1 //===- UnrollLoopPeel.cpp - Loop peeling utilities ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities for peeling loops
10 // with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for
11 // unrolling loops with compile-time constant trip counts.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/LoopIterator.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/LoopSimplify.h"
41 #include "llvm/Transforms/Utils/LoopUtils.h"
42 #include "llvm/Transforms/Utils/UnrollLoop.h"
43 #include "llvm/Transforms/Utils/ValueMapper.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <limits>
48 
49 using namespace llvm;
50 using namespace llvm::PatternMatch;
51 
52 #define DEBUG_TYPE "loop-unroll"
53 
54 STATISTIC(NumPeeled, "Number of loops peeled");
55 
56 static cl::opt<unsigned> UnrollPeelMaxCount(
57     "unroll-peel-max-count", cl::init(7), cl::Hidden,
58     cl::desc("Max average trip count which will cause loop peeling."));
59 
60 static cl::opt<unsigned> UnrollForcePeelCount(
61     "unroll-force-peel-count", cl::init(0), cl::Hidden,
62     cl::desc("Force a peel count regardless of profiling information."));
63 
64 static cl::opt<bool> UnrollPeelMultiDeoptExit(
65     "unroll-peel-multi-deopt-exit", cl::init(true), cl::Hidden,
66     cl::desc("Allow peeling of loops with multiple deopt exits."));
67 
68 static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
69 
70 // Designates that a Phi is estimated to become invariant after an "infinite"
71 // number of loop iterations (i.e. only may become an invariant if the loop is
72 // fully unrolled).
73 static const unsigned InfiniteIterationsToInvariance =
74     std::numeric_limits<unsigned>::max();
75 
76 // Check whether we are capable of peeling this loop.
canPeel(Loop * L)77 bool llvm::canPeel(Loop *L) {
78   // Make sure the loop is in simplified form
79   if (!L->isLoopSimplifyForm())
80     return false;
81 
82   if (UnrollPeelMultiDeoptExit) {
83     SmallVector<BasicBlock *, 4> Exits;
84     L->getUniqueNonLatchExitBlocks(Exits);
85 
86     if (!Exits.empty()) {
87       // Latch's terminator is a conditional branch, Latch is exiting and
88       // all non Latch exits ends up with deoptimize.
89       const BasicBlock *Latch = L->getLoopLatch();
90       const BranchInst *T = dyn_cast<BranchInst>(Latch->getTerminator());
91       return T && T->isConditional() && L->isLoopExiting(Latch) &&
92              all_of(Exits, [](const BasicBlock *BB) {
93                return BB->getTerminatingDeoptimizeCall();
94              });
95     }
96   }
97 
98   // Only peel loops that contain a single exit
99   if (!L->getExitingBlock() || !L->getUniqueExitBlock())
100     return false;
101 
102   // Don't try to peel loops where the latch is not the exiting block.
103   // This can be an indication of two different things:
104   // 1) The loop is not rotated.
105   // 2) The loop contains irreducible control flow that involves the latch.
106   if (L->getLoopLatch() != L->getExitingBlock())
107     return false;
108 
109   return true;
110 }
111 
112 // This function calculates the number of iterations after which the given Phi
113 // becomes an invariant. The pre-calculated values are memorized in the map. The
114 // function (shortcut is I) is calculated according to the following definition:
115 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
116 //   If %y is a loop invariant, then I(%x) = 1.
117 //   If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
118 //   Otherwise, I(%x) is infinite.
119 // TODO: Actually if %y is an expression that depends only on Phi %z and some
120 //       loop invariants, we can estimate I(%x) = I(%z) + 1. The example
121 //       looks like:
122 //         %x = phi(0, %a),  <-- becomes invariant starting from 3rd iteration.
123 //         %y = phi(0, 5),
124 //         %a = %y + 1.
calculateIterationsToInvariance(PHINode * Phi,Loop * L,BasicBlock * BackEdge,SmallDenseMap<PHINode *,unsigned> & IterationsToInvariance)125 static unsigned calculateIterationsToInvariance(
126     PHINode *Phi, Loop *L, BasicBlock *BackEdge,
127     SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) {
128   assert(Phi->getParent() == L->getHeader() &&
129          "Non-loop Phi should not be checked for turning into invariant.");
130   assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
131   // If we already know the answer, take it from the map.
