1 //===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops that contain branches on loop-invariant conditions
10 // to multiple loops.  For example, it turns the left into the right code:
11 //
12 //  for (...)                  if (lic)
13 //    A                          for (...)
14 //    if (lic)                     A; B; C
15 //      B                      else
16 //    C                          for (...)
17 //                                 A; C
18 //
19 // This can increase the size of the code exponentially (doubling it every time
20 // a loop is unswitched) so we only unswitch if the resultant code will be
21 // smaller than a threshold.
22 //
23 // This pass expects LICM to be run before it to hoist invariant conditions out
24 // of the loop, to make the unswitching opportunity obvious.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AssumptionCache.h"
33 #include "llvm/Analysis/CodeMetrics.h"
34 #include "llvm/Analysis/InstructionSimplify.h"
35 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopIterator.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/MemorySSA.h"
40 #include "llvm/Analysis/MemorySSAUpdater.h"
41 #include "llvm/Analysis/MustExecute.h"
42 #include "llvm/Analysis/ScalarEvolution.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/IRBuilder.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueHandle.h"
62 #include "llvm/InitializePasses.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 #include "llvm/Transforms/Scalar/LoopPassManager.h"
70 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
71 #include "llvm/Transforms/Utils/Cloning.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/LoopUtils.h"
74 #include "llvm/Transforms/Utils/ValueMapper.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <map>
78 #include <set>
79 #include <tuple>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 #define DEBUG_TYPE "loop-unswitch"
86 
87 STATISTIC(NumBranches, "Number of branches unswitched");
88 STATISTIC(NumSwitches, "Number of switches unswitched");
89 STATISTIC(NumGuards,   "Number of guards unswitched");
90 STATISTIC(NumSelects , "Number of selects unswitched");
91 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
92 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
93 STATISTIC(TotalInsts,  "Total number of instructions analyzed");
94 
95 // The specific value of 100 here was chosen based only on intuition and a
96 // few specific examples.
97 static cl::opt<unsigned>
98 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
99           cl::init(100), cl::Hidden);
100 
101 namespace {
102 
103   class LUAnalysisCache {
104     using UnswitchedValsMap =
105         DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
106     using UnswitchedValsIt = UnswitchedValsMap::iterator;
107 
108     struct LoopProperties {
109       unsigned CanBeUnswitchedCount;
110       unsigned WasUnswitchedCount;
111       unsigned SizeEstimation;
112       UnswitchedValsMap UnswitchedVals;
113     };
114 
115     // Here we use std::map instead of DenseMap, since we need to keep valid
116     // LoopProperties pointer for current loop for better performance.
117     using LoopPropsMap = std::map<const Loop *, LoopProperties>;
118     using LoopPropsMapIt = LoopPropsMap::iterator;
119 
120     LoopPropsMap LoopsProperties;
121     UnswitchedValsMap *CurLoopInstructions = nullptr;
122     LoopProperties *CurrentLoopProperties = nullptr;
123 
124     // A loop unswitching with an estimated cost above this threshold
125     // is not performed. MaxSize is turned into unswitching quota for
126     // the current loop, and reduced correspondingly, though note that
127     // the quota is returned by releaseMemory() when the loop has been
128     // processed, so that MaxSize will return to its previous
129     // value. So in most cases MaxSize will equal the Threshold flag
130     // when a new loop is processed. An exception to that is that
131     // MaxSize will have a smaller value while processing nested loops
132     // that were introduced due to loop unswitching of an outer loop.
133     //
134     // FIXME: The way that MaxSize works is subtle and depends on the
135     // pass manager processing loops and calling releaseMemory() in a
136     // specific order. It would be good to find a more straightforward
137     // way of doing what MaxSize does.
138     unsigned MaxSize;
139 
140   public:
LUAnalysisCache()141     LUAnalysisCache() : MaxSize(Threshold) {}
142 
143     // Analyze loop. Check its size, calculate is it possible to unswitch
144     // it. Returns true if we can unswitch this loop.
145     bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
146                    AssumptionCache *AC);
147 
148     // Clean all data related to given loop.
149     void forgetLoop(const Loop *L);
150 
151     // Mark case value as unswitched.
152     // Since SI instruction can be partly unswitched, in order to avoid
153     // extra unswitching in cloned loops keep track all unswitched values.
154     void setUnswitched(const SwitchInst *SI, const Value *V);
155 
156     // Check was this case value unswitched before or not.
157     bool isUnswitched(const SwitchInst *SI, const Value *V);
158 
159     // Returns true if another unswitching could be done within the cost
160     // threshold.
161     bool costAllowsUnswitching();
162 
163     // Clone all loop-unswitch related loop properties.
164     // Redistribute unswitching quotas.
165     // Note, that new loop data is stored inside the VMap.
166     void cloneData(const Loop *NewLoop, const Loop *OldLoop,
167                    const ValueToValueMapTy &VMap);
168   };
169 
170   class LoopUnswitch : public LoopPass {
171     LoopInfo *LI;  // Loop information
172     LPPassManager *LPM;
173     AssumptionCache *AC;
174 
175     // Used to check if second loop needs processing after
176     // rewriteLoopBodyWithConditionConstant rewrites first loop.
177     std::vector<Loop*> LoopProcessWorklist;
178 
179     LUAnalysisCache BranchesInfo;
180 
181     bool OptimizeForSize;
182     bool RedoLoop = false;
183 
184     Loop *CurrentLoop = nullptr;
185     DominatorTree *DT = nullptr;
186     MemorySSA *MSSA = nullptr;
187     std::unique_ptr<MemorySSAUpdater> MSSAU;
188     BasicBlock *LoopHeader = nullptr;
189     BasicBlock *LoopPreheader = nullptr;
190 
191     bool SanitizeMemory;
192     SimpleLoopSafetyInfo SafetyInfo;
193 
194     // LoopBlocks contains all of the basic blocks of the loop, including the
195     // preheader of the loop, the body of the loop, and the exit blocks of the
196     // loop, in that order.
197     std::vector<BasicBlock*> LoopBlocks;
198     // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
199     std::vector<BasicBlock*> NewBlocks;
200 
201     bool HasBranchDivergence;
202 
203   public:
204     static char ID; // Pass ID, replacement for typeid
205 
LoopUnswitch(bool Os=false,bool HasBranchDivergence=false)206     explicit LoopUnswitch(bool Os = false, bool HasBranchDivergence = false)
207         : LoopPass(ID), OptimizeForSize(Os),
208           HasBranchDivergence(HasBranchDivergence) {
209       initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
210     }
211 
212     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
213     bool processCurrentLoop();
214     bool isUnreachableDueToPreviousUnswitching(BasicBlock *);
215 
216     /// This transformation requires natural loop information & requires that
217     /// loop preheaders be inserted into the CFG.
218     ///
getAnalysisUsage(AnalysisUsage & AU) const219     void getAnalysisUsage(AnalysisUsage &AU) const override {
220       AU.addRequired<AssumptionCacheTracker>();
221       AU.addRequired<TargetTransformInfoWrapperPass>();
222       if (EnableMSSALoopDependency) {
223         AU.addRequired<MemorySSAWrapperPass>();
224         AU.addPreserved<MemorySSAWrapperPass>();
225       }
226       if (HasBranchDivergence)
227         AU.addRequired<LegacyDivergenceAnalysis>();
228       getLoopAnalysisUsage(AU);
229     }
230 
231   private:
releaseMemory()232     void releaseMemory() override { BranchesInfo.forgetLoop(CurrentLoop); }
233 
initLoopData()234     void initLoopData() {
235       LoopHeader = CurrentLoop->getHeader();
236       LoopPreheader = CurrentLoop->getLoopPreheader();
237     }
238 
239     /// Split all of the edges from inside the loop to their exit blocks.
240     /// Update the appropriate Phi nodes as we do so.
