1 //===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for OpenMP runtime code generation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGOpenMPRuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/OpenMPClause.h"
21 #include "clang/AST/StmtOpenMP.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/BitmaskEnum.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/OpenMPKinds.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/CodeGen/ConstantInitBuilder.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Bitcode/BitcodeReader.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Format.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <cassert>
40 #include <numeric>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 using namespace llvm::omp;
45 
46 namespace {
47 /// Base class for handling code generation inside OpenMP regions.
48 class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
49 public:
50   /// Kinds of OpenMP regions used in codegen.
51   enum CGOpenMPRegionKind {
52     /// Region with outlined function for standalone 'parallel'
53     /// directive.
54     ParallelOutlinedRegion,
55     /// Region with outlined function for standalone 'task' directive.
56     TaskOutlinedRegion,
57     /// Region for constructs that do not require function outlining,
58     /// like 'for', 'sections', 'atomic' etc. directives.
59     InlinedRegion,
60     /// Region with outlined function for standalone 'target' directive.
61     TargetRegion,
62   };
63 
CGOpenMPRegionInfo(const CapturedStmt & CS,const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)64   CGOpenMPRegionInfo(const CapturedStmt &CS,
65                      const CGOpenMPRegionKind RegionKind,
66                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
67                      bool HasCancel)
68       : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
69         CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
70 
CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)71   CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
72                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
73                      bool HasCancel)
74       : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
75         Kind(Kind), HasCancel(HasCancel) {}
76 
77   /// Get a variable or parameter for storing global thread id
78   /// inside OpenMP construct.
79   virtual const VarDecl *getThreadIDVariable() const = 0;
80 
81   /// Emit the captured statement body.
82   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
83 
84   /// Get an LValue for the current ThreadID variable.
85   /// \return LValue for thread id variable. This LValue always has type int32*.
86   virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
87 
emitUntiedSwitch(CodeGenFunction &)88   virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
89 
getRegionKind() const90   CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
91 
getDirectiveKind() const92   OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
93 
hasCancel() const94   bool hasCancel() const { return HasCancel; }
95 
classof(const CGCapturedStmtInfo * Info)96   static bool classof(const CGCapturedStmtInfo *Info) {
97     return Info->getKind() == CR_OpenMP;
98   }
99 
100   ~CGOpenMPRegionInfo() override = default;
101 
102 protected:
103   CGOpenMPRegionKind RegionKind;
104   RegionCodeGenTy CodeGen;
105   OpenMPDirectiveKind Kind;
106   bool HasCancel;
107 };
108 
109 /// API for captured statement code generation in OpenMP constructs.
110 class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
111 public:
CGOpenMPOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,StringRef HelperName)112   CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
113                              const RegionCodeGenTy &CodeGen,
114                              OpenMPDirectiveKind Kind, bool HasCancel,
115                              StringRef HelperName)
116       : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
117                            HasCancel),
118         ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
119     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
120   }
121 
122   /// Get a variable or parameter for storing global thread id
123   /// inside OpenMP construct.
getThreadIDVariable() const124   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
125 
126   /// Get the name of the capture helper.
getHelperName() const127   StringRef getHelperName() const override { return HelperName; }
128 
classof(const CGCapturedStmtInfo * Info)129   static bool classof(const CGCapturedStmtInfo *Info) {
130     return CGOpenMPRegionInfo::classof(Info) &&
131            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
132                ParallelOutlinedRegion;
133   }
134 
135 private:
136   /// A variable or parameter storing global thread id for OpenMP
137   /// constructs.
138   const VarDecl *ThreadIDVar;
139   StringRef HelperName;
140 };
141 
142 /// API for captured statement code generation in OpenMP constructs.
143 class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
144 public:
145   class UntiedTaskActionTy final : public PrePostActionTy {
146     bool Untied;
147     const VarDecl *PartIDVar;
148     const RegionCodeGenTy UntiedCodeGen;
149     llvm::SwitchInst *UntiedSwitch = nullptr;
150 
151   public:
UntiedTaskActionTy(bool Tied,const VarDecl * PartIDVar,const RegionCodeGenTy & UntiedCodeGen)152     UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
153                        const RegionCodeGenTy &UntiedCodeGen)
154         : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
Enter(CodeGenFunction & CGF)155     void Enter(CodeGenFunction &CGF) override {
156       if (Untied) {
157         // Emit task switching point.
158         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
159             CGF.GetAddrOfLocalVar(PartIDVar),
160             PartIDVar->getType()->castAs<PointerType>());
161         llvm::Value *Res =
162             CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation());
163         llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done.");
164         UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
165         CGF.EmitBlock(DoneBB);
166         CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
167         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
168         UntiedSwitch->addCase(CGF.Builder.getInt32(0),
169                               CGF.Builder.GetInsertBlock());
170         emitUntiedSwitch(CGF);
171       }
172     }
emitUntiedSwitch(CodeGenFunction & CGF) const173     void emitUntiedSwitch(CodeGenFunction &CGF) const {
174       if (Untied) {
175         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
176             CGF.GetAddrOfLocalVar(PartIDVar),
177             PartIDVar->getType()->castAs<PointerType>());
178         CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
179                               PartIdLVal);
180         UntiedCodeGen(CGF);
181         CodeGenFunction::JumpDest CurPoint =
182             CGF.getJumpDestInCurrentScope(".untied.next.");
183         CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
184         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
185         UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
186                               CGF.Builder.GetInsertBlock());
187         CGF.EmitBranchThroughCleanup(CurPoint);
188         CGF.EmitBlock(CurPoint.getBlock());
189       }
190     }
getNumberOfParts() const191     unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
192   };
CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,const UntiedTaskActionTy & Action)193   CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
194                                  const VarDecl *ThreadIDVar,
195                                  const RegionCodeGenTy &CodeGen,
196                                  OpenMPDirectiveKind Kind, bool HasCancel,
197                                  const UntiedTaskActionTy &Action)
198       : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
199         ThreadIDVar(ThreadIDVar), Action(Action) {
200     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
201   }
202 
203   /// Get a variable or parameter for storing global thread id
204   /// inside OpenMP construct.
getThreadIDVariable() const205   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
206 
207   /// Get an LValue for the current ThreadID variable.
208   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
209 
210   /// Get the name of the capture helper.
getHelperName() const211   StringRef getHelperName() const override { return ".omp_outlined."; }
212 
emitUntiedSwitch(CodeGenFunction & CGF)213   void emitUntiedSwitch(CodeGenFunction &CGF) override {
214     Action.emitUntiedSwitch(CGF);
215   }
216 
classof(const CGCapturedStmtInfo * Info)217   static bool classof(const CGCapturedStmtInfo *Info) {
218     return CGOpenMPRegionInfo::classof(Info) &&
219            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
220                TaskOutlinedRegion;
221   }
222 
223 private:
224   /// A variable or parameter storing global thread id for OpenMP
225   /// constructs.
226   const VarDecl *ThreadIDVar;
227   /// Action for emitting code for untied tasks.
228   const UntiedTaskActionTy &Action;
229 };
230 
231 /// API for inlined captured statement code generation in OpenMP
232 /// constructs.
233 class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
234 public:
CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo * OldCSI,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)235   CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
236                             const RegionCodeGenTy &CodeGen,
237                             OpenMPDirectiveKind Kind, bool HasCancel)
238       : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
239         OldCSI(OldCSI),
240         OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
241 
242   // Retrieve the value of the context parameter.
getContextValue() const243   llvm::Value *getContextValue() const override {
244     if (OuterRegionInfo)
245       return OuterRegionInfo->getContextValue();
246     llvm_unreachable("No context value for inlined OpenMP region");
247   }
248 
setContextValue(llvm::Value * V)249   void setContextValue(llvm::Value *V) override {
250     if (OuterRegionInfo) {
251       OuterRegionInfo->setContextValue(V);
252       return;
253     }
254     llvm_unreachable("No context value for inlined OpenMP region");
255   }
256 
257   /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const258   const FieldDecl *lookup(const VarDecl *VD) const override {
259     if (OuterRegionInfo)
260       return OuterRegionInfo->lookup(VD);
261     // If there is no outer outlined region,no need to lookup in a list of
262     // captured variables, we can use the original one.
263     return nullptr;
264   }
265 
getThisFieldDecl() const266   FieldDecl *getThisFieldDecl() const override {
267     if (OuterRegionInfo)
268       return OuterRegionInfo->getThisFieldDecl();
269     return nullptr;
270   }
271 
272   /// Get a variable or parameter for storing global thread id
273   /// inside OpenMP construct.
getThreadIDVariable() const274   const VarDecl *getThreadIDVariable() const override {
275     if (OuterRegionInfo)
276       return OuterRegionInfo->getThreadIDVariable();
277     return nullptr;
278   }
279 
280   /// Get an LValue for the current ThreadID variable.
getThreadIDVariableLValue(CodeGenFunction & CGF)281   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override {
282     if (OuterRegionInfo)
283       return OuterRegionInfo->getThreadIDVariableLValue(CGF);
284     llvm_unreachable("No LValue for inlined OpenMP construct");
285   }
286 
287   /// Get the name of the capture helper.
getHelperName() const288   StringRef getHelperName() const override {
289     if (auto *OuterRegionInfo = getOldCSI())
290       return OuterRegionInfo->getHelperName();
291     llvm_unreachable("No helper name for inlined OpenMP construct");
292   }
293 
emitUntiedSwitch(CodeGenFunction & CGF)294   void emitUntiedSwitch(CodeGenFunction &CGF) override {
295     if (OuterRegionInfo)
296       OuterRegionInfo->emitUntiedSwitch(CGF);
297   }
298 
getOldCSI() const299   CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
300 
classof(const CGCapturedStmtInfo * Info)301   static bool classof(const CGCapturedStmtInfo *Info) {
302     return CGOpenMPRegionInfo::classof(Info) &&
303            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
304   }
305 
306   ~CGOpenMPInlinedRegionInfo() override = default;
307 
308 private:
309   /// CodeGen info about outer OpenMP region.
310   CodeGenFunction::CGCapturedStmtInfo *OldCSI;
311   CGOpenMPRegionInfo *OuterRegionInfo;
312 };
313 
314 /// API for captured statement code generation in OpenMP target
315 /// constructs. For this captures, implicit parameters are used instead of the
316 /// captured fields. The name of the target region has to be unique in a given
317 /// application so it is provided by the client, because only the client has
318 /// the information to generate that.
319 class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
320 public:
CGOpenMPTargetRegionInfo(const CapturedStmt & CS,const RegionCodeGenTy & CodeGen,StringRef HelperName)321   CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
322                            const RegionCodeGenTy &CodeGen, StringRef HelperName)
323       : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
324                            /*HasCancel=*/false),
325         HelperName(HelperName) {}
326 
327   /// This is unused for target regions because each starts executing
328   /// with a single thread.
getThreadIDVariable() const329   const VarDecl *getThreadIDVariable() const override { return nullptr; }
330 
331   /// Get the name of the capture helper.
getHelperName() const332   StringRef getHelperName() const override { return HelperName; }
333 
classof(const CGCapturedStmtInfo * Info)334   static bool classof(const CGCapturedStmtInfo *Info) {
335     return CGOpenMPRegionInfo::classof(Info) &&
336            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
337   }
338 
339 private:
340   StringRef HelperName;
341 };
342 
EmptyCodeGen(CodeGenFunction &,PrePostActionTy &)343 static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
344   llvm_unreachable("No codegen for expressions");
345 }
346 /// API for generation of expressions captured in a innermost OpenMP
347 /// region.
348 class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
349 public:
CGOpenMPInnerExprInfo(CodeGenFunction & CGF,const CapturedStmt & CS)350   CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
351       : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
352                                   OMPD_unknown,
353                                   /*HasCancel=*/false),
354         PrivScope(CGF) {
355     // Make sure the globals captured in the provided statement are local by
356     // using the privatization logic. We assume the same variable is not
357     // captured more than once.
358     for (const auto &C : CS.captures()) {
359       if (!C.capturesVariable() && !C.capturesVariableByCopy())
360         continue;
361 
362       const VarDecl *VD = C.getCapturedVar();
363       if (VD->isLocalVarDeclOrParm())
364         continue;
365 
366       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
367                       /*RefersToEnclosingVariableOrCapture=*/false,
368                       VD->getType().getNonReferenceType(), VK_LValue,
369                       C.getLocation());
370       PrivScope.addPrivate(
371           VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(CGF); });
372     }
373     (void)PrivScope.Privatize();
374   }
375 
376   /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const377   const FieldDecl *lookup(const VarDecl *VD) const override {
378     if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
379       return FD;
380     return nullptr;
381   }
382 
383   /// Emit the captured statement body.
EmitBody(CodeGenFunction & CGF,const Stmt * S)384   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
385     llvm_unreachable("No body for expressions");
386   }
387 
388   /// Get a variable or parameter for storing global thread id
389   /// inside OpenMP construct.
getThreadIDVariable() const390   const VarDecl *getThreadIDVariable() const override {
391     llvm_unreachable("No thread id for expressions");
392   }
393 
394   /// Get the name of the capture helper.
getHelperName() const395   StringRef getHelperName() const override {
396     llvm_unreachable("No helper name for expressions");
397   }
398 
classof(const CGCapturedStmtInfo * Info)399   static bool classof(const CGCapturedStmtInfo *Info) { return false; }
400 
401 private:
402   /// Private scope to capture global variables.
403   CodeGenFunction::OMPPrivateScope PrivScope;
404 };
405 
406 /// RAII for emitting code of OpenMP constructs.
407 class InlinedOpenMPRegionRAII {
408   CodeGenFunction &CGF;
409   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
410   FieldDecl *LambdaThisCaptureField = nullptr;
411   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
412 
413 public:
414   /// Constructs region for combined constructs.
415   /// \param CodeGen Code generation sequence for combined directives. Includes
416   /// a list of functions used for code generation of implicitly inlined
417   /// regions.
InlinedOpenMPRegionRAII(CodeGenFunction & CGF,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)418   InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
419                           OpenMPDirectiveKind Kind, bool HasCancel)
420       : CGF(CGF) {
421     // Start emission for the construct.
422     CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
423         CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
424     std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
425     LambdaThisCaptureField = CGF.LambdaThisCaptureField;
426     CGF.LambdaThisCaptureField = nullptr;
427     BlockInfo = CGF.BlockInfo;
428     CGF.BlockInfo = nullptr;
429   }
430 
~InlinedOpenMPRegionRAII()431   ~InlinedOpenMPRegionRAII() {
432     // Restore original CapturedStmtInfo only if we're done with code emission.
433     auto *OldCSI =
434         cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
435     delete CGF.CapturedStmtInfo;
436     CGF.CapturedStmtInfo = OldCSI;
437     std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
438     CGF.LambdaThisCaptureField = LambdaThisCaptureField;
439     CGF.BlockInfo = BlockInfo;
440   }
441 };
442 
443 /// Values for bit flags used in the ident_t to describe the fields.
444 /// All enumeric elements are named and described in accordance with the code
445 /// from https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
446 enum OpenMPLocationFlags : unsigned {
447   /// Use trampoline for internal microtask.
448   OMP_IDENT_IMD = 0x01,
449   /// Use c-style ident structure.
450   OMP_IDENT_KMPC = 0x02,
451   /// Atomic reduction option for kmpc_reduce.
452   OMP_ATOMIC_REDUCE = 0x10,
453   /// Explicit 'barrier' directive.
454   OMP_IDENT_BARRIER_EXPL = 0x20,
455   /// Implicit barrier in code.
456   OMP_IDENT_BARRIER_IMPL = 0x40,
457   /// Implicit barrier in 'for' directive.
458   OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
459   /// Implicit barrier in 'sections' directive.
460   OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
461   /// Implicit barrier in 'single' directive.
462   OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140,
463   /// Call of __kmp_for_static_init for static loop.
464   OMP_IDENT_WORK_LOOP = 0x200,
465   /// Call of __kmp_for_static_init for sections.
466   OMP_IDENT_WORK_SECTIONS = 0x400,
467   /// Call of __kmp_for_static_init for distribute.
468   OMP_IDENT_WORK_DISTRIBUTE = 0x800,
469   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)
470 };
471 
472 namespace {
473 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
474 /// Values for bit flags for marking which requires clauses have been used.
475 enum OpenMPOffloadingRequiresDirFlags : int64_t {
476   /// flag undefined.
477   OMP_REQ_UNDEFINED               = 0x000,
478   /// no requires clause present.
479   OMP_REQ_NONE                    = 0x001,
480   /// reverse_offload clause.
481   OMP_REQ_REVERSE_OFFLOAD         = 0x002,
482   /// unified_address clause.
483   OMP_REQ_UNIFIED_ADDRESS         = 0x004,
484   /// unified_shared_memory clause.
485   OMP_REQ_UNIFIED_SHARED_MEMORY   = 0x008,
486   /// dynamic_allocators clause.
487   OMP_REQ_DYNAMIC_ALLOCATORS      = 0x010,
488   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)
489 };
490 
491 enum OpenMPOffloadingReservedDeviceIDs {
492   /// Device ID if the device was not defined, runtime should get it
493   /// from environment variables in the spec.
494   OMP_DEVICEID_UNDEF = -1,
495 };
496 } // anonymous namespace
497 
498 /// Describes ident structure that describes a source location.
499 /// All descriptions are taken from
500 /// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
501 /// Original structure:
502 /// typedef struct ident {
503 ///    kmp_int32 reserved_1;   /**<  might be used in Fortran;
504 ///                                  see above  */
505 ///    kmp_int32 flags;        /**<  also f.flags; KMP_IDENT_xxx flags;
506 ///                                  KMP_IDENT_KMPC identifies this union
507 ///                                  member  */
508 ///    kmp_int32 reserved_2;   /**<  not really used in Fortran any more;
509 ///                                  see above */
510 ///#if USE_ITT_BUILD
511 ///                            /*  but currently used for storing
512 ///                                region-specific ITT */
513 ///                            /*  contextual information. */
514 ///#endif /* USE_ITT_BUILD */
515 ///    kmp_int32 reserved_3;   /**< source[4] in Fortran, do not use for
516 ///                                 C++  */
517 ///    char const *psource;    /**< String describing the source location.
518 ///                            The string is composed of semi-colon separated
519 //                             fields which describe the source file,
520 ///                            the function and a pair of line numbers that
521 ///                            delimit the construct.
522 ///                             */
523 /// } ident_t;
524 enum IdentFieldIndex {
525   /// might be used in Fortran
526   IdentField_Reserved_1,
527   /// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
528   IdentField_Flags,
529   /// Not really used in Fortran any more
530   IdentField_Reserved_2,
531   /// Source[4] in Fortran, do not use for C++
532   IdentField_Reserved_3,
533   /// String describing the source location. The string is composed of
534   /// semi-colon separated fields which describe the source file, the function
535   /// and a pair of line numbers that delimit the construct.
536   IdentField_PSource
537 };
538 
539 /// Schedule types for 'omp for' loops (these enumerators are taken from
540 /// the enum sched_type in kmp.h).
541 enum OpenMPSchedType {
542   /// Lower bound for default (unordered) versions.
543   OMP_sch_lower = 32,
544   OMP_sch_static_chunked = 33,
545   OMP_sch_static = 34,
546   OMP_sch_dynamic_chunked = 35,
547   OMP_sch_guided_chunked = 36,
548   OMP_sch_runtime = 37,
549   OMP_sch_auto = 38,
550   /// static with chunk adjustment (e.g., simd)
551   OMP_sch_static_balanced_chunked = 45,
552   /// Lower bound for 'ordered' versions.
553   OMP_ord_lower = 64,
554   OMP_ord_static_chunked = 65,
555   OMP_ord_static = 66,
556   OMP_ord_dynamic_chunked = 67,
557   OMP_ord_guided_chunked = 68,
558   OMP_ord_runtime = 69,
559   OMP_ord_auto = 70,
560   OMP_sch_default = OMP_sch_static,
561   /// dist_schedule types
562   OMP_dist_sch_static_chunked = 91,
563   OMP_dist_sch_static = 92,
564   /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
565   /// Set if the monotonic schedule modifier was present.
566   OMP_sch_modifier_monotonic = (1 << 29),
567   /// Set if the nonmonotonic schedule modifier was present.
568   OMP_sch_modifier_nonmonotonic = (1 << 30),
569 };
570 
571 /// A basic class for pre|post-action for advanced codegen sequence for OpenMP
572 /// region.
573 class CleanupTy final : public EHScopeStack::Cleanup {
574   PrePostActionTy *Action;
575 
576 public:
CleanupTy(PrePostActionTy * Action)577   explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
Emit(CodeGenFunction & CGF,Flags)578   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
579     if (!CGF.HaveInsertPoint())
580       return;
581     Action->Exit(CGF);
582   }
583 };
584 
585 } // anonymous namespace
586 
operator ()(CodeGenFunction & CGF) const587 void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
588   CodeGenFunction::RunCleanupsScope Scope(CGF);
589   if (PrePostAction) {
590     CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
591     Callback(CodeGen, CGF, *PrePostAction);
592   } else {
593     PrePostActionTy Action;
594     Callback(CodeGen, CGF, Action);
595   }
596 }
597 
598 /// Check if the combiner is a call to UDR combiner and if it is so return the
599 /// UDR decl used for reduction.
600 static const OMPDeclareReductionDecl *
getReductionInit(const Expr * ReductionOp)601 getReductionInit(const Expr *ReductionOp) {
602   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
603     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
604       if (const auto *DRE =
605               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
606         if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
607           return DRD;
608   return nullptr;
609 }
610 
emitInitWithReductionInitializer(CodeGenFunction & CGF,const OMPDeclareReductionDecl * DRD,const Expr * InitOp,Address Private,Address Original,QualType Ty)611 static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
612                                              const OMPDeclareReductionDecl *DRD,
613                                              const Expr *InitOp,
614                                              Address Private, Address Original,
615                                              QualType Ty) {
616   if (DRD->getInitializer()) {
617     std::pair<llvm::Function *, llvm::Function *> Reduction =
618         CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
619     const auto *CE = cast<CallExpr>(InitOp);
620     const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
621     const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
622     const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
623     const auto *LHSDRE =
624         cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
625     const auto *RHSDRE =
626         cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
627     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
628     PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
629                             [=]() { return Private; });
630     PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
631                             [=]() { return Original; });
632     (void)PrivateScope.Privatize();
633     RValue Func = RValue::get(Reduction.second);
634     CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
635     CGF.EmitIgnoredExpr(InitOp);
636   } else {
637     llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
638     std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"});
639     auto *GV = new llvm::GlobalVariable(
640         CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
641         llvm::GlobalValue::PrivateLinkage, Init, Name);
642     LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
643     RValue InitRVal;
644     switch (CGF.getEvaluationKind(Ty)) {
645     case TEK_Scalar:
646       InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation());
647       break;
648     case TEK_Complex:
649       InitRVal =
650           RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation()));
651       break;
652     case TEK_Aggregate:
653       InitRVal = RValue::getAggregate(LV.getAddress(CGF));
654       break;
655     }
656     OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue);
657     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
658     CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
659                          /*IsInitializer=*/false);
660   }
661 }
662 
663 /// Emit initialization of arrays of complex types.
664 /// \param DestAddr Address of the array.
665 /// \param Type Type of array.
666 /// \param Init Initial expression of array.
667 /// \param SrcAddr Address of the original array.
EmitOMPAggregateInit(CodeGenFunction & CGF,Address DestAddr,QualType Type,bool EmitDeclareReductionInit,const Expr * Init,const OMPDeclareReductionDecl * DRD,Address SrcAddr=Address::invalid ())668 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
669                                  QualType Type, bool EmitDeclareReductionInit,
670                                  const Expr *Init,
671                                  const OMPDeclareReductionDecl *DRD,
672                                  Address SrcAddr = Address::invalid()) {
673   // Perform element-by-element initialization.
674   QualType ElementTy;
675 
676   // Drill down to the base element type on both arrays.
677   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
678   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
679   DestAddr =
680       CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
681   if (DRD)
682     SrcAddr =
683         CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
684 
685   llvm::Value *SrcBegin = nullptr;
686   if (DRD)
687     SrcBegin = SrcAddr.getPointer();
688   llvm::Value *DestBegin = DestAddr.getPointer();
689   // Cast from pointer to array type to pointer to single element.
690   llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
691   // The basic structure here is a while-do loop.
692   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
693   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
694   llvm::Value *IsEmpty =
695       CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
696   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
697 
698   // Enter the loop body, making that address the current address.
699   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
700   CGF.EmitBlock(BodyBB);
701 
702   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
703 
704   llvm::PHINode *SrcElementPHI = nullptr;
705   Address SrcElementCurrent = Address::invalid();
706   if (DRD) {
707     SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
708                                           "omp.arraycpy.srcElementPast");
709     SrcElementPHI->addIncoming(SrcBegin, EntryBB);
710     SrcElementCurrent =
711         Address(SrcElementPHI,
712                 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
713   }
714   llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
715       DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
716   DestElementPHI->addIncoming(DestBegin, EntryBB);
717   Address DestElementCurrent =
718       Address(DestElementPHI,
719               DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
720 
721   // Emit copy.
722   {
723     CodeGenFunction::RunCleanupsScope InitScope(CGF);
724     if (EmitDeclareReductionInit) {
725       emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
726                                        SrcElementCurrent, ElementTy);
727     } else
728       CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
729                            /*IsInitializer=*/false);
730   }
731 
732   if (DRD) {
733     // Shift the address forward by one element.
734     llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32(
735         SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
736     SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
737   }
738 
739   // Shift the address forward by one element.
740   llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32(
741       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
742   // Check whether we've reached the end.
743   llvm::Value *Done =
744       CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
745   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
746   DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
747 
748   // Done.
749   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
750 }
751 
emitSharedLValue(CodeGenFunction & CGF,const Expr * E)752 LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) {
753   return CGF.EmitOMPSharedLValue(E);
754 }
755 
emitSharedLValueUB(CodeGenFunction & CGF,const Expr * E)756 LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF,
757                                             const Expr *E) {
758   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E))
759     return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
760   return LValue();
761 }
762 
emitAggregateInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,LValue SharedLVal,const OMPDeclareReductionDecl * DRD)763 void ReductionCodeGen::emitAggregateInitialization(
764     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
765     const OMPDeclareReductionDecl *DRD) {
766   // Emit VarDecl with copy init for arrays.
767   // Get the address of the original variable captured in current
768   // captured region.
769   const auto *PrivateVD =
770       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
771   bool EmitDeclareReductionInit =
772       DRD && (DRD->getInitializer() || !PrivateVD->hasInit());
773   EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(),
774                        EmitDeclareReductionInit,
775                        EmitDeclareReductionInit ? ClausesData[N].ReductionOp
776                                                 : PrivateVD->getInit(),
777                        DRD, SharedLVal.getAddress(CGF));
778 }
779 
ReductionCodeGen(ArrayRef<const Expr * > Shareds,ArrayRef<const Expr * > Origs,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > ReductionOps)780 ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds,
781                                    ArrayRef<const Expr *> Origs,
782                                    ArrayRef<const Expr *> Privates,
783                                    ArrayRef<const Expr *> ReductionOps) {
784   ClausesData.reserve(Shareds.size());
785   SharedAddresses.reserve(Shareds.size());
786   Sizes.reserve(Shareds.size());
787   BaseDecls.reserve(Shareds.size());
788   const auto *IOrig = Origs.begin();
789   const auto *IPriv = Privates.begin();
790   const auto *IRed = ReductionOps.begin();
791   for (const Expr *Ref : Shareds) {
792     ClausesData.emplace_back(Ref, *IOrig, *IPriv, *IRed);
793     std::advance(IOrig, 1);
794     std::advance(IPriv, 1);
795     std::advance(IRed, 1);
796   }
797 }
798 
emitSharedOrigLValue(CodeGenFunction & CGF,unsigned N)799 void ReductionCodeGen::emitSharedOrigLValue(CodeGenFunction &CGF, unsigned N) {
800   assert(SharedAddresses.size() == N && OrigAddresses.size() == N &&
801          "Number of generated lvalues must be exactly N.");
802   LValue First = emitSharedLValue(CGF, ClausesData[N].Shared);
803   LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Shared);
804   SharedAddresses.emplace_back(First, Second);
805   if (ClausesData[N].Shared == ClausesData[N].Ref) {
806     OrigAddresses.emplace_back(First, Second);
807   } else {
808     LValue First = emitSharedLValue(CGF, ClausesData[N].Ref);
809     LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref);
810     OrigAddresses.emplace_back(First, Second);
811   }
812 }
813 
emitAggregateType(CodeGenFunction & CGF,unsigned N)814 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) {
815   const auto *PrivateVD =
816       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
817   QualType PrivateType = PrivateVD->getType();
818   bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref);
819   if (!PrivateType->isVariablyModifiedType()) {
820     Sizes.emplace_back(
821         CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType()),
822         nullptr);
823     return;
824   }
825   llvm::Value *Size;
826   llvm::Value *SizeInChars;
827   auto *ElemType =
828       cast<llvm::PointerType>(OrigAddresses[N].first.getPointer(CGF)->getType())
829           ->getElementType();
830   auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType);
831   if (AsArraySection) {
832     Size = CGF.Builder.CreatePtrDiff(OrigAddresses[N].second.getPointer(CGF),
833                                      OrigAddresses[N].first.getPointer(CGF));
834     Size = CGF.Builder.CreateNUWAdd(
835         Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
836     SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf);
837   } else {
838     SizeInChars =
839         CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType());
840     Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf);
841   }
842   Sizes.emplace_back(SizeInChars, Size);
843   CodeGenFunction::OpaqueValueMapping OpaqueMap(
844       CGF,
845       cast<OpaqueValueExpr>(
846           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
847       RValue::get(Size));
848   CGF.EmitVariablyModifiedType(PrivateType);
849 }
850 
emitAggregateType(CodeGenFunction & CGF,unsigned N,llvm::Value * Size)851 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N,
852                                          llvm::Value *Size) {
853   const auto *PrivateVD =
854       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
855   QualType PrivateType = PrivateVD->getType();
856   if (!PrivateType->isVariablyModifiedType()) {
857     assert(!Size && !Sizes[N].second &&
858            "Size should be nullptr for non-variably modified reduction "
859            "items.");
860     return;
861   }
862   CodeGenFunction::OpaqueValueMapping OpaqueMap(
863       CGF,
864       cast<OpaqueValueExpr>(
865           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
866       RValue::get(Size));
867   CGF.EmitVariablyModifiedType(PrivateType);
868 }
869 
emitInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,LValue SharedLVal,llvm::function_ref<bool (CodeGenFunction &)> DefaultInit)870 void ReductionCodeGen::emitInitialization(
871     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
872     llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) {
873   assert(SharedAddresses.size() > N && "No variable was generated");
874   const auto *PrivateVD =
875       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
876   const OMPDeclareReductionDecl *DRD =
877       getReductionInit(ClausesData[N].ReductionOp);
878   QualType PrivateType = PrivateVD->getType();
879   PrivateAddr = CGF.Builder.CreateElementBitCast(
880       PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
881   QualType SharedType = SharedAddresses[N].first.getType();
882   SharedLVal = CGF.MakeAddrLValue(
883       CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(CGF),
884                                        CGF.ConvertTypeForMem(SharedType)),
885       SharedType, SharedAddresses[N].first.getBaseInfo(),
886       CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType));
887   if (CGF.getContext().getAsArrayType(PrivateVD->getType())) {
888     if (DRD && DRD->getInitializer())
889       (void)DefaultInit(CGF);
890     emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD);
891   } else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
892     (void)DefaultInit(CGF);
893     emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp,
894                                      PrivateAddr, SharedLVal.getAddress(CGF),
895                                      SharedLVal.getType());
896   } else if (!DefaultInit(CGF) && PrivateVD->hasInit() &&
897              !CGF.isTrivialInitializer(PrivateVD->getInit())) {
898     CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr,
899                          PrivateVD->getType().getQualifiers(),
900                          /*IsInitializer=*/false);
901   }
902 }
903 
needCleanups(unsigned N)904 bool ReductionCodeGen::needCleanups(unsigned N) {
905   const auto *PrivateVD =
906       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
907   QualType PrivateType = PrivateVD->getType();
908   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
909   return DTorKind != QualType::DK_none;
910 }
911 
emitCleanups(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)912 void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N,
913                                     Address PrivateAddr) {
914   const auto *PrivateVD =
915       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
916   QualType PrivateType = PrivateVD->getType();
917   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
918   if (needCleanups(N)) {
919     PrivateAddr = CGF.Builder.CreateElementBitCast(
920         PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
921     CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType);
922   }
923 }
924 
loadToBegin(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,LValue BaseLV)925 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
926                           LValue BaseLV) {
927   BaseTy = BaseTy.getNonReferenceType();
928   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
929          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
930     if (const auto *PtrTy = BaseTy->getAs<PointerType>()) {
931       BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(CGF), PtrTy);
932     } else {
933       LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(CGF), BaseTy);
934       BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal);
935     }
936     BaseTy = BaseTy->getPointeeType();
937   }
938   return CGF.MakeAddrLValue(
939       CGF.Builder.CreateElementBitCast(BaseLV.getAddress(CGF),
940                                        CGF.ConvertTypeForMem(ElTy)),
941       BaseLV.getType(), BaseLV.getBaseInfo(),
942       CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType()));
943 }
944 
castToBase(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,llvm::Type * BaseLVType,CharUnits BaseLVAlignment,llvm::Value * Addr)945 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
946                           llvm::Type *BaseLVType, CharUnits BaseLVAlignment,
947                           llvm::Value *Addr) {
948   Address Tmp = Address::invalid();
949   Address TopTmp = Address::invalid();
950   Address MostTopTmp = Address::invalid();
951   BaseTy = BaseTy.getNonReferenceType();
952   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
953          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
954     Tmp = CGF.CreateMemTemp(BaseTy);
955     if (TopTmp.isValid())
956       CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
957     else
958       MostTopTmp = Tmp;
959     TopTmp = Tmp;
960     BaseTy = BaseTy->getPointeeType();
961   }
962   llvm::Type *Ty = BaseLVType;
963   if (Tmp.isValid())
964     Ty = Tmp.getElementType();
965   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
966   if (Tmp.isValid()) {
967     CGF.Builder.CreateStore(Addr, Tmp);
968     return MostTopTmp;
969   }
970   return Address(Addr, BaseLVAlignment);
971 }
972 
getBaseDecl(const Expr * Ref,const DeclRefExpr * & DE)973 static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) {
974   const VarDecl *OrigVD = nullptr;
975   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) {
976     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
977     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
978       Base = TempOASE->getBase()->IgnoreParenImpCasts();
979     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
980       Base = TempASE->getBase()->IgnoreParenImpCasts();
981     DE = cast<DeclRefExpr>(Base);
982     OrigVD = cast<VarDecl>(DE->getDecl());
983   } else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) {
984     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
985     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
986       Base = TempASE->getBase()->IgnoreParenImpCasts();
987     DE = cast<DeclRefExpr>(Base);
988     OrigVD = cast<VarDecl>(DE->getDecl());
989   }
990   return OrigVD;
991 }
992 
adjustPrivateAddress(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)993 Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N,
994                                                Address PrivateAddr) {
995   const DeclRefExpr *DE;
996   if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) {
997     BaseDecls.emplace_back(OrigVD);
998     LValue OriginalBaseLValue = CGF.EmitLValue(DE);
999     LValue BaseLValue =
1000         loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(),
1001                     OriginalBaseLValue);
1002     llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff(
1003         BaseLValue.getPointer(CGF), SharedAddresses[N].first.getPointer(CGF));
1004     llvm::Value *PrivatePointer =
1005         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1006             PrivateAddr.getPointer(),
1007             SharedAddresses[N].first.getAddress(CGF).getType());
1008     llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment);
1009     return castToBase(CGF, OrigVD->getType(),
1010                       SharedAddresses[N].first.getType(),
1011                       OriginalBaseLValue.getAddress(CGF).getType(),
1012                       OriginalBaseLValue.getAlignment(), Ptr);
1013   }
1014   BaseDecls.emplace_back(
1015       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl()));
1016   return PrivateAddr;
1017 }
1018 
usesReductionInitializer(unsigned N) const1019 bool ReductionCodeGen::usesReductionInitializer(unsigned N) const {
1020   const OMPDeclareReductionDecl *DRD =
1021       getReductionInit(ClausesData[N].ReductionOp);
1022   return DRD && DRD->getInitializer();
1023 }
1024 
getThreadIDVariableLValue(CodeGenFunction & CGF)1025 LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
1026   return CGF.EmitLoadOfPointerLValue(
1027       CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1028       getThreadIDVariable()->getType()->castAs<PointerType>());
1029 }
1030 
EmitBody(CodeGenFunction & CGF,const Stmt *)1031 void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
1032   if (!CGF.HaveInsertPoint())
1033     return;
1034   // 1.2.2 OpenMP Language Terminology
1035   // Structured block - An executable statement with a single entry at the
1036   // top and a single exit at the bottom.
1037   // The point of exit cannot be a branch out of the structured block.
1038   // longjmp() and throw() must not violate the entry/exit criteria.
1039   CGF.EHStack.pushTerminate();
1040   CodeGen(CGF);
1041   CGF.EHStack.popTerminate();
1042 }
1043 
getThreadIDVariableLValue(CodeGenFunction & CGF)1044 LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
1045     CodeGenFunction &CGF) {
1046   return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1047                             getThreadIDVariable()->getType(),
1048                             AlignmentSource::Decl);
1049 }
1050 
addFieldToRecordDecl(ASTContext & C,DeclContext * DC,QualType FieldTy)1051 static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
1052                                        QualType FieldTy) {
1053   auto *Field = FieldDecl::Create(
1054       C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
1055       C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
1056       /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
1057   Field->setAccess(AS_public);
1058   DC->addDecl(Field);
1059   return Field;
1060 }
1061 
CGOpenMPRuntime(CodeGenModule & CGM,StringRef FirstSeparator,StringRef Separator)1062 CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator,
1063                                  StringRef Separator)
1064     : CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator),
1065       OMPBuilder(CGM.getModule()), OffloadEntriesInfoManager(CGM) {
1066   KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
1067 
1068   // Initialize Types used in OpenMPIRBuilder from OMPKinds.def
1069   OMPBuilder.initialize();
1070   loadOffloadInfoMetadata();
1071 }
1072 
clear()1073 void CGOpenMPRuntime::clear() {
1074   InternalVars.clear();
1075   // Clean non-target variable declarations possibly used only in debug info.
1076   for (const auto &Data : EmittedNonTargetVariables) {
1077     if (!Data.getValue().pointsToAliveValue())
1078       continue;
1079     auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue());
1080     if (!GV)
1081       continue;
1082     if (!GV->isDeclaration() || GV->getNumUses() > 0)
1083       continue;
1084     GV->eraseFromParent();
1085   }
1086 }
1087 
getName(ArrayRef<StringRef> Parts) const1088 std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const {
1089   SmallString<128> Buffer;
1090   llvm::raw_svector_ostream OS(Buffer);
1091   StringRef Sep = FirstSeparator;
1092   for (StringRef Part : Parts) {
1093     OS << Sep << Part;
1094     Sep = Separator;
1095   }
1096   return std::string(OS.str());
1097 }
1098 
1099 static llvm::Function *
emitCombinerOrInitializer(CodeGenModule & CGM,QualType Ty,const Expr * CombinerInitializer,const VarDecl * In,const VarDecl * Out,bool IsCombiner)1100 emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
1101                           const Expr *CombinerInitializer, const VarDecl *In,
1102                           const VarDecl *Out, bool IsCombiner) {
1103   // void .omp_combiner.(Ty *in, Ty *out);
1104   ASTContext &C = CGM.getContext();
1105   QualType PtrTy = C.getPointerType(Ty).withRestrict();
1106   FunctionArgList Args;
1107   ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
1108                                /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1109   ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
1110                               /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1111   Args.push_back(&OmpOutParm);
1112   Args.push_back(&OmpInParm);
1113   const CGFunctionInfo &FnInfo =
1114       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1115   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
1116   std::string Name = CGM.getOpenMPRuntime().getName(
1117       {IsCombiner ? "omp_combiner" : "omp_initializer", ""});
1118   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
1119                                     Name, &CGM.getModule());
1120   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
1121   if (CGM.getLangOpts().Optimize) {
1122     Fn->removeFnAttr(llvm::Attribute::NoInline);
1123     Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
1124     Fn->addFnAttr(llvm::Attribute::AlwaysInline);
1125   }
1126   CodeGenFunction CGF(CGM);
1127   // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
1128   // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
1129   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(),
1130                     Out->getLocation());
1131   CodeGenFunction::OMPPrivateScope Scope(CGF);
1132   Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
1133   Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() {
1134     return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
1135         .getAddress(CGF);
1136   });
1137   Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
1138   Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() {
1139     return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
1140         .getAddress(CGF);
1141   });
1142   (void)Scope.Privatize();
1143   if (!IsCombiner && Out->hasInit() &&
1144       !CGF.isTrivialInitializer(Out->getInit())) {
1145     CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out),
1146                          Out->getType().getQualifiers(),
1147                          /*IsInitializer=*/true);
1148   }
1149   if (CombinerInitializer)
1150     CGF.EmitIgnoredExpr(CombinerInitializer);
1151   Scope.ForceCleanup();
1152   CGF.FinishFunction();
1153   return Fn;
1154 }
1155 
emitUserDefinedReduction(CodeGenFunction * CGF,const OMPDeclareReductionDecl * D)1156 void CGOpenMPRuntime::emitUserDefinedReduction(
1157     CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
1158   if (UDRMap.count(D) > 0)
1159     return;
1160   llvm::Function *Combiner = emitCombinerOrInitializer(
1161       CGM, D->getType(), D->getCombiner(),
1162       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()),
1163       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()),
1164       /*IsCombiner=*/true);
1165   llvm::Function *Initializer = nullptr;
1166   if (const Expr *Init = D->getInitializer()) {
1167     Initializer = emitCombinerOrInitializer(
1168         CGM, D->getType(),
1169         D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init
1170                                                                      : nullptr,
1171         cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()),
1172         cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()),
1173         /*IsCombiner=*/false);
1174   }
1175   UDRMap.try_emplace(D, Combiner, Initializer);
1176   if (CGF) {
1177     auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
1178     Decls.second.push_back(D);
1179   }
1180 }
1181 
1182 std::pair<llvm::Function *, llvm::Function *>
getUserDefinedReduction(const OMPDeclareReductionDecl * D)1183 CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
1184   auto I = UDRMap.find(D);
1185   if (I != UDRMap.end())
1186     return I->second;
1187   emitUserDefinedReduction(/*CGF=*/nullptr, D);
1188   return UDRMap.lookup(D);
1189 }
1190 
1191 namespace {
1192 // Temporary RAII solution to perform a push/pop stack event on the OpenMP IR
1193 // Builder if one is present.
1194 struct PushAndPopStackRAII {
PushAndPopStackRAII__anona637da6d0811::PushAndPopStackRAII1195   PushAndPopStackRAII(llvm::OpenMPIRBuilder *OMPBuilder, CodeGenFunction &CGF,
1196                       bool HasCancel)
1197       : OMPBuilder(OMPBuilder) {
1198     if (!OMPBuilder)
1199       return;
1200 
1201     // The following callback is the crucial part of clangs cleanup process.
1202     //
1203     // NOTE:
1204     // Once the OpenMPIRBuilder is used to create parallel regions (and
1205     // similar), the cancellation destination (Dest below) is determined via
1206     // IP. That means if we have variables to finalize we split the block at IP,
1207     // use the new block (=BB) as destination to build a JumpDest (via
1208     // getJumpDestInCurrentScope(BB)) which then is fed to
1209     // EmitBranchThroughCleanup. Furthermore, there will not be the need
1210     // to push & pop an FinalizationInfo object.
1211     // The FiniCB will still be needed but at the point where the
1212     // OpenMPIRBuilder is asked to construct a parallel (or similar) construct.
1213     auto FiniCB = [&CGF](llvm::OpenMPIRBuilder::InsertPointTy IP) {
1214       assert(IP.getBlock()->end() == IP.getPoint() &&
1215              "Clang CG should cause non-terminated block!");
1216       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1217       CGF.Builder.restoreIP(IP);
1218       CodeGenFunction::JumpDest Dest =
1219           CGF.getOMPCancelDestination(OMPD_parallel);
1220       CGF.EmitBranchThroughCleanup(Dest);
1221     };
1222 
1223     // TODO: Remove this once we emit parallel regions through the
1224     //       OpenMPIRBuilder as it can do this setup internally.
1225     llvm::OpenMPIRBuilder::FinalizationInfo FI(
1226         {FiniCB, OMPD_parallel, HasCancel});
1227     OMPBuilder->pushFinalizationCB(std::move(FI));
1228   }
~PushAndPopStackRAII__anona637da6d0811::PushAndPopStackRAII1229   ~PushAndPopStackRAII() {
1230     if (OMPBuilder)
1231       OMPBuilder->popFinalizationCB();
1232   }
1233   llvm::OpenMPIRBuilder *OMPBuilder;
1234 };
1235 } // namespace
1236 
emitParallelOrTeamsOutlinedFunction(CodeGenModule & CGM,const OMPExecutableDirective & D,const CapturedStmt * CS,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const StringRef OutlinedHelperName,const RegionCodeGenTy & CodeGen)1237 static llvm::Function *emitParallelOrTeamsOutlinedFunction(
1238     CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
1239     const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
1240     const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
1241   assert(ThreadIDVar->getType()->isPointerType() &&
1242          "thread id variable must be of type kmp_int32 *");
1243   CodeGenFunction CGF(CGM, true);
1244   bool HasCancel = false;
1245   if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D))
1246     HasCancel = OPD->hasCancel();
1247   else if (const auto *OPD = dyn_cast<OMPTargetParallelDirective>(&D))
1248     HasCancel = OPD->hasCancel();
1249   else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
1250     HasCancel = OPSD->hasCancel();
1251   else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
1252     HasCancel = OPFD->hasCancel();
1253   else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D))
1254     HasCancel = OPFD->hasCancel();
1255   else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D))
1256     HasCancel = OPFD->hasCancel();
1257   else if (const auto *OPFD =
1258                dyn_cast<OMPTeamsDistributeParallelForDirective>(&D))
1259     HasCancel = OPFD->hasCancel();
1260   else if (const auto *OPFD =
1261                dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D))
1262     HasCancel = OPFD->hasCancel();
1263 
1264   // TODO: Temporarily inform the OpenMPIRBuilder, if any, about the new
1265   //       parallel region to make cancellation barriers work properly.
1266   llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1267   PushAndPopStackRAII PSR(&OMPBuilder, CGF, HasCancel);
1268   CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
1269                                     HasCancel, OutlinedHelperName);
1270   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1271   return CGF.GenerateOpenMPCapturedStmtFunction(*CS, D.getBeginLoc());
1272 }
1273 
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1274 llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction(
1275     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1276     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1277   const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
1278   return emitParallelOrTeamsOutlinedFunction(
1279       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1280 }
1281 
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1282 llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction(
1283     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1284     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1285   const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
1286   return emitParallelOrTeamsOutlinedFunction(
1287       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1288 }
1289 
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)1290 llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction(
1291     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1292     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
1293     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1294     bool Tied, unsigned &NumberOfParts) {
1295   auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
1296                                               PrePostActionTy &) {
1297     llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc());
1298     llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc());
1299     llvm::Value *TaskArgs[] = {
1300         UpLoc, ThreadID,
1301         CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
1302                                     TaskTVar->getType()->castAs<PointerType>())
1303             .getPointer(CGF)};
1304     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1305                             CGM.getModule(), OMPRTL___kmpc_omp_task),
1306                         TaskArgs);
1307   };
1308   CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
1309                                                             UntiedCodeGen);
1310   CodeGen.setAction(Action);
1311   assert(!ThreadIDVar->getType()->isPointerType() &&
1312          "thread id variable must be of type kmp_int32 for tasks");
1313   const OpenMPDirectiveKind Region =
1314       isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop
1315                                                       : OMPD_task;
1316   const CapturedStmt *CS = D.getCapturedStmt(Region);
1317   bool HasCancel = false;
1318   if (const auto *TD = dyn_cast<OMPTaskDirective>(&D))
1319     HasCancel = TD->hasCancel();
1320   else if (const auto *TD = dyn_cast<OMPTaskLoopDirective>(&D))
1321     HasCancel = TD->hasCancel();
1322   else if (const auto *TD = dyn_cast<OMPMasterTaskLoopDirective>(&D))
1323     HasCancel = TD->hasCancel();
1324   else if (const auto *TD = dyn_cast<OMPParallelMasterTaskLoopDirective>(&D))
1325     HasCancel = TD->hasCancel();
1326 
1327   CodeGenFunction CGF(CGM, true);
1328   CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
1329                                         InnermostKind, HasCancel, Action);
1330   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1331   llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS);
1332   if (!Tied)
1333     NumberOfParts = Action.getNumberOfParts();
1334   return Res;
1335 }
1336 
buildStructValue(ConstantStructBuilder & Fields,CodeGenModule & CGM,const RecordDecl * RD,const CGRecordLayout & RL,ArrayRef<llvm::Constant * > Data)1337 static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM,
1338                              const RecordDecl *RD, const CGRecordLayout &RL,
1339                              ArrayRef<llvm::Constant *> Data) {
1340   llvm::StructType *StructTy = RL.getLLVMType();
1341   unsigned PrevIdx = 0;
1342   ConstantInitBuilder CIBuilder(CGM);
1343   auto DI = Data.begin();
1344   for (const FieldDecl *FD : RD->fields()) {
1345     unsigned Idx = RL.getLLVMFieldNo(FD);
1346     // Fill the alignment.
1347     for (unsigned I = PrevIdx; I < Idx; ++I)
1348       Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I)));
1349     PrevIdx = Idx + 1;
1350     Fields.add(*DI);
1351     ++DI;
1352   }
1353 }
1354 
1355 template <class... As>
1356 static llvm::GlobalVariable *
createGlobalStruct(CodeGenModule & CGM,QualType Ty,bool IsConstant,ArrayRef<llvm::Constant * > Data,const Twine & Name,As &&...Args)1357 createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant,
1358                    ArrayRef<llvm::Constant *> Data, const Twine &Name,
1359                    As &&... Args) {
1360   const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1361   const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1362   ConstantInitBuilder CIBuilder(CGM);
1363   ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType());
1364   buildStructValue(Fields, CGM, RD, RL, Data);
1365   return Fields.finishAndCreateGlobal(
1366       Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant,
1367       std::forward<As>(Args)...);
1368 }
1369 
1370 template <typename T>
1371 static void
createConstantGlobalStructAndAddToParent(CodeGenModule & CGM,QualType Ty,ArrayRef<llvm::Constant * > Data,T & Parent)1372 createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty,
1373                                          ArrayRef<llvm::Constant *> Data,
1374                                          T &Parent) {
1375   const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1376   const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1377   ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType());
1378   buildStructValue(Fields, CGM, RD, RL, Data);
1379   Fields.finishAndAddTo(Parent);
1380 }
1381 
setLocThreadIdInsertPt(CodeGenFunction & CGF,bool AtCurrentPoint)1382 void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF,
1383                                              bool AtCurrentPoint) {
1384   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1385   assert(!Elem.second.ServiceInsertPt && "Insert point is set already.");
1386 
1387   llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty);
1388   if (AtCurrentPoint) {
1389     Elem.second.ServiceInsertPt = new llvm::BitCastInst(
1390         Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock());
1391   } else {
1392     Elem.second.ServiceInsertPt =
1393         new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt");
1394     Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt);
1395   }
1396 }
1397 
clearLocThreadIdInsertPt(CodeGenFunction & CGF)1398 void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) {
1399   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1400   if (Elem.second.ServiceInsertPt) {
1401     llvm::Instruction *Ptr = Elem.second.ServiceInsertPt;
1402     Elem.second.ServiceInsertPt = nullptr;
1403     Ptr->eraseFromParent();
1404   }
1405 }
1406 
emitUpdateLocation(CodeGenFunction & CGF,SourceLocation Loc,unsigned Flags)1407 llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
1408                                                  SourceLocation Loc,
1409                                                  unsigned Flags) {
1410   llvm::Constant *SrcLocStr;
1411   if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
1412       Loc.isInvalid()) {
1413     SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr();
1414   } else {
1415     std::string FunctionName = "";
1416     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
1417       FunctionName = FD->getQualifiedNameAsString();
1418     PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
1419     const char *FileName = PLoc.getFilename();
1420     unsigned Line = PLoc.getLine();
1421     unsigned Column = PLoc.getColumn();
1422     SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(FunctionName.c_str(), FileName,
1423                                                 Line, Column);
1424   }
1425   unsigned Reserved2Flags = getDefaultLocationReserved2Flags();
1426   return OMPBuilder.getOrCreateIdent(SrcLocStr, llvm::omp::IdentFlag(Flags),
1427                                      Reserved2Flags);
1428 }
1429 
getThreadID(CodeGenFunction & CGF,SourceLocation Loc)1430 llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
1431                                           SourceLocation Loc) {
1432   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1433 
1434   llvm::Value *ThreadID = nullptr;
1435   // Check whether we've already cached a load of the thread id in this
1436   // function.
1437   auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
1438   if (I != OpenMPLocThreadIDMap.end()) {
1439     ThreadID = I->second.ThreadID;
1440     if (ThreadID != nullptr)
1441       return ThreadID;
1442   }
1443   // If exceptions are enabled, do not use parameter to avoid possible crash.
1444   if (auto *OMPRegionInfo =
1445           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
1446     if (OMPRegionInfo->getThreadIDVariable()) {
1447       // Check if this an outlined function with thread id passed as argument.
1448       LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
1449       llvm::BasicBlock *TopBlock = CGF.AllocaInsertPt->getParent();
1450       if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions ||
1451           !CGF.getLangOpts().CXXExceptions ||
1452           CGF.Builder.GetInsertBlock() == TopBlock ||
1453           !isa<llvm::Instruction>(LVal.getPointer(CGF)) ||
1454           cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
1455               TopBlock ||
1456           cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
1457               CGF.Builder.GetInsertBlock()) {
1458         ThreadID = CGF.EmitLoadOfScalar(LVal, Loc);
1459         // If value loaded in entry block, cache it and use it everywhere in
1460         // function.
1461         if (CGF.Builder.GetInsertBlock() == TopBlock) {
1462           auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1463           Elem.second.ThreadID = ThreadID;
1464         }
1465         return ThreadID;
1466       }
1467     }
1468   }
1469 
1470   // This is not an outlined function region - need to call __kmpc_int32
1471   // kmpc_global_thread_num(ident_t *loc).
1472   // Generate thread id value and cache this value for use across the
1473   // function.
1474   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1475   if (!Elem.second.ServiceInsertPt)
1476     setLocThreadIdInsertPt(CGF);
1477   CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1478   CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
1479   llvm::CallInst *Call = CGF.Builder.CreateCall(
1480       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
1481                                             OMPRTL___kmpc_global_thread_num),
1482       emitUpdateLocation(CGF, Loc));
1483   Call->setCallingConv(CGF.getRuntimeCC());
1484   Elem.second.ThreadID = Call;
1485   return Call;
1486 }
1487 
functionFinished(CodeGenFunction & CGF)1488 void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
1489   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1490   if (OpenMPLocThreadIDMap.count(CGF.CurFn)) {
1491     clearLocThreadIdInsertPt(CGF);
1492     OpenMPLocThreadIDMap.erase(CGF.CurFn);
1493   }
1494   if (FunctionUDRMap.count(CGF.CurFn) > 0) {
1495     for(const auto *D : FunctionUDRMap[CGF.CurFn])
1496       UDRMap.erase(D);
1497     FunctionUDRMap.erase(CGF.CurFn);
1498   }
1499   auto I = FunctionUDMMap.find(CGF.CurFn);
1500   if (I != FunctionUDMMap.end()) {
1501     for(const auto *D : I->second)
1502       UDMMap.erase(D);
1503     FunctionUDMMap.erase(I);
1504   }
1505   LastprivateConditionalToTypes.erase(CGF.CurFn);
1506 }
1507 
getIdentTyPointerTy()1508 llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
1509   return OMPBuilder.IdentPtr;
1510 }
1511 
getKmpc_MicroPointerTy()1512 llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
1513   if (!Kmpc_MicroTy) {
1514     // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
1515     llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
1516                                  llvm::PointerType::getUnqual(CGM.Int32Ty)};
1517     Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
1518   }
1519   return llvm::PointerType::getUnqual(Kmpc_MicroTy);
1520 }
1521 
1522 llvm::FunctionCallee
createForStaticInitFunction(unsigned IVSize,bool IVSigned)1523 CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) {
1524   assert((IVSize == 32 || IVSize == 64) &&
1525          "IV size is not compatible with the omp runtime");
1526   StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
1527                                             : "__kmpc_for_static_init_4u")
1528                                 : (IVSigned ? "__kmpc_for_static_init_8"
1529                                             : "__kmpc_for_static_init_8u");
1530   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1531   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
1532   llvm::Type *TypeParams[] = {
1533     getIdentTyPointerTy(),                     // loc
1534     CGM.Int32Ty,                               // tid
1535     CGM.Int32Ty,                               // schedtype
1536     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
1537     PtrTy,                                     // p_lower
1538     PtrTy,                                     // p_upper
1539     PtrTy,                                     // p_stride
1540     ITy,                                       // incr
1541     ITy                                        // chunk
1542   };
1543   auto *FnTy =
1544       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1545   return CGM.CreateRuntimeFunction(FnTy, Name);
1546 }
1547 
1548 llvm::FunctionCallee
createDispatchInitFunction(unsigned IVSize,bool IVSigned)1549 CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) {
1550   assert((IVSize == 32 || IVSize == 64) &&
1551          "IV size is not compatible with the omp runtime");
1552   StringRef Name =
1553       IVSize == 32
1554           ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
1555           : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
1556   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1557   llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
1558                                CGM.Int32Ty,           // tid
1559                                CGM.Int32Ty,           // schedtype
1560                                ITy,                   // lower
1561                                ITy,                   // upper
1562                                ITy,                   // stride
1563                                ITy                    // chunk
1564   };
1565   auto *FnTy =
1566       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1567   return CGM.CreateRuntimeFunction(FnTy, Name);
1568 }
1569 
1570 llvm::FunctionCallee
createDispatchFiniFunction(unsigned IVSize,bool IVSigned)1571 CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) {
1572   assert((IVSize == 32 || IVSize == 64) &&
1573          "IV size is not compatible with the omp runtime");
1574   StringRef Name =
1575       IVSize == 32
1576           ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
1577           : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
1578   llvm::Type *TypeParams[] = {
1579       getIdentTyPointerTy(), // loc
1580       CGM.Int32Ty,           // tid
1581   };
1582   auto *FnTy =
1583       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1584   return CGM.CreateRuntimeFunction(FnTy, Name);
1585 }
1586 
1587 llvm::FunctionCallee
createDispatchNextFunction(unsigned IVSize,bool IVSigned)1588 CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) {
1589   assert((IVSize == 32 || IVSize == 64) &&
1590          "IV size is not compatible with the omp runtime");
1591   StringRef Name =
1592       IVSize == 32
1593           ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
1594           : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
1595   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1596   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
1597   llvm::Type *TypeParams[] = {
1598     getIdentTyPointerTy(),                     // loc
1599     CGM.Int32Ty,                               // tid
1600     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
1601     PtrTy,                                     // p_lower
1602     PtrTy,                                     // p_upper
1603     PtrTy                                      // p_stride
1604   };
1605   auto *FnTy =
1606       llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1607   return CGM.CreateRuntimeFunction(FnTy, Name);
1608 }
1609 
1610 /// Obtain information that uniquely identifies a target entry. This
1611 /// consists of the file and device IDs as well as line number associated with
1612 /// the relevant entry source location.
getTargetEntryUniqueInfo(ASTContext & C,SourceLocation Loc,unsigned & DeviceID,unsigned & FileID,unsigned & LineNum)1613 static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
1614                                      unsigned &DeviceID, unsigned &FileID,
1615                                      unsigned &LineNum) {
1616   SourceManager &SM = C.getSourceManager();
1617 
1618   // The loc should be always valid and have a file ID (the user cannot use
1619   // #pragma directives in macros)
1620 
1621   assert(Loc.isValid() && "Source location is expected to be always valid.");
1622 
1623   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1624   assert(PLoc.isValid() && "Source location is expected to be always valid.");
1625 
1626   llvm::sys::fs::UniqueID ID;
1627   if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
1628     SM.getDiagnostics().Report(diag::err_cannot_open_file)
1629         << PLoc.getFilename() << EC.message();
1630 
1631   DeviceID = ID.getDevice();
1632   FileID = ID.getFile();
1633   LineNum = PLoc.getLine();
1634 }
1635 
getAddrOfDeclareTargetVar(const VarDecl * VD)1636 Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) {
1637   if (CGM.getLangOpts().OpenMPSimd)
1638     return Address::invalid();
1639   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
1640       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
1641   if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link ||
1642               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
1643                HasRequiresUnifiedSharedMemory))) {
1644     SmallString<64> PtrName;
1645     {
1646       llvm::raw_svector_ostream OS(PtrName);
1647       OS << CGM.getMangledName(GlobalDecl(VD));
1648       if (!VD->isExternallyVisible()) {
1649         unsigned DeviceID, FileID, Line;
1650         getTargetEntryUniqueInfo(CGM.getContext(),
1651                                  VD->getCanonicalDecl()->getBeginLoc(),
1652                                  DeviceID, FileID, Line);
1653         OS << llvm::format("_%x", FileID);
1654       }
1655       OS << "_decl_tgt_ref_ptr";
1656     }
1657     llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName);
1658     if (!Ptr) {
1659       QualType PtrTy = CGM.getContext().getPointerType(VD->getType());
1660       Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy),
1661                                         PtrName);
1662 
1663       auto *GV = cast<llvm::GlobalVariable>(Ptr);
1664       GV->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
1665 
1666       if (!CGM.getLangOpts().OpenMPIsDevice)
1667         GV->setInitializer(CGM.GetAddrOfGlobal(VD));
1668       registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr));
1669     }
1670     return Address(Ptr, CGM.getContext().getDeclAlign(VD));
1671   }
1672   return Address::invalid();
1673 }
1674 
1675 llvm::Constant *
getOrCreateThreadPrivateCache(const VarDecl * VD)1676 CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
1677   assert(!CGM.getLangOpts().OpenMPUseTLS ||
1678          !CGM.getContext().getTargetInfo().isTLSSupported());
1679   // Lookup the entry, lazily creating it if necessary.