132   auto I = IterationsToInvariance.find(Phi);
133   if (I != IterationsToInvariance.end())
134     return I->second;
135 
136   // Otherwise we need to analyze the input from the back edge.
137   Value *Input = Phi->getIncomingValueForBlock(BackEdge);
138   // Place infinity to map to avoid infinite recursion for cycled Phis. Such
139   // cycles can never stop on an invariant.
140   IterationsToInvariance[Phi] = InfiniteIterationsToInvariance;
141   unsigned ToInvariance = InfiniteIterationsToInvariance;
142 
143   if (L->isLoopInvariant(Input))
144     ToInvariance = 1u;
145   else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
146     // Only consider Phis in header block.
147     if (IncPhi->getParent() != L->getHeader())
148       return InfiniteIterationsToInvariance;
149     // If the input becomes an invariant after X iterations, then our Phi
150     // becomes an invariant after X + 1 iterations.
151     unsigned InputToInvariance = calculateIterationsToInvariance(
152         IncPhi, L, BackEdge, IterationsToInvariance);
153     if (InputToInvariance != InfiniteIterationsToInvariance)
154       ToInvariance = InputToInvariance + 1u;
155   }
156 
157   // If we found that this Phi lies in an invariant chain, update the map.
158   if (ToInvariance != InfiniteIterationsToInvariance)
159     IterationsToInvariance[Phi] = ToInvariance;
160   return ToInvariance;
161 }
162 
163 // Return the number of iterations to peel off that make conditions in the
164 // body true/false. For example, if we peel 2 iterations off the loop below,
165 // the condition i < 2 can be evaluated at compile time.
166 //  for (i = 0; i < n; i++)
167 //    if (i < 2)
168 //      ..
169 //    else
170 //      ..
171 //   }
countToEliminateCompares(Loop & L,unsigned MaxPeelCount,ScalarEvolution & SE)172 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
173                                          ScalarEvolution &SE) {
174   assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
175   unsigned DesiredPeelCount = 0;
176 
177   for (auto *BB : L.blocks()) {
178     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
179     if (!BI || BI->isUnconditional())
180       continue;
181 
182     // Ignore loop exit condition.
183     if (L.getLoopLatch() == BB)
184       continue;
185 
186     Value *Condition = BI->getCondition();
187     Value *LeftVal, *RightVal;
188     CmpInst::Predicate Pred;
189     if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
190       continue;
191 
192     const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
193     const SCEV *RightSCEV = SE.getSCEV(RightVal);
194 
195     // Do not consider predicates that are known to be true or false
196     // independently of the loop iteration.
197     if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) ||
198         SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV,
199                             RightSCEV))
200       continue;
201 
202     // Check if we have a condition with one AddRec and one non AddRec
203     // expression. Normalize LeftSCEV to be the AddRec.
204     if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
205       if (isa<SCEVAddRecExpr>(RightSCEV)) {
206         std::swap(LeftSCEV, RightSCEV);
207         Pred = ICmpInst::getSwappedPredicate(Pred);
208       } else
209         continue;
210     }
211 
212     const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
213 
214     // Avoid huge SCEV computations in the loop below, make sure we only
215     // consider AddRecs of the loop we are trying to peel.
216     if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
217       continue;
218     bool Increasing;
219     if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
220         !SE.isMonotonicPredicate(LeftAR, Pred, Increasing))
221       continue;
222     (void)Increasing;
223 
224     // Check if extending the current DesiredPeelCount lets us evaluate Pred
225     // or !Pred in the loop body statically.
226     unsigned NewPeelCount = DesiredPeelCount;
227 
228     const SCEV *IterVal = LeftAR->evaluateAtIteration(
229         SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
230 
231     // If the original condition is not known, get the negated predicate
232     // (which holds on the else branch) and check if it is known. This allows
233     // us to peel of iterations that make the original condition false.