241     void splitExitEdges(Loop *L,
242                         const SmallVectorImpl<BasicBlock *> &ExitBlocks);
243 
244     bool tryTrivialLoopUnswitch(bool &Changed);
245 
246     bool unswitchIfProfitable(Value *LoopCond, Constant *Val,
247                               Instruction *TI = nullptr);
248     void unswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
249                                   BasicBlock *ExitBlock, Instruction *TI);
250     void unswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
251                                      Instruction *TI);
252 
253     void rewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
254                                               Constant *Val, bool IsEqual);
255 
256     void emitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
257                                         BasicBlock *TrueDest,
258                                         BasicBlock *FalseDest,
259                                         BranchInst *OldBranch, Instruction *TI);
260 
261     void simplifyCode(std::vector<Instruction *> &Worklist, Loop *L);
262 
263     /// Given that the Invariant is not equal to Val. Simplify instructions
264     /// in the loop.
265     Value *simplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
266                                            Constant *Val);
267   };
268 
269 } // end anonymous namespace
270 
271 // Analyze loop. Check its size, calculate is it possible to unswitch
272 // it. Returns true if we can unswitch this loop.
countLoop(const Loop * L,const TargetTransformInfo & TTI,AssumptionCache * AC)273 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
274                                 AssumptionCache *AC) {
275   LoopPropsMapIt PropsIt;
276   bool Inserted;
277   std::tie(PropsIt, Inserted) =
278       LoopsProperties.insert(std::make_pair(L, LoopProperties()));
279 
280   LoopProperties &Props = PropsIt->second;
281 
282   if (Inserted) {
283     // New loop.
284 
285     // Limit the number of instructions to avoid causing significant code
286     // expansion, and the number of basic blocks, to avoid loops with
287     // large numbers of branches which cause loop unswitching to go crazy.
288     // This is a very ad-hoc heuristic.
289 
290     SmallPtrSet<const Value *, 32> EphValues;
291     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
292 
293     // FIXME: This is overly conservative because it does not take into
294     // consideration code simplification opportunities and code that can
295     // be shared by the resultant unswitched loops.
296     CodeMetrics Metrics;
297     for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
298          ++I)
299       Metrics.analyzeBasicBlock(*I, TTI, EphValues);
300 
301     Props.SizeEstimation = Metrics.NumInsts;
302     Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
303     Props.WasUnswitchedCount = 0;
304     MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
305 
306     if (Metrics.notDuplicatable) {
307       LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName()
308                         << ", contents cannot be "
309                         << "duplicated!\n");
310       return false;
311     }
312   }
313 
314   // Be careful. This links are good only before new loop addition.
315   CurrentLoopProperties = &Props;
316   CurLoopInstructions = &Props.UnswitchedVals;
317 
318   return true;
319 }
320 
321 // Clean all data related to given loop.
forgetLoop(const Loop * L)322 void LUAnalysisCache::forgetLoop(const Loop *L) {
323   LoopPropsMapIt LIt = LoopsProperties.find(L);
324 
325   if (LIt != LoopsProperties.end()) {
326     LoopProperties &Props = LIt->second;
327     MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
328                Props.SizeEstimation;
329     LoopsProperties.erase(LIt);
330   }
331 
332   CurrentLoopProperties = nullptr;
333   CurLoopInstructions = nullptr;
334 }
335 
336 // Mark case value as unswitched.
337 // Since SI instruction can be partly unswitched, in order to avoid
338 // extra unswitching in cloned loops keep track all unswitched values.
setUnswitched(const SwitchInst * SI,const Value * V)339 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
340   (*CurLoopInstructions)[SI].insert(V);
341 }
342 
343 // Check was this case value unswitched before or not.
isUnswitched(const SwitchInst * SI,const Value * V)344 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
345   return (*CurLoopInstructions)[SI].count(V);
346 }
347 
costAllowsUnswitching()348 bool LUAnalysisCache::costAllowsUnswitching() {
349   return CurrentLoopProperties->CanBeUnswitchedCount > 0;
350 }
351 
352 // Clone all loop-unswitch related loop properties.
353 // Redistribute unswitching quotas.
354 // Note, that new loop data is stored inside the VMap.
cloneData(const Loop * NewLoop,const Loop * OldLoop,const ValueToValueMapTy & VMap)355 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
356                                 const ValueToValueMapTy &VMap) {
357   LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
358   LoopProperties &OldLoopProps = *CurrentLoopProperties;
359   UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
360 
361   // Reallocate "can-be-unswitched quota"
362 
363   --OldLoopProps.CanBeUnswitchedCount;
364   ++OldLoopProps.WasUnswitchedCount;
365   NewLoopProps.WasUnswitchedCount = 0;
366   unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
367   NewLoopProps.CanBeUnswitchedCount = Quota / 2;
368   OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
369 
370   NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
371 
372   // Clone unswitched values info:
373   // for new loop switches we clone info about values that was
374   // already unswitched and has redundant successors.
375   for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
376     const SwitchInst *OldInst = I->first;
377     Value *NewI = VMap.lookup(OldInst);
378     const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
379     assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
380 
381     NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
382   }
383 }
384 
385 char LoopUnswitch::ID = 0;
386 
387 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
388                       false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)389 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
390 INITIALIZE_PASS_DEPENDENCY(LoopPass)
391 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
392 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
393 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
394 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
395                       false, false)
396 
397 Pass *llvm::createLoopUnswitchPass(bool Os, bool HasBranchDivergence) {
398   return new LoopUnswitch(Os, HasBranchDivergence);
399 }
400 
401 /// Operator chain lattice.
402 enum OperatorChain {
403   OC_OpChainNone,    ///< There is no operator.
404   OC_OpChainOr,      ///< There are only ORs.
405   OC_OpChainAnd,     ///< There are only ANDs.
406   OC_OpChainMixed    ///< There are ANDs and ORs.
407 };
408 
409 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
410 /// an invariant piece, return the invariant. Otherwise, return null.
411 //
412 /// NOTE: findLIVLoopCondition will not return a partial LIV by walking up a
413 /// mixed operator chain, as we can not reliably find a value which will
414 /// simplify the operator chain. If the chain is AND-only or OR-only, we can use
415 /// 0 or ~0 to simplify the chain.
416 ///
417 /// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
418 /// simplify the condition itself to a loop variant condition, but at the
419 /// cost of creating an entirely new loop.
findLIVLoopCondition(Value * Cond,Loop * L,bool & Changed,OperatorChain & ParentChain,DenseMap<Value *,Value * > & Cache,MemorySSAUpdater * MSSAU)420 static Value *findLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
421                                    OperatorChain &ParentChain,
422                                    DenseMap<Value *, Value *> &Cache,
423                                    MemorySSAUpdater *MSSAU) {
424   auto CacheIt = Cache.find(Cond);
425   if (CacheIt != Cache.end())
426     return CacheIt->second;
427 
428   // We started analyze new instruction, increment scanned instructions counter.
429   ++TotalInsts;
430 
431   // We can never unswitch on vector conditions.
432   if (Cond->getType()->isVectorTy())
433     return nullptr;
434 
435   // Constants should be folded, not unswitched on!
436   if (isa<Constant>(Cond)) return nullptr;
437 
438   // TODO: Handle: br (VARIANT|INVARIANT).
439 
440   // Hoist simple values out.
441   if (L->makeLoopInvariant(Cond, Changed, nullptr, MSSAU)) {
442     Cache[Cond] = Cond;
443     return Cond;
444   }
445 
446   // Walk up the operator chain to find partial invariant conditions.
447   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
448     if (BO->getOpcode() == Instruction::And ||
449         BO->getOpcode() == Instruction::Or) {
450       // Given the previous operator, compute the current operator chain status.
451       OperatorChain NewChain;
452       switch (ParentChain) {
453       case OC_OpChainNone:
454         NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
455                                       OC_OpChainOr;
456         break;
457       case OC_OpChainOr:
458         NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
459                                       OC_OpChainMixed;
460         break;
461       case OC_OpChainAnd:
462         NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
463                                       OC_OpChainMixed;
464         break;
465       case OC_OpChainMixed:
466         NewChain = OC_OpChainMixed;
467         break;
468       }
469 
470       // If we reach a Mixed state, we do not want to keep walking up as we can not
471       // reliably find a value that will simplify the chain. With this check, we
472       // will return null on the first sight of mixed chain and the caller will
473       // either backtrack to find partial LIV in other operand or return null.
