1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements extra semantic analysis beyond what is enforced
10 // by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/AttrIterator.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/AST/UnresolvedSet.h"
39 #include "clang/Basic/AddressSpaces.h"
40 #include "clang/Basic/CharInfo.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/IdentifierTable.h"
43 #include "clang/Basic/LLVM.h"
44 #include "clang/Basic/LangOptions.h"
45 #include "clang/Basic/OpenCLOptions.h"
46 #include "clang/Basic/OperatorKinds.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/SourceLocation.h"
49 #include "clang/Basic/SourceManager.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/SyncScope.h"
52 #include "clang/Basic/TargetBuiltins.h"
53 #include "clang/Basic/TargetCXXABI.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "clang/Basic/TypeTraits.h"
56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57 #include "clang/Sema/Initialization.h"
58 #include "clang/Sema/Lookup.h"
59 #include "clang/Sema/Ownership.h"
60 #include "clang/Sema/Scope.h"
61 #include "clang/Sema/ScopeInfo.h"
62 #include "clang/Sema/Sema.h"
63 #include "clang/Sema/SemaInternal.h"
64 #include "llvm/ADT/APFloat.h"
65 #include "llvm/ADT/APInt.h"
66 #include "llvm/ADT/APSInt.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/STLExtras.h"
73 #include "llvm/ADT/SmallBitVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallString.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/StringSet.h"
79 #include "llvm/ADT/StringSwitch.h"
80 #include "llvm/ADT/Triple.h"
81 #include "llvm/Support/AtomicOrdering.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/ConvertUTF.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/Locale.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/SaveAndRestore.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include <algorithm>
92 #include <bitset>
93 #include <cassert>
94 #include <cstddef>
95 #include <cstdint>
96 #include <functional>
97 #include <limits>
98 #include <string>
99 #include <tuple>
100 #include <utility>
101
102 using namespace clang;
103 using namespace sema;
104
getLocationOfStringLiteralByte(const StringLiteral * SL,unsigned ByteNo) const105 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
106 unsigned ByteNo) const {
107 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
108 Context.getTargetInfo());
109 }
110
111 /// Checks that a call expression's argument count is the desired number.
112 /// This is useful when doing custom type-checking. Returns true on error.
checkArgCount(Sema & S,CallExpr * call,unsigned desiredArgCount)113 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
114 unsigned argCount = call->getNumArgs();
115 if (argCount == desiredArgCount) return false;
116
117 if (argCount < desiredArgCount)
118 return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
119 << 0 /*function call*/ << desiredArgCount << argCount
120 << call->getSourceRange();
121
122 // Highlight all the excess arguments.
123 SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
124 call->getArg(argCount - 1)->getEndLoc());
125
126 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
127 << 0 /*function call*/ << desiredArgCount << argCount
128 << call->getArg(1)->getSourceRange();
129 }
130
131 /// Check that the first argument to __builtin_annotation is an integer
132 /// and the second argument is a non-wide string literal.
SemaBuiltinAnnotation(Sema & S,CallExpr * TheCall)133 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
134 if (checkArgCount(S, TheCall, 2))
135 return true;
136
137 // First argument should be an integer.
138 Expr *ValArg = TheCall->getArg(0);
139 QualType Ty = ValArg->getType();
140 if (!Ty->isIntegerType()) {
141 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
142 << ValArg->getSourceRange();
143 return true;
144 }
145
146 // Second argument should be a constant string.
147 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
148 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
149 if (!Literal || !Literal->isAscii()) {
150 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
151 << StrArg->getSourceRange();
152 return true;
153 }
154
155 TheCall->setType(Ty);
156 return false;
157 }
158
SemaBuiltinMSVCAnnotation(Sema & S,CallExpr * TheCall)159 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
160 // We need at least one argument.
161 if (TheCall->getNumArgs() < 1) {
162 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
163 << 0 << 1 << TheCall->getNumArgs()
164 << TheCall->getCallee()->getSourceRange();
165 return true;
166 }
167
168 // All arguments should be wide string literals.
169 for (Expr *Arg : TheCall->arguments()) {
170 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
171 if (!Literal || !Literal->isWide()) {
172 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
173 << Arg->getSourceRange();
174 return true;
175 }
176 }
177
178 return false;
179 }
180
181 /// Check that the argument to __builtin_addressof is a glvalue, and set the
182 /// result type to the corresponding pointer type.
SemaBuiltinAddressof(Sema & S,CallExpr * TheCall)183 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
184 if (checkArgCount(S, TheCall, 1))
185 return true;
186
187 ExprResult Arg(TheCall->getArg(0));
188 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
189 if (ResultType.isNull())
190 return true;
191
192 TheCall->setArg(0, Arg.get());
193 TheCall->setType(ResultType);
194 return false;
195 }
196
197 /// Check the number of arguments and set the result type to
198 /// the argument type.
SemaBuiltinPreserveAI(Sema & S,CallExpr * TheCall)199 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
200 if (checkArgCount(S, TheCall, 1))
201 return true;
202
203 TheCall->setType(TheCall->getArg(0)->getType());
204 return false;
205 }
206
207 /// Check that the value argument for __builtin_is_aligned(value, alignment) and
208 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
209 /// type (but not a function pointer) and that the alignment is a power-of-two.
SemaBuiltinAlignment(Sema & S,CallExpr * TheCall,unsigned ID)210 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
211 if (checkArgCount(S, TheCall, 2))
212 return true;
213
214 clang::Expr *Source = TheCall->getArg(0);
215 bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
216
217 auto IsValidIntegerType = [](QualType Ty) {
218 return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
219 };
220 QualType SrcTy = Source->getType();
221 // We should also be able to use it with arrays (but not functions!).
222 if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
223 SrcTy = S.Context.getDecayedType(SrcTy);
224 }
225 if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
226 SrcTy->isFunctionPointerType()) {
227 // FIXME: this is not quite the right error message since we don't allow
228 // floating point types, or member pointers.
229 S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
230 << SrcTy;
231 return true;
232 }
233
234 clang::Expr *AlignOp = TheCall->getArg(1);
235 if (!IsValidIntegerType(AlignOp->getType())) {
236 S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
237 << AlignOp->getType();
238 return true;
239 }
240 Expr::EvalResult AlignResult;
241 unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
242 // We can't check validity of alignment if it is value dependent.
243 if (!AlignOp->isValueDependent() &&
244 AlignOp->EvaluateAsInt(AlignResult, S.Context,
245 Expr::SE_AllowSideEffects)) {
246 llvm::APSInt AlignValue = AlignResult.Val.getInt();
247 llvm::APSInt MaxValue(
248 llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
249 if (AlignValue < 1) {
250 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
251 return true;
252 }
253 if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
254 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
255 << MaxValue.toString(10);
256 return true;
257 }
258 if (!AlignValue.isPowerOf2()) {
259 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
260 return true;
261 }
262 if (AlignValue == 1) {
263 S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
264 << IsBooleanAlignBuiltin;
265 }
266 }
267
268 ExprResult SrcArg = S.PerformCopyInitialization(
269 InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
270 SourceLocation(), Source);
271 if (SrcArg.isInvalid())
272 return true;
273 TheCall->setArg(0, SrcArg.get());
274 ExprResult AlignArg =
275 S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
276 S.Context, AlignOp->getType(), false),
277 SourceLocation(), AlignOp);
278 if (AlignArg.isInvalid())
279 return true;
280 TheCall->setArg(1, AlignArg.get());
281 // For align_up/align_down, the return type is the same as the (potentially
282 // decayed) argument type including qualifiers. For is_aligned(), the result
283 // is always bool.
284 TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
285 return false;
286 }
287
SemaBuiltinOverflow(Sema & S,CallExpr * TheCall,unsigned BuiltinID)288 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
289 unsigned BuiltinID) {
290 if (checkArgCount(S, TheCall, 3))
291 return true;
292
293 // First two arguments should be integers.
294 for (unsigned I = 0; I < 2; ++I) {
295 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
296 if (Arg.isInvalid()) return true;
297 TheCall->setArg(I, Arg.get());
298
299 QualType Ty = Arg.get()->getType();
300 if (!Ty->isIntegerType()) {
301 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
302 << Ty << Arg.get()->getSourceRange();
303 return true;
304 }
305 }
306
307 // Third argument should be a pointer to a non-const integer.
308 // IRGen correctly handles volatile, restrict, and address spaces, and
309 // the other qualifiers aren't possible.
310 {
311 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
312 if (Arg.isInvalid()) return true;
313 TheCall->setArg(2, Arg.get());
314
315 QualType Ty = Arg.get()->getType();
316 const auto *PtrTy = Ty->getAs<PointerType>();
317 if (!PtrTy ||
318 !PtrTy->getPointeeType()->isIntegerType() ||
319 PtrTy->getPointeeType().isConstQualified()) {
320 S.Diag(Arg.get()->getBeginLoc(),
321 diag::err_overflow_builtin_must_be_ptr_int)
322 << Ty << Arg.get()->getSourceRange();
323 return true;
324 }
325 }
326
327 // Disallow signed ExtIntType args larger than 128 bits to mul function until
328 // we improve backend support.
329 if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
330 for (unsigned I = 0; I < 3; ++I) {
331 const auto Arg = TheCall->getArg(I);
332 // Third argument will be a pointer.
333 auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
334 if (Ty->isExtIntType() && Ty->isSignedIntegerType() &&
335 S.getASTContext().getIntWidth(Ty) > 128)
336 return S.Diag(Arg->getBeginLoc(),
337 diag::err_overflow_builtin_ext_int_max_size)
338 << 128;
339 }
340 }
341
342 return false;
343 }
344
SemaBuiltinCallWithStaticChain(Sema & S,CallExpr * BuiltinCall)345 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
346 if (checkArgCount(S, BuiltinCall, 2))
347 return true;
348
349 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
350 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
351 Expr *Call = BuiltinCall->getArg(0);
352 Expr *Chain = BuiltinCall->getArg(1);
353
354 if (Call->getStmtClass() != Stmt::CallExprClass) {
355 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
356 << Call->getSourceRange();
357 return true;
358 }
359
360 auto CE = cast<CallExpr>(Call);
361 if (CE->getCallee()->getType()->isBlockPointerType()) {
362 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
363 << Call->getSourceRange();
364 return true;
365 }
366
367 const Decl *TargetDecl = CE->getCalleeDecl();
368 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
369 if (FD->getBuiltinID()) {
370 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
371 << Call->getSourceRange();
372 return true;
373 }
374
375 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
376 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
377 << Call->getSourceRange();
378 return true;
379 }
380
381 ExprResult ChainResult = S.UsualUnaryConversions(Chain);
382 if (ChainResult.isInvalid())
383 return true;
384 if (!ChainResult.get()->getType()->isPointerType()) {
385 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
386 << Chain->getSourceRange();
387 return true;
388 }
389
390 QualType ReturnTy = CE->getCallReturnType(S.Context);
391 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
392 QualType BuiltinTy = S.Context.getFunctionType(
393 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
394 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
395
396 Builtin =
397 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
398
399 BuiltinCall->setType(CE->getType());
400 BuiltinCall->setValueKind(CE->getValueKind());
401 BuiltinCall->setObjectKind(CE->getObjectKind());
402 BuiltinCall->setCallee(Builtin);
403 BuiltinCall->setArg(1, ChainResult.get());
404
405 return false;
406 }
407
408 namespace {
409
410 class EstimateSizeFormatHandler
411 : public analyze_format_string::FormatStringHandler {
412 size_t Size;
413
414 public:
EstimateSizeFormatHandler(StringRef Format)415 EstimateSizeFormatHandler(StringRef Format)
416 : Size(std::min(Format.find(0), Format.size()) +
417 1 /* null byte always written by sprintf */) {}
418
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char *,unsigned SpecifierLen)419 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
420 const char *, unsigned SpecifierLen) override {
421
422 const size_t FieldWidth = computeFieldWidth(FS);
423 const size_t Precision = computePrecision(FS);
424
425 // The actual format.