234     if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
235       Pred = ICmpInst::getInversePredicate(Pred);
236 
237     const SCEV *Step = LeftAR->getStepRecurrence(SE);
238     const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
239     auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
240                                  &NewPeelCount]() {
241       IterVal = NextIterVal;
242       NextIterVal = SE.getAddExpr(IterVal, Step);
243       NewPeelCount++;
244     };
245 
246     auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
247       return NewPeelCount < MaxPeelCount;
248     };
249 
250     while (CanPeelOneMoreIteration() &&
251            SE.isKnownPredicate(Pred, IterVal, RightSCEV))
252       PeelOneMoreIteration();
253 
254     // With *that* peel count, does the predicate !Pred become known in the
255     // first iteration of the loop body after peeling?
256     if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
257                              RightSCEV))
258       continue; // If not, give up.
259 
260     // However, for equality comparisons, that isn't always sufficient to
261     // eliminate the comparsion in loop body, we may need to peel one more
262     // iteration. See if that makes !Pred become unknown again.
263     if (ICmpInst::isEquality(Pred) &&
264         !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
265                              RightSCEV) &&
266         !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
267         SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
268       if (!CanPeelOneMoreIteration())
269         continue; // Need to peel one more iteration, but can't. Give up.
270       PeelOneMoreIteration(); // Great!
271     }
272 
273     DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
274   }
275 
276   return DesiredPeelCount;
277 }
278 
279 // Return the number of iterations we want to peel off.
computePeelCount(Loop * L,unsigned LoopSize,TargetTransformInfo::UnrollingPreferences & UP,TargetTransformInfo::PeelingPreferences & PP,unsigned & TripCount,ScalarEvolution & SE)280 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
281                             TargetTransformInfo::UnrollingPreferences &UP,
282                             TargetTransformInfo::PeelingPreferences &PP,
283                             unsigned &TripCount, ScalarEvolution &SE) {
284   assert(LoopSize > 0 && "Zero loop size is not allowed!");
285   // Save the PP.PeelCount value set by the target in
286   // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
287   unsigned TargetPeelCount = PP.PeelCount;
288   PP.PeelCount = 0;
289   if (!canPeel(L))
290     return;
291 
292   // Only try to peel innermost loops by default.
293   // The constraint can be relaxed by the target in TTI.getUnrollingPreferences
294   // or by the flag -unroll-allow-loop-nests-peeling.
295   if (!PP.AllowLoopNestsPeeling && !L->empty())
296     return;
297 
298   // If the user provided a peel count, use that.
299   bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
300   if (UserPeelCount) {
301     LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
302                       << " iterations.\n");
303     PP.PeelCount = UnrollForcePeelCount;
304     PP.PeelProfiledIterations = true;
305     return;
306   }
307 
308   // Skip peeling if it's disabled.
309   if (!PP.AllowPeeling)
310     return;
311 
312   unsigned AlreadyPeeled = 0;
313   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
314     AlreadyPeeled = *Peeled;
315   // Stop if we already peeled off the maximum number of iterations.
316   if (AlreadyPeeled >= UnrollPeelMaxCount)
317     return;
318 
319   // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
320   // iterations of the loop. For this we compute the number for iterations after
321   // which every Phi is guaranteed to become an invariant, and try to peel the
322   // maximum number of iterations among these values, thus turning all those
323   // Phis into invariants.
324   // First, check that we can peel at least one iteration.
325   if (2 * LoopSize <= UP.Threshold && UnrollPeelMaxCount > 0) {
326     // Store the pre-calculated values here.
327     SmallDenseMap<PHINode *, unsigned> IterationsToInvariance;
328     // Now go through all Phis to calculate their the number of iterations they
329     // need to become invariants.
330     // Start the max computation with the UP.PeelCount value set by the target
331     // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
332     unsigned DesiredPeelCount = TargetPeelCount;
333     BasicBlock *BackEdge = L->getLoopLatch();
334     assert(BackEdge && "Loop is not in simplified form?");
335     for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
336       PHINode *Phi = cast<PHINode>(&*BI);
337       unsigned ToInvariance = calculateIterationsToInvariance(
338           Phi, L, BackEdge, IterationsToInvariance);
339       if (ToInvariance != InfiniteIterationsToInvariance)
340         DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance);
341     }
342 
343     // Pay respect to limitations implied by loop size and the max peel count.