474       if (NewChain != OC_OpChainMixed) {
475         // Update the current operator chain type before we search up the chain.
476         ParentChain = NewChain;
477         // If either the left or right side is invariant, we can unswitch on this,
478         // which will cause the branch to go away in one loop and the condition to
479         // simplify in the other one.
480         if (Value *LHS = findLIVLoopCondition(BO->getOperand(0), L, Changed,
481                                               ParentChain, Cache, MSSAU)) {
482           Cache[Cond] = LHS;
483           return LHS;
484         }
485         // We did not manage to find a partial LIV in operand(0). Backtrack and try
486         // operand(1).
487         ParentChain = NewChain;
488         if (Value *RHS = findLIVLoopCondition(BO->getOperand(1), L, Changed,
489                                               ParentChain, Cache, MSSAU)) {
490           Cache[Cond] = RHS;
491           return RHS;
492         }
493       }
494     }
495 
496   Cache[Cond] = nullptr;
497   return nullptr;
498 }
499 
500 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
501 /// an invariant piece, return the invariant along with the operator chain type.
502 /// Otherwise, return null.
503 static std::pair<Value *, OperatorChain>
findLIVLoopCondition(Value * Cond,Loop * L,bool & Changed,MemorySSAUpdater * MSSAU)504 findLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
505                      MemorySSAUpdater *MSSAU) {
506   DenseMap<Value *, Value *> Cache;
507   OperatorChain OpChain = OC_OpChainNone;
508   Value *FCond = findLIVLoopCondition(Cond, L, Changed, OpChain, Cache, MSSAU);
509 
510   // In case we do find a LIV, it can not be obtained by walking up a mixed
511   // operator chain.
512   assert((!FCond || OpChain != OC_OpChainMixed) &&
513         "Do not expect a partial LIV with mixed operator chain");
514   return {FCond, OpChain};
515 }
516 
runOnLoop(Loop * L,LPPassManager & LPMRef)517 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPMRef) {
518   if (skipLoop(L))
519     return false;
520 
521   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
522       *L->getHeader()->getParent());
523   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
524   LPM = &LPMRef;
525   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
526   if (EnableMSSALoopDependency) {
527     MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
528     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
529     assert(DT && "Cannot update MemorySSA without a valid DomTree.");
530   }
531   CurrentLoop = L;
532   Function *F = CurrentLoop->getHeader()->getParent();
533 
534   SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
535   if (SanitizeMemory)
536     SafetyInfo.computeLoopSafetyInfo(L);
537 
538   if (MSSA && VerifyMemorySSA)
539     MSSA->verifyMemorySSA();
540 
541   bool Changed = false;
542   do {
543     assert(CurrentLoop->isLCSSAForm(*DT));
544     if (MSSA && VerifyMemorySSA)
545       MSSA->verifyMemorySSA();
546     RedoLoop = false;
547     Changed |= processCurrentLoop();
548   } while (RedoLoop);
549 
550   if (MSSA && VerifyMemorySSA)
551     MSSA->verifyMemorySSA();
552 
553   return Changed;
554 }
555 
556 // Return true if the BasicBlock BB is unreachable from the loop header.
557 // Return false, otherwise.
isUnreachableDueToPreviousUnswitching(BasicBlock * BB)558 bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
559   auto *Node = DT->getNode(BB)->getIDom();
560   BasicBlock *DomBB = Node->getBlock();
561   while (CurrentLoop->contains(DomBB)) {
562     BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());
563 
564     Node = DT->getNode(DomBB)->getIDom();
565     DomBB = Node->getBlock();
566 
567     if (!BInst || !BInst->isConditional())
568       continue;
569 
570     Value *Cond = BInst->getCondition();
571     if (!isa<ConstantInt>(Cond))
572       continue;
573 
574     BasicBlock *UnreachableSucc =
575         Cond == ConstantInt::getTrue(Cond->getContext())
576             ? BInst->getSuccessor(1)
577             : BInst->getSuccessor(0);
578 
579     if (DT->dominates(UnreachableSucc, BB))
580       return true;
581   }
582   return false;
583 }
584 
585 /// FIXME: Remove this workaround when freeze related patches are done.
586 /// LoopUnswitch and Equality propagation in GVN have discrepancy about
587 /// whether branch on undef/poison has undefine behavior. Here it is to
588 /// rule out some common cases that we found such discrepancy already
589 /// causing problems. Detail could be found in PR31652. Note if the
590 /// func returns true, it is unsafe. But if it is false, it doesn't mean
591 /// it is necessarily safe.
equalityPropUnSafe(Value & LoopCond)592 static bool equalityPropUnSafe(Value &LoopCond) {
593   ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
594   if (!CI || !CI->isEquality())
595     return false;
596 
597   Value *LHS = CI->getOperand(0);
598   Value *RHS = CI->getOperand(1);
599   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
600     return true;
601 
602   auto HasUndefInPHI = [](PHINode &PN) {
603     for (Value *Opd : PN.incoming_values()) {
604       if (isa<UndefValue>(Opd))
605         return true;
606     }
607     return false;
608   };
609   PHINode *LPHI = dyn_cast<PHINode>(LHS);
610   PHINode *RPHI = dyn_cast<PHINode>(RHS);
611   if ((LPHI && HasUndefInPHI(*LPHI)) || (RPHI && HasUndefInPHI(*RPHI)))
612     return true;
613 
614   auto HasUndefInSelect = [](SelectInst &SI) {
615     if (isa<UndefValue>(SI.getTrueValue()) ||
616         isa<UndefValue>(SI.getFalseValue()))
617       return true;
618     return false;
619   };
620   SelectInst *LSI = dyn_cast<SelectInst>(LHS);
621   SelectInst *RSI = dyn_cast<SelectInst>(RHS);
622   if ((LSI && HasUndefInSelect(*LSI)) || (RSI && HasUndefInSelect(*RSI)))
623     return true;
624   return false;
625 }
626 
627 /// Do actual work and unswitch loop if possible and profitable.
processCurrentLoop()628 bool LoopUnswitch::processCurrentLoop() {
629   bool Changed = false;
630 
631   initLoopData();
632 
633   // If LoopSimplify was unable to form a preheader, don't do any unswitching.
634   if (!LoopPreheader)
635     return false;
636 
637   // Loops with indirectbr cannot be cloned.
638   if (!CurrentLoop->isSafeToClone())
639     return false;
640 
641   // Without dedicated exits, splitting the exit edge may fail.
642   if (!CurrentLoop->hasDedicatedExits())
643     return false;
644 
645   LLVMContext &Context = LoopHeader->getContext();
646 
647   // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
648   if (!BranchesInfo.countLoop(
649           CurrentLoop,
650           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
651               *CurrentLoop->getHeader()->getParent()),
652           AC))
653     return false;
654 
655   // Try trivial unswitch first before loop over other basic blocks in the loop.
656   if (tryTrivialLoopUnswitch(Changed)) {
657     return true;
658   }
659 
660   // Do not do non-trivial unswitch while optimizing for size.
661   // FIXME: Use Function::hasOptSize().
662   if (OptimizeForSize ||
663       LoopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
664     return false;
665 
666   // Run through the instructions in the loop, keeping track of three things:
667   //
668   //  - That we do not unswitch loops containing convergent operations, as we
669   //    might be making them control dependent on the unswitch value when they
670   //    were not before.
671   //    FIXME: This could be refined to only bail if the convergent operation is
672   //    not already control-dependent on the unswitch value.
673   //
674   //  - That basic blocks in the loop contain invokes whose predecessor edges we
675   //    cannot split.
676   //
677   //  - The set of guard intrinsics encountered (these are non terminator
678   //    instructions that are also profitable to be unswitched).
