1 //===-- EHScopeStack.h - Stack for cleanup IR generation --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes should be the minimum interface required for other parts of
10 // CodeGen to emit cleanups.  The implementation is in CGCleanup.cpp and other
11 // implemenentation details that are not widely needed are in CGCleanup.h.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_LIB_CODEGEN_EHSCOPESTACK_H
16 #define LLVM_CLANG_LIB_CODEGEN_EHSCOPESTACK_H
17 
18 #include "clang/Basic/LLVM.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Value.h"
24 
25 namespace clang {
26 namespace CodeGen {
27 
28 class CodeGenFunction;
29 
30 /// A branch fixup.  These are required when emitting a goto to a
31 /// label which hasn't been emitted yet.  The goto is optimistically
32 /// emitted as a branch to the basic block for the label, and (if it
33 /// occurs in a scope with non-trivial cleanups) a fixup is added to
34 /// the innermost cleanup.  When a (normal) cleanup is popped, any
35 /// unresolved fixups in that scope are threaded through the cleanup.
36 struct BranchFixup {
37   /// The block containing the terminator which needs to be modified
38   /// into a switch if this fixup is resolved into the current scope.
39   /// If null, LatestBranch points directly to the destination.
40   llvm::BasicBlock *OptimisticBranchBlock;
41 
42   /// The ultimate destination of the branch.
43   ///
44   /// This can be set to null to indicate that this fixup was
45   /// successfully resolved.
46   llvm::BasicBlock *Destination;
47 
48   /// The destination index value.
49   unsigned DestinationIndex;
50 
51   /// The initial branch of the fixup.
52   llvm::BranchInst *InitialBranch;
53 };
54 
55 template <class T> struct InvariantValue {
56   typedef T type;
57   typedef T saved_type;
needsSavingInvariantValue58   static bool needsSaving(type value) { return false; }
saveInvariantValue59   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
restoreInvariantValue60   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
61 };
62 
63 /// A metaprogramming class for ensuring that a value will dominate an
64 /// arbitrary position in a function.
65 template <class T> struct DominatingValue : InvariantValue<T> {};
66 
67 template <class T, bool mightBeInstruction =
68             std::is_base_of<llvm::Value, T>::value &&
69             !std::is_base_of<llvm::Constant, T>::value &&
70             !std::is_base_of<llvm::BasicBlock, T>::value>
71 struct DominatingPointer;
72 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
73 // template <class T> struct DominatingPointer<T,true> at end of file
74 
75 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
76 
77 enum CleanupKind : unsigned {
78   /// Denotes a cleanup that should run when a scope is exited using exceptional
79   /// control flow (a throw statement leading to stack unwinding, ).
80   EHCleanup = 0x1,
81 
82   /// Denotes a cleanup that should run when a scope is exited using normal
83   /// control flow (falling off the end of the scope, return, goto, ...).
84   NormalCleanup = 0x2,
85 
86   NormalAndEHCleanup = EHCleanup | NormalCleanup,
87 
88   LifetimeMarker = 0x8,
89   NormalEHLifetimeMarker = LifetimeMarker | NormalAndEHCleanup,
90 };
91 
92 /// A stack of scopes which respond to exceptions, including cleanups
93 /// and catch blocks.
94 class EHScopeStack {
95 public:
96   /* Should switch to alignof(uint64_t) instead of 8, when EHCleanupScope can */
97   enum { ScopeStackAlignment = 8 };
98 
99   /// A saved depth on the scope stack.  This is necessary because
100   /// pushing scopes onto the stack invalidates iterators.
101   class stable_iterator {
102     friend class EHScopeStack;
103 
104     /// Offset from StartOfData to EndOfBuffer.
105     ptrdiff_t Size;
106 
107     stable_iterator(ptrdiff_t Size) : Size(Size) {}
108 
109   public:
110     static stable_iterator invalid() { return stable_iterator(-1); }
111     stable_iterator() : Size(-1) {}
112 
113     bool isValid() const { return Size >= 0; }
114 
115     /// Returns true if this scope encloses I.
116     /// Returns false if I is invalid.
117     /// This scope must be valid.
118     bool encloses(stable_iterator I) const { return Size <= I.Size; }
119 
120     /// Returns true if this scope strictly encloses I: that is,
121     /// if it encloses I and is not I.
122     /// Returns false is I is invalid.
123     /// This scope must be valid.
124     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
125 
126     friend bool operator==(stable_iterator A, stable_iterator B) {
127       return A.Size == B.Size;
128     }
129     friend bool operator!=(stable_iterator A, stable_iterator B) {
130       return A.Size != B.Size;
131     }
132   };
133 
134   /// Information for lazily generating a cleanup.  Subclasses must be
135   /// POD-like: cleanups will not be destructed, and they will be
136   /// allocated on the cleanup stack and freely copied and moved
137   /// around.
138   ///
139   /// Cleanup implementations should generally be declared in an
140   /// anonymous namespace.
141   class Cleanup {
142     // Anchor the construction vtable.