1680   std::string Suffix = getName({"cache", ""});
1681   return getOrCreateInternalVariable(
1682       CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix));
1683 }
1684 
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)1685 Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
1686                                                 const VarDecl *VD,
1687                                                 Address VDAddr,
1688                                                 SourceLocation Loc) {
1689   if (CGM.getLangOpts().OpenMPUseTLS &&
1690       CGM.getContext().getTargetInfo().isTLSSupported())
1691     return VDAddr;
1692 
1693   llvm::Type *VarTy = VDAddr.getElementType();
1694   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
1695                          CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
1696                                                        CGM.Int8PtrTy),
1697                          CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
1698                          getOrCreateThreadPrivateCache(VD)};
1699   return Address(CGF.EmitRuntimeCall(
1700                      OMPBuilder.getOrCreateRuntimeFunction(
1701                          CGM.getModule(), OMPRTL___kmpc_threadprivate_cached),
1702                      Args),
1703                  VDAddr.getAlignment());
1704 }
1705 
emitThreadPrivateVarInit(CodeGenFunction & CGF,Address VDAddr,llvm::Value * Ctor,llvm::Value * CopyCtor,llvm::Value * Dtor,SourceLocation Loc)1706 void CGOpenMPRuntime::emitThreadPrivateVarInit(
1707     CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
1708     llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
1709   // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
1710   // library.
1711   llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc);
1712   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1713                           CGM.getModule(), OMPRTL___kmpc_global_thread_num),
1714                       OMPLoc);
1715   // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
1716   // to register constructor/destructor for variable.
1717   llvm::Value *Args[] = {
1718       OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy),
1719       Ctor, CopyCtor, Dtor};
1720   CGF.EmitRuntimeCall(
1721       OMPBuilder.getOrCreateRuntimeFunction(
1722           CGM.getModule(), OMPRTL___kmpc_threadprivate_register),
1723       Args);
1724 }
1725 
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)1726 llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
1727     const VarDecl *VD, Address VDAddr, SourceLocation Loc,
1728     bool PerformInit, CodeGenFunction *CGF) {
1729   if (CGM.getLangOpts().OpenMPUseTLS &&
1730       CGM.getContext().getTargetInfo().isTLSSupported())
1731     return nullptr;
1732 
1733   VD = VD->getDefinition(CGM.getContext());
1734   if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) {
1735     QualType ASTTy = VD->getType();
1736 
1737     llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
1738     const Expr *Init = VD->getAnyInitializer();
1739     if (CGM.getLangOpts().CPlusPlus && PerformInit) {
1740       // Generate function that re-emits the declaration's initializer into the
1741       // threadprivate copy of the variable VD
1742       CodeGenFunction CtorCGF(CGM);
1743       FunctionArgList Args;
1744       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
1745                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
1746                             ImplicitParamDecl::Other);
1747       Args.push_back(&Dst);
1748 
1749       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
1750           CGM.getContext().VoidPtrTy, Args);
1751       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1752       std::string Name = getName({"__kmpc_global_ctor_", ""});
1753       llvm::Function *Fn =
1754           CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc);
1755       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
1756                             Args, Loc, Loc);
1757       llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar(
1758           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
1759           CGM.getContext().VoidPtrTy, Dst.getLocation());
1760       Address Arg = Address(ArgVal, VDAddr.getAlignment());
1761       Arg = CtorCGF.Builder.CreateElementBitCast(
1762           Arg, CtorCGF.ConvertTypeForMem(ASTTy));
1763       CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
1764                                /*IsInitializer=*/true);
1765       ArgVal = CtorCGF.EmitLoadOfScalar(
1766           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
1767           CGM.getContext().VoidPtrTy, Dst.getLocation());
1768       CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
1769       CtorCGF.FinishFunction();
1770       Ctor = Fn;
1771     }
1772     if (VD->getType().isDestructedType() != QualType::DK_none) {
1773       // Generate function that emits destructor call for the threadprivate copy
1774       // of the variable VD
1775       CodeGenFunction DtorCGF(CGM);
1776       FunctionArgList Args;
1777       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
1778                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
1779                             ImplicitParamDecl::Other);
1780       Args.push_back(&Dst);
1781 
1782       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
1783           CGM.getContext().VoidTy, Args);
1784       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1785       std::string Name = getName({"__kmpc_global_dtor_", ""});
1786       llvm::Function *Fn =
1787           CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc);
1788       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
1789       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
1790                             Loc, Loc);
1791       // Create a scope with an artificial location for the body of this function.
1792       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
1793       llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar(
1794           DtorCGF.GetAddrOfLocalVar(&Dst),
1795           /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
1796       DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
1797                           DtorCGF.getDestroyer(ASTTy.isDestructedType()),
1798                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
1799       DtorCGF.FinishFunction();
1800       Dtor = Fn;
1801     }
1802     // Do not emit init function if it is not required.
1803     if (!Ctor && !Dtor)
1804       return nullptr;
1805 
1806     llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1807     auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
1808                                                /*isVarArg=*/false)
1809                            ->getPointerTo();
1810     // Copying constructor for the threadprivate variable.
1811     // Must be NULL - reserved by runtime, but currently it requires that this
1812     // parameter is always NULL. Otherwise it fires assertion.
1813     CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
1814     if (Ctor == nullptr) {
1815       auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
1816                                              /*isVarArg=*/false)
1817                          ->getPointerTo();
1818       Ctor = llvm::Constant::getNullValue(CtorTy);
1819     }
1820     if (Dtor == nullptr) {
1821       auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
1822                                              /*isVarArg=*/false)
1823                          ->getPointerTo();
1824       Dtor = llvm::Constant::getNullValue(DtorTy);
1825     }
1826     if (!CGF) {
1827       auto *InitFunctionTy =
1828           llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
1829       std::string Name = getName({"__omp_threadprivate_init_", ""});
1830       llvm::Function *InitFunction = CGM.CreateGlobalInitOrCleanUpFunction(
1831           InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction());
1832       CodeGenFunction InitCGF(CGM);
1833       FunctionArgList ArgList;
1834       InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
1835                             CGM.getTypes().arrangeNullaryFunction(), ArgList,
1836                             Loc, Loc);
1837       emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
1838       InitCGF.FinishFunction();
1839       return InitFunction;
1840     }
1841     emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
1842   }
1843   return nullptr;
1844 }
1845 
emitDeclareTargetVarDefinition(const VarDecl * VD,llvm::GlobalVariable * Addr,bool PerformInit)1846 bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD,
1847                                                      llvm::GlobalVariable *Addr,
1848                                                      bool PerformInit) {
1849   if (CGM.getLangOpts().OMPTargetTriples.empty() &&
1850       !CGM.getLangOpts().OpenMPIsDevice)
1851     return false;
1852   Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
1853       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
1854   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
1855       (*Res == OMPDeclareTargetDeclAttr::MT_To &&
1856        HasRequiresUnifiedSharedMemory))
1857     return CGM.getLangOpts().OpenMPIsDevice;
1858   VD = VD->getDefinition(CGM.getContext());
1859   assert(VD && "Unknown VarDecl");
1860 
1861   if (!DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second)
1862     return CGM.getLangOpts().OpenMPIsDevice;
1863 
1864   QualType ASTTy = VD->getType();
1865   SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc();
1866 
1867   // Produce the unique prefix to identify the new target regions. We use
1868   // the source location of the variable declaration which we know to not
1869   // conflict with any target region.
1870   unsigned DeviceID;
1871   unsigned FileID;
1872   unsigned Line;
1873   getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line);
1874   SmallString<128> Buffer, Out;
1875   {
1876     llvm::raw_svector_ostream OS(Buffer);
1877     OS << "__omp_offloading_" << llvm::format("_%x", DeviceID)
1878        << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
1879   }
1880 
1881   const Expr *Init = VD->getAnyInitializer();
1882   if (CGM.getLangOpts().CPlusPlus && PerformInit) {
1883     llvm::Constant *Ctor;
1884     llvm::Constant *ID;
1885     if (CGM.getLangOpts().OpenMPIsDevice) {
1886       // Generate function that re-emits the declaration's initializer into
1887       // the threadprivate copy of the variable VD
1888       CodeGenFunction CtorCGF(CGM);
1889 
1890       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
1891       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1892       llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction(
1893           FTy, Twine(Buffer, "_ctor"), FI, Loc);
1894       auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF);
1895       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
1896                             FunctionArgList(), Loc, Loc);
1897       auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF);
1898       CtorCGF.EmitAnyExprToMem(Init,
1899                                Address(Addr, CGM.getContext().getDeclAlign(VD)),
1900                                Init->getType().getQualifiers(),
1901                                /*IsInitializer=*/true);
1902       CtorCGF.FinishFunction();
1903       Ctor = Fn;
1904       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
1905       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor));
1906     } else {
1907       Ctor = new llvm::GlobalVariable(
1908           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1909           llvm::GlobalValue::PrivateLinkage,
1910           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor"));
1911       ID = Ctor;
1912     }
1913 
1914     // Register the information for the entry associated with the constructor.
1915     Out.clear();
1916     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
1917         DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor,
1918         ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor);
1919   }
1920   if (VD->getType().isDestructedType() != QualType::DK_none) {
1921     llvm::Constant *Dtor;
1922     llvm::Constant *ID;
1923     if (CGM.getLangOpts().OpenMPIsDevice) {
1924       // Generate function that emits destructor call for the threadprivate
1925       // copy of the variable VD
1926       CodeGenFunction DtorCGF(CGM);
1927 
1928       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
1929       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1930       llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction(
1931           FTy, Twine(Buffer, "_dtor"), FI, Loc);
1932       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
1933       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
1934                             FunctionArgList(), Loc, Loc);
1935       // Create a scope with an artificial location for the body of this
1936       // function.
1937       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
1938       DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)),
1939                           ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()),
1940                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
1941       DtorCGF.FinishFunction();
1942       Dtor = Fn;
1943       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
1944       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor));
1945     } else {
1946       Dtor = new llvm::GlobalVariable(
1947           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1948           llvm::GlobalValue::PrivateLinkage,
1949           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor"));
1950       ID = Dtor;
1951     }
1952     // Register the information for the entry associated with the destructor.
1953     Out.clear();
1954     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
1955         DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor,
1956         ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor);
1957   }
1958   return CGM.getLangOpts().OpenMPIsDevice;
1959 }
1960 
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)1961 Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF,
1962                                                           QualType VarType,
1963                                                           StringRef Name) {
1964   std::string Suffix = getName({"artificial", ""});
1965   llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType);
1966   llvm::Value *GAddr =
1967       getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix));
1968   if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPUseTLS &&
1969       CGM.getTarget().isTLSSupported()) {
1970     cast<llvm::GlobalVariable>(GAddr)->setThreadLocal(/*Val=*/true);
1971     return Address(GAddr, CGM.getContext().getTypeAlignInChars(VarType));
1972   }
1973   std::string CacheSuffix = getName({"cache", ""});
1974   llvm::Value *Args[] = {
1975       emitUpdateLocation(CGF, SourceLocation()),
1976       getThreadID(CGF, SourceLocation()),
1977       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy),
1978       CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy,
1979                                 /*isSigned=*/false),
1980       getOrCreateInternalVariable(
1981           CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))};
1982   return Address(
1983       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1984           CGF.EmitRuntimeCall(
1985               OMPBuilder.getOrCreateRuntimeFunction(
1986                   CGM.getModule(), OMPRTL___kmpc_threadprivate_cached),
1987               Args),
1988           VarLVType->getPointerTo(/*AddrSpace=*/0)),
1989       CGM.getContext().getTypeAlignInChars(VarType));
1990 }
1991 
emitIfClause(CodeGenFunction & CGF,const Expr * Cond,const RegionCodeGenTy & ThenGen,const RegionCodeGenTy & ElseGen)1992 void CGOpenMPRuntime::emitIfClause(CodeGenFunction &CGF, const Expr *Cond,
1993                                    const RegionCodeGenTy &ThenGen,
1994                                    const RegionCodeGenTy &ElseGen) {
1995   CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
1996 
1997   // If the condition constant folds and can be elided, try to avoid emitting
1998   // the condition and the dead arm of the if/else.
1999   bool CondConstant;
2000   if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
2001     if (CondConstant)
2002       ThenGen(CGF);
2003     else
2004       ElseGen(CGF);
2005     return;
2006   }
2007 
2008   // Otherwise, the condition did not fold, or we couldn't elide it.  Just
2009   // emit the conditional branch.
2010   llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then");
2011   llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else");
2012   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end");
2013   CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
2014 
2015   // Emit the 'then' code.
2016   CGF.EmitBlock(ThenBlock);
2017   ThenGen(CGF);
2018   CGF.EmitBranch(ContBlock);
2019   // Emit the 'else' code if present.
2020   // There is no need to emit line number for unconditional branch.
2021   (void)ApplyDebugLocation::CreateEmpty(CGF);
2022   CGF.EmitBlock(ElseBlock);
2023   ElseGen(CGF);
2024   // There is no need to emit line number for unconditional branch.
2025   (void)ApplyDebugLocation::CreateEmpty(CGF);
2026   CGF.EmitBranch(ContBlock);
2027   // Emit the continuation block for code after the if.
2028   CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
2029 }
2030 
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)2031 void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
2032                                        llvm::Function *OutlinedFn,
2033                                        ArrayRef<llvm::Value *> CapturedVars,
2034                                        const Expr *IfCond) {
2035   if (!CGF.HaveInsertPoint())
2036     return;
2037   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2038   auto &M = CGM.getModule();
2039   auto &&ThenGen = [&M, OutlinedFn, CapturedVars, RTLoc,
2040                     this](CodeGenFunction &CGF, PrePostActionTy &) {
2041     // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
2042     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2043     llvm::Value *Args[] = {
2044         RTLoc,
2045         CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
2046         CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
2047     llvm::SmallVector<llvm::Value *, 16> RealArgs;
2048     RealArgs.append(std::begin(Args), std::end(Args));
2049     RealArgs.append(CapturedVars.begin(), CapturedVars.end());
2050 
2051     llvm::FunctionCallee RTLFn =
2052         OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_fork_call);
2053     CGF.EmitRuntimeCall(RTLFn, RealArgs);
2054   };
2055   auto &&ElseGen = [&M, OutlinedFn, CapturedVars, RTLoc, Loc,
2056                     this](CodeGenFunction &CGF, PrePostActionTy &) {
2057     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2058     llvm::Value *ThreadID = RT.getThreadID(CGF, Loc);
2059     // Build calls:
2060     // __kmpc_serialized_parallel(&Loc, GTid);
2061     llvm::Value *Args[] = {RTLoc, ThreadID};
2062     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2063                             M, OMPRTL___kmpc_serialized_parallel),
2064                         Args);
2065 
2066     // OutlinedFn(&GTid, &zero_bound, CapturedStruct);
2067     Address ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc);
2068     Address ZeroAddrBound =
2069         CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2070                                          /*Name=*/".bound.zero.addr");
2071     CGF.InitTempAlloca(ZeroAddrBound, CGF.Builder.getInt32(/*C*/ 0));
2072     llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2073     // ThreadId for serialized parallels is 0.
2074     OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
2075     OutlinedFnArgs.push_back(ZeroAddrBound.getPointer());
2076     OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2077     RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
2078 
2079     // __kmpc_end_serialized_parallel(&Loc, GTid);
2080     llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
2081     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2082                             M, OMPRTL___kmpc_end_serialized_parallel),
2083                         EndArgs);
2084   };
2085   if (IfCond) {
2086     emitIfClause(CGF, IfCond, ThenGen, ElseGen);
2087   } else {
2088     RegionCodeGenTy ThenRCG(ThenGen);
2089     ThenRCG(CGF);
2090   }
2091 }
2092 
2093 // If we're inside an (outlined) parallel region, use the region info's
2094 // thread-ID variable (it is passed in a first argument of the outlined function
2095 // as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
2096 // regular serial code region, get thread ID by calling kmp_int32
2097 // kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
2098 // return the address of that temp.
emitThreadIDAddress(CodeGenFunction & CGF,SourceLocation Loc)2099 Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
2100                                              SourceLocation Loc) {
2101   if (auto *OMPRegionInfo =
2102           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
2103     if (OMPRegionInfo->getThreadIDVariable())
2104       return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(CGF);
2105 
2106   llvm::Value *ThreadID = getThreadID(CGF, Loc);
2107   QualType Int32Ty =
2108       CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
2109   Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
2110   CGF.EmitStoreOfScalar(ThreadID,
2111                         CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
2112 
2113   return ThreadIDTemp;
2114 }
2115 
getOrCreateInternalVariable(llvm::Type * Ty,const llvm::Twine & Name,unsigned AddressSpace)2116 llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable(
2117     llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) {
2118   SmallString<256> Buffer;
2119   llvm::raw_svector_ostream Out(Buffer);
2120   Out << Name;
2121   StringRef RuntimeName = Out.str();
2122   auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first;
2123   if (Elem.second) {
2124     assert(Elem.second->getType()->getPointerElementType() == Ty &&
2125            "OMP internal variable has different type than requested");
2126     return &*Elem.second;
2127   }
2128 
2129   return Elem.second = new llvm::GlobalVariable(
2130              CGM.getModule(), Ty, /*IsConstant*/ false,
2131              llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
2132              Elem.first(), /*InsertBefore=*/nullptr,
2133              llvm::GlobalValue::NotThreadLocal, AddressSpace);
2134 }
2135 
getCriticalRegionLock(StringRef CriticalName)2136 llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
2137   std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
2138   std::string Name = getName({Prefix, "var"});
2139   return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
2140 }
2141 
2142 namespace {
2143 /// Common pre(post)-action for different OpenMP constructs.
2144 class CommonActionTy final : public PrePostActionTy {
2145   llvm::FunctionCallee EnterCallee;
2146   ArrayRef<llvm::Value *> EnterArgs;
2147   llvm::FunctionCallee ExitCallee;
2148   ArrayRef<llvm::Value *> ExitArgs;
2149   bool Conditional;
2150   llvm::BasicBlock *ContBlock = nullptr;
2151 
2152 public:
CommonActionTy(llvm::FunctionCallee EnterCallee,ArrayRef<llvm::Value * > EnterArgs,llvm::FunctionCallee ExitCallee,ArrayRef<llvm::Value * > ExitArgs,bool Conditional=false)2153   CommonActionTy(llvm::FunctionCallee EnterCallee,
2154                  ArrayRef<llvm::Value *> EnterArgs,
2155                  llvm::FunctionCallee ExitCallee,
2156                  ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
2157       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
2158         ExitArgs(ExitArgs), Conditional(Conditional) {}
Enter(CodeGenFunction & CGF)2159   void Enter(CodeGenFunction &CGF) override {
2160     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
2161     if (Conditional) {
2162       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
2163       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
2164       ContBlock = CGF.createBasicBlock("omp_if.end");
2165       // Generate the branch (If-stmt)
2166       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
2167       CGF.EmitBlock(ThenBlock);
2168     }
2169   }
Done(CodeGenFunction & CGF)2170   void Done(CodeGenFunction &CGF) {
2171     // Emit the rest of blocks/branches
2172     CGF.EmitBranch(ContBlock);
2173     CGF.EmitBlock(ContBlock, true);
2174   }
Exit(CodeGenFunction & CGF)2175   void Exit(CodeGenFunction &CGF) override {
2176     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
2177   }
2178 };
2179 } // anonymous namespace
2180 
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)2181 void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
2182                                          StringRef CriticalName,
2183                                          const RegionCodeGenTy &CriticalOpGen,
2184                                          SourceLocation Loc, const Expr *Hint) {
2185   // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
2186   // CriticalOpGen();
2187   // __kmpc_end_critical(ident_t *, gtid, Lock);
2188   // Prepare arguments and build a call to __kmpc_critical
2189   if (!CGF.HaveInsertPoint())
2190     return;
2191   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2192                          getCriticalRegionLock(CriticalName)};
2193   llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
2194                                                 std::end(Args));
2195   if (Hint) {
2196     EnterArgs.push_back(CGF.Builder.CreateIntCast(
2197         CGF.EmitScalarExpr(Hint), CGM.Int32Ty, /*isSigned=*/false));
2198   }
2199   CommonActionTy Action(
2200       OMPBuilder.getOrCreateRuntimeFunction(
2201           CGM.getModule(),
2202           Hint ? OMPRTL___kmpc_critical_with_hint : OMPRTL___kmpc_critical),
2203       EnterArgs,
2204       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
2205                                             OMPRTL___kmpc_end_critical),
2206       Args);
2207   CriticalOpGen.setAction(Action);
2208   emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
2209 }
2210 
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)2211 void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
2212                                        const RegionCodeGenTy &MasterOpGen,
2213                                        SourceLocation Loc) {
2214   if (!CGF.HaveInsertPoint())
2215     return;
2216   // if(__kmpc_master(ident_t *, gtid)) {
2217   //   MasterOpGen();
2218   //   __kmpc_end_master(ident_t *, gtid);
2219   // }
2220   // Prepare arguments and build a call to __kmpc_master
2221   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2222   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2223                             CGM.getModule(), OMPRTL___kmpc_master),
2224                         Args,
2225                         OMPBuilder.getOrCreateRuntimeFunction(
2226                             CGM.getModule(), OMPRTL___kmpc_end_master),
2227                         Args,
2228                         /*Conditional=*/true);
2229   MasterOpGen.setAction(Action);
2230   emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
2231   Action.Done(CGF);
2232 }
2233 
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)2234 void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
2235                                         SourceLocation Loc) {
2236   if (!CGF.HaveInsertPoint())
2237     return;
2238   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2239     OMPBuilder.CreateTaskyield(CGF.Builder);
2240   } else {
2241     // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
2242     llvm::Value *Args[] = {
2243         emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2244         llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
2245     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2246                             CGM.getModule(), OMPRTL___kmpc_omp_taskyield),
2247                         Args);
2248   }
2249 
2250   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
2251     Region->emitUntiedSwitch(CGF);
2252 }
2253 
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)2254 void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
2255                                           const RegionCodeGenTy &TaskgroupOpGen,
2256                                           SourceLocation Loc) {
2257   if (!CGF.HaveInsertPoint())
2258     return;
2259   // __kmpc_taskgroup(ident_t *, gtid);
2260   // TaskgroupOpGen();
2261   // __kmpc_end_taskgroup(ident_t *, gtid);
2262   // Prepare arguments and build a call to __kmpc_taskgroup
2263   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2264   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2265                             CGM.getModule(), OMPRTL___kmpc_taskgroup),
2266                         Args,
2267                         OMPBuilder.getOrCreateRuntimeFunction(
2268                             CGM.getModule(), OMPRTL___kmpc_end_taskgroup),
2269                         Args);
2270   TaskgroupOpGen.setAction(Action);
2271   emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
2272 }
2273 
2274 /// Given an array of pointers to variables, project the address of a
2275 /// given variable.
emitAddrOfVarFromArray(CodeGenFunction & CGF,Address Array,unsigned Index,const VarDecl * Var)2276 static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
2277                                       unsigned Index, const VarDecl *Var) {
2278   // Pull out the pointer to the variable.
2279   Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index);
2280   llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
2281 
2282   Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
2283   Addr = CGF.Builder.CreateElementBitCast(
2284       Addr, CGF.ConvertTypeForMem(Var->getType()));
2285   return Addr;
2286 }
2287 
emitCopyprivateCopyFunction(CodeGenModule & CGM,llvm::Type * ArgsType,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps,SourceLocation Loc)2288 static llvm::Value *emitCopyprivateCopyFunction(
2289     CodeGenModule &CGM, llvm::Type *ArgsType,
2290     ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
2291     ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps,
2292     SourceLocation Loc) {
2293   ASTContext &C = CGM.getContext();
2294   // void copy_func(void *LHSArg, void *RHSArg);
2295   FunctionArgList Args;
2296   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
2297                            ImplicitParamDecl::Other);
2298   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
2299                            ImplicitParamDecl::Other);
2300   Args.push_back(&LHSArg);
2301   Args.push_back(&RHSArg);
2302   const auto &CGFI =
2303       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2304   std::string Name =
2305       CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"});
2306   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2307                                     llvm::GlobalValue::InternalLinkage, Name,
2308                                     &CGM.getModule());
2309   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2310   Fn->setDoesNotRecurse();
2311   CodeGenFunction CGF(CGM);
2312   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2313   // Dest = (void*[n])(LHSArg);
2314   // Src = (void*[n])(RHSArg);
2315   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2316       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
2317       ArgsType), CGF.getPointerAlign());
2318   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2319       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
2320       ArgsType), CGF.getPointerAlign());
2321   // *(Type0*)Dst[0] = *(Type0*)Src[0];
2322   // *(Type1*)Dst[1] = *(Type1*)Src[1];
2323   // ...
2324   // *(Typen*)Dst[n] = *(Typen*)Src[n];
2325   for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
2326     const auto *DestVar =
2327         cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
2328     Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
2329 
2330     const auto *SrcVar =
2331         cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
2332     Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
2333 
2334     const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
2335     QualType Type = VD->getType();
2336     CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
2337   }
2338   CGF.FinishFunction();
2339   return Fn;
2340 }
2341 
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > DstExprs,ArrayRef<const Expr * > AssignmentOps)2342 void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
2343                                        const RegionCodeGenTy &SingleOpGen,
2344                                        SourceLocation Loc,
2345                                        ArrayRef<const Expr *> CopyprivateVars,
2346                                        ArrayRef<const Expr *> SrcExprs,
2347                                        ArrayRef<const Expr *> DstExprs,
2348                                        ArrayRef<const Expr *> AssignmentOps) {
2349   if (!CGF.HaveInsertPoint())
2350     return;
2351   assert(CopyprivateVars.size() == SrcExprs.size() &&
2352          CopyprivateVars.size() == DstExprs.size() &&
2353          CopyprivateVars.size() == AssignmentOps.size());
2354   ASTContext &C = CGM.getContext();
2355   // int32 did_it = 0;
2356   // if(__kmpc_single(ident_t *, gtid)) {
2357   //   SingleOpGen();
2358   //   __kmpc_end_single(ident_t *, gtid);
2359   //   did_it = 1;
2360   // }
2361   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
2362   // <copy_func>, did_it);
2363 
2364   Address DidIt = Address::invalid();
2365   if (!CopyprivateVars.empty()) {
2366     // int32 did_it = 0;
2367     QualType KmpInt32Ty =
2368         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2369     DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
2370     CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
2371   }
2372   // Prepare arguments and build a call to __kmpc_single
2373   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2374   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2375                             CGM.getModule(), OMPRTL___kmpc_single),
2376                         Args,
2377                         OMPBuilder.getOrCreateRuntimeFunction(
2378                             CGM.getModule(), OMPRTL___kmpc_end_single),
2379                         Args,
2380                         /*Conditional=*/true);
2381   SingleOpGen.setAction(Action);
2382   emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
2383   if (DidIt.isValid()) {
2384     // did_it = 1;
2385     CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
2386   }
2387   Action.Done(CGF);
2388   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
2389   // <copy_func>, did_it);
2390   if (DidIt.isValid()) {
2391     llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
2392     QualType CopyprivateArrayTy = C.getConstantArrayType(
2393         C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
2394         /*IndexTypeQuals=*/0);
2395     // Create a list of all private variables for copyprivate.
2396     Address CopyprivateList =
2397         CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
2398     for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
2399       Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I);
2400       CGF.Builder.CreateStore(
2401           CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2402               CGF.EmitLValue(CopyprivateVars[I]).getPointer(CGF),
2403               CGF.VoidPtrTy),
2404           Elem);
2405     }
2406     // Build function that copies private values from single region to all other
2407     // threads in the corresponding parallel region.
2408     llvm::Value *CpyFn = emitCopyprivateCopyFunction(
2409         CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
2410         CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc);
2411     llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
2412     Address CL =
2413       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
2414                                                       CGF.VoidPtrTy);
2415     llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt);
2416     llvm::Value *Args[] = {
2417         emitUpdateLocation(CGF, Loc), // ident_t *<loc>
2418         getThreadID(CGF, Loc),        // i32 <gtid>
2419         BufSize,                      // size_t <buf_size>
2420         CL.getPointer(),              // void *<copyprivate list>
2421         CpyFn,                        // void (*) (void *, void *) <copy_func>
2422         DidItVal                      // i32 did_it
2423     };
2424     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2425                             CGM.getModule(), OMPRTL___kmpc_copyprivate),
2426                         Args);
2427   }
2428 }
2429 
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)2430 void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
2431                                         const RegionCodeGenTy &OrderedOpGen,
2432                                         SourceLocation Loc, bool IsThreads) {
2433   if (!CGF.HaveInsertPoint())
2434     return;
2435   // __kmpc_ordered(ident_t *, gtid);
2436   // OrderedOpGen();
2437   // __kmpc_end_ordered(ident_t *, gtid);
2438   // Prepare arguments and build a call to __kmpc_ordered
2439   if (IsThreads) {
2440     llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2441     CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2442                               CGM.getModule(), OMPRTL___kmpc_ordered),
2443                           Args,
2444                           OMPBuilder.getOrCreateRuntimeFunction(
2445                               CGM.getModule(), OMPRTL___kmpc_end_ordered),
2446                           Args);
2447     OrderedOpGen.setAction(Action);
2448     emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
2449     return;
2450   }
2451   emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
2452 }
2453 
getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind)2454 unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) {
2455   unsigned Flags;
2456   if (Kind == OMPD_for)
2457     Flags = OMP_IDENT_BARRIER_IMPL_FOR;
2458   else if (Kind == OMPD_sections)
2459     Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
2460   else if (Kind == OMPD_single)
2461     Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
2462   else if (Kind == OMPD_barrier)
2463     Flags = OMP_IDENT_BARRIER_EXPL;
2464   else
2465     Flags = OMP_IDENT_BARRIER_IMPL;
2466   return Flags;
2467 }
2468 
getDefaultScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPScheduleClauseKind & ScheduleKind,const Expr * & ChunkExpr) const2469 void CGOpenMPRuntime::getDefaultScheduleAndChunk(
2470     CodeGenFunction &CGF, const OMPLoopDirective &S,
2471     OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const {
2472   // Check if the loop directive is actually a doacross loop directive. In this
2473   // case choose static, 1 schedule.
2474   if (llvm::any_of(
2475           S.getClausesOfKind<OMPOrderedClause>(),
2476           [](const OMPOrderedClause *C) { return C->getNumForLoops(); })) {
2477     ScheduleKind = OMPC_SCHEDULE_static;
2478     // Chunk size is 1 in this case.
2479     llvm::APInt ChunkSize(32, 1);
2480     ChunkExpr = IntegerLiteral::Create(
2481         CGF.getContext(), ChunkSize,
2482         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
2483         SourceLocation());
2484   }
2485 }
2486 
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)2487 void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
2488                                       OpenMPDirectiveKind Kind, bool EmitChecks,
2489                                       bool ForceSimpleCall) {
2490   // Check if we should use the OMPBuilder
2491   auto *OMPRegionInfo =
2492       dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo);
2493   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2494     CGF.Builder.restoreIP(OMPBuilder.CreateBarrier(
2495         CGF.Builder, Kind, ForceSimpleCall, EmitChecks));
2496     return;
2497   }
2498 
2499   if (!CGF.HaveInsertPoint())
2500     return;
2501   // Build call __kmpc_cancel_barrier(loc, thread_id);
2502   // Build call __kmpc_barrier(loc, thread_id);
2503   unsigned Flags = getDefaultFlagsForBarriers(Kind);
2504   // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
2505   // thread_id);
2506   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
2507                          getThreadID(CGF, Loc)};
2508   if (OMPRegionInfo) {
2509     if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
2510       llvm::Value *Result = CGF.EmitRuntimeCall(
2511           OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
2512                                                 OMPRTL___kmpc_cancel_barrier),
2513           Args);
2514       if (EmitChecks) {
2515         // if (__kmpc_cancel_barrier()) {
2516         //   exit from construct;
2517         // }
2518         llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
2519         llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
2520         llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
2521         CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
2522         CGF.EmitBlock(ExitBB);
2523         //   exit from construct;
2524         CodeGenFunction::JumpDest CancelDestination =
2525             CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
2526         CGF.EmitBranchThroughCleanup(CancelDestination);
2527         CGF.EmitBlock(ContBB, /*IsFinished=*/true);
2528       }
2529       return;
2530     }
2531   }
2532   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2533                           CGM.getModule(), OMPRTL___kmpc_barrier),
2534                       Args);
2535 }
2536 
2537 /// Map the OpenMP loop schedule to the runtime enumeration.
getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,bool Chunked,bool Ordered)2538 static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
2539                                           bool Chunked, bool Ordered) {
2540   switch (ScheduleKind) {
2541   case OMPC_SCHEDULE_static:
2542     return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
2543                    : (Ordered ? OMP_ord_static : OMP_sch_static);
2544   case OMPC_SCHEDULE_dynamic:
2545     return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
2546   case OMPC_SCHEDULE_guided:
2547     return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
2548   case OMPC_SCHEDULE_runtime:
2549     return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
2550   case OMPC_SCHEDULE_auto:
2551     return Ordered ? OMP_ord_auto : OMP_sch_auto;
2552   case OMPC_SCHEDULE_unknown:
2553     assert(!Chunked && "chunk was specified but schedule kind not known");
2554     return Ordered ? OMP_ord_static : OMP_sch_static;
2555   }
2556   llvm_unreachable("Unexpected runtime schedule");
2557 }
2558 
2559 /// Map the OpenMP distribute schedule to the runtime enumeration.
2560 static OpenMPSchedType
getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked)2561 getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
2562   // only static is allowed for dist_schedule
2563   return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
2564 }
2565 
isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const2566 bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
2567                                          bool Chunked) const {
2568   OpenMPSchedType Schedule =
2569       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
2570   return Schedule == OMP_sch_static;
2571 }
2572 
isStaticNonchunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const2573 bool CGOpenMPRuntime::isStaticNonchunked(
2574     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
2575   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
2576   return Schedule == OMP_dist_sch_static;
2577 }
2578 
isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const2579 bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,
2580                                       bool Chunked) const {
2581   OpenMPSchedType Schedule =
2582       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
2583   return Schedule == OMP_sch_static_chunked;
2584 }
2585 
isStaticChunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const2586 bool CGOpenMPRuntime::isStaticChunked(
2587     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
2588   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
2589   return Schedule == OMP_dist_sch_static_chunked;
2590 }
2591 
isDynamic(OpenMPScheduleClauseKind ScheduleKind) const2592 bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
2593   OpenMPSchedType Schedule =
2594       getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
2595   assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
2596   return Schedule != OMP_sch_static;
2597 }
2598 
addMonoNonMonoModifier(CodeGenModule & CGM,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2)2599 static int addMonoNonMonoModifier(CodeGenModule &CGM, OpenMPSchedType Schedule,
2600                                   OpenMPScheduleClauseModifier M1,
2601                                   OpenMPScheduleClauseModifier M2) {
2602   int Modifier = 0;
2603   switch (M1) {
2604   case OMPC_SCHEDULE_MODIFIER_monotonic:
2605     Modifier = OMP_sch_modifier_monotonic;
2606     break;
2607   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
2608     Modifier = OMP_sch_modifier_nonmonotonic;
2609     break;
2610   case OMPC_SCHEDULE_MODIFIER_simd:
2611     if (Schedule == OMP_sch_static_chunked)
2612       Schedule = OMP_sch_static_balanced_chunked;
2613     break;
2614   case OMPC_SCHEDULE_MODIFIER_last:
2615   case OMPC_SCHEDULE_MODIFIER_unknown:
2616     break;
2617   }
2618   switch (M2) {
2619   case OMPC_SCHEDULE_MODIFIER_monotonic:
2620     Modifier = OMP_sch_modifier_monotonic;
2621     break;
2622   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
2623     Modifier = OMP_sch_modifier_nonmonotonic;
2624     break;
2625   case OMPC_SCHEDULE_MODIFIER_simd:
2626     if (Schedule == OMP_sch_static_chunked)
2627       Schedule = OMP_sch_static_balanced_chunked;
2628     break;
2629   case OMPC_SCHEDULE_MODIFIER_last:
2630   case OMPC_SCHEDULE_MODIFIER_unknown:
2631     break;
2632   }
2633   // OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Desription.
2634   // If the static schedule kind is specified or if the ordered clause is
2635   // specified, and if the nonmonotonic modifier is not specified, the effect is
2636   // as if the monotonic modifier is specified. Otherwise, unless the monotonic
2637   // modifier is specified, the effect is as if the nonmonotonic modifier is
2638   // specified.
2639   if (CGM.getLangOpts().OpenMP >= 50 && Modifier == 0) {
2640     if (!(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static ||
2641           Schedule == OMP_sch_static_balanced_chunked ||
2642           Schedule == OMP_ord_static_chunked || Schedule == OMP_ord_static ||
2643           Schedule == OMP_dist_sch_static_chunked ||
2644           Schedule == OMP_dist_sch_static))
2645       Modifier = OMP_sch_modifier_nonmonotonic;
2646   }
2647   return Schedule | Modifier;
2648 }
2649 
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)2650 void CGOpenMPRuntime::emitForDispatchInit(
2651     CodeGenFunction &CGF, SourceLocation Loc,
2652     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
2653     bool Ordered, const DispatchRTInput &DispatchValues) {
2654   if (!CGF.HaveInsertPoint())
2655     return;
2656   OpenMPSchedType Schedule = getRuntimeSchedule(
2657       ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
2658   assert(Ordered ||
2659          (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
2660           Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
2661           Schedule != OMP_sch_static_balanced_chunked));
2662   // Call __kmpc_dispatch_init(
2663   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
2664   //          kmp_int[32|64] lower, kmp_int[32|64] upper,
2665   //          kmp_int[32|64] stride, kmp_int[32|64] chunk);
2666 
2667   // If the Chunk was not specified in the clause - use default value 1.
2668   llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
2669                                             : CGF.Builder.getIntN(IVSize, 1);
2670   llvm::Value *Args[] = {
2671       emitUpdateLocation(CGF, Loc),
2672       getThreadID(CGF, Loc),
2673       CGF.Builder.getInt32(addMonoNonMonoModifier(
2674           CGM, Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
2675       DispatchValues.LB,                                     // Lower
2676       DispatchValues.UB,                                     // Upper
2677       CGF.Builder.getIntN(IVSize, 1),                        // Stride
2678       Chunk                                                  // Chunk
2679   };
2680   CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
2681 }
2682 
emitForStaticInitCall(CodeGenFunction & CGF,llvm::Value * UpdateLocation,llvm::Value * ThreadId,llvm::FunctionCallee ForStaticInitFunction,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2,const CGOpenMPRuntime::StaticRTInput & Values)2683 static void emitForStaticInitCall(
2684     CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
2685     llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule,
2686     OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
2687     const CGOpenMPRuntime::StaticRTInput &Values) {
2688   if (!CGF.HaveInsertPoint())
2689     return;
2690 
2691   assert(!Values.Ordered);
2692   assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
2693          Schedule == OMP_sch_static_balanced_chunked ||
2694          Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
2695          Schedule == OMP_dist_sch_static ||
2696          Schedule == OMP_dist_sch_static_chunked);
2697 
2698   // Call __kmpc_for_static_init(
2699   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
2700   //          kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
2701   //          kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
2702   //          kmp_int[32|64] incr, kmp_int[32|64] chunk);
2703   llvm::Value *Chunk = Values.Chunk;
2704   if (Chunk == nullptr) {
2705     assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
2706             Schedule == OMP_dist_sch_static) &&
2707            "expected static non-chunked schedule");
2708     // If the Chunk was not specified in the clause - use default value 1.
2709     Chunk = CGF.Builder.getIntN(Values.IVSize, 1);
2710   } else {
2711     assert((Schedule == OMP_sch_static_chunked ||
2712             Schedule == OMP_sch_static_balanced_chunked ||
2713             Schedule == OMP_ord_static_chunked ||
2714             Schedule == OMP_dist_sch_static_chunked) &&
2715            "expected static chunked schedule");
2716   }
2717   llvm::Value *Args[] = {
2718       UpdateLocation,
2719       ThreadId,
2720       CGF.Builder.getInt32(addMonoNonMonoModifier(CGF.CGM, Schedule, M1,
2721                                                   M2)), // Schedule type
2722       Values.IL.getPointer(),                           // &isLastIter
2723       Values.LB.getPointer(),                           // &LB
2724       Values.UB.getPointer(),                           // &UB
2725       Values.ST.getPointer(),                           // &Stride
2726       CGF.Builder.getIntN(Values.IVSize, 1),            // Incr
2727       Chunk                                             // Chunk
2728   };
2729   CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
2730 }
2731 
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)2732 void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
2733                                         SourceLocation Loc,
2734                                         OpenMPDirectiveKind DKind,
2735                                         const OpenMPScheduleTy &ScheduleKind,
2736                                         const StaticRTInput &Values) {
2737   OpenMPSchedType ScheduleNum = getRuntimeSchedule(
2738       ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered);
2739   assert(isOpenMPWorksharingDirective(DKind) &&
2740          "Expected loop-based or sections-based directive.");
2741   llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc,
2742                                              isOpenMPLoopDirective(DKind)
2743                                                  ? OMP_IDENT_WORK_LOOP
2744                                                  : OMP_IDENT_WORK_SECTIONS);
2745   llvm::Value *ThreadId = getThreadID(CGF, Loc);
2746   llvm::FunctionCallee StaticInitFunction =
2747       createForStaticInitFunction(Values.IVSize, Values.IVSigned);
2748   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
2749   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
2750                         ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values);
2751 }
2752 
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const CGOpenMPRuntime::StaticRTInput & Values)2753 void CGOpenMPRuntime::emitDistributeStaticInit(
2754     CodeGenFunction &CGF, SourceLocation Loc,
2755     OpenMPDistScheduleClauseKind SchedKind,
2756     const CGOpenMPRuntime::StaticRTInput &Values) {
2757   OpenMPSchedType ScheduleNum =
2758       getRuntimeSchedule(SchedKind, Values.Chunk != nullptr);
2759   llvm::Value *UpdatedLocation =
2760       emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE);
2761   llvm::Value *ThreadId = getThreadID(CGF, Loc);
2762   llvm::FunctionCallee StaticInitFunction =
2763       createForStaticInitFunction(Values.IVSize, Values.IVSigned);
2764   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
2765                         ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
2766                         OMPC_SCHEDULE_MODIFIER_unknown, Values);
2767 }
2768 
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)2769 void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
2770                                           SourceLocation Loc,
2771                                           OpenMPDirectiveKind DKind) {
2772   if (!CGF.HaveInsertPoint())
2773     return;
2774   // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
2775   llvm::Value *Args[] = {
2776       emitUpdateLocation(CGF, Loc,
2777                          isOpenMPDistributeDirective(DKind)
2778                              ? OMP_IDENT_WORK_DISTRIBUTE
2779                              : isOpenMPLoopDirective(DKind)
2780                                    ? OMP_IDENT_WORK_LOOP
2781                                    : OMP_IDENT_WORK_SECTIONS),
2782       getThreadID(CGF, Loc)};
2783   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
2784   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2785                           CGM.getModule(), OMPRTL___kmpc_for_static_fini),
2786                       Args);
2787 }
2788 
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)2789 void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
2790                                                  SourceLocation Loc,
2791                                                  unsigned IVSize,
2792                                                  bool IVSigned) {
2793   if (!CGF.HaveInsertPoint())
2794     return;
2795   // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
2796   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2797   CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
2798 }
2799 
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)2800 llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
2801                                           SourceLocation Loc, unsigned IVSize,
2802                                           bool IVSigned, Address IL,
2803                                           Address LB, Address UB,
2804                                           Address ST) {
2805   // Call __kmpc_dispatch_next(
2806   //          ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
2807   //          kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
2808   //          kmp_int[32|64] *p_stride);
2809   llvm::Value *Args[] = {
2810       emitUpdateLocation(CGF, Loc),
2811       getThreadID(CGF, Loc),
2812       IL.getPointer(), // &isLastIter
2813       LB.getPointer(), // &Lower
2814       UB.getPointer(), // &Upper
2815       ST.getPointer()  // &Stride
2816   };
2817   llvm::Value *Call =
2818       CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
2819   return CGF.EmitScalarConversion(
2820       Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1),
2821       CGF.getContext().BoolTy, Loc);
2822 }
2823 
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)2824 void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
2825                                            llvm::Value *NumThreads,
2826                                            SourceLocation Loc) {
2827   if (!CGF.HaveInsertPoint())
2828     return;
2829   // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
2830   llvm::Value *Args[] = {
2831       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2832       CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
2833   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2834                           CGM.getModule(), OMPRTL___kmpc_push_num_threads),
2835                       Args);
2836 }
2837 
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)2838 void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
2839                                          ProcBindKind ProcBind,
2840                                          SourceLocation Loc) {
2841   if (!CGF.HaveInsertPoint())
2842     return;
2843   assert(ProcBind != OMP_PROC_BIND_unknown && "Unsupported proc_bind value.");
2844   // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
2845   llvm::Value *Args[] = {
2846       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2847       llvm::ConstantInt::get(CGM.IntTy, unsigned(ProcBind), /*isSigned=*/true)};
2848   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2849                           CGM.getModule(), OMPRTL___kmpc_push_proc_bind),
2850                       Args);
2851 }
2852 
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * >,SourceLocation Loc,llvm::AtomicOrdering AO)2853 void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
2854                                 SourceLocation Loc, llvm::AtomicOrdering AO) {
2855   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2856     OMPBuilder.CreateFlush(CGF.Builder);
2857   } else {
2858     if (!CGF.HaveInsertPoint())
2859       return;
2860     // Build call void __kmpc_flush(ident_t *loc)
2861     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2862                             CGM.getModule(), OMPRTL___kmpc_flush),
2863                         emitUpdateLocation(CGF, Loc));
2864   }
2865 }
2866 
2867 namespace {
2868 /// Indexes of fields for type kmp_task_t.
2869 enum KmpTaskTFields {
2870   /// List of shared variables.
2871   KmpTaskTShareds,
2872   /// Task routine.
2873   KmpTaskTRoutine,
2874   /// Partition id for the untied tasks.
2875   KmpTaskTPartId,
2876   /// Function with call of destructors for private variables.
2877   Data1,
2878   /// Task priority.
2879   Data2,
2880   /// (Taskloops only) Lower bound.
2881   KmpTaskTLowerBound,
2882   /// (Taskloops only) Upper bound.
2883   KmpTaskTUpperBound,
2884   /// (Taskloops only) Stride.
2885   KmpTaskTStride,
2886   /// (Taskloops only) Is last iteration flag.
2887   KmpTaskTLastIter,
2888   /// (Taskloops only) Reduction data.
2889   KmpTaskTReductions,
2890 };
2891 } // anonymous namespace
2892 
empty() const2893 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
2894   return OffloadEntriesTargetRegion.empty() &&
2895          OffloadEntriesDeviceGlobalVar.empty();
2896 }
2897 
2898 /// Initialize target region entry.
2899 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,unsigned Order)2900     initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
2901                                     StringRef ParentName, unsigned LineNum,
2902                                     unsigned Order) {
2903   assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
2904                                              "only required for the device "
2905                                              "code generation.");
2906   OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
2907       OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
2908                                    OMPTargetRegionEntryTargetRegion);
2909   ++OffloadingEntriesNum;
2910 }
2911 
2912 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,llvm::Constant * Addr,llvm::Constant * ID,OMPTargetRegionEntryKind Flags)2913     registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
2914                                   StringRef ParentName, unsigned LineNum,
2915                                   llvm::Constant *Addr, llvm::Constant *ID,
2916                                   OMPTargetRegionEntryKind Flags) {
2917   // If we are emitting code for a target, the entry is already initialized,
2918   // only has to be registered.
2919   if (CGM.getLangOpts().OpenMPIsDevice) {
2920     if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) {
2921       unsigned DiagID = CGM.getDiags().getCustomDiagID(
2922           DiagnosticsEngine::Error,
2923           "Unable to find target region on line '%0' in the device code.");
2924       CGM.getDiags().Report(DiagID) << LineNum;
2925       return;
2926     }
2927     auto &Entry =
2928         OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
2929     assert(Entry.isValid() && "Entry not initialized!");
2930     Entry.setAddress(Addr);
2931     Entry.setID(ID);
2932     Entry.setFlags(Flags);
2933   } else {
2934     OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
2935     OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
2936     ++OffloadingEntriesNum;
2937   }
2938 }
2939 
hasTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum) const2940 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
2941     unsigned DeviceID, unsigned FileID, StringRef ParentName,
2942     unsigned LineNum) const {
2943   auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
2944   if (PerDevice == OffloadEntriesTargetRegion.end())
2945     return false;
2946   auto PerFile = PerDevice->second.find(FileID);
2947   if (PerFile == PerDevice->second.end())
2948     return false;
2949   auto PerParentName = PerFile->second.find(ParentName);
2950   if (PerParentName == PerFile->second.end())
2951     return false;
2952   auto PerLine = PerParentName->second.find(LineNum);
2953   if (PerLine == PerParentName->second.end())
2954     return false;
2955   // Fail if this entry is already registered.
2956   if (PerLine->second.getAddress() || PerLine->second.getID())
2957     return false;
2958   return true;
2959 }
2960 
actOnTargetRegionEntriesInfo(const OffloadTargetRegionEntryInfoActTy & Action)2961 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
2962     const OffloadTargetRegionEntryInfoActTy &Action) {
2963   // Scan all target region entries and perform the provided action.
2964   for (const auto &D : OffloadEntriesTargetRegion)
2965     for (const auto &F : D.second)
2966       for (const auto &P : F.second)
2967         for (const auto &L : P.second)
2968           Action(D.first, F.first, P.first(), L.first, L.second);
2969 }
2970 
2971 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeDeviceGlobalVarEntryInfo(StringRef Name,OMPTargetGlobalVarEntryKind Flags,unsigned Order)2972     initializeDeviceGlobalVarEntryInfo(StringRef Name,
2973                                        OMPTargetGlobalVarEntryKind Flags,
2974                                        unsigned Order) {
2975   assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
2976                                              "only required for the device "
2977                                              "code generation.");
2978   OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
2979   ++OffloadingEntriesNum;
2980 }
2981 
2982 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerDeviceGlobalVarEntryInfo(StringRef VarName,llvm::Constant * Addr,CharUnits VarSize,OMPTargetGlobalVarEntryKind Flags,llvm::GlobalValue::LinkageTypes Linkage)2983     registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr,
2984                                      CharUnits VarSize,
2985                                      OMPTargetGlobalVarEntryKind Flags,
2986                                      llvm::GlobalValue::LinkageTypes Linkage) {
2987   if (CGM.getLangOpts().OpenMPIsDevice) {
2988     auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
2989     assert(Entry.isValid() && Entry.getFlags() == Flags &&
2990            "Entry not initialized!");
2991     assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
2992            "Resetting with the new address.");
2993     if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
2994       if (Entry.getVarSize().isZero()) {
2995         Entry.setVarSize(VarSize);
2996         Entry.setLinkage(Linkage);
2997       }
2998       return;
2999     }
3000     Entry.setVarSize(VarSize);
3001     Entry.setLinkage(Linkage);
3002     Entry.setAddress(Addr);
3003   } else {
3004     if (hasDeviceGlobalVarEntryInfo(VarName)) {
3005       auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
3006       assert(Entry.isValid() && Entry.getFlags() == Flags &&
3007              "Entry not initialized!");
3008       assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
3009              "Resetting with the new address.");
3010       if (Entry.getVarSize().isZero()) {
3011         Entry.setVarSize(VarSize);
3012         Entry.setLinkage(Linkage);
3013       }
3014       return;
3015     }
3016     OffloadEntriesDeviceGlobalVar.try_emplace(
3017         VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage);
3018     ++OffloadingEntriesNum;
3019   }
3020 }
3021 
3022 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
actOnDeviceGlobalVarEntriesInfo(const OffloadDeviceGlobalVarEntryInfoActTy & Action)3023     actOnDeviceGlobalVarEntriesInfo(
3024         const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
3025   // Scan all target region entries and perform the provided action.
3026   for (const auto &E : OffloadEntriesDeviceGlobalVar)
3027     Action(E.getKey(), E.getValue());
3028 }
3029 
createOffloadEntry(llvm::Constant * ID,llvm::Constant * Addr,uint64_t Size,int32_t Flags,llvm::GlobalValue::LinkageTypes Linkage)3030 void CGOpenMPRuntime::createOffloadEntry(
3031     llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags,
3032     llvm::GlobalValue::LinkageTypes Linkage) {
3033   StringRef Name = Addr->getName();
3034   llvm::Module &M = CGM.getModule();
3035   llvm::LLVMContext &C = M.getContext();
3036 
3037   // Create constant string with the name.
3038   llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
3039 
3040   std::string StringName = getName({"omp_offloading", "entry_name"});
3041   auto *Str = new llvm::GlobalVariable(
3042       M, StrPtrInit->getType(), /*isConstant=*/true,
3043       llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName);
3044   Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3045 
3046   llvm::Constant *Data[] = {llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy),
3047                             llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy),
3048                             llvm::ConstantInt::get(CGM.SizeTy, Size),
3049                             llvm::ConstantInt::get(CGM.Int32Ty, Flags),
3050                             llvm::ConstantInt::get(CGM.Int32Ty, 0)};
3051   std::string EntryName = getName({"omp_offloading", "entry", ""});
3052   llvm::GlobalVariable *Entry = createGlobalStruct(
3053       CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data,
3054       Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage);
3055 
3056   // The entry has to be created in the section the linker expects it to be.
3057   Entry->setSection("omp_offloading_entries");
3058 }
3059 
createOffloadEntriesAndInfoMetadata()3060 void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
3061   // Emit the offloading entries and metadata so that the device codegen side
3062   // can easily figure out what to emit. The produced metadata looks like
3063   // this:
3064   //
3065   // !omp_offload.info = !{!1, ...}
3066   //
3067   // Right now we only generate metadata for function that contain target
3068   // regions.
3069 
3070   // If we are in simd mode or there are no entries, we don't need to do
3071   // anything.
3072   if (CGM.getLangOpts().OpenMPSimd || OffloadEntriesInfoManager.empty())
3073     return;
3074 
3075   llvm::Module &M = CGM.getModule();
3076   llvm::LLVMContext &C = M.getContext();
3077   SmallVector<std::tuple<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *,
3078                          SourceLocation, StringRef>,
3079               16>
3080       OrderedEntries(OffloadEntriesInfoManager.size());
3081   llvm::SmallVector<StringRef, 16> ParentFunctions(
3082       OffloadEntriesInfoManager.size());
3083 
3084   // Auxiliary methods to create metadata values and strings.
3085   auto &&GetMDInt = [this](unsigned V) {
3086     return llvm::ConstantAsMetadata::get(
3087         llvm::ConstantInt::get(CGM.Int32Ty, V));
3088   };
3089 
3090   auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); };
3091 
3092   // Create the offloading info metadata node.
3093   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
3094 
3095   // Create function that emits metadata for each target region entry;
3096   auto &&TargetRegionMetadataEmitter =
3097       [this, &C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt,
3098        &GetMDString](
3099           unsigned DeviceID, unsigned FileID, StringRef ParentName,
3100           unsigned Line,
3101           const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
3102         // Generate metadata for target regions. Each entry of this metadata
3103         // contains:
3104         // - Entry 0 -> Kind of this type of metadata (0).
3105         // - Entry 1 -> Device ID of the file where the entry was identified.
3106         // - Entry 2 -> File ID of the file where the entry was identified.
3107         // - Entry 3 -> Mangled name of the function where the entry was
3108         // identified.
3109         // - Entry 4 -> Line in the file where the entry was identified.
3110         // - Entry 5 -> Order the entry was created.
3111         // The first element of the metadata node is the kind.
3112         llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID),
3113                                  GetMDInt(FileID),      GetMDString(ParentName),
3114                                  GetMDInt(Line),        GetMDInt(E.getOrder())};
3115 
3116         SourceLocation Loc;
3117         for (auto I = CGM.getContext().getSourceManager().fileinfo_begin(),
3118                   E = CGM.getContext().getSourceManager().fileinfo_end();
3119              I != E; ++I) {
3120           if (I->getFirst()->getUniqueID().getDevice() == DeviceID &&
3121               I->getFirst()->getUniqueID().getFile() == FileID) {
3122             Loc = CGM.getContext().getSourceManager().translateFileLineCol(
3123                 I->getFirst(), Line, 1);
3124             break;
3125           }
3126         }
3127         // Save this entry in the right position of the ordered entries array.
3128         OrderedEntries[E.getOrder()] = std::make_tuple(&E, Loc, ParentName);
3129         ParentFunctions[E.getOrder()] = ParentName;
3130 
3131         // Add metadata to the named metadata node.
3132         MD->addOperand(llvm::MDNode::get(C, Ops));
3133       };
3134 
3135   OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
3136       TargetRegionMetadataEmitter);
3137 
3138   // Create function that emits metadata for each device global variable entry;
3139   auto &&DeviceGlobalVarMetadataEmitter =
3140       [&C, &OrderedEntries, &GetMDInt, &GetMDString,
3141        MD](StringRef MangledName,
3142            const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar
3143                &E) {
3144         // Generate metadata for global variables. Each entry of this metadata
3145         // contains:
3146         // - Entry 0 -> Kind of this type of metadata (1).
3147         // - Entry 1 -> Mangled name of the variable.
3148         // - Entry 2 -> Declare target kind.
3149         // - Entry 3 -> Order the entry was created.
3150         // The first element of the metadata node is the kind.
3151         llvm::Metadata *Ops[] = {
3152             GetMDInt(E.getKind()), GetMDString(MangledName),
3153             GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
3154 
3155         // Save this entry in the right position of the ordered entries array.
3156         OrderedEntries[E.getOrder()] =
3157             std::make_tuple(&E, SourceLocation(), MangledName);
3158 
3159         // Add metadata to the named metadata node.
3160         MD->addOperand(llvm::MDNode::get(C, Ops));
3161       };
3162 
3163   OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo(
3164       DeviceGlobalVarMetadataEmitter);
3165 
3166   for (const auto &E : OrderedEntries) {
3167     assert(std::get<0>(E) && "All ordered entries must exist!");
3168     if (const auto *CE =
3169             dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
3170                 std::get<0>(E))) {
3171       if (!CE->getID() || !CE->getAddress()) {
3172         // Do not blame the entry if the parent funtion is not emitted.