679 
680   SmallVector<IntrinsicInst *, 4> Guards;
681 
682   for (const auto BB : CurrentLoop->blocks()) {
683     for (auto &I : *BB) {
684       auto *CB = dyn_cast<CallBase>(&I);
685       if (!CB)
686         continue;
687       if (CB->isConvergent())
688         return false;
689       if (auto *II = dyn_cast<InvokeInst>(&I))
690         if (!II->getUnwindDest()->canSplitPredecessors())
691           return false;
692       if (auto *II = dyn_cast<IntrinsicInst>(&I))
693         if (II->getIntrinsicID() == Intrinsic::experimental_guard)
694           Guards.push_back(II);
695     }
696   }
697 
698   for (IntrinsicInst *Guard : Guards) {
699     Value *LoopCond = findLIVLoopCondition(Guard->getOperand(0), CurrentLoop,
700                                            Changed, MSSAU.get())
701                           .first;
702     if (LoopCond &&
703         unswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
704       // NB! Unswitching (if successful) could have erased some of the
705       // instructions in Guards leaving dangling pointers there.  This is fine
706       // because we're returning now, and won't look at Guards again.
707       ++NumGuards;
708       return true;
709     }
710   }
711 
712   // Loop over all of the basic blocks in the loop.  If we find an interior
713   // block that is branching on a loop-invariant condition, we can unswitch this
714   // loop.
715   for (Loop::block_iterator I = CurrentLoop->block_begin(),
716                             E = CurrentLoop->block_end();
717        I != E; ++I) {
718     Instruction *TI = (*I)->getTerminator();
719 
720     // Unswitching on a potentially uninitialized predicate is not
721     // MSan-friendly. Limit this to the cases when the original predicate is
722     // guaranteed to execute, to avoid creating a use-of-uninitialized-value
723     // in the code that did not have one.
724     // This is a workaround for the discrepancy between LLVM IR and MSan
725     // semantics. See PR28054 for more details.
726     if (SanitizeMemory &&
727         !SafetyInfo.isGuaranteedToExecute(*TI, DT, CurrentLoop))
728       continue;
729 
730     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
731       // Some branches may be rendered unreachable because of previous
732       // unswitching.
733       // Unswitch only those branches that are reachable.
734       if (isUnreachableDueToPreviousUnswitching(*I))
735         continue;
736 
737       // If this isn't branching on an invariant condition, we can't unswitch
738       // it.
739       if (BI->isConditional()) {
740         // See if this, or some part of it, is loop invariant.  If so, we can
741         // unswitch on it if we desire.
742         Value *LoopCond = findLIVLoopCondition(BI->getCondition(), CurrentLoop,
743                                                Changed, MSSAU.get())
744                               .first;
745         if (LoopCond && !equalityPropUnSafe(*LoopCond) &&
746             unswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
747           ++NumBranches;
748           return true;
749         }
750       }
751     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
752       Value *SC = SI->getCondition();
753       Value *LoopCond;
754       OperatorChain OpChain;
755       std::tie(LoopCond, OpChain) =
756           findLIVLoopCondition(SC, CurrentLoop, Changed, MSSAU.get());
757 
758       unsigned NumCases = SI->getNumCases();
759       if (LoopCond && NumCases) {
760         // Find a value to unswitch on:
761         // FIXME: this should chose the most expensive case!
762         // FIXME: scan for a case with a non-critical edge?
763         Constant *UnswitchVal = nullptr;
764         // Find a case value such that at least one case value is unswitched
765         // out.
766         if (OpChain == OC_OpChainAnd) {
767           // If the chain only has ANDs and the switch has a case value of 0.
768           // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
769           auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
770           if (BranchesInfo.isUnswitched(SI, AllZero))
771             continue;
772           // We are unswitching 0 out.
773           UnswitchVal = AllZero;
774         } else if (OpChain == OC_OpChainOr) {
775           // If the chain only has ORs and the switch has a case value of ~0.
776           // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
777           auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
778           if (BranchesInfo.isUnswitched(SI, AllOne))
779             continue;
780           // We are unswitching ~0 out.
781           UnswitchVal = AllOne;
782         } else {
783           assert(OpChain == OC_OpChainNone &&
784                  "Expect to unswitch on trivial chain");
785           // Do not process same value again and again.
786           // At this point we have some cases already unswitched and
787           // some not yet unswitched. Let's find the first not yet unswitched one.
788           for (auto Case : SI->cases()) {
789             Constant *UnswitchValCandidate = Case.getCaseValue();
790             if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
791               UnswitchVal = UnswitchValCandidate;
792               break;
793             }
794           }
795         }
796 
797         if (!UnswitchVal)
798           continue;
799 
800         if (unswitchIfProfitable(LoopCond, UnswitchVal)) {
801           ++NumSwitches;
802           // In case of a full LIV, UnswitchVal is the value we unswitched out.
803           // In case of a partial LIV, we only unswitch when its an AND-chain
804           // or OR-chain. In both cases switch input value simplifies to
805           // UnswitchVal.
806           BranchesInfo.setUnswitched(SI, UnswitchVal);
807           return true;
808         }
809       }
810     }
811 
812     // Scan the instructions to check for unswitchable values.
813     for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
814          BBI != E; ++BBI)
815       if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
816         Value *LoopCond = findLIVLoopCondition(SI->getCondition(), CurrentLoop,
817                                                Changed, MSSAU.get())
818                               .first;
819         if (LoopCond &&
820             unswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
821           ++NumSelects;
822           return true;
823         }
824       }
825   }
826   return Changed;
827 }
828 
829 /// Check to see if all paths from BB exit the loop with no side effects
830 /// (including infinite loops).
831 ///
832 /// If true, we return true and set ExitBB to the block we
833 /// exit through.
834 ///
isTrivialLoopExitBlockHelper(Loop * L,BasicBlock * BB,BasicBlock * & ExitBB,std::set<BasicBlock * > & Visited)835 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
836                                          BasicBlock *&ExitBB,
837                                          std::set<BasicBlock*> &Visited) {
838   if (!Visited.insert(BB).second) {
839     // Already visited. Without more analysis, this could indicate an infinite
840     // loop.
841     return false;
842   }
843   if (!L->contains(BB)) {
844     // Otherwise, this is a loop exit, this is fine so long as this is the
845     // first exit.
846     if (ExitBB) return false;
847     ExitBB = BB;
848     return true;
849   }
850 
851   // Otherwise, this is an unvisited intra-loop node.  Check all successors.
852   for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
853     // Check to see if the successor is a trivial loop exit.
854     if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
855       return false;
856   }
857 
858   // Okay, everything after this looks good, check to make sure that this block
859   // doesn't include any side effects.
860   for (Instruction &I : *BB)
861     if (I.mayHaveSideEffects())
862       return false;
863 
864   return true;
865 }
866 
867 /// Return true if the specified block unconditionally leads to an exit from
868 /// the specified loop, and has no side-effects in the process. If so, return
869 /// the block that is exited to, otherwise return null.
isTrivialLoopExitBlock(Loop * L,BasicBlock * BB)870 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
871   std::set<BasicBlock*> Visited;
872   Visited.insert(L->getHeader());  // Branches to header make infinite loops.
873   BasicBlock *ExitBB = nullptr;
874   if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
875     return ExitBB;
876   return nullptr;
877 }
878 
879 /// We have found that we can unswitch CurrentLoop when LoopCond == Val to
880 /// simplify the loop.  If we decide that this is profitable,
881 /// unswitch the loop, reprocess the pieces, then return true.
unswitchIfProfitable(Value * LoopCond,Constant * Val,Instruction * TI)882 bool LoopUnswitch::unswitchIfProfitable(Value *LoopCond, Constant *Val,
883                                         Instruction *TI) {
884   // Check to see if it would be profitable to unswitch current loop.
