1 //===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/ADT/STLExtras.h"
10 #include "gtest/gtest.h"
11
12 #include <list>
13 #include <vector>
14
15 using namespace llvm;
16
17 namespace {
18
f(rank<0>)19 int f(rank<0>) { return 0; }
f(rank<1>)20 int f(rank<1>) { return 1; }
f(rank<2>)21 int f(rank<2>) { return 2; }
f(rank<4>)22 int f(rank<4>) { return 4; }
23
TEST(STLExtrasTest,Rank)24 TEST(STLExtrasTest, Rank) {
25 // We shouldn't get ambiguities and should select the overload of the same
26 // rank as the argument.
27 EXPECT_EQ(0, f(rank<0>()));
28 EXPECT_EQ(1, f(rank<1>()));
29 EXPECT_EQ(2, f(rank<2>()));
30
31 // This overload is missing so we end up back at 2.
32 EXPECT_EQ(2, f(rank<3>()));
33
34 // But going past 3 should work fine.
35 EXPECT_EQ(4, f(rank<4>()));
36
37 // And we can even go higher and just fall back to the last overload.
38 EXPECT_EQ(4, f(rank<5>()));
39 EXPECT_EQ(4, f(rank<6>()));
40 }
41
TEST(STLExtrasTest,EnumerateLValue)42 TEST(STLExtrasTest, EnumerateLValue) {
43 // Test that a simple LValue can be enumerated and gives correct results with
44 // multiple types, including the empty container.
45 std::vector<char> foo = {'a', 'b', 'c'};
46 typedef std::pair<std::size_t, char> CharPairType;
47 std::vector<CharPairType> CharResults;
48
49 for (auto X : llvm::enumerate(foo)) {
50 CharResults.emplace_back(X.index(), X.value());
51 }
52 ASSERT_EQ(3u, CharResults.size());
53 EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]);
54 EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]);
55 EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]);
56
57 // Test a const range of a different type.
58 typedef std::pair<std::size_t, int> IntPairType;
59 std::vector<IntPairType> IntResults;
60 const std::vector<int> bar = {1, 2, 3};
61 for (auto X : llvm::enumerate(bar)) {
62 IntResults.emplace_back(X.index(), X.value());
63 }
64 ASSERT_EQ(3u, IntResults.size());
65 EXPECT_EQ(IntPairType(0u, 1), IntResults[0]);
66 EXPECT_EQ(IntPairType(1u, 2), IntResults[1]);
67 EXPECT_EQ(IntPairType(2u, 3), IntResults[2]);
68
69 // Test an empty range.
70 IntResults.clear();
71 const std::vector<int> baz{};
72 for (auto X : llvm::enumerate(baz)) {
73 IntResults.emplace_back(X.index(), X.value());
74 }
75 EXPECT_TRUE(IntResults.empty());
76 }
77
TEST(STLExtrasTest,EnumerateModifyLValue)78 TEST(STLExtrasTest, EnumerateModifyLValue) {
79 // Test that you can modify the underlying entries of an lvalue range through
80 // the enumeration iterator.
81 std::vector<char> foo = {'a', 'b', 'c'};
82
83 for (auto X : llvm::enumerate(foo)) {
84 ++X.value();
85 }
86 EXPECT_EQ('b', foo[0]);
87 EXPECT_EQ('c', foo[1]);
88 EXPECT_EQ('d', foo[2]);
89 }
90
TEST(STLExtrasTest,EnumerateRValueRef)91 TEST(STLExtrasTest, EnumerateRValueRef) {
92 // Test that an rvalue can be enumerated.
93 typedef std::pair<std::size_t, int> PairType;
94 std::vector<PairType> Results;
95
96 auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3});
97
98 for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) {
99 Results.emplace_back(X.index(), X.value());
100 }
101
102 ASSERT_EQ(3u, Results.size());
103 EXPECT_EQ(PairType(0u, 1), Results[0]);
104 EXPECT_EQ(PairType(1u, 2), Results[1]);
105 EXPECT_EQ(PairType(2u, 3), Results[2]);
106 }
107
TEST(STLExtrasTest,EnumerateModifyRValue)108 TEST(STLExtrasTest, EnumerateModifyRValue) {
109 // Test that when enumerating an rvalue, modification still works (even if
110 // this isn't terribly useful, it at least shows that we haven't snuck an
111 // extra const in there somewhere.