426 switch (FS.getConversionSpecifier().getKind()) {
427 // Just a char.
428 case analyze_format_string::ConversionSpecifier::cArg:
429 case analyze_format_string::ConversionSpecifier::CArg:
430 Size += std::max(FieldWidth, (size_t)1);
431 break;
432 // Just an integer.
433 case analyze_format_string::ConversionSpecifier::dArg:
434 case analyze_format_string::ConversionSpecifier::DArg:
435 case analyze_format_string::ConversionSpecifier::iArg:
436 case analyze_format_string::ConversionSpecifier::oArg:
437 case analyze_format_string::ConversionSpecifier::OArg:
438 case analyze_format_string::ConversionSpecifier::uArg:
439 case analyze_format_string::ConversionSpecifier::UArg:
440 case analyze_format_string::ConversionSpecifier::xArg:
441 case analyze_format_string::ConversionSpecifier::XArg:
442 Size += std::max(FieldWidth, Precision);
443 break;
444
445 // %g style conversion switches between %f or %e style dynamically.
446 // %f always takes less space, so default to it.
447 case analyze_format_string::ConversionSpecifier::gArg:
448 case analyze_format_string::ConversionSpecifier::GArg:
449
450 // Floating point number in the form '[+]ddd.ddd'.
451 case analyze_format_string::ConversionSpecifier::fArg:
452 case analyze_format_string::ConversionSpecifier::FArg:
453 Size += std::max(FieldWidth, 1 /* integer part */ +
454 (Precision ? 1 + Precision
455 : 0) /* period + decimal */);
456 break;
457
458 // Floating point number in the form '[-]d.ddde[+-]dd'.
459 case analyze_format_string::ConversionSpecifier::eArg:
460 case analyze_format_string::ConversionSpecifier::EArg:
461 Size +=
462 std::max(FieldWidth,
463 1 /* integer part */ +
464 (Precision ? 1 + Precision : 0) /* period + decimal */ +
465 1 /* e or E letter */ + 2 /* exponent */);
466 break;
467
468 // Floating point number in the form '[-]0xh.hhhhp±dd'.
469 case analyze_format_string::ConversionSpecifier::aArg:
470 case analyze_format_string::ConversionSpecifier::AArg:
471 Size +=
472 std::max(FieldWidth,
473 2 /* 0x */ + 1 /* integer part */ +
474 (Precision ? 1 + Precision : 0) /* period + decimal */ +
475 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
476 break;
477
478 // Just a string.
479 case analyze_format_string::ConversionSpecifier::sArg:
480 case analyze_format_string::ConversionSpecifier::SArg:
481 Size += FieldWidth;
482 break;
483
484 // Just a pointer in the form '0xddd'.
485 case analyze_format_string::ConversionSpecifier::pArg:
486 Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
487 break;
488
489 // A plain percent.
490 case analyze_format_string::ConversionSpecifier::PercentArg:
491 Size += 1;
492 break;
493
494 default:
495 break;
496 }
497
498 Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
499
500 if (FS.hasAlternativeForm()) {
501 switch (FS.getConversionSpecifier().getKind()) {
502 default:
503 break;
504 // Force a leading '0'.
505 case analyze_format_string::ConversionSpecifier::oArg:
506 Size += 1;
507 break;
508 // Force a leading '0x'.
509 case analyze_format_string::ConversionSpecifier::xArg:
510 case analyze_format_string::ConversionSpecifier::XArg:
511 Size += 2;
512 break;
513 // Force a period '.' before decimal, even if precision is 0.
514 case analyze_format_string::ConversionSpecifier::aArg:
515 case analyze_format_string::ConversionSpecifier::AArg:
516 case analyze_format_string::ConversionSpecifier::eArg:
517 case analyze_format_string::ConversionSpecifier::EArg:
518 case analyze_format_string::ConversionSpecifier::fArg:
519 case analyze_format_string::ConversionSpecifier::FArg:
520 case analyze_format_string::ConversionSpecifier::gArg:
521 case analyze_format_string::ConversionSpecifier::GArg:
522 Size += (Precision ? 0 : 1);
523 break;
524 }
525 }
526 assert(SpecifierLen <= Size && "no underflow");
527 Size -= SpecifierLen;
528 return true;
529 }
530
getSizeLowerBound() const531 size_t getSizeLowerBound() const { return Size; }
532
533 private:
computeFieldWidth(const analyze_printf::PrintfSpecifier & FS)534 static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
535 const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
536 size_t FieldWidth = 0;
537 if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
538 FieldWidth = FW.getConstantAmount();
539 return FieldWidth;
540 }
541
computePrecision(const analyze_printf::PrintfSpecifier & FS)542 static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
543 const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
544 size_t Precision = 0;
545
546 // See man 3 printf for default precision value based on the specifier.
547 switch (FW.getHowSpecified()) {
548 case analyze_format_string::OptionalAmount::NotSpecified:
549 switch (FS.getConversionSpecifier().getKind()) {
550 default:
551 break;
552 case analyze_format_string::ConversionSpecifier::dArg: // %d
553 case analyze_format_string::ConversionSpecifier::DArg: // %D
554 case analyze_format_string::ConversionSpecifier::iArg: // %i
555 Precision = 1;
556 break;
557 case analyze_format_string::ConversionSpecifier::oArg: // %d
558 case analyze_format_string::ConversionSpecifier::OArg: // %D
559 case analyze_format_string::ConversionSpecifier::uArg: // %d
560 case analyze_format_string::ConversionSpecifier::UArg: // %D
561 case analyze_format_string::ConversionSpecifier::xArg: // %d
562 case analyze_format_string::ConversionSpecifier::XArg: // %D
563 Precision = 1;
564 break;
565 case analyze_format_string::ConversionSpecifier::fArg: // %f
566 case analyze_format_string::ConversionSpecifier::FArg: // %F
567 case analyze_format_string::ConversionSpecifier::eArg: // %e
568 case analyze_format_string::ConversionSpecifier::EArg: // %E
569 case analyze_format_string::ConversionSpecifier::gArg: // %g
570 case analyze_format_string::ConversionSpecifier::GArg: // %G
571 Precision = 6;
572 break;
573 case analyze_format_string::ConversionSpecifier::pArg: // %d
574 Precision = 1;
575 break;
576 }
577 break;
578 case analyze_format_string::OptionalAmount::Constant:
579 Precision = FW.getConstantAmount();
580 break;
581 default:
582 break;
583 }
584 return Precision;
585 }
586 };
587
588 } // namespace
589
590 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a
591 /// __builtin_*_chk function, then use the object size argument specified in the
592 /// source. Otherwise, infer the object size using __builtin_object_size.
checkFortifiedBuiltinMemoryFunction(FunctionDecl * FD,CallExpr * TheCall)593 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
594 CallExpr *TheCall) {
595 // FIXME: There are some more useful checks we could be doing here:
596 // - Evaluate strlen of strcpy arguments, use as object size.
597
598 if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
599 isConstantEvaluated())
600 return;
601
602 unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
603 if (!BuiltinID)
604 return;
605
606 const TargetInfo &TI = getASTContext().getTargetInfo();
607 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
608
609 unsigned DiagID = 0;
610 bool IsChkVariant = false;
611 Optional<llvm::APSInt> UsedSize;
612 unsigned SizeIndex, ObjectIndex;
613 switch (BuiltinID) {
614 default:
615 return;
616 case Builtin::BIsprintf:
617 case Builtin::BI__builtin___sprintf_chk: {
618 size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
619 auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
620
621 if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
622
623 if (!Format->isAscii() && !Format->isUTF8())
624 return;
625
626 StringRef FormatStrRef = Format->getString();
627 EstimateSizeFormatHandler H(FormatStrRef);
628 const char *FormatBytes = FormatStrRef.data();
629 const ConstantArrayType *T =
630 Context.getAsConstantArrayType(Format->getType());
631 assert(T && "String literal not of constant array type!");
632 size_t TypeSize = T->getSize().getZExtValue();
633
634 // In case there's a null byte somewhere.
635 size_t StrLen =
636 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
637 if (!analyze_format_string::ParsePrintfString(
638 H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
639 Context.getTargetInfo(), false)) {
640 DiagID = diag::warn_fortify_source_format_overflow;
641 UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
642 .extOrTrunc(SizeTypeWidth);
643 if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
644 IsChkVariant = true;
645 ObjectIndex = 2;
646 } else {
647 IsChkVariant = false;
648 ObjectIndex = 0;
649 }
650 break;
651 }
652 }
653 return;
654 }
655 case Builtin::BI__builtin___memcpy_chk:
656 case Builtin::BI__builtin___memmove_chk:
657 case Builtin::BI__builtin___memset_chk:
658 case Builtin::BI__builtin___strlcat_chk:
659 case Builtin::BI__builtin___strlcpy_chk:
660 case Builtin::BI__builtin___strncat_chk:
661 case Builtin::BI__builtin___strncpy_chk:
662 case Builtin::BI__builtin___stpncpy_chk:
663 case Builtin::BI__builtin___memccpy_chk:
664 case Builtin::BI__builtin___mempcpy_chk: {
665 DiagID = diag::warn_builtin_chk_overflow;
666 IsChkVariant = true;
667 SizeIndex = TheCall->getNumArgs() - 2;
668 ObjectIndex = TheCall->getNumArgs() - 1;
669 break;
670 }
671
672 case Builtin::BI__builtin___snprintf_chk:
673 case Builtin::BI__builtin___vsnprintf_chk: {
674 DiagID = diag::warn_builtin_chk_overflow;
675 IsChkVariant = true;
676 SizeIndex = 1;
677 ObjectIndex = 3;
678 break;
679 }
680
681 case Builtin::BIstrncat:
682 case Builtin::BI__builtin_strncat:
683 case Builtin::BIstrncpy:
684 case Builtin::BI__builtin_strncpy:
685 case Builtin::BIstpncpy:
686 case Builtin::BI__builtin_stpncpy: {
687 // Whether these functions overflow depends on the runtime strlen of the
688 // string, not just the buffer size, so emitting the "always overflow"
689 // diagnostic isn't quite right. We should still diagnose passing a buffer
690 // size larger than the destination buffer though; this is a runtime abort
691 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
692 DiagID = diag::warn_fortify_source_size_mismatch;
693 SizeIndex = TheCall->getNumArgs() - 1;
694 ObjectIndex = 0;
695 break;
696 }
697
698 case Builtin::BImemcpy:
699 case Builtin::BI__builtin_memcpy:
700 case Builtin::BImemmove:
701 case Builtin::BI__builtin_memmove:
702 case Builtin::BImemset:
703 case Builtin::BI__builtin_memset:
704 case Builtin::BImempcpy:
705 case Builtin::BI__builtin_mempcpy: {
706 DiagID = diag::warn_fortify_source_overflow;
707 SizeIndex = TheCall->getNumArgs() - 1;
708 ObjectIndex = 0;
709 break;
710 }
711 case Builtin::BIsnprintf:
712 case Builtin::BI__builtin_snprintf:
713 case Builtin::BIvsnprintf:
714 case Builtin::BI__builtin_vsnprintf: {
715 DiagID = diag::warn_fortify_source_size_mismatch;
716 SizeIndex = 1;
717 ObjectIndex = 0;
718 break;
719 }
720 }
721
722 llvm::APSInt ObjectSize;
723 // For __builtin___*_chk, the object size is explicitly provided by the caller
724 // (usually using __builtin_object_size). Use that value to check this call.