3173         StringRef FnName = ParentFunctions[CE->getOrder()];
3174         if (!CGM.GetGlobalValue(FnName))
3175           continue;
3176         unsigned DiagID = CGM.getDiags().getCustomDiagID(
3177             DiagnosticsEngine::Error,
3178             "Offloading entry for target region in %0 is incorrect: either the "
3179             "address or the ID is invalid.");
3180         CGM.getDiags().Report(std::get<1>(E), DiagID) << FnName;
3181         continue;
3182       }
3183       createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0,
3184                          CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage);
3185     } else if (const auto *CE = dyn_cast<OffloadEntriesInfoManagerTy::
3186                                              OffloadEntryInfoDeviceGlobalVar>(
3187                    std::get<0>(E))) {
3188       OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags =
3189           static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
3190               CE->getFlags());
3191       switch (Flags) {
3192       case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: {
3193         if (CGM.getLangOpts().OpenMPIsDevice &&
3194             CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())
3195           continue;
3196         if (!CE->getAddress()) {
3197           unsigned DiagID = CGM.getDiags().getCustomDiagID(
3198               DiagnosticsEngine::Error, "Offloading entry for declare target "
3199                                         "variable %0 is incorrect: the "
3200                                         "address is invalid.");
3201           CGM.getDiags().Report(std::get<1>(E), DiagID) << std::get<2>(E);
3202           continue;
3203         }
3204         // The vaiable has no definition - no need to add the entry.
3205         if (CE->getVarSize().isZero())
3206           continue;
3207         break;
3208       }
3209       case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink:
3210         assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) ||
3211                 (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) &&
3212                "Declaret target link address is set.");
3213         if (CGM.getLangOpts().OpenMPIsDevice)
3214           continue;
3215         if (!CE->getAddress()) {
3216           unsigned DiagID = CGM.getDiags().getCustomDiagID(
3217               DiagnosticsEngine::Error,
3218               "Offloading entry for declare target variable is incorrect: the "
3219               "address is invalid.");
3220           CGM.getDiags().Report(DiagID);
3221           continue;
3222         }
3223         break;
3224       }
3225       createOffloadEntry(CE->getAddress(), CE->getAddress(),
3226                          CE->getVarSize().getQuantity(), Flags,
3227                          CE->getLinkage());
3228     } else {
3229       llvm_unreachable("Unsupported entry kind.");
3230     }
3231   }
3232 }
3233 
3234 /// Loads all the offload entries information from the host IR
3235 /// metadata.
loadOffloadInfoMetadata()3236 void CGOpenMPRuntime::loadOffloadInfoMetadata() {
3237   // If we are in target mode, load the metadata from the host IR. This code has
3238   // to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
3239 
3240   if (!CGM.getLangOpts().OpenMPIsDevice)
3241     return;
3242 
3243   if (CGM.getLangOpts().OMPHostIRFile.empty())
3244     return;
3245 
3246   auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
3247   if (auto EC = Buf.getError()) {
3248     CGM.getDiags().Report(diag::err_cannot_open_file)
3249         << CGM.getLangOpts().OMPHostIRFile << EC.message();
3250     return;
3251   }
3252 
3253   llvm::LLVMContext C;
3254   auto ME = expectedToErrorOrAndEmitErrors(
3255       C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
3256 
3257   if (auto EC = ME.getError()) {
3258     unsigned DiagID = CGM.getDiags().getCustomDiagID(
3259         DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'");
3260     CGM.getDiags().Report(DiagID)
3261         << CGM.getLangOpts().OMPHostIRFile << EC.message();
3262     return;
3263   }
3264 
3265   llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
3266   if (!MD)
3267     return;
3268 
3269   for (llvm::MDNode *MN : MD->operands()) {
3270     auto &&GetMDInt = [MN](unsigned Idx) {
3271       auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
3272       return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
3273     };
3274 
3275     auto &&GetMDString = [MN](unsigned Idx) {
3276       auto *V = cast<llvm::MDString>(MN->getOperand(Idx));
3277       return V->getString();
3278     };
3279 
3280     switch (GetMDInt(0)) {
3281     default:
3282       llvm_unreachable("Unexpected metadata!");
3283       break;
3284     case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
3285         OffloadingEntryInfoTargetRegion:
3286       OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
3287           /*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2),
3288           /*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4),
3289           /*Order=*/GetMDInt(5));
3290       break;
3291     case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
3292         OffloadingEntryInfoDeviceGlobalVar:
3293       OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo(
3294           /*MangledName=*/GetMDString(1),
3295           static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
3296               /*Flags=*/GetMDInt(2)),
3297           /*Order=*/GetMDInt(3));
3298       break;
3299     }
3300   }
3301 }
3302 
emitKmpRoutineEntryT(QualType KmpInt32Ty)3303 void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
3304   if (!KmpRoutineEntryPtrTy) {
3305     // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
3306     ASTContext &C = CGM.getContext();
3307     QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
3308     FunctionProtoType::ExtProtoInfo EPI;
3309     KmpRoutineEntryPtrQTy = C.getPointerType(
3310         C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
3311     KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
3312   }
3313 }
3314 
getTgtOffloadEntryQTy()3315 QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
3316   // Make sure the type of the entry is already created. This is the type we
3317   // have to create:
3318   // struct __tgt_offload_entry{
3319   //   void      *addr;       // Pointer to the offload entry info.
3320   //                          // (function or global)
3321   //   char      *name;       // Name of the function or global.
3322   //   size_t     size;       // Size of the entry info (0 if it a function).
3323   //   int32_t    flags;      // Flags associated with the entry, e.g. 'link'.
3324   //   int32_t    reserved;   // Reserved, to use by the runtime library.
3325   // };
3326   if (TgtOffloadEntryQTy.isNull()) {
3327     ASTContext &C = CGM.getContext();
3328     RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry");
3329     RD->startDefinition();
3330     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3331     addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
3332     addFieldToRecordDecl(C, RD, C.getSizeType());
3333     addFieldToRecordDecl(
3334         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
3335     addFieldToRecordDecl(
3336         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
3337     RD->completeDefinition();
3338     RD->addAttr(PackedAttr::CreateImplicit(C));
3339     TgtOffloadEntryQTy = C.getRecordType(RD);
3340   }
3341   return TgtOffloadEntryQTy;
3342 }
3343 
3344 namespace {
3345 struct PrivateHelpersTy {
PrivateHelpersTy__anona637da6d1611::PrivateHelpersTy3346   PrivateHelpersTy(const Expr *OriginalRef, const VarDecl *Original,
3347                    const VarDecl *PrivateCopy, const VarDecl *PrivateElemInit)
3348       : OriginalRef(OriginalRef), Original(Original), PrivateCopy(PrivateCopy),
3349         PrivateElemInit(PrivateElemInit) {}
3350   const Expr *OriginalRef = nullptr;
3351   const VarDecl *Original = nullptr;
3352   const VarDecl *PrivateCopy = nullptr;
3353   const VarDecl *PrivateElemInit = nullptr;
3354 };
3355 typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
3356 } // anonymous namespace
3357 
3358 static RecordDecl *
createPrivatesRecordDecl(CodeGenModule & CGM,ArrayRef<PrivateDataTy> Privates)3359 createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
3360   if (!Privates.empty()) {
3361     ASTContext &C = CGM.getContext();
3362     // Build struct .kmp_privates_t. {
3363     //         /*  private vars  */
3364     //       };
3365     RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t");
3366     RD->startDefinition();
3367     for (const auto &Pair : Privates) {
3368       const VarDecl *VD = Pair.second.Original;
3369       QualType Type = VD->getType().getNonReferenceType();
3370       FieldDecl *FD = addFieldToRecordDecl(C, RD, Type);
3371       if (VD->hasAttrs()) {
3372         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
3373              E(VD->getAttrs().end());
3374              I != E; ++I)
3375           FD->addAttr(*I);
3376       }
3377     }
3378     RD->completeDefinition();
3379     return RD;
3380   }
3381   return nullptr;
3382 }
3383 
3384 static RecordDecl *
createKmpTaskTRecordDecl(CodeGenModule & CGM,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpRoutineEntryPointerQTy)3385 createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
3386                          QualType KmpInt32Ty,
3387                          QualType KmpRoutineEntryPointerQTy) {
3388   ASTContext &C = CGM.getContext();
3389   // Build struct kmp_task_t {
3390   //         void *              shareds;
3391   //         kmp_routine_entry_t routine;
3392   //         kmp_int32           part_id;
3393   //         kmp_cmplrdata_t data1;
3394   //         kmp_cmplrdata_t data2;
3395   // For taskloops additional fields:
3396   //         kmp_uint64          lb;
3397   //         kmp_uint64          ub;
3398   //         kmp_int64           st;
3399   //         kmp_int32           liter;
3400   //         void *              reductions;
3401   //       };
3402   RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
3403   UD->startDefinition();
3404   addFieldToRecordDecl(C, UD, KmpInt32Ty);
3405   addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
3406   UD->completeDefinition();
3407   QualType KmpCmplrdataTy = C.getRecordType(UD);
3408   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t");
3409   RD->startDefinition();
3410   addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3411   addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
3412   addFieldToRecordDecl(C, RD, KmpInt32Ty);
3413   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
3414   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
3415   if (isOpenMPTaskLoopDirective(Kind)) {
3416     QualType KmpUInt64Ty =
3417         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
3418     QualType KmpInt64Ty =
3419         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
3420     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
3421     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
3422     addFieldToRecordDecl(C, RD, KmpInt64Ty);
3423     addFieldToRecordDecl(C, RD, KmpInt32Ty);
3424     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3425   }
3426   RD->completeDefinition();
3427   return RD;
3428 }
3429 
3430 static RecordDecl *
createKmpTaskTWithPrivatesRecordDecl(CodeGenModule & CGM,QualType KmpTaskTQTy,ArrayRef<PrivateDataTy> Privates)3431 createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
3432                                      ArrayRef<PrivateDataTy> Privates) {
3433   ASTContext &C = CGM.getContext();
3434   // Build struct kmp_task_t_with_privates {
3435   //         kmp_task_t task_data;
3436   //         .kmp_privates_t. privates;
3437   //       };
3438   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
3439   RD->startDefinition();
3440   addFieldToRecordDecl(C, RD, KmpTaskTQTy);
3441   if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates))
3442     addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
3443   RD->completeDefinition();
3444   return RD;
3445 }
3446 
3447 /// Emit a proxy function which accepts kmp_task_t as the second
3448 /// argument.
3449 /// \code
3450 /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
3451 ///   TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
3452 ///   For taskloops:
3453 ///   tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
3454 ///   tt->reductions, tt->shareds);
3455 ///   return 0;
3456 /// }
3457 /// \endcode
3458 static llvm::Function *
emitProxyTaskFunction(CodeGenModule & CGM,SourceLocation Loc,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy,QualType KmpTaskTQTy,QualType SharedsPtrTy,llvm::Function * TaskFunction,llvm::Value * TaskPrivatesMap)3459 emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
3460                       OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
3461                       QualType KmpTaskTWithPrivatesPtrQTy,
3462                       QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
3463                       QualType SharedsPtrTy, llvm::Function *TaskFunction,
3464                       llvm::Value *TaskPrivatesMap) {
3465   ASTContext &C = CGM.getContext();
3466   FunctionArgList Args;
3467   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
3468                             ImplicitParamDecl::Other);
3469   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3470                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
3471                                 ImplicitParamDecl::Other);
3472   Args.push_back(&GtidArg);
3473   Args.push_back(&TaskTypeArg);
3474   const auto &TaskEntryFnInfo =
3475       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
3476   llvm::FunctionType *TaskEntryTy =
3477       CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
3478   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""});
3479   auto *TaskEntry = llvm::Function::Create(
3480       TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
3481   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo);
3482   TaskEntry->setDoesNotRecurse();
3483   CodeGenFunction CGF(CGM);
3484   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args,
3485                     Loc, Loc);
3486 
3487   // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
3488   // tt,
3489   // For taskloops:
3490   // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
3491   // tt->task_data.shareds);
3492   llvm::Value *GtidParam = CGF.EmitLoadOfScalar(
3493       CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
3494   LValue TDBase = CGF.EmitLoadOfPointerLValue(
3495       CGF.GetAddrOfLocalVar(&TaskTypeArg),
3496       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3497   const auto *KmpTaskTWithPrivatesQTyRD =
3498       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
3499   LValue Base =
3500       CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3501   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
3502   auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
3503   LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
3504   llvm::Value *PartidParam = PartIdLVal.getPointer(CGF);
3505 
3506   auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
3507   LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
3508   llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3509       CGF.EmitLoadOfScalar(SharedsLVal, Loc),
3510       CGF.ConvertTypeForMem(SharedsPtrTy));
3511 
3512   auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
3513   llvm::Value *PrivatesParam;
3514   if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
3515     LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
3516     PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3517         PrivatesLVal.getPointer(CGF), CGF.VoidPtrTy);
3518   } else {
3519     PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
3520   }
3521 
3522   llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
3523                                TaskPrivatesMap,
3524                                CGF.Builder
3525                                    .CreatePointerBitCastOrAddrSpaceCast(
3526                                        TDBase.getAddress(CGF), CGF.VoidPtrTy)
3527                                    .getPointer()};
3528   SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
3529                                           std::end(CommonArgs));
3530   if (isOpenMPTaskLoopDirective(Kind)) {
3531     auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
3532     LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI);
3533     llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc);
3534     auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
3535     LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI);
3536     llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc);
3537     auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
3538     LValue StLVal = CGF.EmitLValueForField(Base, *StFI);
3539     llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc);
3540     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
3541     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
3542     llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc);
3543     auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions);
3544     LValue RLVal = CGF.EmitLValueForField(Base, *RFI);
3545     llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc);
3546     CallArgs.push_back(LBParam);
3547     CallArgs.push_back(UBParam);
3548     CallArgs.push_back(StParam);
3549     CallArgs.push_back(LIParam);
3550     CallArgs.push_back(RParam);
3551   }
3552   CallArgs.push_back(SharedsParam);
3553 
3554   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction,
3555                                                   CallArgs);
3556   CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)),
3557                              CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
3558   CGF.FinishFunction();
3559   return TaskEntry;
3560 }
3561 
emitDestructorsFunction(CodeGenModule & CGM,SourceLocation Loc,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy)3562 static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
3563                                             SourceLocation Loc,
3564                                             QualType KmpInt32Ty,
3565                                             QualType KmpTaskTWithPrivatesPtrQTy,
3566                                             QualType KmpTaskTWithPrivatesQTy) {
3567   ASTContext &C = CGM.getContext();
3568   FunctionArgList Args;
3569   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
3570                             ImplicitParamDecl::Other);
3571   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3572                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
3573                                 ImplicitParamDecl::Other);
3574   Args.push_back(&GtidArg);
3575   Args.push_back(&TaskTypeArg);
3576   const auto &DestructorFnInfo =
3577       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
3578   llvm::FunctionType *DestructorFnTy =
3579       CGM.getTypes().GetFunctionType(DestructorFnInfo);
3580   std::string Name =
3581       CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""});
3582   auto *DestructorFn =
3583       llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
3584                              Name, &CGM.getModule());
3585   CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn,
3586                                     DestructorFnInfo);
3587   DestructorFn->setDoesNotRecurse();
3588   CodeGenFunction CGF(CGM);
3589   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
3590                     Args, Loc, Loc);
3591 
3592   LValue Base = CGF.EmitLoadOfPointerLValue(
3593       CGF.GetAddrOfLocalVar(&TaskTypeArg),
3594       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3595   const auto *KmpTaskTWithPrivatesQTyRD =
3596       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
3597   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3598   Base = CGF.EmitLValueForField(Base, *FI);
3599   for (const auto *Field :
3600        cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
3601     if (QualType::DestructionKind DtorKind =
3602             Field->getType().isDestructedType()) {
3603       LValue FieldLValue = CGF.EmitLValueForField(Base, Field);
3604       CGF.pushDestroy(DtorKind, FieldLValue.getAddress(CGF), Field->getType());
3605     }
3606   }
3607   CGF.FinishFunction();
3608   return DestructorFn;
3609 }
3610 
3611 /// Emit a privates mapping function for correct handling of private and
3612 /// firstprivate variables.
3613 /// \code
3614 /// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
3615 /// **noalias priv1,...,  <tyn> **noalias privn) {
3616 ///   *priv1 = &.privates.priv1;
3617 ///   ...;
3618 ///   *privn = &.privates.privn;
3619 /// }
3620 /// \endcode
3621 static llvm::Value *
emitTaskPrivateMappingFunction(CodeGenModule & CGM,SourceLocation Loc,ArrayRef<const Expr * > PrivateVars,ArrayRef<const Expr * > FirstprivateVars,ArrayRef<const Expr * > LastprivateVars,QualType PrivatesQTy,ArrayRef<PrivateDataTy> Privates)3622 emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
3623                                ArrayRef<const Expr *> PrivateVars,
3624                                ArrayRef<const Expr *> FirstprivateVars,
3625                                ArrayRef<const Expr *> LastprivateVars,
3626                                QualType PrivatesQTy,
3627                                ArrayRef<PrivateDataTy> Privates) {
3628   ASTContext &C = CGM.getContext();
3629   FunctionArgList Args;
3630   ImplicitParamDecl TaskPrivatesArg(
3631       C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3632       C.getPointerType(PrivatesQTy).withConst().withRestrict(),
3633       ImplicitParamDecl::Other);
3634   Args.push_back(&TaskPrivatesArg);
3635   llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos;
3636   unsigned Counter = 1;
3637   for (const Expr *E : PrivateVars) {
3638     Args.push_back(ImplicitParamDecl::Create(
3639         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3640         C.getPointerType(C.getPointerType(E->getType()))
3641             .withConst()
3642             .withRestrict(),
3643         ImplicitParamDecl::Other));
3644     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3645     PrivateVarsPos[VD] = Counter;
3646     ++Counter;
3647   }
3648   for (const Expr *E : FirstprivateVars) {
3649     Args.push_back(ImplicitParamDecl::Create(
3650         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3651         C.getPointerType(C.getPointerType(E->getType()))
3652             .withConst()
3653             .withRestrict(),
3654         ImplicitParamDecl::Other));
3655     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3656     PrivateVarsPos[VD] = Counter;
3657     ++Counter;
3658   }
3659   for (const Expr *E : LastprivateVars) {
3660     Args.push_back(ImplicitParamDecl::Create(
3661         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3662         C.getPointerType(C.getPointerType(E->getType()))
3663             .withConst()
3664             .withRestrict(),
3665         ImplicitParamDecl::Other));
3666     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3667     PrivateVarsPos[VD] = Counter;
3668     ++Counter;
3669   }
3670   const auto &TaskPrivatesMapFnInfo =
3671       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3672   llvm::FunctionType *TaskPrivatesMapTy =
3673       CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
3674   std::string Name =
3675       CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""});
3676   auto *TaskPrivatesMap = llvm::Function::Create(
3677       TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name,
3678       &CGM.getModule());
3679   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap,
3680                                     TaskPrivatesMapFnInfo);
3681   if (CGM.getLangOpts().Optimize) {
3682     TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
3683     TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone);
3684     TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
3685   }
3686   CodeGenFunction CGF(CGM);
3687   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
3688                     TaskPrivatesMapFnInfo, Args, Loc, Loc);
3689 
3690   // *privi = &.privates.privi;
3691   LValue Base = CGF.EmitLoadOfPointerLValue(
3692       CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
3693       TaskPrivatesArg.getType()->castAs<PointerType>());
3694   const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
3695   Counter = 0;
3696   for (const FieldDecl *Field : PrivatesQTyRD->fields()) {
3697     LValue FieldLVal = CGF.EmitLValueForField(Base, Field);
3698     const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
3699     LValue RefLVal =
3700         CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
3701     LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue(
3702         RefLVal.getAddress(CGF), RefLVal.getType()->castAs<PointerType>());
3703     CGF.EmitStoreOfScalar(FieldLVal.getPointer(CGF), RefLoadLVal);
3704     ++Counter;
3705   }
3706   CGF.FinishFunction();
3707   return TaskPrivatesMap;
3708 }
3709 
3710 /// Emit initialization for private variables in task-based directives.
emitPrivatesInit(CodeGenFunction & CGF,const OMPExecutableDirective & D,Address KmpTaskSharedsPtr,LValue TDBase,const RecordDecl * KmpTaskTWithPrivatesQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool ForDup)3711 static void emitPrivatesInit(CodeGenFunction &CGF,
3712                              const OMPExecutableDirective &D,
3713                              Address KmpTaskSharedsPtr, LValue TDBase,
3714                              const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3715                              QualType SharedsTy, QualType SharedsPtrTy,
3716                              const OMPTaskDataTy &Data,
3717                              ArrayRef<PrivateDataTy> Privates, bool ForDup) {
3718   ASTContext &C = CGF.getContext();
3719   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3720   LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
3721   OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind())
3722                                  ? OMPD_taskloop
3723                                  : OMPD_task;
3724   const CapturedStmt &CS = *D.getCapturedStmt(Kind);
3725   CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS);
3726   LValue SrcBase;
3727   bool IsTargetTask =
3728       isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) ||
3729       isOpenMPTargetExecutionDirective(D.getDirectiveKind());
3730   // For target-based directives skip 3 firstprivate arrays BasePointersArray,
3731   // PointersArray and SizesArray. The original variables for these arrays are
3732   // not captured and we get their addresses explicitly.
3733   if ((!IsTargetTask && !Data.FirstprivateVars.empty() && ForDup) ||
3734       (IsTargetTask && KmpTaskSharedsPtr.isValid())) {
3735     SrcBase = CGF.MakeAddrLValue(
3736         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3737             KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
3738         SharedsTy);
3739   }
3740   FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
3741   for (const PrivateDataTy &Pair : Privates) {
3742     const VarDecl *VD = Pair.second.PrivateCopy;
3743     const Expr *Init = VD->getAnyInitializer();
3744     if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
3745                              !CGF.isTrivialInitializer(Init)))) {
3746       LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
3747       if (const VarDecl *Elem = Pair.second.PrivateElemInit) {
3748         const VarDecl *OriginalVD = Pair.second.Original;
3749         // Check if the variable is the target-based BasePointersArray,
3750         // PointersArray or SizesArray.
3751         LValue SharedRefLValue;
3752         QualType Type = PrivateLValue.getType();
3753         const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD);
3754         if (IsTargetTask && !SharedField) {
3755           assert(isa<ImplicitParamDecl>(OriginalVD) &&
3756                  isa<CapturedDecl>(OriginalVD->getDeclContext()) &&
3757                  cast<CapturedDecl>(OriginalVD->getDeclContext())
3758                          ->getNumParams() == 0 &&
3759                  isa<TranslationUnitDecl>(
3760                      cast<CapturedDecl>(OriginalVD->getDeclContext())
3761                          ->getDeclContext()) &&
3762                  "Expected artificial target data variable.");
3763           SharedRefLValue =
3764               CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type);
3765         } else if (ForDup) {
3766           SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
3767           SharedRefLValue = CGF.MakeAddrLValue(
3768               Address(SharedRefLValue.getPointer(CGF),
3769                       C.getDeclAlign(OriginalVD)),
3770               SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl),
3771               SharedRefLValue.getTBAAInfo());
3772         } else if (CGF.LambdaCaptureFields.count(
3773                        Pair.second.Original->getCanonicalDecl()) > 0 ||
3774                    dyn_cast_or_null<BlockDecl>(CGF.CurCodeDecl)) {
3775           SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef);
3776         } else {
3777           // Processing for implicitly captured variables.
3778           InlinedOpenMPRegionRAII Region(
3779               CGF, [](CodeGenFunction &, PrePostActionTy &) {}, OMPD_unknown,
3780               /*HasCancel=*/false);
3781           SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef);
3782         }
3783         if (Type->isArrayType()) {
3784           // Initialize firstprivate array.
3785           if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
3786             // Perform simple memcpy.
3787             CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type);
3788           } else {
3789             // Initialize firstprivate array using element-by-element
3790             // initialization.
3791             CGF.EmitOMPAggregateAssign(
3792                 PrivateLValue.getAddress(CGF), SharedRefLValue.getAddress(CGF),
3793                 Type,
3794                 [&CGF, Elem, Init, &CapturesInfo](Address DestElement,
3795                                                   Address SrcElement) {
3796                   // Clean up any temporaries needed by the initialization.
3797                   CodeGenFunction::OMPPrivateScope InitScope(CGF);
3798                   InitScope.addPrivate(
3799                       Elem, [SrcElement]() -> Address { return SrcElement; });
3800                   (void)InitScope.Privatize();
3801                   // Emit initialization for single element.
3802                   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
3803                       CGF, &CapturesInfo);
3804                   CGF.EmitAnyExprToMem(Init, DestElement,
3805                                        Init->getType().getQualifiers(),
3806                                        /*IsInitializer=*/false);
3807                 });
3808           }
3809         } else {
3810           CodeGenFunction::OMPPrivateScope InitScope(CGF);
3811           InitScope.addPrivate(Elem, [SharedRefLValue, &CGF]() -> Address {
3812             return SharedRefLValue.getAddress(CGF);
3813           });
3814           (void)InitScope.Privatize();
3815           CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
3816           CGF.EmitExprAsInit(Init, VD, PrivateLValue,
3817                              /*capturedByInit=*/false);
3818         }
3819       } else {
3820         CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
3821       }
3822     }
3823     ++FI;
3824   }
3825 }
3826 
3827 /// Check if duplication function is required for taskloops.
checkInitIsRequired(CodeGenFunction & CGF,ArrayRef<PrivateDataTy> Privates)3828 static bool checkInitIsRequired(CodeGenFunction &CGF,
3829                                 ArrayRef<PrivateDataTy> Privates) {
3830   bool InitRequired = false;
3831   for (const PrivateDataTy &Pair : Privates) {
3832     const VarDecl *VD = Pair.second.PrivateCopy;
3833     const Expr *Init = VD->getAnyInitializer();
3834     InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
3835                                     !CGF.isTrivialInitializer(Init));
3836     if (InitRequired)
3837       break;
3838   }
3839   return InitRequired;
3840 }
3841 
3842 
3843 /// Emit task_dup function (for initialization of
3844 /// private/firstprivate/lastprivate vars and last_iter flag)
3845 /// \code
3846 /// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
3847 /// lastpriv) {
3848 /// // setup lastprivate flag
3849 ///    task_dst->last = lastpriv;
3850 /// // could be constructor calls here...
3851 /// }
3852 /// \endcode
3853 static llvm::Value *
emitTaskDupFunction(CodeGenModule & CGM,SourceLocation Loc,const OMPExecutableDirective & D,QualType KmpTaskTWithPrivatesPtrQTy,const RecordDecl * KmpTaskTWithPrivatesQTyRD,const RecordDecl * KmpTaskTQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool WithLastIter)3854 emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
3855                     const OMPExecutableDirective &D,
3856                     QualType KmpTaskTWithPrivatesPtrQTy,
3857                     const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3858                     const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
3859                     QualType SharedsPtrTy, const OMPTaskDataTy &Data,
3860                     ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
3861   ASTContext &C = CGM.getContext();
3862   FunctionArgList Args;
3863   ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3864                            KmpTaskTWithPrivatesPtrQTy,
3865                            ImplicitParamDecl::Other);
3866   ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3867                            KmpTaskTWithPrivatesPtrQTy,
3868                            ImplicitParamDecl::Other);
3869   ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3870                                 ImplicitParamDecl::Other);
3871   Args.push_back(&DstArg);
3872   Args.push_back(&SrcArg);
3873   Args.push_back(&LastprivArg);
3874   const auto &TaskDupFnInfo =
3875       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3876   llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
3877   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""});
3878   auto *TaskDup = llvm::Function::Create(
3879       TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
3880   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo);
3881   TaskDup->setDoesNotRecurse();
3882   CodeGenFunction CGF(CGM);
3883   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc,
3884                     Loc);
3885 
3886   LValue TDBase = CGF.EmitLoadOfPointerLValue(
3887       CGF.GetAddrOfLocalVar(&DstArg),
3888       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3889   // task_dst->liter = lastpriv;
3890   if (WithLastIter) {
3891     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
3892     LValue Base = CGF.EmitLValueForField(
3893         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3894     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
3895     llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
3896         CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
3897     CGF.EmitStoreOfScalar(Lastpriv, LILVal);
3898   }
3899 
3900   // Emit initial values for private copies (if any).
3901   assert(!Privates.empty());
3902   Address KmpTaskSharedsPtr = Address::invalid();
3903   if (!Data.FirstprivateVars.empty()) {
3904     LValue TDBase = CGF.EmitLoadOfPointerLValue(
3905         CGF.GetAddrOfLocalVar(&SrcArg),
3906         KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3907     LValue Base = CGF.EmitLValueForField(
3908         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3909     KmpTaskSharedsPtr = Address(
3910         CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
3911                                  Base, *std::next(KmpTaskTQTyRD->field_begin(),
3912                                                   KmpTaskTShareds)),
3913                              Loc),
3914         CGM.getNaturalTypeAlignment(SharedsTy));
3915   }
3916   emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
3917                    SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
3918   CGF.FinishFunction();
3919   return TaskDup;
3920 }
3921 
3922 /// Checks if destructor function is required to be generated.
3923 /// \return true if cleanups are required, false otherwise.
3924 static bool
checkDestructorsRequired(const RecordDecl * KmpTaskTWithPrivatesQTyRD)3925 checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) {
3926   bool NeedsCleanup = false;
3927   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
3928   const auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl());
3929   for (const FieldDecl *FD : PrivateRD->fields()) {
3930     NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType();
3931     if (NeedsCleanup)
3932       break;
3933   }
3934   return NeedsCleanup;
3935 }
3936 
3937 namespace {
3938 /// Loop generator for OpenMP iterator expression.
3939 class OMPIteratorGeneratorScope final
3940     : public CodeGenFunction::OMPPrivateScope {
3941   CodeGenFunction &CGF;
3942   const OMPIteratorExpr *E = nullptr;
3943   SmallVector<CodeGenFunction::JumpDest, 4> ContDests;
3944   SmallVector<CodeGenFunction::JumpDest, 4> ExitDests;
3945   OMPIteratorGeneratorScope() = delete;
3946   OMPIteratorGeneratorScope(OMPIteratorGeneratorScope &) = delete;
3947 
3948 public:
OMPIteratorGeneratorScope(CodeGenFunction & CGF,const OMPIteratorExpr * E)3949   OMPIteratorGeneratorScope(CodeGenFunction &CGF, const OMPIteratorExpr *E)
3950       : CodeGenFunction::OMPPrivateScope(CGF), CGF(CGF), E(E) {
3951     if (!E)
3952       return;
3953     SmallVector<llvm::Value *, 4> Uppers;
3954     for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) {
3955       Uppers.push_back(CGF.EmitScalarExpr(E->getHelper(I).Upper));
3956       const auto *VD = cast<VarDecl>(E->getIteratorDecl(I));
3957       addPrivate(VD, [&CGF, VD]() {
3958         return CGF.CreateMemTemp(VD->getType(), VD->getName());
3959       });
3960       const OMPIteratorHelperData &HelperData = E->getHelper(I);
3961       addPrivate(HelperData.CounterVD, [&CGF, &HelperData]() {
3962         return CGF.CreateMemTemp(HelperData.CounterVD->getType(),
3963                                  "counter.addr");
3964       });
3965     }
3966     Privatize();
3967 
3968     for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) {
3969       const OMPIteratorHelperData &HelperData = E->getHelper(I);
3970       LValue CLVal =
3971           CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(HelperData.CounterVD),
3972                              HelperData.CounterVD->getType());
3973       // Counter = 0;
3974       CGF.EmitStoreOfScalar(
3975           llvm::ConstantInt::get(CLVal.getAddress(CGF).getElementType(), 0),
3976           CLVal);
3977       CodeGenFunction::JumpDest &ContDest =
3978           ContDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.cont"));
3979       CodeGenFunction::JumpDest &ExitDest =
3980           ExitDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.exit"));
3981       // N = <number-of_iterations>;
3982       llvm::Value *N = Uppers[I];
3983       // cont:
3984       // if (Counter < N) goto body; else goto exit;
3985       CGF.EmitBlock(ContDest.getBlock());
3986       auto *CVal =
3987           CGF.EmitLoadOfScalar(CLVal, HelperData.CounterVD->getLocation());
3988       llvm::Value *Cmp =
3989           HelperData.CounterVD->getType()->isSignedIntegerOrEnumerationType()
3990               ? CGF.Builder.CreateICmpSLT(CVal, N)
3991               : CGF.Builder.CreateICmpULT(CVal, N);
3992       llvm::BasicBlock *BodyBB = CGF.createBasicBlock("iter.body");
3993       CGF.Builder.CreateCondBr(Cmp, BodyBB, ExitDest.getBlock());
3994       // body:
3995       CGF.EmitBlock(BodyBB);
3996       // Iteri = Begini + Counter * Stepi;
3997       CGF.EmitIgnoredExpr(HelperData.Update);
3998     }
3999   }
~OMPIteratorGeneratorScope()4000   ~OMPIteratorGeneratorScope() {
4001     if (!E)
4002       return;
4003     for (unsigned I = E->numOfIterators(); I > 0; --I) {
4004       // Counter = Counter + 1;
4005       const OMPIteratorHelperData &HelperData = E->getHelper(I - 1);
4006       CGF.EmitIgnoredExpr(HelperData.CounterUpdate);
4007       // goto cont;
4008       CGF.EmitBranchThroughCleanup(ContDests[I - 1]);
4009       // exit:
4010       CGF.EmitBlock(ExitDests[I - 1].getBlock(), /*IsFinished=*/I == 1);
4011     }
4012   }
4013 };
4014 } // namespace
4015 
4016 static std::pair<llvm::Value *, llvm::Value *>
getPointerAndSize(CodeGenFunction & CGF,const Expr * E)4017 getPointerAndSize(CodeGenFunction &CGF, const Expr *E) {
4018   const auto *OASE = dyn_cast<OMPArrayShapingExpr>(E);
4019   llvm::Value *Addr;
4020   if (OASE) {
4021     const Expr *Base = OASE->getBase();
4022     Addr = CGF.EmitScalarExpr(Base);
4023   } else {
4024     Addr = CGF.EmitLValue(E).getPointer(CGF);
4025   }
4026   llvm::Value *SizeVal;
4027   QualType Ty = E->getType();
4028   if (OASE) {
4029     SizeVal = CGF.getTypeSize(OASE->getBase()->getType()->getPointeeType());
4030     for (const Expr *SE : OASE->getDimensions()) {
4031       llvm::Value *Sz = CGF.EmitScalarExpr(SE);
4032       Sz = CGF.EmitScalarConversion(
4033           Sz, SE->getType(), CGF.getContext().getSizeType(), SE->getExprLoc());
4034       SizeVal = CGF.Builder.CreateNUWMul(SizeVal, Sz);
4035     }
4036   } else if (const auto *ASE =
4037                  dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
4038     LValue UpAddrLVal =
4039         CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false);
4040     llvm::Value *UpAddr =
4041         CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(CGF), /*Idx0=*/1);
4042     llvm::Value *LowIntPtr = CGF.Builder.CreatePtrToInt(Addr, CGF.SizeTy);
4043     llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGF.SizeTy);
4044     SizeVal = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
4045   } else {
4046     SizeVal = CGF.getTypeSize(Ty);
4047   }
4048   return std::make_pair(Addr, SizeVal);
4049 }
4050 
4051 /// Builds kmp_depend_info, if it is not built yet, and builds flags type.
getKmpAffinityType(ASTContext & C,QualType & KmpTaskAffinityInfoTy)4052 static void getKmpAffinityType(ASTContext &C, QualType &KmpTaskAffinityInfoTy) {
4053   QualType FlagsTy = C.getIntTypeForBitwidth(32, /*Signed=*/false);
4054   if (KmpTaskAffinityInfoTy.isNull()) {
4055     RecordDecl *KmpAffinityInfoRD =
4056         C.buildImplicitRecord("kmp_task_affinity_info_t");
4057     KmpAffinityInfoRD->startDefinition();
4058     addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getIntPtrType());
4059     addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getSizeType());
4060     addFieldToRecordDecl(C, KmpAffinityInfoRD, FlagsTy);
4061     KmpAffinityInfoRD->completeDefinition();
4062     KmpTaskAffinityInfoTy = C.getRecordType(KmpAffinityInfoRD);
4063   }
4064 }
4065 
4066 CGOpenMPRuntime::TaskResultTy
emitTaskInit(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const OMPTaskDataTy & Data)4067 CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
4068                               const OMPExecutableDirective &D,
4069                               llvm::Function *TaskFunction, QualType SharedsTy,
4070                               Address Shareds, const OMPTaskDataTy &Data) {
4071   ASTContext &C = CGM.getContext();
4072   llvm::SmallVector<PrivateDataTy, 4> Privates;
4073   // Aggregate privates and sort them by the alignment.
4074   const auto *I = Data.PrivateCopies.begin();
4075   for (const Expr *E : Data.PrivateVars) {
4076     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4077     Privates.emplace_back(
4078         C.getDeclAlign(VD),
4079         PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4080                          /*PrivateElemInit=*/nullptr));
4081     ++I;
4082   }
4083   I = Data.FirstprivateCopies.begin();
4084   const auto *IElemInitRef = Data.FirstprivateInits.begin();
4085   for (const Expr *E : Data.FirstprivateVars) {
4086     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4087     Privates.emplace_back(
4088         C.getDeclAlign(VD),
4089         PrivateHelpersTy(
4090             E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4091             cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())));
4092     ++I;
4093     ++IElemInitRef;
4094   }
4095   I = Data.LastprivateCopies.begin();
4096   for (const Expr *E : Data.LastprivateVars) {
4097     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4098     Privates.emplace_back(
4099         C.getDeclAlign(VD),
4100         PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4101                          /*PrivateElemInit=*/nullptr));
4102     ++I;
4103   }
4104   llvm::stable_sort(Privates, [](PrivateDataTy L, PrivateDataTy R) {
4105     return L.first > R.first;
4106   });
4107   QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
4108   // Build type kmp_routine_entry_t (if not built yet).
4109   emitKmpRoutineEntryT(KmpInt32Ty);
4110   // Build type kmp_task_t (if not built yet).
4111   if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) {
4112     if (SavedKmpTaskloopTQTy.isNull()) {
4113       SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl(
4114           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
4115     }
4116     KmpTaskTQTy = SavedKmpTaskloopTQTy;
4117   } else {
4118     assert((D.getDirectiveKind() == OMPD_task ||
4119             isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||
4120             isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&
4121            "Expected taskloop, task or target directive");
4122     if (SavedKmpTaskTQTy.isNull()) {
4123       SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
4124           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
4125     }
4126     KmpTaskTQTy = SavedKmpTaskTQTy;
4127   }
4128   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
4129   // Build particular struct kmp_task_t for the given task.
4130   const RecordDecl *KmpTaskTWithPrivatesQTyRD =
4131       createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
4132   QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
4133   QualType KmpTaskTWithPrivatesPtrQTy =
4134       C.getPointerType(KmpTaskTWithPrivatesQTy);
4135   llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
4136   llvm::Type *KmpTaskTWithPrivatesPtrTy =
4137       KmpTaskTWithPrivatesTy->getPointerTo();
4138   llvm::Value *KmpTaskTWithPrivatesTySize =
4139       CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
4140   QualType SharedsPtrTy = C.getPointerType(SharedsTy);
4141 
4142   // Emit initial values for private copies (if any).
4143   llvm::Value *TaskPrivatesMap = nullptr;
4144   llvm::Type *TaskPrivatesMapTy =
4145       std::next(TaskFunction->arg_begin(), 3)->getType();
4146   if (!Privates.empty()) {
4147     auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
4148     TaskPrivatesMap = emitTaskPrivateMappingFunction(
4149         CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars,
4150         FI->getType(), Privates);
4151     TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4152         TaskPrivatesMap, TaskPrivatesMapTy);
4153   } else {
4154     TaskPrivatesMap = llvm::ConstantPointerNull::get(
4155         cast<llvm::PointerType>(TaskPrivatesMapTy));
4156   }
4157   // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
4158   // kmp_task_t *tt);
4159   llvm::Function *TaskEntry = emitProxyTaskFunction(
4160       CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
4161       KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
4162       TaskPrivatesMap);
4163 
4164   // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
4165   // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
4166   // kmp_routine_entry_t *task_entry);
4167   // Task flags. Format is taken from
4168   // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h,
4169   // description of kmp_tasking_flags struct.
4170   enum {
4171     TiedFlag = 0x1,
4172     FinalFlag = 0x2,
4173     DestructorsFlag = 0x8,
4174     PriorityFlag = 0x20,
4175     DetachableFlag = 0x40,
4176   };
4177   unsigned Flags = Data.Tied ? TiedFlag : 0;
4178   bool NeedsCleanup = false;
4179   if (!Privates.empty()) {
4180     NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD);
4181     if (NeedsCleanup)
4182       Flags = Flags | DestructorsFlag;
4183   }
4184   if (Data.Priority.getInt())
4185     Flags = Flags | PriorityFlag;
4186   if (D.hasClausesOfKind<OMPDetachClause>())
4187     Flags = Flags | DetachableFlag;
4188   llvm::Value *TaskFlags =
4189       Data.Final.getPointer()
4190           ? CGF.Builder.CreateSelect(Data.Final.getPointer(),
4191                                      CGF.Builder.getInt32(FinalFlag),
4192                                      CGF.Builder.getInt32(/*C=*/0))
4193           : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
4194   TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
4195   llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
4196   SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc),
4197       getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize,
4198       SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4199           TaskEntry, KmpRoutineEntryPtrTy)};
4200   llvm::Value *NewTask;
4201   if (D.hasClausesOfKind<OMPNowaitClause>()) {
4202     // Check if we have any device clause associated with the directive.
4203     const Expr *Device = nullptr;
4204     if (auto *C = D.getSingleClause<OMPDeviceClause>())
4205       Device = C->getDevice();
4206     // Emit device ID if any otherwise use default value.
4207     llvm::Value *DeviceID;
4208     if (Device)
4209       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
4210                                            CGF.Int64Ty, /*isSigned=*/true);
4211     else
4212       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
4213     AllocArgs.push_back(DeviceID);
4214     NewTask = CGF.EmitRuntimeCall(
4215         OMPBuilder.getOrCreateRuntimeFunction(
4216             CGM.getModule(), OMPRTL___kmpc_omp_target_task_alloc),
4217         AllocArgs);
4218   } else {
4219     NewTask =
4220         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4221                                 CGM.getModule(), OMPRTL___kmpc_omp_task_alloc),
4222                             AllocArgs);
4223   }
4224   // Emit detach clause initialization.
4225   // evt = (typeof(evt))__kmpc_task_allow_completion_event(loc, tid,
4226   // task_descriptor);
4227   if (const auto *DC = D.getSingleClause<OMPDetachClause>()) {
4228     const Expr *Evt = DC->getEventHandler()->IgnoreParenImpCasts();
4229     LValue EvtLVal = CGF.EmitLValue(Evt);
4230 
4231     // Build kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
4232     // int gtid, kmp_task_t *task);
4233     llvm::Value *Loc = emitUpdateLocation(CGF, DC->getBeginLoc());
4234     llvm::Value *Tid = getThreadID(CGF, DC->getBeginLoc());
4235     Tid = CGF.Builder.CreateIntCast(Tid, CGF.IntTy, /*isSigned=*/false);
4236     llvm::Value *EvtVal = CGF.EmitRuntimeCall(
4237         OMPBuilder.getOrCreateRuntimeFunction(
4238             CGM.getModule(), OMPRTL___kmpc_task_allow_completion_event),
4239         {Loc, Tid, NewTask});
4240     EvtVal = CGF.EmitScalarConversion(EvtVal, C.VoidPtrTy, Evt->getType(),
4241                                       Evt->getExprLoc());
4242     CGF.EmitStoreOfScalar(EvtVal, EvtLVal);
4243   }
4244   // Process affinity clauses.
4245   if (D.hasClausesOfKind<OMPAffinityClause>()) {
4246     // Process list of affinity data.
4247     ASTContext &C = CGM.getContext();
4248     Address AffinitiesArray = Address::invalid();
4249     // Calculate number of elements to form the array of affinity data.
4250     llvm::Value *NumOfElements = nullptr;
4251     unsigned NumAffinities = 0;
4252     for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4253       if (const Expr *Modifier = C->getModifier()) {
4254         const auto *IE = cast<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts());
4255         for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4256           llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4257           Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false);
4258           NumOfElements =
4259               NumOfElements ? CGF.Builder.CreateNUWMul(NumOfElements, Sz) : Sz;
4260         }
4261       } else {
4262         NumAffinities += C->varlist_size();
4263       }
4264     }
4265     getKmpAffinityType(CGM.getContext(), KmpTaskAffinityInfoTy);
4266     // Fields ids in kmp_task_affinity_info record.
4267     enum RTLAffinityInfoFieldsTy { BaseAddr, Len, Flags };
4268 
4269     QualType KmpTaskAffinityInfoArrayTy;
4270     if (NumOfElements) {
4271       NumOfElements = CGF.Builder.CreateNUWAdd(
4272           llvm::ConstantInt::get(CGF.SizeTy, NumAffinities), NumOfElements);
4273       OpaqueValueExpr OVE(
4274           Loc,
4275           C.getIntTypeForBitwidth(C.getTypeSize(C.getSizeType()), /*Signed=*/0),
4276           VK_RValue);
4277       CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE,
4278                                                     RValue::get(NumOfElements));
4279       KmpTaskAffinityInfoArrayTy =
4280           C.getVariableArrayType(KmpTaskAffinityInfoTy, &OVE, ArrayType::Normal,
4281                                  /*IndexTypeQuals=*/0, SourceRange(Loc, Loc));
4282       // Properly emit variable-sized array.
4283       auto *PD = ImplicitParamDecl::Create(C, KmpTaskAffinityInfoArrayTy,
4284                                            ImplicitParamDecl::Other);
4285       CGF.EmitVarDecl(*PD);
4286       AffinitiesArray = CGF.GetAddrOfLocalVar(PD);
4287       NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty,
4288                                                 /*isSigned=*/false);
4289     } else {
4290       KmpTaskAffinityInfoArrayTy = C.getConstantArrayType(
4291           KmpTaskAffinityInfoTy,
4292           llvm::APInt(C.getTypeSize(C.getSizeType()), NumAffinities), nullptr,
4293           ArrayType::Normal, /*IndexTypeQuals=*/0);
4294       AffinitiesArray =
4295           CGF.CreateMemTemp(KmpTaskAffinityInfoArrayTy, ".affs.arr.addr");
4296       AffinitiesArray = CGF.Builder.CreateConstArrayGEP(AffinitiesArray, 0);
4297       NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumAffinities,
4298                                              /*isSigned=*/false);
4299     }
4300 
4301     const auto *KmpAffinityInfoRD = KmpTaskAffinityInfoTy->getAsRecordDecl();
4302     // Fill array by elements without iterators.
4303     unsigned Pos = 0;
4304     bool HasIterator = false;
4305     for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4306       if (C->getModifier()) {
4307         HasIterator = true;
4308         continue;
4309       }
4310       for (const Expr *E : C->varlists()) {
4311         llvm::Value *Addr;
4312         llvm::Value *Size;
4313         std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4314         LValue Base =
4315             CGF.MakeAddrLValue(CGF.Builder.CreateConstGEP(AffinitiesArray, Pos),
4316                                KmpTaskAffinityInfoTy);
4317         // affs[i].base_addr = &<Affinities[i].second>;
4318         LValue BaseAddrLVal = CGF.EmitLValueForField(
4319             Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr));
4320         CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4321                               BaseAddrLVal);
4322         // affs[i].len = sizeof(<Affinities[i].second>);
4323         LValue LenLVal = CGF.EmitLValueForField(
4324             Base, *std::next(KmpAffinityInfoRD->field_begin(), Len));
4325         CGF.EmitStoreOfScalar(Size, LenLVal);
4326         ++Pos;
4327       }
4328     }
4329     LValue PosLVal;
4330     if (HasIterator) {
4331       PosLVal = CGF.MakeAddrLValue(
4332           CGF.CreateMemTemp(C.getSizeType(), "affs.counter.addr"),
4333           C.getSizeType());
4334       CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal);
4335     }
4336     // Process elements with iterators.
4337     for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4338       const Expr *Modifier = C->getModifier();
4339       if (!Modifier)
4340         continue;
4341       OMPIteratorGeneratorScope IteratorScope(
4342           CGF, cast_or_null<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts()));
4343       for (const Expr *E : C->varlists()) {
4344         llvm::Value *Addr;
4345         llvm::Value *Size;
4346         std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4347         llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4348         LValue Base = CGF.MakeAddrLValue(
4349             Address(CGF.Builder.CreateGEP(AffinitiesArray.getPointer(), Idx),
4350                     AffinitiesArray.getAlignment()),
4351             KmpTaskAffinityInfoTy);
4352         // affs[i].base_addr = &<Affinities[i].second>;
4353         LValue BaseAddrLVal = CGF.EmitLValueForField(
4354             Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr));
4355         CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4356                               BaseAddrLVal);
4357         // affs[i].len = sizeof(<Affinities[i].second>);
4358         LValue LenLVal = CGF.EmitLValueForField(
4359             Base, *std::next(KmpAffinityInfoRD->field_begin(), Len));
4360         CGF.EmitStoreOfScalar(Size, LenLVal);
4361         Idx = CGF.Builder.CreateNUWAdd(
4362             Idx, llvm::ConstantInt::get(Idx->getType(), 1));
4363         CGF.EmitStoreOfScalar(Idx, PosLVal);
4364       }
4365     }
4366     // Call to kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref,
4367     // kmp_int32 gtid, kmp_task_t *new_task, kmp_int32
4368     // naffins, kmp_task_affinity_info_t *affin_list);
4369     llvm::Value *LocRef = emitUpdateLocation(CGF, Loc);
4370     llvm::Value *GTid = getThreadID(CGF, Loc);
4371     llvm::Value *AffinListPtr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4372         AffinitiesArray.getPointer(), CGM.VoidPtrTy);
4373     // FIXME: Emit the function and ignore its result for now unless the
4374     // runtime function is properly implemented.
4375     (void)CGF.EmitRuntimeCall(
4376         OMPBuilder.getOrCreateRuntimeFunction(
4377             CGM.getModule(), OMPRTL___kmpc_omp_reg_task_with_affinity),
4378         {LocRef, GTid, NewTask, NumOfElements, AffinListPtr});
4379   }
4380   llvm::Value *NewTaskNewTaskTTy =
4381       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4382           NewTask, KmpTaskTWithPrivatesPtrTy);
4383   LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
4384                                                KmpTaskTWithPrivatesQTy);
4385   LValue TDBase =
4386       CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
4387   // Fill the data in the resulting kmp_task_t record.
4388   // Copy shareds if there are any.
4389   Address KmpTaskSharedsPtr = Address::invalid();
4390   if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
4391     KmpTaskSharedsPtr =
4392         Address(CGF.EmitLoadOfScalar(
4393                     CGF.EmitLValueForField(
4394                         TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
4395                                            KmpTaskTShareds)),
4396                     Loc),
4397                 CGM.getNaturalTypeAlignment(SharedsTy));
4398     LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy);
4399     LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy);
4400     CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap);
4401   }
4402   // Emit initial values for private copies (if any).
4403   TaskResultTy Result;
4404   if (!Privates.empty()) {
4405     emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
4406                      SharedsTy, SharedsPtrTy, Data, Privates,
4407                      /*ForDup=*/false);
4408     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
4409         (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
4410       Result.TaskDupFn = emitTaskDupFunction(
4411           CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
4412           KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
4413           /*WithLastIter=*/!Data.LastprivateVars.empty());
4414     }
4415   }
4416   // Fields of union "kmp_cmplrdata_t" for destructors and priority.
4417   enum { Priority = 0, Destructors = 1 };
4418   // Provide pointer to function with destructors for privates.
4419   auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
4420   const RecordDecl *KmpCmplrdataUD =
4421       (*FI)->getType()->getAsUnionType()->getDecl();
4422   if (NeedsCleanup) {
4423     llvm::Value *DestructorFn = emitDestructorsFunction(
4424         CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
4425         KmpTaskTWithPrivatesQTy);
4426     LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
4427     LValue DestructorsLV = CGF.EmitLValueForField(
4428         Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
4429     CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4430                               DestructorFn, KmpRoutineEntryPtrTy),
4431                           DestructorsLV);
4432   }
4433   // Set priority.
4434   if (Data.Priority.getInt()) {
4435     LValue Data2LV = CGF.EmitLValueForField(
4436         TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
4437     LValue PriorityLV = CGF.EmitLValueForField(
4438         Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
4439     CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
4440   }
4441   Result.NewTask = NewTask;
4442   Result.TaskEntry = TaskEntry;
4443   Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
4444   Result.TDBase = TDBase;
4445   Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
4446   return Result;
4447 }
4448 
4449 namespace {
4450 /// Dependence kind for RTL.
4451 enum RTLDependenceKindTy {
4452   DepIn = 0x01,
4453   DepInOut = 0x3,
4454   DepMutexInOutSet = 0x4
4455 };
4456 /// Fields ids in kmp_depend_info record.
4457 enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
4458 } // namespace
4459 
4460 /// Translates internal dependency kind into the runtime kind.
translateDependencyKind(OpenMPDependClauseKind K)4461 static RTLDependenceKindTy translateDependencyKind(OpenMPDependClauseKind K) {
4462   RTLDependenceKindTy DepKind;
4463   switch (K) {
4464   case OMPC_DEPEND_in:
4465     DepKind = DepIn;
4466     break;
4467   // Out and InOut dependencies must use the same code.
4468   case OMPC_DEPEND_out:
4469   case OMPC_DEPEND_inout:
4470     DepKind = DepInOut;
4471     break;
4472   case OMPC_DEPEND_mutexinoutset:
4473     DepKind = DepMutexInOutSet;
4474     break;
4475   case OMPC_DEPEND_source:
4476   case OMPC_DEPEND_sink:
4477   case OMPC_DEPEND_depobj:
4478   case OMPC_DEPEND_unknown:
4479     llvm_unreachable("Unknown task dependence type");
4480   }
4481   return DepKind;
4482 }
4483 
4484 /// Builds kmp_depend_info, if it is not built yet, and builds flags type.
getDependTypes(ASTContext & C,QualType & KmpDependInfoTy,QualType & FlagsTy)4485 static void getDependTypes(ASTContext &C, QualType &KmpDependInfoTy,
4486                            QualType &FlagsTy) {
4487   FlagsTy = C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
4488   if (KmpDependInfoTy.isNull()) {
4489     RecordDecl *KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
4490     KmpDependInfoRD->startDefinition();
4491     addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
4492     addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
4493     addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
4494     KmpDependInfoRD->completeDefinition();
4495     KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
4496   }
4497 }
4498 
4499 std::pair<llvm::Value *, LValue>
getDepobjElements(CodeGenFunction & CGF,LValue DepobjLVal,SourceLocation Loc)4500 CGOpenMPRuntime::getDepobjElements(CodeGenFunction &CGF, LValue DepobjLVal,
4501                                    SourceLocation Loc) {
4502   ASTContext &C = CGM.getContext();
4503   QualType FlagsTy;
4504   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4505   RecordDecl *KmpDependInfoRD =
4506       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4507   LValue Base = CGF.EmitLoadOfPointerLValue(
4508       DepobjLVal.getAddress(CGF),
4509       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4510   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4511   Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4512           Base.getAddress(CGF), CGF.ConvertTypeForMem(KmpDependInfoPtrTy));
4513   Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(),
4514                             Base.getTBAAInfo());
4515   llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4516       Addr.getPointer(),
4517       llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4518   LValue NumDepsBase = CGF.MakeAddrLValue(
4519       Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy,
4520       Base.getBaseInfo(), Base.getTBAAInfo());
4521   // NumDeps = deps[i].base_addr;
4522   LValue BaseAddrLVal = CGF.EmitLValueForField(
4523       NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4524   llvm::Value *NumDeps = CGF.EmitLoadOfScalar(BaseAddrLVal, Loc);
4525   return std::make_pair(NumDeps, Base);
4526 }
4527 
emitDependData(CodeGenFunction & CGF,QualType & KmpDependInfoTy,llvm::PointerUnion<unsigned *,LValue * > Pos,const OMPTaskDataTy::DependData & Data,Address DependenciesArray)4528 static void emitDependData(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4529                            llvm::PointerUnion<unsigned *, LValue *> Pos,
4530                            const OMPTaskDataTy::DependData &Data,
4531                            Address DependenciesArray) {
4532   CodeGenModule &CGM = CGF.CGM;
4533   ASTContext &C = CGM.getContext();
4534   QualType FlagsTy;
4535   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4536   RecordDecl *KmpDependInfoRD =
4537       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4538   llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
4539 
4540   OMPIteratorGeneratorScope IteratorScope(
4541       CGF, cast_or_null<OMPIteratorExpr>(
4542                Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4543                                  : nullptr));
4544   for (const Expr *E : Data.DepExprs) {
4545     llvm::Value *Addr;
4546     llvm::Value *Size;
4547     std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4548     LValue Base;
4549     if (unsigned *P = Pos.dyn_cast<unsigned *>()) {
4550       Base = CGF.MakeAddrLValue(
4551           CGF.Builder.CreateConstGEP(DependenciesArray, *P), KmpDependInfoTy);
4552     } else {
4553       LValue &PosLVal = *Pos.get<LValue *>();
4554       llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4555       Base = CGF.MakeAddrLValue(
4556           Address(CGF.Builder.CreateGEP(DependenciesArray.getPointer(), Idx),
4557                   DependenciesArray.getAlignment()),
4558           KmpDependInfoTy);
4559     }
4560     // deps[i].base_addr = &<Dependencies[i].second>;
4561     LValue BaseAddrLVal = CGF.EmitLValueForField(
4562         Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4563     CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4564                           BaseAddrLVal);
4565     // deps[i].len = sizeof(<Dependencies[i].second>);
4566     LValue LenLVal = CGF.EmitLValueForField(
4567         Base, *std::next(KmpDependInfoRD->field_begin(), Len));
4568     CGF.EmitStoreOfScalar(Size, LenLVal);
4569     // deps[i].flags = <Dependencies[i].first>;
4570     RTLDependenceKindTy DepKind = translateDependencyKind(Data.DepKind);
4571     LValue FlagsLVal = CGF.EmitLValueForField(
4572         Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
4573     CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
4574                           FlagsLVal);
4575     if (unsigned *P = Pos.dyn_cast<unsigned *>()) {
4576       ++(*P);
4577     } else {
4578       LValue &PosLVal = *Pos.get<LValue *>();
4579       llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4580       Idx = CGF.Builder.CreateNUWAdd(Idx,
4581                                      llvm::ConstantInt::get(Idx->getType(), 1));
4582       CGF.EmitStoreOfScalar(Idx, PosLVal);
4583     }
4584   }
4585 }
4586 
4587 static SmallVector<llvm::Value *, 4>
emitDepobjElementsSizes(CodeGenFunction & CGF,QualType & KmpDependInfoTy,const OMPTaskDataTy::DependData & Data)4588 emitDepobjElementsSizes(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4589                         const OMPTaskDataTy::DependData &Data) {
4590   assert(Data.DepKind == OMPC_DEPEND_depobj &&
4591          "Expected depobj dependecy kind.");
4592   SmallVector<llvm::Value *, 4> Sizes;
4593   SmallVector<LValue, 4> SizeLVals;
4594   ASTContext &C = CGF.getContext();
4595   QualType FlagsTy;
4596   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4597   RecordDecl *KmpDependInfoRD =
4598       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4599   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4600   llvm::Type *KmpDependInfoPtrT = CGF.ConvertTypeForMem(KmpDependInfoPtrTy);
4601   {
4602     OMPIteratorGeneratorScope IteratorScope(
4603         CGF, cast_or_null<OMPIteratorExpr>(
4604                  Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4605                                    : nullptr));
4606     for (const Expr *E : Data.DepExprs) {
4607       LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts());
4608       LValue Base = CGF.EmitLoadOfPointerLValue(
4609           DepobjLVal.getAddress(CGF),
4610           C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4611       Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4612           Base.getAddress(CGF), KmpDependInfoPtrT);
4613       Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(),
4614                                 Base.getTBAAInfo());
4615       llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4616           Addr.getPointer(),
4617           llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4618       LValue NumDepsBase = CGF.MakeAddrLValue(
4619           Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy,
4620           Base.getBaseInfo(), Base.getTBAAInfo());
4621       // NumDeps = deps[i].base_addr;
4622       LValue BaseAddrLVal = CGF.EmitLValueForField(
4623           NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4624       llvm::Value *NumDeps =
4625           CGF.EmitLoadOfScalar(BaseAddrLVal, E->getExprLoc());
4626       LValue NumLVal = CGF.MakeAddrLValue(
4627           CGF.CreateMemTemp(C.getUIntPtrType(), "depobj.size.addr"),
4628           C.getUIntPtrType());
4629       CGF.InitTempAlloca(NumLVal.getAddress(CGF),
4630                          llvm::ConstantInt::get(CGF.IntPtrTy, 0));
4631       llvm::Value *PrevVal = CGF.EmitLoadOfScalar(NumLVal, E->getExprLoc());
4632       llvm::Value *Add = CGF.Builder.CreateNUWAdd(PrevVal, NumDeps);
4633       CGF.EmitStoreOfScalar(Add, NumLVal);
4634       SizeLVals.push_back(NumLVal);
4635     }
4636   }
4637   for (unsigned I = 0, E = SizeLVals.size(); I < E; ++I) {
4638     llvm::Value *Size =
4639         CGF.EmitLoadOfScalar(SizeLVals[I], Data.DepExprs[I]->getExprLoc());
4640     Sizes.push_back(Size);
4641   }
4642   return Sizes;
4643 }
4644 
emitDepobjElements(CodeGenFunction & CGF,QualType & KmpDependInfoTy,LValue PosLVal,const OMPTaskDataTy::DependData & Data,Address DependenciesArray)4645 static void emitDepobjElements(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4646                                LValue PosLVal,
4647                                const OMPTaskDataTy::DependData &Data,
4648                                Address DependenciesArray) {
4649   assert(Data.DepKind == OMPC_DEPEND_depobj &&
4650          "Expected depobj dependecy kind.");
4651   ASTContext &C = CGF.getContext();
4652   QualType FlagsTy;
4653   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4654   RecordDecl *KmpDependInfoRD =
4655       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4656   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4657   llvm::Type *KmpDependInfoPtrT = CGF.ConvertTypeForMem(KmpDependInfoPtrTy);
4658   llvm::Value *ElSize = CGF.getTypeSize(KmpDependInfoTy);
4659   {
4660     OMPIteratorGeneratorScope IteratorScope(
4661         CGF, cast_or_null<OMPIteratorExpr>(
4662                  Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4663                                    : nullptr));
4664     for (unsigned I = 0, End = Data.DepExprs.size(); I < End; ++I) {
4665       const Expr *E = Data.DepExprs[I];
4666       LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts());
4667       LValue Base = CGF.EmitLoadOfPointerLValue(
4668           DepobjLVal.getAddress(CGF),
4669           C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4670       Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4671           Base.getAddress(CGF), KmpDependInfoPtrT);
4672       Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(),
4673                                 Base.getTBAAInfo());
4674 
4675       // Get number of elements in a single depobj.