112 typedef std::pair<std::size_t, char> PairType;
113 std::vector<PairType> Results;
114
115 for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
116 ++X.value();
117 Results.emplace_back(X.index(), X.value());
118 }
119
120 ASSERT_EQ(3u, Results.size());
121 EXPECT_EQ(PairType(0u, '2'), Results[0]);
122 EXPECT_EQ(PairType(1u, '3'), Results[1]);
123 EXPECT_EQ(PairType(2u, '4'), Results[2]);
124 }
125
126 template <bool B> struct CanMove {};
127 template <> struct CanMove<false> {
128 CanMove(CanMove &&) = delete;
129
130 CanMove() = default;
131 CanMove(const CanMove &) = default;
132 };
133
134 template <bool B> struct CanCopy {};
135 template <> struct CanCopy<false> {
136 CanCopy(const CanCopy &) = delete;
137
138 CanCopy() = default;
139 CanCopy(CanCopy &&) = default;
140 };
141
142 template <bool Moveable, bool Copyable>
143 struct Range : CanMove<Moveable>, CanCopy<Copyable> {
Range__anon921832c60111::Range144 explicit Range(int &C, int &M, int &D) : C(C), M(M), D(D) {}
Range__anon921832c60111::Range145 Range(const Range &R) : CanCopy<Copyable>(R), C(R.C), M(R.M), D(R.D) { ++C; }
Range__anon921832c60111::Range146 Range(Range &&R) : CanMove<Moveable>(std::move(R)), C(R.C), M(R.M), D(R.D) {
147 ++M;
148 }
~Range__anon921832c60111::Range149 ~Range() { ++D; }
150
151 int &C;
152 int &M;
153 int &D;
154
begin__anon921832c60111::Range155 int *begin() { return nullptr; }
end__anon921832c60111::Range156 int *end() { return nullptr; }
157 };
158
TEST(STLExtrasTest,EnumerateLifetimeSemantics)159 TEST(STLExtrasTest, EnumerateLifetimeSemantics) {
160 // Test that when enumerating lvalues and rvalues, there are no surprise
161 // copies or moves.
162
163 // With an rvalue, it should not be destroyed until the end of the scope.
164 int Copies = 0;
165 int Moves = 0;
166 int Destructors = 0;
167 {
168 auto E1 = enumerate(Range<true, false>(Copies, Moves, Destructors));
169 // Doesn't compile. rvalue ranges must be moveable.
170 // auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
171 EXPECT_EQ(0, Copies);
172 EXPECT_EQ(1, Moves);
173 EXPECT_EQ(1, Destructors);
174 }
175 EXPECT_EQ(0, Copies);
176 EXPECT_EQ(1, Moves);
177 EXPECT_EQ(2, Destructors);
178
179 Copies = Moves = Destructors = 0;
180 // With an lvalue, it should not be destroyed even after the end of the scope.
181 // lvalue ranges need be neither copyable nor moveable.