725 if (IsChkVariant) {
726 Expr::EvalResult Result;
727 Expr *SizeArg = TheCall->getArg(ObjectIndex);
728 if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
729 return;
730 ObjectSize = Result.Val.getInt();
731
732 // Otherwise, try to evaluate an imaginary call to __builtin_object_size.
733 } else {
734 // If the parameter has a pass_object_size attribute, then we should use its
735 // (potentially) more strict checking mode. Otherwise, conservatively assume
736 // type 0.
737 int BOSType = 0;
738 if (const auto *POS =
739 FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>())
740 BOSType = POS->getType();
741
742 Expr *ObjArg = TheCall->getArg(ObjectIndex);
743 uint64_t Result;
744 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
745 return;
746 // Get the object size in the target's size_t width.
747 ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
748 }
749
750 // Evaluate the number of bytes of the object that this call will use.
751 if (!UsedSize) {
752 Expr::EvalResult Result;
753 Expr *UsedSizeArg = TheCall->getArg(SizeIndex);
754 if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext()))
755 return;
756 UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth);
757 }
758
759 if (UsedSize.getValue().ule(ObjectSize))
760 return;
761
762 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
763 // Skim off the details of whichever builtin was called to produce a better
764 // diagnostic, as it's unlikley that the user wrote the __builtin explicitly.
765 if (IsChkVariant) {
766 FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
767 FunctionName = FunctionName.drop_back(std::strlen("_chk"));
768 } else if (FunctionName.startswith("__builtin_")) {
769 FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
770 }
771
772 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
773 PDiag(DiagID)
774 << FunctionName << ObjectSize.toString(/*Radix=*/10)
775 << UsedSize.getValue().toString(/*Radix=*/10));
776 }
777
SemaBuiltinSEHScopeCheck(Sema & SemaRef,CallExpr * TheCall,Scope::ScopeFlags NeededScopeFlags,unsigned DiagID)778 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
779 Scope::ScopeFlags NeededScopeFlags,
780 unsigned DiagID) {
781 // Scopes aren't available during instantiation. Fortunately, builtin
782 // functions cannot be template args so they cannot be formed through template
783 // instantiation. Therefore checking once during the parse is sufficient.
784 if (SemaRef.inTemplateInstantiation())
785 return false;
786
787 Scope *S = SemaRef.getCurScope();
788 while (S && !S->isSEHExceptScope())
789 S = S->getParent();
790 if (!S || !(S->getFlags() & NeededScopeFlags)) {
791 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
792 SemaRef.Diag(TheCall->getExprLoc(), DiagID)
793 << DRE->getDecl()->getIdentifier();
794 return true;
795 }
796
797 return false;
798 }
799
isBlockPointer(Expr * Arg)800 static inline bool isBlockPointer(Expr *Arg) {
801 return Arg->getType()->isBlockPointerType();
802 }
803
804 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
805 /// void*, which is a requirement of device side enqueue.
checkOpenCLBlockArgs(Sema & S,Expr * BlockArg)806 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
807 const BlockPointerType *BPT =
808 cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
809 ArrayRef<QualType> Params =
810 BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
811 unsigned ArgCounter = 0;
812 bool IllegalParams = false;
813 // Iterate through the block parameters until either one is found that is not
814 // a local void*, or the block is valid.
815 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
816 I != E; ++I, ++ArgCounter) {
817 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
818 (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
819 LangAS::opencl_local) {
820 // Get the location of the error. If a block literal has been passed
821 // (BlockExpr) then we can point straight to the offending argument,
822 // else we just point to the variable reference.
823 SourceLocation ErrorLoc;
824 if (isa<BlockExpr>(BlockArg)) {
825 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
826 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
827 } else if (isa<DeclRefExpr>(BlockArg)) {
828 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
829 }
830 S.Diag(ErrorLoc,
831 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
832 IllegalParams = true;
833 }
834 }
835
836 return IllegalParams;
837 }
838
checkOpenCLSubgroupExt(Sema & S,CallExpr * Call)839 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
840 if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) {
841 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
842 << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
843 return true;
844 }
845 return false;
846 }
847
SemaOpenCLBuiltinNDRangeAndBlock(Sema & S,CallExpr * TheCall)848 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
849 if (checkArgCount(S, TheCall, 2))
850 return true;
851
852 if (checkOpenCLSubgroupExt(S, TheCall))
853 return true;
854
855 // First argument is an ndrange_t type.
856 Expr *NDRangeArg = TheCall->getArg(0);
857 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
858 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
859 << TheCall->getDirectCallee() << "'ndrange_t'";
860 return true;
861 }
862
863 Expr *BlockArg = TheCall->getArg(1);
864 if (!isBlockPointer(BlockArg)) {
865 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
866 << TheCall->getDirectCallee() << "block";
867 return true;
868 }
869 return checkOpenCLBlockArgs(S, BlockArg);
870 }
871
872 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
873 /// get_kernel_work_group_size
874 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
SemaOpenCLBuiltinKernelWorkGroupSize(Sema & S,CallExpr * TheCall)875 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
876 if (checkArgCount(S, TheCall, 1))
877 return true;
878
879 Expr *BlockArg = TheCall->getArg(0);
880 if (!isBlockPointer(BlockArg)) {
881 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
882 << TheCall->getDirectCallee() << "block";
883 return true;
884 }
885 return checkOpenCLBlockArgs(S, BlockArg);
886 }
887
888 /// Diagnose integer type and any valid implicit conversion to it.
889 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
890 const QualType &IntType);
891
checkOpenCLEnqueueLocalSizeArgs(Sema & S,CallExpr * TheCall,unsigned Start,unsigned End)892 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
893 unsigned Start, unsigned End) {
894 bool IllegalParams = false;
895 for (unsigned I = Start; I <= End; ++I)
896 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
897 S.Context.getSizeType());
898 return IllegalParams;
899 }
900
901 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
902 /// 'local void*' parameter of passed block.
checkOpenCLEnqueueVariadicArgs(Sema & S,CallExpr * TheCall,Expr * BlockArg,unsigned NumNonVarArgs)903 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
904 Expr *BlockArg,
905 unsigned NumNonVarArgs) {
906 const BlockPointerType *BPT =
907 cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
908 unsigned NumBlockParams =
909 BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
910 unsigned TotalNumArgs = TheCall->getNumArgs();
911
912 // For each argument passed to the block, a corresponding uint needs to
913 // be passed to describe the size of the local memory.
914 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
915 S.Diag(TheCall->getBeginLoc(),
916 diag::err_opencl_enqueue_kernel_local_size_args);
917 return true;
918 }
919
920 // Check that the sizes of the local memory are specified by integers.
921 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
922 TotalNumArgs - 1);
923 }
924
925 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
926 /// overload formats specified in Table 6.13.17.1.
927 /// int enqueue_kernel(queue_t queue,
928 /// kernel_enqueue_flags_t flags,
929 /// const ndrange_t ndrange,
930 /// void (^block)(void))
931 /// int enqueue_kernel(queue_t queue,
932 /// kernel_enqueue_flags_t flags,
933 /// const ndrange_t ndrange,
934 /// uint num_events_in_wait_list,
935 /// clk_event_t *event_wait_list,
936 /// clk_event_t *event_ret,
937 /// void (^block)(void))
938 /// int enqueue_kernel(queue_t queue,
939 /// kernel_enqueue_flags_t flags,
940 /// const ndrange_t ndrange,
941 /// void (^block)(local void*, ...),
942 /// uint size0, ...)
943 /// int enqueue_kernel(queue_t queue,
944 /// kernel_enqueue_flags_t flags,
945 /// const ndrange_t ndrange,
946 /// uint num_events_in_wait_list,
947 /// clk_event_t *event_wait_list,
948 /// clk_event_t *event_ret,
949 /// void (^block)(local void*, ...),
950 /// uint size0, ...)
SemaOpenCLBuiltinEnqueueKernel(Sema & S,CallExpr * TheCall)951 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
952 unsigned NumArgs = TheCall->getNumArgs();
953
954 if (NumArgs < 4) {
955 S.Diag(TheCall->getBeginLoc(),
956 diag::err_typecheck_call_too_few_args_at_least)
957 << 0 << 4 << NumArgs;
958 return true;
959 }
960
961 Expr *Arg0 = TheCall->getArg(0);
962 Expr *Arg1 = TheCall->getArg(1);
963 Expr *Arg2 = TheCall->getArg(2);
964 Expr *Arg3 = TheCall->getArg(3);
965
966 // First argument always needs to be a queue_t type.
967 if (!Arg0->getType()->isQueueT()) {
968 S.Diag(TheCall->getArg(0)->getBeginLoc(),
969 diag::err_opencl_builtin_expected_type)
970 << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
971 return true;
972 }
973
974 // Second argument always needs to be a kernel_enqueue_flags_t enum value.
975 if (!Arg1->getType()->isIntegerType()) {
976 S.Diag(TheCall->getArg(1)->getBeginLoc(),
977 diag::err_opencl_builtin_expected_type)
978 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
979 return true;
980 }
981
982 // Third argument is always an ndrange_t type.
983 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
984 S.Diag(TheCall->getArg(2)->getBeginLoc(),
985 diag::err_opencl_builtin_expected_type)
986 << TheCall->getDirectCallee() << "'ndrange_t'";
987 return true;
988 }
989
990 // With four arguments, there is only one form that the function could be
991 // called in: no events and no variable arguments.
992 if (NumArgs == 4) {
993 // check that the last argument is the right block type.
994 if (!isBlockPointer(Arg3)) {
995 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
996 << TheCall->getDirectCallee() << "block";
997 return true;
998 }
999 // we have a block type, check the prototype
1000 const BlockPointerType *BPT =
1001 cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1002 if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1003 S.Diag(Arg3->getBeginLoc(),
1004 diag::err_opencl_enqueue_kernel_blocks_no_args);
1005 return true;
1006 }
1007 return false;
1008 }
1009 // we can have block + varargs.
1010 if (isBlockPointer(Arg3))
1011 return (checkOpenCLBlockArgs(S, Arg3) ||
1012 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1013 // last two cases with either exactly 7 args or 7 args and varargs.
1014 if (NumArgs >= 7) {
1015 // check common block argument.
1016 Expr *Arg6 = TheCall->getArg(6);
1017 if (!isBlockPointer(Arg6)) {
1018 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1019 << TheCall->getDirectCallee() << "block";
1020 return true;
1021 }
1022 if (checkOpenCLBlockArgs(S, Arg6))
1023 return true;
1024
1025 // Forth argument has to be any integer type.
