= IRCE.run(L, LPMAddNewLoop);
1831 }
1832 return Changed;
1833 }
1834
run(Loop * L,function_ref<void (Loop *,bool)> LPMAddNewLoop)1835 bool InductiveRangeCheckElimination::run(
1836 Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
1837 if (L->getBlocks().size() >= LoopSizeCutoff) {
1838 LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
1839 return false;
1840 }
1841
1842 BasicBlock *Preheader = L->getLoopPreheader();
1843 if (!Preheader) {
1844 LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1845 return false;
1846 }
1847
1848 LLVMContext &Context = Preheader->getContext();
1849 SmallVector<InductiveRangeCheck, 16> RangeChecks;
1850
1851 for (auto BBI : L->getBlocks())
1852 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1853 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1854 RangeChecks);
1855
1856 if (RangeChecks.empty())
1857 return false;
1858
1859 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1860 OS << "irce: looking at loop "; L->print(OS);
1861 OS << "irce: loop has " << RangeChecks.size()
1862 << " inductive range checks: \n";
1863 for (InductiveRangeCheck &IRC : RangeChecks)
1864 IRC.print(OS);
1865 };
1866
1867 LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1868
1869 if (PrintRangeChecks)
1870 PrintRecognizedRangeChecks(errs());
1871
1872 const char *FailureReason = nullptr;
1873 Optional<LoopStructure> MaybeLoopStructure =
1874 LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
1875 if (!MaybeLoopStructure.hasValue()) {
1876 LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1877 << FailureReason << "\n";);
1878 return false;
1879 }
1880 LoopStructure LS = MaybeLoopStructure.getValue();
1881 const SCEVAddRecExpr *IndVar =
1882 cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1883
1884 Optional<InductiveRangeCheck::Range> SafeIterRange;
1885 Instruction *ExprInsertPt = Preheader->getTerminator();
1886
1887 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1888 // Basing on the type of latch predicate, we interpret the IV iteration range
1889 // as signed or unsigned range. We use different min/max functions (signed or
1890 // unsigned) when intersecting this range with safe iteration ranges implied
1891 // by range checks.
1892 auto IntersectRange =
1893 LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1894
1895 IRBuilder<> B(ExprInsertPt);
1896 for (InductiveRangeCheck &IRC : RangeChecks) {
1897 auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1898 LS.IsSignedPredicate);
1899 if (Result.hasValue()) {
1900 auto MaybeSafeIterRange =
1901 IntersectRange(SE, SafeIterRange, Result.getValue());
1902 if (MaybeSafeIterRange.hasValue()) {
1903 assert(
1904 !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) &&
1905 "We should never return empty ranges!");
1906 RangeChecksToEliminate.push_back(IRC);
1907 SafeIterRange = MaybeSafeIterRange.getValue();
1908 }
1909 }
1910 }
1911
1912 if (!SafeIterRange.hasValue())
1913 return false;
1914
1915 LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
1916 SafeIterRange.getValue());
1917 bool Changed = LC.run();
1918
1919 if (Changed) {
1920 auto PrintConstrainedLoopInfo = [L]() {
1921 dbgs() << "irce: in function ";
1922 dbgs() << L->getHeader()->getParent()->getName() << ": ";
1923 dbgs() << "constrained ";
1924 L->print(dbgs());
1925 };
1926
1927 LLVM_DEBUG(PrintConstrainedLoopInfo());
1928
1929 if (PrintChangedLoops)
1930 PrintConstrainedLoopInfo();
1931
1932 // Optimize away the now-redundant range checks.
1933
1934 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1935 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1936 ? ConstantInt::getTrue(Context)
1937 : ConstantInt::getFalse(Context);
1938 IRC.getCheckUse()->set(FoldedRangeCheck);
1939 }
1940 }
1941
1942 return Changed;
1943 }
1944
createInductiveRangeCheckEliminationPass()1945 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1946 return new IRCELegacyPass();
1947 }
1948