182 Range<false, false> R(Copies, Moves, Destructors);
183 {
184 auto Enumerator = enumerate(R);
185 (void)Enumerator;
186 EXPECT_EQ(0, Copies);
187 EXPECT_EQ(0, Moves);
188 EXPECT_EQ(0, Destructors);
189 }
190 EXPECT_EQ(0, Copies);
191 EXPECT_EQ(0, Moves);
192 EXPECT_EQ(0, Destructors);
193 }
194
TEST(STLExtrasTest,ApplyTuple)195 TEST(STLExtrasTest, ApplyTuple) {
196 auto T = std::make_tuple(1, 3, 7);
197 auto U = llvm::apply_tuple(
198 [](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); },
199 T);
200
201 EXPECT_EQ(-2, std::get<0>(U));
202 EXPECT_EQ(-4, std::get<1>(U));
203 EXPECT_EQ(6, std::get<2>(U));
204
205 auto V = llvm::apply_tuple(
206 [](int A, int B, int C) {
207 return std::make_tuple(std::make_pair(A, char('A' + A)),
208 std::make_pair(B, char('A' + B)),
209 std::make_pair(C, char('A' + C)));
210 },
211 T);
212
213 EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V));
214 EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V));
215 EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V));
216 }
217
218 class apply_variadic {
apply_one(int X)219 static int apply_one(int X) { return X + 1; }
apply_one(char C)220 static char apply_one(char C) { return C + 1; }
apply_one(StringRef S)221 static StringRef apply_one(StringRef S) { return S.drop_back(); }
222
223 public:
operator ()(Ts &&...Items)224 template <typename... Ts> auto operator()(Ts &&... Items) {
225 return std::make_tuple(apply_one(Items)...);
226 }
227 };
228
TEST(STLExtrasTest,ApplyTupleVariadic)229 TEST(STLExtrasTest, ApplyTupleVariadic) {
230 auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X');
231 auto Values = apply_tuple(apply_variadic(), Items);
232
233 EXPECT_EQ(2, std::get<0>(Values));
234 EXPECT_EQ("Tes", std::get<1>(Values));
235 EXPECT_EQ('Y', std::get<2>(Values));
236 }
237
TEST(STLExtrasTest,CountAdaptor)238 TEST(STLExtrasTest, CountAdaptor) {
239 std::vector<int> v;
240
241 v.push_back(1);
242 v.push_back(2);
243 v.push_back(1);
244 v.push_back(4);
245 v.push_back(3);
246 v.push_back(2);
247 v.push_back(1);
248
249 EXPECT_EQ(3, count(v, 1));
250 EXPECT_EQ(2, count(v, 2));
251 EXPECT_EQ(1, count(v, 3));
252 EXPECT_EQ(1, count(v, 4));
253 }
254
TEST(STLExtrasTest,for_each)255 TEST(STLExtrasTest, for_each) {
256 std::vector<int> v{0, 1, 2, 3, 4};
257 int count = 0;
258
259 llvm::for_each(v, [&count](int) { ++count; });
260 EXPECT_EQ(5, count);
261 }
262
TEST(STLExtrasTest,ToVector)263 TEST(STLExtrasTest, ToVector) {
264 std::vector<char> v = {'a', 'b', 'c'};
265 auto Enumerated = to_vector<4>(enumerate(v));
266 ASSERT_EQ(3u, Enumerated.size());
267 for (size_t I = 0; I < v.size(); ++I) {
268 EXPECT_EQ(I, Enumerated[I].index());
269 EXPECT_EQ(v[I], Enumerated[I].value());
270 }
271 }
272
TEST(STLExtrasTest,ConcatRange)273 TEST(STLExtrasTest, ConcatRange) {
274 std::vector<int> Expected = {1, 2, 3, 4, 5, 6, 7, 8};
275 std::vector<int> Test;
276
277 std::vector<int> V1234 = {1, 2, 3, 4};
278 std::list<int> L56 = {5, 6};
279 SmallVector<int, 2> SV78 = {7, 8};
280
281 // Use concat across different sized ranges of different types with different
282 // iterators.
283 for (int &i : concat<int>(V1234, L56, SV78))
284 Test.push_back(i);
285 EXPECT_EQ(Expected, Test);
286
287 // Use concat between a temporary, an L-value, and an R-value to make sure
288 // complex lifetimes work well.
289 Test.clear();
290 for (int &i : concat<int>(std::vector<int>(V1234), L56, std::move(SV78)))
291 Test.push_back(i);
292 EXPECT_EQ(Expected, Test);
293 }
294
TEST(STLExtrasTest,PartitionAdaptor)295 TEST(STLExtrasTest, PartitionAdaptor) {
296 std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
297
298 auto I = partition(V, [](int i) { return i % 2 == 0; });
299 ASSERT_EQ(V.begin() + 4, I);
300
301 // Sort the two halves as partition may have messed with the order.