1026 if (!Arg3->getType()->isIntegerType()) {
1027 S.Diag(TheCall->getArg(3)->getBeginLoc(),
1028 diag::err_opencl_builtin_expected_type)
1029 << TheCall->getDirectCallee() << "integer";
1030 return true;
1031 }
1032 // check remaining common arguments.
1033 Expr *Arg4 = TheCall->getArg(4);
1034 Expr *Arg5 = TheCall->getArg(5);
1035
1036 // Fifth argument is always passed as a pointer to clk_event_t.
1037 if (!Arg4->isNullPointerConstant(S.Context,
1038 Expr::NPC_ValueDependentIsNotNull) &&
1039 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1040 S.Diag(TheCall->getArg(4)->getBeginLoc(),
1041 diag::err_opencl_builtin_expected_type)
1042 << TheCall->getDirectCallee()
1043 << S.Context.getPointerType(S.Context.OCLClkEventTy);
1044 return true;
1045 }
1046
1047 // Sixth argument is always passed as a pointer to clk_event_t.
1048 if (!Arg5->isNullPointerConstant(S.Context,
1049 Expr::NPC_ValueDependentIsNotNull) &&
1050 !(Arg5->getType()->isPointerType() &&
1051 Arg5->getType()->getPointeeType()->isClkEventT())) {
1052 S.Diag(TheCall->getArg(5)->getBeginLoc(),
1053 diag::err_opencl_builtin_expected_type)
1054 << TheCall->getDirectCallee()
1055 << S.Context.getPointerType(S.Context.OCLClkEventTy);
1056 return true;
1057 }
1058
1059 if (NumArgs == 7)
1060 return false;
1061
1062 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1063 }
1064
1065 // None of the specific case has been detected, give generic error
1066 S.Diag(TheCall->getBeginLoc(),
1067 diag::err_opencl_enqueue_kernel_incorrect_args);
1068 return true;
1069 }
1070
1071 /// Returns OpenCL access qual.
getOpenCLArgAccess(const Decl * D)1072 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1073 return D->getAttr<OpenCLAccessAttr>();
1074 }
1075
1076 /// Returns true if pipe element type is different from the pointer.
checkOpenCLPipeArg(Sema & S,CallExpr * Call)1077 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1078 const Expr *Arg0 = Call->getArg(0);
1079 // First argument type should always be pipe.
1080 if (!Arg0->getType()->isPipeType()) {
1081 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1082 << Call->getDirectCallee() << Arg0->getSourceRange();
1083 return true;
1084 }
1085 OpenCLAccessAttr *AccessQual =
1086 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1087 // Validates the access qualifier is compatible with the call.
1088 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1089 // read_only and write_only, and assumed to be read_only if no qualifier is
1090 // specified.
1091 switch (Call->getDirectCallee()->getBuiltinID()) {
1092 case Builtin::BIread_pipe:
1093 case Builtin::BIreserve_read_pipe:
1094 case Builtin::BIcommit_read_pipe:
1095 case Builtin::BIwork_group_reserve_read_pipe:
1096 case Builtin::BIsub_group_reserve_read_pipe:
1097 case Builtin::BIwork_group_commit_read_pipe:
1098 case Builtin::BIsub_group_commit_read_pipe:
1099 if (!(!AccessQual || AccessQual->isReadOnly())) {
1100 S.Diag(Arg0->getBeginLoc(),
1101 diag::err_opencl_builtin_pipe_invalid_access_modifier)
1102 << "read_only" << Arg0->getSourceRange();
1103 return true;
1104 }
1105 break;
1106 case Builtin::BIwrite_pipe:
1107 case Builtin::BIreserve_write_pipe:
1108 case Builtin::BIcommit_write_pipe:
1109 case Builtin::BIwork_group_reserve_write_pipe:
1110 case Builtin::BIsub_group_reserve_write_pipe:
1111 case Builtin::BIwork_group_commit_write_pipe:
1112 case Builtin::BIsub_group_commit_write_pipe:
1113 if (!(AccessQual && AccessQual->isWriteOnly())) {
1114 S.Diag(Arg0->getBeginLoc(),
1115 diag::err_opencl_builtin_pipe_invalid_access_modifier)
1116 << "write_only" << Arg0->getSourceRange();
1117 return true;
1118 }
1119 break;
1120 default:
1121 break;
1122 }
1123 return false;
1124 }
1125
1126 /// Returns true if pipe element type is different from the pointer.
checkOpenCLPipePacketType(Sema & S,CallExpr * Call,unsigned Idx)1127 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1128 const Expr *Arg0 = Call->getArg(0);
1129 const Expr *ArgIdx = Call->getArg(Idx);
1130 const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1131 const QualType EltTy = PipeTy->getElementType();
1132 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1133 // The Idx argument should be a pointer and the type of the pointer and
1134 // the type of pipe element should also be the same.
1135 if (!ArgTy ||
1136 !S.Context.hasSameType(
1137 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1138 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1139 << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1140 << ArgIdx->getType() << ArgIdx->getSourceRange();
1141 return true;
1142 }
1143 return false;
1144 }
1145
1146 // Performs semantic analysis for the read/write_pipe call.
1147 // \param S Reference to the semantic analyzer.
1148 // \param Call A pointer to the builtin call.
1149 // \return True if a semantic error has been found, false otherwise.
SemaBuiltinRWPipe(Sema & S,CallExpr * Call)1150 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1151 // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1152 // functions have two forms.
1153 switch (Call->getNumArgs()) {
1154 case 2:
1155 if (checkOpenCLPipeArg(S, Call))
1156 return true;
1157 // The call with 2 arguments should be
1158 // read/write_pipe(pipe T, T*).
1159 // Check packet type T.
1160 if (checkOpenCLPipePacketType(S, Call, 1))
1161 return true;
1162 break;
1163
1164 case 4: {
1165 if (checkOpenCLPipeArg(S, Call))
1166 return true;
1167 // The call with 4 arguments should be
1168 // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1169 // Check reserve_id_t.
1170 if (!Call->getArg(1)->getType()->isReserveIDT()) {
1171 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1172 << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1173 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1174 return true;
1175 }
1176
1177 // Check the index.
1178 const Expr *Arg2 = Call->getArg(2);
1179 if (!Arg2->getType()->isIntegerType() &&
1180 !Arg2->getType()->isUnsignedIntegerType()) {
1181 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1182 << Call->getDirectCallee() << S.Context.UnsignedIntTy
1183 << Arg2->getType() << Arg2->getSourceRange();
1184 return true;
1185 }
1186
1187 // Check packet type T.
1188 if (checkOpenCLPipePacketType(S, Call, 3))
1189 return true;
1190 } break;
1191 default:
1192 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1193 << Call->getDirectCallee() << Call->getSourceRange();
1194 return true;
1195 }
1196
1197 return false;
1198 }
1199
1200 // Performs a semantic analysis on the {work_group_/sub_group_
1201 // /_}reserve_{read/write}_pipe
1202 // \param S Reference to the semantic analyzer.
1203 // \param Call The call to the builtin function to be analyzed.
1204 // \return True if a semantic error was found, false otherwise.
SemaBuiltinReserveRWPipe(Sema & S,CallExpr * Call)1205 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1206 if (checkArgCount(S, Call, 2))
1207 return true;
1208
1209 if (checkOpenCLPipeArg(S, Call))
1210 return true;
1211
1212 // Check the reserve size.
1213 if (!Call->getArg(1)->getType()->isIntegerType() &&
1214 !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1215 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1216 << Call->getDirectCallee() << S.Context.UnsignedIntTy
1217 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1218 return true;
1219 }
1220
1221 // Since return type of reserve_read/write_pipe built-in function is
1222 // reserve_id_t, which is not defined in the builtin def file , we used int
1223 // as return type and need to override the return type of these functions.
1224 Call->setType(S.Context.OCLReserveIDTy);
1225
1226 return false;
1227 }
1228
1229 // Performs a semantic analysis on {work_group_/sub_group_
1230 // /_}commit_{read/write}_pipe
1231 // \param S Reference to the semantic analyzer.
1232 // \param Call The call to the builtin function to be analyzed.
1233 // \return True if a semantic error was found, false otherwise.
SemaBuiltinCommitRWPipe(Sema & S,CallExpr * Call)1234 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1235 if (checkArgCount(S, Call, 2))
1236 return true;
1237
1238 if (checkOpenCLPipeArg(S, Call))
1239 return true;
1240
1241 // Check reserve_id_t.
1242 if (!Call->getArg(1)->getType()->isReserveIDT()) {
1243 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1244 << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1245 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1246 return true;
1247 }
1248
1249 return false;
1250 }
1251
1252 // Performs a semantic analysis on the call to built-in Pipe
1253 // Query Functions.
1254 // \param S Reference to the semantic analyzer.
1255 // \param Call The call to the builtin function to be analyzed.
1256 // \return True if a semantic error was found, false otherwise.
SemaBuiltinPipePackets(Sema & S,CallExpr * Call)1257 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1258 if (checkArgCount(S, Call, 1))
1259 return true;
1260
1261 if (!Call->getArg(0)->getType()->isPipeType()) {
1262 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1263 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1264 return true;
1265 }
1266
1267 return false;
1268 }
1269
1270 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1271 // Performs semantic analysis for the to_global/local/private call.
1272 // \param S Reference to the semantic analyzer.
1273 // \param BuiltinID ID of the builtin function.
1274 // \param Call A pointer to the builtin call.
1275 // \return True if a semantic error has been found, false otherwise.
SemaOpenCLBuiltinToAddr(Sema & S,unsigned BuiltinID,CallExpr * Call)1276 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1277 CallExpr *Call) {
1278 if (checkArgCount(S, Call, 1))
1279 return true;
1280
1281 auto RT = Call->getArg(0)->getType();
1282 if (!RT->isPointerType() || RT->getPointeeType()
1283 .getAddressSpace() == LangAS::opencl_constant) {
1284 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1285 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1286 return true;
1287 }
1288
1289 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1290 S.Diag(Call->getArg(0)->getBeginLoc(),
1291 diag::warn_opencl_generic_address_space_arg)
1292 << Call->getDirectCallee()->getNameInfo().getAsString()
1293 << Call->getArg(0)->getSourceRange();
1294 }
1295
1296 RT = RT->getPointeeType();
1297 auto Qual = RT.getQualifiers();
1298 switch (BuiltinID) {
1299 case Builtin::BIto_global:
1300 Qual.setAddressSpace(LangAS::opencl_global);
1301 break;
1302 case Builtin::BIto_local:
1303 Qual.setAddressSpace(LangAS::opencl_local);
1304 break;
1305 case Builtin::BIto_private:
1306 Qual.setAddressSpace(LangAS::opencl_private);
1307 break;
1308 default:
1309 llvm_unreachable("Invalid builtin function");
1310 }
1311 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1312 RT.getUnqualifiedType(), Qual)));
1313
1314 return false;
1315 }
1316
SemaBuiltinLaunder(Sema & S,CallExpr * TheCall)1317 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1318 if (checkArgCount(S, TheCall, 1))
1319 return ExprError();
1320
1321 // Compute __builtin_launder's parameter type from the argument.
1322 // The parameter type is:
1323 // * The type of the argument if it's not an array or function type,
1324 // Otherwise,
1325 // * The decayed argument type.