143     virtual void anchor();
144 
145   protected:
146     ~Cleanup() = default;
147 
148   public:
149     Cleanup(const Cleanup &) = default;
150     Cleanup(Cleanup &&) {}
151     Cleanup() = default;
152 
153     /// Generation flags.
154     class Flags {
155       enum {
156         F_IsForEH = 0x1,
157         F_IsNormalCleanupKind = 0x2,
158         F_IsEHCleanupKind = 0x4,
159         F_HasExitSwitch = 0x8,
160       };
161       unsigned flags;
162 
163     public:
164       Flags() : flags(0) {}
165 
166       /// isForEH - true if the current emission is for an EH cleanup.
167       bool isForEHCleanup() const { return flags & F_IsForEH; }
168       bool isForNormalCleanup() const { return !isForEHCleanup(); }
169       void setIsForEHCleanup() { flags |= F_IsForEH; }
170 
171       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
172       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
173 
174       /// isEHCleanupKind - true if the cleanup was pushed as an EH
175       /// cleanup.
176       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
177       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
178 
179       bool hasExitSwitch() const { return flags & F_HasExitSwitch; }
180       void setHasExitSwitch() { flags |= F_HasExitSwitch; }
181     };
182 
183     /// Emit the cleanup.  For normal cleanups, this is run in the
184     /// same EH context as when the cleanup was pushed, i.e. the
185     /// immediately-enclosing context of the cleanup scope.  For
186     /// EH cleanups, this is run in a terminate context.
187     ///
188     // \param flags cleanup kind.
189     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
190   };
191 
192   /// ConditionalCleanup stores the saved form of its parameters,
193   /// then restores them and performs the cleanup.
194   template <class T, class... As>
195   class ConditionalCleanup final : public Cleanup {
196     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
197     SavedTuple Saved;
198 
199     template <std::size_t... Is>
200     T restore(CodeGenFunction &CGF, std::index_sequence<Is...>) {
201       // It's important that the restores are emitted in order. The braced init
202       // list guarantees that.
203       return T{DominatingValue<As>::restore(CGF, std::get<Is>(Saved))...};
204     }
205 
206     void Emit(CodeGenFunction &CGF, Flags flags) override {
207       restore(CGF, std::index_sequence_for<As...>()).Emit(CGF, flags);
208     }
209 
210   public:
211     ConditionalCleanup(typename DominatingValue<As>::saved_type... A)
212         : Saved(A...) {}
213 
214     ConditionalCleanup(SavedTuple Tuple) : Saved(std::move(Tuple)) {}
215   };
216 
217 private:
218   // The implementation for this class is in CGException.h and
219   // CGException.cpp; the definition is here because it's used as a
220   // member of CodeGenFunction.
221 
222   /// The start of the scope-stack buffer, i.e. the allocated pointer
223   /// for the buffer.  All of these pointers are either simultaneously
224   /// null or simultaneously valid.
225   char *StartOfBuffer;
226 
227   /// The end of the buffer.
228   char *EndOfBuffer;
229 
230   /// The first valid entry in the buffer.
231   char *StartOfData;
232 
233   /// The innermost normal cleanup on the stack.
234   stable_iterator InnermostNormalCleanup;
235 
236   /// The innermost EH scope on the stack.
237   stable_iterator InnermostEHScope;
238 
239   /// The current set of branch fixups.  A branch fixup is a jump to
240   /// an as-yet unemitted label, i.e. a label for which we don't yet
241   /// know the EH stack depth.  Whenever we pop a cleanup, we have
242   /// to thread all the current branch fixups through it.
243   ///
244   /// Fixups are recorded as the Use of the respective branch or
245   /// switch statement.  The use points to the final destination.
246   /// When popping out of a cleanup, these uses are threaded through
247   /// the cleanup and adjusted to point to the new cleanup.
248   ///
249   /// Note that branches are allowed to jump into protected scopes
250   /// in certain situations;  e.g. the following code is legal:
251   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
252   ///     goto foo;
253   ///     A a;
254   ///    foo:
255   ///     bar();
256   SmallVector<BranchFixup, 8> BranchFixups;
257 
258   char *allocate(size_t Size);
259   void deallocate(size_t Size);
260 
261   void *pushCleanup(CleanupKind K, size_t DataSize);
262 
263 public:
264   EHScopeStack() : StartOfBuffer(nullptr), EndOfBuffer(nullptr),
265                    StartOfData(nullptr), InnermostNormalCleanup(stable_end()),
266                    InnermostEHScope(stable_end()) {}
267   ~EHScopeStack() { delete[] StartOfBuffer; }
268 
269   /// Push a lazily-created cleanup on the stack.
270   template <class T, class... As> void pushCleanup(CleanupKind Kind, As... A) {
271     static_assert(alignof(T) <= ScopeStackAlignment,
272                   "Cleanup's alignment is too large.");
273     void *Buffer = pushCleanup(Kind, sizeof(T));
274     Cleanup *Obj = new (Buffer) T(A...);
275     (void) Obj;
276   }
277 
278   /// Push a lazily-created cleanup on the stack. Tuple version.