302 llvm::sort(V.begin(), I);
303 llvm::sort(I, V.end());
304
305 EXPECT_EQ(2, V[0]);
306 EXPECT_EQ(4, V[1]);
307 EXPECT_EQ(6, V[2]);
308 EXPECT_EQ(8, V[3]);
309 EXPECT_EQ(1, V[4]);
310 EXPECT_EQ(3, V[5]);
311 EXPECT_EQ(5, V[6]);
312 EXPECT_EQ(7, V[7]);
313 }
314
TEST(STLExtrasTest,EraseIf)315 TEST(STLExtrasTest, EraseIf) {
316 std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
317
318 erase_if(V, [](int i) { return i % 2 == 0; });
319 EXPECT_EQ(4u, V.size());
320 EXPECT_EQ(1, V[0]);
321 EXPECT_EQ(3, V[1]);
322 EXPECT_EQ(5, V[2]);
323 EXPECT_EQ(7, V[3]);
324 }
325
326 namespace some_namespace {
327 struct some_struct {
328 std::vector<int> data;
329 std::string swap_val;
330 };
331
begin(const some_struct & s)332 std::vector<int>::const_iterator begin(const some_struct &s) {
333 return s.data.begin();
334 }
335
end(const some_struct & s)336 std::vector<int>::const_iterator end(const some_struct &s) {
337 return s.data.end();
338 }
339
swap(some_struct & lhs,some_struct & rhs)340 void swap(some_struct &lhs, some_struct &rhs) {
341 // make swap visible as non-adl swap would even seem to
342 // work with std::swap which defaults to moving
343 lhs.swap_val = "lhs";
344 rhs.swap_val = "rhs";
345 }
346 } // namespace some_namespace
347
TEST(STLExtrasTest,ADLTest)348 TEST(STLExtrasTest, ADLTest) {
349 some_namespace::some_struct s{{1, 2, 3, 4, 5}, ""};
350 some_namespace::some_struct s2{{2, 4, 6, 8, 10}, ""};
351
352 EXPECT_EQ(*adl_begin(s), 1);
353 EXPECT_EQ(*(adl_end(s) - 1), 5);
354
355 adl_swap(s, s2);
356 EXPECT_EQ(s.swap_val, "lhs");
357 EXPECT_EQ(s2.swap_val, "rhs");
358
359 int count = 0;
360 llvm::for_each(s, [&count](int) { ++count; });
361 EXPECT_EQ(5, count);
362 }
363
TEST(STLExtrasTest,EmptyTest)364 TEST(STLExtrasTest, EmptyTest) {
365 std::vector<void*> V;
366 EXPECT_TRUE(llvm::empty(V));
367 V.push_back(nullptr);
368 EXPECT_FALSE(llvm::empty(V));
369
370 std::initializer_list<int> E = {};
371 std::initializer_list<int> NotE = {7, 13, 42};
372 EXPECT_TRUE(llvm::empty(E));
373 EXPECT_FALSE(llvm::empty(NotE));
374
375 auto R0 = make_range(V.begin(), V.begin());
376 EXPECT_TRUE(llvm::empty(R0));
377 auto R1 = make_range(V.begin(), V.end());
378 EXPECT_FALSE(llvm::empty(R1));
379 }
380
TEST(STLExtrasTest,DropBeginTest)381 TEST(STLExtrasTest, DropBeginTest) {
382 SmallVector<int, 5> vec{0, 1, 2, 3, 4};
383
384 for (int n = 0; n < 5; ++n) {
385 int i = n;
386 for (auto &v : drop_begin(vec, n)) {
387 EXPECT_EQ(v, i);
388 i += 1;
389 }
390 EXPECT_EQ(i, 5);
391 }
392 }
393
TEST(STLExtrasTest,EarlyIncrementTest)394 TEST(STLExtrasTest, EarlyIncrementTest) {
395 std::list<int> L = {1, 2, 3, 4};
396
397 auto EIR = make_early_inc_range(L);
398
399 auto I = EIR.begin();
400 auto EI = EIR.end();
401 EXPECT_NE(I, EI);
402
403 EXPECT_EQ(1, *I);
404 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
405 #ifndef NDEBUG
406 // Repeated dereferences are not allowed.