885   if (!BranchesInfo.costAllowsUnswitching()) {
886     LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
887                       << CurrentLoop->getHeader()->getName()
888                       << " at non-trivial condition '" << *Val
889                       << "' == " << *LoopCond << "\n"
890                       << ". Cost too high.\n");
891     return false;
892   }
893   if (HasBranchDivergence &&
894       getAnalysis<LegacyDivergenceAnalysis>().isDivergent(LoopCond)) {
895     LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
896                       << CurrentLoop->getHeader()->getName()
897                       << " at non-trivial condition '" << *Val
898                       << "' == " << *LoopCond << "\n"
899                       << ". Condition is divergent.\n");
900     return false;
901   }
902 
903   unswitchNontrivialCondition(LoopCond, Val, CurrentLoop, TI);
904   return true;
905 }
906 
907 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
908 /// otherwise branch to FalseDest. Insert the code immediately before OldBranch
909 /// and remove (but not erase!) it from the function.
emitPreheaderBranchOnCondition(Value * LIC,Constant * Val,BasicBlock * TrueDest,BasicBlock * FalseDest,BranchInst * OldBranch,Instruction * TI)910 void LoopUnswitch::emitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
911                                                   BasicBlock *TrueDest,
912                                                   BasicBlock *FalseDest,
913                                                   BranchInst *OldBranch,
914                                                   Instruction *TI) {
915   assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
916   assert(TrueDest != FalseDest && "Branch targets should be different");
917   // Insert a conditional branch on LIC to the two preheaders.  The original
918   // code is the true version and the new code is the false version.
919   Value *BranchVal = LIC;
920   bool Swapped = false;
921   if (!isa<ConstantInt>(Val) ||
922       Val->getType() != Type::getInt1Ty(LIC->getContext()))
923     BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
924   else if (Val != ConstantInt::getTrue(Val->getContext())) {
925     // We want to enter the new loop when the condition is true.
926     std::swap(TrueDest, FalseDest);
927     Swapped = true;
928   }
929 
930   // Old branch will be removed, so save its parent and successor to update the
931   // DomTree.
932   auto *OldBranchSucc = OldBranch->getSuccessor(0);
933   auto *OldBranchParent = OldBranch->getParent();
934 
935   // Insert the new branch.
936   BranchInst *BI =
937       IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
938   if (Swapped)
939     BI->swapProfMetadata();
940 
941   // Remove the old branch so there is only one branch at the end. This is
942   // needed to perform DomTree's internal DFS walk on the function's CFG.
943   OldBranch->removeFromParent();
944 
945   // Inform the DT about the new branch.
946   if (DT) {
947     // First, add both successors.
948     SmallVector<DominatorTree::UpdateType, 3> Updates;
949     if (TrueDest != OldBranchSucc)
950       Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
951     if (FalseDest != OldBranchSucc)
952       Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
953     // If both of the new successors are different from the old one, inform the
954     // DT that the edge was deleted.
955     if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
956       Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
957     }
958     DT->applyUpdates(Updates);
959 
960     if (MSSAU)
961       MSSAU->applyUpdates(Updates, *DT);
962   }
963 
964   // If either edge is critical, split it. This helps preserve LoopSimplify
965   // form for enclosing loops.
966   auto Options =
967       CriticalEdgeSplittingOptions(DT, LI, MSSAU.get()).setPreserveLCSSA();
968   SplitCriticalEdge(BI, 0, Options);
969   SplitCriticalEdge(BI, 1, Options);
970 }
971 
972 /// Given a loop that has a trivial unswitchable condition in it (a cond branch
973 /// from its header block to its latch block, where the path through the loop
974 /// that doesn't execute its body has no side-effects), unswitch it. This
975 /// doesn't involve any code duplication, just moving the conditional branch
976 /// outside of the loop and updating loop info.
unswitchTrivialCondition(Loop * L,Value * Cond,Constant * Val,BasicBlock * ExitBlock,Instruction * TI)977 void LoopUnswitch::unswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
978                                             BasicBlock *ExitBlock,
979                                             Instruction *TI) {
980   LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
981                     << LoopHeader->getName() << " [" << L->getBlocks().size()
982                     << " blocks] in Function "
983                     << L->getHeader()->getParent()->getName()
984                     << " on cond: " << *Val << " == " << *Cond << "\n");
985   // We are going to make essential changes to CFG. This may invalidate cached
986   // information for L or one of its parent loops in SCEV.
987   if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
988     SEWP->getSE().forgetTopmostLoop(L);
989 
990   // First step, split the preheader, so that we know that there is a safe place
991   // to insert the conditional branch.  We will change LoopPreheader to have a
992   // conditional branch on Cond.
993   BasicBlock *NewPH = SplitEdge(LoopPreheader, LoopHeader, DT, LI, MSSAU.get());
994 
995   // Now that we have a place to insert the conditional branch, create a place
996   // to branch to: this is the exit block out of the loop that we should
997   // short-circuit to.
998 
999   // Split this block now, so that the loop maintains its exit block, and so
1000   // that the jump from the preheader can execute the contents of the exit block
1001   // without actually branching to it (the exit block should be dominated by the
1002   // loop header, not the preheader).
1003   assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
1004   BasicBlock *NewExit =
1005       SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI, MSSAU.get());
1006 
1007   // Okay, now we have a position to branch from and a position to branch to,
1008   // insert the new conditional branch.
1009   auto *OldBranch = dyn_cast<BranchInst>(LoopPreheader->getTerminator());
1010   assert(OldBranch && "Failed to split the preheader");
1011   emitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);
1012 
1013   // emitPreheaderBranchOnCondition removed the OldBranch from the function.
1014   // Delete it, as it is no longer needed.
1015   delete OldBranch;
1016 
1017   // We need to reprocess this loop, it could be unswitched again.
1018   RedoLoop = true;
1019 
1020   // Now that we know that the loop is never entered when this condition is a
1021   // particular value, rewrite the loop with this info.  We know that this will
1022   // at least eliminate the old branch.
1023   rewriteLoopBodyWithConditionConstant(L, Cond, Val, /*IsEqual=*/false);
1024 
1025   ++NumTrivial;
1026 }
1027 
1028 /// Check if the first non-constant condition starting from the loop header is
1029 /// a trivial unswitch condition: that is, a condition controls whether or not
1030 /// the loop does anything at all. If it is a trivial condition, unswitching
1031 /// produces no code duplications (equivalently, it produces a simpler loop and
1032 /// a new empty loop, which gets deleted). Therefore always unswitch trivial
1033 /// condition.
tryTrivialLoopUnswitch(bool & Changed)1034 bool LoopUnswitch::tryTrivialLoopUnswitch(bool &Changed) {
1035   BasicBlock *CurrentBB = CurrentLoop->getHeader();
1036   Instruction *CurrentTerm = CurrentBB->getTerminator();
1037   LLVMContext &Context = CurrentBB->getContext();
1038 
1039   // If loop header has only one reachable successor (currently via an
1040   // unconditional branch or constant foldable conditional branch, but
1041   // should also consider adding constant foldable switch instruction in
1042   // future), we should keep looking for trivial condition candidates in
1043   // the successor as well. An alternative is to constant fold conditions
1044   // and merge successors into loop header (then we only need to check header's
1045   // terminator). The reason for not doing this in LoopUnswitch pass is that
1046   // it could potentially break LoopPassManager's invariants. Folding dead
1047   // branches could either eliminate the current loop or make other loops
1048   // unreachable. LCSSA form might also not be preserved after deleting
1049   // branches. The following code keeps traversing loop header's successors
1050   // until it finds the trivial condition candidate (condition that is not a
1051   // constant). Since unswitching generates branches with constant conditions,
1052   // this scenario could be very common in practice.
1053   SmallPtrSet<BasicBlock*, 8> Visited;
1054 
1055   while (true) {
1056     // If we exit loop or reach a previous visited block, then
1057     // we can not reach any trivial condition candidates (unfoldable
1058     // branch instructions or switch instructions) and no unswitch
1059     // can happen. Exit and return false.
1060     if (!CurrentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
1061       return false;
1062 
1063     // Check if this loop will execute any side-effecting instructions (e.g.
1064     // stores, calls, volatile loads) in the part of the loop that the code
1065     // *would* execute. Check the header first.