4676       llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4677           Addr.getPointer(),
4678           llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4679       LValue NumDepsBase = CGF.MakeAddrLValue(
4680           Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy,
4681           Base.getBaseInfo(), Base.getTBAAInfo());
4682       // NumDeps = deps[i].base_addr;
4683       LValue BaseAddrLVal = CGF.EmitLValueForField(
4684           NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4685       llvm::Value *NumDeps =
4686           CGF.EmitLoadOfScalar(BaseAddrLVal, E->getExprLoc());
4687 
4688       // memcopy dependency data.
4689       llvm::Value *Size = CGF.Builder.CreateNUWMul(
4690           ElSize,
4691           CGF.Builder.CreateIntCast(NumDeps, CGF.SizeTy, /*isSigned=*/false));
4692       llvm::Value *Pos = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4693       Address DepAddr =
4694           Address(CGF.Builder.CreateGEP(DependenciesArray.getPointer(), Pos),
4695                   DependenciesArray.getAlignment());
4696       CGF.Builder.CreateMemCpy(DepAddr, Base.getAddress(CGF), Size);
4697 
4698       // Increase pos.
4699       // pos += size;
4700       llvm::Value *Add = CGF.Builder.CreateNUWAdd(Pos, NumDeps);
4701       CGF.EmitStoreOfScalar(Add, PosLVal);
4702     }
4703   }
4704 }
4705 
emitDependClause(CodeGenFunction & CGF,ArrayRef<OMPTaskDataTy::DependData> Dependencies,SourceLocation Loc)4706 std::pair<llvm::Value *, Address> CGOpenMPRuntime::emitDependClause(
4707     CodeGenFunction &CGF, ArrayRef<OMPTaskDataTy::DependData> Dependencies,
4708     SourceLocation Loc) {
4709   if (llvm::all_of(Dependencies, [](const OMPTaskDataTy::DependData &D) {
4710         return D.DepExprs.empty();
4711       }))
4712     return std::make_pair(nullptr, Address::invalid());
4713   // Process list of dependencies.
4714   ASTContext &C = CGM.getContext();
4715   Address DependenciesArray = Address::invalid();
4716   llvm::Value *NumOfElements = nullptr;
4717   unsigned NumDependencies = std::accumulate(
4718       Dependencies.begin(), Dependencies.end(), 0,
4719       [](unsigned V, const OMPTaskDataTy::DependData &D) {
4720         return D.DepKind == OMPC_DEPEND_depobj
4721                    ? V
4722                    : (V + (D.IteratorExpr ? 0 : D.DepExprs.size()));
4723       });
4724   QualType FlagsTy;
4725   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4726   bool HasDepobjDeps = false;
4727   bool HasRegularWithIterators = false;
4728   llvm::Value *NumOfDepobjElements = llvm::ConstantInt::get(CGF.IntPtrTy, 0);
4729   llvm::Value *NumOfRegularWithIterators =
4730       llvm::ConstantInt::get(CGF.IntPtrTy, 1);
4731   // Calculate number of depobj dependecies and regular deps with the iterators.
4732   for (const OMPTaskDataTy::DependData &D : Dependencies) {
4733     if (D.DepKind == OMPC_DEPEND_depobj) {
4734       SmallVector<llvm::Value *, 4> Sizes =
4735           emitDepobjElementsSizes(CGF, KmpDependInfoTy, D);
4736       for (llvm::Value *Size : Sizes) {
4737         NumOfDepobjElements =
4738             CGF.Builder.CreateNUWAdd(NumOfDepobjElements, Size);
4739       }
4740       HasDepobjDeps = true;
4741       continue;
4742     }
4743     // Include number of iterations, if any.
4744     if (const auto *IE = cast_or_null<OMPIteratorExpr>(D.IteratorExpr)) {
4745       for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4746         llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4747         Sz = CGF.Builder.CreateIntCast(Sz, CGF.IntPtrTy, /*isSigned=*/false);
4748         NumOfRegularWithIterators =
4749             CGF.Builder.CreateNUWMul(NumOfRegularWithIterators, Sz);
4750       }
4751       HasRegularWithIterators = true;
4752       continue;
4753     }
4754   }
4755 
4756   QualType KmpDependInfoArrayTy;
4757   if (HasDepobjDeps || HasRegularWithIterators) {
4758     NumOfElements = llvm::ConstantInt::get(CGM.IntPtrTy, NumDependencies,
4759                                            /*isSigned=*/false);
4760     if (HasDepobjDeps) {
4761       NumOfElements =
4762           CGF.Builder.CreateNUWAdd(NumOfDepobjElements, NumOfElements);
4763     }
4764     if (HasRegularWithIterators) {
4765       NumOfElements =
4766           CGF.Builder.CreateNUWAdd(NumOfRegularWithIterators, NumOfElements);
4767     }
4768     OpaqueValueExpr OVE(Loc,
4769                         C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0),
4770                         VK_RValue);
4771     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE,
4772                                                   RValue::get(NumOfElements));
4773     KmpDependInfoArrayTy =
4774         C.getVariableArrayType(KmpDependInfoTy, &OVE, ArrayType::Normal,
4775                                /*IndexTypeQuals=*/0, SourceRange(Loc, Loc));
4776     // CGF.EmitVariablyModifiedType(KmpDependInfoArrayTy);
4777     // Properly emit variable-sized array.
4778     auto *PD = ImplicitParamDecl::Create(C, KmpDependInfoArrayTy,
4779                                          ImplicitParamDecl::Other);
4780     CGF.EmitVarDecl(*PD);
4781     DependenciesArray = CGF.GetAddrOfLocalVar(PD);
4782     NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty,
4783                                               /*isSigned=*/false);
4784   } else {
4785     KmpDependInfoArrayTy = C.getConstantArrayType(
4786         KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies), nullptr,
4787         ArrayType::Normal, /*IndexTypeQuals=*/0);
4788     DependenciesArray =
4789         CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
4790     DependenciesArray = CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0);
4791     NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumDependencies,
4792                                            /*isSigned=*/false);
4793   }
4794   unsigned Pos = 0;
4795   for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4796     if (Dependencies[I].DepKind == OMPC_DEPEND_depobj ||
4797         Dependencies[I].IteratorExpr)
4798       continue;
4799     emitDependData(CGF, KmpDependInfoTy, &Pos, Dependencies[I],
4800                    DependenciesArray);
4801   }
4802   // Copy regular dependecies with iterators.
4803   LValue PosLVal = CGF.MakeAddrLValue(
4804       CGF.CreateMemTemp(C.getSizeType(), "dep.counter.addr"), C.getSizeType());
4805   CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal);
4806   for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4807     if (Dependencies[I].DepKind == OMPC_DEPEND_depobj ||
4808         !Dependencies[I].IteratorExpr)
4809       continue;
4810     emitDependData(CGF, KmpDependInfoTy, &PosLVal, Dependencies[I],
4811                    DependenciesArray);
4812   }
4813   // Copy final depobj arrays without iterators.
4814   if (HasDepobjDeps) {
4815     for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4816       if (Dependencies[I].DepKind != OMPC_DEPEND_depobj)
4817         continue;
4818       emitDepobjElements(CGF, KmpDependInfoTy, PosLVal, Dependencies[I],
4819                          DependenciesArray);
4820     }
4821   }
4822   DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4823       DependenciesArray, CGF.VoidPtrTy);
4824   return std::make_pair(NumOfElements, DependenciesArray);
4825 }
4826 
emitDepobjDependClause(CodeGenFunction & CGF,const OMPTaskDataTy::DependData & Dependencies,SourceLocation Loc)4827 Address CGOpenMPRuntime::emitDepobjDependClause(
4828     CodeGenFunction &CGF, const OMPTaskDataTy::DependData &Dependencies,
4829     SourceLocation Loc) {
4830   if (Dependencies.DepExprs.empty())
4831     return Address::invalid();
4832   // Process list of dependencies.
4833   ASTContext &C = CGM.getContext();
4834   Address DependenciesArray = Address::invalid();
4835   unsigned NumDependencies = Dependencies.DepExprs.size();
4836   QualType FlagsTy;
4837   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4838   RecordDecl *KmpDependInfoRD =
4839       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4840 
4841   llvm::Value *Size;
4842   // Define type kmp_depend_info[<Dependencies.size()>];
4843   // For depobj reserve one extra element to store the number of elements.
4844   // It is required to handle depobj(x) update(in) construct.
4845   // kmp_depend_info[<Dependencies.size()>] deps;
4846   llvm::Value *NumDepsVal;
4847   CharUnits Align = C.getTypeAlignInChars(KmpDependInfoTy);
4848   if (const auto *IE =
4849           cast_or_null<OMPIteratorExpr>(Dependencies.IteratorExpr)) {
4850     NumDepsVal = llvm::ConstantInt::get(CGF.SizeTy, 1);
4851     for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4852       llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4853       Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false);
4854       NumDepsVal = CGF.Builder.CreateNUWMul(NumDepsVal, Sz);
4855     }
4856     Size = CGF.Builder.CreateNUWAdd(llvm::ConstantInt::get(CGF.SizeTy, 1),
4857                                     NumDepsVal);
4858     CharUnits SizeInBytes =
4859         C.getTypeSizeInChars(KmpDependInfoTy).alignTo(Align);
4860     llvm::Value *RecSize = CGM.getSize(SizeInBytes);
4861     Size = CGF.Builder.CreateNUWMul(Size, RecSize);
4862     NumDepsVal =
4863         CGF.Builder.CreateIntCast(NumDepsVal, CGF.IntPtrTy, /*isSigned=*/false);
4864   } else {
4865     QualType KmpDependInfoArrayTy = C.getConstantArrayType(
4866         KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies + 1),
4867         nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
4868     CharUnits Sz = C.getTypeSizeInChars(KmpDependInfoArrayTy);
4869     Size = CGM.getSize(Sz.alignTo(Align));
4870     NumDepsVal = llvm::ConstantInt::get(CGF.IntPtrTy, NumDependencies);
4871   }
4872   // Need to allocate on the dynamic memory.
4873   llvm::Value *ThreadID = getThreadID(CGF, Loc);
4874   // Use default allocator.
4875   llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4876   llvm::Value *Args[] = {ThreadID, Size, Allocator};
4877 
4878   llvm::Value *Addr =
4879       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4880                               CGM.getModule(), OMPRTL___kmpc_alloc),
4881                           Args, ".dep.arr.addr");
4882   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4883       Addr, CGF.ConvertTypeForMem(KmpDependInfoTy)->getPointerTo());
4884   DependenciesArray = Address(Addr, Align);
4885   // Write number of elements in the first element of array for depobj.
4886   LValue Base = CGF.MakeAddrLValue(DependenciesArray, KmpDependInfoTy);
4887   // deps[i].base_addr = NumDependencies;
4888   LValue BaseAddrLVal = CGF.EmitLValueForField(
4889       Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4890   CGF.EmitStoreOfScalar(NumDepsVal, BaseAddrLVal);
4891   llvm::PointerUnion<unsigned *, LValue *> Pos;
4892   unsigned Idx = 1;
4893   LValue PosLVal;
4894   if (Dependencies.IteratorExpr) {
4895     PosLVal = CGF.MakeAddrLValue(
4896         CGF.CreateMemTemp(C.getSizeType(), "iterator.counter.addr"),
4897         C.getSizeType());
4898     CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Idx), PosLVal,
4899                           /*IsInit=*/true);
4900     Pos = &PosLVal;
4901   } else {
4902     Pos = &Idx;
4903   }
4904   emitDependData(CGF, KmpDependInfoTy, Pos, Dependencies, DependenciesArray);
4905   DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4906       CGF.Builder.CreateConstGEP(DependenciesArray, 1), CGF.VoidPtrTy);
4907   return DependenciesArray;
4908 }
4909 
emitDestroyClause(CodeGenFunction & CGF,LValue DepobjLVal,SourceLocation Loc)4910 void CGOpenMPRuntime::emitDestroyClause(CodeGenFunction &CGF, LValue DepobjLVal,
4911                                         SourceLocation Loc) {
4912   ASTContext &C = CGM.getContext();
4913   QualType FlagsTy;
4914   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4915   LValue Base = CGF.EmitLoadOfPointerLValue(
4916       DepobjLVal.getAddress(CGF),
4917       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4918   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4919   Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4920       Base.getAddress(CGF), CGF.ConvertTypeForMem(KmpDependInfoPtrTy));
4921   llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4922       Addr.getPointer(),
4923       llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4924   DepObjAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(DepObjAddr,
4925                                                                CGF.VoidPtrTy);
4926   llvm::Value *ThreadID = getThreadID(CGF, Loc);
4927   // Use default allocator.
4928   llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4929   llvm::Value *Args[] = {ThreadID, DepObjAddr, Allocator};
4930 
4931   // _kmpc_free(gtid, addr, nullptr);
4932   (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4933                                 CGM.getModule(), OMPRTL___kmpc_free),
4934                             Args);
4935 }
4936 
emitUpdateClause(CodeGenFunction & CGF,LValue DepobjLVal,OpenMPDependClauseKind NewDepKind,SourceLocation Loc)4937 void CGOpenMPRuntime::emitUpdateClause(CodeGenFunction &CGF, LValue DepobjLVal,
4938                                        OpenMPDependClauseKind NewDepKind,
4939                                        SourceLocation Loc) {
4940   ASTContext &C = CGM.getContext();
4941   QualType FlagsTy;
4942   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4943   RecordDecl *KmpDependInfoRD =
4944       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4945   llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
4946   llvm::Value *NumDeps;
4947   LValue Base;
4948   std::tie(NumDeps, Base) = getDepobjElements(CGF, DepobjLVal, Loc);
4949 
4950   Address Begin = Base.getAddress(CGF);
4951   // Cast from pointer to array type to pointer to single element.
4952   llvm::Value *End = CGF.Builder.CreateGEP(Begin.getPointer(), NumDeps);
4953   // The basic structure here is a while-do loop.
4954   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.body");
4955   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.done");
4956   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
4957   CGF.EmitBlock(BodyBB);
4958   llvm::PHINode *ElementPHI =
4959       CGF.Builder.CreatePHI(Begin.getType(), 2, "omp.elementPast");
4960   ElementPHI->addIncoming(Begin.getPointer(), EntryBB);
4961   Begin = Address(ElementPHI, Begin.getAlignment());
4962   Base = CGF.MakeAddrLValue(Begin, KmpDependInfoTy, Base.getBaseInfo(),
4963                             Base.getTBAAInfo());
4964   // deps[i].flags = NewDepKind;
4965   RTLDependenceKindTy DepKind = translateDependencyKind(NewDepKind);
4966   LValue FlagsLVal = CGF.EmitLValueForField(
4967       Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
4968   CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
4969                         FlagsLVal);
4970 
4971   // Shift the address forward by one element.
4972   Address ElementNext =
4973       CGF.Builder.CreateConstGEP(Begin, /*Index=*/1, "omp.elementNext");
4974   ElementPHI->addIncoming(ElementNext.getPointer(),
4975                           CGF.Builder.GetInsertBlock());
4976   llvm::Value *IsEmpty =
4977       CGF.Builder.CreateICmpEQ(ElementNext.getPointer(), End, "omp.isempty");
4978   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
4979   // Done.
4980   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
4981 }
4982 
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)4983 void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
4984                                    const OMPExecutableDirective &D,
4985                                    llvm::Function *TaskFunction,
4986                                    QualType SharedsTy, Address Shareds,
4987                                    const Expr *IfCond,
4988                                    const OMPTaskDataTy &Data) {
4989   if (!CGF.HaveInsertPoint())
4990     return;
4991 
4992   TaskResultTy Result =
4993       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
4994   llvm::Value *NewTask = Result.NewTask;
4995   llvm::Function *TaskEntry = Result.TaskEntry;
4996   llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
4997   LValue TDBase = Result.TDBase;
4998   const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
4999   // Process list of dependences.
5000   Address DependenciesArray = Address::invalid();
5001   llvm::Value *NumOfElements;
5002   std::tie(NumOfElements, DependenciesArray) =
5003       emitDependClause(CGF, Data.Dependences, Loc);
5004 
5005   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5006   // libcall.
5007   // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
5008   // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
5009   // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
5010   // list is not empty
5011   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5012   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5013   llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
5014   llvm::Value *DepTaskArgs[7];
5015   if (!Data.Dependences.empty()) {
5016     DepTaskArgs[0] = UpLoc;
5017     DepTaskArgs[1] = ThreadID;
5018     DepTaskArgs[2] = NewTask;
5019     DepTaskArgs[3] = NumOfElements;
5020     DepTaskArgs[4] = DependenciesArray.getPointer();
5021     DepTaskArgs[5] = CGF.Builder.getInt32(0);
5022     DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5023   }
5024   auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, &TaskArgs,
5025                         &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
5026     if (!Data.Tied) {
5027       auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
5028       LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
5029       CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
5030     }
5031     if (!Data.Dependences.empty()) {
5032       CGF.EmitRuntimeCall(
5033           OMPBuilder.getOrCreateRuntimeFunction(
5034               CGM.getModule(), OMPRTL___kmpc_omp_task_with_deps),
5035           DepTaskArgs);
5036     } else {
5037       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5038                               CGM.getModule(), OMPRTL___kmpc_omp_task),
5039                           TaskArgs);
5040     }
5041     // Check if parent region is untied and build return for untied task;
5042     if (auto *Region =
5043             dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
5044       Region->emitUntiedSwitch(CGF);
5045   };
5046 
5047   llvm::Value *DepWaitTaskArgs[6];
5048   if (!Data.Dependences.empty()) {
5049     DepWaitTaskArgs[0] = UpLoc;
5050     DepWaitTaskArgs[1] = ThreadID;
5051     DepWaitTaskArgs[2] = NumOfElements;
5052     DepWaitTaskArgs[3] = DependenciesArray.getPointer();
5053     DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
5054     DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5055   }
5056   auto &M = CGM.getModule();
5057   auto &&ElseCodeGen = [this, &M, &TaskArgs, ThreadID, NewTaskNewTaskTTy,
5058                         TaskEntry, &Data, &DepWaitTaskArgs,
5059                         Loc](CodeGenFunction &CGF, PrePostActionTy &) {
5060     CodeGenFunction::RunCleanupsScope LocalScope(CGF);
5061     // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
5062     // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
5063     // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
5064     // is specified.
5065     if (!Data.Dependences.empty())
5066       CGF.EmitRuntimeCall(
5067           OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_omp_wait_deps),
5068           DepWaitTaskArgs);
5069     // Call proxy_task_entry(gtid, new_task);
5070     auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy,
5071                       Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
5072       Action.Enter(CGF);
5073       llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
5074       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry,
5075                                                           OutlinedFnArgs);
5076     };
5077 
5078     // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
5079     // kmp_task_t *new_task);
5080     // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
5081     // kmp_task_t *new_task);
5082     RegionCodeGenTy RCG(CodeGen);
5083     CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
5084                               M, OMPRTL___kmpc_omp_task_begin_if0),
5085                           TaskArgs,
5086                           OMPBuilder.getOrCreateRuntimeFunction(
5087                               M, OMPRTL___kmpc_omp_task_complete_if0),
5088                           TaskArgs);
5089     RCG.setAction(Action);
5090     RCG(CGF);
5091   };
5092 
5093   if (IfCond) {
5094     emitIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
5095   } else {
5096     RegionCodeGenTy ThenRCG(ThenCodeGen);
5097     ThenRCG(CGF);
5098   }
5099 }
5100 
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)5101 void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
5102                                        const OMPLoopDirective &D,
5103                                        llvm::Function *TaskFunction,
5104                                        QualType SharedsTy, Address Shareds,
5105                                        const Expr *IfCond,
5106                                        const OMPTaskDataTy &Data) {
5107   if (!CGF.HaveInsertPoint())
5108     return;
5109   TaskResultTy Result =
5110       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5111   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5112   // libcall.
5113   // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
5114   // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
5115   // sched, kmp_uint64 grainsize, void *task_dup);
5116   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5117   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5118   llvm::Value *IfVal;
5119   if (IfCond) {
5120     IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
5121                                       /*isSigned=*/true);
5122   } else {
5123     IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
5124   }
5125 
5126   LValue LBLVal = CGF.EmitLValueForField(
5127       Result.TDBase,
5128       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
5129   const auto *LBVar =
5130       cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
5131   CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(CGF),
5132                        LBLVal.getQuals(),
5133                        /*IsInitializer=*/true);
5134   LValue UBLVal = CGF.EmitLValueForField(
5135       Result.TDBase,
5136       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
5137   const auto *UBVar =
5138       cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
5139   CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(CGF),
5140                        UBLVal.getQuals(),
5141                        /*IsInitializer=*/true);
5142   LValue StLVal = CGF.EmitLValueForField(
5143       Result.TDBase,
5144       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
5145   const auto *StVar =
5146       cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
5147   CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(CGF),
5148                        StLVal.getQuals(),
5149                        /*IsInitializer=*/true);
5150   // Store reductions address.
5151   LValue RedLVal = CGF.EmitLValueForField(
5152       Result.TDBase,
5153       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions));
5154   if (Data.Reductions) {
5155     CGF.EmitStoreOfScalar(Data.Reductions, RedLVal);
5156   } else {
5157     CGF.EmitNullInitialization(RedLVal.getAddress(CGF),
5158                                CGF.getContext().VoidPtrTy);
5159   }
5160   enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
5161   llvm::Value *TaskArgs[] = {
5162       UpLoc,
5163       ThreadID,
5164       Result.NewTask,
5165       IfVal,
5166       LBLVal.getPointer(CGF),
5167       UBLVal.getPointer(CGF),
5168       CGF.EmitLoadOfScalar(StLVal, Loc),
5169       llvm::ConstantInt::getSigned(
5170           CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler
5171       llvm::ConstantInt::getSigned(
5172           CGF.IntTy, Data.Schedule.getPointer()
5173                          ? Data.Schedule.getInt() ? NumTasks : Grainsize
5174                          : NoSchedule),
5175       Data.Schedule.getPointer()
5176           ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
5177                                       /*isSigned=*/false)
5178           : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
5179       Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5180                              Result.TaskDupFn, CGF.VoidPtrTy)
5181                        : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
5182   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5183                           CGM.getModule(), OMPRTL___kmpc_taskloop),
5184                       TaskArgs);
5185 }
5186 
5187 /// Emit reduction operation for each element of array (required for
5188 /// array sections) LHS op = RHS.
5189 /// \param Type Type of array.
5190 /// \param LHSVar Variable on the left side of the reduction operation
5191 /// (references element of array in original variable).
5192 /// \param RHSVar Variable on the right side of the reduction operation
5193 /// (references element of array in original variable).
5194 /// \param RedOpGen Generator of reduction operation with use of LHSVar and
5195 /// RHSVar.
EmitOMPAggregateReduction(CodeGenFunction & CGF,QualType Type,const VarDecl * LHSVar,const VarDecl * RHSVar,const llvm::function_ref<void (CodeGenFunction & CGF,const Expr *,const Expr *,const Expr *)> & RedOpGen,const Expr * XExpr=nullptr,const Expr * EExpr=nullptr,const Expr * UpExpr=nullptr)5196 static void EmitOMPAggregateReduction(
5197     CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
5198     const VarDecl *RHSVar,
5199     const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
5200                                   const Expr *, const Expr *)> &RedOpGen,
5201     const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
5202     const Expr *UpExpr = nullptr) {
5203   // Perform element-by-element initialization.
5204   QualType ElementTy;
5205   Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
5206   Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
5207 
5208   // Drill down to the base element type on both arrays.
5209   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
5210   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
5211 
5212   llvm::Value *RHSBegin = RHSAddr.getPointer();
5213   llvm::Value *LHSBegin = LHSAddr.getPointer();
5214   // Cast from pointer to array type to pointer to single element.
5215   llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
5216   // The basic structure here is a while-do loop.
5217   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
5218   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
5219   llvm::Value *IsEmpty =
5220       CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
5221   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
5222 
5223   // Enter the loop body, making that address the current address.
5224   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
5225   CGF.EmitBlock(BodyBB);
5226 
5227   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
5228 
5229   llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
5230       RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
5231   RHSElementPHI->addIncoming(RHSBegin, EntryBB);
5232   Address RHSElementCurrent =
5233       Address(RHSElementPHI,
5234               RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5235 
5236   llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
5237       LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
5238   LHSElementPHI->addIncoming(LHSBegin, EntryBB);
5239   Address LHSElementCurrent =
5240       Address(LHSElementPHI,
5241               LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5242 
5243   // Emit copy.
5244   CodeGenFunction::OMPPrivateScope Scope(CGF);
5245   Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; });
5246   Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; });
5247   Scope.Privatize();
5248   RedOpGen(CGF, XExpr, EExpr, UpExpr);
5249   Scope.ForceCleanup();
5250 
5251   // Shift the address forward by one element.
5252   llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32(
5253       LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
5254   llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32(
5255       RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
5256   // Check whether we've reached the end.
5257   llvm::Value *Done =
5258       CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
5259   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
5260   LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
5261   RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
5262 
5263   // Done.
5264   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
5265 }
5266 
5267 /// Emit reduction combiner. If the combiner is a simple expression emit it as
5268 /// is, otherwise consider it as combiner of UDR decl and emit it as a call of
5269 /// UDR combiner function.
emitReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp)5270 static void emitReductionCombiner(CodeGenFunction &CGF,
5271                                   const Expr *ReductionOp) {
5272   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
5273     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
5274       if (const auto *DRE =
5275               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
5276         if (const auto *DRD =
5277                 dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
5278           std::pair<llvm::Function *, llvm::Function *> Reduction =
5279               CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
5280           RValue Func = RValue::get(Reduction.first);
5281           CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
5282           CGF.EmitIgnoredExpr(ReductionOp);
5283           return;
5284         }
5285   CGF.EmitIgnoredExpr(ReductionOp);
5286 }
5287 
emitReductionFunction(SourceLocation Loc,llvm::Type * ArgsType,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps)5288 llvm::Function *CGOpenMPRuntime::emitReductionFunction(
5289     SourceLocation Loc, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates,
5290     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
5291     ArrayRef<const Expr *> ReductionOps) {
5292   ASTContext &C = CGM.getContext();
5293 
5294   // void reduction_func(void *LHSArg, void *RHSArg);
5295   FunctionArgList Args;
5296   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5297                            ImplicitParamDecl::Other);
5298   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5299                            ImplicitParamDecl::Other);
5300   Args.push_back(&LHSArg);
5301   Args.push_back(&RHSArg);
5302   const auto &CGFI =
5303       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5304   std::string Name = getName({"omp", "reduction", "reduction_func"});
5305   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
5306                                     llvm::GlobalValue::InternalLinkage, Name,
5307                                     &CGM.getModule());
5308   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
5309   Fn->setDoesNotRecurse();
5310   CodeGenFunction CGF(CGM);
5311   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
5312 
5313   // Dst = (void*[n])(LHSArg);
5314   // Src = (void*[n])(RHSArg);
5315   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5316       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
5317       ArgsType), CGF.getPointerAlign());
5318   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5319       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
5320       ArgsType), CGF.getPointerAlign());
5321 
5322   //  ...
5323   //  *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
5324   //  ...
5325   CodeGenFunction::OMPPrivateScope Scope(CGF);
5326   auto IPriv = Privates.begin();
5327   unsigned Idx = 0;
5328   for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
5329     const auto *RHSVar =
5330         cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
5331     Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() {
5332       return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
5333     });
5334     const auto *LHSVar =
5335         cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
5336     Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() {
5337       return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
5338     });
5339     QualType PrivTy = (*IPriv)->getType();
5340     if (PrivTy->isVariablyModifiedType()) {
5341       // Get array size and emit VLA type.
5342       ++Idx;
5343       Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx);
5344       llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
5345       const VariableArrayType *VLA =
5346           CGF.getContext().getAsVariableArrayType(PrivTy);
5347       const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
5348       CodeGenFunction::OpaqueValueMapping OpaqueMap(
5349           CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
5350       CGF.EmitVariablyModifiedType(PrivTy);
5351     }
5352   }
5353   Scope.Privatize();
5354   IPriv = Privates.begin();
5355   auto ILHS = LHSExprs.begin();
5356   auto IRHS = RHSExprs.begin();
5357   for (const Expr *E : ReductionOps) {
5358     if ((*IPriv)->getType()->isArrayType()) {
5359       // Emit reduction for array section.
5360       const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5361       const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5362       EmitOMPAggregateReduction(
5363           CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5364           [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5365             emitReductionCombiner(CGF, E);
5366           });
5367     } else {
5368       // Emit reduction for array subscript or single variable.
5369       emitReductionCombiner(CGF, E);
5370     }
5371     ++IPriv;
5372     ++ILHS;
5373     ++IRHS;
5374   }
5375   Scope.ForceCleanup();
5376   CGF.FinishFunction();
5377   return Fn;
5378 }
5379 
emitSingleReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp,const Expr * PrivateRef,const DeclRefExpr * LHS,const DeclRefExpr * RHS)5380 void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
5381                                                   const Expr *ReductionOp,
5382                                                   const Expr *PrivateRef,
5383                                                   const DeclRefExpr *LHS,
5384                                                   const DeclRefExpr *RHS) {
5385   if (PrivateRef->getType()->isArrayType()) {
5386     // Emit reduction for array section.
5387     const auto *LHSVar = cast<VarDecl>(LHS->getDecl());
5388     const auto *RHSVar = cast<VarDecl>(RHS->getDecl());
5389     EmitOMPAggregateReduction(
5390         CGF, PrivateRef->getType(), LHSVar, RHSVar,
5391         [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5392           emitReductionCombiner(CGF, ReductionOp);
5393         });
5394   } else {
5395     // Emit reduction for array subscript or single variable.
5396     emitReductionCombiner(CGF, ReductionOp);
5397   }
5398 }
5399 
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)5400 void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
5401                                     ArrayRef<const Expr *> Privates,
5402                                     ArrayRef<const Expr *> LHSExprs,
5403                                     ArrayRef<const Expr *> RHSExprs,
5404                                     ArrayRef<const Expr *> ReductionOps,
5405                                     ReductionOptionsTy Options) {
5406   if (!CGF.HaveInsertPoint())
5407     return;
5408 
5409   bool WithNowait = Options.WithNowait;
5410   bool SimpleReduction = Options.SimpleReduction;
5411 
5412   // Next code should be emitted for reduction:
5413   //
5414   // static kmp_critical_name lock = { 0 };
5415   //
5416   // void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
5417   //  *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
5418   //  ...
5419   //  *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
5420   //  *(Type<n>-1*)rhs[<n>-1]);
5421   // }
5422   //
5423   // ...
5424   // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
5425   // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5426   // RedList, reduce_func, &<lock>)) {
5427   // case 1:
5428   //  ...
5429   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5430   //  ...
5431   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5432   // break;
5433   // case 2:
5434   //  ...
5435   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5436   //  ...
5437   // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
5438   // break;
5439   // default:;
5440   // }
5441   //
5442   // if SimpleReduction is true, only the next code is generated:
5443   //  ...
5444   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5445   //  ...
5446 
5447   ASTContext &C = CGM.getContext();
5448 
5449   if (SimpleReduction) {
5450     CodeGenFunction::RunCleanupsScope Scope(CGF);
5451     auto IPriv = Privates.begin();
5452     auto ILHS = LHSExprs.begin();
5453     auto IRHS = RHSExprs.begin();
5454     for (const Expr *E : ReductionOps) {
5455       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5456                                   cast<DeclRefExpr>(*IRHS));
5457       ++IPriv;
5458       ++ILHS;
5459       ++IRHS;
5460     }
5461     return;
5462   }
5463 
5464   // 1. Build a list of reduction variables.
5465   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
5466   auto Size = RHSExprs.size();
5467   for (const Expr *E : Privates) {
5468     if (E->getType()->isVariablyModifiedType())
5469       // Reserve place for array size.
5470       ++Size;
5471   }
5472   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
5473   QualType ReductionArrayTy =
5474       C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
5475                              /*IndexTypeQuals=*/0);
5476   Address ReductionList =
5477       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
5478   auto IPriv = Privates.begin();
5479   unsigned Idx = 0;
5480   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
5481     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5482     CGF.Builder.CreateStore(
5483         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5484             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
5485         Elem);
5486     if ((*IPriv)->getType()->isVariablyModifiedType()) {
5487       // Store array size.
5488       ++Idx;
5489       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5490       llvm::Value *Size = CGF.Builder.CreateIntCast(
5491           CGF.getVLASize(
5492                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
5493               .NumElts,
5494           CGF.SizeTy, /*isSigned=*/false);
5495       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
5496                               Elem);
5497     }
5498   }
5499 
5500   // 2. Emit reduce_func().
5501   llvm::Function *ReductionFn = emitReductionFunction(
5502       Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
5503       LHSExprs, RHSExprs, ReductionOps);
5504 
5505   // 3. Create static kmp_critical_name lock = { 0 };
5506   std::string Name = getName({"reduction"});
5507   llvm::Value *Lock = getCriticalRegionLock(Name);
5508 
5509   // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5510   // RedList, reduce_func, &<lock>);
5511   llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
5512   llvm::Value *ThreadId = getThreadID(CGF, Loc);
5513   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
5514   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5515       ReductionList.getPointer(), CGF.VoidPtrTy);
5516   llvm::Value *Args[] = {
5517       IdentTLoc,                             // ident_t *<loc>
5518       ThreadId,                              // i32 <gtid>
5519       CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
5520       ReductionArrayTySize,                  // size_type sizeof(RedList)
5521       RL,                                    // void *RedList
5522       ReductionFn, // void (*) (void *, void *) <reduce_func>
5523       Lock         // kmp_critical_name *&<lock>
5524   };
5525   llvm::Value *Res = CGF.EmitRuntimeCall(
5526       OMPBuilder.getOrCreateRuntimeFunction(
5527           CGM.getModule(),
5528           WithNowait ? OMPRTL___kmpc_reduce_nowait : OMPRTL___kmpc_reduce),
5529       Args);
5530 
5531   // 5. Build switch(res)
5532   llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
5533   llvm::SwitchInst *SwInst =
5534       CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
5535 
5536   // 6. Build case 1:
5537   //  ...
5538   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5539   //  ...
5540   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5541   // break;
5542   llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
5543   SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
5544   CGF.EmitBlock(Case1BB);
5545 
5546   // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5547   llvm::Value *EndArgs[] = {
5548       IdentTLoc, // ident_t *<loc>
5549       ThreadId,  // i32 <gtid>
5550       Lock       // kmp_critical_name *&<lock>
5551   };
5552   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps](
5553                        CodeGenFunction &CGF, PrePostActionTy &Action) {
5554     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5555     auto IPriv = Privates.begin();
5556     auto ILHS = LHSExprs.begin();
5557     auto IRHS = RHSExprs.begin();
5558     for (const Expr *E : ReductionOps) {
5559       RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5560                                      cast<DeclRefExpr>(*IRHS));
5561       ++IPriv;
5562       ++ILHS;
5563       ++IRHS;
5564     }
5565   };
5566   RegionCodeGenTy RCG(CodeGen);
5567   CommonActionTy Action(
5568       nullptr, llvm::None,
5569       OMPBuilder.getOrCreateRuntimeFunction(
5570           CGM.getModule(), WithNowait ? OMPRTL___kmpc_end_reduce_nowait
5571                                       : OMPRTL___kmpc_end_reduce),
5572       EndArgs);
5573   RCG.setAction(Action);
5574   RCG(CGF);
5575 
5576   CGF.EmitBranch(DefaultBB);
5577 
5578   // 7. Build case 2:
5579   //  ...
5580   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5581   //  ...
5582   // break;
5583   llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
5584   SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
5585   CGF.EmitBlock(Case2BB);
5586 
5587   auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps](
5588                              CodeGenFunction &CGF, PrePostActionTy &Action) {
5589     auto ILHS = LHSExprs.begin();
5590     auto IRHS = RHSExprs.begin();
5591     auto IPriv = Privates.begin();
5592     for (const Expr *E : ReductionOps) {
5593       const Expr *XExpr = nullptr;
5594       const Expr *EExpr = nullptr;
5595       const Expr *UpExpr = nullptr;
5596       BinaryOperatorKind BO = BO_Comma;
5597       if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
5598         if (BO->getOpcode() == BO_Assign) {
5599           XExpr = BO->getLHS();
5600           UpExpr = BO->getRHS();
5601         }
5602       }
5603       // Try to emit update expression as a simple atomic.
5604       const Expr *RHSExpr = UpExpr;
5605       if (RHSExpr) {
5606         // Analyze RHS part of the whole expression.
5607         if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(
5608                 RHSExpr->IgnoreParenImpCasts())) {
5609           // If this is a conditional operator, analyze its condition for
5610           // min/max reduction operator.
5611           RHSExpr = ACO->getCond();
5612         }
5613         if (const auto *BORHS =
5614                 dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
5615           EExpr = BORHS->getRHS();
5616           BO = BORHS->getOpcode();
5617         }
5618       }
5619       if (XExpr) {
5620         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5621         auto &&AtomicRedGen = [BO, VD,
5622                                Loc](CodeGenFunction &CGF, const Expr *XExpr,
5623                                     const Expr *EExpr, const Expr *UpExpr) {
5624           LValue X = CGF.EmitLValue(XExpr);
5625           RValue E;
5626           if (EExpr)
5627             E = CGF.EmitAnyExpr(EExpr);
5628           CGF.EmitOMPAtomicSimpleUpdateExpr(
5629               X, E, BO, /*IsXLHSInRHSPart=*/true,
5630               llvm::AtomicOrdering::Monotonic, Loc,
5631               [&CGF, UpExpr, VD, Loc](RValue XRValue) {
5632                 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5633                 PrivateScope.addPrivate(
5634                     VD, [&CGF, VD, XRValue, Loc]() {
5635                       Address LHSTemp = CGF.CreateMemTemp(VD->getType());
5636                       CGF.emitOMPSimpleStore(
5637                           CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
5638                           VD->getType().getNonReferenceType(), Loc);
5639                       return LHSTemp;
5640                     });
5641                 (void)PrivateScope.Privatize();
5642                 return CGF.EmitAnyExpr(UpExpr);
5643               });
5644         };
5645         if ((*IPriv)->getType()->isArrayType()) {
5646           // Emit atomic reduction for array section.
5647           const auto *RHSVar =
5648               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5649           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
5650                                     AtomicRedGen, XExpr, EExpr, UpExpr);
5651         } else {
5652           // Emit atomic reduction for array subscript or single variable.
5653           AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
5654         }
5655       } else {
5656         // Emit as a critical region.
5657         auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
5658                                            const Expr *, const Expr *) {
5659           CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5660           std::string Name = RT.getName({"atomic_reduction"});
5661           RT.emitCriticalRegion(
5662               CGF, Name,
5663               [=](CodeGenFunction &CGF, PrePostActionTy &Action) {
5664                 Action.Enter(CGF);
5665                 emitReductionCombiner(CGF, E);
5666               },
5667               Loc);
5668         };
5669         if ((*IPriv)->getType()->isArrayType()) {
5670           const auto *LHSVar =
5671               cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5672           const auto *RHSVar =
5673               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5674           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5675                                     CritRedGen);
5676         } else {
5677           CritRedGen(CGF, nullptr, nullptr, nullptr);
5678         }
5679       }
5680       ++ILHS;
5681       ++IRHS;
5682       ++IPriv;
5683     }
5684   };
5685   RegionCodeGenTy AtomicRCG(AtomicCodeGen);
5686   if (!WithNowait) {
5687     // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
5688     llvm::Value *EndArgs[] = {
5689         IdentTLoc, // ident_t *<loc>
5690         ThreadId,  // i32 <gtid>
5691         Lock       // kmp_critical_name *&<lock>
5692     };
5693     CommonActionTy Action(nullptr, llvm::None,
5694                           OMPBuilder.getOrCreateRuntimeFunction(
5695                               CGM.getModule(), OMPRTL___kmpc_end_reduce),
5696                           EndArgs);
5697     AtomicRCG.setAction(Action);
5698     AtomicRCG(CGF);
5699   } else {
5700     AtomicRCG(CGF);
5701   }
5702 
5703   CGF.EmitBranch(DefaultBB);
5704   CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
5705 }
5706 
5707 /// Generates unique name for artificial threadprivate variables.
5708 /// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>"
generateUniqueName(CodeGenModule & CGM,StringRef Prefix,const Expr * Ref)5709 static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix,
5710                                       const Expr *Ref) {
5711   SmallString<256> Buffer;
5712   llvm::raw_svector_ostream Out(Buffer);
5713   const clang::DeclRefExpr *DE;
5714   const VarDecl *D = ::getBaseDecl(Ref, DE);
5715   if (!D)
5716     D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl());
5717   D = D->getCanonicalDecl();
5718   std::string Name = CGM.getOpenMPRuntime().getName(
5719       {D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)});
5720   Out << Prefix << Name << "_"
5721       << D->getCanonicalDecl()->getBeginLoc().getRawEncoding();
5722   return std::string(Out.str());
5723 }
5724 
5725 /// Emits reduction initializer function:
5726 /// \code
5727 /// void @.red_init(void* %arg, void* %orig) {
5728 /// %0 = bitcast void* %arg to <type>*
5729 /// store <type> <init>, <type>* %0
5730 /// ret void
5731 /// }
5732 /// \endcode
emitReduceInitFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)5733 static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM,
5734                                            SourceLocation Loc,
5735                                            ReductionCodeGen &RCG, unsigned N) {
5736   ASTContext &C = CGM.getContext();
5737   QualType VoidPtrTy = C.VoidPtrTy;
5738   VoidPtrTy.addRestrict();
5739   FunctionArgList Args;
5740   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy,
5741                           ImplicitParamDecl::Other);
5742   ImplicitParamDecl ParamOrig(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy,
5743                               ImplicitParamDecl::Other);
5744   Args.emplace_back(&Param);
5745   Args.emplace_back(&ParamOrig);
5746   const auto &FnInfo =
5747       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5748   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5749   std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""});
5750   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5751                                     Name, &CGM.getModule());
5752   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5753   Fn->setDoesNotRecurse();
5754   CodeGenFunction CGF(CGM);
5755   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5756   Address PrivateAddr = CGF.EmitLoadOfPointer(
5757       CGF.GetAddrOfLocalVar(&Param),
5758       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5759   llvm::Value *Size = nullptr;
5760   // If the size of the reduction item is non-constant, load it from global
5761   // threadprivate variable.
5762   if (RCG.getSizes(N).second) {
5763     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5764         CGF, CGM.getContext().getSizeType(),
5765         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5766     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5767                                 CGM.getContext().getSizeType(), Loc);
5768   }
5769   RCG.emitAggregateType(CGF, N, Size);
5770   LValue OrigLVal;
5771   // If initializer uses initializer from declare reduction construct, emit a
5772   // pointer to the address of the original reduction item (reuired by reduction
5773   // initializer)
5774   if (RCG.usesReductionInitializer(N)) {
5775     Address SharedAddr = CGF.GetAddrOfLocalVar(&ParamOrig);
5776     SharedAddr = CGF.EmitLoadOfPointer(
5777         SharedAddr,
5778         CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr());
5779     OrigLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy);
5780   } else {
5781     OrigLVal = CGF.MakeNaturalAlignAddrLValue(
5782         llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
5783         CGM.getContext().VoidPtrTy);
5784   }
5785   // Emit the initializer:
5786   // %0 = bitcast void* %arg to <type>*
5787   // store <type> <init>, <type>* %0
5788   RCG.emitInitialization(CGF, N, PrivateAddr, OrigLVal,
5789                          [](CodeGenFunction &) { return false; });
5790   CGF.FinishFunction();
5791   return Fn;
5792 }
5793 
5794 /// Emits reduction combiner function:
5795 /// \code
5796 /// void @.red_comb(void* %arg0, void* %arg1) {
5797 /// %lhs = bitcast void* %arg0 to <type>*
5798 /// %rhs = bitcast void* %arg1 to <type>*
5799 /// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs)
5800 /// store <type> %2, <type>* %lhs
5801 /// ret void
5802 /// }
5803 /// \endcode
emitReduceCombFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N,const Expr * ReductionOp,const Expr * LHS,const Expr * RHS,const Expr * PrivateRef)5804 static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM,
5805                                            SourceLocation Loc,
5806                                            ReductionCodeGen &RCG, unsigned N,
5807                                            const Expr *ReductionOp,
5808                                            const Expr *LHS, const Expr *RHS,
5809                                            const Expr *PrivateRef) {
5810   ASTContext &C = CGM.getContext();
5811   const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl());
5812   const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl());
5813   FunctionArgList Args;
5814   ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
5815                                C.VoidPtrTy, ImplicitParamDecl::Other);
5816   ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5817                             ImplicitParamDecl::Other);
5818   Args.emplace_back(&ParamInOut);
5819   Args.emplace_back(&ParamIn);
5820   const auto &FnInfo =
5821       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5822   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5823   std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""});
5824   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5825                                     Name, &CGM.getModule());
5826   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5827   Fn->setDoesNotRecurse();
5828   CodeGenFunction CGF(CGM);
5829   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5830   llvm::Value *Size = nullptr;
5831   // If the size of the reduction item is non-constant, load it from global
5832   // threadprivate variable.
5833   if (RCG.getSizes(N).second) {
5834     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5835         CGF, CGM.getContext().getSizeType(),
5836         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5837     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5838                                 CGM.getContext().getSizeType(), Loc);
5839   }
5840   RCG.emitAggregateType(CGF, N, Size);
5841   // Remap lhs and rhs variables to the addresses of the function arguments.
5842   // %lhs = bitcast void* %arg0 to <type>*
5843   // %rhs = bitcast void* %arg1 to <type>*
5844   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5845   PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() {
5846     // Pull out the pointer to the variable.
5847     Address PtrAddr = CGF.EmitLoadOfPointer(
5848         CGF.GetAddrOfLocalVar(&ParamInOut),
5849         C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5850     return CGF.Builder.CreateElementBitCast(
5851         PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType()));
5852   });
5853   PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() {
5854     // Pull out the pointer to the variable.
5855     Address PtrAddr = CGF.EmitLoadOfPointer(
5856         CGF.GetAddrOfLocalVar(&ParamIn),
5857         C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5858     return CGF.Builder.CreateElementBitCast(
5859         PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType()));
5860   });
5861   PrivateScope.Privatize();
5862   // Emit the combiner body:
5863   // %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs)
5864   // store <type> %2, <type>* %lhs
5865   CGM.getOpenMPRuntime().emitSingleReductionCombiner(
5866       CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS),
5867       cast<DeclRefExpr>(RHS));
5868   CGF.FinishFunction();
5869   return Fn;
5870 }
5871 
5872 /// Emits reduction finalizer function:
5873 /// \code
5874 /// void @.red_fini(void* %arg) {
5875 /// %0 = bitcast void* %arg to <type>*
5876 /// <destroy>(<type>* %0)
5877 /// ret void
5878 /// }
5879 /// \endcode
emitReduceFiniFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)5880 static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM,
5881                                            SourceLocation Loc,
5882                                            ReductionCodeGen &RCG, unsigned N) {
5883   if (!RCG.needCleanups(N))
5884     return nullptr;
5885   ASTContext &C = CGM.getContext();
5886   FunctionArgList Args;
5887   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5888                           ImplicitParamDecl::Other);
5889   Args.emplace_back(&Param);
5890   const auto &FnInfo =
5891       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5892   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5893   std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""});
5894   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5895                                     Name, &CGM.getModule());
5896   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5897   Fn->setDoesNotRecurse();
5898   CodeGenFunction CGF(CGM);
5899   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5900   Address PrivateAddr = CGF.EmitLoadOfPointer(
5901       CGF.GetAddrOfLocalVar(&Param),
5902       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5903   llvm::Value *Size = nullptr;
5904   // If the size of the reduction item is non-constant, load it from global
5905   // threadprivate variable.
5906   if (RCG.getSizes(N).second) {
5907     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5908         CGF, CGM.getContext().getSizeType(),
5909         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5910     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5911                                 CGM.getContext().getSizeType(), Loc);
5912   }
5913   RCG.emitAggregateType(CGF, N, Size);
5914   // Emit the finalizer body:
5915   // <destroy>(<type>* %0)
5916   RCG.emitCleanups(CGF, N, PrivateAddr);
5917   CGF.FinishFunction(Loc);
5918   return Fn;
5919 }
5920 
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)5921 llvm::Value *CGOpenMPRuntime::emitTaskReductionInit(
5922     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
5923     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
5924   if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty())
5925     return nullptr;
5926 
5927   // Build typedef struct:
5928   // kmp_taskred_input {
5929   //   void *reduce_shar; // shared reduction item
5930   //   void *reduce_orig; // original reduction item used for initialization
5931   //   size_t reduce_size; // size of data item
5932   //   void *reduce_init; // data initialization routine
5933   //   void *reduce_fini; // data finalization routine
5934   //   void *reduce_comb; // data combiner routine
5935   //   kmp_task_red_flags_t flags; // flags for additional info from compiler
5936   // } kmp_taskred_input_t;
5937   ASTContext &C = CGM.getContext();
5938   RecordDecl *RD = C.buildImplicitRecord("kmp_taskred_input_t");
5939   RD->startDefinition();
5940   const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
5941   const FieldDecl *OrigFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
5942   const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType());
5943   const FieldDecl *InitFD  = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
5944   const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
5945   const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
5946   const FieldDecl *FlagsFD = addFieldToRecordDecl(
5947       C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false));
5948   RD->completeDefinition();
5949   QualType RDType = C.getRecordType(RD);
5950   unsigned Size = Data.ReductionVars.size();
5951   llvm::APInt ArraySize(/*numBits=*/64, Size);
5952   QualType ArrayRDType = C.getConstantArrayType(
5953       RDType, ArraySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
5954   // kmp_task_red_input_t .rd_input.[Size];
5955   Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input.");
5956   ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionOrigs,
5957                        Data.ReductionCopies, Data.ReductionOps);
5958   for (unsigned Cnt = 0; Cnt < Size; ++Cnt) {
5959     // kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt];
5960     llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0),
5961                            llvm::ConstantInt::get(CGM.SizeTy, Cnt)};
5962     llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP(
5963         TaskRedInput.getPointer(), Idxs,
5964         /*SignedIndices=*/false, /*IsSubtraction=*/false, Loc,
5965         ".rd_input.gep.");
5966     LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType);
5967     // ElemLVal.reduce_shar = &Shareds[Cnt];
5968     LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD);
5969     RCG.emitSharedOrigLValue(CGF, Cnt);
5970     llvm::Value *CastedShared =
5971         CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer(CGF));
5972     CGF.EmitStoreOfScalar(CastedShared, SharedLVal);
5973     // ElemLVal.reduce_orig = &Origs[Cnt];
5974     LValue OrigLVal = CGF.EmitLValueForField(ElemLVal, OrigFD);
5975     llvm::Value *CastedOrig =
5976         CGF.EmitCastToVoidPtr(RCG.getOrigLValue(Cnt).getPointer(CGF));
5977     CGF.EmitStoreOfScalar(CastedOrig, OrigLVal);
5978     RCG.emitAggregateType(CGF, Cnt);
5979     llvm::Value *SizeValInChars;
5980     llvm::Value *SizeVal;
5981     std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt);
5982     // We use delayed creation/initialization for VLAs and array sections. It is
5983     // required because runtime does not provide the way to pass the sizes of
5984     // VLAs/array sections to initializer/combiner/finalizer functions. Instead
5985     // threadprivate global variables are used to store these values and use
5986     // them in the functions.
5987     bool DelayedCreation = !!SizeVal;
5988     SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy,
5989                                                /*isSigned=*/false);
5990     LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD);
5991     CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal);
5992     // ElemLVal.reduce_init = init;
5993     LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD);
5994     llvm::Value *InitAddr =
5995         CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt));
5996     CGF.EmitStoreOfScalar(InitAddr, InitLVal);
5997     // ElemLVal.reduce_fini = fini;
5998     LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD);
5999     llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt);
6000     llvm::Value *FiniAddr = Fini
6001                                 ? CGF.EmitCastToVoidPtr(Fini)
6002                                 : llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
6003     CGF.EmitStoreOfScalar(FiniAddr, FiniLVal);
6004     // ElemLVal.reduce_comb = comb;
6005     LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD);
6006     llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction(
6007         CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt],
6008         RHSExprs[Cnt], Data.ReductionCopies[Cnt]));
6009     CGF.EmitStoreOfScalar(CombAddr, CombLVal);
6010     // ElemLVal.flags = 0;
6011     LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD);
6012     if (DelayedCreation) {
6013       CGF.EmitStoreOfScalar(
6014           llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true),
6015           FlagsLVal);
6016     } else
6017       CGF.EmitNullInitialization(FlagsLVal.getAddress(CGF),
6018                                  FlagsLVal.getType());
6019   }
6020   if (Data.IsReductionWithTaskMod) {
6021     // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int
6022     // is_ws, int num, void *data);
6023     llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc);
6024     llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6025                                                   CGM.IntTy, /*isSigned=*/true);
6026     llvm::Value *Args[] = {
6027         IdentTLoc, GTid,
6028         llvm::ConstantInt::get(CGM.IntTy, Data.IsWorksharingReduction ? 1 : 0,
6029                                /*isSigned=*/true),
6030         llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
6031         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6032             TaskRedInput.getPointer(), CGM.VoidPtrTy)};
6033     return CGF.EmitRuntimeCall(
6034         OMPBuilder.getOrCreateRuntimeFunction(
6035             CGM.getModule(), OMPRTL___kmpc_taskred_modifier_init),
6036         Args);
6037   }
6038   // Build call void *__kmpc_taskred_init(int gtid, int num_data, void *data);
6039   llvm::Value *Args[] = {
6040       CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
6041                                 /*isSigned=*/true),
6042       llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
6043       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(),
6044                                                       CGM.VoidPtrTy)};
6045   return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6046                                  CGM.getModule(), OMPRTL___kmpc_taskred_init),
6047                              Args);
6048 }
6049 
emitTaskReductionFini(CodeGenFunction & CGF,SourceLocation Loc,bool IsWorksharingReduction)6050 void CGOpenMPRuntime::emitTaskReductionFini(CodeGenFunction &CGF,
6051                                             SourceLocation Loc,
6052                                             bool IsWorksharingReduction) {
6053   // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int
6054   // is_ws, int num, void *data);
6055   llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc);
6056   llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6057                                                 CGM.IntTy, /*isSigned=*/true);
6058   llvm::Value *Args[] = {IdentTLoc, GTid,
6059                          llvm::ConstantInt::get(CGM.IntTy,
6060                                                 IsWorksharingReduction ? 1 : 0,
6061                                                 /*isSigned=*/true)};
6062   (void)CGF.EmitRuntimeCall(
6063       OMPBuilder.getOrCreateRuntimeFunction(
6064           CGM.getModule(), OMPRTL___kmpc_task_reduction_modifier_fini),
6065       Args);
6066 }
6067 
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)6068 void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
6069                                               SourceLocation Loc,
6070                                               ReductionCodeGen &RCG,
6071                                               unsigned N) {
6072   auto Sizes = RCG.getSizes(N);
6073   // Emit threadprivate global variable if the type is non-constant
6074   // (Sizes.second = nullptr).
6075   if (Sizes.second) {
6076     llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy,
6077                                                      /*isSigned=*/false);
6078     Address SizeAddr = getAddrOfArtificialThreadPrivate(
6079         CGF, CGM.getContext().getSizeType(),
6080         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6081     CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false);
6082   }
6083 }
6084 
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)6085 Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF,
6086                                               SourceLocation Loc,
6087                                               llvm::Value *ReductionsPtr,
6088                                               LValue SharedLVal) {
6089   // Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
6090   // *d);
6091   llvm::Value *Args[] = {CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6092                                                    CGM.IntTy,
6093                                                    /*isSigned=*/true),
6094                          ReductionsPtr,
6095                          CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6096                              SharedLVal.getPointer(CGF), CGM.VoidPtrTy)};
6097   return Address(
6098       CGF.EmitRuntimeCall(
6099           OMPBuilder.getOrCreateRuntimeFunction(
6100               CGM.getModule(), OMPRTL___kmpc_task_reduction_get_th_data),
6101           Args),
6102       SharedLVal.getAlignment());
6103 }
6104 
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc)6105 void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
6106                                        SourceLocation Loc) {
6107   if (!CGF.HaveInsertPoint())
6108     return;
6109 
6110   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
6111     OMPBuilder.CreateTaskwait(CGF.Builder);
6112   } else {
6113     // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
6114     // global_tid);
6115     llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
6116     // Ignore return result until untied tasks are supported.
6117     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6118                             CGM.getModule(), OMPRTL___kmpc_omp_taskwait),
6119                         Args);
6120   }
6121 
6122   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
6123     Region->emitUntiedSwitch(CGF);
6124 }
6125 
emitInlinedDirective(CodeGenFunction & CGF,OpenMPDirectiveKind InnerKind,const RegionCodeGenTy & CodeGen,bool HasCancel)6126 void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
6127                                            OpenMPDirectiveKind InnerKind,
6128                                            const RegionCodeGenTy &CodeGen,
6129                                            bool HasCancel) {
6130   if (!CGF.HaveInsertPoint())
6131     return;
6132   InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
6133   CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
6134 }
6135 
6136 namespace {
6137 enum RTCancelKind {
6138   CancelNoreq = 0,
6139   CancelParallel = 1,
6140   CancelLoop = 2,
6141   CancelSections = 3,
6142   CancelTaskgroup = 4
6143 };
6144 } // anonymous namespace
6145 
getCancellationKind(OpenMPDirectiveKind CancelRegion)6146 static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
6147   RTCancelKind CancelKind = CancelNoreq;
6148   if (CancelRegion == OMPD_parallel)
6149     CancelKind = CancelParallel;
6150   else if (CancelRegion == OMPD_for)
6151     CancelKind = CancelLoop;
6152   else if (CancelRegion == OMPD_sections)
6153     CancelKind = CancelSections;
6154   else {
6155     assert(CancelRegion == OMPD_taskgroup);
6156     CancelKind = CancelTaskgroup;
6157   }
6158   return CancelKind;
6159 }
6160 
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)6161 void CGOpenMPRuntime::emitCancellationPointCall(
6162     CodeGenFunction &CGF, SourceLocation Loc,
6163     OpenMPDirectiveKind CancelRegion) {
6164   if (!CGF.HaveInsertPoint())
6165     return;
6166   // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
6167   // global_tid, kmp_int32 cncl_kind);
6168   if (auto *OMPRegionInfo =
6169           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6170     // For 'cancellation point taskgroup', the task region info may not have a
6171     // cancel. This may instead happen in another adjacent task.