344     unsigned MaxPeelCount = UnrollPeelMaxCount;
345     MaxPeelCount = std::min(MaxPeelCount, UP.Threshold / LoopSize - 1);
346 
347     DesiredPeelCount = std::max(DesiredPeelCount,
348                                 countToEliminateCompares(*L, MaxPeelCount, SE));
349 
350     if (DesiredPeelCount > 0) {
351       DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
352       // Consider max peel count limitation.
353       assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
354       if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
355         LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
356                           << " iteration(s) to turn"
357                           << " some Phis into invariants.\n");
358         PP.PeelCount = DesiredPeelCount;
359         PP.PeelProfiledIterations = false;
360         return;
361       }
362     }
363   }
364 
365   // Bail if we know the statically calculated trip count.
366   // In this case we rather prefer partial unrolling.
367   if (TripCount)
368     return;
369 
370   // Do not apply profile base peeling if it is disabled.
371   if (!PP.PeelProfiledIterations)
372     return;
373   // If we don't know the trip count, but have reason to believe the average
374   // trip count is low, peeling should be beneficial, since we will usually
375   // hit the peeled section.
376   // We only do this in the presence of profile information, since otherwise
377   // our estimates of the trip count are not reliable enough.
378   if (L->getHeader()->getParent()->hasProfileData()) {
379     Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
380     if (!PeelCount)
381       return;
382 
383     LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
384                       << "\n");
385 
386     if (*PeelCount) {
387       if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) &&
388           (LoopSize * (*PeelCount + 1) <= UP.Threshold)) {
389         LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount
390                           << " iterations.\n");
391         PP.PeelCount = *PeelCount;
392         return;
393       }
394       LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
395       LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
396       LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
397       LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1)
398                         << "\n");
399       LLVM_DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n");
400     }
401   }
402 }
403 
404 /// Update the branch weights of the latch of a peeled-off loop
405 /// iteration.
406 /// This sets the branch weights for the latch of the recently peeled off loop
407 /// iteration correctly.
408 /// Let F is a weight of the edge from latch to header.
409 /// Let E is a weight of the edge from latch to exit.
410 /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
411 /// go to exit.
412 /// Then, Estimated TripCount = F / E.
413 /// For I-th (counting from 0) peeled off iteration we set the the weights for
414 /// the peeled latch as (TC - I, 1). It gives us reasonable distribution,
415 /// The probability to go to exit 1/(TC-I) increases. At the same time
416 /// the estimated trip count of remaining loop reduces by I.
417 /// To avoid dealing with division rounding we can just multiple both part
418 /// of weights to E and use weight as (F - I * E, E).
419 ///
420 /// \param Header The copy of the header block that belongs to next iteration.
421 /// \param LatchBR The copy of the latch branch that belongs to this iteration.
422 /// \param[in,out] FallThroughWeight The weight of the edge from latch to
423 /// header before peeling (in) and after peeled off one iteration (out).
updateBranchWeights(BasicBlock * Header,BranchInst * LatchBR,uint64_t ExitWeight,uint64_t & FallThroughWeight)424 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
425                                 uint64_t ExitWeight,
426                                 uint64_t &FallThroughWeight) {
427   // FallThroughWeight is 0 means that there is no branch weights on original
428   // latch block or estimated trip count is zero.
429   if (!FallThroughWeight)
430     return;
431 
432   unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
433   MDBuilder MDB(LatchBR->getContext());
434   MDNode *WeightNode =
435       HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
436                 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
437   LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
438   FallThroughWeight =
439       FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1;
440 }
441 
442 /// Initialize the weights.
443 ///
444 /// \param Header The header block.
445 /// \param LatchBR The latch branch.
446 /// \param[out] ExitWeight The weight of the edge from Latch to Exit.
447 /// \param[out] FallThroughWeight The weight of the edge from Latch to Header.
initBranchWeights(BasicBlock * Header,BranchInst * LatchBR,uint64_t & ExitWeight,uint64_t & FallThroughWeight)448 static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
449                               uint64_t &ExitWeight,
450                               uint64_t &FallThroughWeight) {
451   uint64_t TrueWeight, FalseWeight;
452   if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
453     return;
454   unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
455   ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
456   FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight;
457 }
458 
459 /// Update the weights of original Latch block after peeling off all iterations.