1066     for (Instruction &I : *CurrentBB)
1067       if (I.mayHaveSideEffects())
1068         return false;
1069 
1070     if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
1071       if (BI->isUnconditional()) {
1072         CurrentBB = BI->getSuccessor(0);
1073       } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
1074         CurrentBB = BI->getSuccessor(0);
1075       } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
1076         CurrentBB = BI->getSuccessor(1);
1077       } else {
1078         // Found a trivial condition candidate: non-foldable conditional branch.
1079         break;
1080       }
1081     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1082       // At this point, any constant-foldable instructions should have probably
1083       // been folded.
1084       ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
1085       if (!Cond)
1086         break;
1087       // Find the target block we are definitely going to.
1088       CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
1089     } else {
1090       // We do not understand these terminator instructions.
1091       break;
1092     }
1093 
1094     CurrentTerm = CurrentBB->getTerminator();
1095   }
1096 
1097   // CondVal is the condition that controls the trivial condition.
1098   // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
1099   Constant *CondVal = nullptr;
1100   BasicBlock *LoopExitBB = nullptr;
1101 
1102   if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
1103     // If this isn't branching on an invariant condition, we can't unswitch it.
1104     if (!BI->isConditional())
1105       return false;
1106 
1107     Value *LoopCond = findLIVLoopCondition(BI->getCondition(), CurrentLoop,
1108                                            Changed, MSSAU.get())
1109                           .first;
1110 
1111     // Unswitch only if the trivial condition itself is an LIV (not
1112     // partial LIV which could occur in and/or)
1113     if (!LoopCond || LoopCond != BI->getCondition())
1114       return false;
1115 
1116     // Check to see if a successor of the branch is guaranteed to
1117     // exit through a unique exit block without having any
1118     // side-effects.  If so, determine the value of Cond that causes
1119     // it to do this.
1120     if ((LoopExitBB =
1121              isTrivialLoopExitBlock(CurrentLoop, BI->getSuccessor(0)))) {
1122       CondVal = ConstantInt::getTrue(Context);
1123     } else if ((LoopExitBB =
1124                     isTrivialLoopExitBlock(CurrentLoop, BI->getSuccessor(1)))) {
1125       CondVal = ConstantInt::getFalse(Context);
1126     }
1127 
1128     // If we didn't find a single unique LoopExit block, or if the loop exit
1129     // block contains phi nodes, this isn't trivial.
1130     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
1131       return false;   // Can't handle this.
1132 
1133     if (equalityPropUnSafe(*LoopCond))
1134       return false;
1135 
1136     unswitchTrivialCondition(CurrentLoop, LoopCond, CondVal, LoopExitBB,
1137                              CurrentTerm);
1138     ++NumBranches;
1139     return true;
1140   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1141     // If this isn't switching on an invariant condition, we can't unswitch it.
1142     Value *LoopCond = findLIVLoopCondition(SI->getCondition(), CurrentLoop,
1143                                            Changed, MSSAU.get())
1144                           .first;
1145 
1146     // Unswitch only if the trivial condition itself is an LIV (not
1147     // partial LIV which could occur in and/or)
1148     if (!LoopCond || LoopCond != SI->getCondition())
1149       return false;
1150 
1151     // Check to see if a successor of the switch is guaranteed to go to the
1152     // latch block or exit through a one exit block without having any
1153     // side-effects.  If so, determine the value of Cond that causes it to do
1154     // this.
1155     // Note that we can't trivially unswitch on the default case or
1156     // on already unswitched cases.
1157     for (auto Case : SI->cases()) {
1158       BasicBlock *LoopExitCandidate;
1159       if ((LoopExitCandidate =
1160                isTrivialLoopExitBlock(CurrentLoop, Case.getCaseSuccessor()))) {
1161         // Okay, we found a trivial case, remember the value that is trivial.
1162         ConstantInt *CaseVal = Case.getCaseValue();
1163 
1164         // Check that it was not unswitched before, since already unswitched
1165         // trivial vals are looks trivial too.
1166         if (BranchesInfo.isUnswitched(SI, CaseVal))
1167           continue;
1168         LoopExitBB = LoopExitCandidate;
1169         CondVal = CaseVal;
1170         break;
1171       }
1172     }
1173 
1174     // If we didn't find a single unique LoopExit block, or if the loop exit
1175     // block contains phi nodes, this isn't trivial.
1176     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
1177       return false;   // Can't handle this.
1178 
1179     unswitchTrivialCondition(CurrentLoop, LoopCond, CondVal, LoopExitBB,
1180                              nullptr);
1181 
1182     // We are only unswitching full LIV.
1183     BranchesInfo.setUnswitched(SI, CondVal);
1184     ++NumSwitches;
1185     return true;
1186   }
1187   return false;
1188 }
1189 
1190 /// Split all of the edges from inside the loop to their exit blocks.
1191 /// Update the appropriate Phi nodes as we do so.
splitExitEdges(Loop * L,const SmallVectorImpl<BasicBlock * > & ExitBlocks)1192 void LoopUnswitch::splitExitEdges(
1193     Loop *L, const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
1194 
1195   for (unsigned I = 0, E = ExitBlocks.size(); I != E; ++I) {
1196     BasicBlock *ExitBlock = ExitBlocks[I];
1197     SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
1198                                        pred_end(ExitBlock));
1199 
1200     // Although SplitBlockPredecessors doesn't preserve loop-simplify in
1201     // general, if we call it on all predecessors of all exits then it does.
1202     SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, MSSAU.get(),
1203                            /*PreserveLCSSA*/ true);
1204   }
1205 }
1206 
1207 /// We determined that the loop is profitable to unswitch when LIC equal Val.
1208 /// Split it into loop versions and test the condition outside of either loop.
1209 /// Return the loops created as Out1/Out2.
unswitchNontrivialCondition(Value * LIC,Constant * Val,Loop * L,Instruction * TI)1210 void LoopUnswitch::unswitchNontrivialCondition(Value *LIC, Constant *Val,
1211                                                Loop *L, Instruction *TI) {
1212   Function *F = LoopHeader->getParent();
1213   LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
1214                     << LoopHeader->getName() << " [" << L->getBlocks().size()
1215                     << " blocks] in Function " << F->getName() << " when '"
1216                     << *Val << "' == " << *LIC << "\n");
1217 
1218   // We are going to make essential changes to CFG. This may invalidate cached
1219   // information for L or one of its parent loops in SCEV.
1220   if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
1221     SEWP->getSE().forgetTopmostLoop(L);
1222 
1223   LoopBlocks.clear();
1224   NewBlocks.clear();
1225 
1226   if (MSSAU && VerifyMemorySSA)
1227     MSSA->verifyMemorySSA();
1228 
1229   // First step, split the preheader and exit blocks, and add these blocks to
1230   // the LoopBlocks list.
1231   BasicBlock *NewPreheader =
1232       SplitEdge(LoopPreheader, LoopHeader, DT, LI, MSSAU.get());
1233   LoopBlocks.push_back(NewPreheader);
1234 
1235   // We want the loop to come after the preheader, but before the exit blocks.
1236   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
1237 
1238   SmallVector<BasicBlock*, 8> ExitBlocks;
1239   L->getUniqueExitBlocks(ExitBlocks);
1240 
1241   // Split all of the edges from inside the loop to their exit blocks.  Update
1242   // the appropriate Phi nodes as we do so.
1243   splitExitEdges(L, ExitBlocks);
1244 
1245   // The exit blocks may have been changed due to edge splitting, recompute.
1246   ExitBlocks.clear();
1247   L->getUniqueExitBlocks(ExitBlocks);
1248 
1249   // Add exit blocks to the loop blocks.
1250   LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
1251 
1252   // Next step, clone all of the basic blocks that make up the loop (including
1253   // the loop preheader and exit blocks), keeping track of the mapping between
1254   // the instructions and blocks.
1255   NewBlocks.reserve(LoopBlocks.size());
1256   ValueToValueMapTy VMap;
1257   for (unsigned I = 0, E = LoopBlocks.size(); I != E; ++I) {
1258     BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[I], VMap, ".us", F);
1259 
1260     NewBlocks.push_back(NewBB);
1261     VMap[LoopBlocks[I]] = NewBB; // Keep the BB mapping.
1262   }
1263 
1264   // Splice the newly inserted blocks into the function right before the
1265   // original preheader.