6172     if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
6173       llvm::Value *Args[] = {
6174           emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
6175           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6176       // Ignore return result until untied tasks are supported.
6177       llvm::Value *Result = CGF.EmitRuntimeCall(
6178           OMPBuilder.getOrCreateRuntimeFunction(
6179               CGM.getModule(), OMPRTL___kmpc_cancellationpoint),
6180           Args);
6181       // if (__kmpc_cancellationpoint()) {
6182       //   exit from construct;
6183       // }
6184       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6185       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6186       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6187       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6188       CGF.EmitBlock(ExitBB);
6189       // exit from construct;
6190       CodeGenFunction::JumpDest CancelDest =
6191           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6192       CGF.EmitBranchThroughCleanup(CancelDest);
6193       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6194     }
6195   }
6196 }
6197 
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)6198 void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
6199                                      const Expr *IfCond,
6200                                      OpenMPDirectiveKind CancelRegion) {
6201   if (!CGF.HaveInsertPoint())
6202     return;
6203   // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
6204   // kmp_int32 cncl_kind);
6205   auto &M = CGM.getModule();
6206   if (auto *OMPRegionInfo =
6207           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6208     auto &&ThenGen = [this, &M, Loc, CancelRegion,
6209                       OMPRegionInfo](CodeGenFunction &CGF, PrePostActionTy &) {
6210       CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
6211       llvm::Value *Args[] = {
6212           RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
6213           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6214       // Ignore return result until untied tasks are supported.
6215       llvm::Value *Result = CGF.EmitRuntimeCall(
6216           OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_cancel), Args);
6217       // if (__kmpc_cancel()) {
6218       //   exit from construct;
6219       // }
6220       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6221       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6222       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6223       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6224       CGF.EmitBlock(ExitBB);
6225       // exit from construct;
6226       CodeGenFunction::JumpDest CancelDest =
6227           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6228       CGF.EmitBranchThroughCleanup(CancelDest);
6229       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6230     };
6231     if (IfCond) {
6232       emitIfClause(CGF, IfCond, ThenGen,
6233                    [](CodeGenFunction &, PrePostActionTy &) {});
6234     } else {
6235       RegionCodeGenTy ThenRCG(ThenGen);
6236       ThenRCG(CGF);
6237     }
6238   }
6239 }
6240 
6241 namespace {
6242 /// Cleanup action for uses_allocators support.
6243 class OMPUsesAllocatorsActionTy final : public PrePostActionTy {
6244   ArrayRef<std::pair<const Expr *, const Expr *>> Allocators;
6245 
6246 public:
OMPUsesAllocatorsActionTy(ArrayRef<std::pair<const Expr *,const Expr * >> Allocators)6247   OMPUsesAllocatorsActionTy(
6248       ArrayRef<std::pair<const Expr *, const Expr *>> Allocators)
6249       : Allocators(Allocators) {}
Enter(CodeGenFunction & CGF)6250   void Enter(CodeGenFunction &CGF) override {
6251     if (!CGF.HaveInsertPoint())
6252       return;
6253     for (const auto &AllocatorData : Allocators) {
6254       CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsInit(
6255           CGF, AllocatorData.first, AllocatorData.second);
6256     }
6257   }
Exit(CodeGenFunction & CGF)6258   void Exit(CodeGenFunction &CGF) override {
6259     if (!CGF.HaveInsertPoint())
6260       return;
6261     for (const auto &AllocatorData : Allocators) {
6262       CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsFini(CGF,
6263                                                         AllocatorData.first);
6264     }
6265   }
6266 };
6267 } // namespace
6268 
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6269 void CGOpenMPRuntime::emitTargetOutlinedFunction(
6270     const OMPExecutableDirective &D, StringRef ParentName,
6271     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6272     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6273   assert(!ParentName.empty() && "Invalid target region parent name!");
6274   HasEmittedTargetRegion = true;
6275   SmallVector<std::pair<const Expr *, const Expr *>, 4> Allocators;
6276   for (const auto *C : D.getClausesOfKind<OMPUsesAllocatorsClause>()) {
6277     for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
6278       const OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
6279       if (!D.AllocatorTraits)
6280         continue;
6281       Allocators.emplace_back(D.Allocator, D.AllocatorTraits);
6282     }
6283   }
6284   OMPUsesAllocatorsActionTy UsesAllocatorAction(Allocators);
6285   CodeGen.setAction(UsesAllocatorAction);
6286   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
6287                                    IsOffloadEntry, CodeGen);
6288 }
6289 
emitUsesAllocatorsInit(CodeGenFunction & CGF,const Expr * Allocator,const Expr * AllocatorTraits)6290 void CGOpenMPRuntime::emitUsesAllocatorsInit(CodeGenFunction &CGF,
6291                                              const Expr *Allocator,
6292                                              const Expr *AllocatorTraits) {
6293   llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc());
6294   ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true);
6295   // Use default memspace handle.
6296   llvm::Value *MemSpaceHandle = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
6297   llvm::Value *NumTraits = llvm::ConstantInt::get(
6298       CGF.IntTy, cast<ConstantArrayType>(
6299                      AllocatorTraits->getType()->getAsArrayTypeUnsafe())
6300                      ->getSize()
6301                      .getLimitedValue());
6302   LValue AllocatorTraitsLVal = CGF.EmitLValue(AllocatorTraits);
6303   Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6304       AllocatorTraitsLVal.getAddress(CGF), CGF.VoidPtrPtrTy);
6305   AllocatorTraitsLVal = CGF.MakeAddrLValue(Addr, CGF.getContext().VoidPtrTy,
6306                                            AllocatorTraitsLVal.getBaseInfo(),
6307                                            AllocatorTraitsLVal.getTBAAInfo());
6308   llvm::Value *Traits =
6309       CGF.EmitLoadOfScalar(AllocatorTraitsLVal, AllocatorTraits->getExprLoc());
6310 
6311   llvm::Value *AllocatorVal =
6312       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6313                               CGM.getModule(), OMPRTL___kmpc_init_allocator),
6314                           {ThreadId, MemSpaceHandle, NumTraits, Traits});
6315   // Store to allocator.
6316   CGF.EmitVarDecl(*cast<VarDecl>(
6317       cast<DeclRefExpr>(Allocator->IgnoreParenImpCasts())->getDecl()));
6318   LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts());
6319   AllocatorVal =
6320       CGF.EmitScalarConversion(AllocatorVal, CGF.getContext().VoidPtrTy,
6321                                Allocator->getType(), Allocator->getExprLoc());
6322   CGF.EmitStoreOfScalar(AllocatorVal, AllocatorLVal);
6323 }
6324 
emitUsesAllocatorsFini(CodeGenFunction & CGF,const Expr * Allocator)6325 void CGOpenMPRuntime::emitUsesAllocatorsFini(CodeGenFunction &CGF,
6326                                              const Expr *Allocator) {
6327   llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc());
6328   ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true);
6329   LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts());
6330   llvm::Value *AllocatorVal =
6331       CGF.EmitLoadOfScalar(AllocatorLVal, Allocator->getExprLoc());
6332   AllocatorVal = CGF.EmitScalarConversion(AllocatorVal, Allocator->getType(),
6333                                           CGF.getContext().VoidPtrTy,
6334                                           Allocator->getExprLoc());
6335   (void)CGF.EmitRuntimeCall(
6336       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
6337                                             OMPRTL___kmpc_destroy_allocator),
6338       {ThreadId, AllocatorVal});
6339 }
6340 
emitTargetOutlinedFunctionHelper(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6341 void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
6342     const OMPExecutableDirective &D, StringRef ParentName,
6343     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6344     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6345   // Create a unique name for the entry function using the source location
6346   // information of the current target region. The name will be something like:
6347   //
6348   // __omp_offloading_DD_FFFF_PP_lBB
6349   //
6350   // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
6351   // mangled name of the function that encloses the target region and BB is the
6352   // line number of the target region.
6353 
6354   unsigned DeviceID;
6355   unsigned FileID;
6356   unsigned Line;
6357   getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID,
6358                            Line);
6359   SmallString<64> EntryFnName;
6360   {
6361     llvm::raw_svector_ostream OS(EntryFnName);
6362     OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
6363        << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
6364   }
6365 
6366   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
6367 
6368   CodeGenFunction CGF(CGM, true);
6369   CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
6370   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6371 
6372   OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS, D.getBeginLoc());
6373 
6374   // If this target outline function is not an offload entry, we don't need to
6375   // register it.
6376   if (!IsOffloadEntry)
6377     return;
6378 
6379   // The target region ID is used by the runtime library to identify the current
6380   // target region, so it only has to be unique and not necessarily point to
6381   // anything. It could be the pointer to the outlined function that implements
6382   // the target region, but we aren't using that so that the compiler doesn't
6383   // need to keep that, and could therefore inline the host function if proven
6384   // worthwhile during optimization. In the other hand, if emitting code for the
6385   // device, the ID has to be the function address so that it can retrieved from
6386   // the offloading entry and launched by the runtime library. We also mark the
6387   // outlined function to have external linkage in case we are emitting code for
6388   // the device, because these functions will be entry points to the device.
6389 
6390   if (CGM.getLangOpts().OpenMPIsDevice) {
6391     OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
6392     OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
6393     OutlinedFn->setDSOLocal(false);
6394   } else {
6395     std::string Name = getName({EntryFnName, "region_id"});
6396     OutlinedFnID = new llvm::GlobalVariable(
6397         CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
6398         llvm::GlobalValue::WeakAnyLinkage,
6399         llvm::Constant::getNullValue(CGM.Int8Ty), Name);
6400   }
6401 
6402   // Register the information for the entry associated with this target region.
6403   OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
6404       DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID,
6405       OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion);
6406 }
6407 
6408 /// Checks if the expression is constant or does not have non-trivial function
6409 /// calls.
isTrivial(ASTContext & Ctx,const Expr * E)6410 static bool isTrivial(ASTContext &Ctx, const Expr * E) {
6411   // We can skip constant expressions.
6412   // We can skip expressions with trivial calls or simple expressions.
6413   return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
6414           !E->hasNonTrivialCall(Ctx)) &&
6415          !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
6416 }
6417 
getSingleCompoundChild(ASTContext & Ctx,const Stmt * Body)6418 const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx,
6419                                                     const Stmt *Body) {
6420   const Stmt *Child = Body->IgnoreContainers();
6421   while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) {
6422     Child = nullptr;
6423     for (const Stmt *S : C->body()) {
6424       if (const auto *E = dyn_cast<Expr>(S)) {
6425         if (isTrivial(Ctx, E))
6426           continue;
6427       }
6428       // Some of the statements can be ignored.
6429       if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
6430           isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
6431         continue;
6432       // Analyze declarations.
6433       if (const auto *DS = dyn_cast<DeclStmt>(S)) {
6434         if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) {
6435               if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
6436                   isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
6437                   isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
6438                   isa<UsingDirectiveDecl>(D) ||
6439                   isa<OMPDeclareReductionDecl>(D) ||
6440                   isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D))
6441                 return true;
6442               const auto *VD = dyn_cast<VarDecl>(D);
6443               if (!VD)
6444                 return false;
6445               return VD->isConstexpr() ||
6446                      ((VD->getType().isTrivialType(Ctx) ||
6447                        VD->getType()->isReferenceType()) &&
6448                       (!VD->hasInit() || isTrivial(Ctx, VD->getInit())));
6449             }))
6450           continue;
6451       }
6452       // Found multiple children - cannot get the one child only.
6453       if (Child)
6454         return nullptr;
6455       Child = S;
6456     }
6457     if (Child)
6458       Child = Child->IgnoreContainers();
6459   }
6460   return Child;
6461 }
6462 
6463 /// Emit the number of teams for a target directive.  Inspect the num_teams
6464 /// clause associated with a teams construct combined or closely nested
6465 /// with the target directive.
6466 ///
6467 /// Emit a team of size one for directives such as 'target parallel' that
6468 /// have no associated teams construct.
6469 ///
6470 /// Otherwise, return nullptr.
6471 static llvm::Value *
emitNumTeamsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6472 emitNumTeamsForTargetDirective(CodeGenFunction &CGF,
6473                                const OMPExecutableDirective &D) {
6474   assert(!CGF.getLangOpts().OpenMPIsDevice &&
6475          "Clauses associated with the teams directive expected to be emitted "
6476          "only for the host!");
6477   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6478   assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6479          "Expected target-based executable directive.");
6480   CGBuilderTy &Bld = CGF.Builder;
6481   switch (DirectiveKind) {
6482   case OMPD_target: {
6483     const auto *CS = D.getInnermostCapturedStmt();
6484     const auto *Body =
6485         CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
6486     const Stmt *ChildStmt =
6487         CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body);
6488     if (const auto *NestedDir =
6489             dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
6490       if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) {
6491         if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) {
6492           CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6493           CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6494           const Expr *NumTeams =
6495               NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6496           llvm::Value *NumTeamsVal =
6497               CGF.EmitScalarExpr(NumTeams,
6498                                  /*IgnoreResultAssign*/ true);
6499           return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6500                                    /*isSigned=*/true);
6501         }
6502         return Bld.getInt32(0);
6503       }
6504       if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) ||
6505           isOpenMPSimdDirective(NestedDir->getDirectiveKind()))
6506         return Bld.getInt32(1);
6507       return Bld.getInt32(0);
6508     }
6509     return nullptr;
6510   }
6511   case OMPD_target_teams:
6512   case OMPD_target_teams_distribute:
6513   case OMPD_target_teams_distribute_simd:
6514   case OMPD_target_teams_distribute_parallel_for:
6515   case OMPD_target_teams_distribute_parallel_for_simd: {
6516     if (D.hasClausesOfKind<OMPNumTeamsClause>()) {
6517       CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
6518       const Expr *NumTeams =
6519           D.getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6520       llvm::Value *NumTeamsVal =
6521           CGF.EmitScalarExpr(NumTeams,
6522                              /*IgnoreResultAssign*/ true);
6523       return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6524                                /*isSigned=*/true);
6525     }
6526     return Bld.getInt32(0);
6527   }
6528   case OMPD_target_parallel:
6529   case OMPD_target_parallel_for:
6530   case OMPD_target_parallel_for_simd:
6531   case OMPD_target_simd:
6532     return Bld.getInt32(1);
6533   case OMPD_parallel:
6534   case OMPD_for:
6535   case OMPD_parallel_for:
6536   case OMPD_parallel_master:
6537   case OMPD_parallel_sections:
6538   case OMPD_for_simd:
6539   case OMPD_parallel_for_simd:
6540   case OMPD_cancel:
6541   case OMPD_cancellation_point:
6542   case OMPD_ordered:
6543   case OMPD_threadprivate:
6544   case OMPD_allocate:
6545   case OMPD_task:
6546   case OMPD_simd:
6547   case OMPD_sections:
6548   case OMPD_section:
6549   case OMPD_single:
6550   case OMPD_master:
6551   case OMPD_critical:
6552   case OMPD_taskyield:
6553   case OMPD_barrier:
6554   case OMPD_taskwait:
6555   case OMPD_taskgroup:
6556   case OMPD_atomic:
6557   case OMPD_flush:
6558   case OMPD_depobj:
6559   case OMPD_scan:
6560   case OMPD_teams:
6561   case OMPD_target_data:
6562   case OMPD_target_exit_data:
6563   case OMPD_target_enter_data:
6564   case OMPD_distribute:
6565   case OMPD_distribute_simd:
6566   case OMPD_distribute_parallel_for:
6567   case OMPD_distribute_parallel_for_simd:
6568   case OMPD_teams_distribute:
6569   case OMPD_teams_distribute_simd:
6570   case OMPD_teams_distribute_parallel_for:
6571   case OMPD_teams_distribute_parallel_for_simd:
6572   case OMPD_target_update:
6573   case OMPD_declare_simd:
6574   case OMPD_declare_variant:
6575   case OMPD_begin_declare_variant:
6576   case OMPD_end_declare_variant:
6577   case OMPD_declare_target:
6578   case OMPD_end_declare_target:
6579   case OMPD_declare_reduction:
6580   case OMPD_declare_mapper:
6581   case OMPD_taskloop:
6582   case OMPD_taskloop_simd:
6583   case OMPD_master_taskloop:
6584   case OMPD_master_taskloop_simd:
6585   case OMPD_parallel_master_taskloop:
6586   case OMPD_parallel_master_taskloop_simd:
6587   case OMPD_requires:
6588   case OMPD_unknown:
6589     break;
6590   default:
6591     break;
6592   }
6593   llvm_unreachable("Unexpected directive kind.");
6594 }
6595 
getNumThreads(CodeGenFunction & CGF,const CapturedStmt * CS,llvm::Value * DefaultThreadLimitVal)6596 static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS,
6597                                   llvm::Value *DefaultThreadLimitVal) {
6598   const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6599       CGF.getContext(), CS->getCapturedStmt());
6600   if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6601     if (isOpenMPParallelDirective(Dir->getDirectiveKind())) {
6602       llvm::Value *NumThreads = nullptr;
6603       llvm::Value *CondVal = nullptr;
6604       // Handle if clause. If if clause present, the number of threads is
6605       // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6606       if (Dir->hasClausesOfKind<OMPIfClause>()) {
6607         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6608         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6609         const OMPIfClause *IfClause = nullptr;
6610         for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) {
6611           if (C->getNameModifier() == OMPD_unknown ||
6612               C->getNameModifier() == OMPD_parallel) {
6613             IfClause = C;
6614             break;
6615           }
6616         }
6617         if (IfClause) {
6618           const Expr *Cond = IfClause->getCondition();
6619           bool Result;
6620           if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6621             if (!Result)
6622               return CGF.Builder.getInt32(1);
6623           } else {
6624             CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange());
6625             if (const auto *PreInit =
6626                     cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) {
6627               for (const auto *I : PreInit->decls()) {
6628                 if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6629                   CGF.EmitVarDecl(cast<VarDecl>(*I));
6630                 } else {
6631                   CodeGenFunction::AutoVarEmission Emission =
6632                       CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6633                   CGF.EmitAutoVarCleanups(Emission);
6634                 }
6635               }
6636             }
6637             CondVal = CGF.EvaluateExprAsBool(Cond);
6638           }
6639         }
6640       }
6641       // Check the value of num_threads clause iff if clause was not specified
6642       // or is not evaluated to false.
6643       if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) {
6644         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6645         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6646         const auto *NumThreadsClause =
6647             Dir->getSingleClause<OMPNumThreadsClause>();
6648         CodeGenFunction::LexicalScope Scope(
6649             CGF, NumThreadsClause->getNumThreads()->getSourceRange());
6650         if (const auto *PreInit =
6651                 cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) {
6652           for (const auto *I : PreInit->decls()) {
6653             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6654               CGF.EmitVarDecl(cast<VarDecl>(*I));
6655             } else {
6656               CodeGenFunction::AutoVarEmission Emission =
6657                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6658               CGF.EmitAutoVarCleanups(Emission);
6659             }
6660           }
6661         }
6662         NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads());
6663         NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty,
6664                                                /*isSigned=*/false);
6665         if (DefaultThreadLimitVal)
6666           NumThreads = CGF.Builder.CreateSelect(
6667               CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads),
6668               DefaultThreadLimitVal, NumThreads);
6669       } else {
6670         NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal
6671                                            : CGF.Builder.getInt32(0);
6672       }
6673       // Process condition of the if clause.
6674       if (CondVal) {
6675         NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads,
6676                                               CGF.Builder.getInt32(1));
6677       }
6678       return NumThreads;
6679     }
6680     if (isOpenMPSimdDirective(Dir->getDirectiveKind()))
6681       return CGF.Builder.getInt32(1);
6682     return DefaultThreadLimitVal;
6683   }
6684   return DefaultThreadLimitVal ? DefaultThreadLimitVal
6685                                : CGF.Builder.getInt32(0);
6686 }
6687 
6688 /// Emit the number of threads for a target directive.  Inspect the
6689 /// thread_limit clause associated with a teams construct combined or closely
6690 /// nested with the target directive.
6691 ///
6692 /// Emit the num_threads clause for directives such as 'target parallel' that
6693 /// have no associated teams construct.
6694 ///
6695 /// Otherwise, return nullptr.
6696 static llvm::Value *
emitNumThreadsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6697 emitNumThreadsForTargetDirective(CodeGenFunction &CGF,
6698                                  const OMPExecutableDirective &D) {
6699   assert(!CGF.getLangOpts().OpenMPIsDevice &&
6700          "Clauses associated with the teams directive expected to be emitted "
6701          "only for the host!");
6702   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6703   assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6704          "Expected target-based executable directive.");
6705   CGBuilderTy &Bld = CGF.Builder;
6706   llvm::Value *ThreadLimitVal = nullptr;
6707   llvm::Value *NumThreadsVal = nullptr;
6708   switch (DirectiveKind) {
6709   case OMPD_target: {
6710     const CapturedStmt *CS = D.getInnermostCapturedStmt();
6711     if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6712       return NumThreads;
6713     const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6714         CGF.getContext(), CS->getCapturedStmt());
6715     if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6716       if (Dir->hasClausesOfKind<OMPThreadLimitClause>()) {
6717         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6718         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6719         const auto *ThreadLimitClause =
6720             Dir->getSingleClause<OMPThreadLimitClause>();
6721         CodeGenFunction::LexicalScope Scope(
6722             CGF, ThreadLimitClause->getThreadLimit()->getSourceRange());
6723         if (const auto *PreInit =
6724                 cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) {
6725           for (const auto *I : PreInit->decls()) {
6726             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6727               CGF.EmitVarDecl(cast<VarDecl>(*I));
6728             } else {
6729               CodeGenFunction::AutoVarEmission Emission =
6730                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6731               CGF.EmitAutoVarCleanups(Emission);
6732             }
6733           }
6734         }
6735         llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6736             ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6737         ThreadLimitVal =
6738             Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6739       }
6740       if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) &&
6741           !isOpenMPDistributeDirective(Dir->getDirectiveKind())) {
6742         CS = Dir->getInnermostCapturedStmt();
6743         const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6744             CGF.getContext(), CS->getCapturedStmt());
6745         Dir = dyn_cast_or_null<OMPExecutableDirective>(Child);
6746       }
6747       if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) &&
6748           !isOpenMPSimdDirective(Dir->getDirectiveKind())) {
6749         CS = Dir->getInnermostCapturedStmt();
6750         if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6751           return NumThreads;
6752       }
6753       if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind()))
6754         return Bld.getInt32(1);
6755     }
6756     return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6757   }
6758   case OMPD_target_teams: {
6759     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6760       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6761       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6762       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6763           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6764       ThreadLimitVal =
6765           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6766     }
6767     const CapturedStmt *CS = D.getInnermostCapturedStmt();
6768     if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6769       return NumThreads;
6770     const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6771         CGF.getContext(), CS->getCapturedStmt());
6772     if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6773       if (Dir->getDirectiveKind() == OMPD_distribute) {
6774         CS = Dir->getInnermostCapturedStmt();
6775         if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6776           return NumThreads;
6777       }
6778     }
6779     return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6780   }
6781   case OMPD_target_teams_distribute:
6782     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6783       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6784       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6785       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6786           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6787       ThreadLimitVal =
6788           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6789     }
6790     return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal);
6791   case OMPD_target_parallel:
6792   case OMPD_target_parallel_for:
6793   case OMPD_target_parallel_for_simd:
6794   case OMPD_target_teams_distribute_parallel_for:
6795   case OMPD_target_teams_distribute_parallel_for_simd: {
6796     llvm::Value *CondVal = nullptr;
6797     // Handle if clause. If if clause present, the number of threads is
6798     // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6799     if (D.hasClausesOfKind<OMPIfClause>()) {
6800       const OMPIfClause *IfClause = nullptr;
6801       for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
6802         if (C->getNameModifier() == OMPD_unknown ||
6803             C->getNameModifier() == OMPD_parallel) {
6804           IfClause = C;
6805           break;
6806         }
6807       }
6808       if (IfClause) {
6809         const Expr *Cond = IfClause->getCondition();
6810         bool Result;
6811         if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6812           if (!Result)
6813             return Bld.getInt32(1);
6814         } else {
6815           CodeGenFunction::RunCleanupsScope Scope(CGF);
6816           CondVal = CGF.EvaluateExprAsBool(Cond);
6817         }
6818       }
6819     }
6820     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6821       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6822       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6823       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6824           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6825       ThreadLimitVal =
6826           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6827     }
6828     if (D.hasClausesOfKind<OMPNumThreadsClause>()) {
6829       CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
6830       const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>();
6831       llvm::Value *NumThreads = CGF.EmitScalarExpr(
6832           NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true);
6833       NumThreadsVal =
6834           Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false);
6835       ThreadLimitVal = ThreadLimitVal
6836                            ? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal,
6837                                                                 ThreadLimitVal),
6838                                               NumThreadsVal, ThreadLimitVal)
6839                            : NumThreadsVal;
6840     }
6841     if (!ThreadLimitVal)
6842       ThreadLimitVal = Bld.getInt32(0);
6843     if (CondVal)
6844       return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1));
6845     return ThreadLimitVal;
6846   }
6847   case OMPD_target_teams_distribute_simd:
6848   case OMPD_target_simd:
6849     return Bld.getInt32(1);
6850   case OMPD_parallel:
6851   case OMPD_for:
6852   case OMPD_parallel_for:
6853   case OMPD_parallel_master:
6854   case OMPD_parallel_sections:
6855   case OMPD_for_simd:
6856   case OMPD_parallel_for_simd:
6857   case OMPD_cancel:
6858   case OMPD_cancellation_point:
6859   case OMPD_ordered:
6860   case OMPD_threadprivate:
6861   case OMPD_allocate:
6862   case OMPD_task:
6863   case OMPD_simd:
6864   case OMPD_sections:
6865   case OMPD_section:
6866   case OMPD_single:
6867   case OMPD_master:
6868   case OMPD_critical:
6869   case OMPD_taskyield:
6870   case OMPD_barrier:
6871   case OMPD_taskwait:
6872   case OMPD_taskgroup:
6873   case OMPD_atomic:
6874   case OMPD_flush:
6875   case OMPD_depobj:
6876   case OMPD_scan:
6877   case OMPD_teams:
6878   case OMPD_target_data:
6879   case OMPD_target_exit_data:
6880   case OMPD_target_enter_data:
6881   case OMPD_distribute:
6882   case OMPD_distribute_simd:
6883   case OMPD_distribute_parallel_for:
6884   case OMPD_distribute_parallel_for_simd:
6885   case OMPD_teams_distribute:
6886   case OMPD_teams_distribute_simd:
6887   case OMPD_teams_distribute_parallel_for:
6888   case OMPD_teams_distribute_parallel_for_simd:
6889   case OMPD_target_update:
6890   case OMPD_declare_simd:
6891   case OMPD_declare_variant:
6892   case OMPD_begin_declare_variant:
6893   case OMPD_end_declare_variant:
6894   case OMPD_declare_target:
6895   case OMPD_end_declare_target:
6896   case OMPD_declare_reduction:
6897   case OMPD_declare_mapper:
6898   case OMPD_taskloop:
6899   case OMPD_taskloop_simd:
6900   case OMPD_master_taskloop:
6901   case OMPD_master_taskloop_simd:
6902   case OMPD_parallel_master_taskloop:
6903   case OMPD_parallel_master_taskloop_simd:
6904   case OMPD_requires:
6905   case OMPD_unknown:
6906     break;
6907   default:
6908     break;
6909   }
6910   llvm_unreachable("Unsupported directive kind.");
6911 }
6912 
6913 namespace {
6914 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
6915 
6916 // Utility to handle information from clauses associated with a given
6917 // construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
6918 // It provides a convenient interface to obtain the information and generate
6919 // code for that information.
6920 class MappableExprsHandler {
6921 public:
6922   /// Values for bit flags used to specify the mapping type for
6923   /// offloading.
6924   enum OpenMPOffloadMappingFlags : uint64_t {
6925     /// No flags
6926     OMP_MAP_NONE = 0x0,
6927     /// Allocate memory on the device and move data from host to device.
6928     OMP_MAP_TO = 0x01,
6929     /// Allocate memory on the device and move data from device to host.
6930     OMP_MAP_FROM = 0x02,
6931     /// Always perform the requested mapping action on the element, even
6932     /// if it was already mapped before.
6933     OMP_MAP_ALWAYS = 0x04,
6934     /// Delete the element from the device environment, ignoring the
6935     /// current reference count associated with the element.
6936     OMP_MAP_DELETE = 0x08,
6937     /// The element being mapped is a pointer-pointee pair; both the
6938     /// pointer and the pointee should be mapped.
6939     OMP_MAP_PTR_AND_OBJ = 0x10,
6940     /// This flags signals that the base address of an entry should be
6941     /// passed to the target kernel as an argument.
6942     OMP_MAP_TARGET_PARAM = 0x20,
6943     /// Signal that the runtime library has to return the device pointer
6944     /// in the current position for the data being mapped. Used when we have the
6945     /// use_device_ptr or use_device_addr clause.
6946     OMP_MAP_RETURN_PARAM = 0x40,
6947     /// This flag signals that the reference being passed is a pointer to
6948     /// private data.
6949     OMP_MAP_PRIVATE = 0x80,
6950     /// Pass the element to the device by value.
6951     OMP_MAP_LITERAL = 0x100,
6952     /// Implicit map
6953     OMP_MAP_IMPLICIT = 0x200,
6954     /// Close is a hint to the runtime to allocate memory close to
6955     /// the target device.
6956     OMP_MAP_CLOSE = 0x400,
6957     /// The 16 MSBs of the flags indicate whether the entry is member of some
6958     /// struct/class.
6959     OMP_MAP_MEMBER_OF = 0xffff000000000000,
6960     LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF),
6961   };
6962 
6963   /// Get the offset of the OMP_MAP_MEMBER_OF field.
getFlagMemberOffset()6964   static unsigned getFlagMemberOffset() {
6965     unsigned Offset = 0;
6966     for (uint64_t Remain = OMP_MAP_MEMBER_OF; !(Remain & 1);
6967          Remain = Remain >> 1)
6968       Offset++;
6969     return Offset;
6970   }
6971 
6972   /// Class that associates information with a base pointer to be passed to the
6973   /// runtime library.
6974   class BasePointerInfo {
6975     /// The base pointer.
6976     llvm::Value *Ptr = nullptr;
6977     /// The base declaration that refers to this device pointer, or null if
6978     /// there is none.
6979     const ValueDecl *DevPtrDecl = nullptr;
6980 
6981   public:
BasePointerInfo(llvm::Value * Ptr,const ValueDecl * DevPtrDecl=nullptr)6982     BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
6983         : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
operator *() const6984     llvm::Value *operator*() const { return Ptr; }
getDevicePtrDecl() const6985     const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
setDevicePtrDecl(const ValueDecl * D)6986     void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
6987   };
6988 
6989   using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>;
6990   using MapValuesArrayTy = SmallVector<llvm::Value *, 4>;
6991   using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>;
6992 
6993   /// Map between a struct and the its lowest & highest elements which have been
6994   /// mapped.
6995   /// [ValueDecl *] --> {LE(FieldIndex, Pointer),
6996   ///                    HE(FieldIndex, Pointer)}
6997   struct StructRangeInfoTy {
6998     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = {
6999         0, Address::invalid()};
7000     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = {
7001         0, Address::invalid()};
7002     Address Base = Address::invalid();
7003   };
7004 
7005 private:
7006   /// Kind that defines how a device pointer has to be returned.
7007   struct MapInfo {
7008     OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
7009     OpenMPMapClauseKind MapType = OMPC_MAP_unknown;
7010     ArrayRef<OpenMPMapModifierKind> MapModifiers;
7011     bool ReturnDevicePointer = false;
7012     bool IsImplicit = false;
7013     bool ForDeviceAddr = false;
7014 
7015     MapInfo() = default;
MapInfo__anona637da6d3d11::MappableExprsHandler::MapInfo7016     MapInfo(
7017         OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7018         OpenMPMapClauseKind MapType,
7019         ArrayRef<OpenMPMapModifierKind> MapModifiers, bool ReturnDevicePointer,
7020         bool IsImplicit, bool ForDeviceAddr = false)
7021         : Components(Components), MapType(MapType), MapModifiers(MapModifiers),
7022           ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit),
7023           ForDeviceAddr(ForDeviceAddr) {}
7024   };
7025 
7026   /// If use_device_ptr or use_device_addr is used on a decl which is a struct
7027   /// member and there is no map information about it, then emission of that
7028   /// entry is deferred until the whole struct has been processed.
7029   struct DeferredDevicePtrEntryTy {
7030     const Expr *IE = nullptr;
7031     const ValueDecl *VD = nullptr;
7032     bool ForDeviceAddr = false;
7033 
DeferredDevicePtrEntryTy__anona637da6d3d11::MappableExprsHandler::DeferredDevicePtrEntryTy7034     DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD,
7035                              bool ForDeviceAddr)
7036         : IE(IE), VD(VD), ForDeviceAddr(ForDeviceAddr) {}
7037   };
7038 
7039   /// The target directive from where the mappable clauses were extracted. It
7040   /// is either a executable directive or a user-defined mapper directive.
7041   llvm::PointerUnion<const OMPExecutableDirective *,
7042                      const OMPDeclareMapperDecl *>
7043       CurDir;
7044 
7045   /// Function the directive is being generated for.
7046   CodeGenFunction &CGF;
7047 
7048   /// Set of all first private variables in the current directive.
7049   /// bool data is set to true if the variable is implicitly marked as
7050   /// firstprivate, false otherwise.
7051   llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls;
7052 
7053   /// Map between device pointer declarations and their expression components.
7054   /// The key value for declarations in 'this' is null.
7055   llvm::DenseMap<
7056       const ValueDecl *,
7057       SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
7058       DevPointersMap;
7059 
getExprTypeSize(const Expr * E) const7060   llvm::Value *getExprTypeSize(const Expr *E) const {
7061     QualType ExprTy = E->getType().getCanonicalType();
7062 
7063     // Calculate the size for array shaping expression.
7064     if (const auto *OAE = dyn_cast<OMPArrayShapingExpr>(E)) {
7065       llvm::Value *Size =
7066           CGF.getTypeSize(OAE->getBase()->getType()->getPointeeType());
7067       for (const Expr *SE : OAE->getDimensions()) {
7068         llvm::Value *Sz = CGF.EmitScalarExpr(SE);
7069         Sz = CGF.EmitScalarConversion(Sz, SE->getType(),
7070                                       CGF.getContext().getSizeType(),
7071                                       SE->getExprLoc());
7072         Size = CGF.Builder.CreateNUWMul(Size, Sz);
7073       }
7074       return Size;
7075     }
7076 
7077     // Reference types are ignored for mapping purposes.
7078     if (const auto *RefTy = ExprTy->getAs<ReferenceType>())
7079       ExprTy = RefTy->getPointeeType().getCanonicalType();
7080 
7081     // Given that an array section is considered a built-in type, we need to
7082     // do the calculation based on the length of the section instead of relying
7083     // on CGF.getTypeSize(E->getType()).
7084     if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
7085       QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
7086                             OAE->getBase()->IgnoreParenImpCasts())
7087                             .getCanonicalType();
7088 
7089       // If there is no length associated with the expression and lower bound is
7090       // not specified too, that means we are using the whole length of the
7091       // base.
7092       if (!OAE->getLength() && OAE->getColonLocFirst().isValid() &&
7093           !OAE->getLowerBound())
7094         return CGF.getTypeSize(BaseTy);
7095 
7096       llvm::Value *ElemSize;
7097       if (const auto *PTy = BaseTy->getAs<PointerType>()) {
7098         ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
7099       } else {
7100         const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
7101         assert(ATy && "Expecting array type if not a pointer type.");
7102         ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
7103       }
7104 
7105       // If we don't have a length at this point, that is because we have an
7106       // array section with a single element.
7107       if (!OAE->getLength() && OAE->getColonLocFirst().isInvalid())
7108         return ElemSize;
7109 
7110       if (const Expr *LenExpr = OAE->getLength()) {
7111         llvm::Value *LengthVal = CGF.EmitScalarExpr(LenExpr);
7112         LengthVal = CGF.EmitScalarConversion(LengthVal, LenExpr->getType(),
7113                                              CGF.getContext().getSizeType(),
7114                                              LenExpr->getExprLoc());
7115         return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
7116       }
7117       assert(!OAE->getLength() && OAE->getColonLocFirst().isValid() &&
7118              OAE->getLowerBound() && "expected array_section[lb:].");
7119       // Size = sizetype - lb * elemtype;
7120       llvm::Value *LengthVal = CGF.getTypeSize(BaseTy);
7121       llvm::Value *LBVal = CGF.EmitScalarExpr(OAE->getLowerBound());
7122       LBVal = CGF.EmitScalarConversion(LBVal, OAE->getLowerBound()->getType(),
7123                                        CGF.getContext().getSizeType(),
7124                                        OAE->getLowerBound()->getExprLoc());
7125       LBVal = CGF.Builder.CreateNUWMul(LBVal, ElemSize);
7126       llvm::Value *Cmp = CGF.Builder.CreateICmpUGT(LengthVal, LBVal);
7127       llvm::Value *TrueVal = CGF.Builder.CreateNUWSub(LengthVal, LBVal);
7128       LengthVal = CGF.Builder.CreateSelect(
7129           Cmp, TrueVal, llvm::ConstantInt::get(CGF.SizeTy, 0));
7130       return LengthVal;
7131     }
7132     return CGF.getTypeSize(ExprTy);
7133   }
7134 
7135   /// Return the corresponding bits for a given map clause modifier. Add
7136   /// a flag marking the map as a pointer if requested. Add a flag marking the
7137   /// map as the first one of a series of maps that relate to the same map
7138   /// expression.
getMapTypeBits(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,bool IsImplicit,bool AddPtrFlag,bool AddIsTargetParamFlag) const7139   OpenMPOffloadMappingFlags getMapTypeBits(
7140       OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
7141       bool IsImplicit, bool AddPtrFlag, bool AddIsTargetParamFlag) const {
7142     OpenMPOffloadMappingFlags Bits =
7143         IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE;
7144     switch (MapType) {
7145     case OMPC_MAP_alloc:
7146     case OMPC_MAP_release:
7147       // alloc and release is the default behavior in the runtime library,  i.e.
7148       // if we don't pass any bits alloc/release that is what the runtime is
7149       // going to do. Therefore, we don't need to signal anything for these two
7150       // type modifiers.
7151       break;
7152     case OMPC_MAP_to:
7153       Bits |= OMP_MAP_TO;
7154       break;
7155     case OMPC_MAP_from:
7156       Bits |= OMP_MAP_FROM;
7157       break;
7158     case OMPC_MAP_tofrom:
7159       Bits |= OMP_MAP_TO | OMP_MAP_FROM;
7160       break;
7161     case OMPC_MAP_delete:
7162       Bits |= OMP_MAP_DELETE;
7163       break;
7164     case OMPC_MAP_unknown:
7165       llvm_unreachable("Unexpected map type!");
7166     }
7167     if (AddPtrFlag)
7168       Bits |= OMP_MAP_PTR_AND_OBJ;
7169     if (AddIsTargetParamFlag)
7170       Bits |= OMP_MAP_TARGET_PARAM;
7171     if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always)
7172         != MapModifiers.end())
7173       Bits |= OMP_MAP_ALWAYS;
7174     if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_close)
7175         != MapModifiers.end())
7176       Bits |= OMP_MAP_CLOSE;
7177     return Bits;
7178   }
7179 
7180   /// Return true if the provided expression is a final array section. A
7181   /// final array section, is one whose length can't be proved to be one.
isFinalArraySectionExpression(const Expr * E) const7182   bool isFinalArraySectionExpression(const Expr *E) const {
7183     const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
7184 
7185     // It is not an array section and therefore not a unity-size one.
7186     if (!OASE)
7187       return false;
7188 
7189     // An array section with no colon always refer to a single element.
7190     if (OASE->getColonLocFirst().isInvalid())
7191       return false;
7192 
7193     const Expr *Length = OASE->getLength();
7194 
7195     // If we don't have a length we have to check if the array has size 1
7196     // for this dimension. Also, we should always expect a length if the
7197     // base type is pointer.
7198     if (!Length) {
7199       QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
7200                              OASE->getBase()->IgnoreParenImpCasts())
7201                              .getCanonicalType();
7202       if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
7203         return ATy->getSize().getSExtValue() != 1;
7204       // If we don't have a constant dimension length, we have to consider
7205       // the current section as having any size, so it is not necessarily
7206       // unitary. If it happen to be unity size, that's user fault.
7207       return true;
7208     }
7209 
7210     // Check if the length evaluates to 1.
7211     Expr::EvalResult Result;
7212     if (!Length->EvaluateAsInt(Result, CGF.getContext()))
7213       return true; // Can have more that size 1.
7214 
7215     llvm::APSInt ConstLength = Result.Val.getInt();
7216     return ConstLength.getSExtValue() != 1;
7217   }
7218 
7219   /// Generate the base pointers, section pointers, sizes and map type
7220   /// bits for the provided map type, map modifier, and expression components.
7221   /// \a IsFirstComponent should be set to true if the provided set of
7222   /// components is the first associated with a capture.
generateInfoForComponentList(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,OMPClauseMappableExprCommon::MappableExprComponentListRef Components,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types,StructRangeInfoTy & PartialStruct,bool IsFirstComponentList,bool IsImplicit,bool ForDeviceAddr=false,ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef> OverlappedElements=llvm::None) const7223   void generateInfoForComponentList(
7224       OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
7225       OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7226       MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
7227       MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
7228       StructRangeInfoTy &PartialStruct, bool IsFirstComponentList,
7229       bool IsImplicit, bool ForDeviceAddr = false,
7230       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
7231           OverlappedElements = llvm::None) const {
7232     // The following summarizes what has to be generated for each map and the
7233     // types below. The generated information is expressed in this order:
7234     // base pointer, section pointer, size, flags
7235     // (to add to the ones that come from the map type and modifier).
7236     //
7237     // double d;
7238     // int i[100];
7239     // float *p;
7240     //
7241     // struct S1 {
7242     //   int i;
7243     //   float f[50];
7244     // }
7245     // struct S2 {
7246     //   int i;
7247     //   float f[50];
7248     //   S1 s;
7249     //   double *p;
7250     //   struct S2 *ps;
7251     // }
7252     // S2 s;
7253     // S2 *ps;
7254     //
7255     // map(d)
7256     // &d, &d, sizeof(double), TARGET_PARAM | TO | FROM
7257     //
7258     // map(i)
7259     // &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM
7260     //
7261     // map(i[1:23])
7262     // &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM
7263     //
7264     // map(p)
7265     // &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM
7266     //
7267     // map(p[1:24])
7268     // &p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM | PTR_AND_OBJ
7269     // in unified shared memory mode or for local pointers
7270     // p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM
7271     //
7272     // map(s)
7273     // &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM
7274     //
7275     // map(s.i)
7276     // &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM
7277     //
7278     // map(s.s.f)
7279     // &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7280     //
7281     // map(s.p)
7282     // &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM
7283     //
7284     // map(to: s.p[:22])
7285     // &s, &(s.p), sizeof(double*), TARGET_PARAM (*)
7286     // &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**)
7287     // &(s.p), &(s.p[0]), 22*sizeof(double),
7288     //   MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
7289     // (*) alloc space for struct members, only this is a target parameter
7290     // (**) map the pointer (nothing to be mapped in this example) (the compiler
7291     //      optimizes this entry out, same in the examples below)
7292     // (***) map the pointee (map: to)
7293     //
7294     // map(s.ps)
7295     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7296     //
7297     // map(from: s.ps->s.i)
7298     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7299     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7300     // &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ  | FROM
7301     //
7302     // map(to: s.ps->ps)
7303     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7304     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7305     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ  | TO
7306     //
7307     // map(s.ps->ps->ps)
7308     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7309     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7310     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7311     // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7312     //
7313     // map(to: s.ps->ps->s.f[:22])
7314     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7315     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7316     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7317     // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7318     //
7319     // map(ps)
7320     // &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM
7321     //
7322     // map(ps->i)
7323     // ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM
7324     //
7325     // map(ps->s.f)
7326     // ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7327     //
7328     // map(from: ps->p)
7329     // ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM
7330     //
7331     // map(to: ps->p[:22])
7332     // ps, &(ps->p), sizeof(double*), TARGET_PARAM
7333     // ps, &(ps->p), sizeof(double*), MEMBER_OF(1)
7334     // &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO
7335     //
7336     // map(ps->ps)
7337     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7338     //
7339     // map(from: ps->ps->s.i)
7340     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7341     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7342     // &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7343     //
7344     // map(from: ps->ps->ps)
7345     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7346     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7347     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7348     //
7349     // map(ps->ps->ps->ps)
7350     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7351     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7352     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7353     // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7354     //
7355     // map(to: ps->ps->ps->s.f[:22])
7356     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7357     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7358     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7359     // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7360     //
7361     // map(to: s.f[:22]) map(from: s.p[:33])
7362     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) +
7363     //     sizeof(double*) (**), TARGET_PARAM
7364     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO
7365     // &s, &(s.p), sizeof(double*), MEMBER_OF(1)
7366     // &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7367     // (*) allocate contiguous space needed to fit all mapped members even if
7368     //     we allocate space for members not mapped (in this example,
7369     //     s.f[22..49] and s.s are not mapped, yet we must allocate space for
7370     //     them as well because they fall between &s.f[0] and &s.p)
7371     //
7372     // map(from: s.f[:22]) map(to: ps->p[:33])
7373     // &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM
7374     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7375     // ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*)
7376     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO
7377     // (*) the struct this entry pertains to is the 2nd element in the list of
7378     //     arguments, hence MEMBER_OF(2)
7379     //
7380     // map(from: s.f[:22], s.s) map(to: ps->p[:33])
7381     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM
7382     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM
7383     // &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM
7384     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7385     // ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*)
7386     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO
7387     // (*) the struct this entry pertains to is the 4th element in the list
7388     //     of arguments, hence MEMBER_OF(4)
7389 
7390     // Track if the map information being generated is the first for a capture.
7391     bool IsCaptureFirstInfo = IsFirstComponentList;
7392     // When the variable is on a declare target link or in a to clause with
7393     // unified memory, a reference is needed to hold the host/device address
7394     // of the variable.
7395     bool RequiresReference = false;
7396 
7397     // Scan the components from the base to the complete expression.
7398     auto CI = Components.rbegin();
7399     auto CE = Components.rend();
7400     auto I = CI;
7401 
7402     // Track if the map information being generated is the first for a list of
7403     // components.
7404     bool IsExpressionFirstInfo = true;
7405     bool FirstPointerInComplexData = false;
7406     Address BP = Address::invalid();
7407     const Expr *AssocExpr = I->getAssociatedExpression();
7408     const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr);
7409     const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7410     const auto *OAShE = dyn_cast<OMPArrayShapingExpr>(AssocExpr);
7411 
7412     if (isa<MemberExpr>(AssocExpr)) {
7413       // The base is the 'this' pointer. The content of the pointer is going
7414       // to be the base of the field being mapped.
7415       BP = CGF.LoadCXXThisAddress();
7416     } else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) ||
7417                (OASE &&
7418                 isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) {
7419       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
7420     } else if (OAShE &&
7421                isa<CXXThisExpr>(OAShE->getBase()->IgnoreParenCasts())) {
7422       BP = Address(
7423           CGF.EmitScalarExpr(OAShE->getBase()),
7424           CGF.getContext().getTypeAlignInChars(OAShE->getBase()->getType()));
7425     } else {
7426       // The base is the reference to the variable.
7427       // BP = &Var.
7428       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
7429       if (const auto *VD =
7430               dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) {
7431         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
7432                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
7433           if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
7434               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
7435                CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) {
7436             RequiresReference = true;
7437             BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
7438           }
7439         }
7440       }
7441 
7442       // If the variable is a pointer and is being dereferenced (i.e. is not
7443       // the last component), the base has to be the pointer itself, not its
7444       // reference. References are ignored for mapping purposes.
7445       QualType Ty =
7446           I->getAssociatedDeclaration()->getType().getNonReferenceType();
7447       if (Ty->isAnyPointerType() && std::next(I) != CE) {
7448         // No need to generate individual map information for the pointer, it
7449         // can be associated with the combined storage if shared memory mode is
7450         // active or the base declaration is not global variable.
7451         const auto *VD = dyn_cast<VarDecl>(I->getAssociatedDeclaration());
7452          if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
7453             !VD || VD->hasLocalStorage())
7454           BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7455         else
7456           FirstPointerInComplexData = IsCaptureFirstInfo;
7457         ++I;
7458       }
7459     }
7460 
7461     // Track whether a component of the list should be marked as MEMBER_OF some
7462     // combined entry (for partial structs). Only the first PTR_AND_OBJ entry
7463     // in a component list should be marked as MEMBER_OF, all subsequent entries
7464     // do not belong to the base struct. E.g.
7465     // struct S2 s;
7466     // s.ps->ps->ps->f[:]
7467     //   (1) (2) (3) (4)
7468     // ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a
7469     // PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3)
7470     // is the pointee of ps(2) which is not member of struct s, so it should not
7471     // be marked as such (it is still PTR_AND_OBJ).
7472     // The variable is initialized to false so that PTR_AND_OBJ entries which
7473     // are not struct members are not considered (e.g. array of pointers to
7474     // data).
7475     bool ShouldBeMemberOf = false;
7476 
7477     // Variable keeping track of whether or not we have encountered a component
7478     // in the component list which is a member expression. Useful when we have a
7479     // pointer or a final array section, in which case it is the previous
7480     // component in the list which tells us whether we have a member expression.
7481     // E.g. X.f[:]
7482     // While processing the final array section "[:]" it is "f" which tells us
7483     // whether we are dealing with a member of a declared struct.
7484     const MemberExpr *EncounteredME = nullptr;
7485 
7486     for (; I != CE; ++I) {
7487       // If the current component is member of a struct (parent struct) mark it.
7488       if (!EncounteredME) {
7489         EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression());
7490         // If we encounter a PTR_AND_OBJ entry from now on it should be marked
7491         // as MEMBER_OF the parent struct.
7492         if (EncounteredME) {
7493           ShouldBeMemberOf = true;
7494           // Do not emit as complex pointer if this is actually not array-like
7495           // expression.
7496           if (FirstPointerInComplexData) {
7497             QualType Ty = std::prev(I)
7498                               ->getAssociatedDeclaration()
7499                               ->getType()
7500                               .getNonReferenceType();
7501             BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7502             FirstPointerInComplexData = false;
7503           }
7504         }
7505       }
7506 
7507       auto Next = std::next(I);
7508 
7509       // We need to generate the addresses and sizes if this is the last
7510       // component, if the component is a pointer or if it is an array section
7511       // whose length can't be proved to be one. If this is a pointer, it
7512       // becomes the base address for the following components.
7513 
7514       // A final array section, is one whose length can't be proved to be one.
7515       bool IsFinalArraySection =
7516           isFinalArraySectionExpression(I->getAssociatedExpression());
7517 
7518       // Get information on whether the element is a pointer. Have to do a
7519       // special treatment for array sections given that they are built-in
7520       // types.
7521       const auto *OASE =
7522           dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
7523       const auto *OAShE =
7524           dyn_cast<OMPArrayShapingExpr>(I->getAssociatedExpression());
7525       const auto *UO = dyn_cast<UnaryOperator>(I->getAssociatedExpression());
7526       const auto *BO = dyn_cast<BinaryOperator>(I->getAssociatedExpression());
7527       bool IsPointer =
7528           OAShE ||
7529           (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE)
7530                        .getCanonicalType()
7531                        ->isAnyPointerType()) ||
7532           I->getAssociatedExpression()->getType()->isAnyPointerType();
7533       bool IsNonDerefPointer = IsPointer && !UO && !BO;
7534 
7535       if (Next == CE || IsNonDerefPointer || IsFinalArraySection) {
7536         // If this is not the last component, we expect the pointer to be
7537         // associated with an array expression or member expression.
7538         assert((Next == CE ||
7539                 isa<MemberExpr>(Next->getAssociatedExpression()) ||
7540                 isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
7541                 isa<OMPArraySectionExpr>(Next->getAssociatedExpression()) ||
7542                 isa<UnaryOperator>(Next->getAssociatedExpression()) ||
7543                 isa<BinaryOperator>(Next->getAssociatedExpression())) &&
7544                "Unexpected expression");
7545 
7546         Address LB = Address::invalid();
7547         if (OAShE) {
7548           LB = Address(CGF.EmitScalarExpr(OAShE->getBase()),
7549                        CGF.getContext().getTypeAlignInChars(
7550                            OAShE->getBase()->getType()));
7551         } else {
7552           LB = CGF.EmitOMPSharedLValue(I->getAssociatedExpression())
7553                    .getAddress(CGF);
7554         }
7555 
7556         // If this component is a pointer inside the base struct then we don't
7557         // need to create any entry for it - it will be combined with the object
7558         // it is pointing to into a single PTR_AND_OBJ entry.
7559         bool IsMemberPointerOrAddr =
7560             (IsPointer || ForDeviceAddr) && EncounteredME &&
7561             (dyn_cast<MemberExpr>(I->getAssociatedExpression()) ==
7562              EncounteredME);
7563         if (!OverlappedElements.empty()) {
7564           // Handle base element with the info for overlapped elements.
7565           assert(!PartialStruct.Base.isValid() && "The base element is set.");
7566           assert(Next == CE &&
7567                  "Expected last element for the overlapped elements.");
7568           assert(!IsPointer &&
7569                  "Unexpected base element with the pointer type.");
7570           // Mark the whole struct as the struct that requires allocation on the
7571           // device.
7572           PartialStruct.LowestElem = {0, LB};
7573           CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(
7574               I->getAssociatedExpression()->getType());
7575           Address HB = CGF.Builder.CreateConstGEP(
7576               CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LB,
7577                                                               CGF.VoidPtrTy),
7578               TypeSize.getQuantity() - 1);
7579           PartialStruct.HighestElem = {
7580               std::numeric_limits<decltype(
7581                   PartialStruct.HighestElem.first)>::max(),
7582               HB};
7583           PartialStruct.Base = BP;
7584           // Emit data for non-overlapped data.
7585           OpenMPOffloadMappingFlags Flags =
7586               OMP_MAP_MEMBER_OF |
7587               getMapTypeBits(MapType, MapModifiers, IsImplicit,
7588                              /*AddPtrFlag=*/false,
7589                              /*AddIsTargetParamFlag=*/false);
7590           LB = BP;
7591           llvm::Value *Size = nullptr;
7592           // Do bitcopy of all non-overlapped structure elements.
7593           for (OMPClauseMappableExprCommon::MappableExprComponentListRef
7594                    Component : OverlappedElements) {
7595             Address ComponentLB = Address::invalid();
7596             for (const OMPClauseMappableExprCommon::MappableComponent &MC :
7597                  Component) {
7598               if (MC.getAssociatedDeclaration()) {
7599                 ComponentLB =
7600                     CGF.EmitOMPSharedLValue(MC.getAssociatedExpression())
7601                         .getAddress(CGF);
7602                 Size = CGF.Builder.CreatePtrDiff(
7603                     CGF.EmitCastToVoidPtr(ComponentLB.getPointer()),
7604                     CGF.EmitCastToVoidPtr(LB.getPointer()));
7605                 break;
7606               }
7607             }
7608             BasePointers.push_back(BP.getPointer());
7609             Pointers.push_back(LB.getPointer());
7610             Sizes.push_back(CGF.Builder.CreateIntCast(Size, CGF.Int64Ty,
7611                                                       /*isSigned=*/true));
7612             Types.push_back(Flags);
7613             LB = CGF.Builder.CreateConstGEP(ComponentLB, 1);
7614           }
7615           BasePointers.push_back(BP.getPointer());
7616           Pointers.push_back(LB.getPointer());
7617           Size = CGF.Builder.CreatePtrDiff(
7618               CGF.EmitCastToVoidPtr(
7619                   CGF.Builder.CreateConstGEP(HB, 1).getPointer()),
7620               CGF.EmitCastToVoidPtr(LB.getPointer()));
7621           Sizes.push_back(
7622               CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7623           Types.push_back(Flags);
7624           break;
7625         }
7626         llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression());
7627         if (!IsMemberPointerOrAddr) {
7628           BasePointers.push_back(BP.getPointer());
7629           Pointers.push_back(LB.getPointer());
7630           Sizes.push_back(
7631               CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7632 
7633           // We need to add a pointer flag for each map that comes from the
7634           // same expression except for the first one. We also need to signal
7635           // this map is the first one that relates with the current capture
7636           // (there is a set of entries for each capture).
7637           OpenMPOffloadMappingFlags Flags =
7638               getMapTypeBits(MapType, MapModifiers, IsImplicit,
7639                              !IsExpressionFirstInfo || RequiresReference ||
7640                                  FirstPointerInComplexData,
7641                              IsCaptureFirstInfo && !RequiresReference);
7642 
7643           if (!IsExpressionFirstInfo) {
7644             // If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well,
7645             // then we reset the TO/FROM/ALWAYS/DELETE/CLOSE flags.
7646             if (IsPointer)
7647               Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS |
7648                          OMP_MAP_DELETE | OMP_MAP_CLOSE);
7649 
7650             if (ShouldBeMemberOf) {
7651               // Set placeholder value MEMBER_OF=FFFF to indicate that the flag
7652               // should be later updated with the correct value of MEMBER_OF.
7653               Flags |= OMP_MAP_MEMBER_OF;
7654               // From now on, all subsequent PTR_AND_OBJ entries should not be
7655               // marked as MEMBER_OF.
7656               ShouldBeMemberOf = false;
7657             }
7658           }
7659 
7660           Types.push_back(Flags);
7661         }
7662 
7663         // If we have encountered a member expression so far, keep track of the
7664         // mapped member. If the parent is "*this", then the value declaration
7665         // is nullptr.
7666         if (EncounteredME) {
7667           const auto *FD = cast<FieldDecl>(EncounteredME->getMemberDecl());
7668           unsigned FieldIndex = FD->getFieldIndex();
7669 
7670           // Update info about the lowest and highest elements for this struct
7671           if (!PartialStruct.Base.isValid()) {
7672             PartialStruct.LowestElem = {FieldIndex, LB};
7673             if (IsFinalArraySection) {
7674               Address HB =
7675                   CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false)
7676                       .getAddress(CGF);
7677               PartialStruct.HighestElem = {FieldIndex, HB};
7678             } else {
7679               PartialStruct.HighestElem = {FieldIndex, LB};
7680             }
7681             PartialStruct.Base = BP;
7682           } else if (FieldIndex < PartialStruct.LowestElem.first) {
7683             PartialStruct.LowestElem = {FieldIndex, LB};
7684           } else if (FieldIndex > PartialStruct.HighestElem.first) {
7685             PartialStruct.HighestElem = {FieldIndex, LB};
7686           }
7687         }
7688 
7689         // If we have a final array section, we are done with this expression.
7690         if (IsFinalArraySection)
7691           break;
7692 
7693         // The pointer becomes the base for the next element.
7694         if (Next != CE)
7695           BP = LB;
7696 
7697         IsExpressionFirstInfo = false;
7698         IsCaptureFirstInfo = false;
7699         FirstPointerInComplexData = false;
7700       }
7701     }
7702   }
7703 
7704   /// Return the adjusted map modifiers if the declaration a capture refers to
7705   /// appears in a first-private clause. This is expected to be used only with
7706   /// directives that start with 'target'.
7707   MappableExprsHandler::OpenMPOffloadMappingFlags
getMapModifiersForPrivateClauses(const CapturedStmt::Capture & Cap) const7708   getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const {
7709     assert(Cap.capturesVariable() && "Expected capture by reference only!");
7710 
7711     // A first private variable captured by reference will use only the
7712     // 'private ptr' and 'map to' flag. Return the right flags if the captured
7713     // declaration is known as first-private in this handler.