460 ///
461 /// \param Header The header block.
462 /// \param LatchBR The latch branch.
463 /// \param ExitWeight The weight of the edge from Latch to Exit.
464 /// \param FallThroughWeight The weight of the edge from Latch to Header.
fixupBranchWeights(BasicBlock * Header,BranchInst * LatchBR,uint64_t ExitWeight,uint64_t FallThroughWeight)465 static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
466                                uint64_t ExitWeight,
467                                uint64_t FallThroughWeight) {
468   // FallThroughWeight is 0 means that there is no branch weights on original
469   // latch block or estimated trip count is zero.
470   if (!FallThroughWeight)
471     return;
472 
473   // Sets the branch weights on the loop exit.
474   MDBuilder MDB(LatchBR->getContext());
475   unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
476   MDNode *WeightNode =
477       HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
478                 : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
479   LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
480 }
481 
482 /// Clones the body of the loop L, putting it between \p InsertTop and \p
483 /// InsertBot.
484 /// \param IterNumber The serial number of the iteration currently being
485 /// peeled off.
486 /// \param ExitEdges The exit edges of the original loop.
487 /// \param[out] NewBlocks A list of the blocks in the newly created clone
488 /// \param[out] VMap The value map between the loop and the new clone.
489 /// \param LoopBlocks A helper for DFS-traversal of the loop.
490 /// \param LVMap A value-map that maps instructions from the original loop to
491 /// instructions in the last peeled-off iteration.
cloneLoopBlocks(Loop * L,unsigned IterNumber,BasicBlock * InsertTop,BasicBlock * InsertBot,SmallVectorImpl<std::pair<BasicBlock *,BasicBlock * >> & ExitEdges,SmallVectorImpl<BasicBlock * > & NewBlocks,LoopBlocksDFS & LoopBlocks,ValueToValueMapTy & VMap,ValueToValueMapTy & LVMap,DominatorTree * DT,LoopInfo * LI)492 static void cloneLoopBlocks(
493     Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
494     SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *> > &ExitEdges,
495     SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
496     ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
497     LoopInfo *LI) {
498   BasicBlock *Header = L->getHeader();
499   BasicBlock *Latch = L->getLoopLatch();
500   BasicBlock *PreHeader = L->getLoopPreheader();
501 
502   Function *F = Header->getParent();
503   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
504   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
505   Loop *ParentLoop = L->getParentLoop();
506 
507   // For each block in the original loop, create a new copy,
508   // and update the value map with the newly created values.
509   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
510     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
511     NewBlocks.push_back(NewBB);
512 
513     // If an original block is an immediate child of the loop L, its copy
514     // is a child of a ParentLoop after peeling. If a block is a child of
515     // a nested loop, it is handled in the cloneLoop() call below.
516     if (ParentLoop && LI->getLoopFor(*BB) == L)
517       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
518 
519     VMap[*BB] = NewBB;
520 
521     // If dominator tree is available, insert nodes to represent cloned blocks.
522     if (DT) {
523       if (Header == *BB)
524         DT->addNewBlock(NewBB, InsertTop);
525       else {
526         DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
527         // VMap must contain entry for IDom, as the iteration order is RPO.
528         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
529       }
530     }
531   }
532 
533   // Recursively create the new Loop objects for nested loops, if any,
534   // to preserve LoopInfo.
535   for (Loop *ChildLoop : *L) {
536     cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
537   }
538 
539   // Hook-up the control flow for the newly inserted blocks.
540   // The new header is hooked up directly to the "top", which is either
541   // the original loop preheader (for the first iteration) or the previous
542   // iteration's exiting block (for every other iteration)
543   InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
544 
545   // Similarly, for the latch:
546   // The original exiting edge is still hooked up to the loop exit.
547   // The backedge now goes to the "bottom", which is either the loop's real
548   // header (for the last peeled iteration) or the copied header of the next
549   // iteration (for every other iteration)
550   BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
551   BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
552   for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx)
553     if (LatchBR->getSuccessor(idx) == Header) {
554       LatchBR->setSuccessor(idx, InsertBot);
555       break;
556     }
557   if (DT)
558     DT->changeImmediateDominator(InsertBot, NewLatch);
559 
560   // The new copy of the loop body starts with a bunch of PHI nodes
561   // that pick an incoming value from either the preheader, or the previous
562   // loop iteration. Since this copy is no longer part of the loop, we
563   // resolve this statically:
564   // For the first iteration, we use the value from the preheader directly.