1266   F->getBasicBlockList().splice(NewPreheader->getIterator(),
1267                                 F->getBasicBlockList(),
1268                                 NewBlocks[0]->getIterator(), F->end());
1269 
1270   // Now we create the new Loop object for the versioned loop.
1271   Loop *NewLoop = cloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
1272 
1273   // Recalculate unswitching quota, inherit simplified switches info for NewBB,
1274   // Probably clone more loop-unswitch related loop properties.
1275   BranchesInfo.cloneData(NewLoop, L, VMap);
1276 
1277   Loop *ParentLoop = L->getParentLoop();
1278   if (ParentLoop) {
1279     // Make sure to add the cloned preheader and exit blocks to the parent loop
1280     // as well.
1281     ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
1282   }
1283 
1284   for (unsigned EBI = 0, EBE = ExitBlocks.size(); EBI != EBE; ++EBI) {
1285     BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[EBI]]);
1286     // The new exit block should be in the same loop as the old one.
1287     if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[EBI]))
1288       ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
1289 
1290     assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
1291            "Exit block should have been split to have one successor!");
1292     BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
1293 
1294     // If the successor of the exit block had PHI nodes, add an entry for
1295     // NewExit.
1296     for (PHINode &PN : ExitSucc->phis()) {
1297       Value *V = PN.getIncomingValueForBlock(ExitBlocks[EBI]);
1298       ValueToValueMapTy::iterator It = VMap.find(V);
1299       if (It != VMap.end()) V = It->second;
1300       PN.addIncoming(V, NewExit);
1301     }
1302 
1303     if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
1304       PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
1305                                     &*ExitSucc->getFirstInsertionPt());
1306 
1307       for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
1308            I != E; ++I) {
1309         BasicBlock *BB = *I;
1310         LandingPadInst *LPI = BB->getLandingPadInst();
1311         LPI->replaceAllUsesWith(PN);
1312         PN->addIncoming(LPI, BB);
1313       }
1314     }
1315   }
1316 
1317   // Rewrite the code to refer to itself.
1318   for (unsigned NBI = 0, NBE = NewBlocks.size(); NBI != NBE; ++NBI) {
1319     for (Instruction &I : *NewBlocks[NBI]) {
1320       RemapInstruction(&I, VMap,
1321                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1322       if (auto *II = dyn_cast<IntrinsicInst>(&I))
1323         if (II->getIntrinsicID() == Intrinsic::assume)
1324           AC->registerAssumption(II);
1325     }
1326   }
1327 
1328   // Rewrite the original preheader to select between versions of the loop.
1329   BranchInst *OldBR = cast<BranchInst>(LoopPreheader->getTerminator());
1330   assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
1331          "Preheader splitting did not work correctly!");
1332 
1333   if (MSSAU) {
1334     // Update MemorySSA after cloning, and before splitting to unreachables,
1335     // since that invalidates the 1:1 mapping of clones in VMap.
1336     LoopBlocksRPO LBRPO(L);
1337     LBRPO.perform(LI);
1338     MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, VMap);
1339   }
1340 
1341   // Emit the new branch that selects between the two versions of this loop.
1342   emitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
1343                                  TI);
1344   if (MSSAU) {
1345     // Update MemoryPhis in Exit blocks.
1346     MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMap, *DT);
1347     if (VerifyMemorySSA)
1348       MSSA->verifyMemorySSA();
1349   }
1350 
1351   // The OldBr was replaced by a new one and removed (but not erased) by
1352   // emitPreheaderBranchOnCondition. It is no longer needed, so delete it.
1353   delete OldBR;
1354 
1355   LoopProcessWorklist.push_back(NewLoop);
1356   RedoLoop = true;
1357 
1358   // Keep a WeakTrackingVH holding onto LIC.  If the first call to
1359   // RewriteLoopBody
1360   // deletes the instruction (for example by simplifying a PHI that feeds into
1361   // the condition that we're unswitching on), we don't rewrite the second
1362   // iteration.
1363   WeakTrackingVH LICHandle(LIC);
1364 
1365   // Now we rewrite the original code to know that the condition is true and the
1366   // new code to know that the condition is false.
1367   rewriteLoopBodyWithConditionConstant(L, LIC, Val, /*IsEqual=*/false);
1368 
1369   // It's possible that simplifying one loop could cause the other to be
1370   // changed to another value or a constant.  If its a constant, don't simplify
1371   // it.
1372   if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
1373       LICHandle && !isa<Constant>(LICHandle))
1374     rewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val,
1375                                          /*IsEqual=*/true);
1376 
1377   if (MSSA && VerifyMemorySSA)
1378     MSSA->verifyMemorySSA();
1379 }
1380 
1381 /// Remove all instances of I from the worklist vector specified.
removeFromWorklist(Instruction * I,std::vector<Instruction * > & Worklist)1382 static void removeFromWorklist(Instruction *I,
1383                                std::vector<Instruction *> &Worklist) {
1384 
1385   Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
1386                  Worklist.end());
1387 }
1388 
1389 /// When we find that I really equals V, remove I from the
1390 /// program, replacing all uses with V and update the worklist.
replaceUsesOfWith(Instruction * I,Value * V,std::vector<Instruction * > & Worklist,Loop * L,LPPassManager * LPM,MemorySSAUpdater * MSSAU)1391 static void replaceUsesOfWith(Instruction *I, Value *V,
1392                               std::vector<Instruction *> &Worklist, Loop *L,
1393                               LPPassManager *LPM, MemorySSAUpdater *MSSAU) {
1394   LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");
1395 
1396   // Add uses to the worklist, which may be dead now.
1397   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1398     if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1399       Worklist.push_back(Use);
1400 
1401   // Add users to the worklist which may be simplified now.
1402   for (User *U : I->users())
1403     Worklist.push_back(cast<Instruction>(U));
1404   removeFromWorklist(I, Worklist);
1405   I->replaceAllUsesWith(V);
1406   if (!I->mayHaveSideEffects()) {
1407     if (MSSAU)
1408       MSSAU->removeMemoryAccess(I);
1409     I->eraseFromParent();
1410   }
1411   ++NumSimplify;
1412 }
1413 
1414 /// We know either that the value LIC has the value specified by Val in the
1415 /// specified loop, or we know it does NOT have that value.
1416 /// Rewrite any uses of LIC or of properties correlated to it.
rewriteLoopBodyWithConditionConstant(Loop * L,Value * LIC,Constant * Val,bool IsEqual)1417 void LoopUnswitch::rewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1418                                                         Constant *Val,
1419                                                         bool IsEqual) {
1420   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1421 
1422   // FIXME: Support correlated properties, like:
1423   //  for (...)
1424   //    if (li1 < li2)
1425   //      ...
1426   //    if (li1 > li2)
1427   //      ...
1428 
1429   // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
1430   // selects, switches.
1431   std::vector<Instruction*> Worklist;
1432   LLVMContext &Context = Val->getContext();
1433 
1434   // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1435   // in the loop with the appropriate one directly.
1436   if (IsEqual || (isa<ConstantInt>(Val) &&
1437       Val->getType()->isIntegerTy(1))) {
1438     Value *Replacement;
1439     if (IsEqual)
1440       Replacement = Val;
1441     else
1442       Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1443                                      !cast<ConstantInt>(Val)->getZExtValue());
1444 
1445     for (User *U : LIC->users()) {
1446       Instruction *UI = dyn_cast<Instruction>(U);
1447       if (!UI || !L->contains(UI))
1448         continue;
1449       Worklist.push_back(UI);
1450     }
1451 
1452     for (Instruction *UI : Worklist)
1453       UI->replaceUsesOfWith(LIC, Replacement);
1454 
1455     simplifyCode(Worklist, L);
1456     return;
1457   }
1458 
1459   // Otherwise, we don't know the precise value of LIC, but we do know that it
1460   // is certainly NOT "Val".  As such, simplify any uses in the loop that we
1461   // can.  This case occurs when we unswitch switch statements.