1326 QualType ParamTy = [&]() {
1327 QualType ArgTy = TheCall->getArg(0)->getType();
1328 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1329 return S.Context.getPointerType(Ty->getElementType());
1330 if (ArgTy->isFunctionType()) {
1331 return S.Context.getPointerType(ArgTy);
1332 }
1333 return ArgTy;
1334 }();
1335
1336 TheCall->setType(ParamTy);
1337
1338 auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1339 if (!ParamTy->isPointerType())
1340 return 0;
1341 if (ParamTy->isFunctionPointerType())
1342 return 1;
1343 if (ParamTy->isVoidPointerType())
1344 return 2;
1345 return llvm::Optional<unsigned>{};
1346 }();
1347 if (DiagSelect.hasValue()) {
1348 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1349 << DiagSelect.getValue() << TheCall->getSourceRange();
1350 return ExprError();
1351 }
1352
1353 // We either have an incomplete class type, or we have a class template
1354 // whose instantiation has not been forced. Example:
1355 //
1356 // template <class T> struct Foo { T value; };
1357 // Foo<int> *p = nullptr;
1358 // auto *d = __builtin_launder(p);
1359 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1360 diag::err_incomplete_type))
1361 return ExprError();
1362
1363 assert(ParamTy->getPointeeType()->isObjectType() &&
1364 "Unhandled non-object pointer case");
1365
1366 InitializedEntity Entity =
1367 InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1368 ExprResult Arg =
1369 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1370 if (Arg.isInvalid())
1371 return ExprError();
1372 TheCall->setArg(0, Arg.get());
1373
1374 return TheCall;
1375 }
1376
1377 // Emit an error and return true if the current architecture is not in the list
1378 // of supported architectures.
1379 static bool
CheckBuiltinTargetSupport(Sema & S,unsigned BuiltinID,CallExpr * TheCall,ArrayRef<llvm::Triple::ArchType> SupportedArchs)1380 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1381 ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1382 llvm::Triple::ArchType CurArch =
1383 S.getASTContext().getTargetInfo().getTriple().getArch();
1384 if (llvm::is_contained(SupportedArchs, CurArch))
1385 return false;
1386 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1387 << TheCall->getSourceRange();
1388 return true;
1389 }
1390
1391 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1392 SourceLocation CallSiteLoc);
1393
CheckTSBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)1394 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1395 CallExpr *TheCall) {
1396 switch (TI.getTriple().getArch()) {
1397 default:
1398 // Some builtins don't require additional checking, so just consider these
1399 // acceptable.
1400 return false;
1401 case llvm::Triple::arm:
1402 case llvm::Triple::armeb:
1403 case llvm::Triple::thumb:
1404 case llvm::Triple::thumbeb:
1405 return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1406 case llvm::Triple::aarch64:
1407 case llvm::Triple::aarch64_32:
1408 case llvm::Triple::aarch64_be:
1409 return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1410 case llvm::Triple::bpfeb:
1411 case llvm::Triple::bpfel:
1412 return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1413 case llvm::Triple::hexagon:
1414 return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1415 case llvm::Triple::mips:
1416 case llvm::Triple::mipsel:
1417 case llvm::Triple::mips64:
1418 case llvm::Triple::mips64el:
1419 return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1420 case llvm::Triple::systemz:
1421 return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1422 case llvm::Triple::x86:
1423 case llvm::Triple::x86_64:
1424 return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
1425 case llvm::Triple::ppc:
1426 case llvm::Triple::ppcle:
1427 case llvm::Triple::ppc64:
1428 case llvm::Triple::ppc64le:
1429 return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1430 case llvm::Triple::amdgcn:
1431 return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1432 }
1433 }
1434
1435 ExprResult
CheckBuiltinFunctionCall(FunctionDecl * FDecl,unsigned BuiltinID,CallExpr * TheCall)1436 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1437 CallExpr *TheCall) {
1438 ExprResult TheCallResult(TheCall);
1439
1440 // Find out if any arguments are required to be integer constant expressions.
1441 unsigned ICEArguments = 0;
1442 ASTContext::GetBuiltinTypeError Error;
1443 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1444 if (Error != ASTContext::GE_None)
1445 ICEArguments = 0; // Don't diagnose previously diagnosed errors.
1446
1447 // If any arguments are required to be ICE's, check and diagnose.
1448 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1449 // Skip arguments not required to be ICE's.
1450 if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1451
1452 llvm::APSInt Result;
1453 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1454 return true;
1455 ICEArguments &= ~(1 << ArgNo);
1456 }
1457
1458 switch (BuiltinID) {
1459 case Builtin::BI__builtin___CFStringMakeConstantString:
1460 assert(TheCall->getNumArgs() == 1 &&
1461 "Wrong # arguments to builtin CFStringMakeConstantString");
1462 if (CheckObjCString(TheCall->getArg(0)))
1463 return ExprError();
1464 break;
1465 case Builtin::BI__builtin_ms_va_start:
1466 case Builtin::BI__builtin_stdarg_start:
1467 case Builtin::BI__builtin_va_start:
1468 if (SemaBuiltinVAStart(BuiltinID, TheCall))
1469 return ExprError();
1470 break;
1471 case Builtin::BI__va_start: {
1472 switch (Context.getTargetInfo().getTriple().getArch()) {
1473 case llvm::Triple::aarch64:
1474 case llvm::Triple::arm:
1475 case llvm::Triple::thumb:
1476 if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1477 return ExprError();
1478 break;
1479 default:
1480 if (SemaBuiltinVAStart(BuiltinID, TheCall))
1481 return ExprError();
1482 break;
1483 }
1484 break;
1485 }
1486
1487 // The acquire, release, and no fence variants are ARM and AArch64 only.
1488 case Builtin::BI_interlockedbittestandset_acq:
1489 case Builtin::BI_interlockedbittestandset_rel:
1490 case Builtin::BI_interlockedbittestandset_nf:
1491 case Builtin::BI_interlockedbittestandreset_acq:
1492 case Builtin::BI_interlockedbittestandreset_rel:
1493 case Builtin::BI_interlockedbittestandreset_nf:
1494 if (CheckBuiltinTargetSupport(
1495 *this, BuiltinID, TheCall,
1496 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1497 return ExprError();
1498 break;
1499
1500 // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1501 case Builtin::BI_bittest64:
1502 case Builtin::BI_bittestandcomplement64:
1503 case Builtin::BI_bittestandreset64:
1504 case Builtin::BI_bittestandset64:
1505 case Builtin::BI_interlockedbittestandreset64:
1506 case Builtin::BI_interlockedbittestandset64:
1507 if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
1508 {llvm::Triple::x86_64, llvm::Triple::arm,
1509 llvm::Triple::thumb, llvm::Triple::aarch64}))
1510 return ExprError();
1511 break;
1512
1513 case Builtin::BI__builtin_isgreater:
1514 case Builtin::BI__builtin_isgreaterequal:
1515 case Builtin::BI__builtin_isless:
1516 case Builtin::BI__builtin_islessequal:
1517 case Builtin::BI__builtin_islessgreater:
1518 case Builtin::BI__builtin_isunordered:
1519 if (SemaBuiltinUnorderedCompare(TheCall))
1520 return ExprError();
1521 break;
1522 case Builtin::BI__builtin_fpclassify:
1523 if (SemaBuiltinFPClassification(TheCall, 6))
1524 return ExprError();
1525 break;
1526 case Builtin::BI__builtin_isfinite:
1527 case Builtin::BI__builtin_isinf:
1528 case Builtin::BI__builtin_isinf_sign:
1529 case Builtin::BI__builtin_isnan:
1530 case Builtin::BI__builtin_isnormal:
1531 case Builtin::BI__builtin_signbit:
1532 case Builtin::BI__builtin_signbitf:
1533 case Builtin::BI__builtin_signbitl:
1534 if (SemaBuiltinFPClassification(TheCall, 1))
1535 return ExprError();
1536 break;
1537 case Builtin::BI__builtin_shufflevector:
1538 return SemaBuiltinShuffleVector(TheCall);
1539 // TheCall will be freed by the smart pointer here, but that's fine, since
1540 // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1541 case Builtin::BI__builtin_prefetch:
1542 if (SemaBuiltinPrefetch(TheCall))
1543 return ExprError();
1544 break;
1545 case Builtin::BI__builtin_alloca_with_align:
1546 if (SemaBuiltinAllocaWithAlign(TheCall))
1547 return ExprError();
1548 LLVM_FALLTHROUGH;
1549 case Builtin::BI__builtin_alloca:
1550 Diag(TheCall->getBeginLoc(), diag::warn_alloca)
1551 << TheCall->getDirectCallee();
1552 break;
1553 case Builtin::BI__assume:
1554 case Builtin::BI__builtin_assume:
1555 if (SemaBuiltinAssume(TheCall))
1556 return ExprError();
1557 break;
1558 case Builtin::BI__builtin_assume_aligned:
1559 if (SemaBuiltinAssumeAligned(TheCall))
1560 return ExprError();
1561 break;
1562 case Builtin::BI__builtin_dynamic_object_size:
1563 case Builtin::BI__builtin_object_size:
1564 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1565 return ExprError();
1566 break;
1567 case Builtin::BI__builtin_longjmp:
1568 if (SemaBuiltinLongjmp(TheCall))
1569 return ExprError();
1570 break;
1571 case Builtin::BI__builtin_setjmp:
1572 if (SemaBuiltinSetjmp(TheCall))
1573 return ExprError();
1574 break;
1575 case Builtin::BI__builtin_classify_type:
1576 if (checkArgCount(*this, TheCall, 1)) return true;
1577 TheCall->setType(Context.IntTy);
1578 break;
1579 case Builtin::BI__builtin_complex:
1580 if (SemaBuiltinComplex(TheCall))
1581 return ExprError();
1582 break;
1583 case Builtin::BI__builtin_constant_p: {
1584 if (checkArgCount(*this, TheCall, 1)) return true;
1585 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1586 if (Arg.isInvalid()) return true;
1587 TheCall->setArg(0, Arg.get());
1588 TheCall->setType(Context.IntTy);
1589 break;
1590 }
1591 case Builtin::BI__builtin_launder:
1592 return SemaBuiltinLaunder(*this, TheCall);
1593 case Builtin::BI__sync_fetch_and_add:
1594 case Builtin::BI__sync_fetch_and_add_1:
1595 case Builtin::BI__sync_fetch_and_add_2:
1596 case Builtin::BI__sync_fetch_and_add_4:
1597 case Builtin::BI__sync_fetch_and_add_8:
1598 case Builtin::BI__sync_fetch_and_add_16:
1599 case Builtin::BI__sync_fetch_and_sub:
1600 case Builtin::BI__sync_fetch_and_sub_1:
1601 case Builtin::BI__sync_fetch_and_sub_2:
1602 case Builtin::BI__sync_fetch_and_sub_4:
1603 case Builtin::BI__sync_fetch_and_sub_8:
1604 case Builtin::BI__sync_fetch_and_sub_16:
1605 case Builtin::BI__sync_fetch_and_or:
1606 case Builtin::BI__sync_fetch_and_or_1:
1607 case Builtin::BI__sync_fetch_and_or_2:
1608 case Builtin::BI__sync_fetch_and_or_4:
1609 case Builtin::BI__sync_fetch_and_or_8:
1610 case Builtin::BI__sync_fetch_and_or_16:
1611 case Builtin::BI__sync_fetch_and_and:
1612 case Builtin::BI__sync_fetch_and_and_1:
1613 case Builtin::BI__sync_fetch_and_and_2:
1614 case Builtin::BI__sync_fetch_and_and_4:
1615 case Builtin::BI__sync_fetch_and_and_8:
1616 case Builtin::BI__sync_fetch_and_and_16:
1617 case Builtin::BI__sync_fetch_and_xor:
1618 case Builtin::BI__sync_fetch_and_xor_1:
1619 case Builtin::BI__sync_fetch_and_xor_2:
1620 case Builtin::BI__sync_fetch_and_xor_4:
1621 case Builtin::BI__sync_fetch_and_xor_8:
1622 case Builtin::BI__sync_fetch_and_xor_16:
1623 case Builtin::BI__sync_fetch_and_nand:
1624 case Builtin::BI__sync_fetch_and_nand_1:
1625 case Builtin::BI__sync_fetch_and_nand_2:
1626 case Builtin::BI__sync_fetch_and_nand_4:
1627 case Builtin::BI__sync_fetch_and_nand_8:
1628 case Builtin::BI__sync_fetch_and_nand_16:
1629 case Builtin::BI__sync_add_and_fetch:
1630 case Builtin::BI__sync_add_and_fetch_1:
1631 case Builtin::BI__sync_add_and_fetch_2:
1632 case Builtin::BI__sync_add_and_fetch_4:
1633 case Builtin::BI__sync_add_and_fetch_8:
1634 case Builtin::BI__sync_add_and_fetch_16:
1635 case Builtin::BI__sync_sub_and_fetch:
1636 case Builtin::BI__sync_sub_and_fetch_1:
1637 case Builtin::BI__sync_sub_and_fetch_2:
1638 case Builtin::BI__sync_sub_and_fetch_4:
1639 case Builtin::BI__sync_sub_and_fetch_8:
1640 case Builtin::BI__sync_sub_and_fetch_16:
1641 case Builtin::BI__sync_and_and_fetch:
1642 case Builtin::BI__sync_and_and_fetch_1:
1643 case Builtin::BI__sync_and_and_fetch_2:
1644 case Builtin::BI__sync_and_and_fetch_4:
1645 case Builtin::BI__sync_and_and_fetch_8:
1646 case Builtin::BI__sync_and_and_fetch_16:
1647 case Builtin::BI__sync_or_and_fetch:
1648 case Builtin::BI__sync_or_and_fetch_1:
1649 case Builtin::BI__sync_or_and_fetch_2:
1650 case Builtin::BI__sync_or_and_fetch_4:
1651 case Builtin::BI__sync_or_and_fetch_8:
1652 case Builtin::BI__sync_or_and_fetch_16:
1653 case Builtin::BI__sync_xor_and_fetch:
1654 case Builtin::BI__sync_xor_and_fetch_1:
1655 case Builtin::BI__sync_xor_and_fetch_2:
1656 case Builtin::BI__sync_xor_and_fetch_4:
1657 case Builtin::BI__sync_xor_and_fetch_8:
1658 case Builtin::BI__sync_xor_and_fetch_16:
1659 case Builtin::BI__sync_nand_and_fetch:
1660 case Builtin::BI__sync_nand_and_fetch_1:
1661 case Builtin::BI__sync_nand_and_fetch_2:
1662 case Builtin::BI__sync_nand_and_fetch_4:
1663 case Builtin::BI__sync_nand_and_fetch_8:
1664 case Builtin::BI__sync_nand_and_fetch_16:
1665 case Builtin::BI__sync_val_compare_and_swap:
1666 case Builtin::BI__sync_val_compare_and_swap_1:
1667 case Builtin::BI__sync_val_compare_and_swap_2:
1668 case Builtin::BI__sync_val_compare_and_swap_4:
1669 case Builtin::BI__sync_val_compare_and_swap_8:
1670 case Builtin::BI__sync_val_compare_and_swap_16:
1671 case Builtin::BI__sync_bool_compare_and_swap:
1672 case Builtin::BI__sync_bool_compare_and_swap_1:
1673 case Builtin::BI__sync_bool_compare_and_swap_2:
1674 case Builtin::BI__sync_bool_compare_and_swap_4:
1675 case Builtin::BI__sync_bool_compare_and_swap_8:
1676 case Builtin::BI__sync_bool_compare_and_swap_16:
1677 case Builtin::BI__sync_lock_test_and_set:
1678 case Builtin::BI__sync_lock_test_and_set_1:
1679 case Builtin::BI__sync_lock_test_and_set_2:
1680 case Builtin::BI__sync_lock_test_and_set_4:
1681 case Builtin::BI__sync_lock_test_and_set_8:
1682 case Builtin::BI__sync_lock_test_and_set_16:
1683 case Builtin::BI__sync_lock_release:
1684 case Builtin::BI__sync_lock_release_1:
1685 case Builtin::BI__sync_lock_release_2:
1686 case Builtin::BI__sync_lock_release_4:
1687 case Builtin::BI__sync_lock_release_8:
1688 case Builtin::BI__sync_lock_release_16:
1689 case Builtin::BI__sync_swap:
1690 case Builtin::BI__sync_swap_1:
1691 case Builtin::BI__sync_swap_2:
1692 case Builtin::BI__sync_swap_4:
1693 case Builtin::BI__sync_swap_8:
1694 case Builtin::BI__sync_swap_16:
1695 return SemaBuiltinAtomicOverloaded(TheCallResult);
1696 case Builtin::BI__sync_synchronize:
1697 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1698 << TheCall->getCallee()->getSourceRange();
1699 break;
1700 case Builtin::BI__builtin_nontemporal_load:
1701 case Builtin::BI__builtin_nontemporal_store:
1702 return SemaBuiltinNontemporalOverloaded(TheCallResult);
1703 case Builtin::BI__builtin_memcpy_inline: {
1704 clang::Expr *SizeOp = TheCall->getArg(2);
1705 // We warn about copying to or from `nullptr` pointers when `size` is
1706 // greater than 0. When `size` is value dependent we cannot evaluate its
1707 // value so we bail out.
1708 if (SizeOp->isValueDependent())
1709 break;
1710 if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) {
1711 CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
1712 CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
1713 }
1714 break;
1715 }
1716 #define BUILTIN(ID, TYPE, ATTRS)
1717 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1718 case Builtin::BI##ID: \
1719 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1720 #include "clang/Basic/Builtins.def"
1721 case Builtin::BI__annotation:
1722 if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1723 return ExprError();
1724 break;
1725 case Builtin::BI__builtin_annotation:
1726 if (SemaBuiltinAnnotation(*this, TheCall))
1727 return ExprError();
1728 break;
1729 case Builtin::BI__builtin_addressof:
1730 if (SemaBuiltinAddressof(*this, TheCall))
1731 return ExprError();
1732 break;
1733 case Builtin::BI__builtin_is_aligned:
1734 case Builtin::BI__builtin_align_up:
1735 case Builtin::BI__builtin_align_down:
1736 if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
1737 return ExprError();
1738 break;
1739 case Builtin::BI__builtin_add_overflow:
1740 case Builtin::BI__builtin_sub_overflow:
1741 case Builtin::BI__builtin_mul_overflow:
1742 if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
1743 return ExprError();
1744 break;
1745 case Builtin::BI__builtin_operator_new:
1746 case Builtin::BI__builtin_operator_delete: {
1747 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1748 ExprResult Res =
1749 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1750 if (Res.isInvalid())
1751 CorrectDelayedTyposInExpr(TheCallResult.get());
1752 return Res;
1753 }
1754 case Builtin::BI__builtin_dump_struct: {
1755 // We first want to ensure we are called with 2 arguments
1756 if (checkArgCount(*this, TheCall, 2))
1757 return ExprError();
1758 // Ensure that the first argument is of type 'struct XX *'
1759 const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1760 const QualType PtrArgType = PtrArg->getType();
1761 if (!PtrArgType->isPointerType() ||
1762 !PtrArgType->getPointeeType()->isRecordType()) {
1763 Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1764 << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1765 << "structure pointer";
1766 return ExprError();
1767 }
1768
1769 // Ensure that the second argument is of type 'FunctionType'
1770 const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1771 const QualType FnPtrArgType = FnPtrArg->getType();
1772 if (!FnPtrArgType->isPointerType()) {
1773 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1774 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1775 << FnPtrArgType << "'int (*)(const char *, ...)'";
1776 return ExprError();
1777 }
1778
1779 const auto *FuncType =
1780 FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1781
1782 if (!FuncType) {
1783 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1784 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1785 << FnPtrArgType << "'int (*)(const char *, ...)'";
1786 return ExprError();
1787 }
1788
1789 if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1790 if (!FT->getNumParams()) {
1791 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1792 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1793 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1794 return ExprError();
1795 }
1796 QualType PT = FT->getParamType(0);
1797 if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1798 !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1799 !PT->getPointeeType().isConstQualified()) {
1800 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1801 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1802 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1803 return ExprError();
1804 }
1805 }
1806
1807 TheCall->setType(Context.IntTy);
1808 break;
1809 }
1810 case Builtin::BI__builtin_expect_with_probability: {
1811 // We first want to ensure we are called with 3 arguments
1812 if (checkArgCount(*this, TheCall, 3))
1813 return ExprError();
1814 // then check probability is constant float in range [0.0, 1.0]
1815 const Expr *ProbArg = TheCall->getArg(2);
1816 SmallVector<PartialDiagnosticAt, 8> Notes;
1817 Expr::EvalResult Eval;
1818 Eval.Diag = &Notes;
1819 if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
1820 !Eval.Val.isFloat()) {
1821 Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
1822 << ProbArg->getSourceRange();
1823 for (const PartialDiagnosticAt &PDiag : Notes)
1824 Diag(PDiag.first, PDiag.second);
1825 return ExprError();
1826 }
1827 llvm::APFloat Probability = Eval.Val.getFloat();
1828 bool LoseInfo = false;
1829 Probability.convert(llvm::APFloat::IEEEdouble(),
1830 llvm::RoundingMode::Dynamic, &LoseInfo);
1831 if (!(Probability >= llvm::APFloat(0.0) &&
1832 Probability <= llvm::APFloat(1.0))) {
1833 Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
1834 << ProbArg->getSourceRange();
1835 return ExprError();
1836 }
1837 break;
1838 }
1839 case Builtin::BI__builtin_preserve_access_index:
1840 if (SemaBuiltinPreserveAI(*this, TheCall))
1841 return ExprError();
1842 break;
1843 case Builtin::BI__builtin_call_with_static_chain:
1844 if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1845 return ExprError();
1846 break;
1847 case Builtin::BI__exception_code:
1848 case Builtin::BI_exception_code:
1849 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1850 diag::err_seh___except_block))
1851 return ExprError();
1852 break;
1853 case Builtin::BI__exception_info:
1854 case Builtin::BI_exception_info:
1855 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1856 diag::err_seh___except_filter))
1857 return ExprError();
1858 break;
1859 case Builtin::BI__GetExceptionInfo:
1860 if (checkArgCount(*this, TheCall, 1))
1861 return ExprError();
1862
1863 if (CheckCXXThrowOperand(
1864 TheCall->getBeginLoc(),
1865 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1866 TheCall))
1867 return ExprError();
1868
1869 TheCall->setType(Context.VoidPtrTy);
1870 break;
1871 // OpenCL v2.0, s6.13.16 - Pipe functions
1872 case Builtin::BIread_pipe:
1873 case Builtin::BIwrite_pipe:
1874 // Since those two functions are declared with var args, we need a semantic
1875 // check for the argument.