407 EXPECT_DEATH(*I, "Cannot dereference");
408 // Comparison after dereference is not allowed.
409 EXPECT_DEATH((void)(I == EI), "Cannot compare");
410 EXPECT_DEATH((void)(I != EI), "Cannot compare");
411 #endif
412 #endif
413
414 ++I;
415 EXPECT_NE(I, EI);
416 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
417 #ifndef NDEBUG
418 // You cannot increment prior to dereference.
419 EXPECT_DEATH(++I, "Cannot increment");
420 #endif
421 #endif
422 EXPECT_EQ(2, *I);
423 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
424 #ifndef NDEBUG
425 // Repeated dereferences are not allowed.
426 EXPECT_DEATH(*I, "Cannot dereference");
427 #endif
428 #endif
429
430 // Inserting shouldn't break anything. We should be able to keep dereferencing
431 // the currrent iterator and increment. The increment to go to the "next"
432 // iterator from before we inserted.
433 L.insert(std::next(L.begin(), 2), -1);
434 ++I;
435 EXPECT_EQ(3, *I);
436
437 // Erasing the front including the current doesn't break incrementing.
438 L.erase(L.begin(), std::prev(L.end()));
439 ++I;
440 EXPECT_EQ(4, *I);
441 ++I;
442 EXPECT_EQ(EIR.end(), I);
443 }
444
TEST(STLExtrasTest,splat)445 TEST(STLExtrasTest, splat) {
446 std::vector<int> V;
447 EXPECT_FALSE(is_splat(V));
448
449 V.push_back(1);
450 EXPECT_TRUE(is_splat(V));
451
452 V.push_back(1);
453 V.push_back(1);
454 EXPECT_TRUE(is_splat(V));
455
456 V.push_back(2);
457 EXPECT_FALSE(is_splat(V));
458 }
459
TEST(STLExtrasTest,to_address)460 TEST(STLExtrasTest, to_address) {
461 int *V1 = new int;
462 EXPECT_EQ(V1, to_address(V1));
463
464 // Check fancy pointer overload for unique_ptr
465 std::unique_ptr<int> V2 = std::make_unique<int>(0);
466 EXPECT_EQ(V2.get(), to_address(V2));
467
468 V2.reset(V1);
469 EXPECT_EQ(V1, to_address(V2));
470 V2.release();
471
472 // Check fancy pointer overload for shared_ptr
473 std::shared_ptr<int> V3 = std::make_shared<int>(0);
474 std::shared_ptr<int> V4 = V3;
475 EXPECT_EQ(V3.get(), V4.get());
476 EXPECT_EQ(V3.get(), to_address(V3));
477 EXPECT_EQ(V4.get(), to_address(V4));
478
479 V3.reset(V1);
480 EXPECT_EQ(V1, to_address(V3));
481 }
482
TEST(STLExtrasTest,partition_point)483 TEST(STLExtrasTest, partition_point) {
484 std::vector<int> V = {1, 3, 5, 7, 9};
485
486 // Range version.