1462   for (User *U : LIC->users()) {
1463     Instruction *UI = dyn_cast<Instruction>(U);
1464     if (!UI || !L->contains(UI))
1465       continue;
1466 
1467     // At this point, we know LIC is definitely not Val. Try to use some simple
1468     // logic to simplify the user w.r.t. to the context.
1469     if (Value *Replacement = simplifyInstructionWithNotEqual(UI, LIC, Val)) {
1470       if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
1471         // This in-loop instruction has been simplified w.r.t. its context,
1472         // i.e. LIC != Val, make sure we propagate its replacement value to
1473         // all its users.
1474         //
1475         // We can not yet delete UI, the LIC user, yet, because that would invalidate
1476         // the LIC->users() iterator !. However, we can make this instruction
1477         // dead by replacing all its users and push it onto the worklist so that
1478         // it can be properly deleted and its operands simplified.
1479         UI->replaceAllUsesWith(Replacement);
1480       }
1481     }
1482 
1483     // This is a LIC user, push it into the worklist so that simplifyCode can
1484     // attempt to simplify it.
1485     Worklist.push_back(UI);
1486 
1487     // If we know that LIC is not Val, use this info to simplify code.
1488     SwitchInst *SI = dyn_cast<SwitchInst>(UI);
1489     if (!SI || !isa<ConstantInt>(Val)) continue;
1490 
1491     // NOTE: if a case value for the switch is unswitched out, we record it
1492     // after the unswitch finishes. We can not record it here as the switch
1493     // is not a direct user of the partial LIV.
1494     SwitchInst::CaseHandle DeadCase =
1495         *SI->findCaseValue(cast<ConstantInt>(Val));
1496     // Default case is live for multiple values.
1497     if (DeadCase == *SI->case_default())
1498       continue;
1499 
1500     // Found a dead case value.  Don't remove PHI nodes in the
1501     // successor if they become single-entry, those PHI nodes may
1502     // be in the Users list.
1503 
1504     BasicBlock *Switch = SI->getParent();
1505     BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1506     BasicBlock *Latch = L->getLoopLatch();
1507 
1508     if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
1509     // If the DeadCase successor dominates the loop latch, then the
1510     // transformation isn't safe since it will delete the sole predecessor edge
1511     // to the latch.
1512     if (Latch && DT->dominates(SISucc, Latch))
1513       continue;
1514 
1515     // FIXME: This is a hack.  We need to keep the successor around
1516     // and hooked up so as to preserve the loop structure, because
1517     // trying to update it is complicated.  So instead we preserve the
1518     // loop structure and put the block on a dead code path.
1519     SplitEdge(Switch, SISucc, DT, LI, MSSAU.get());
1520     // Compute the successors instead of relying on the return value
1521     // of SplitEdge, since it may have split the switch successor
1522     // after PHI nodes.
1523     BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1524     BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1525     // Create an "unreachable" destination.
1526     BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1527                                            Switch->getParent(),
1528                                            OldSISucc);
1529     new UnreachableInst(Context, Abort);
1530     // Force the new case destination to branch to the "unreachable"
1531     // block while maintaining a (dead) CFG edge to the old block.
1532     NewSISucc->getTerminator()->eraseFromParent();
1533     BranchInst::Create(Abort, OldSISucc,
1534                        ConstantInt::getTrue(Context), NewSISucc);
1535     // Release the PHI operands for this edge.
1536     for (PHINode &PN : NewSISucc->phis())
1537       PN.setIncomingValueForBlock(Switch, UndefValue::get(PN.getType()));
1538     // Tell the domtree about the new block. We don't fully update the
1539     // domtree here -- instead we force it to do a full recomputation
1540     // after the pass is complete -- but we do need to inform it of
1541     // new blocks.
1542     DT->addNewBlock(Abort, NewSISucc);
1543   }
1544 
1545   simplifyCode(Worklist, L);
1546 }
1547 
1548 /// Now that we have simplified some instructions in the loop, walk over it and
1549 /// constant prop, dce, and fold control flow where possible. Note that this is
1550 /// effectively a very simple loop-structure-aware optimizer. During processing
1551 /// of this loop, L could very well be deleted, so it must not be used.
1552 ///
1553 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1554 /// pass.
1555 ///
simplifyCode(std::vector<Instruction * > & Worklist,Loop * L)1556 void LoopUnswitch::simplifyCode(std::vector<Instruction *> &Worklist, Loop *L) {
1557   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1558   while (!Worklist.empty()) {
1559     Instruction *I = Worklist.back();
1560     Worklist.pop_back();
1561 
1562     // Simple DCE.
1563     if (isInstructionTriviallyDead(I)) {
1564       LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");
1565 
1566       // Add uses to the worklist, which may be dead now.
1567       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1568         if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1569           Worklist.push_back(Use);
1570       removeFromWorklist(I, Worklist);
1571       if (MSSAU)
1572         MSSAU->removeMemoryAccess(I);
1573       I->eraseFromParent();
1574       ++NumSimplify;
1575       continue;
1576     }
1577 
1578     // See if instruction simplification can hack this up.  This is common for
1579     // things like "select false, X, Y" after unswitching made the condition be
1580     // 'false'.  TODO: update the domtree properly so we can pass it here.
1581     if (Value *V = SimplifyInstruction(I, DL))
1582       if (LI->replacementPreservesLCSSAForm(I, V)) {
1583         replaceUsesOfWith(I, V, Worklist, L, LPM, MSSAU.get());
1584         continue;
1585       }
1586 
1587     // Special case hacks that appear commonly in unswitched code.
1588     if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1589       if (BI->isUnconditional()) {
1590         // If BI's parent is the only pred of the successor, fold the two blocks
1591         // together.
1592         BasicBlock *Pred = BI->getParent();
1593         (void)Pred;
1594         BasicBlock *Succ = BI->getSuccessor(0);
1595         BasicBlock *SinglePred = Succ->getSinglePredecessor();
1596         if (!SinglePred) continue;  // Nothing to do.
1597         assert(SinglePred == Pred && "CFG broken");
1598 
1599         // Make the LPM and Worklist updates specific to LoopUnswitch.
1600         removeFromWorklist(BI, Worklist);
1601         auto SuccIt = Succ->begin();
1602         while (PHINode *PN = dyn_cast<PHINode>(SuccIt++)) {
1603           for (unsigned It = 0, E = PN->getNumOperands(); It != E; ++It)
1604             if (Instruction *Use = dyn_cast<Instruction>(PN->getOperand(It)))
1605               Worklist.push_back(Use);
1606           for (User *U : PN->users())
1607             Worklist.push_back(cast<Instruction>(U));
1608           removeFromWorklist(PN, Worklist);
1609           ++NumSimplify;
1610         }
1611         // Merge the block and make the remaining analyses updates.
1612         DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
1613         MergeBlockIntoPredecessor(Succ, &DTU, LI, MSSAU.get());
1614         ++NumSimplify;
1615         continue;
1616       }
1617 
1618       continue;
1619     }
1620   }
1621 }
1622 
1623 /// Simple simplifications we can do given the information that Cond is
1624 /// definitely not equal to Val.
simplifyInstructionWithNotEqual(Instruction * Inst,Value * Invariant,Constant * Val)1625 Value *LoopUnswitch::simplifyInstructionWithNotEqual(Instruction *Inst,
1626                                                      Value *Invariant,
1627                                                      Constant *Val) {
1628   // icmp eq cond, val -> false
1629   ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
1630   if (CI && CI->isEquality()) {
1631     Value *Op0 = CI->getOperand(0);
1632     Value *Op1 = CI->getOperand(1);
1633     if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
1634       LLVMContext &Ctx = Inst->getContext();
1635       if (CI->getPredicate() == CmpInst::ICMP_EQ)
1636         return ConstantInt::getFalse(Ctx);
1637       else
1638         return ConstantInt::getTrue(Ctx);
1639      }
1640   }
1641 
1642   // FIXME: there may be other opportunities, e.g. comparison with floating
1643   // point, or Invariant - Val != 0, etc.
1644   return nullptr;
1645 }
1646