1876 if (SemaBuiltinRWPipe(*this, TheCall))
1877 return ExprError();
1878 break;
1879 case Builtin::BIreserve_read_pipe:
1880 case Builtin::BIreserve_write_pipe:
1881 case Builtin::BIwork_group_reserve_read_pipe:
1882 case Builtin::BIwork_group_reserve_write_pipe:
1883 if (SemaBuiltinReserveRWPipe(*this, TheCall))
1884 return ExprError();
1885 break;
1886 case Builtin::BIsub_group_reserve_read_pipe:
1887 case Builtin::BIsub_group_reserve_write_pipe:
1888 if (checkOpenCLSubgroupExt(*this, TheCall) ||
1889 SemaBuiltinReserveRWPipe(*this, TheCall))
1890 return ExprError();
1891 break;
1892 case Builtin::BIcommit_read_pipe:
1893 case Builtin::BIcommit_write_pipe:
1894 case Builtin::BIwork_group_commit_read_pipe:
1895 case Builtin::BIwork_group_commit_write_pipe:
1896 if (SemaBuiltinCommitRWPipe(*this, TheCall))
1897 return ExprError();
1898 break;
1899 case Builtin::BIsub_group_commit_read_pipe:
1900 case Builtin::BIsub_group_commit_write_pipe:
1901 if (checkOpenCLSubgroupExt(*this, TheCall) ||
1902 SemaBuiltinCommitRWPipe(*this, TheCall))
1903 return ExprError();
1904 break;
1905 case Builtin::BIget_pipe_num_packets:
1906 case Builtin::BIget_pipe_max_packets:
1907 if (SemaBuiltinPipePackets(*this, TheCall))
1908 return ExprError();
1909 break;
1910 case Builtin::BIto_global:
1911 case Builtin::BIto_local:
1912 case Builtin::BIto_private:
1913 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1914 return ExprError();
1915 break;
1916 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1917 case Builtin::BIenqueue_kernel:
1918 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1919 return ExprError();
1920 break;
1921 case Builtin::BIget_kernel_work_group_size:
1922 case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1923 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1924 return ExprError();
1925 break;
1926 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
1927 case Builtin::BIget_kernel_sub_group_count_for_ndrange:
1928 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
1929 return ExprError();
1930 break;
1931 case Builtin::BI__builtin_os_log_format:
1932 Cleanup.setExprNeedsCleanups(true);
1933 LLVM_FALLTHROUGH;
1934 case Builtin::BI__builtin_os_log_format_buffer_size:
1935 if (SemaBuiltinOSLogFormat(TheCall))
1936 return ExprError();
1937 break;
1938 case Builtin::BI__builtin_frame_address:
1939 case Builtin::BI__builtin_return_address: {
1940 if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
1941 return ExprError();
1942
1943 // -Wframe-address warning if non-zero passed to builtin
1944 // return/frame address.
1945 Expr::EvalResult Result;
1946 if (!TheCall->getArg(0)->isValueDependent() &&
1947 TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
1948 Result.Val.getInt() != 0)
1949 Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
1950 << ((BuiltinID == Builtin::BI__builtin_return_address)
1951 ? "__builtin_return_address"
1952 : "__builtin_frame_address")
1953 << TheCall->getSourceRange();
1954 break;
1955 }
1956
1957 case Builtin::BI__builtin_matrix_transpose:
1958 return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
1959
1960 case Builtin::BI__builtin_matrix_column_major_load:
1961 return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
1962
1963 case Builtin::BI__builtin_matrix_column_major_store:
1964 return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
1965 }
1966
1967 // Since the target specific builtins for each arch overlap, only check those
1968 // of the arch we are compiling for.
1969 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
1970 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
1971 assert(Context.getAuxTargetInfo() &&
1972 "Aux Target Builtin, but not an aux target?");
1973
1974 if (CheckTSBuiltinFunctionCall(
1975 *Context.getAuxTargetInfo(),
1976 Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
1977 return ExprError();
1978 } else {
1979 if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
1980 TheCall))
1981 return ExprError();
1982 }
1983 }
1984
1985 return TheCallResult;
1986 }
1987
1988 // Get the valid immediate range for the specified NEON type code.
RFT(unsigned t,bool shift=false,bool ForceQuad=false)1989 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
1990 NeonTypeFlags Type(t);
1991 int IsQuad = ForceQuad ? true : Type.isQuad();
1992 switch (Type.getEltType()) {
1993 case NeonTypeFlags::Int8:
1994 case NeonTypeFlags::Poly8:
1995 return shift ? 7 : (8 << IsQuad) - 1;
1996 case NeonTypeFlags::Int16:
1997 case NeonTypeFlags::Poly16:
1998 return shift ? 15 : (4 << IsQuad) - 1;
1999 case NeonTypeFlags::Int32:
2000 return shift ? 31 : (2 << IsQuad) - 1;
2001 case NeonTypeFlags::Int64:
2002 case NeonTypeFlags::Poly64:
2003 return shift ? 63 : (1 << IsQuad) - 1;
2004 case NeonTypeFlags::Poly128:
2005 return shift ? 127 : (1 << IsQuad) - 1;
2006 case NeonTypeFlags::Float16:
2007 assert(!shift && "cannot shift float types!");
2008 return (4 << IsQuad) - 1;
2009 case NeonTypeFlags::Float32:
2010 assert(!shift && "cannot shift float types!");
2011 return (2 << IsQuad) - 1;
2012 case NeonTypeFlags::Float64:
2013 assert(!shift && "cannot shift float types!");
2014 return (1 << IsQuad) - 1;
2015 case NeonTypeFlags::BFloat16:
2016 assert(!shift && "cannot shift float types!");
2017 return (4 << IsQuad) - 1;
2018 }
2019 llvm_unreachable("Invalid NeonTypeFlag!");
2020 }
2021
2022 /// getNeonEltType - Return the QualType corresponding to the elements of
2023 /// the vector type specified by the NeonTypeFlags. This is used to check
2024 /// the pointer arguments for Neon load/store intrinsics.
getNeonEltType(NeonTypeFlags Flags,ASTContext & Context,bool IsPolyUnsigned,bool IsInt64Long)2025 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2026 bool IsPolyUnsigned, bool IsInt64Long) {
2027 switch (Flags.getEltType()) {
2028 case NeonTypeFlags::Int8:
2029 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2030 case NeonTypeFlags::Int16:
2031 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2032 case NeonTypeFlags::Int32:
2033 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2034 case NeonTypeFlags::Int64:
2035 if (IsInt64Long)
2036 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2037 else
2038 return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2039 : Context.LongLongTy;
2040 case NeonTypeFlags::Poly8:
2041 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2042 case NeonTypeFlags::Poly16:
2043 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2044 case NeonTypeFlags::Poly64:
2045 if (IsInt64Long)
2046 return Context.UnsignedLongTy;
2047 else
2048 return Context.UnsignedLongLongTy;
2049 case NeonTypeFlags::Poly128:
2050 break;
2051 case NeonTypeFlags::Float16:
2052 return Context.HalfTy;
2053 case NeonTypeFlags::Float32:
2054 return Context.FloatTy;
2055 case NeonTypeFlags::Float64:
2056 return Context.DoubleTy;
2057 case NeonTypeFlags::BFloat16:
2058 return Context.BFloat16Ty;
2059 }
2060 llvm_unreachable("Invalid NeonTypeFlag!");
2061 }
2062
CheckSVEBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)2063 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2064 // Range check SVE intrinsics that take immediate values.
2065 SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
2066
2067 switch (BuiltinID) {
2068 default:
2069 return false;
2070 #define GET_SVE_IMMEDIATE_CHECK
2071 #include "clang/Basic/arm_sve_sema_rangechecks.inc"
2072 #undef GET_SVE_IMMEDIATE_CHECK
2073 }
2074
2075 // Perform all the immediate checks for this builtin call.
2076 bool HasError = false;
2077 for (auto &I : ImmChecks) {
2078 int ArgNum, CheckTy, ElementSizeInBits;
2079 std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
2080
2081 typedef bool(*OptionSetCheckFnTy)(int64_t Value);
2082
2083 // Function that checks whether the operand (ArgNum) is an immediate
2084 // that is one of the predefined values.
2085 auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
2086 int ErrDiag) -> bool {
2087 // We can't check the value of a dependent argument.
2088 Expr *Arg = TheCall->getArg(ArgNum);
2089 if (Arg->isTypeDependent() || Arg->isValueDependent())
2090 return false;
2091
2092 // Check constant-ness first.
2093 llvm::APSInt Imm;
2094 if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
2095 return true;
2096
2097 if (!CheckImm(Imm.getSExtValue()))
2098 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
2099 return false;
2100 };
2101
2102 switch ((SVETypeFlags::ImmCheckType)CheckTy) {
2103 case SVETypeFlags::ImmCheck0_31:
2104 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
2105 HasError = true;
2106 break;
2107 case SVETypeFlags::ImmCheck0_13:
2108 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
2109 HasError = true;
2110 break;
2111 case SVETypeFlags::ImmCheck1_16:
2112 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
2113 HasError = true;
2114 break;
2115 case SVETypeFlags::ImmCheck0_7:
2116 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
2117 HasError = true;
2118 break;
2119 case SVETypeFlags::ImmCheckExtract:
2120 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2121 (2048 / ElementSizeInBits) - 1))
2122 HasError = true;
2123 break;
2124 case SVETypeFlags::ImmCheckShiftRight:
2125 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
2126 HasError = true;
2127 break;
2128 case SVETypeFlags::ImmCheckShiftRightNarrow:
2129 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
2130 ElementSizeInBits / 2))
2131 HasError = true;
2132 break;
2133 case SVETypeFlags::ImmCheckShiftLeft:
2134 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2135 ElementSizeInBits - 1))
2136 HasError = true;
2137 break;
2138 case SVETypeFlags::ImmCheckLaneIndex:
2139 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2140 (128 / (1 * ElementSizeInBits)) - 1))
2141 HasError = true;
2142 break;
2143 case SVETypeFlags::ImmCheckLaneIndexCompRotate:
2144 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2145 (128 / (2 * ElementSizeInBits)) - 1))
2146 HasError = true;
2147 break;
2148 case SVETypeFlags::ImmCheckLaneIndexDot:
2149 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2150 (128 / (4 * ElementSizeInBits)) - 1))
2151 HasError = true;
2152 break;
2153 case SVETypeFlags::ImmCheckComplexRot90_270:
2154 if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
2155 diag::err_rotation_argument_to_cadd))
2156 HasError = true;
2157 break;
2158 case SVETypeFlags::ImmCheckComplexRotAll90:
2159 if (CheckImmediateInSet(
2160 [](int64_t V) {
2161 return V == 0 || V == 90 || V == 180 || V == 270;
2162 },
2163 diag::err_rotation_argument_to_cmla))
2164 HasError = true;
2165 break;
2166 case SVETypeFlags::ImmCheck0_1:
2167 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
2168 HasError = true;
2169 break;
2170 case SVETypeFlags::ImmCheck0_2:
2171 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
2172 HasError = true;
2173 break;
2174 case SVETypeFlags::ImmCheck0_3:
2175 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
2176 HasError = true;
2177 break;
2178 }
2179 }
2180
2181 return HasError;
2182 }
2183
CheckNeonBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)2184 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
2185 unsigned BuiltinID, CallExpr *TheCall) {
2186 llvm::APSInt Result;
2187 uint64_t mask = 0;
2188 unsigned TV = 0;
2189 int PtrArgNum = -1;
2190 bool HasConstPtr = false;
2191 switch (BuiltinID) {
2192 #define GET_NEON_OVERLOAD_CHECK
2193 #include "clang/Basic/arm_neon.inc"
2194 #include "clang/Basic/arm_fp16.inc"
2195 #undef GET_NEON_OVERLOAD_CHECK
2196 }
2197
2198 // For NEON intrinsics which are overloaded on vector element type, validate
2199 // the immediate which specifies which variant to emit.