565   // For any other iteration, we replace the phi with the value generated by
566   // the immediately preceding clone of the loop body (which represents
567   // the previous iteration).
568   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
569     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
570     if (IterNumber == 0) {
571       VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
572     } else {
573       Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
574       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
575       if (LatchInst && L->contains(LatchInst))
576         VMap[&*I] = LVMap[LatchInst];
577       else
578         VMap[&*I] = LatchVal;
579     }
580     cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
581   }
582 
583   // Fix up the outgoing values - we need to add a value for the iteration
584   // we've just created. Note that this must happen *after* the incoming
585   // values are adjusted, since the value going out of the latch may also be
586   // a value coming into the header.
587   for (auto Edge : ExitEdges)
588     for (PHINode &PHI : Edge.second->phis()) {
589       Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
590       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
591       if (LatchInst && L->contains(LatchInst))
592         LatchVal = VMap[LatchVal];
593       PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
594     }
595 
596   // LastValueMap is updated with the values for the current loop
597   // which are used the next time this function is called.
598   for (auto KV : VMap)
599     LVMap[KV.first] = KV.second;
600 }
601 
602 /// Peel off the first \p PeelCount iterations of loop \p L.
603 ///
604 /// Note that this does not peel them off as a single straight-line block.
605 /// Rather, each iteration is peeled off separately, and needs to check the
606 /// exit condition.
607 /// For loops that dynamically execute \p PeelCount iterations or less
608 /// this provides a benefit, since the peeled off iterations, which account
609 /// for the bulk of dynamic execution, can be further simplified by scalar
610 /// optimizations.
peelLoop(Loop * L,unsigned PeelCount,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,bool PreserveLCSSA)611 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
612                     ScalarEvolution *SE, DominatorTree *DT,
613                     AssumptionCache *AC, bool PreserveLCSSA) {
614   assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
615   assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
616 
617   LoopBlocksDFS LoopBlocks(L);
618   LoopBlocks.perform(LI);
619 
620   BasicBlock *Header = L->getHeader();
621   BasicBlock *PreHeader = L->getLoopPreheader();
622   BasicBlock *Latch = L->getLoopLatch();
623   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
624   L->getExitEdges(ExitEdges);
625 
626   DenseMap<BasicBlock *, BasicBlock *> ExitIDom;
627   if (DT) {
628     // We'd like to determine the idom of exit block after peeling one
629     // iteration.
630     // Let Exit is exit block.
631     // Let ExitingSet - is a set of predecessors of Exit block. They are exiting
632     // blocks.
633     // Let Latch' and ExitingSet' are copies after a peeling.
634     // We'd like to find an idom'(Exit) - idom of Exit after peeling.
635     // It is an evident that idom'(Exit) will be the nearest common dominator
636     // of ExitingSet and ExitingSet'.
637     // idom(Exit) is a nearest common dominator of ExitingSet.
638     // idom(Exit)' is a nearest common dominator of ExitingSet'.
639     // Taking into account that we have a single Latch, Latch' will dominate
640     // Header and idom(Exit).
641     // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
642     // All these basic blocks are in the same loop, so what we find is
643     // (nearest common dominator of idom(Exit) and Latch)'.
644     // In the loop below we remember nearest common dominator of idom(Exit) and
645     // Latch to update idom of Exit later.
646     assert(L->hasDedicatedExits() && "No dedicated exits?");
647     for (auto Edge : ExitEdges) {
648       if (ExitIDom.count(Edge.second))
649         continue;
650       BasicBlock *BB = DT->findNearestCommonDominator(
651           DT->getNode(Edge.second)->getIDom()->getBlock(), Latch);
652       assert(L->contains(BB) && "IDom is not in a loop");
653       ExitIDom[Edge.second] = BB;
654     }
655   }
656 
657   Function *F = Header->getParent();
658 
659   // Set up all the necessary basic blocks. It is convenient to split the
660   // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
661   // body, and a new preheader for the "real" loop.