279   template <class T, class... As>
280   void pushCleanupTuple(CleanupKind Kind, std::tuple<As...> A) {
281     static_assert(alignof(T) <= ScopeStackAlignment,
282                   "Cleanup's alignment is too large.");
283     void *Buffer = pushCleanup(Kind, sizeof(T));
284     Cleanup *Obj = new (Buffer) T(std::move(A));
285     (void) Obj;
286   }
287 
288   // Feel free to add more variants of the following:
289 
290   /// Push a cleanup with non-constant storage requirements on the
291   /// stack.  The cleanup type must provide an additional static method:
292   ///   static size_t getExtraSize(size_t);
293   /// The argument to this method will be the value N, which will also
294   /// be passed as the first argument to the constructor.
295   ///
296   /// The data stored in the extra storage must obey the same
297   /// restrictions as normal cleanup member data.
298   ///
299   /// The pointer returned from this method is valid until the cleanup
300   /// stack is modified.
301   template <class T, class... As>
302   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, As... A) {
303     static_assert(alignof(T) <= ScopeStackAlignment,
304                   "Cleanup's alignment is too large.");
305     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
306     return new (Buffer) T(N, A...);
307   }
308 
309   void pushCopyOfCleanup(CleanupKind Kind, const void *Cleanup, size_t Size) {
310     void *Buffer = pushCleanup(Kind, Size);
311     std::memcpy(Buffer, Cleanup, Size);
312   }
313 
314   /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
315   void popCleanup();
316 
317   /// Push a set of catch handlers on the stack.  The catch is
318   /// uninitialized and will need to have the given number of handlers
319   /// set on it.
320   class EHCatchScope *pushCatch(unsigned NumHandlers);
321 
322   /// Pops a catch scope off the stack.  This is private to CGException.cpp.
323   void popCatch();
324 
325   /// Push an exceptions filter on the stack.
326   class EHFilterScope *pushFilter(unsigned NumFilters);
327 
328   /// Pops an exceptions filter off the stack.
329   void popFilter();
330 
331   /// Push a terminate handler on the stack.
332   void pushTerminate();
333 
334   /// Pops a terminate handler off the stack.
335   void popTerminate();
336 
337   // Returns true iff the current scope is either empty or contains only
338   // lifetime markers, i.e. no real cleanup code
339   bool containsOnlyLifetimeMarkers(stable_iterator Old) const;
340 
341   /// Determines whether the exception-scopes stack is empty.
342   bool empty() const { return StartOfData == EndOfBuffer; }
343 
344   bool requiresLandingPad() const;
345 
346   /// Determines whether there are any normal cleanups on the stack.
347   bool hasNormalCleanups() const {
348     return InnermostNormalCleanup != stable_end();
349   }
350 
351   /// Returns the innermost normal cleanup on the stack, or
352   /// stable_end() if there are no normal cleanups.
353   stable_iterator getInnermostNormalCleanup() const {
354     return InnermostNormalCleanup;
355   }
356   stable_iterator getInnermostActiveNormalCleanup() const;
357 
358   stable_iterator getInnermostEHScope() const {
359     return InnermostEHScope;
360   }
361 
362 
363   /// An unstable reference to a scope-stack depth.  Invalidated by
364   /// pushes but not pops.
365   class iterator;
366 
367   /// Returns an iterator pointing to the innermost EH scope.
368   iterator begin() const;
369 
370   /// Returns an iterator pointing to the outermost EH scope.
371   iterator end() const;
372 
373   /// Create a stable reference to the top of the EH stack.  The
374   /// returned reference is valid until that scope is popped off the
375   /// stack.
376   stable_iterator stable_begin() const {
377     return stable_iterator(EndOfBuffer - StartOfData);
378   }
379 
380   /// Create a stable reference to the bottom of the EH stack.
381   static stable_iterator stable_end() {
382     return stable_iterator(0);
383   }
384 
385   /// Translates an iterator into a stable_iterator.
386   stable_iterator stabilize(iterator it) const;
387 
388   /// Turn a stable reference to a scope depth into a unstable pointer
389   /// to the EH stack.
390   iterator find(stable_iterator save) const;
391 
392   /// Add a branch fixup to the current cleanup scope.
393   BranchFixup &addBranchFixup() {
394     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
395     BranchFixups.push_back(BranchFixup());
396     return BranchFixups.back();
397   }
398 
399   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
400   BranchFixup &getBranchFixup(unsigned I) {
401     assert(I < getNumBranchFixups());
402     return BranchFixups[I];
403   }
404 
405   /// Pops lazily-removed fixups from the end of the list.  This
406   /// should only be called by procedures which have just popped a
407   /// cleanup or resolved one or more fixups.
408   void popNullFixups();
409 
410   /// Clears the branch-fixups list.  This should only be called by
411   /// ResolveAllBranchFixups.
412   void clearFixups() { BranchFixups.clear(); }
413 };
414 
415 } // namespace CodeGen
416 } // namespace clang
417 
418 #endif
419