7714     if (FirstPrivateDecls.count(Cap.getCapturedVar())) {
7715       if (Cap.getCapturedVar()->getType().isConstant(CGF.getContext()) &&
7716           Cap.getCaptureKind() == CapturedStmt::VCK_ByRef)
7717         return MappableExprsHandler::OMP_MAP_ALWAYS |
7718                MappableExprsHandler::OMP_MAP_TO;
7719       if (Cap.getCapturedVar()->getType()->isAnyPointerType())
7720         return MappableExprsHandler::OMP_MAP_TO |
7721                MappableExprsHandler::OMP_MAP_PTR_AND_OBJ;
7722       return MappableExprsHandler::OMP_MAP_PRIVATE |
7723              MappableExprsHandler::OMP_MAP_TO;
7724     }
7725     return MappableExprsHandler::OMP_MAP_TO |
7726            MappableExprsHandler::OMP_MAP_FROM;
7727   }
7728 
getMemberOfFlag(unsigned Position)7729   static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) {
7730     // Rotate by getFlagMemberOffset() bits.
7731     return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
7732                                                   << getFlagMemberOffset());
7733   }
7734 
setCorrectMemberOfFlag(OpenMPOffloadMappingFlags & Flags,OpenMPOffloadMappingFlags MemberOfFlag)7735   static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags,
7736                                      OpenMPOffloadMappingFlags MemberOfFlag) {
7737     // If the entry is PTR_AND_OBJ but has not been marked with the special
7738     // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
7739     // marked as MEMBER_OF.
7740     if ((Flags & OMP_MAP_PTR_AND_OBJ) &&
7741         ((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF))
7742       return;
7743 
7744     // Reset the placeholder value to prepare the flag for the assignment of the
7745     // proper MEMBER_OF value.
7746     Flags &= ~OMP_MAP_MEMBER_OF;
7747     Flags |= MemberOfFlag;
7748   }
7749 
getPlainLayout(const CXXRecordDecl * RD,llvm::SmallVectorImpl<const FieldDecl * > & Layout,bool AsBase) const7750   void getPlainLayout(const CXXRecordDecl *RD,
7751                       llvm::SmallVectorImpl<const FieldDecl *> &Layout,
7752                       bool AsBase) const {
7753     const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD);
7754 
7755     llvm::StructType *St =
7756         AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType();
7757 
7758     unsigned NumElements = St->getNumElements();
7759     llvm::SmallVector<
7760         llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4>
7761         RecordLayout(NumElements);
7762 
7763     // Fill bases.
7764     for (const auto &I : RD->bases()) {
7765       if (I.isVirtual())
7766         continue;
7767       const auto *Base = I.getType()->getAsCXXRecordDecl();
7768       // Ignore empty bases.
7769       if (Base->isEmpty() || CGF.getContext()
7770                                  .getASTRecordLayout(Base)
7771                                  .getNonVirtualSize()
7772                                  .isZero())
7773         continue;
7774 
7775       unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base);
7776       RecordLayout[FieldIndex] = Base;
7777     }
7778     // Fill in virtual bases.
7779     for (const auto &I : RD->vbases()) {
7780       const auto *Base = I.getType()->getAsCXXRecordDecl();
7781       // Ignore empty bases.
7782       if (Base->isEmpty())
7783         continue;
7784       unsigned FieldIndex = RL.getVirtualBaseIndex(Base);
7785       if (RecordLayout[FieldIndex])
7786         continue;
7787       RecordLayout[FieldIndex] = Base;
7788     }
7789     // Fill in all the fields.
7790     assert(!RD->isUnion() && "Unexpected union.");
7791     for (const auto *Field : RD->fields()) {
7792       // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
7793       // will fill in later.)
7794       if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) {
7795         unsigned FieldIndex = RL.getLLVMFieldNo(Field);
7796         RecordLayout[FieldIndex] = Field;
7797       }
7798     }
7799     for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>
7800              &Data : RecordLayout) {
7801       if (Data.isNull())
7802         continue;
7803       if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>())
7804         getPlainLayout(Base, Layout, /*AsBase=*/true);
7805       else
7806         Layout.push_back(Data.get<const FieldDecl *>());
7807     }
7808   }
7809 
7810 public:
MappableExprsHandler(const OMPExecutableDirective & Dir,CodeGenFunction & CGF)7811   MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
7812       : CurDir(&Dir), CGF(CGF) {
7813     // Extract firstprivate clause information.
7814     for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
7815       for (const auto *D : C->varlists())
7816         FirstPrivateDecls.try_emplace(
7817             cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit());
7818     // Extract implicit firstprivates from uses_allocators clauses.
7819     for (const auto *C : Dir.getClausesOfKind<OMPUsesAllocatorsClause>()) {
7820       for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
7821         OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
7822         if (const auto *DRE = dyn_cast_or_null<DeclRefExpr>(D.AllocatorTraits))
7823           FirstPrivateDecls.try_emplace(cast<VarDecl>(DRE->getDecl()),
7824                                         /*Implicit=*/true);
7825         else if (const auto *VD = dyn_cast<VarDecl>(
7826                      cast<DeclRefExpr>(D.Allocator->IgnoreParenImpCasts())
7827                          ->getDecl()))
7828           FirstPrivateDecls.try_emplace(VD, /*Implicit=*/true);
7829       }
7830     }
7831     // Extract device pointer clause information.
7832     for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
7833       for (auto L : C->component_lists())
7834         DevPointersMap[L.first].push_back(L.second);
7835   }
7836 
7837   /// Constructor for the declare mapper directive.
MappableExprsHandler(const OMPDeclareMapperDecl & Dir,CodeGenFunction & CGF)7838   MappableExprsHandler(const OMPDeclareMapperDecl &Dir, CodeGenFunction &CGF)
7839       : CurDir(&Dir), CGF(CGF) {}
7840 
7841   /// Generate code for the combined entry if we have a partially mapped struct
7842   /// and take care of the mapping flags of the arguments corresponding to
7843   /// individual struct members.
emitCombinedEntry(MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types,MapFlagsArrayTy & CurTypes,const StructRangeInfoTy & PartialStruct) const7844   void emitCombinedEntry(MapBaseValuesArrayTy &BasePointers,
7845                          MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
7846                          MapFlagsArrayTy &Types, MapFlagsArrayTy &CurTypes,
7847                          const StructRangeInfoTy &PartialStruct) const {
7848     // Base is the base of the struct
7849     BasePointers.push_back(PartialStruct.Base.getPointer());
7850     // Pointer is the address of the lowest element
7851     llvm::Value *LB = PartialStruct.LowestElem.second.getPointer();
7852     Pointers.push_back(LB);
7853     // Size is (addr of {highest+1} element) - (addr of lowest element)
7854     llvm::Value *HB = PartialStruct.HighestElem.second.getPointer();
7855     llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1);
7856     llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy);
7857     llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy);
7858     llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr);
7859     llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty,
7860                                                   /*isSigned=*/false);
7861     Sizes.push_back(Size);
7862     // Map type is always TARGET_PARAM
7863     Types.push_back(OMP_MAP_TARGET_PARAM);
7864     // Remove TARGET_PARAM flag from the first element
7865     (*CurTypes.begin()) &= ~OMP_MAP_TARGET_PARAM;
7866 
7867     // All other current entries will be MEMBER_OF the combined entry
7868     // (except for PTR_AND_OBJ entries which do not have a placeholder value
7869     // 0xFFFF in the MEMBER_OF field).
7870     OpenMPOffloadMappingFlags MemberOfFlag =
7871         getMemberOfFlag(BasePointers.size() - 1);
7872     for (auto &M : CurTypes)
7873       setCorrectMemberOfFlag(M, MemberOfFlag);
7874   }
7875 
7876   /// Generate all the base pointers, section pointers, sizes and map
7877   /// types for the extracted mappable expressions. Also, for each item that
7878   /// relates with a device pointer, a pair of the relevant declaration and
7879   /// index where it occurs is appended to the device pointers info array.
generateAllInfo(MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types) const7880   void generateAllInfo(MapBaseValuesArrayTy &BasePointers,
7881                        MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
7882                        MapFlagsArrayTy &Types) const {
7883     // We have to process the component lists that relate with the same
7884     // declaration in a single chunk so that we can generate the map flags
7885     // correctly. Therefore, we organize all lists in a map.
7886     llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
7887 
7888     // Helper function to fill the information map for the different supported
7889     // clauses.
7890     auto &&InfoGen =
7891         [&Info](const ValueDecl *D,
7892                 OMPClauseMappableExprCommon::MappableExprComponentListRef L,
7893                 OpenMPMapClauseKind MapType,
7894                 ArrayRef<OpenMPMapModifierKind> MapModifiers,
7895                 bool ReturnDevicePointer, bool IsImplicit,
7896                 bool ForDeviceAddr = false) {
7897           const ValueDecl *VD =
7898               D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
7899           Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer,
7900                                 IsImplicit, ForDeviceAddr);
7901         };
7902 
7903     assert(CurDir.is<const OMPExecutableDirective *>() &&
7904            "Expect a executable directive");
7905     const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
7906     for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>())
7907       for (const auto L : C->component_lists()) {
7908         InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifiers(),
7909             /*ReturnDevicePointer=*/false, C->isImplicit());
7910       }
7911     for (const auto *C : CurExecDir->getClausesOfKind<OMPToClause>())
7912       for (const auto L : C->component_lists()) {
7913         InfoGen(L.first, L.second, OMPC_MAP_to, llvm::None,
7914             /*ReturnDevicePointer=*/false, C->isImplicit());
7915       }
7916     for (const auto *C : CurExecDir->getClausesOfKind<OMPFromClause>())
7917       for (const auto L : C->component_lists()) {
7918         InfoGen(L.first, L.second, OMPC_MAP_from, llvm::None,
7919             /*ReturnDevicePointer=*/false, C->isImplicit());
7920       }
7921 
7922     // Look at the use_device_ptr clause information and mark the existing map
7923     // entries as such. If there is no map information for an entry in the
7924     // use_device_ptr list, we create one with map type 'alloc' and zero size
7925     // section. It is the user fault if that was not mapped before. If there is
7926     // no map information and the pointer is a struct member, then we defer the
7927     // emission of that entry until the whole struct has been processed.
7928     llvm::MapVector<const ValueDecl *, SmallVector<DeferredDevicePtrEntryTy, 4>>
7929         DeferredInfo;
7930     MapBaseValuesArrayTy UseDevicePtrBasePointers;
7931     MapValuesArrayTy UseDevicePtrPointers;
7932     MapValuesArrayTy UseDevicePtrSizes;
7933     MapFlagsArrayTy UseDevicePtrTypes;
7934 
7935     for (const auto *C :
7936          CurExecDir->getClausesOfKind<OMPUseDevicePtrClause>()) {
7937       for (const auto L : C->component_lists()) {
7938         assert(!L.second.empty() && "Not expecting empty list of components!");
7939         const ValueDecl *VD = L.second.back().getAssociatedDeclaration();
7940         VD = cast<ValueDecl>(VD->getCanonicalDecl());
7941         const Expr *IE = L.second.back().getAssociatedExpression();
7942         // If the first component is a member expression, we have to look into
7943         // 'this', which maps to null in the map of map information. Otherwise
7944         // look directly for the information.
7945         auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
7946 
7947         // We potentially have map information for this declaration already.
7948         // Look for the first set of components that refer to it.
7949         if (It != Info.end()) {
7950           auto *CI = llvm::find_if(It->second, [VD](const MapInfo &MI) {
7951             return MI.Components.back().getAssociatedDeclaration() == VD;
7952           });
7953           // If we found a map entry, signal that the pointer has to be returned
7954           // and move on to the next declaration.
7955           // Exclude cases where the base pointer is mapped as array subscript,
7956           // array section or array shaping. The base address is passed as a
7957           // pointer to base in this case and cannot be used as a base for
7958           // use_device_ptr list item.
7959           if (CI != It->second.end()) {
7960             auto PrevCI = std::next(CI->Components.rbegin());
7961             const auto *VarD = dyn_cast<VarDecl>(VD);
7962             if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
7963                 isa<MemberExpr>(IE) ||
7964                 !VD->getType().getNonReferenceType()->isPointerType() ||
7965                 PrevCI == CI->Components.rend() ||
7966                 isa<MemberExpr>(PrevCI->getAssociatedExpression()) || !VarD ||
7967                 VarD->hasLocalStorage()) {
7968               CI->ReturnDevicePointer = true;
7969               continue;
7970             }
7971           }
7972         }
7973 
7974         // We didn't find any match in our map information - generate a zero
7975         // size array section - if the pointer is a struct member we defer this
7976         // action until the whole struct has been processed.
7977         if (isa<MemberExpr>(IE)) {
7978           // Insert the pointer into Info to be processed by
7979           // generateInfoForComponentList. Because it is a member pointer
7980           // without a pointee, no entry will be generated for it, therefore
7981           // we need to generate one after the whole struct has been processed.
7982           // Nonetheless, generateInfoForComponentList must be called to take
7983           // the pointer into account for the calculation of the range of the
7984           // partial struct.
7985           InfoGen(nullptr, L.second, OMPC_MAP_unknown, llvm::None,
7986                   /*ReturnDevicePointer=*/false, C->isImplicit());
7987           DeferredInfo[nullptr].emplace_back(IE, VD, /*ForDeviceAddr=*/false);
7988         } else {
7989           llvm::Value *Ptr =
7990               CGF.EmitLoadOfScalar(CGF.EmitLValue(IE), IE->getExprLoc());
7991           UseDevicePtrBasePointers.emplace_back(Ptr, VD);
7992           UseDevicePtrPointers.push_back(Ptr);
7993           UseDevicePtrSizes.push_back(
7994               llvm::Constant::getNullValue(CGF.Int64Ty));
7995           UseDevicePtrTypes.push_back(OMP_MAP_RETURN_PARAM |
7996                                       OMP_MAP_TARGET_PARAM);
7997         }
7998       }
7999     }
8000 
8001     // Look at the use_device_addr clause information and mark the existing map
8002     // entries as such. If there is no map information for an entry in the
8003     // use_device_addr list, we create one with map type 'alloc' and zero size
8004     // section. It is the user fault if that was not mapped before. If there is
8005     // no map information and the pointer is a struct member, then we defer the
8006     // emission of that entry until the whole struct has been processed.
8007     llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed;
8008     for (const auto *C :
8009          CurExecDir->getClausesOfKind<OMPUseDeviceAddrClause>()) {
8010       for (const auto L : C->component_lists()) {
8011         assert(!L.second.empty() && "Not expecting empty list of components!");
8012         const ValueDecl *VD = L.second.back().getAssociatedDeclaration();
8013         if (!Processed.insert(VD).second)
8014           continue;
8015         VD = cast<ValueDecl>(VD->getCanonicalDecl());
8016         const Expr *IE = L.second.back().getAssociatedExpression();
8017         // If the first component is a member expression, we have to look into
8018         // 'this', which maps to null in the map of map information. Otherwise
8019         // look directly for the information.
8020         auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
8021 
8022         // We potentially have map information for this declaration already.
8023         // Look for the first set of components that refer to it.
8024         if (It != Info.end()) {
8025           auto *CI = llvm::find_if(It->second, [VD](const MapInfo &MI) {
8026             return MI.Components.back().getAssociatedDeclaration() == VD;
8027           });
8028           // If we found a map entry, signal that the pointer has to be returned
8029           // and move on to the next declaration.
8030           if (CI != It->second.end()) {
8031             CI->ReturnDevicePointer = true;
8032             continue;
8033           }
8034         }
8035 
8036         // We didn't find any match in our map information - generate a zero
8037         // size array section - if the pointer is a struct member we defer this
8038         // action until the whole struct has been processed.
8039         if (isa<MemberExpr>(IE)) {
8040           // Insert the pointer into Info to be processed by
8041           // generateInfoForComponentList. Because it is a member pointer
8042           // without a pointee, no entry will be generated for it, therefore
8043           // we need to generate one after the whole struct has been processed.
8044           // Nonetheless, generateInfoForComponentList must be called to take
8045           // the pointer into account for the calculation of the range of the
8046           // partial struct.
8047           InfoGen(nullptr, L.second, OMPC_MAP_unknown, llvm::None,
8048                   /*ReturnDevicePointer=*/false, C->isImplicit(),
8049                   /*ForDeviceAddr=*/true);
8050           DeferredInfo[nullptr].emplace_back(IE, VD, /*ForDeviceAddr=*/true);
8051         } else {
8052           llvm::Value *Ptr;
8053           if (IE->isGLValue())
8054             Ptr = CGF.EmitLValue(IE).getPointer(CGF);
8055           else
8056             Ptr = CGF.EmitScalarExpr(IE);
8057           UseDevicePtrBasePointers.emplace_back(Ptr, VD);
8058           UseDevicePtrPointers.push_back(Ptr);
8059           UseDevicePtrSizes.push_back(
8060               llvm::Constant::getNullValue(CGF.Int64Ty));
8061           UseDevicePtrTypes.push_back(OMP_MAP_RETURN_PARAM |
8062                                       OMP_MAP_TARGET_PARAM);
8063         }
8064       }
8065     }
8066 
8067     for (const auto &M : Info) {
8068       // We need to know when we generate information for the first component
8069       // associated with a capture, because the mapping flags depend on it.
8070       bool IsFirstComponentList = true;
8071 
8072       // Temporary versions of arrays
8073       MapBaseValuesArrayTy CurBasePointers;
8074       MapValuesArrayTy CurPointers;
8075       MapValuesArrayTy CurSizes;
8076       MapFlagsArrayTy CurTypes;
8077       StructRangeInfoTy PartialStruct;
8078 
8079       for (const MapInfo &L : M.second) {
8080         assert(!L.Components.empty() &&
8081                "Not expecting declaration with no component lists.");
8082 
8083         // Remember the current base pointer index.
8084         unsigned CurrentBasePointersIdx = CurBasePointers.size();
8085         generateInfoForComponentList(
8086             L.MapType, L.MapModifiers, L.Components, CurBasePointers,
8087             CurPointers, CurSizes, CurTypes, PartialStruct,
8088             IsFirstComponentList, L.IsImplicit, L.ForDeviceAddr);
8089 
8090         // If this entry relates with a device pointer, set the relevant
8091         // declaration and add the 'return pointer' flag.
8092         if (L.ReturnDevicePointer) {
8093           assert(CurBasePointers.size() > CurrentBasePointersIdx &&
8094                  "Unexpected number of mapped base pointers.");
8095 
8096           const ValueDecl *RelevantVD =
8097               L.Components.back().getAssociatedDeclaration();
8098           assert(RelevantVD &&
8099                  "No relevant declaration related with device pointer??");
8100 
8101           CurBasePointers[CurrentBasePointersIdx].setDevicePtrDecl(RelevantVD);
8102           CurTypes[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM;
8103         }
8104         IsFirstComponentList = false;
8105       }
8106 
8107       // Append any pending zero-length pointers which are struct members and
8108       // used with use_device_ptr or use_device_addr.
8109       auto CI = DeferredInfo.find(M.first);
8110       if (CI != DeferredInfo.end()) {
8111         for (const DeferredDevicePtrEntryTy &L : CI->second) {
8112           llvm::Value *BasePtr;
8113           llvm::Value *Ptr;
8114           if (L.ForDeviceAddr) {
8115             if (L.IE->isGLValue())
8116               Ptr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
8117             else
8118               Ptr = this->CGF.EmitScalarExpr(L.IE);
8119             BasePtr = Ptr;
8120             // Entry is RETURN_PARAM. Also, set the placeholder value
8121             // MEMBER_OF=FFFF so that the entry is later updated with the
8122             // correct value of MEMBER_OF.
8123             CurTypes.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_MEMBER_OF);
8124           } else {
8125             BasePtr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
8126             Ptr = this->CGF.EmitLoadOfScalar(this->CGF.EmitLValue(L.IE),
8127                                              L.IE->getExprLoc());
8128             // Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the placeholder
8129             // value MEMBER_OF=FFFF so that the entry is later updated with the
8130             // correct value of MEMBER_OF.
8131             CurTypes.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM |
8132                                OMP_MAP_MEMBER_OF);
8133           }
8134           CurBasePointers.emplace_back(BasePtr, L.VD);
8135           CurPointers.push_back(Ptr);
8136           CurSizes.push_back(llvm::Constant::getNullValue(this->CGF.Int64Ty));
8137         }
8138       }
8139 
8140       // If there is an entry in PartialStruct it means we have a struct with
8141       // individual members mapped. Emit an extra combined entry.
8142       if (PartialStruct.Base.isValid())
8143         emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes,
8144                           PartialStruct);
8145 
8146       // We need to append the results of this capture to what we already have.
8147       BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
8148       Pointers.append(CurPointers.begin(), CurPointers.end());
8149       Sizes.append(CurSizes.begin(), CurSizes.end());
8150       Types.append(CurTypes.begin(), CurTypes.end());
8151     }
8152     // Append data for use_device_ptr clauses.
8153     BasePointers.append(UseDevicePtrBasePointers.begin(),
8154                         UseDevicePtrBasePointers.end());
8155     Pointers.append(UseDevicePtrPointers.begin(), UseDevicePtrPointers.end());
8156     Sizes.append(UseDevicePtrSizes.begin(), UseDevicePtrSizes.end());
8157     Types.append(UseDevicePtrTypes.begin(), UseDevicePtrTypes.end());
8158   }
8159 
8160   /// Generate all the base pointers, section pointers, sizes and map types for
8161   /// the extracted map clauses of user-defined mapper.
generateAllInfoForMapper(MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types) const8162   void generateAllInfoForMapper(MapBaseValuesArrayTy &BasePointers,
8163                                 MapValuesArrayTy &Pointers,
8164                                 MapValuesArrayTy &Sizes,
8165                                 MapFlagsArrayTy &Types) const {
8166     assert(CurDir.is<const OMPDeclareMapperDecl *>() &&
8167            "Expect a declare mapper directive");
8168     const auto *CurMapperDir = CurDir.get<const OMPDeclareMapperDecl *>();
8169     // We have to process the component lists that relate with the same
8170     // declaration in a single chunk so that we can generate the map flags
8171     // correctly. Therefore, we organize all lists in a map.
8172     llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
8173 
8174     // Helper function to fill the information map for the different supported
8175     // clauses.
8176     auto &&InfoGen = [&Info](
8177         const ValueDecl *D,
8178         OMPClauseMappableExprCommon::MappableExprComponentListRef L,
8179         OpenMPMapClauseKind MapType,
8180         ArrayRef<OpenMPMapModifierKind> MapModifiers,
8181         bool ReturnDevicePointer, bool IsImplicit) {
8182       const ValueDecl *VD =
8183           D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
8184       Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer,
8185                             IsImplicit);
8186     };
8187 
8188     for (const auto *C : CurMapperDir->clauselists()) {
8189       const auto *MC = cast<OMPMapClause>(C);
8190       for (const auto L : MC->component_lists()) {
8191         InfoGen(L.first, L.second, MC->getMapType(), MC->getMapTypeModifiers(),
8192                 /*ReturnDevicePointer=*/false, MC->isImplicit());
8193       }
8194     }
8195 
8196     for (const auto &M : Info) {
8197       // We need to know when we generate information for the first component
8198       // associated with a capture, because the mapping flags depend on it.
8199       bool IsFirstComponentList = true;
8200 
8201       // Temporary versions of arrays
8202       MapBaseValuesArrayTy CurBasePointers;
8203       MapValuesArrayTy CurPointers;
8204       MapValuesArrayTy CurSizes;
8205       MapFlagsArrayTy CurTypes;
8206       StructRangeInfoTy PartialStruct;
8207 
8208       for (const MapInfo &L : M.second) {
8209         assert(!L.Components.empty() &&
8210                "Not expecting declaration with no component lists.");
8211         generateInfoForComponentList(
8212             L.MapType, L.MapModifiers, L.Components, CurBasePointers,
8213             CurPointers, CurSizes, CurTypes, PartialStruct,
8214             IsFirstComponentList, L.IsImplicit, L.ForDeviceAddr);
8215         IsFirstComponentList = false;
8216       }
8217 
8218       // If there is an entry in PartialStruct it means we have a struct with
8219       // individual members mapped. Emit an extra combined entry.
8220       if (PartialStruct.Base.isValid())
8221         emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes,
8222                           PartialStruct);
8223 
8224       // We need to append the results of this capture to what we already have.
8225       BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
8226       Pointers.append(CurPointers.begin(), CurPointers.end());
8227       Sizes.append(CurSizes.begin(), CurSizes.end());
8228       Types.append(CurTypes.begin(), CurTypes.end());
8229     }
8230   }
8231 
8232   /// Emit capture info for lambdas for variables captured by reference.
generateInfoForLambdaCaptures(const ValueDecl * VD,llvm::Value * Arg,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types,llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers) const8233   void generateInfoForLambdaCaptures(
8234       const ValueDecl *VD, llvm::Value *Arg, MapBaseValuesArrayTy &BasePointers,
8235       MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
8236       MapFlagsArrayTy &Types,
8237       llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const {
8238     const auto *RD = VD->getType()
8239                          .getCanonicalType()
8240                          .getNonReferenceType()
8241                          ->getAsCXXRecordDecl();
8242     if (!RD || !RD->isLambda())
8243       return;
8244     Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD));
8245     LValue VDLVal = CGF.MakeAddrLValue(
8246         VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
8247     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
8248     FieldDecl *ThisCapture = nullptr;
8249     RD->getCaptureFields(Captures, ThisCapture);
8250     if (ThisCapture) {
8251       LValue ThisLVal =
8252           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
8253       LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture);
8254       LambdaPointers.try_emplace(ThisLVal.getPointer(CGF),
8255                                  VDLVal.getPointer(CGF));
8256       BasePointers.push_back(ThisLVal.getPointer(CGF));
8257       Pointers.push_back(ThisLValVal.getPointer(CGF));
8258       Sizes.push_back(
8259           CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
8260                                     CGF.Int64Ty, /*isSigned=*/true));
8261       Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8262                       OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8263     }
8264     for (const LambdaCapture &LC : RD->captures()) {
8265       if (!LC.capturesVariable())
8266         continue;
8267       const VarDecl *VD = LC.getCapturedVar();
8268       if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType())
8269         continue;
8270       auto It = Captures.find(VD);
8271       assert(It != Captures.end() && "Found lambda capture without field.");
8272       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
8273       if (LC.getCaptureKind() == LCK_ByRef) {
8274         LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second);
8275         LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
8276                                    VDLVal.getPointer(CGF));
8277         BasePointers.push_back(VarLVal.getPointer(CGF));
8278         Pointers.push_back(VarLValVal.getPointer(CGF));
8279         Sizes.push_back(CGF.Builder.CreateIntCast(
8280             CGF.getTypeSize(
8281                 VD->getType().getCanonicalType().getNonReferenceType()),
8282             CGF.Int64Ty, /*isSigned=*/true));
8283       } else {
8284         RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation());
8285         LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
8286                                    VDLVal.getPointer(CGF));
8287         BasePointers.push_back(VarLVal.getPointer(CGF));
8288         Pointers.push_back(VarRVal.getScalarVal());
8289         Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0));
8290       }
8291       Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8292                       OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8293     }
8294   }
8295 
8296   /// Set correct indices for lambdas captures.
adjustMemberOfForLambdaCaptures(const llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapFlagsArrayTy & Types) const8297   void adjustMemberOfForLambdaCaptures(
8298       const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers,
8299       MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
8300       MapFlagsArrayTy &Types) const {
8301     for (unsigned I = 0, E = Types.size(); I < E; ++I) {
8302       // Set correct member_of idx for all implicit lambda captures.
8303       if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8304                        OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT))
8305         continue;
8306       llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]);
8307       assert(BasePtr && "Unable to find base lambda address.");
8308       int TgtIdx = -1;
8309       for (unsigned J = I; J > 0; --J) {
8310         unsigned Idx = J - 1;
8311         if (Pointers[Idx] != BasePtr)
8312           continue;
8313         TgtIdx = Idx;
8314         break;
8315       }
8316       assert(TgtIdx != -1 && "Unable to find parent lambda.");
8317       // All other current entries will be MEMBER_OF the combined entry
8318       // (except for PTR_AND_OBJ entries which do not have a placeholder value
8319       // 0xFFFF in the MEMBER_OF field).
8320       OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx);
8321       setCorrectMemberOfFlag(Types[I], MemberOfFlag);
8322     }
8323   }
8324 
8325   /// Generate the base pointers, section pointers, sizes and map types
8326   /// associated to a given capture.
generateInfoForCapture(const CapturedStmt::Capture * Cap,llvm::Value * Arg,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types,StructRangeInfoTy & PartialStruct) const8327   void generateInfoForCapture(const CapturedStmt::Capture *Cap,
8328                               llvm::Value *Arg,
8329                               MapBaseValuesArrayTy &BasePointers,
8330                               MapValuesArrayTy &Pointers,
8331                               MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
8332                               StructRangeInfoTy &PartialStruct) const {
8333     assert(!Cap->capturesVariableArrayType() &&
8334            "Not expecting to generate map info for a variable array type!");
8335 
8336     // We need to know when we generating information for the first component
8337     const ValueDecl *VD = Cap->capturesThis()
8338                               ? nullptr
8339                               : Cap->getCapturedVar()->getCanonicalDecl();
8340 
8341     // If this declaration appears in a is_device_ptr clause we just have to
8342     // pass the pointer by value. If it is a reference to a declaration, we just
8343     // pass its value.
8344     if (DevPointersMap.count(VD)) {
8345       BasePointers.emplace_back(Arg, VD);
8346       Pointers.push_back(Arg);
8347       Sizes.push_back(
8348           CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
8349                                     CGF.Int64Ty, /*isSigned=*/true));
8350       Types.push_back(OMP_MAP_LITERAL | OMP_MAP_TARGET_PARAM);
8351       return;
8352     }
8353 
8354     using MapData =
8355         std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef,
8356                    OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool>;
8357     SmallVector<MapData, 4> DeclComponentLists;
8358     assert(CurDir.is<const OMPExecutableDirective *>() &&
8359            "Expect a executable directive");
8360     const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
8361     for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
8362       for (const auto L : C->decl_component_lists(VD)) {
8363         assert(L.first == VD &&
8364                "We got information for the wrong declaration??");
8365         assert(!L.second.empty() &&
8366                "Not expecting declaration with no component lists.");
8367         DeclComponentLists.emplace_back(L.second, C->getMapType(),
8368                                         C->getMapTypeModifiers(),
8369                                         C->isImplicit());
8370       }
8371     }
8372 
8373     // Find overlapping elements (including the offset from the base element).
8374     llvm::SmallDenseMap<
8375         const MapData *,
8376         llvm::SmallVector<
8377             OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>,
8378         4>
8379         OverlappedData;
8380     size_t Count = 0;
8381     for (const MapData &L : DeclComponentLists) {
8382       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8383       OpenMPMapClauseKind MapType;
8384       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8385       bool IsImplicit;
8386       std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
8387       ++Count;
8388       for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) {
8389         OMPClauseMappableExprCommon::MappableExprComponentListRef Components1;
8390         std::tie(Components1, MapType, MapModifiers, IsImplicit) = L1;
8391         auto CI = Components.rbegin();
8392         auto CE = Components.rend();
8393         auto SI = Components1.rbegin();
8394         auto SE = Components1.rend();
8395         for (; CI != CE && SI != SE; ++CI, ++SI) {
8396           if (CI->getAssociatedExpression()->getStmtClass() !=
8397               SI->getAssociatedExpression()->getStmtClass())
8398             break;
8399           // Are we dealing with different variables/fields?
8400           if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
8401             break;
8402         }
8403         // Found overlapping if, at least for one component, reached the head of
8404         // the components list.
8405         if (CI == CE || SI == SE) {
8406           assert((CI != CE || SI != SE) &&
8407                  "Unexpected full match of the mapping components.");
8408           const MapData &BaseData = CI == CE ? L : L1;
8409           OMPClauseMappableExprCommon::MappableExprComponentListRef SubData =
8410               SI == SE ? Components : Components1;
8411           auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData);
8412           OverlappedElements.getSecond().push_back(SubData);
8413         }
8414       }
8415     }
8416     // Sort the overlapped elements for each item.
8417     llvm::SmallVector<const FieldDecl *, 4> Layout;
8418     if (!OverlappedData.empty()) {
8419       if (const auto *CRD =
8420               VD->getType().getCanonicalType()->getAsCXXRecordDecl())
8421         getPlainLayout(CRD, Layout, /*AsBase=*/false);
8422       else {
8423         const auto *RD = VD->getType().getCanonicalType()->getAsRecordDecl();
8424         Layout.append(RD->field_begin(), RD->field_end());
8425       }
8426     }
8427     for (auto &Pair : OverlappedData) {
8428       llvm::sort(
8429           Pair.getSecond(),
8430           [&Layout](
8431               OMPClauseMappableExprCommon::MappableExprComponentListRef First,
8432               OMPClauseMappableExprCommon::MappableExprComponentListRef
8433                   Second) {
8434             auto CI = First.rbegin();
8435             auto CE = First.rend();
8436             auto SI = Second.rbegin();
8437             auto SE = Second.rend();
8438             for (; CI != CE && SI != SE; ++CI, ++SI) {
8439               if (CI->getAssociatedExpression()->getStmtClass() !=
8440                   SI->getAssociatedExpression()->getStmtClass())
8441                 break;
8442               // Are we dealing with different variables/fields?
8443               if (CI->getAssociatedDeclaration() !=
8444                   SI->getAssociatedDeclaration())
8445                 break;
8446             }
8447 
8448             // Lists contain the same elements.
8449             if (CI == CE && SI == SE)
8450               return false;
8451 
8452             // List with less elements is less than list with more elements.
8453             if (CI == CE || SI == SE)
8454               return CI == CE;
8455 
8456             const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration());
8457             const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration());
8458             if (FD1->getParent() == FD2->getParent())
8459               return FD1->getFieldIndex() < FD2->getFieldIndex();
8460             const auto It =
8461                 llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) {
8462                   return FD == FD1 || FD == FD2;
8463                 });
8464             return *It == FD1;
8465           });
8466     }
8467 
8468     // Associated with a capture, because the mapping flags depend on it.
8469     // Go through all of the elements with the overlapped elements.
8470     for (const auto &Pair : OverlappedData) {
8471       const MapData &L = *Pair.getFirst();
8472       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8473       OpenMPMapClauseKind MapType;
8474       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8475       bool IsImplicit;
8476       std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
8477       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
8478           OverlappedComponents = Pair.getSecond();
8479       bool IsFirstComponentList = true;
8480       generateInfoForComponentList(
8481           MapType, MapModifiers, Components, BasePointers, Pointers, Sizes,
8482           Types, PartialStruct, IsFirstComponentList, IsImplicit,
8483           /*ForDeviceAddr=*/false, OverlappedComponents);
8484     }
8485     // Go through other elements without overlapped elements.
8486     bool IsFirstComponentList = OverlappedData.empty();
8487     for (const MapData &L : DeclComponentLists) {
8488       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8489       OpenMPMapClauseKind MapType;
8490       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8491       bool IsImplicit;
8492       std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
8493       auto It = OverlappedData.find(&L);
8494       if (It == OverlappedData.end())
8495         generateInfoForComponentList(MapType, MapModifiers, Components,
8496                                      BasePointers, Pointers, Sizes, Types,
8497                                      PartialStruct, IsFirstComponentList,
8498                                      IsImplicit);
8499       IsFirstComponentList = false;
8500     }
8501   }
8502 
8503   /// Generate the base pointers, section pointers, sizes and map types
8504   /// associated with the declare target link variables.
generateInfoForDeclareTargetLink(MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapValuesArrayTy & Sizes,MapFlagsArrayTy & Types) const8505   void generateInfoForDeclareTargetLink(MapBaseValuesArrayTy &BasePointers,
8506                                         MapValuesArrayTy &Pointers,
8507                                         MapValuesArrayTy &Sizes,
8508                                         MapFlagsArrayTy &Types) const {
8509     assert(CurDir.is<const OMPExecutableDirective *>() &&
8510            "Expect a executable directive");
8511     const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
8512     // Map other list items in the map clause which are not captured variables
8513     // but "declare target link" global variables.
8514     for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
8515       for (const auto L : C->component_lists()) {
8516         if (!L.first)
8517           continue;
8518         const auto *VD = dyn_cast<VarDecl>(L.first);
8519         if (!VD)
8520           continue;
8521         llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
8522             OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
8523         if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
8524             !Res || *Res != OMPDeclareTargetDeclAttr::MT_Link)
8525           continue;
8526         StructRangeInfoTy PartialStruct;
8527         generateInfoForComponentList(
8528             C->getMapType(), C->getMapTypeModifiers(), L.second, BasePointers,
8529             Pointers, Sizes, Types, PartialStruct,
8530             /*IsFirstComponentList=*/true, C->isImplicit());
8531         assert(!PartialStruct.Base.isValid() &&
8532                "No partial structs for declare target link expected.");
8533       }
8534     }
8535   }
8536 
8537   /// Generate the default map information for a given capture \a CI,
8538   /// record field declaration \a RI and captured value \a CV.
generateDefaultMapInfo(const CapturedStmt::Capture & CI,const FieldDecl & RI,llvm::Value * CV,MapBaseValuesArrayTy & CurBasePointers,MapValuesArrayTy & CurPointers,MapValuesArrayTy & CurSizes,MapFlagsArrayTy & CurMapTypes) const8539   void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
8540                               const FieldDecl &RI, llvm::Value *CV,
8541                               MapBaseValuesArrayTy &CurBasePointers,
8542                               MapValuesArrayTy &CurPointers,
8543                               MapValuesArrayTy &CurSizes,
8544                               MapFlagsArrayTy &CurMapTypes) const {
8545     bool IsImplicit = true;
8546     // Do the default mapping.
8547     if (CI.capturesThis()) {
8548       CurBasePointers.push_back(CV);
8549       CurPointers.push_back(CV);
8550       const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
8551       CurSizes.push_back(
8552           CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()),
8553                                     CGF.Int64Ty, /*isSigned=*/true));
8554       // Default map type.
8555       CurMapTypes.push_back(OMP_MAP_TO | OMP_MAP_FROM);
8556     } else if (CI.capturesVariableByCopy()) {
8557       CurBasePointers.push_back(CV);
8558       CurPointers.push_back(CV);
8559       if (!RI.getType()->isAnyPointerType()) {
8560         // We have to signal to the runtime captures passed by value that are
8561         // not pointers.
8562         CurMapTypes.push_back(OMP_MAP_LITERAL);
8563         CurSizes.push_back(CGF.Builder.CreateIntCast(
8564             CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true));
8565       } else {
8566         // Pointers are implicitly mapped with a zero size and no flags
8567         // (other than first map that is added for all implicit maps).
8568         CurMapTypes.push_back(OMP_MAP_NONE);
8569         CurSizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
8570       }
8571       const VarDecl *VD = CI.getCapturedVar();
8572       auto I = FirstPrivateDecls.find(VD);
8573       if (I != FirstPrivateDecls.end())
8574         IsImplicit = I->getSecond();
8575     } else {
8576       assert(CI.capturesVariable() && "Expected captured reference.");
8577       const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr());
8578       QualType ElementType = PtrTy->getPointeeType();
8579       CurSizes.push_back(CGF.Builder.CreateIntCast(
8580           CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true));
8581       // The default map type for a scalar/complex type is 'to' because by
8582       // default the value doesn't have to be retrieved. For an aggregate
8583       // type, the default is 'tofrom'.
8584       CurMapTypes.push_back(getMapModifiersForPrivateClauses(CI));
8585       const VarDecl *VD = CI.getCapturedVar();
8586       auto I = FirstPrivateDecls.find(VD);
8587       if (I != FirstPrivateDecls.end() &&
8588           VD->getType().isConstant(CGF.getContext())) {
8589         llvm::Constant *Addr =
8590             CGF.CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(CGF, VD);
8591         // Copy the value of the original variable to the new global copy.
8592         CGF.Builder.CreateMemCpy(
8593             CGF.MakeNaturalAlignAddrLValue(Addr, ElementType).getAddress(CGF),
8594             Address(CV, CGF.getContext().getTypeAlignInChars(ElementType)),
8595             CurSizes.back(), /*IsVolatile=*/false);
8596         // Use new global variable as the base pointers.
8597         CurBasePointers.push_back(Addr);
8598         CurPointers.push_back(Addr);
8599       } else {
8600         CurBasePointers.push_back(CV);
8601         if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) {
8602           Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue(
8603               CV, ElementType, CGF.getContext().getDeclAlign(VD),
8604               AlignmentSource::Decl));
8605           CurPointers.push_back(PtrAddr.getPointer());
8606         } else {
8607           CurPointers.push_back(CV);
8608         }
8609       }
8610       if (I != FirstPrivateDecls.end())
8611         IsImplicit = I->getSecond();
8612     }
8613     // Every default map produces a single argument which is a target parameter.
8614     CurMapTypes.back() |= OMP_MAP_TARGET_PARAM;
8615 
8616     // Add flag stating this is an implicit map.
8617     if (IsImplicit)
8618       CurMapTypes.back() |= OMP_MAP_IMPLICIT;
8619   }
8620 };
8621 } // anonymous namespace
8622 
8623 /// Emit the arrays used to pass the captures and map information to the
8624 /// offloading runtime library. If there is no map or capture information,
8625 /// return nullptr by reference.
8626 static void
emitOffloadingArrays(CodeGenFunction & CGF,MappableExprsHandler::MapBaseValuesArrayTy & BasePointers,MappableExprsHandler::MapValuesArrayTy & Pointers,MappableExprsHandler::MapValuesArrayTy & Sizes,MappableExprsHandler::MapFlagsArrayTy & MapTypes,CGOpenMPRuntime::TargetDataInfo & Info)8627 emitOffloadingArrays(CodeGenFunction &CGF,
8628                      MappableExprsHandler::MapBaseValuesArrayTy &BasePointers,
8629                      MappableExprsHandler::MapValuesArrayTy &Pointers,
8630                      MappableExprsHandler::MapValuesArrayTy &Sizes,
8631                      MappableExprsHandler::MapFlagsArrayTy &MapTypes,
8632                      CGOpenMPRuntime::TargetDataInfo &Info) {
8633   CodeGenModule &CGM = CGF.CGM;
8634   ASTContext &Ctx = CGF.getContext();
8635 
8636   // Reset the array information.
8637   Info.clearArrayInfo();
8638   Info.NumberOfPtrs = BasePointers.size();
8639 
8640   if (Info.NumberOfPtrs) {
8641     // Detect if we have any capture size requiring runtime evaluation of the
8642     // size so that a constant array could be eventually used.
8643     bool hasRuntimeEvaluationCaptureSize = false;
8644     for (llvm::Value *S : Sizes)
8645       if (!isa<llvm::Constant>(S)) {
8646         hasRuntimeEvaluationCaptureSize = true;
8647         break;
8648       }
8649 
8650     llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
8651     QualType PointerArrayType = Ctx.getConstantArrayType(
8652         Ctx.VoidPtrTy, PointerNumAP, nullptr, ArrayType::Normal,
8653         /*IndexTypeQuals=*/0);
8654 
8655     Info.BasePointersArray =
8656         CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
8657     Info.PointersArray =
8658         CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
8659 
8660     // If we don't have any VLA types or other types that require runtime
8661     // evaluation, we can use a constant array for the map sizes, otherwise we
8662     // need to fill up the arrays as we do for the pointers.
8663     QualType Int64Ty =
8664         Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
8665     if (hasRuntimeEvaluationCaptureSize) {
8666       QualType SizeArrayType = Ctx.getConstantArrayType(
8667           Int64Ty, PointerNumAP, nullptr, ArrayType::Normal,
8668           /*IndexTypeQuals=*/0);
8669       Info.SizesArray =
8670           CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
8671     } else {
8672       // We expect all the sizes to be constant, so we collect them to create
8673       // a constant array.
8674       SmallVector<llvm::Constant *, 16> ConstSizes;
8675       for (llvm::Value *S : Sizes)
8676         ConstSizes.push_back(cast<llvm::Constant>(S));
8677 
8678       auto *SizesArrayInit = llvm::ConstantArray::get(
8679           llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes);
8680       std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"});
8681       auto *SizesArrayGbl = new llvm::GlobalVariable(
8682           CGM.getModule(), SizesArrayInit->getType(),
8683           /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
8684           SizesArrayInit, Name);
8685       SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
8686       Info.SizesArray = SizesArrayGbl;
8687     }
8688 
8689     // The map types are always constant so we don't need to generate code to
8690     // fill arrays. Instead, we create an array constant.
8691     SmallVector<uint64_t, 4> Mapping(MapTypes.size(), 0);
8692     llvm::copy(MapTypes, Mapping.begin());
8693     llvm::Constant *MapTypesArrayInit =
8694         llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping);
8695     std::string MaptypesName =
8696         CGM.getOpenMPRuntime().getName({"offload_maptypes"});
8697     auto *MapTypesArrayGbl = new llvm::GlobalVariable(
8698         CGM.getModule(), MapTypesArrayInit->getType(),
8699         /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
8700         MapTypesArrayInit, MaptypesName);
8701     MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
8702     Info.MapTypesArray = MapTypesArrayGbl;
8703 
8704     for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
8705       llvm::Value *BPVal = *BasePointers[I];
8706       llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
8707           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8708           Info.BasePointersArray, 0, I);
8709       BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
8710           BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0));
8711       Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
8712       CGF.Builder.CreateStore(BPVal, BPAddr);
8713 
8714       if (Info.requiresDevicePointerInfo())
8715         if (const ValueDecl *DevVD = BasePointers[I].getDevicePtrDecl())
8716           Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr);
8717 
8718       llvm::Value *PVal = Pointers[I];
8719       llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
8720           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8721           Info.PointersArray, 0, I);
8722       P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
8723           P, PVal->getType()->getPointerTo(/*AddrSpace=*/0));
8724       Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
8725       CGF.Builder.CreateStore(PVal, PAddr);
8726 
8727       if (hasRuntimeEvaluationCaptureSize) {
8728         llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
8729             llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
8730             Info.SizesArray,
8731             /*Idx0=*/0,
8732             /*Idx1=*/I);
8733         Address SAddr(S, Ctx.getTypeAlignInChars(Int64Ty));
8734         CGF.Builder.CreateStore(
8735             CGF.Builder.CreateIntCast(Sizes[I], CGM.Int64Ty, /*isSigned=*/true),
8736             SAddr);
8737       }
8738     }
8739   }
8740 }
8741 
8742 /// Emit the arguments to be passed to the runtime library based on the
8743 /// arrays of pointers, sizes and map types.
emitOffloadingArraysArgument(CodeGenFunction & CGF,llvm::Value * & BasePointersArrayArg,llvm::Value * & PointersArrayArg,llvm::Value * & SizesArrayArg,llvm::Value * & MapTypesArrayArg,CGOpenMPRuntime::TargetDataInfo & Info)8744 static void emitOffloadingArraysArgument(
8745     CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
8746     llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
8747     llvm::Value *&MapTypesArrayArg, CGOpenMPRuntime::TargetDataInfo &Info) {
8748   CodeGenModule &CGM = CGF.CGM;
8749   if (Info.NumberOfPtrs) {
8750     BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8751         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8752         Info.BasePointersArray,
8753         /*Idx0=*/0, /*Idx1=*/0);
8754     PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8755         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
8756         Info.PointersArray,
8757         /*Idx0=*/0,
8758         /*Idx1=*/0);
8759     SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8760         llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray,
8761         /*Idx0=*/0, /*Idx1=*/0);
8762     MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
8763         llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
8764         Info.MapTypesArray,
8765         /*Idx0=*/0,
8766         /*Idx1=*/0);
8767   } else {
8768     BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
8769     PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
8770     SizesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
8771     MapTypesArrayArg =
8772         llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
8773   }
8774 }
8775 
8776 /// Check for inner distribute directive.
8777 static const OMPExecutableDirective *
getNestedDistributeDirective(ASTContext & Ctx,const OMPExecutableDirective & D)8778 getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) {
8779   const auto *CS = D.getInnermostCapturedStmt();
8780   const auto *Body =
8781       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
8782   const Stmt *ChildStmt =
8783       CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
8784 
8785   if (const auto *NestedDir =
8786           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
8787     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
8788     switch (D.getDirectiveKind()) {
8789     case OMPD_target:
8790       if (isOpenMPDistributeDirective(DKind))
8791         return NestedDir;
8792       if (DKind == OMPD_teams) {
8793         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
8794             /*IgnoreCaptured=*/true);
8795         if (!Body)
8796           return nullptr;
8797         ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
8798         if (const auto *NND =
8799                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
8800           DKind = NND->getDirectiveKind();
8801           if (isOpenMPDistributeDirective(DKind))
8802             return NND;
8803         }
8804       }
8805       return nullptr;
8806     case OMPD_target_teams:
8807       if (isOpenMPDistributeDirective(DKind))
8808         return NestedDir;
8809       return nullptr;
8810     case OMPD_target_parallel:
8811     case OMPD_target_simd:
8812     case OMPD_target_parallel_for:
8813     case OMPD_target_parallel_for_simd:
8814       return nullptr;
8815     case OMPD_target_teams_distribute:
8816     case OMPD_target_teams_distribute_simd:
8817     case OMPD_target_teams_distribute_parallel_for:
8818     case OMPD_target_teams_distribute_parallel_for_simd:
8819     case OMPD_parallel:
8820     case OMPD_for:
8821     case OMPD_parallel_for:
8822     case OMPD_parallel_master:
8823     case OMPD_parallel_sections:
8824     case OMPD_for_simd:
8825     case OMPD_parallel_for_simd:
8826     case OMPD_cancel:
8827     case OMPD_cancellation_point:
8828     case OMPD_ordered:
8829     case OMPD_threadprivate:
8830     case OMPD_allocate:
8831     case OMPD_task:
8832     case OMPD_simd:
8833     case OMPD_sections:
8834     case OMPD_section:
8835     case OMPD_single:
8836     case OMPD_master:
8837     case OMPD_critical:
8838     case OMPD_taskyield:
8839     case OMPD_barrier:
8840     case OMPD_taskwait:
8841     case OMPD_taskgroup:
8842     case OMPD_atomic:
8843     case OMPD_flush:
8844     case OMPD_depobj:
8845     case OMPD_scan:
8846     case OMPD_teams:
8847     case OMPD_target_data:
8848     case OMPD_target_exit_data:
8849     case OMPD_target_enter_data:
8850     case OMPD_distribute:
8851     case OMPD_distribute_simd:
8852     case OMPD_distribute_parallel_for:
8853     case OMPD_distribute_parallel_for_simd:
8854     case OMPD_teams_distribute:
8855     case OMPD_teams_distribute_simd:
8856     case OMPD_teams_distribute_parallel_for:
8857     case OMPD_teams_distribute_parallel_for_simd:
8858     case OMPD_target_update:
8859     case OMPD_declare_simd:
8860     case OMPD_declare_variant:
8861     case OMPD_begin_declare_variant:
8862     case OMPD_end_declare_variant:
8863     case OMPD_declare_target:
8864     case OMPD_end_declare_target:
8865     case OMPD_declare_reduction:
8866     case OMPD_declare_mapper:
8867     case OMPD_taskloop:
8868     case OMPD_taskloop_simd:
8869     case OMPD_master_taskloop:
8870     case OMPD_master_taskloop_simd:
8871     case OMPD_parallel_master_taskloop:
8872     case OMPD_parallel_master_taskloop_simd:
8873     case OMPD_requires:
8874     case OMPD_unknown:
8875     default:
8876       llvm_unreachable("Unexpected directive.");
8877     }
8878   }
8879 
8880   return nullptr;
8881 }
8882 
8883 /// Emit the user-defined mapper function. The code generation follows the
8884 /// pattern in the example below.
8885 /// \code
8886 /// void .omp_mapper.<type_name>.<mapper_id>.(void *rt_mapper_handle,
8887 ///                                           void *base, void *begin,
8888 ///                                           int64_t size, int64_t type) {
8889 ///   // Allocate space for an array section first.
8890 ///   if (size > 1 && !maptype.IsDelete)
8891 ///     __tgt_push_mapper_component(rt_mapper_handle, base, begin,
8892 ///                                 size*sizeof(Ty), clearToFrom(type));
8893 ///   // Map members.
8894 ///   for (unsigned i = 0; i < size; i++) {
8895 ///     // For each component specified by this mapper:
8896 ///     for (auto c : all_components) {
8897 ///       if (c.hasMapper())
8898 ///         (*c.Mapper())(rt_mapper_handle, c.arg_base, c.arg_begin, c.arg_size,
8899 ///                       c.arg_type);
8900 ///       else
8901 ///         __tgt_push_mapper_component(rt_mapper_handle, c.arg_base,
8902 ///                                     c.arg_begin, c.arg_size, c.arg_type);
8903 ///     }
8904 ///   }
8905 ///   // Delete the array section.
8906 ///   if (size > 1 && maptype.IsDelete)
8907 ///     __tgt_push_mapper_component(rt_mapper_handle, base, begin,
8908 ///                                 size*sizeof(Ty), clearToFrom(type));
8909 /// }
8910 /// \endcode
emitUserDefinedMapper(const OMPDeclareMapperDecl * D,CodeGenFunction * CGF)8911 void CGOpenMPRuntime::emitUserDefinedMapper(const OMPDeclareMapperDecl *D,
8912                                             CodeGenFunction *CGF) {
8913   if (UDMMap.count(D) > 0)
8914     return;
8915   ASTContext &C = CGM.getContext();
8916   QualType Ty = D->getType();
8917   QualType PtrTy = C.getPointerType(Ty).withRestrict();
8918   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
8919   auto *MapperVarDecl =
8920       cast<VarDecl>(cast<DeclRefExpr>(D->getMapperVarRef())->getDecl());
8921   SourceLocation Loc = D->getLocation();
8922   CharUnits ElementSize = C.getTypeSizeInChars(Ty);
8923 
8924   // Prepare mapper function arguments and attributes.
8925   ImplicitParamDecl HandleArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
8926                               C.VoidPtrTy, ImplicitParamDecl::Other);
8927   ImplicitParamDecl BaseArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
8928                             ImplicitParamDecl::Other);
8929   ImplicitParamDecl BeginArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
8930                              C.VoidPtrTy, ImplicitParamDecl::Other);
8931   ImplicitParamDecl SizeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
8932                             ImplicitParamDecl::Other);
8933   ImplicitParamDecl TypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
8934                             ImplicitParamDecl::Other);
8935   FunctionArgList Args;
8936   Args.push_back(&HandleArg);
8937   Args.push_back(&BaseArg);
8938   Args.push_back(&BeginArg);
8939   Args.push_back(&SizeArg);
8940   Args.push_back(&TypeArg);
8941   const CGFunctionInfo &FnInfo =
8942       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
8943   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
8944   SmallString<64> TyStr;
8945   llvm::raw_svector_ostream Out(TyStr);
8946   CGM.getCXXABI().getMangleContext().mangleTypeName(Ty, Out);
8947   std::string Name = getName({"omp_mapper", TyStr, D->getName()});
8948   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
8949                                     Name, &CGM.getModule());
8950   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
8951   Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
8952   // Start the mapper function code generation.
8953   CodeGenFunction MapperCGF(CGM);
8954   MapperCGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
8955   // Compute the starting and end addreses of array elements.
8956   llvm::Value *Size = MapperCGF.EmitLoadOfScalar(
8957       MapperCGF.GetAddrOfLocalVar(&SizeArg), /*Volatile=*/false,
8958       C.getPointerType(Int64Ty), Loc);
8959   llvm::Value *PtrBegin = MapperCGF.Builder.CreateBitCast(
8960       MapperCGF.GetAddrOfLocalVar(&BeginArg).getPointer(),
8961       CGM.getTypes().ConvertTypeForMem(C.getPointerType(PtrTy)));
8962   llvm::Value *PtrEnd = MapperCGF.Builder.CreateGEP(PtrBegin, Size);
8963   llvm::Value *MapType = MapperCGF.EmitLoadOfScalar(
8964       MapperCGF.GetAddrOfLocalVar(&TypeArg), /*Volatile=*/false,
8965       C.getPointerType(Int64Ty), Loc);
8966   // Prepare common arguments for array initiation and deletion.
8967   llvm::Value *Handle = MapperCGF.EmitLoadOfScalar(
8968       MapperCGF.GetAddrOfLocalVar(&HandleArg),
8969       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
8970   llvm::Value *BaseIn = MapperCGF.EmitLoadOfScalar(
8971       MapperCGF.GetAddrOfLocalVar(&BaseArg),
8972       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
8973   llvm::Value *BeginIn = MapperCGF.EmitLoadOfScalar(
8974       MapperCGF.GetAddrOfLocalVar(&BeginArg),
8975       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
8976 
8977   // Emit array initiation if this is an array section and \p MapType indicates
8978   // that memory allocation is required.
8979   llvm::BasicBlock *HeadBB = MapperCGF.createBasicBlock("omp.arraymap.head");
8980   emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
8981                              ElementSize, HeadBB, /*IsInit=*/true);
8982 
8983   // Emit a for loop to iterate through SizeArg of elements and map all of them.
8984 
8985   // Emit the loop header block.
8986   MapperCGF.EmitBlock(HeadBB);
8987   llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock("omp.arraymap.body");
8988   llvm::BasicBlock *DoneBB = MapperCGF.createBasicBlock("omp.done");
8989   // Evaluate whether the initial condition is satisfied.
8990   llvm::Value *IsEmpty =
8991       MapperCGF.Builder.CreateICmpEQ(PtrBegin, PtrEnd, "omp.arraymap.isempty");
8992   MapperCGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
8993   llvm::BasicBlock *EntryBB = MapperCGF.Builder.GetInsertBlock();
8994 
8995   // Emit the loop body block.
8996   MapperCGF.EmitBlock(BodyBB);
8997   llvm::PHINode *PtrPHI = MapperCGF.Builder.CreatePHI(
8998       PtrBegin->getType(), 2, "omp.arraymap.ptrcurrent");
8999   PtrPHI->addIncoming(PtrBegin, EntryBB);
9000   Address PtrCurrent =
9001       Address(PtrPHI, MapperCGF.GetAddrOfLocalVar(&BeginArg)
9002                           .getAlignment()
9003                           .alignmentOfArrayElement(ElementSize));
9004   // Privatize the declared variable of mapper to be the current array element.
9005   CodeGenFunction::OMPPrivateScope Scope(MapperCGF);
9006   Scope.addPrivate(MapperVarDecl, [&MapperCGF, PtrCurrent, PtrTy]() {
9007     return MapperCGF
9008         .EmitLoadOfPointerLValue(PtrCurrent, PtrTy->castAs<PointerType>())
9009         .getAddress(MapperCGF);
9010   });
9011   (void)Scope.Privatize();
9012 
9013   // Get map clause information. Fill up the arrays with all mapped variables.
9014   MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
9015   MappableExprsHandler::MapValuesArrayTy Pointers;
9016   MappableExprsHandler::MapValuesArrayTy Sizes;
9017   MappableExprsHandler::MapFlagsArrayTy MapTypes;
9018   MappableExprsHandler MEHandler(*D, MapperCGF);
9019   MEHandler.generateAllInfoForMapper(BasePointers, Pointers, Sizes, MapTypes);
9020 
9021   // Call the runtime API __tgt_mapper_num_components to get the number of
9022   // pre-existing components.
9023   llvm::Value *OffloadingArgs[] = {Handle};
9024   llvm::Value *PreviousSize = MapperCGF.EmitRuntimeCall(
9025       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
9026                                             OMPRTL___tgt_mapper_num_components),
9027       OffloadingArgs);
9028   llvm::Value *ShiftedPreviousSize = MapperCGF.Builder.CreateShl(
9029       PreviousSize,
9030       MapperCGF.Builder.getInt64(MappableExprsHandler::getFlagMemberOffset()));
9031 
9032   // Fill up the runtime mapper handle for all components.
9033   for (unsigned I = 0; I < BasePointers.size(); ++I) {
9034     llvm::Value *CurBaseArg = MapperCGF.Builder.CreateBitCast(
9035         *BasePointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
9036     llvm::Value *CurBeginArg = MapperCGF.Builder.CreateBitCast(
9037         Pointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
9038     llvm::Value *CurSizeArg = Sizes[I];
9039 
9040     // Extract the MEMBER_OF field from the map type.
9041     llvm::BasicBlock *MemberBB = MapperCGF.createBasicBlock("omp.member");
9042     MapperCGF.EmitBlock(MemberBB);
9043     llvm::Value *OriMapType = MapperCGF.Builder.getInt64(MapTypes[I]);
9044     llvm::Value *Member = MapperCGF.Builder.CreateAnd(
9045         OriMapType,
9046         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_MEMBER_OF));
9047     llvm::BasicBlock *MemberCombineBB =
9048         MapperCGF.createBasicBlock("omp.member.combine");
9049     llvm::BasicBlock *TypeBB = MapperCGF.createBasicBlock("omp.type");
9050     llvm::Value *IsMember = MapperCGF.Builder.CreateIsNull(Member);
9051     MapperCGF.Builder.CreateCondBr(IsMember, TypeBB, MemberCombineBB);
9052     // Add the number of pre-existing components to the MEMBER_OF field if it
9053     // is valid.