662 
663   // Peeling the first iteration transforms.
664   //
665   // PreHeader:
666   // ...
667   // Header:
668   //   LoopBody
669   //   If (cond) goto Header
670   // Exit:
671   //
672   // into
673   //
674   // InsertTop:
675   //   LoopBody
676   //   If (!cond) goto Exit
677   // InsertBot:
678   // NewPreHeader:
679   // ...
680   // Header:
681   //  LoopBody
682   //  If (cond) goto Header
683   // Exit:
684   //
685   // Each following iteration will split the current bottom anchor in two,
686   // and put the new copy of the loop body between these two blocks. That is,
687   // after peeling another iteration from the example above, we'll split
688   // InsertBot, and get:
689   //
690   // InsertTop:
691   //   LoopBody
692   //   If (!cond) goto Exit
693   // InsertBot:
694   //   LoopBody
695   //   If (!cond) goto Exit
696   // InsertBot.next:
697   // NewPreHeader:
698   // ...
699   // Header:
700   //  LoopBody
701   //  If (cond) goto Header
702   // Exit:
703 
704   BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI);
705   BasicBlock *InsertBot =
706       SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI);
707   BasicBlock *NewPreHeader =
708       SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
709 
710   InsertTop->setName(Header->getName() + ".peel.begin");
711   InsertBot->setName(Header->getName() + ".peel.next");
712   NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
713 
714   ValueToValueMapTy LVMap;
715 
716   // If we have branch weight information, we'll want to update it for the
717   // newly created branches.
718   BranchInst *LatchBR =
719       cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
720   uint64_t ExitWeight = 0, FallThroughWeight = 0;
721   initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
722 
723   // For each peeled-off iteration, make a copy of the loop.
724   for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
725     SmallVector<BasicBlock *, 8> NewBlocks;
726     ValueToValueMapTy VMap;
727 
728     cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
729                     LoopBlocks, VMap, LVMap, DT, LI);
730 
731     // Remap to use values from the current iteration instead of the
732     // previous one.
733     remapInstructionsInBlocks(NewBlocks, VMap);
734 
735     if (DT) {
736       // Latches of the cloned loops dominate over the loop exit, so idom of the
737       // latter is the first cloned loop body, as original PreHeader dominates
738       // the original loop body.
739       if (Iter == 0)
740         for (auto Exit : ExitIDom)
741           DT->changeImmediateDominator(Exit.first,
742                                        cast<BasicBlock>(LVMap[Exit.second]));
743 #ifdef EXPENSIVE_CHECKS
744       assert(DT->verify(DominatorTree::VerificationLevel::Fast));
745 #endif
746     }
747 
748     auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]);
749     updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight);
750     // Remove Loop metadata from the latch branch instruction
751     // because it is not the Loop's latch branch anymore.
752     LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr);
753 
754     InsertTop = InsertBot;
755     InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
756     InsertBot->setName(Header->getName() + ".peel.next");
757 
758     F->getBasicBlockList().splice(InsertTop->getIterator(),
759                                   F->getBasicBlockList(),
760                                   NewBlocks[0]->getIterator(), F->end());
761   }
762 
763   // Now adjust the phi nodes in the loop header to get their initial values
764   // from the last peeled-off iteration instead of the preheader.
765   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
766     PHINode *PHI = cast<PHINode>(I);
767     Value *NewVal = PHI->getIncomingValueForBlock(Latch);
768     Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
769     if (LatchInst && L->contains(LatchInst))
770       NewVal = LVMap[LatchInst];
771 
772     PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
773   }
774 
775   fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
776 
777   // Update Metadata for count of peeled off iterations.
778   unsigned AlreadyPeeled = 0;
779   if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
780     AlreadyPeeled = *Peeled;
781   addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
782 
783   if (Loop *ParentLoop = L->getParentLoop())
784     L = ParentLoop;
785 
786   // We modified the loop, update SE.
787   SE->forgetTopmostLoop(L);
788 
789   // Finally DomtTree must be correct.
790   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
791 
792   // FIXME: Incrementally update loop-simplify
793   simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA);
794 
795   NumPeeled++;
796 
797   return true;
798 }
799