487 EXPECT_EQ(V.begin() + 3,
488 partition_point(V, [](unsigned X) { return X < 7; }));
489 EXPECT_EQ(V.begin(), partition_point(V, [](unsigned X) { return X < 1; }));
490 EXPECT_EQ(V.end(), partition_point(V, [](unsigned X) { return X < 50; }));
491 }
492
TEST(STLExtrasTest,hasSingleElement)493 TEST(STLExtrasTest, hasSingleElement) {
494 const std::vector<int> V0 = {}, V1 = {1}, V2 = {1, 2};
495 const std::vector<int> V10(10);
496
497 EXPECT_EQ(hasSingleElement(V0), false);
498 EXPECT_EQ(hasSingleElement(V1), true);
499 EXPECT_EQ(hasSingleElement(V2), false);
500 EXPECT_EQ(hasSingleElement(V10), false);
501 }
502
TEST(STLExtrasTest,hasNItems)503 TEST(STLExtrasTest, hasNItems) {
504 const std::list<int> V0 = {}, V1 = {1}, V2 = {1, 2};
505 const std::list<int> V3 = {1, 3, 5};
506
507 EXPECT_TRUE(hasNItems(V0, 0));
508 EXPECT_FALSE(hasNItems(V0, 2));
509 EXPECT_TRUE(hasNItems(V1, 1));
510 EXPECT_FALSE(hasNItems(V1, 2));
511
512 EXPECT_TRUE(hasNItems(V3.begin(), V3.end(), 3, [](int x) { return x < 10; }));
513 EXPECT_TRUE(hasNItems(V3.begin(), V3.end(), 0, [](int x) { return x > 10; }));
514 EXPECT_TRUE(hasNItems(V3.begin(), V3.end(), 2, [](int x) { return x < 5; }));
515 }
516
TEST(STLExtras,hasNItemsOrMore)517 TEST(STLExtras, hasNItemsOrMore) {
518 const std::list<int> V0 = {}, V1 = {1}, V2 = {1, 2};
519 const std::list<int> V3 = {1, 3, 5};
520
521 EXPECT_TRUE(hasNItemsOrMore(V1, 1));
522 EXPECT_FALSE(hasNItemsOrMore(V1, 2));
523
524 EXPECT_TRUE(hasNItemsOrMore(V2, 1));
525 EXPECT_TRUE(hasNItemsOrMore(V2, 2));
526 EXPECT_FALSE(hasNItemsOrMore(V2, 3));
527
528 EXPECT_TRUE(hasNItemsOrMore(V3, 3));
529 EXPECT_FALSE(hasNItemsOrMore(V3, 4));
530
531 EXPECT_TRUE(
532 hasNItemsOrMore(V3.begin(), V3.end(), 3, [](int x) { return x < 10; }));
533 EXPECT_FALSE(
534 hasNItemsOrMore(V3.begin(), V3.end(), 3, [](int x) { return x > 10; }));
535 EXPECT_TRUE(
536 hasNItemsOrMore(V3.begin(), V3.end(), 2, [](int x) { return x < 5; }));
537 }
538
TEST(STLExtras,hasNItemsOrLess)539 TEST(STLExtras, hasNItemsOrLess) {
540 const std::list<int> V0 = {}, V1 = {1}, V2 = {1, 2};
541 const std::list<int> V3 = {1, 3, 5};
542
543 EXPECT_TRUE(hasNItemsOrLess(V0, 0));
544 EXPECT_TRUE(hasNItemsOrLess(V0, 1));
545 EXPECT_TRUE(hasNItemsOrLess(V0, 2));
546
547 EXPECT_FALSE(hasNItemsOrLess(V1, 0));
548 EXPECT_TRUE(hasNItemsOrLess(V1, 1));
549 EXPECT_TRUE(hasNItemsOrLess(V1, 2));
550
551 EXPECT_FALSE(hasNItemsOrLess(V2, 0));
552 EXPECT_FALSE(hasNItemsOrLess(V2, 1));
553 EXPECT_TRUE(hasNItemsOrLess(V2, 2));
554 EXPECT_TRUE(hasNItemsOrLess(V2, 3));
555
556 EXPECT_FALSE(hasNItemsOrLess(V3, 0));
557 EXPECT_FALSE(hasNItemsOrLess(V3, 1));
558 EXPECT_FALSE(hasNItemsOrLess(V3, 2));
559 EXPECT_TRUE(hasNItemsOrLess(V3, 3));
560 EXPECT_TRUE(hasNItemsOrLess(V3, 4));
561
562 EXPECT_TRUE(
563 hasNItemsOrLess(V3.begin(), V3.end(), 1, [](int x) { return x == 1; }));
564 EXPECT_TRUE(
565 hasNItemsOrLess(V3.begin(), V3.end(), 2, [](int x) { return x < 5; }));
566 EXPECT_TRUE(
567 hasNItemsOrLess(V3.begin(), V3.end(), 5, [](int x) { return x < 5; }));
568 EXPECT_FALSE(
569 hasNItemsOrLess(V3.begin(), V3.end(), 2, [](int x) { return x < 10; }));
570 }
571 } // namespace
572