9054     MapperCGF.EmitBlock(MemberCombineBB);
9055     llvm::Value *CombinedMember =
9056         MapperCGF.Builder.CreateNUWAdd(OriMapType, ShiftedPreviousSize);
9057     // Do nothing if it is not a member of previous components.
9058     MapperCGF.EmitBlock(TypeBB);
9059     llvm::PHINode *MemberMapType =
9060         MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.membermaptype");
9061     MemberMapType->addIncoming(OriMapType, MemberBB);
9062     MemberMapType->addIncoming(CombinedMember, MemberCombineBB);
9063 
9064     // Combine the map type inherited from user-defined mapper with that
9065     // specified in the program. According to the OMP_MAP_TO and OMP_MAP_FROM
9066     // bits of the \a MapType, which is the input argument of the mapper
9067     // function, the following code will set the OMP_MAP_TO and OMP_MAP_FROM
9068     // bits of MemberMapType.
9069     // [OpenMP 5.0], 1.2.6. map-type decay.
9070     //        | alloc |  to   | from  | tofrom | release | delete
9071     // ----------------------------------------------------------
9072     // alloc  | alloc | alloc | alloc | alloc  | release | delete
9073     // to     | alloc |  to   | alloc |   to   | release | delete
9074     // from   | alloc | alloc | from  |  from  | release | delete
9075     // tofrom | alloc |  to   | from  | tofrom | release | delete
9076     llvm::Value *LeftToFrom = MapperCGF.Builder.CreateAnd(
9077         MapType,
9078         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO |
9079                                    MappableExprsHandler::OMP_MAP_FROM));
9080     llvm::BasicBlock *AllocBB = MapperCGF.createBasicBlock("omp.type.alloc");
9081     llvm::BasicBlock *AllocElseBB =
9082         MapperCGF.createBasicBlock("omp.type.alloc.else");
9083     llvm::BasicBlock *ToBB = MapperCGF.createBasicBlock("omp.type.to");
9084     llvm::BasicBlock *ToElseBB = MapperCGF.createBasicBlock("omp.type.to.else");
9085     llvm::BasicBlock *FromBB = MapperCGF.createBasicBlock("omp.type.from");
9086     llvm::BasicBlock *EndBB = MapperCGF.createBasicBlock("omp.type.end");
9087     llvm::Value *IsAlloc = MapperCGF.Builder.CreateIsNull(LeftToFrom);
9088     MapperCGF.Builder.CreateCondBr(IsAlloc, AllocBB, AllocElseBB);
9089     // In case of alloc, clear OMP_MAP_TO and OMP_MAP_FROM.
9090     MapperCGF.EmitBlock(AllocBB);
9091     llvm::Value *AllocMapType = MapperCGF.Builder.CreateAnd(
9092         MemberMapType,
9093         MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
9094                                      MappableExprsHandler::OMP_MAP_FROM)));
9095     MapperCGF.Builder.CreateBr(EndBB);
9096     MapperCGF.EmitBlock(AllocElseBB);
9097     llvm::Value *IsTo = MapperCGF.Builder.CreateICmpEQ(
9098         LeftToFrom,
9099         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO));
9100     MapperCGF.Builder.CreateCondBr(IsTo, ToBB, ToElseBB);
9101     // In case of to, clear OMP_MAP_FROM.
9102     MapperCGF.EmitBlock(ToBB);
9103     llvm::Value *ToMapType = MapperCGF.Builder.CreateAnd(
9104         MemberMapType,
9105         MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_FROM));
9106     MapperCGF.Builder.CreateBr(EndBB);
9107     MapperCGF.EmitBlock(ToElseBB);
9108     llvm::Value *IsFrom = MapperCGF.Builder.CreateICmpEQ(
9109         LeftToFrom,
9110         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_FROM));
9111     MapperCGF.Builder.CreateCondBr(IsFrom, FromBB, EndBB);
9112     // In case of from, clear OMP_MAP_TO.
9113     MapperCGF.EmitBlock(FromBB);
9114     llvm::Value *FromMapType = MapperCGF.Builder.CreateAnd(
9115         MemberMapType,
9116         MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_TO));
9117     // In case of tofrom, do nothing.
9118     MapperCGF.EmitBlock(EndBB);
9119     llvm::PHINode *CurMapType =
9120         MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.maptype");
9121     CurMapType->addIncoming(AllocMapType, AllocBB);
9122     CurMapType->addIncoming(ToMapType, ToBB);
9123     CurMapType->addIncoming(FromMapType, FromBB);
9124     CurMapType->addIncoming(MemberMapType, ToElseBB);
9125 
9126     // TODO: call the corresponding mapper function if a user-defined mapper is
9127     // associated with this map clause.
9128     // Call the runtime API __tgt_push_mapper_component to fill up the runtime
9129     // data structure.
9130     llvm::Value *OffloadingArgs[] = {Handle, CurBaseArg, CurBeginArg,
9131                                      CurSizeArg, CurMapType};
9132     MapperCGF.EmitRuntimeCall(
9133         OMPBuilder.getOrCreateRuntimeFunction(
9134             CGM.getModule(), OMPRTL___tgt_push_mapper_component),
9135         OffloadingArgs);
9136   }
9137 
9138   // Update the pointer to point to the next element that needs to be mapped,
9139   // and check whether we have mapped all elements.
9140   llvm::Value *PtrNext = MapperCGF.Builder.CreateConstGEP1_32(
9141       PtrPHI, /*Idx0=*/1, "omp.arraymap.next");
9142   PtrPHI->addIncoming(PtrNext, BodyBB);
9143   llvm::Value *IsDone =
9144       MapperCGF.Builder.CreateICmpEQ(PtrNext, PtrEnd, "omp.arraymap.isdone");
9145   llvm::BasicBlock *ExitBB = MapperCGF.createBasicBlock("omp.arraymap.exit");
9146   MapperCGF.Builder.CreateCondBr(IsDone, ExitBB, BodyBB);
9147 
9148   MapperCGF.EmitBlock(ExitBB);
9149   // Emit array deletion if this is an array section and \p MapType indicates
9150   // that deletion is required.
9151   emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
9152                              ElementSize, DoneBB, /*IsInit=*/false);
9153 
9154   // Emit the function exit block.
9155   MapperCGF.EmitBlock(DoneBB, /*IsFinished=*/true);
9156   MapperCGF.FinishFunction();
9157   UDMMap.try_emplace(D, Fn);
9158   if (CGF) {
9159     auto &Decls = FunctionUDMMap.FindAndConstruct(CGF->CurFn);
9160     Decls.second.push_back(D);
9161   }
9162 }
9163 
9164 /// Emit the array initialization or deletion portion for user-defined mapper
9165 /// code generation. First, it evaluates whether an array section is mapped and
9166 /// whether the \a MapType instructs to delete this section. If \a IsInit is
9167 /// true, and \a MapType indicates to not delete this array, array
9168 /// initialization code is generated. If \a IsInit is false, and \a MapType
9169 /// indicates to not this array, array deletion code is generated.
emitUDMapperArrayInitOrDel(CodeGenFunction & MapperCGF,llvm::Value * Handle,llvm::Value * Base,llvm::Value * Begin,llvm::Value * Size,llvm::Value * MapType,CharUnits ElementSize,llvm::BasicBlock * ExitBB,bool IsInit)9170 void CGOpenMPRuntime::emitUDMapperArrayInitOrDel(
9171     CodeGenFunction &MapperCGF, llvm::Value *Handle, llvm::Value *Base,
9172     llvm::Value *Begin, llvm::Value *Size, llvm::Value *MapType,
9173     CharUnits ElementSize, llvm::BasicBlock *ExitBB, bool IsInit) {
9174   StringRef Prefix = IsInit ? ".init" : ".del";
9175 
9176   // Evaluate if this is an array section.
9177   llvm::BasicBlock *IsDeleteBB =
9178       MapperCGF.createBasicBlock(getName({"omp.array", Prefix, ".evaldelete"}));
9179   llvm::BasicBlock *BodyBB =
9180       MapperCGF.createBasicBlock(getName({"omp.array", Prefix}));
9181   llvm::Value *IsArray = MapperCGF.Builder.CreateICmpSGE(
9182       Size, MapperCGF.Builder.getInt64(1), "omp.arrayinit.isarray");
9183   MapperCGF.Builder.CreateCondBr(IsArray, IsDeleteBB, ExitBB);
9184 
9185   // Evaluate if we are going to delete this section.
9186   MapperCGF.EmitBlock(IsDeleteBB);
9187   llvm::Value *DeleteBit = MapperCGF.Builder.CreateAnd(
9188       MapType,
9189       MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_DELETE));
9190   llvm::Value *DeleteCond;
9191   if (IsInit) {
9192     DeleteCond = MapperCGF.Builder.CreateIsNull(
9193         DeleteBit, getName({"omp.array", Prefix, ".delete"}));
9194   } else {
9195     DeleteCond = MapperCGF.Builder.CreateIsNotNull(
9196         DeleteBit, getName({"omp.array", Prefix, ".delete"}));
9197   }
9198   MapperCGF.Builder.CreateCondBr(DeleteCond, BodyBB, ExitBB);
9199 
9200   MapperCGF.EmitBlock(BodyBB);
9201   // Get the array size by multiplying element size and element number (i.e., \p
9202   // Size).
9203   llvm::Value *ArraySize = MapperCGF.Builder.CreateNUWMul(
9204       Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity()));
9205   // Remove OMP_MAP_TO and OMP_MAP_FROM from the map type, so that it achieves
9206   // memory allocation/deletion purpose only.
9207   llvm::Value *MapTypeArg = MapperCGF.Builder.CreateAnd(
9208       MapType,
9209       MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
9210                                    MappableExprsHandler::OMP_MAP_FROM)));
9211   // Call the runtime API __tgt_push_mapper_component to fill up the runtime
9212   // data structure.
9213   llvm::Value *OffloadingArgs[] = {Handle, Base, Begin, ArraySize, MapTypeArg};
9214   MapperCGF.EmitRuntimeCall(
9215       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
9216                                             OMPRTL___tgt_push_mapper_component),
9217       OffloadingArgs);
9218 }
9219 
emitTargetNumIterationsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Value * DeviceID,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)9220 void CGOpenMPRuntime::emitTargetNumIterationsCall(
9221     CodeGenFunction &CGF, const OMPExecutableDirective &D,
9222     llvm::Value *DeviceID,
9223     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
9224                                      const OMPLoopDirective &D)>
9225         SizeEmitter) {
9226   OpenMPDirectiveKind Kind = D.getDirectiveKind();
9227   const OMPExecutableDirective *TD = &D;
9228   // Get nested teams distribute kind directive, if any.
9229   if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind))
9230     TD = getNestedDistributeDirective(CGM.getContext(), D);
9231   if (!TD)
9232     return;
9233   const auto *LD = cast<OMPLoopDirective>(TD);
9234   auto &&CodeGen = [LD, DeviceID, SizeEmitter, this](CodeGenFunction &CGF,
9235                                                      PrePostActionTy &) {
9236     if (llvm::Value *NumIterations = SizeEmitter(CGF, *LD)) {
9237       llvm::Value *Args[] = {DeviceID, NumIterations};
9238       CGF.EmitRuntimeCall(
9239           OMPBuilder.getOrCreateRuntimeFunction(
9240               CGM.getModule(), OMPRTL___kmpc_push_target_tripcount),
9241           Args);
9242     }
9243   };
9244   emitInlinedDirective(CGF, OMPD_unknown, CodeGen);
9245 }
9246 
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,llvm::PointerIntPair<const Expr *,2,OpenMPDeviceClauseModifier> Device,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)9247 void CGOpenMPRuntime::emitTargetCall(
9248     CodeGenFunction &CGF, const OMPExecutableDirective &D,
9249     llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
9250     llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
9251     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
9252                                      const OMPLoopDirective &D)>
9253         SizeEmitter) {
9254   if (!CGF.HaveInsertPoint())
9255     return;
9256 
9257   assert(OutlinedFn && "Invalid outlined function!");
9258 
9259   const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>();
9260   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
9261   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
9262   auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF,
9263                                             PrePostActionTy &) {
9264     CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9265   };
9266   emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen);
9267 
9268   CodeGenFunction::OMPTargetDataInfo InputInfo;
9269   llvm::Value *MapTypesArray = nullptr;
9270   // Fill up the pointer arrays and transfer execution to the device.
9271   auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo,
9272                     &MapTypesArray, &CS, RequiresOuterTask, &CapturedVars,
9273                     SizeEmitter](CodeGenFunction &CGF, PrePostActionTy &) {
9274     if (Device.getInt() == OMPC_DEVICE_ancestor) {
9275       // Reverse offloading is not supported, so just execute on the host.
9276       if (RequiresOuterTask) {
9277         CapturedVars.clear();
9278         CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9279       }
9280       emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
9281       return;
9282     }
9283 
9284     // On top of the arrays that were filled up, the target offloading call
9285     // takes as arguments the device id as well as the host pointer. The host
9286     // pointer is used by the runtime library to identify the current target
9287     // region, so it only has to be unique and not necessarily point to
9288     // anything. It could be the pointer to the outlined function that
9289     // implements the target region, but we aren't using that so that the
9290     // compiler doesn't need to keep that, and could therefore inline the host
9291     // function if proven worthwhile during optimization.
9292 
9293     // From this point on, we need to have an ID of the target region defined.
9294     assert(OutlinedFnID && "Invalid outlined function ID!");
9295 
9296     // Emit device ID if any.
9297     llvm::Value *DeviceID;
9298     if (Device.getPointer()) {
9299       assert((Device.getInt() == OMPC_DEVICE_unknown ||
9300               Device.getInt() == OMPC_DEVICE_device_num) &&
9301              "Expected device_num modifier.");
9302       llvm::Value *DevVal = CGF.EmitScalarExpr(Device.getPointer());
9303       DeviceID =
9304           CGF.Builder.CreateIntCast(DevVal, CGF.Int64Ty, /*isSigned=*/true);
9305     } else {
9306       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
9307     }
9308 
9309     // Emit the number of elements in the offloading arrays.
9310     llvm::Value *PointerNum =
9311         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
9312 
9313     // Return value of the runtime offloading call.
9314     llvm::Value *Return;
9315 
9316     llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D);
9317     llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D);
9318 
9319     // Emit tripcount for the target loop-based directive.
9320     emitTargetNumIterationsCall(CGF, D, DeviceID, SizeEmitter);
9321 
9322     bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
9323     // The target region is an outlined function launched by the runtime
9324     // via calls __tgt_target() or __tgt_target_teams().
9325     //
9326     // __tgt_target() launches a target region with one team and one thread,
9327     // executing a serial region.  This master thread may in turn launch
9328     // more threads within its team upon encountering a parallel region,
9329     // however, no additional teams can be launched on the device.
9330     //
9331     // __tgt_target_teams() launches a target region with one or more teams,
9332     // each with one or more threads.  This call is required for target
9333     // constructs such as:
9334     //  'target teams'
9335     //  'target' / 'teams'
9336     //  'target teams distribute parallel for'
9337     //  'target parallel'
9338     // and so on.
9339     //
9340     // Note that on the host and CPU targets, the runtime implementation of
9341     // these calls simply call the outlined function without forking threads.
9342     // The outlined functions themselves have runtime calls to
9343     // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
9344     // the compiler in emitTeamsCall() and emitParallelCall().
9345     //
9346     // In contrast, on the NVPTX target, the implementation of
9347     // __tgt_target_teams() launches a GPU kernel with the requested number
9348     // of teams and threads so no additional calls to the runtime are required.
9349     if (NumTeams) {
9350       // If we have NumTeams defined this means that we have an enclosed teams
9351       // region. Therefore we also expect to have NumThreads defined. These two
9352       // values should be defined in the presence of a teams directive,
9353       // regardless of having any clauses associated. If the user is using teams
9354       // but no clauses, these two values will be the default that should be
9355       // passed to the runtime library - a 32-bit integer with the value zero.
9356       assert(NumThreads && "Thread limit expression should be available along "
9357                            "with number of teams.");
9358       llvm::Value *OffloadingArgs[] = {DeviceID,
9359                                        OutlinedFnID,
9360                                        PointerNum,
9361                                        InputInfo.BasePointersArray.getPointer(),
9362                                        InputInfo.PointersArray.getPointer(),
9363                                        InputInfo.SizesArray.getPointer(),
9364                                        MapTypesArray,
9365                                        NumTeams,
9366                                        NumThreads};
9367       Return = CGF.EmitRuntimeCall(
9368           OMPBuilder.getOrCreateRuntimeFunction(
9369               CGM.getModule(), HasNowait ? OMPRTL___tgt_target_teams_nowait
9370                                          : OMPRTL___tgt_target_teams),
9371           OffloadingArgs);
9372     } else {
9373       llvm::Value *OffloadingArgs[] = {DeviceID,
9374                                        OutlinedFnID,
9375                                        PointerNum,
9376                                        InputInfo.BasePointersArray.getPointer(),
9377                                        InputInfo.PointersArray.getPointer(),
9378                                        InputInfo.SizesArray.getPointer(),
9379                                        MapTypesArray};
9380       Return = CGF.EmitRuntimeCall(
9381           OMPBuilder.getOrCreateRuntimeFunction(
9382               CGM.getModule(),
9383               HasNowait ? OMPRTL___tgt_target_nowait : OMPRTL___tgt_target),
9384           OffloadingArgs);
9385     }
9386 
9387     // Check the error code and execute the host version if required.
9388     llvm::BasicBlock *OffloadFailedBlock =
9389         CGF.createBasicBlock("omp_offload.failed");
9390     llvm::BasicBlock *OffloadContBlock =
9391         CGF.createBasicBlock("omp_offload.cont");
9392     llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return);
9393     CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
9394 
9395     CGF.EmitBlock(OffloadFailedBlock);
9396     if (RequiresOuterTask) {
9397       CapturedVars.clear();
9398       CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9399     }
9400     emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
9401     CGF.EmitBranch(OffloadContBlock);
9402 
9403     CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
9404   };
9405 
9406   // Notify that the host version must be executed.
9407   auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars,
9408                     RequiresOuterTask](CodeGenFunction &CGF,
9409                                        PrePostActionTy &) {
9410     if (RequiresOuterTask) {
9411       CapturedVars.clear();
9412       CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9413     }
9414     emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
9415   };
9416 
9417   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
9418                           &CapturedVars, RequiresOuterTask,
9419                           &CS](CodeGenFunction &CGF, PrePostActionTy &) {
9420     // Fill up the arrays with all the captured variables.
9421     MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
9422     MappableExprsHandler::MapValuesArrayTy Pointers;
9423     MappableExprsHandler::MapValuesArrayTy Sizes;
9424     MappableExprsHandler::MapFlagsArrayTy MapTypes;
9425 
9426     // Get mappable expression information.
9427     MappableExprsHandler MEHandler(D, CGF);
9428     llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers;
9429 
9430     auto RI = CS.getCapturedRecordDecl()->field_begin();
9431     auto CV = CapturedVars.begin();
9432     for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
9433                                               CE = CS.capture_end();
9434          CI != CE; ++CI, ++RI, ++CV) {
9435       MappableExprsHandler::MapBaseValuesArrayTy CurBasePointers;
9436       MappableExprsHandler::MapValuesArrayTy CurPointers;
9437       MappableExprsHandler::MapValuesArrayTy CurSizes;
9438       MappableExprsHandler::MapFlagsArrayTy CurMapTypes;
9439       MappableExprsHandler::StructRangeInfoTy PartialStruct;
9440 
9441       // VLA sizes are passed to the outlined region by copy and do not have map
9442       // information associated.
9443       if (CI->capturesVariableArrayType()) {
9444         CurBasePointers.push_back(*CV);
9445         CurPointers.push_back(*CV);
9446         CurSizes.push_back(CGF.Builder.CreateIntCast(
9447             CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true));
9448         // Copy to the device as an argument. No need to retrieve it.
9449         CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_LITERAL |
9450                               MappableExprsHandler::OMP_MAP_TARGET_PARAM |
9451                               MappableExprsHandler::OMP_MAP_IMPLICIT);
9452       } else {
9453         // If we have any information in the map clause, we use it, otherwise we
9454         // just do a default mapping.
9455         MEHandler.generateInfoForCapture(CI, *CV, CurBasePointers, CurPointers,
9456                                          CurSizes, CurMapTypes, PartialStruct);
9457         if (CurBasePointers.empty())
9458           MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers,
9459                                            CurPointers, CurSizes, CurMapTypes);
9460         // Generate correct mapping for variables captured by reference in
9461         // lambdas.
9462         if (CI->capturesVariable())
9463           MEHandler.generateInfoForLambdaCaptures(
9464               CI->getCapturedVar(), *CV, CurBasePointers, CurPointers, CurSizes,
9465               CurMapTypes, LambdaPointers);
9466       }
9467       // We expect to have at least an element of information for this capture.
9468       assert(!CurBasePointers.empty() &&
9469              "Non-existing map pointer for capture!");
9470       assert(CurBasePointers.size() == CurPointers.size() &&
9471              CurBasePointers.size() == CurSizes.size() &&
9472              CurBasePointers.size() == CurMapTypes.size() &&
9473              "Inconsistent map information sizes!");
9474 
9475       // If there is an entry in PartialStruct it means we have a struct with
9476       // individual members mapped. Emit an extra combined entry.
9477       if (PartialStruct.Base.isValid())
9478         MEHandler.emitCombinedEntry(BasePointers, Pointers, Sizes, MapTypes,
9479                                     CurMapTypes, PartialStruct);
9480 
9481       // We need to append the results of this capture to what we already have.
9482       BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
9483       Pointers.append(CurPointers.begin(), CurPointers.end());
9484       Sizes.append(CurSizes.begin(), CurSizes.end());
9485       MapTypes.append(CurMapTypes.begin(), CurMapTypes.end());
9486     }
9487     // Adjust MEMBER_OF flags for the lambdas captures.
9488     MEHandler.adjustMemberOfForLambdaCaptures(LambdaPointers, BasePointers,
9489                                               Pointers, MapTypes);
9490     // Map other list items in the map clause which are not captured variables
9491     // but "declare target link" global variables.
9492     MEHandler.generateInfoForDeclareTargetLink(BasePointers, Pointers, Sizes,
9493                                                MapTypes);
9494 
9495     TargetDataInfo Info;
9496     // Fill up the arrays and create the arguments.
9497     emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
9498     emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
9499                                  Info.PointersArray, Info.SizesArray,
9500                                  Info.MapTypesArray, Info);
9501     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
9502     InputInfo.BasePointersArray =
9503         Address(Info.BasePointersArray, CGM.getPointerAlign());
9504     InputInfo.PointersArray =
9505         Address(Info.PointersArray, CGM.getPointerAlign());
9506     InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign());
9507     MapTypesArray = Info.MapTypesArray;
9508     if (RequiresOuterTask)
9509       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
9510     else
9511       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
9512   };
9513 
9514   auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask](
9515                              CodeGenFunction &CGF, PrePostActionTy &) {
9516     if (RequiresOuterTask) {
9517       CodeGenFunction::OMPTargetDataInfo InputInfo;
9518       CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo);
9519     } else {
9520       emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen);
9521     }
9522   };
9523 
9524   // If we have a target function ID it means that we need to support
9525   // offloading, otherwise, just execute on the host. We need to execute on host
9526   // regardless of the conditional in the if clause if, e.g., the user do not
9527   // specify target triples.
9528   if (OutlinedFnID) {
9529     if (IfCond) {
9530       emitIfClause(CGF, IfCond, TargetThenGen, TargetElseGen);
9531     } else {
9532       RegionCodeGenTy ThenRCG(TargetThenGen);
9533       ThenRCG(CGF);
9534     }
9535   } else {
9536     RegionCodeGenTy ElseRCG(TargetElseGen);
9537     ElseRCG(CGF);
9538   }
9539 }
9540 
scanForTargetRegionsFunctions(const Stmt * S,StringRef ParentName)9541 void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
9542                                                     StringRef ParentName) {
9543   if (!S)
9544     return;
9545 
9546   // Codegen OMP target directives that offload compute to the device.
9547   bool RequiresDeviceCodegen =
9548       isa<OMPExecutableDirective>(S) &&
9549       isOpenMPTargetExecutionDirective(
9550           cast<OMPExecutableDirective>(S)->getDirectiveKind());
9551 
9552   if (RequiresDeviceCodegen) {
9553     const auto &E = *cast<OMPExecutableDirective>(S);
9554     unsigned DeviceID;
9555     unsigned FileID;
9556     unsigned Line;
9557     getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID,
9558                              FileID, Line);
9559 
9560     // Is this a target region that should not be emitted as an entry point? If
9561     // so just signal we are done with this target region.
9562     if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
9563                                                             ParentName, Line))
9564       return;
9565 
9566     switch (E.getDirectiveKind()) {
9567     case OMPD_target:
9568       CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName,
9569                                                    cast<OMPTargetDirective>(E));
9570       break;
9571     case OMPD_target_parallel:
9572       CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
9573           CGM, ParentName, cast<OMPTargetParallelDirective>(E));
9574       break;
9575     case OMPD_target_teams:
9576       CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
9577           CGM, ParentName, cast<OMPTargetTeamsDirective>(E));
9578       break;
9579     case OMPD_target_teams_distribute:
9580       CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
9581           CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E));
9582       break;
9583     case OMPD_target_teams_distribute_simd:
9584       CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
9585           CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E));
9586       break;
9587     case OMPD_target_parallel_for:
9588       CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
9589           CGM, ParentName, cast<OMPTargetParallelForDirective>(E));
9590       break;
9591     case OMPD_target_parallel_for_simd:
9592       CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
9593           CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E));
9594       break;
9595     case OMPD_target_simd:
9596       CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
9597           CGM, ParentName, cast<OMPTargetSimdDirective>(E));
9598       break;
9599     case OMPD_target_teams_distribute_parallel_for:
9600       CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
9601           CGM, ParentName,
9602           cast<OMPTargetTeamsDistributeParallelForDirective>(E));
9603       break;
9604     case OMPD_target_teams_distribute_parallel_for_simd:
9605       CodeGenFunction::
9606           EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
9607               CGM, ParentName,
9608               cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E));
9609       break;
9610     case OMPD_parallel:
9611     case OMPD_for:
9612     case OMPD_parallel_for:
9613     case OMPD_parallel_master:
9614     case OMPD_parallel_sections:
9615     case OMPD_for_simd:
9616     case OMPD_parallel_for_simd:
9617     case OMPD_cancel:
9618     case OMPD_cancellation_point:
9619     case OMPD_ordered:
9620     case OMPD_threadprivate:
9621     case OMPD_allocate:
9622     case OMPD_task:
9623     case OMPD_simd:
9624     case OMPD_sections:
9625     case OMPD_section:
9626     case OMPD_single:
9627     case OMPD_master:
9628     case OMPD_critical:
9629     case OMPD_taskyield:
9630     case OMPD_barrier:
9631     case OMPD_taskwait:
9632     case OMPD_taskgroup:
9633     case OMPD_atomic:
9634     case OMPD_flush:
9635     case OMPD_depobj:
9636     case OMPD_scan:
9637     case OMPD_teams:
9638     case OMPD_target_data:
9639     case OMPD_target_exit_data:
9640     case OMPD_target_enter_data:
9641     case OMPD_distribute:
9642     case OMPD_distribute_simd:
9643     case OMPD_distribute_parallel_for:
9644     case OMPD_distribute_parallel_for_simd:
9645     case OMPD_teams_distribute:
9646     case OMPD_teams_distribute_simd:
9647     case OMPD_teams_distribute_parallel_for:
9648     case OMPD_teams_distribute_parallel_for_simd:
9649     case OMPD_target_update:
9650     case OMPD_declare_simd:
9651     case OMPD_declare_variant:
9652     case OMPD_begin_declare_variant:
9653     case OMPD_end_declare_variant:
9654     case OMPD_declare_target:
9655     case OMPD_end_declare_target:
9656     case OMPD_declare_reduction:
9657     case OMPD_declare_mapper:
9658     case OMPD_taskloop:
9659     case OMPD_taskloop_simd:
9660     case OMPD_master_taskloop:
9661     case OMPD_master_taskloop_simd:
9662     case OMPD_parallel_master_taskloop:
9663     case OMPD_parallel_master_taskloop_simd:
9664     case OMPD_requires:
9665     case OMPD_unknown:
9666     default:
9667       llvm_unreachable("Unknown target directive for OpenMP device codegen.");
9668     }
9669     return;
9670   }
9671 
9672   if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) {
9673     if (!E->hasAssociatedStmt() || !E->getAssociatedStmt())
9674       return;
9675 
9676     scanForTargetRegionsFunctions(
9677         E->getInnermostCapturedStmt()->getCapturedStmt(), ParentName);
9678     return;
9679   }
9680 
9681   // If this is a lambda function, look into its body.
9682   if (const auto *L = dyn_cast<LambdaExpr>(S))
9683     S = L->getBody();
9684 
9685   // Keep looking for target regions recursively.
9686   for (const Stmt *II : S->children())
9687     scanForTargetRegionsFunctions(II, ParentName);
9688 }
9689 
emitTargetFunctions(GlobalDecl GD)9690 bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
9691   // If emitting code for the host, we do not process FD here. Instead we do
9692   // the normal code generation.
9693   if (!CGM.getLangOpts().OpenMPIsDevice) {
9694     if (const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) {
9695       Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
9696           OMPDeclareTargetDeclAttr::getDeviceType(FD);
9697       // Do not emit device_type(nohost) functions for the host.
9698       if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
9699         return true;
9700     }
9701     return false;
9702   }
9703 
9704   const ValueDecl *VD = cast<ValueDecl>(GD.getDecl());
9705   // Try to detect target regions in the function.
9706   if (const auto *FD = dyn_cast<FunctionDecl>(VD)) {
9707     StringRef Name = CGM.getMangledName(GD);
9708     scanForTargetRegionsFunctions(FD->getBody(), Name);
9709     Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
9710         OMPDeclareTargetDeclAttr::getDeviceType(FD);
9711     // Do not emit device_type(nohost) functions for the host.
9712     if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_Host)
9713       return true;
9714   }
9715 
9716   // Do not to emit function if it is not marked as declare target.
9717   return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) &&
9718          AlreadyEmittedTargetDecls.count(VD) == 0;
9719 }
9720 
emitTargetGlobalVariable(GlobalDecl GD)9721 bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
9722   if (!CGM.getLangOpts().OpenMPIsDevice)
9723     return false;
9724 
9725   // Check if there are Ctors/Dtors in this declaration and look for target
9726   // regions in it. We use the complete variant to produce the kernel name
9727   // mangling.
9728   QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
9729   if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
9730     for (const CXXConstructorDecl *Ctor : RD->ctors()) {
9731       StringRef ParentName =
9732           CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
9733       scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
9734     }
9735     if (const CXXDestructorDecl *Dtor = RD->getDestructor()) {
9736       StringRef ParentName =
9737           CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
9738       scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
9739     }
9740   }
9741 
9742   // Do not to emit variable if it is not marked as declare target.
9743   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
9744       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
9745           cast<VarDecl>(GD.getDecl()));
9746   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
9747       (*Res == OMPDeclareTargetDeclAttr::MT_To &&
9748        HasRequiresUnifiedSharedMemory)) {
9749     DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl()));
9750     return true;
9751   }
9752   return false;
9753 }
9754 
9755 llvm::Constant *
registerTargetFirstprivateCopy(CodeGenFunction & CGF,const VarDecl * VD)9756 CGOpenMPRuntime::registerTargetFirstprivateCopy(CodeGenFunction &CGF,
9757                                                 const VarDecl *VD) {
9758   assert(VD->getType().isConstant(CGM.getContext()) &&
9759          "Expected constant variable.");
9760   StringRef VarName;
9761   llvm::Constant *Addr;
9762   llvm::GlobalValue::LinkageTypes Linkage;
9763   QualType Ty = VD->getType();
9764   SmallString<128> Buffer;
9765   {
9766     unsigned DeviceID;
9767     unsigned FileID;
9768     unsigned Line;
9769     getTargetEntryUniqueInfo(CGM.getContext(), VD->getLocation(), DeviceID,
9770                              FileID, Line);
9771     llvm::raw_svector_ostream OS(Buffer);
9772     OS << "__omp_offloading_firstprivate_" << llvm::format("_%x", DeviceID)
9773        << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
9774     VarName = OS.str();
9775   }
9776   Linkage = llvm::GlobalValue::InternalLinkage;
9777   Addr =
9778       getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(Ty), VarName,
9779                                   getDefaultFirstprivateAddressSpace());
9780   cast<llvm::GlobalValue>(Addr)->setLinkage(Linkage);
9781   CharUnits VarSize = CGM.getContext().getTypeSizeInChars(Ty);
9782   CGM.addCompilerUsedGlobal(cast<llvm::GlobalValue>(Addr));
9783   OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
9784       VarName, Addr, VarSize,
9785       OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo, Linkage);
9786   return Addr;
9787 }
9788 
registerTargetGlobalVariable(const VarDecl * VD,llvm::Constant * Addr)9789 void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD,
9790                                                    llvm::Constant *Addr) {
9791   if (CGM.getLangOpts().OMPTargetTriples.empty() &&
9792       !CGM.getLangOpts().OpenMPIsDevice)
9793     return;
9794   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
9795       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
9796   if (!Res) {
9797     if (CGM.getLangOpts().OpenMPIsDevice) {
9798       // Register non-target variables being emitted in device code (debug info
9799       // may cause this).
9800       StringRef VarName = CGM.getMangledName(VD);
9801       EmittedNonTargetVariables.try_emplace(VarName, Addr);
9802     }
9803     return;
9804   }
9805   // Register declare target variables.
9806   OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags;
9807   StringRef VarName;
9808   CharUnits VarSize;
9809   llvm::GlobalValue::LinkageTypes Linkage;
9810 
9811   if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
9812       !HasRequiresUnifiedSharedMemory) {
9813     Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
9814     VarName = CGM.getMangledName(VD);
9815     if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) {
9816       VarSize = CGM.getContext().getTypeSizeInChars(VD->getType());
9817       assert(!VarSize.isZero() && "Expected non-zero size of the variable");
9818     } else {
9819       VarSize = CharUnits::Zero();
9820     }
9821     Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false);
9822     // Temp solution to prevent optimizations of the internal variables.
9823     if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) {
9824       std::string RefName = getName({VarName, "ref"});
9825       if (!CGM.GetGlobalValue(RefName)) {
9826         llvm::Constant *AddrRef =
9827             getOrCreateInternalVariable(Addr->getType(), RefName);
9828         auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef);
9829         GVAddrRef->setConstant(/*Val=*/true);
9830         GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage);
9831         GVAddrRef->setInitializer(Addr);
9832         CGM.addCompilerUsedGlobal(GVAddrRef);
9833       }
9834     }
9835   } else {
9836     assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
9837             (*Res == OMPDeclareTargetDeclAttr::MT_To &&
9838              HasRequiresUnifiedSharedMemory)) &&
9839            "Declare target attribute must link or to with unified memory.");
9840     if (*Res == OMPDeclareTargetDeclAttr::MT_Link)
9841       Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink;
9842     else
9843       Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
9844 
9845     if (CGM.getLangOpts().OpenMPIsDevice) {
9846       VarName = Addr->getName();
9847       Addr = nullptr;
9848     } else {
9849       VarName = getAddrOfDeclareTargetVar(VD).getName();
9850       Addr = cast<llvm::Constant>(getAddrOfDeclareTargetVar(VD).getPointer());
9851     }
9852     VarSize = CGM.getPointerSize();
9853     Linkage = llvm::GlobalValue::WeakAnyLinkage;
9854   }
9855 
9856   OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
9857       VarName, Addr, VarSize, Flags, Linkage);
9858 }
9859 
emitTargetGlobal(GlobalDecl GD)9860 bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
9861   if (isa<FunctionDecl>(GD.getDecl()) ||
9862       isa<OMPDeclareReductionDecl>(GD.getDecl()))
9863     return emitTargetFunctions(GD);
9864 
9865   return emitTargetGlobalVariable(GD);
9866 }
9867 
emitDeferredTargetDecls() const9868 void CGOpenMPRuntime::emitDeferredTargetDecls() const {
9869   for (const VarDecl *VD : DeferredGlobalVariables) {
9870     llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
9871         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
9872     if (!Res)
9873       continue;
9874     if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
9875         !HasRequiresUnifiedSharedMemory) {
9876       CGM.EmitGlobal(VD);
9877     } else {
9878       assert((*Res == OMPDeclareTargetDeclAttr::MT_Link ||
9879               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
9880                HasRequiresUnifiedSharedMemory)) &&
9881              "Expected link clause or to clause with unified memory.");
9882       (void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
9883     }
9884   }
9885 }
9886 
adjustTargetSpecificDataForLambdas(CodeGenFunction & CGF,const OMPExecutableDirective & D) const9887 void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas(
9888     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
9889   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
9890          " Expected target-based directive.");
9891 }
9892 
processRequiresDirective(const OMPRequiresDecl * D)9893 void CGOpenMPRuntime::processRequiresDirective(const OMPRequiresDecl *D) {
9894   for (const OMPClause *Clause : D->clauselists()) {
9895     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
9896       HasRequiresUnifiedSharedMemory = true;
9897     } else if (const auto *AC =
9898                    dyn_cast<OMPAtomicDefaultMemOrderClause>(Clause)) {
9899       switch (AC->getAtomicDefaultMemOrderKind()) {
9900       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_acq_rel:
9901         RequiresAtomicOrdering = llvm::AtomicOrdering::AcquireRelease;
9902         break;
9903       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_seq_cst:
9904         RequiresAtomicOrdering = llvm::AtomicOrdering::SequentiallyConsistent;
9905         break;
9906       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_relaxed:
9907         RequiresAtomicOrdering = llvm::AtomicOrdering::Monotonic;
9908         break;
9909       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_unknown:
9910         break;
9911       }
9912     }
9913   }
9914 }
9915 
getDefaultMemoryOrdering() const9916 llvm::AtomicOrdering CGOpenMPRuntime::getDefaultMemoryOrdering() const {
9917   return RequiresAtomicOrdering;
9918 }
9919 
hasAllocateAttributeForGlobalVar(const VarDecl * VD,LangAS & AS)9920 bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
9921                                                        LangAS &AS) {
9922   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
9923     return false;
9924   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
9925   switch(A->getAllocatorType()) {
9926   case OMPAllocateDeclAttr::OMPNullMemAlloc:
9927   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
9928   // Not supported, fallback to the default mem space.
9929   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
9930   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
9931   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
9932   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
9933   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
9934   case OMPAllocateDeclAttr::OMPConstMemAlloc:
9935   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
9936     AS = LangAS::Default;
9937     return true;
9938   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
9939     llvm_unreachable("Expected predefined allocator for the variables with the "
9940                      "static storage.");
9941   }
9942   return false;
9943 }
9944 
hasRequiresUnifiedSharedMemory() const9945 bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const {
9946   return HasRequiresUnifiedSharedMemory;
9947 }
9948 
DisableAutoDeclareTargetRAII(CodeGenModule & CGM)9949 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII(
9950     CodeGenModule &CGM)
9951     : CGM(CGM) {
9952   if (CGM.getLangOpts().OpenMPIsDevice) {
9953     SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal;
9954     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false;
9955   }
9956 }
9957 
~DisableAutoDeclareTargetRAII()9958 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() {
9959   if (CGM.getLangOpts().OpenMPIsDevice)
9960     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal;
9961 }
9962 
markAsGlobalTarget(GlobalDecl GD)9963 bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) {
9964   if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal)
9965     return true;
9966 
9967   const auto *D = cast<FunctionDecl>(GD.getDecl());
9968   // Do not to emit function if it is marked as declare target as it was already
9969   // emitted.
9970   if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) {
9971     if (D->hasBody() && AlreadyEmittedTargetDecls.count(D) == 0) {
9972       if (auto *F = dyn_cast_or_null<llvm::Function>(
9973               CGM.GetGlobalValue(CGM.getMangledName(GD))))
9974         return !F->isDeclaration();
9975       return false;
9976     }
9977     return true;
9978   }
9979 
9980   return !AlreadyEmittedTargetDecls.insert(D).second;
9981 }
9982 
emitRequiresDirectiveRegFun()9983 llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() {
9984   // If we don't have entries or if we are emitting code for the device, we
9985   // don't need to do anything.
9986   if (CGM.getLangOpts().OMPTargetTriples.empty() ||
9987       CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice ||
9988       (OffloadEntriesInfoManager.empty() &&
9989        !HasEmittedDeclareTargetRegion &&
9990        !HasEmittedTargetRegion))
9991     return nullptr;
9992 
9993   // Create and register the function that handles the requires directives.
9994   ASTContext &C = CGM.getContext();
9995 
9996   llvm::Function *RequiresRegFn;
9997   {
9998     CodeGenFunction CGF(CGM);
9999     const auto &FI = CGM.getTypes().arrangeNullaryFunction();
10000     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
10001     std::string ReqName = getName({"omp_offloading", "requires_reg"});
10002     RequiresRegFn = CGM.CreateGlobalInitOrCleanUpFunction(FTy, ReqName, FI);
10003     CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {});
10004     OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE;
10005     // TODO: check for other requires clauses.
10006     // The requires directive takes effect only when a target region is
10007     // present in the compilation unit. Otherwise it is ignored and not
10008     // passed to the runtime. This avoids the runtime from throwing an error
10009     // for mismatching requires clauses across compilation units that don't
10010     // contain at least 1 target region.
10011     assert((HasEmittedTargetRegion ||
10012             HasEmittedDeclareTargetRegion ||
10013             !OffloadEntriesInfoManager.empty()) &&
10014            "Target or declare target region expected.");
10015     if (HasRequiresUnifiedSharedMemory)
10016       Flags = OMP_REQ_UNIFIED_SHARED_MEMORY;
10017     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
10018                             CGM.getModule(), OMPRTL___tgt_register_requires),
10019                         llvm::ConstantInt::get(CGM.Int64Ty, Flags));
10020     CGF.FinishFunction();
10021   }
10022   return RequiresRegFn;
10023 }
10024 
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)10025 void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
10026                                     const OMPExecutableDirective &D,
10027                                     SourceLocation Loc,
10028                                     llvm::Function *OutlinedFn,
10029                                     ArrayRef<llvm::Value *> CapturedVars) {
10030   if (!CGF.HaveInsertPoint())
10031     return;
10032 
10033   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
10034   CodeGenFunction::RunCleanupsScope Scope(CGF);
10035 
10036   // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
10037   llvm::Value *Args[] = {
10038       RTLoc,
10039       CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
10040       CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
10041   llvm::SmallVector<llvm::Value *, 16> RealArgs;
10042   RealArgs.append(std::begin(Args), std::end(Args));
10043   RealArgs.append(CapturedVars.begin(), CapturedVars.end());
10044 
10045   llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction(
10046       CGM.getModule(), OMPRTL___kmpc_fork_teams);
10047   CGF.EmitRuntimeCall(RTLFn, RealArgs);
10048 }
10049 
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)10050 void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
10051                                          const Expr *NumTeams,
10052                                          const Expr *ThreadLimit,
10053                                          SourceLocation Loc) {
10054   if (!CGF.HaveInsertPoint())
10055     return;
10056 
10057   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
10058 
10059   llvm::Value *NumTeamsVal =
10060       NumTeams
10061           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
10062                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
10063           : CGF.Builder.getInt32(0);
10064 
10065   llvm::Value *ThreadLimitVal =
10066       ThreadLimit
10067           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
10068                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
10069           : CGF.Builder.getInt32(0);
10070 
10071   // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
10072   llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
10073                                      ThreadLimitVal};
10074   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
10075                           CGM.getModule(), OMPRTL___kmpc_push_num_teams),
10076                       PushNumTeamsArgs);
10077 }
10078 
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,TargetDataInfo & Info)10079 void CGOpenMPRuntime::emitTargetDataCalls(
10080     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10081     const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
10082   if (!CGF.HaveInsertPoint())
10083     return;
10084 
10085   // Action used to replace the default codegen action and turn privatization
10086   // off.
10087   PrePostActionTy NoPrivAction;
10088 
10089   // Generate the code for the opening of the data environment. Capture all the
10090   // arguments of the runtime call by reference because they are used in the
10091   // closing of the region.
10092   auto &&BeginThenGen = [this, &D, Device, &Info,
10093                          &CodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
10094     // Fill up the arrays with all the mapped variables.
10095     MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
10096     MappableExprsHandler::MapValuesArrayTy Pointers;
10097     MappableExprsHandler::MapValuesArrayTy Sizes;
10098     MappableExprsHandler::MapFlagsArrayTy MapTypes;
10099 
10100     // Get map clause information.
10101     MappableExprsHandler MCHandler(D, CGF);
10102     MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
10103 
10104     // Fill up the arrays and create the arguments.
10105     emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
10106 
10107     llvm::Value *BasePointersArrayArg = nullptr;
10108     llvm::Value *PointersArrayArg = nullptr;
10109     llvm::Value *SizesArrayArg = nullptr;
10110     llvm::Value *MapTypesArrayArg = nullptr;
10111     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
10112                                  SizesArrayArg, MapTypesArrayArg, Info);
10113 
10114     // Emit device ID if any.
10115     llvm::Value *DeviceID = nullptr;
10116     if (Device) {
10117       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10118                                            CGF.Int64Ty, /*isSigned=*/true);
10119     } else {
10120       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10121     }
10122 
10123     // Emit the number of elements in the offloading arrays.
10124     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
10125 
10126     llvm::Value *OffloadingArgs[] = {
10127         DeviceID,         PointerNum,    BasePointersArrayArg,
10128         PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
10129     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
10130                             CGM.getModule(), OMPRTL___tgt_target_data_begin),
10131                         OffloadingArgs);
10132 
10133     // If device pointer privatization is required, emit the body of the region
10134     // here. It will have to be duplicated: with and without privatization.
10135     if (!Info.CaptureDeviceAddrMap.empty())
10136       CodeGen(CGF);
10137   };
10138 
10139   // Generate code for the closing of the data region.
10140   auto &&EndThenGen = [this, Device, &Info](CodeGenFunction &CGF,
10141                                             PrePostActionTy &) {
10142     assert(Info.isValid() && "Invalid data environment closing arguments.");
10143 
10144     llvm::Value *BasePointersArrayArg = nullptr;
10145     llvm::Value *PointersArrayArg = nullptr;
10146     llvm::Value *SizesArrayArg = nullptr;
10147     llvm::Value *MapTypesArrayArg = nullptr;
10148     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
10149                                  SizesArrayArg, MapTypesArrayArg, Info);
10150 
10151     // Emit device ID if any.
10152     llvm::Value *DeviceID = nullptr;
10153     if (Device) {
10154       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10155                                            CGF.Int64Ty, /*isSigned=*/true);
10156     } else {
10157       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10158     }
10159 
10160     // Emit the number of elements in the offloading arrays.
10161     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
10162 
10163     llvm::Value *OffloadingArgs[] = {
10164         DeviceID,         PointerNum,    BasePointersArrayArg,
10165         PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
10166     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
10167                             CGM.getModule(), OMPRTL___tgt_target_data_end),
10168                         OffloadingArgs);
10169   };
10170 
10171   // If we need device pointer privatization, we need to emit the body of the
10172   // region with no privatization in the 'else' branch of the conditional.
10173   // Otherwise, we don't have to do anything.
10174   auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
10175                                                          PrePostActionTy &) {
10176     if (!Info.CaptureDeviceAddrMap.empty()) {
10177       CodeGen.setAction(NoPrivAction);
10178       CodeGen(CGF);
10179     }
10180   };
10181 
10182   // We don't have to do anything to close the region if the if clause evaluates
10183   // to false.
10184   auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
10185 
10186   if (IfCond) {
10187     emitIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
10188   } else {
10189     RegionCodeGenTy RCG(BeginThenGen);
10190     RCG(CGF);
10191   }
10192 
10193   // If we don't require privatization of device pointers, we emit the body in
10194   // between the runtime calls. This avoids duplicating the body code.
10195   if (Info.CaptureDeviceAddrMap.empty()) {
10196     CodeGen.setAction(NoPrivAction);
10197     CodeGen(CGF);
10198   }
10199 
10200   if (IfCond) {
10201     emitIfClause(CGF, IfCond, EndThenGen, EndElseGen);
10202   } else {
10203     RegionCodeGenTy RCG(EndThenGen);
10204     RCG(CGF);
10205   }
10206 }
10207 
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)10208 void CGOpenMPRuntime::emitTargetDataStandAloneCall(
10209     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10210     const Expr *Device) {
10211   if (!CGF.HaveInsertPoint())
10212     return;
10213 
10214   assert((isa<OMPTargetEnterDataDirective>(D) ||
10215           isa<OMPTargetExitDataDirective>(D) ||
10216           isa<OMPTargetUpdateDirective>(D)) &&
10217          "Expecting either target enter, exit data, or update directives.");
10218 
10219   CodeGenFunction::OMPTargetDataInfo InputInfo;
10220   llvm::Value *MapTypesArray = nullptr;
10221   // Generate the code for the opening of the data environment.
10222   auto &&ThenGen = [this, &D, Device, &InputInfo,
10223                     &MapTypesArray](CodeGenFunction &CGF, PrePostActionTy &) {
10224     // Emit device ID if any.
10225     llvm::Value *DeviceID = nullptr;
10226     if (Device) {
10227       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10228                                            CGF.Int64Ty, /*isSigned=*/true);
10229     } else {
10230       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10231     }
10232 
10233     // Emit the number of elements in the offloading arrays.
10234     llvm::Constant *PointerNum =
10235         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
10236 
10237     llvm::Value *OffloadingArgs[] = {DeviceID,
10238                                      PointerNum,
10239                                      InputInfo.BasePointersArray.getPointer(),
10240                                      InputInfo.PointersArray.getPointer(),
10241                                      InputInfo.SizesArray.getPointer(),
10242                                      MapTypesArray};
10243 
10244     // Select the right runtime function call for each expected standalone
10245     // directive.
10246     const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
10247     RuntimeFunction RTLFn;
10248     switch (D.getDirectiveKind()) {
10249     case OMPD_target_enter_data:
10250       RTLFn = HasNowait ? OMPRTL___tgt_target_data_begin_nowait
10251                         : OMPRTL___tgt_target_data_begin;
10252       break;
10253     case OMPD_target_exit_data:
10254       RTLFn = HasNowait ? OMPRTL___tgt_target_data_end_nowait
10255                         : OMPRTL___tgt_target_data_end;
10256       break;
10257     case OMPD_target_update:
10258       RTLFn = HasNowait ? OMPRTL___tgt_target_data_update_nowait
10259                         : OMPRTL___tgt_target_data_update;
10260       break;
10261     case OMPD_parallel:
10262     case OMPD_for:
10263     case OMPD_parallel_for:
10264     case OMPD_parallel_master:
10265     case OMPD_parallel_sections:
10266     case OMPD_for_simd:
10267     case OMPD_parallel_for_simd:
10268     case OMPD_cancel:
10269     case OMPD_cancellation_point:
10270     case OMPD_ordered:
10271     case OMPD_threadprivate:
10272     case OMPD_allocate:
10273     case OMPD_task:
10274     case OMPD_simd:
10275     case OMPD_sections:
10276     case OMPD_section:
10277     case OMPD_single:
10278     case OMPD_master:
10279     case OMPD_critical:
10280     case OMPD_taskyield:
10281     case OMPD_barrier:
10282     case OMPD_taskwait:
10283     case OMPD_taskgroup:
10284     case OMPD_atomic:
10285     case OMPD_flush:
10286     case OMPD_depobj:
10287     case OMPD_scan:
10288     case OMPD_teams:
10289     case OMPD_target_data:
10290     case OMPD_distribute:
10291     case OMPD_distribute_simd:
10292     case OMPD_distribute_parallel_for:
10293     case OMPD_distribute_parallel_for_simd:
10294     case OMPD_teams_distribute:
10295     case OMPD_teams_distribute_simd:
10296     case OMPD_teams_distribute_parallel_for:
10297     case OMPD_teams_distribute_parallel_for_simd:
10298     case OMPD_declare_simd:
10299     case OMPD_declare_variant:
10300     case OMPD_begin_declare_variant:
10301     case OMPD_end_declare_variant:
10302     case OMPD_declare_target:
10303     case OMPD_end_declare_target:
10304     case OMPD_declare_reduction:
10305     case OMPD_declare_mapper:
10306     case OMPD_taskloop:
10307     case OMPD_taskloop_simd:
10308     case OMPD_master_taskloop:
10309     case OMPD_master_taskloop_simd:
10310     case OMPD_parallel_master_taskloop:
10311     case OMPD_parallel_master_taskloop_simd:
10312     case OMPD_target:
10313     case OMPD_target_simd:
10314     case OMPD_target_teams_distribute:
10315     case OMPD_target_teams_distribute_simd:
10316     case OMPD_target_teams_distribute_parallel_for:
10317     case OMPD_target_teams_distribute_parallel_for_simd:
10318     case OMPD_target_teams:
10319     case OMPD_target_parallel:
10320     case OMPD_target_parallel_for:
10321     case OMPD_target_parallel_for_simd:
10322     case OMPD_requires:
10323     case OMPD_unknown:
10324     default:
10325       llvm_unreachable("Unexpected standalone target data directive.");
10326       break;
10327     }
10328     CGF.EmitRuntimeCall(
10329         OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), RTLFn),
10330         OffloadingArgs);
10331   };
10332 
10333   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray](
10334                              CodeGenFunction &CGF, PrePostActionTy &) {
10335     // Fill up the arrays with all the mapped variables.
10336     MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
10337     MappableExprsHandler::MapValuesArrayTy Pointers;
10338     MappableExprsHandler::MapValuesArrayTy Sizes;
10339     MappableExprsHandler::MapFlagsArrayTy MapTypes;
10340 
10341     // Get map clause information.
10342     MappableExprsHandler MEHandler(D, CGF);
10343     MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
10344 
10345     TargetDataInfo Info;
10346     // Fill up the arrays and create the arguments.
10347     emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
10348     emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
10349                                  Info.PointersArray, Info.SizesArray,
10350                                  Info.MapTypesArray, Info);
10351     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
10352     InputInfo.BasePointersArray =
10353         Address(Info.BasePointersArray, CGM.getPointerAlign());
10354     InputInfo.PointersArray =
10355         Address(Info.PointersArray, CGM.getPointerAlign());
10356     InputInfo.SizesArray =
10357         Address(Info.SizesArray, CGM.getPointerAlign());
10358     MapTypesArray = Info.MapTypesArray;
10359     if (D.hasClausesOfKind<OMPDependClause>())
10360       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
10361     else
10362       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
10363   };
10364 
10365   if (IfCond) {
10366     emitIfClause(CGF, IfCond, TargetThenGen,
10367                  [](CodeGenFunction &CGF, PrePostActionTy &) {});
10368   } else {
10369     RegionCodeGenTy ThenRCG(TargetThenGen);
10370     ThenRCG(CGF);
10371   }
10372 }
10373 
10374 namespace {
10375   /// Kind of parameter in a function with 'declare simd' directive.
10376   enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
10377   /// Attribute set of the parameter.
10378   struct ParamAttrTy {
10379     ParamKindTy Kind = Vector;
10380     llvm::APSInt StrideOrArg;
10381     llvm::APSInt Alignment;
10382   };
10383 } // namespace
10384 
evaluateCDTSize(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)10385 static unsigned evaluateCDTSize(const FunctionDecl *FD,
10386                                 ArrayRef<ParamAttrTy> ParamAttrs) {
10387   // Every vector variant of a SIMD-enabled function has a vector length (VLEN).
10388   // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
10389   // of that clause. The VLEN value must be power of 2.
10390   // In other case the notion of the function`s "characteristic data type" (CDT)
10391   // is used to compute the vector length.
10392   // CDT is defined in the following order:
10393   //   a) For non-void function, the CDT is the return type.
10394   //   b) If the function has any non-uniform, non-linear parameters, then the
10395   //   CDT is the type of the first such parameter.
10396   //   c) If the CDT determined by a) or b) above is struct, union, or class
10397   //   type which is pass-by-value (except for the type that maps to the
10398   //   built-in complex data type), the characteristic data type is int.
10399   //   d) If none of the above three cases is applicable, the CDT is int.
10400   // The VLEN is then determined based on the CDT and the size of vector
10401   // register of that ISA for which current vector version is generated. The
10402   // VLEN is computed using the formula below:
10403   //   VLEN  = sizeof(vector_register) / sizeof(CDT),
10404   // where vector register size specified in section 3.2.1 Registers and the
10405   // Stack Frame of original AMD64 ABI document.
10406   QualType RetType = FD->getReturnType();
10407   if (RetType.isNull())
10408     return 0;
10409   ASTContext &C = FD->getASTContext();
10410   QualType CDT;
10411   if (!RetType.isNull() && !RetType->isVoidType()) {
10412     CDT = RetType;
10413   } else {
10414     unsigned Offset = 0;
10415     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
10416       if (ParamAttrs[Offset].Kind == Vector)
10417         CDT = C.getPointerType(C.getRecordType(MD->getParent()));
10418       ++Offset;
10419     }
10420     if (CDT.isNull()) {
10421       for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
10422         if (ParamAttrs[I + Offset].Kind == Vector) {
10423           CDT = FD->getParamDecl(I)->getType();
10424           break;
10425         }
10426       }
10427     }
10428   }
10429   if (CDT.isNull())
10430     CDT = C.IntTy;
10431   CDT = CDT->getCanonicalTypeUnqualified();
10432   if (CDT->isRecordType() || CDT->isUnionType())
10433     CDT = C.IntTy;
10434   return C.getTypeSize(CDT);
10435 }
10436 
10437 static void
emitX86DeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn,const llvm::APSInt & VLENVal,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State)10438 emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
10439                            const llvm::APSInt &VLENVal,
10440                            ArrayRef<ParamAttrTy> ParamAttrs,
10441                            OMPDeclareSimdDeclAttr::BranchStateTy State) {
10442   struct ISADataTy {
10443     char ISA;
10444     unsigned VecRegSize;
10445   };
10446   ISADataTy ISAData[] = {
10447       {
10448           'b', 128
10449       }, // SSE
10450       {
10451           'c', 256
10452       }, // AVX
10453       {
10454           'd', 256
10455       }, // AVX2
10456       {
10457           'e', 512
10458       }, // AVX512
10459   };
10460   llvm::SmallVector<char, 2> Masked;
10461   switch (State) {
10462   case OMPDeclareSimdDeclAttr::BS_Undefined:
10463     Masked.push_back('N');
10464     Masked.push_back('M');
10465     break;
10466   case OMPDeclareSimdDeclAttr::BS_Notinbranch:
10467     Masked.push_back('N');
10468     break;
10469   case OMPDeclareSimdDeclAttr::BS_Inbranch:
10470     Masked.push_back('M');
10471     break;
10472   }
10473   for (char Mask : Masked) {
10474     for (const ISADataTy &Data : ISAData) {
10475       SmallString<256> Buffer;
10476       llvm::raw_svector_ostream Out(Buffer);
10477       Out << "_ZGV" << Data.ISA << Mask;
10478       if (!VLENVal) {
10479         unsigned NumElts = evaluateCDTSize(FD, ParamAttrs);
10480         assert(NumElts && "Non-zero simdlen/cdtsize expected");
10481         Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts);
10482       } else {
10483         Out << VLENVal;
10484       }
10485       for (const ParamAttrTy &ParamAttr : ParamAttrs) {
10486         switch (ParamAttr.Kind){
10487         case LinearWithVarStride:
10488           Out << 's' << ParamAttr.StrideOrArg;
10489           break;
10490         case Linear:
10491           Out << 'l';
10492           if (ParamAttr.StrideOrArg != 1)
10493             Out << ParamAttr.StrideOrArg;
10494           break;
10495         case Uniform:
10496           Out << 'u';
10497           break;
10498         case Vector:
10499           Out << 'v';
10500           break;
10501         }
10502         if (!!ParamAttr.Alignment)
10503           Out << 'a' << ParamAttr.Alignment;
10504       }
10505       Out << '_' << Fn->getName();
10506       Fn->addFnAttr(Out.str());
10507     }
10508   }
10509 }
10510 
10511 // This are the Functions that are needed to mangle the name of the
10512 // vector functions generated by the compiler, according to the rules
10513 // defined in the "Vector Function ABI specifications for AArch64",
10514 // available at
10515 // https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
10516 
10517 /// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI.
10518 ///
10519 /// TODO: Need to implement the behavior for reference marked with a
10520 /// var or no linear modifiers (1.b in the section). For this, we
10521 /// need to extend ParamKindTy to support the linear modifiers.
getAArch64MTV(QualType QT,ParamKindTy Kind)10522 static bool getAArch64MTV(QualType QT, ParamKindTy Kind) {
10523   QT = QT.getCanonicalType();
10524 
10525   if (QT->isVoidType())
10526     return false;
10527 
10528   if (Kind == ParamKindTy::Uniform)
10529     return false;
10530 
10531   if (Kind == ParamKindTy::Linear)
10532     return false;
10533 
10534   // TODO: Handle linear references with modifiers
10535 
10536   if (Kind == ParamKindTy::LinearWithVarStride)
10537     return false;
10538 
10539   return true;
10540 }
10541 
10542 /// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI.
getAArch64PBV(QualType QT,ASTContext & C)10543 static bool getAArch64PBV(QualType QT, ASTContext &C) {
10544   QT = QT.getCanonicalType();
10545   unsigned Size = C.getTypeSize(QT);
10546 
10547   // Only scalars and complex within 16 bytes wide set PVB to true.
10548   if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128)
10549     return false;
10550 
10551   if (QT->isFloatingType())
10552     return true;
10553 
10554   if (QT->isIntegerType())
10555     return true;
10556 
10557   if (QT->isPointerType())
10558     return true;
10559 
10560   // TODO: Add support for complex types (section 3.1.2, item 2).
10561 
10562   return false;
10563 }
10564 
10565 /// Computes the lane size (LS) of a return type or of an input parameter,
10566 /// as defined by `LS(P)` in 3.2.1 of the AAVFABI.
10567 /// TODO: Add support for references, section 3.2.1, item 1.
getAArch64LS(QualType QT,ParamKindTy Kind,ASTContext & C)10568 static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) {
10569   if (!getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) {
10570     QualType PTy = QT.getCanonicalType()->getPointeeType();
10571     if (getAArch64PBV(PTy, C))
10572       return C.getTypeSize(PTy);
10573   }
10574   if (getAArch64PBV(QT, C))
10575     return C.getTypeSize(QT);
10576 
10577   return C.getTypeSize(C.getUIntPtrType());
10578 }
10579 
10580 // Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the
10581 // signature of the scalar function, as defined in 3.2.2 of the
10582 // AAVFABI.
10583 static std::tuple<unsigned, unsigned, bool>
getNDSWDS(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)10584 getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) {
10585   QualType RetType = FD->getReturnType().getCanonicalType();
10586 
10587   ASTContext &C = FD->getASTContext();
10588 
10589   bool OutputBecomesInput = false;
10590 
10591   llvm::SmallVector<unsigned, 8> Sizes;
10592   if (!RetType->isVoidType()) {
10593     Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C));
10594     if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {}))
10595       OutputBecomesInput = true;
10596   }
10597   for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
10598     QualType QT = FD->getParamDecl(I)->getType().getCanonicalType();
10599     Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C));
10600   }
10601 
10602   assert(!Sizes.empty() && "Unable to determine NDS and WDS.");
10603   // The LS of a function parameter / return value can only be a power
10604   // of 2, starting from 8 bits, up to 128.
10605   assert(std::all_of(Sizes.begin(), Sizes.end(),
10606                      [](unsigned Size) {
10607                        return Size == 8 || Size == 16 || Size == 32 ||
10608                               Size == 64 || Size == 128;
10609                      }) &&
10610          "Invalid size");
10611 
10612   return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)),
10613                          *std::max_element(std::begin(Sizes), std::end(Sizes)),
10614                          OutputBecomesInput);
10615 }
10616 
10617 /// Mangle the parameter part of the vector function name according to
10618 /// their OpenMP classification. The mangling function is defined in
10619 /// section 3.5 of the AAVFABI.
mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs)10620 static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) {
10621   SmallString<256> Buffer;
10622   llvm::raw_svector_ostream Out(Buffer);
10623   for (const auto &ParamAttr : ParamAttrs) {
10624     switch (ParamAttr.Kind) {
10625     case LinearWithVarStride:
10626       Out << "ls" << ParamAttr.StrideOrArg;
10627       break;
10628     case Linear:
10629       Out << 'l';
10630       // Don't print the step value if it is not present or if it is
10631       // equal to 1.
10632       if (ParamAttr.StrideOrArg != 1)
10633         Out << ParamAttr.StrideOrArg;
10634       break;
10635     case Uniform:
10636       Out << 'u';
10637       break;
10638     case Vector:
10639       Out << 'v';
10640       break;
10641     }
10642 
10643     if (!!ParamAttr.Alignment)
10644       Out << 'a' << ParamAttr.Alignment;
10645   }
10646 
10647   return std::string(Out.str());
10648 }
10649 
10650 // Function used to add the attribute. The parameter `VLEN` is
10651 // templated to allow the use of "x" when targeting scalable functions
10652 // for SVE.
10653 template <typename T>
addAArch64VectorName(T VLEN,StringRef LMask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)10654 static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix,
10655                                  char ISA, StringRef ParSeq,
10656                                  StringRef MangledName, bool OutputBecomesInput,
10657                                  llvm::Function *Fn) {
10658   SmallString<256> Buffer;
10659   llvm::raw_svector_ostream Out(Buffer);
10660   Out << Prefix << ISA << LMask << VLEN;
10661   if (OutputBecomesInput)
10662     Out << "v";
10663   Out << ParSeq << "_" << MangledName;
10664   Fn->addFnAttr(Out.str());
10665 }
10666 
10667 // Helper function to generate the Advanced SIMD names depending on
10668 // the value of the NDS when simdlen is not present.
addAArch64AdvSIMDNDSNames(unsigned NDS,StringRef Mask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)10669 static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask,
10670                                       StringRef Prefix, char ISA,
10671                                       StringRef ParSeq, StringRef MangledName,
10672                                       bool OutputBecomesInput,
10673                                       llvm::Function *Fn) {
10674   switch (NDS) {
10675   case 8:
10676     addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
10677                          OutputBecomesInput, Fn);
10678     addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName,
10679                          OutputBecomesInput, Fn);
10680     break;
10681   case 16:
10682     addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
10683                          OutputBecomesInput, Fn);
10684     addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
10685                          OutputBecomesInput, Fn);
10686     break;
10687   case 32:
10688     addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
10689                          OutputBecomesInput, Fn);
10690     addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
10691                          OutputBecomesInput, Fn);
10692     break;
10693   case 64:
10694   case 128:
10695     addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
10696                          OutputBecomesInput, Fn);
10697     break;
10698   default:
10699     llvm_unreachable("Scalar type is too wide.");
10700   }
10701 }
10702 
10703 /// Emit vector function attributes for AArch64, as defined in the AAVFABI.
emitAArch64DeclareSimdFunction(CodeGenModule & CGM,const FunctionDecl * FD,unsigned UserVLEN,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State,StringRef MangledName,char ISA,unsigned VecRegSize,llvm::Function * Fn,SourceLocation SLoc)10704 static void emitAArch64DeclareSimdFunction(
10705     CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN,
10706     ArrayRef<ParamAttrTy> ParamAttrs,
10707     OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName,
10708     char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) {
10709 
10710   // Get basic data for building the vector signature.
10711   const auto Data = getNDSWDS(FD, ParamAttrs);
10712   const unsigned NDS = std::get<0>(Data);
10713   const unsigned WDS = std::get<1>(Data);
10714   const bool OutputBecomesInput = std::get<2>(Data);
10715 
10716   // Check the values provided via `simdlen` by the user.
10717   // 1. A `simdlen(1)` doesn't produce vector signatures,
10718   if (UserVLEN == 1) {
10719     unsigned DiagID = CGM.getDiags().getCustomDiagID(
10720         DiagnosticsEngine::Warning,
10721         "The clause simdlen(1) has no effect when targeting aarch64.");
10722     CGM.getDiags().Report(SLoc, DiagID);
10723     return;
10724   }
10725 
10726   // 2. Section 3.3.1, item 1: user input must be a power of 2 for
10727   // Advanced SIMD output.
10728   if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) {
10729     unsigned DiagID = CGM.getDiags().getCustomDiagID(
10730         DiagnosticsEngine::Warning, "The value specified in simdlen must be a "
10731                                     "power of 2 when targeting Advanced SIMD.");
10732     CGM.getDiags().Report(SLoc, DiagID);
10733     return;
10734   }
10735 
10736   // 3. Section 3.4.1. SVE fixed lengh must obey the architectural
10737   // limits.
10738   if (ISA == 's' && UserVLEN != 0) {
10739     if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) {
10740       unsigned DiagID = CGM.getDiags().getCustomDiagID(
10741           DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit "
10742                                       "lanes in the architectural constraints "
10743                                       "for SVE (min is 128-bit, max is "
10744                                       "2048-bit, by steps of 128-bit)");
10745       CGM.getDiags().Report(SLoc, DiagID) << WDS;
10746       return;
10747     }
10748   }
10749 
10750   // Sort out parameter sequence.
10751   const std::string ParSeq = mangleVectorParameters(ParamAttrs);
10752   StringRef Prefix = "_ZGV";
10753   // Generate simdlen from user input (if any).
10754   if (UserVLEN) {
10755     if (ISA == 's') {
10756       // SVE generates only a masked function.
10757       addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
10758                            OutputBecomesInput, Fn);
10759     } else {
10760       assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
10761       // Advanced SIMD generates one or two functions, depending on
10762       // the `[not]inbranch` clause.
10763       switch (State) {
10764       case OMPDeclareSimdDeclAttr::BS_Undefined:
10765         addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
10766                              OutputBecomesInput, Fn);
10767         addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
10768                              OutputBecomesInput, Fn);
10769         break;
10770       case OMPDeclareSimdDeclAttr::BS_Notinbranch:
10771         addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
10772                              OutputBecomesInput, Fn);
10773         break;
10774       case OMPDeclareSimdDeclAttr::BS_Inbranch:
10775         addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
10776                              OutputBecomesInput, Fn);
10777         break;
10778       }
10779     }
10780   } else {
10781     // If no user simdlen is provided, follow the AAVFABI rules for
10782     // generating the vector length.
10783     if (ISA == 's') {
10784       // SVE, section 3.4.1, item 1.
10785       addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName,
10786                            OutputBecomesInput, Fn);
10787     } else {
10788       assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
10789       // Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or
10790       // two vector names depending on the use of the clause
10791       // `[not]inbranch`.
10792       switch (State) {
10793       case OMPDeclareSimdDeclAttr::BS_Undefined:
10794         addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
10795                                   OutputBecomesInput, Fn);
10796         addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
10797                                   OutputBecomesInput, Fn);
10798         break;
10799       case OMPDeclareSimdDeclAttr::BS_Notinbranch:
10800         addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
10801                                   OutputBecomesInput, Fn);
10802         break;
10803       case OMPDeclareSimdDeclAttr::BS_Inbranch:
10804         addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
10805                                   OutputBecomesInput, Fn);
10806         break;
10807       }
10808     }
10809   }
10810 }
10811 
emitDeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn)10812 void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
10813                                               llvm::Function *Fn) {
10814   ASTContext &C = CGM.getContext();
10815   FD = FD->getMostRecentDecl();
10816   // Map params to their positions in function decl.
10817   llvm::DenseMap<const Decl *, unsigned> ParamPositions;
10818   if (isa<CXXMethodDecl>(FD))
10819     ParamPositions.try_emplace(FD, 0);
10820   unsigned ParamPos = ParamPositions.size();
10821   for (const ParmVarDecl *P : FD->parameters()) {
10822     ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos);
10823     ++ParamPos;
10824   }
10825   while (FD) {
10826     for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
10827       llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
10828       // Mark uniform parameters.
10829       for (const Expr *E : Attr->uniforms()) {
10830         E = E->IgnoreParenImpCasts();
10831         unsigned Pos;
10832         if (isa<CXXThisExpr>(E)) {
10833           Pos = ParamPositions[FD];
10834         } else {
10835           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
10836                                 ->getCanonicalDecl();
10837           Pos = ParamPositions[PVD];
10838         }
10839         ParamAttrs[Pos].Kind = Uniform;
10840       }
10841       // Get alignment info.
10842       auto NI = Attr->alignments_begin();
10843       for (const Expr *E : Attr->aligneds()) {
10844         E = E->IgnoreParenImpCasts();
10845         unsigned Pos;
10846         QualType ParmTy;
10847         if (isa<CXXThisExpr>(E)) {
10848           Pos = ParamPositions[FD];
10849           ParmTy = E->getType();
10850         } else {
10851           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
10852                                 ->getCanonicalDecl();
10853           Pos = ParamPositions[PVD];
10854           ParmTy = PVD->getType();
10855         }
10856         ParamAttrs[Pos].Alignment =
10857             (*NI)
10858                 ? (*NI)->EvaluateKnownConstInt(C)
10859                 : llvm::APSInt::getUnsigned(
10860                       C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
10861                           .getQuantity());
10862         ++NI;
10863       }
10864       // Mark linear parameters.
10865       auto SI = Attr->steps_begin();
10866       auto MI = Attr->modifiers_begin();
10867       for (const Expr *E : Attr->linears()) {
10868         E = E->IgnoreParenImpCasts();
10869         unsigned Pos;
10870         // Rescaling factor needed to compute the linear parameter
10871         // value in the mangled name.
10872         unsigned PtrRescalingFactor = 1;
10873         if (isa<CXXThisExpr>(E)) {
10874           Pos = ParamPositions[FD];
10875         } else {
10876           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
10877                                 ->getCanonicalDecl();
10878           Pos = ParamPositions[PVD];
10879           if (auto *P = dyn_cast<PointerType>(PVD->getType()))
10880             PtrRescalingFactor = CGM.getContext()
10881                                      .getTypeSizeInChars(P->getPointeeType())
10882                                      .getQuantity();
10883         }
10884         ParamAttrTy &ParamAttr = ParamAttrs[Pos];
10885         ParamAttr.Kind = Linear;
10886         // Assuming a stride of 1, for `linear` without modifiers.
10887         ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(1);
10888         if (*SI) {
10889           Expr::EvalResult Result;
10890           if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) {
10891             if (const auto *DRE =
10892                     cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
10893               if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
10894                 ParamAttr.Kind = LinearWithVarStride;
10895                 ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
10896                     ParamPositions[StridePVD->getCanonicalDecl()]);
10897               }
10898             }
10899           } else {
10900             ParamAttr.StrideOrArg = Result.Val.getInt();
10901           }
10902         }
10903         // If we are using a linear clause on a pointer, we need to
10904         // rescale the value of linear_step with the byte size of the
10905         // pointee type.
10906         if (Linear == ParamAttr.Kind)
10907           ParamAttr.StrideOrArg = ParamAttr.StrideOrArg * PtrRescalingFactor;
10908         ++SI;
10909         ++MI;
10910       }
10911       llvm::APSInt VLENVal;
10912       SourceLocation ExprLoc;
10913       const Expr *VLENExpr = Attr->getSimdlen();
10914       if (VLENExpr) {
10915         VLENVal = VLENExpr->EvaluateKnownConstInt(C);
10916         ExprLoc = VLENExpr->getExprLoc();
10917       }
10918       OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
10919       if (CGM.getTriple().isX86()) {
10920         emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
10921       } else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) {
10922         unsigned VLEN = VLENVal.getExtValue();
10923         StringRef MangledName = Fn->getName();
10924         if (CGM.getTarget().hasFeature("sve"))
10925           emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
10926                                          MangledName, 's', 128, Fn, ExprLoc);
10927         if (CGM.getTarget().hasFeature("neon"))
10928           emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
10929                                          MangledName, 'n', 128, Fn, ExprLoc);
10930       }
10931     }
10932     FD = FD->getPreviousDecl();
10933   }
10934 }
10935 
10936 namespace {
10937 /// Cleanup action for doacross support.
10938 class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
10939 public:
10940   static const int DoacrossFinArgs = 2;
10941 
10942 private:
10943   llvm::FunctionCallee RTLFn;
10944   llvm::Value *Args[DoacrossFinArgs];
10945 
10946 public:
DoacrossCleanupTy(llvm::FunctionCallee RTLFn,ArrayRef<llvm::Value * > CallArgs)10947   DoacrossCleanupTy(llvm::FunctionCallee RTLFn,
10948                     ArrayRef<llvm::Value *> CallArgs)
10949       : RTLFn(RTLFn) {
10950     assert(CallArgs.size() == DoacrossFinArgs);
10951     std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
10952   }
Emit(CodeGenFunction & CGF,Flags)10953   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
10954     if (!CGF.HaveInsertPoint())
10955       return;
10956     CGF.EmitRuntimeCall(RTLFn, Args);
10957   }
10958 };
10959 } // namespace
10960 
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)10961 void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
10962                                        const OMPLoopDirective &D,
10963                                        ArrayRef<Expr *> NumIterations) {
10964   if (!CGF.HaveInsertPoint())
10965     return;
10966 
10967   ASTContext &C = CGM.getContext();
10968   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
10969   RecordDecl *RD;
10970   if (KmpDimTy.isNull()) {
10971     // Build struct kmp_dim {  // loop bounds info casted to kmp_int64
10972     //  kmp_int64 lo; // lower
10973     //  kmp_int64 up; // upper
10974     //  kmp_int64 st; // stride
10975     // };
10976     RD = C.buildImplicitRecord("kmp_dim");
10977     RD->startDefinition();
10978     addFieldToRecordDecl(C, RD, Int64Ty);
10979     addFieldToRecordDecl(C, RD, Int64Ty);
10980     addFieldToRecordDecl(C, RD, Int64Ty);
10981     RD->completeDefinition();
10982     KmpDimTy = C.getRecordType(RD);
10983   } else {
10984     RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
10985   }
10986   llvm::APInt Size(/*numBits=*/32, NumIterations.size());
10987   QualType ArrayTy =
10988       C.getConstantArrayType(KmpDimTy, Size, nullptr, ArrayType::Normal, 0);
10989 
10990   Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
10991   CGF.EmitNullInitialization(DimsAddr, ArrayTy);
10992   enum { LowerFD = 0, UpperFD, StrideFD };
10993   // Fill dims with data.
10994   for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) {
10995     LValue DimsLVal = CGF.MakeAddrLValue(
10996         CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy);
10997     // dims.upper = num_iterations;
10998     LValue UpperLVal = CGF.EmitLValueForField(
10999         DimsLVal, *std::next(RD->field_begin(), UpperFD));
11000     llvm::Value *NumIterVal = CGF.EmitScalarConversion(
11001         CGF.EmitScalarExpr(NumIterations[I]), NumIterations[I]->getType(),
11002         Int64Ty, NumIterations[I]->getExprLoc());
11003     CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
11004     // dims.stride = 1;
11005     LValue StrideLVal = CGF.EmitLValueForField(
11006         DimsLVal, *std::next(RD->field_begin(), StrideFD));
11007     CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
11008                           StrideLVal);
11009   }
11010 
11011   // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
11012   // kmp_int32 num_dims, struct kmp_dim * dims);
11013   llvm::Value *Args[] = {
11014       emitUpdateLocation(CGF, D.getBeginLoc()),
11015       getThreadID(CGF, D.getBeginLoc()),
11016       llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()),
11017       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11018           CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(),
11019           CGM.VoidPtrTy)};
11020 
11021   llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11022       CGM.getModule(), OMPRTL___kmpc_doacross_init);
11023   CGF.EmitRuntimeCall(RTLFn, Args);
11024   llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
11025       emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())};
11026   llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11027       CGM.getModule(), OMPRTL___kmpc_doacross_fini);
11028   CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
11029                                              llvm::makeArrayRef(FiniArgs));
11030 }
11031 
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)11032 void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
11033                                           const OMPDependClause *C) {
11034   QualType Int64Ty =
11035       CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
11036   llvm::APInt Size(/*numBits=*/32, C->getNumLoops());
11037   QualType ArrayTy = CGM.getContext().getConstantArrayType(
11038       Int64Ty, Size, nullptr, ArrayType::Normal, 0);
11039   Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr");
11040   for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) {
11041     const Expr *CounterVal = C->getLoopData(I);
11042     assert(CounterVal);
11043     llvm::Value *CntVal = CGF.EmitScalarConversion(
11044         CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty,
11045         CounterVal->getExprLoc());
11046     CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I),
11047                           /*Volatile=*/false, Int64Ty);
11048   }
11049   llvm::Value *Args[] = {
11050       emitUpdateLocation(CGF, C->getBeginLoc()),
11051       getThreadID(CGF, C->getBeginLoc()),
11052       CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()};
11053   llvm::FunctionCallee RTLFn;
11054   if (C->getDependencyKind() == OMPC_DEPEND_source) {
11055     RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
11056                                                   OMPRTL___kmpc_doacross_post);
11057   } else {
11058     assert(C->getDependencyKind() == OMPC_DEPEND_sink);
11059     RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
11060                                                   OMPRTL___kmpc_doacross_wait);
11061   }
11062   CGF.EmitRuntimeCall(RTLFn, Args);
11063 }
11064 
emitCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee Callee,ArrayRef<llvm::Value * > Args) const11065 void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc,
11066                                llvm::FunctionCallee Callee,
11067                                ArrayRef<llvm::Value *> Args) const {
11068   assert(Loc.isValid() && "Outlined function call location must be valid.");
11069   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
11070 
11071   if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) {
11072     if (Fn->doesNotThrow()) {
11073       CGF.EmitNounwindRuntimeCall(Fn, Args);
11074       return;
11075     }
11076   }
11077   CGF.EmitRuntimeCall(Callee, Args);
11078 }
11079 
emitOutlinedFunctionCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee OutlinedFn,ArrayRef<llvm::Value * > Args) const11080 void CGOpenMPRuntime::emitOutlinedFunctionCall(
11081     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
11082     ArrayRef<llvm::Value *> Args) const {
11083   emitCall(CGF, Loc, OutlinedFn, Args);
11084 }
11085 
emitFunctionProlog(CodeGenFunction & CGF,const Decl * D)11086 void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) {
11087   if (const auto *FD = dyn_cast<FunctionDecl>(D))
11088     if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD))
11089       HasEmittedDeclareTargetRegion = true;
11090 }
11091 
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const11092 Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF,
11093                                              const VarDecl *NativeParam,
11094                                              const VarDecl *TargetParam) const {
11095   return CGF.GetAddrOfLocalVar(NativeParam);
11096 }
11097 
11098 namespace {
11099 /// Cleanup action for allocate support.
11100 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
11101 public:
11102   static const int CleanupArgs = 3;
11103 
11104 private:
11105   llvm::FunctionCallee RTLFn;
11106   llvm::Value *Args[CleanupArgs];
11107 
11108 public:
OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn,ArrayRef<llvm::Value * > CallArgs)11109   OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn,
11110                        ArrayRef<llvm::Value *> CallArgs)
11111       : RTLFn(RTLFn) {
11112     assert(CallArgs.size() == CleanupArgs &&
11113            "Size of arguments does not match.");
11114     std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
11115   }
Emit(CodeGenFunction & CGF,Flags)11116   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
11117     if (!CGF.HaveInsertPoint())
11118       return;
11119     CGF.EmitRuntimeCall(RTLFn, Args);
11120   }
11121 };
11122 } // namespace
11123 
getAddressOfLocalVariable(CodeGenFunction & CGF,const VarDecl * VD)11124 Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF,
11125                                                    const VarDecl *VD) {
11126   if (!VD)
11127     return Address::invalid();
11128   const VarDecl *CVD = VD->getCanonicalDecl();
11129   if (!CVD->hasAttr<OMPAllocateDeclAttr>())
11130     return Address::invalid();
11131   const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
11132   // Use the default allocation.
11133   if ((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc ||
11134        AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) &&
11135       !AA->getAllocator())
11136     return Address::invalid();
11137   llvm::Value *Size;
11138   CharUnits Align = CGM.getContext().getDeclAlign(CVD);
11139   if (CVD->getType()->isVariablyModifiedType()) {
11140     Size = CGF.getTypeSize(CVD->getType());
11141     // Align the size: ((size + align - 1) / align) * align
11142     Size = CGF.Builder.CreateNUWAdd(
11143         Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
11144     Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
11145     Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
11146   } else {
11147     CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
11148     Size = CGM.getSize(Sz.alignTo(Align));
11149   }
11150   llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc());
11151   assert(AA->getAllocator() &&
11152          "Expected allocator expression for non-default allocator.");
11153   llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
11154   // According to the standard, the original allocator type is a enum (integer).
11155   // Convert to pointer type, if required.
11156   if (Allocator->getType()->isIntegerTy())
11157     Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy);
11158   else if (Allocator->getType()->isPointerTy())
11159     Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator,
11160                                                                 CGM.VoidPtrTy);
11161   llvm::Value *Args[] = {ThreadID, Size, Allocator};
11162 
11163   llvm::Value *Addr =
11164       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
11165                               CGM.getModule(), OMPRTL___kmpc_alloc),
11166                           Args, getName({CVD->getName(), ".void.addr"}));
11167   llvm::Value *FiniArgs[OMPAllocateCleanupTy::CleanupArgs] = {ThreadID, Addr,
11168                                                               Allocator};
11169   llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11170       CGM.getModule(), OMPRTL___kmpc_free);
11171 
11172   CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
11173                                                 llvm::makeArrayRef(FiniArgs));
11174   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11175       Addr,
11176       CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())),
11177       getName({CVD->getName(), ".addr"}));
11178   return Address(Addr, Align);
11179 }
11180 
NontemporalDeclsRAII(CodeGenModule & CGM,const OMPLoopDirective & S)11181 CGOpenMPRuntime::NontemporalDeclsRAII::NontemporalDeclsRAII(
11182     CodeGenModule &CGM, const OMPLoopDirective &S)
11183     : CGM(CGM), NeedToPush(S.hasClausesOfKind<OMPNontemporalClause>()) {
11184   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11185   if (!NeedToPush)
11186     return;
11187   NontemporalDeclsSet &DS =
11188       CGM.getOpenMPRuntime().NontemporalDeclsStack.emplace_back();
11189   for (const auto *C : S.getClausesOfKind<OMPNontemporalClause>()) {
11190     for (const Stmt *Ref : C->private_refs()) {
11191       const auto *SimpleRefExpr = cast<Expr>(Ref)->IgnoreParenImpCasts();
11192       const ValueDecl *VD;
11193       if (const auto *DRE = dyn_cast<DeclRefExpr>(SimpleRefExpr)) {
11194         VD = DRE->getDecl();
11195       } else {
11196         const auto *ME = cast<MemberExpr>(SimpleRefExpr);
11197         assert((ME->isImplicitCXXThis() ||
11198                 isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts())) &&
11199                "Expected member of current class.");
11200         VD = ME->getMemberDecl();
11201       }
11202       DS.insert(VD);
11203     }
11204   }
11205 }
11206 
~NontemporalDeclsRAII()11207 CGOpenMPRuntime::NontemporalDeclsRAII::~NontemporalDeclsRAII() {
11208   if (!NeedToPush)
11209     return;
11210   CGM.getOpenMPRuntime().NontemporalDeclsStack.pop_back();
11211 }
11212 
isNontemporalDecl(const ValueDecl * VD) const11213 bool CGOpenMPRuntime::isNontemporalDecl(const ValueDecl *VD) const {
11214   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11215 
11216   return llvm::any_of(
11217       CGM.getOpenMPRuntime().NontemporalDeclsStack,
11218       [VD](const NontemporalDeclsSet &Set) { return Set.count(VD) > 0; });
11219 }
11220 
tryToDisableInnerAnalysis(const OMPExecutableDirective & S,llvm::DenseSet<CanonicalDeclPtr<const Decl>> & NeedToAddForLPCsAsDisabled) const11221 void CGOpenMPRuntime::LastprivateConditionalRAII::tryToDisableInnerAnalysis(
11222     const OMPExecutableDirective &S,
11223     llvm::DenseSet<CanonicalDeclPtr<const Decl>> &NeedToAddForLPCsAsDisabled)
11224     const {
11225   llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToCheckForLPCs;
11226   // Vars in target/task regions must be excluded completely.
11227   if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()) ||
11228       isOpenMPTaskingDirective(S.getDirectiveKind())) {
11229     SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
11230     getOpenMPCaptureRegions(CaptureRegions, S.getDirectiveKind());
11231     const CapturedStmt *CS = S.getCapturedStmt(CaptureRegions.front());
11232     for (const CapturedStmt::Capture &Cap : CS->captures()) {
11233       if (Cap.capturesVariable() || Cap.capturesVariableByCopy())
11234         NeedToCheckForLPCs.insert(Cap.getCapturedVar());
11235     }
11236   }
11237   // Exclude vars in private clauses.
11238   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
11239     for (const Expr *Ref : C->varlists()) {
11240       if (!Ref->getType()->isScalarType())
11241         continue;
11242       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11243       if (!DRE)
11244         continue;
11245       NeedToCheckForLPCs.insert(DRE->getDecl());
11246     }
11247   }
11248   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
11249     for (const Expr *Ref : C->varlists()) {
11250       if (!Ref->getType()->isScalarType())
11251         continue;
11252       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11253       if (!DRE)
11254         continue;
11255       NeedToCheckForLPCs.insert(DRE->getDecl());
11256     }
11257   }
11258   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
11259     for (const Expr *Ref : C->varlists()) {
11260       if (!Ref->getType()->isScalarType())
11261         continue;
11262       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11263       if (!DRE)
11264         continue;
11265       NeedToCheckForLPCs.insert(DRE->getDecl());
11266     }
11267   }
11268   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
11269     for (const Expr *Ref : C->varlists()) {
11270       if (!Ref->getType()->isScalarType())
11271         continue;
11272       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11273       if (!DRE)
11274         continue;
11275       NeedToCheckForLPCs.insert(DRE->getDecl());
11276     }
11277   }
11278   for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) {
11279     for (const Expr *Ref : C->varlists()) {
11280       if (!Ref->getType()->isScalarType())
11281         continue;
11282       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11283       if (!DRE)
11284         continue;
11285       NeedToCheckForLPCs.insert(DRE->getDecl());
11286     }
11287   }
11288   for (const Decl *VD : NeedToCheckForLPCs) {
11289     for (const LastprivateConditionalData &Data :
11290          llvm::reverse(CGM.getOpenMPRuntime().LastprivateConditionalStack)) {
11291       if (Data.DeclToUniqueName.count(VD) > 0) {
11292         if (!Data.Disabled)
11293           NeedToAddForLPCsAsDisabled.insert(VD);
11294         break;
11295       }
11296     }
11297   }
11298 }
11299 
LastprivateConditionalRAII(CodeGenFunction & CGF,const OMPExecutableDirective & S,LValue IVLVal)11300 CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
11301     CodeGenFunction &CGF, const OMPExecutableDirective &S, LValue IVLVal)
11302     : CGM(CGF.CGM),
11303       Action((CGM.getLangOpts().OpenMP >= 50 &&
11304               llvm::any_of(S.getClausesOfKind<OMPLastprivateClause>(),
11305                            [](const OMPLastprivateClause *C) {
11306                              return C->getKind() ==
11307                                     OMPC_LASTPRIVATE_conditional;
11308                            }))
11309                  ? ActionToDo::PushAsLastprivateConditional
11310                  : ActionToDo::DoNotPush) {
11311   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11312   if (CGM.getLangOpts().OpenMP < 50 || Action == ActionToDo::DoNotPush)
11313     return;
11314   assert(Action == ActionToDo::PushAsLastprivateConditional &&
11315          "Expected a push action.");
11316   LastprivateConditionalData &Data =
11317       CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
11318   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
11319     if (C->getKind() != OMPC_LASTPRIVATE_conditional)
11320       continue;
11321 
11322     for (const Expr *Ref : C->varlists()) {
11323       Data.DeclToUniqueName.insert(std::make_pair(
11324           cast<DeclRefExpr>(Ref->IgnoreParenImpCasts())->getDecl(),
11325           SmallString<16>(generateUniqueName(CGM, "pl_cond", Ref))));
11326     }
11327   }
11328   Data.IVLVal = IVLVal;
11329   Data.Fn = CGF.CurFn;
11330 }
11331 
LastprivateConditionalRAII(CodeGenFunction & CGF,const OMPExecutableDirective & S)11332 CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
11333     CodeGenFunction &CGF, const OMPExecutableDirective &S)
11334     : CGM(CGF.CGM), Action(ActionToDo::DoNotPush) {
11335   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11336   if (CGM.getLangOpts().OpenMP < 50)
11337     return;
11338   llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToAddForLPCsAsDisabled;
11339   tryToDisableInnerAnalysis(S, NeedToAddForLPCsAsDisabled);
11340   if (!NeedToAddForLPCsAsDisabled.empty()) {
11341     Action = ActionToDo::DisableLastprivateConditional;
11342     LastprivateConditionalData &Data =
11343         CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
11344     for (const Decl *VD : NeedToAddForLPCsAsDisabled)
11345       Data.DeclToUniqueName.insert(std::make_pair(VD, SmallString<16>()));
11346     Data.Fn = CGF.CurFn;
11347     Data.Disabled = true;
11348   }
11349 }
11350 
11351 CGOpenMPRuntime::LastprivateConditionalRAII
disable(CodeGenFunction & CGF,const OMPExecutableDirective & S)11352 CGOpenMPRuntime::LastprivateConditionalRAII::disable(
11353     CodeGenFunction &CGF, const OMPExecutableDirective &S) {
11354   return LastprivateConditionalRAII(CGF, S);
11355 }
11356 
~LastprivateConditionalRAII()11357 CGOpenMPRuntime::LastprivateConditionalRAII::~LastprivateConditionalRAII() {
11358   if (CGM.getLangOpts().OpenMP < 50)
11359     return;
11360   if (Action == ActionToDo::DisableLastprivateConditional) {
11361     assert(CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
11362            "Expected list of disabled private vars.");
11363     CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
11364   }
11365   if (Action == ActionToDo::PushAsLastprivateConditional) {
11366     assert(
11367         !CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
11368         "Expected list of lastprivate conditional vars.");
11369     CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
11370   }
11371 }
11372 
emitLastprivateConditionalInit(CodeGenFunction & CGF,const VarDecl * VD)11373 Address CGOpenMPRuntime::emitLastprivateConditionalInit(CodeGenFunction &CGF,
11374                                                         const VarDecl *VD) {
11375   ASTContext &C = CGM.getContext();
11376   auto I = LastprivateConditionalToTypes.find(CGF.CurFn);
11377   if (I == LastprivateConditionalToTypes.end())
11378     I = LastprivateConditionalToTypes.try_emplace(CGF.CurFn).first;
11379   QualType NewType;
11380   const FieldDecl *VDField;
11381   const FieldDecl *FiredField;
11382   LValue BaseLVal;
11383   auto VI = I->getSecond().find(VD);
11384   if (VI == I->getSecond().end()) {
11385     RecordDecl *RD = C.buildImplicitRecord("lasprivate.conditional");
11386     RD->startDefinition();
11387     VDField = addFieldToRecordDecl(C, RD, VD->getType().getNonReferenceType());
11388     FiredField = addFieldToRecordDecl(C, RD, C.CharTy);
11389     RD->completeDefinition();
11390     NewType = C.getRecordType(RD);
11391     Address Addr = CGF.CreateMemTemp(NewType, C.getDeclAlign(VD), VD->getName());
11392     BaseLVal = CGF.MakeAddrLValue(Addr, NewType, AlignmentSource::Decl);
11393     I->getSecond().try_emplace(VD, NewType, VDField, FiredField, BaseLVal);
11394   } else {
11395     NewType = std::get<0>(VI->getSecond());
11396     VDField = std::get<1>(VI->getSecond());
11397     FiredField = std::get<2>(VI->getSecond());
11398     BaseLVal = std::get<3>(VI->getSecond());
11399   }
11400   LValue FiredLVal =
11401       CGF.EmitLValueForField(BaseLVal, FiredField);
11402   CGF.EmitStoreOfScalar(
11403       llvm::ConstantInt::getNullValue(CGF.ConvertTypeForMem(C.CharTy)),
11404       FiredLVal);
11405   return CGF.EmitLValueForField(BaseLVal, VDField).getAddress(CGF);
11406 }
11407 
11408 namespace {
11409 /// Checks if the lastprivate conditional variable is referenced in LHS.
11410 class LastprivateConditionalRefChecker final
11411     : public ConstStmtVisitor<LastprivateConditionalRefChecker, bool> {
11412   ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM;
11413   const Expr *FoundE = nullptr;
11414   const Decl *FoundD = nullptr;
11415   StringRef UniqueDeclName;
11416   LValue IVLVal;
11417   llvm::Function *FoundFn = nullptr;
11418   SourceLocation Loc;
11419 
11420 public:
VisitDeclRefExpr(const DeclRefExpr * E)11421   bool VisitDeclRefExpr(const DeclRefExpr *E) {
11422     for (const CGOpenMPRuntime::LastprivateConditionalData &D :
11423          llvm::reverse(LPM)) {
11424       auto It = D.DeclToUniqueName.find(E->getDecl());
11425       if (It == D.DeclToUniqueName.end())
11426         continue;
11427       if (D.Disabled)
11428         return false;
11429       FoundE = E;
11430       FoundD = E->getDecl()->getCanonicalDecl();
11431       UniqueDeclName = It->second;
11432       IVLVal = D.IVLVal;
11433       FoundFn = D.Fn;
11434       break;
11435     }
11436     return FoundE == E;
11437   }
VisitMemberExpr(const MemberExpr * E)11438   bool VisitMemberExpr(const MemberExpr *E) {
11439     if (!CodeGenFunction::IsWrappedCXXThis(E->getBase()))
11440       return false;
11441     for (const CGOpenMPRuntime::LastprivateConditionalData &D :
11442          llvm::reverse(LPM)) {
11443       auto It = D.DeclToUniqueName.find(E->getMemberDecl());
11444       if (It == D.DeclToUniqueName.end())
11445         continue;
11446       if (D.Disabled)
11447         return false;
11448       FoundE = E;
11449       FoundD = E->getMemberDecl()->getCanonicalDecl();
11450       UniqueDeclName = It->second;
11451       IVLVal = D.IVLVal;
11452       FoundFn = D.Fn;
11453       break;
11454     }
11455     return FoundE == E;
11456   }
VisitStmt(const Stmt * S)11457   bool VisitStmt(const Stmt *S) {
11458     for (const Stmt *Child : S->children()) {
11459       if (!Child)
11460         continue;
11461       if (const auto *E = dyn_cast<Expr>(Child))
11462         if (!E->isGLValue())
11463           continue;
11464       if (Visit(Child))
11465         return true;
11466     }
11467     return false;
11468   }
LastprivateConditionalRefChecker(ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)11469   explicit LastprivateConditionalRefChecker(
11470       ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)
11471       : LPM(LPM) {}
11472   std::tuple<const Expr *, const Decl *, StringRef, LValue, llvm::Function *>
getFoundData() const11473   getFoundData() const {
11474     return std::make_tuple(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn);
11475   }
11476 };
11477 } // namespace
11478 
emitLastprivateConditionalUpdate(CodeGenFunction & CGF,LValue IVLVal,StringRef UniqueDeclName,LValue LVal,SourceLocation Loc)11479 void CGOpenMPRuntime::emitLastprivateConditionalUpdate(CodeGenFunction &CGF,
11480                                                        LValue IVLVal,
11481                                                        StringRef UniqueDeclName,
11482                                                        LValue LVal,
11483                                                        SourceLocation Loc) {
11484   // Last updated loop counter for the lastprivate conditional var.
11485   // int<xx> last_iv = 0;
11486   llvm::Type *LLIVTy = CGF.ConvertTypeForMem(IVLVal.getType());
11487   llvm::Constant *LastIV =
11488       getOrCreateInternalVariable(LLIVTy, getName({UniqueDeclName, "iv"}));
11489   cast<llvm::GlobalVariable>(LastIV)->setAlignment(
11490       IVLVal.getAlignment().getAsAlign());
11491   LValue LastIVLVal = CGF.MakeNaturalAlignAddrLValue(LastIV, IVLVal.getType());
11492 
11493   // Last value of the lastprivate conditional.
11494   // decltype(priv_a) last_a;
11495   llvm::Constant *Last = getOrCreateInternalVariable(
11496       CGF.ConvertTypeForMem(LVal.getType()), UniqueDeclName);
11497   cast<llvm::GlobalVariable>(Last)->setAlignment(
11498       LVal.getAlignment().getAsAlign());
11499   LValue LastLVal =
11500       CGF.MakeAddrLValue(Last, LVal.getType(), LVal.getAlignment());
11501 
11502   // Global loop counter. Required to handle inner parallel-for regions.
11503   // iv
11504   llvm::Value *IVVal = CGF.EmitLoadOfScalar(IVLVal, Loc);
11505 
11506   // #pragma omp critical(a)
11507   // if (last_iv <= iv) {
11508   //   last_iv = iv;
11509   //   last_a = priv_a;
11510   // }
11511   auto &&CodeGen = [&LastIVLVal, &IVLVal, IVVal, &LVal, &LastLVal,
11512                     Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
11513     Action.Enter(CGF);
11514     llvm::Value *LastIVVal = CGF.EmitLoadOfScalar(LastIVLVal, Loc);
11515     // (last_iv <= iv) ? Check if the variable is updated and store new
11516     // value in global var.
11517     llvm::Value *CmpRes;
11518     if (IVLVal.getType()->isSignedIntegerType()) {
11519       CmpRes = CGF.Builder.CreateICmpSLE(LastIVVal, IVVal);
11520     } else {
11521       assert(IVLVal.getType()->isUnsignedIntegerType() &&
11522              "Loop iteration variable must be integer.");
11523       CmpRes = CGF.Builder.CreateICmpULE(LastIVVal, IVVal);
11524     }
11525     llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lp_cond_then");
11526     llvm::BasicBlock *ExitBB = CGF.createBasicBlock("lp_cond_exit");
11527     CGF.Builder.CreateCondBr(CmpRes, ThenBB, ExitBB);
11528     // {
11529     CGF.EmitBlock(ThenBB);
11530 
11531     //   last_iv = iv;
11532     CGF.EmitStoreOfScalar(IVVal, LastIVLVal);
11533 
11534     //   last_a = priv_a;
11535     switch (CGF.getEvaluationKind(LVal.getType())) {
11536     case TEK_Scalar: {
11537       llvm::Value *PrivVal = CGF.EmitLoadOfScalar(LVal, Loc);
11538       CGF.EmitStoreOfScalar(PrivVal, LastLVal);
11539       break;
11540     }
11541     case TEK_Complex: {
11542       CodeGenFunction::ComplexPairTy PrivVal = CGF.EmitLoadOfComplex(LVal, Loc);
11543       CGF.EmitStoreOfComplex(PrivVal, LastLVal, /*isInit=*/false);
11544       break;
11545     }
11546     case TEK_Aggregate:
11547       llvm_unreachable(
11548           "Aggregates are not supported in lastprivate conditional.");
11549     }
11550     // }
11551     CGF.EmitBranch(ExitBB);
11552     // There is no need to emit line number for unconditional branch.
11553     (void)ApplyDebugLocation::CreateEmpty(CGF);
11554     CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
11555   };
11556 
11557   if (CGM.getLangOpts().OpenMPSimd) {
11558     // Do not emit as a critical region as no parallel region could be emitted.
11559     RegionCodeGenTy ThenRCG(CodeGen);
11560     ThenRCG(CGF);
11561   } else {
11562     emitCriticalRegion(CGF, UniqueDeclName, CodeGen, Loc);
11563   }
11564 }
11565 
checkAndEmitLastprivateConditional(CodeGenFunction & CGF,const Expr * LHS)11566 void CGOpenMPRuntime::checkAndEmitLastprivateConditional(CodeGenFunction &CGF,
11567                                                          const Expr *LHS) {
11568   if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
11569     return;
11570   LastprivateConditionalRefChecker Checker(LastprivateConditionalStack);
11571   if (!Checker.Visit(LHS))
11572     return;
11573   const Expr *FoundE;
11574   const Decl *FoundD;
11575   StringRef UniqueDeclName;
11576   LValue IVLVal;
11577   llvm::Function *FoundFn;
11578   std::tie(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn) =
11579       Checker.getFoundData();
11580   if (FoundFn != CGF.CurFn) {
11581     // Special codegen for inner parallel regions.
11582     // ((struct.lastprivate.conditional*)&priv_a)->Fired = 1;
11583     auto It = LastprivateConditionalToTypes[FoundFn].find(FoundD);
11584     assert(It != LastprivateConditionalToTypes[FoundFn].end() &&
11585            "Lastprivate conditional is not found in outer region.");
11586     QualType StructTy = std::get<0>(It->getSecond());
11587     const FieldDecl* FiredDecl = std::get<2>(It->getSecond());
11588     LValue PrivLVal = CGF.EmitLValue(FoundE);
11589     Address StructAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11590         PrivLVal.getAddress(CGF),
11591         CGF.ConvertTypeForMem(CGF.getContext().getPointerType(StructTy)));
11592     LValue BaseLVal =
11593         CGF.MakeAddrLValue(StructAddr, StructTy, AlignmentSource::Decl);
11594     LValue FiredLVal = CGF.EmitLValueForField(BaseLVal, FiredDecl);
11595     CGF.EmitAtomicStore(RValue::get(llvm::ConstantInt::get(
11596                             CGF.ConvertTypeForMem(FiredDecl->getType()), 1)),
11597                         FiredLVal, llvm::AtomicOrdering::Unordered,
11598                         /*IsVolatile=*/true, /*isInit=*/false);
11599     return;
11600   }
11601 
11602   // Private address of the lastprivate conditional in the current context.
11603   // priv_a
11604   LValue LVal = CGF.EmitLValue(FoundE);
11605   emitLastprivateConditionalUpdate(CGF, IVLVal, UniqueDeclName, LVal,
11606                                    FoundE->getExprLoc());
11607 }
11608 
checkAndEmitSharedLastprivateConditional(CodeGenFunction & CGF,const OMPExecutableDirective & D,const llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> & IgnoredDecls)11609 void CGOpenMPRuntime::checkAndEmitSharedLastprivateConditional(
11610     CodeGenFunction &CGF, const OMPExecutableDirective &D,
11611     const llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> &IgnoredDecls) {
11612   if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
11613     return;
11614   auto Range = llvm::reverse(LastprivateConditionalStack);
11615   auto It = llvm::find_if(
11616       Range, [](const LastprivateConditionalData &D) { return !D.Disabled; });
11617   if (It == Range.end() || It->Fn != CGF.CurFn)
11618     return;
11619   auto LPCI = LastprivateConditionalToTypes.find(It->Fn);
11620   assert(LPCI != LastprivateConditionalToTypes.end() &&
11621          "Lastprivates must be registered already.");
11622   SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
11623   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
11624   const CapturedStmt *CS = D.getCapturedStmt(CaptureRegions.back());
11625   for (const auto &Pair : It->DeclToUniqueName) {
11626     const auto *VD = cast<VarDecl>(Pair.first->getCanonicalDecl());
11627     if (!CS->capturesVariable(VD) || IgnoredDecls.count(VD) > 0)
11628       continue;
11629     auto I = LPCI->getSecond().find(Pair.first);
11630     assert(I != LPCI->getSecond().end() &&
11631            "Lastprivate must be rehistered already.");
11632     // bool Cmp = priv_a.Fired != 0;
11633     LValue BaseLVal = std::get<3>(I->getSecond());
11634     LValue FiredLVal =
11635         CGF.EmitLValueForField(BaseLVal, std::get<2>(I->getSecond()));
11636     llvm::Value *Res = CGF.EmitLoadOfScalar(FiredLVal, D.getBeginLoc());
11637     llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Res);
11638     llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lpc.then");
11639     llvm::BasicBlock *DoneBB = CGF.createBasicBlock("lpc.done");
11640     // if (Cmp) {
11641     CGF.Builder.CreateCondBr(Cmp, ThenBB, DoneBB);
11642     CGF.EmitBlock(ThenBB);
11643     Address Addr = CGF.GetAddrOfLocalVar(VD);
11644     LValue LVal;
11645     if (VD->getType()->isReferenceType())
11646       LVal = CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
11647                                            AlignmentSource::Decl);
11648     else
11649       LVal = CGF.MakeAddrLValue(Addr, VD->getType().getNonReferenceType(),
11650                                 AlignmentSource::Decl);
11651     emitLastprivateConditionalUpdate(CGF, It->IVLVal, Pair.second, LVal,
11652                                      D.getBeginLoc());
11653     auto AL = ApplyDebugLocation::CreateArtificial(CGF);
11654     CGF.EmitBlock(DoneBB, /*IsFinal=*/true);
11655     // }
11656   }
11657 }
11658 
emitLastprivateConditionalFinalUpdate(CodeGenFunction & CGF,LValue PrivLVal,const VarDecl * VD,SourceLocation Loc)11659 void CGOpenMPRuntime::emitLastprivateConditionalFinalUpdate(
11660     CodeGenFunction &CGF, LValue PrivLVal, const VarDecl *VD,
11661     SourceLocation Loc) {
11662   if (CGF.getLangOpts().OpenMP < 50)
11663     return;
11664   auto It = LastprivateConditionalStack.back().DeclToUniqueName.find(VD);
11665   assert(It != LastprivateConditionalStack.back().DeclToUniqueName.end() &&
11666          "Unknown lastprivate conditional variable.");
11667   StringRef UniqueName = It->second;
11668   llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(UniqueName);
11669   // The variable was not updated in the region - exit.
11670   if (!GV)
11671     return;
11672   LValue LPLVal = CGF.MakeAddrLValue(
11673       GV, PrivLVal.getType().getNonReferenceType(), PrivLVal.getAlignment());
11674   llvm::Value *Res = CGF.EmitLoadOfScalar(LPLVal, Loc);
11675   CGF.EmitStoreOfScalar(Res, PrivLVal);
11676 }
11677 
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)11678 llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction(
11679     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
11680     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
11681   llvm_unreachable("Not supported in SIMD-only mode");
11682 }
11683 
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)11684 llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction(
11685     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
11686     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
11687   llvm_unreachable("Not supported in SIMD-only mode");
11688 }
11689 
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)11690 llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction(
11691     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
11692     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
11693     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
11694     bool Tied, unsigned &NumberOfParts) {
11695   llvm_unreachable("Not supported in SIMD-only mode");
11696 }
11697 
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)11698 void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF,
11699                                            SourceLocation Loc,
11700                                            llvm::Function *OutlinedFn,
11701                                            ArrayRef<llvm::Value *> CapturedVars,
11702                                            const Expr *IfCond) {
11703   llvm_unreachable("Not supported in SIMD-only mode");
11704 }
11705 
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)11706 void CGOpenMPSIMDRuntime::emitCriticalRegion(
11707     CodeGenFunction &CGF, StringRef CriticalName,
11708     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
11709     const Expr *Hint) {
11710   llvm_unreachable("Not supported in SIMD-only mode");
11711 }
11712 
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)11713 void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF,
11714                                            const RegionCodeGenTy &MasterOpGen,
11715                                            SourceLocation Loc) {
11716   llvm_unreachable("Not supported in SIMD-only mode");
11717 }
11718 
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)11719 void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
11720                                             SourceLocation Loc) {
11721   llvm_unreachable("Not supported in SIMD-only mode");
11722 }
11723 
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)11724 void CGOpenMPSIMDRuntime::emitTaskgroupRegion(
11725     CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen,
11726     SourceLocation Loc) {
11727   llvm_unreachable("Not supported in SIMD-only mode");
11728 }
11729 
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps)11730 void CGOpenMPSIMDRuntime::emitSingleRegion(
11731     CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen,
11732     SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars,
11733     ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs,
11734     ArrayRef<const Expr *> AssignmentOps) {
11735   llvm_unreachable("Not supported in SIMD-only mode");
11736 }
11737 
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)11738 void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF,
11739                                             const RegionCodeGenTy &OrderedOpGen,
11740                                             SourceLocation Loc,
11741                                             bool IsThreads) {
11742   llvm_unreachable("Not supported in SIMD-only mode");
11743 }
11744 
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)11745 void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF,
11746                                           SourceLocation Loc,
11747                                           OpenMPDirectiveKind Kind,
11748                                           bool EmitChecks,
11749                                           bool ForceSimpleCall) {
11750   llvm_unreachable("Not supported in SIMD-only mode");
11751 }
11752 
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)11753 void CGOpenMPSIMDRuntime::emitForDispatchInit(
11754     CodeGenFunction &CGF, SourceLocation Loc,
11755     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
11756     bool Ordered, const DispatchRTInput &DispatchValues) {
11757   llvm_unreachable("Not supported in SIMD-only mode");
11758 }
11759 
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)11760 void CGOpenMPSIMDRuntime::emitForStaticInit(
11761     CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind,
11762     const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) {
11763   llvm_unreachable("Not supported in SIMD-only mode");
11764 }
11765 
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const StaticRTInput & Values)11766 void CGOpenMPSIMDRuntime::emitDistributeStaticInit(
11767     CodeGenFunction &CGF, SourceLocation Loc,
11768     OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) {
11769   llvm_unreachable("Not supported in SIMD-only mode");
11770 }
11771 
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)11772 void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
11773                                                      SourceLocation Loc,
11774                                                      unsigned IVSize,
11775                                                      bool IVSigned) {
11776   llvm_unreachable("Not supported in SIMD-only mode");
11777 }
11778 
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)11779 void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF,
11780                                               SourceLocation Loc,
11781                                               OpenMPDirectiveKind DKind) {
11782   llvm_unreachable("Not supported in SIMD-only mode");
11783 }
11784 
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)11785 llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF,
11786                                               SourceLocation Loc,
11787                                               unsigned IVSize, bool IVSigned,
11788                                               Address IL, Address LB,
11789                                               Address UB, Address ST) {
11790   llvm_unreachable("Not supported in SIMD-only mode");
11791 }
11792 
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)11793 void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
11794                                                llvm::Value *NumThreads,
11795                                                SourceLocation Loc) {
11796   llvm_unreachable("Not supported in SIMD-only mode");
11797 }
11798 
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)11799 void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF,
11800                                              ProcBindKind ProcBind,
11801                                              SourceLocation Loc) {
11802   llvm_unreachable("Not supported in SIMD-only mode");
11803 }
11804 
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)11805 Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
11806                                                     const VarDecl *VD,
11807                                                     Address VDAddr,
11808                                                     SourceLocation Loc) {
11809   llvm_unreachable("Not supported in SIMD-only mode");
11810 }
11811 
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)11812 llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition(
11813     const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit,
11814     CodeGenFunction *CGF) {
11815   llvm_unreachable("Not supported in SIMD-only mode");
11816 }
11817 
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)11818 Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate(
11819     CodeGenFunction &CGF, QualType VarType, StringRef Name) {
11820   llvm_unreachable("Not supported in SIMD-only mode");
11821 }
11822 
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * > Vars,SourceLocation Loc,llvm::AtomicOrdering AO)11823 void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF,
11824                                     ArrayRef<const Expr *> Vars,
11825                                     SourceLocation Loc,
11826                                     llvm::AtomicOrdering AO) {
11827   llvm_unreachable("Not supported in SIMD-only mode");
11828 }
11829 
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)11830 void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
11831                                        const OMPExecutableDirective &D,
11832                                        llvm::Function *TaskFunction,
11833                                        QualType SharedsTy, Address Shareds,
11834                                        const Expr *IfCond,
11835                                        const OMPTaskDataTy &Data) {
11836   llvm_unreachable("Not supported in SIMD-only mode");
11837 }
11838 
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)11839 void CGOpenMPSIMDRuntime::emitTaskLoopCall(
11840     CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D,
11841     llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds,
11842     const Expr *IfCond, const OMPTaskDataTy &Data) {
11843   llvm_unreachable("Not supported in SIMD-only mode");
11844 }
11845 
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)11846 void CGOpenMPSIMDRuntime::emitReduction(
11847     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
11848     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
11849     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
11850   assert(Options.SimpleReduction && "Only simple reduction is expected.");
11851   CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
11852                                  ReductionOps, Options);
11853 }
11854 
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)11855 llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit(
11856     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
11857     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
11858   llvm_unreachable("Not supported in SIMD-only mode");
11859 }
11860 
emitTaskReductionFini(CodeGenFunction & CGF,SourceLocation Loc,bool IsWorksharingReduction)11861 void CGOpenMPSIMDRuntime::emitTaskReductionFini(CodeGenFunction &CGF,
11862                                                 SourceLocation Loc,
11863                                                 bool IsWorksharingReduction) {
11864   llvm_unreachable("Not supported in SIMD-only mode");
11865 }
11866 
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)11867 void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
11868                                                   SourceLocation Loc,
11869                                                   ReductionCodeGen &RCG,
11870                                                   unsigned N) {
11871   llvm_unreachable("Not supported in SIMD-only mode");
11872 }
11873 
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)11874 Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF,
11875                                                   SourceLocation Loc,
11876                                                   llvm::Value *ReductionsPtr,
11877                                                   LValue SharedLVal) {
11878   llvm_unreachable("Not supported in SIMD-only mode");
11879 }
11880 
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc)11881 void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
11882                                            SourceLocation Loc) {
11883   llvm_unreachable("Not supported in SIMD-only mode");
11884 }
11885 
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)11886 void CGOpenMPSIMDRuntime::emitCancellationPointCall(
11887     CodeGenFunction &CGF, SourceLocation Loc,
11888     OpenMPDirectiveKind CancelRegion) {
11889   llvm_unreachable("Not supported in SIMD-only mode");
11890 }
11891 
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)11892 void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF,
11893                                          SourceLocation Loc, const Expr *IfCond,
11894                                          OpenMPDirectiveKind CancelRegion) {
11895   llvm_unreachable("Not supported in SIMD-only mode");
11896 }
11897 
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)11898 void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction(
11899     const OMPExecutableDirective &D, StringRef ParentName,
11900     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
11901     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
11902   llvm_unreachable("Not supported in SIMD-only mode");
11903 }
11904 
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,llvm::PointerIntPair<const Expr *,2,OpenMPDeviceClauseModifier> Device,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)11905 void CGOpenMPSIMDRuntime::emitTargetCall(
11906     CodeGenFunction &CGF, const OMPExecutableDirective &D,
11907     llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
11908     llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
11909     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
11910                                      const OMPLoopDirective &D)>
11911         SizeEmitter) {
11912   llvm_unreachable("Not supported in SIMD-only mode");
11913 }
11914 
emitTargetFunctions(GlobalDecl GD)11915 bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) {
11916   llvm_unreachable("Not supported in SIMD-only mode");
11917 }
11918 
emitTargetGlobalVariable(GlobalDecl GD)11919 bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
11920   llvm_unreachable("Not supported in SIMD-only mode");
11921 }
11922 
emitTargetGlobal(GlobalDecl GD)11923 bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) {
11924   return false;
11925 }
11926 
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)11927 void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF,
11928                                         const OMPExecutableDirective &D,
11929                                         SourceLocation Loc,
11930                                         llvm::Function *OutlinedFn,
11931                                         ArrayRef<llvm::Value *> CapturedVars) {
11932   llvm_unreachable("Not supported in SIMD-only mode");
11933 }
11934 
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)11935 void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
11936                                              const Expr *NumTeams,
11937                                              const Expr *ThreadLimit,
11938                                              SourceLocation Loc) {
11939   llvm_unreachable("Not supported in SIMD-only mode");
11940 }
11941 
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,TargetDataInfo & Info)11942 void CGOpenMPSIMDRuntime::emitTargetDataCalls(
11943     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
11944     const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
11945   llvm_unreachable("Not supported in SIMD-only mode");
11946 }
11947 
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)11948 void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall(
11949     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
11950     const Expr *Device) {
11951   llvm_unreachable("Not supported in SIMD-only mode");
11952 }
11953 
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)11954 void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF,
11955                                            const OMPLoopDirective &D,
11956                                            ArrayRef<Expr *> NumIterations) {
11957   llvm_unreachable("Not supported in SIMD-only mode");
11958 }
11959 
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)11960 void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
11961                                               const OMPDependClause *C) {
11962   llvm_unreachable("Not supported in SIMD-only mode");
11963 }
11964 
11965 const VarDecl *
translateParameter(const FieldDecl * FD,const VarDecl * NativeParam) const11966 CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD,
11967                                         const VarDecl *NativeParam) const {
11968   llvm_unreachable("Not supported in SIMD-only mode");
11969 }
11970 
11971 Address
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const11972 CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF,
11973                                          const VarDecl *NativeParam,
11974                                          const VarDecl *TargetParam) const {
11975   llvm_unreachable("Not supported in SIMD-only mode");
11976 }
11977