2200 unsigned ImmArg = TheCall->getNumArgs()-1;
2201 if (mask) {
2202 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
2203 return true;
2204
2205 TV = Result.getLimitedValue(64);
2206 if ((TV > 63) || (mask & (1ULL << TV)) == 0)
2207 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
2208 << TheCall->getArg(ImmArg)->getSourceRange();
2209 }
2210
2211 if (PtrArgNum >= 0) {
2212 // Check that pointer arguments have the specified type.
2213 Expr *Arg = TheCall->getArg(PtrArgNum);
2214 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
2215 Arg = ICE->getSubExpr();
2216 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
2217 QualType RHSTy = RHS.get()->getType();
2218
2219 llvm::Triple::ArchType Arch = TI.getTriple().getArch();
2220 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
2221 Arch == llvm::Triple::aarch64_32 ||
2222 Arch == llvm::Triple::aarch64_be;
2223 bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
2224 QualType EltTy =
2225 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
2226 if (HasConstPtr)
2227 EltTy = EltTy.withConst();
2228 QualType LHSTy = Context.getPointerType(EltTy);
2229 AssignConvertType ConvTy;
2230 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
2231 if (RHS.isInvalid())
2232 return true;
2233 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
2234 RHS.get(), AA_Assigning))
2235 return true;
2236 }
2237
2238 // For NEON intrinsics which take an immediate value as part of the
2239 // instruction, range check them here.
2240 unsigned i = 0, l = 0, u = 0;
2241 switch (BuiltinID) {
2242 default:
2243 return false;
2244 #define GET_NEON_IMMEDIATE_CHECK
2245 #include "clang/Basic/arm_neon.inc"
2246 #include "clang/Basic/arm_fp16.inc"
2247 #undef GET_NEON_IMMEDIATE_CHECK
2248 }
2249
2250 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2251 }
2252
CheckMVEBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)2253 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2254 switch (BuiltinID) {
2255 default:
2256 return false;
2257 #include "clang/Basic/arm_mve_builtin_sema.inc"
2258 }
2259 }
2260
CheckCDEBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)2261 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2262 CallExpr *TheCall) {
2263 bool Err = false;
2264 switch (BuiltinID) {
2265 default:
2266 return false;
2267 #include "clang/Basic/arm_cde_builtin_sema.inc"
2268 }
2269
2270 if (Err)
2271 return true;
2272
2273 return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
2274 }
2275
CheckARMCoprocessorImmediate(const TargetInfo & TI,const Expr * CoprocArg,bool WantCDE)2276 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
2277 const Expr *CoprocArg, bool WantCDE) {
2278 if (isConstantEvaluated())
2279 return false;
2280
2281 // We can't check the value of a dependent argument.
2282 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
2283 return false;
2284
2285 llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
2286 int64_t CoprocNo = CoprocNoAP.getExtValue();
2287 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
2288
2289 uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
2290 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
2291
2292 if (IsCDECoproc != WantCDE)
2293 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
2294 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
2295
2296 return false;
2297 }
2298
CheckARMBuiltinExclusiveCall(unsigned BuiltinID,CallExpr * TheCall,unsigned MaxWidth)2299 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
2300 unsigned MaxWidth) {
2301 assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
2302 BuiltinID == ARM::BI__builtin_arm_ldaex ||
2303 BuiltinID == ARM::BI__builtin_arm_strex ||
2304 BuiltinID == ARM::BI__builtin_arm_stlex ||
2305 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2306 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2307 BuiltinID == AArch64::BI__builtin_arm_strex ||
2308 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
2309 "unexpected ARM builtin");
2310 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
2311 BuiltinID == ARM::BI__builtin_arm_ldaex ||
2312 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2313 BuiltinID == AArch64::BI__builtin_arm_ldaex;
2314
2315 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2316
2317 // Ensure that we have the proper number of arguments.
2318 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
2319 return true;
2320
2321 // Inspect the pointer argument of the atomic builtin. This should always be
2322 // a pointer type, whose element is an integral scalar or pointer type.
2323 // Because it is a pointer type, we don't have to worry about any implicit
2324 // casts here.
2325 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
2326 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
2327 if (PointerArgRes.isInvalid())
2328 return true;
2329 PointerArg = PointerArgRes.get();
2330
2331 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
2332 if (!pointerType) {
2333 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
2334 << PointerArg->getType() << PointerArg->getSourceRange();
2335 return true;
2336 }
2337
2338 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
2339 // task is to insert the appropriate casts into the AST. First work out just
2340 // what the appropriate type is.
2341 QualType ValType = pointerType->getPointeeType();
2342 QualType AddrType = ValType.getUnqualifiedType().withVolatile();
2343 if (IsLdrex)
2344 AddrType.addConst();
2345
2346 // Issue a warning if the cast is dodgy.
2347 CastKind CastNeeded = CK_NoOp;
2348 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
2349 CastNeeded = CK_BitCast;
2350 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
2351 << PointerArg->getType() << Context.getPointerType(AddrType)
2352 << AA_Passing << PointerArg->getSourceRange();
2353 }
2354
2355 // Finally, do the cast and replace the argument with the corrected version.
2356 AddrType = Context.getPointerType(AddrType);
2357 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
2358 if (PointerArgRes.isInvalid())
2359 return true;
2360 PointerArg = PointerArgRes.get();
2361
2362 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
2363
2364 // In general, we allow ints, floats and pointers to be loaded and stored.
2365 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2366 !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
2367 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
2368 << PointerArg->getType() << PointerArg->getSourceRange();
2369 return true;
2370 }
2371
2372 // But ARM doesn't have instructions to deal with 128-bit versions.
2373 if (Context.getTypeSize(ValType) > MaxWidth) {
2374 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
2375 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
2376 << PointerArg->getType() << PointerArg->getSourceRange();
2377 return true;
2378 }
2379
2380 switch (ValType.getObjCLifetime()) {
2381 case Qualifiers::OCL_None:
2382 case Qualifiers::OCL_ExplicitNone:
2383 // okay
2384 break;
2385
2386 case Qualifiers::OCL_Weak:
2387 case Qualifiers::OCL_Strong:
2388 case Qualifiers::OCL_Autoreleasing:
2389 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
2390 << ValType << PointerArg->getSourceRange();
2391 return true;
2392 }
2393
2394 if (IsLdrex) {
2395 TheCall->setType(ValType);
2396 return false;
2397 }
2398
2399 // Initialize the argument to be stored.
2400 ExprResult ValArg = TheCall->getArg(0);
2401 InitializedEntity Entity = InitializedEntity::InitializeParameter(
2402 Context, ValType, /*consume*/ false);
2403 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
2404 if (ValArg.isInvalid())
2405 return true;
2406 TheCall->setArg(0, ValArg.get());
2407
2408 // __builtin_arm_strex always returns an int. It's marked as such in the .def,
2409 // but the custom checker bypasses all default analysis.
2410 TheCall->setType(Context.IntTy);
2411 return false;
2412 }
2413
CheckARMBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)2414 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2415 CallExpr *TheCall) {
2416 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
2417 BuiltinID == ARM::BI__builtin_arm_ldaex ||
2418 BuiltinID == ARM::BI__builtin_arm_strex ||
2419 BuiltinID == ARM::BI__builtin_arm_stlex) {
2420 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
2421 }
2422
2423 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
2424 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2425 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
2426 }
2427
2428 if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
2429 BuiltinID == ARM::BI__builtin_arm_wsr64)
2430 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
2431
2432 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
2433 BuiltinID == ARM::BI__builtin_arm_rsrp ||
2434 BuiltinID == ARM::BI__builtin_arm_wsr ||
2435 BuiltinID == ARM::BI__builtin_arm_wsrp)
2436 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2437
2438 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2439 return true;
2440 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
2441 return true;
2442 if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
2443 return true;
2444
2445 // For intrinsics which take an immediate value as part of the instruction,
2446 // range check them here.
2447 // FIXME: VFP Intrinsics should error if VFP not present.
2448 switch (BuiltinID) {
2449 default: return false;
2450 case ARM::BI__builtin_arm_ssat:
2451 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
2452 case ARM::BI__builtin_arm_usat:
2453 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
2454 case ARM::BI__builtin_arm_ssat16:
2455 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
2456 case ARM::BI__builtin_arm_usat16:
2457 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
2458 case ARM::BI__builtin_arm_vcvtr_f:
2459 case ARM::BI__builtin_arm_vcvtr_d:
2460 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
2461 case ARM::BI__builtin_arm_dmb:
2462 case ARM::BI__builtin_arm_dsb:
2463 case ARM::BI__builtin_arm_isb:
2464 case ARM::BI__builtin_arm_dbg:
2465 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
2466 case ARM::BI__builtin_arm_cdp:
2467 case ARM::BI__builtin_arm_cdp2:
2468 case ARM::BI__builtin_arm_mcr:
2469 case ARM::BI__builtin_arm_mcr2:
2470 case ARM::BI__builtin_arm_mrc:
2471 case ARM::BI__builtin_arm_mrc2:
2472 case ARM::BI__builtin_arm_mcrr:
2473 case ARM::BI__builtin_arm_mcrr2:
2474 case ARM::BI__builtin_arm_mrrc:
2475 case ARM::BI__builtin_arm_mrrc2:
2476 case ARM::BI__builtin_arm_ldc:
2477 case ARM::BI__builtin_arm_ldcl:
2478 case ARM::BI__builtin_arm_ldc2:
2479 case ARM::BI__builtin_arm_ldc2l:
2480 case ARM::BI__builtin_arm_stc:
2481 case ARM::BI__builtin_arm_stcl:
2482 case ARM::BI__builtin_arm_stc2:
2483 case ARM::BI__builtin_arm_stc2l:
2484 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
2485 CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
2486 /*WantCDE*/ false);
2487 }
2488 }
2489
CheckAArch64BuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)2490 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
2491 unsigned BuiltinID,
2492 CallExpr *TheCall) {
2493 if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2494 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2495 BuiltinID == AArch64::BI__builtin_arm_strex ||
2496 BuiltinID == AArch64::BI__builtin_arm_stlex) {
2497 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
2498 }
2499
2500 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
2501 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2502 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
2503 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
2504 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
2505 }
2506
2507 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2508 BuiltinID == AArch64::BI__builtin_arm_wsr64)
2509 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2510
2511 // Memory Tagging Extensions (MTE) Intrinsics
2512 if (BuiltinID == AArch64::BI__builtin_arm_irg ||
2513 BuiltinID == AArch64::BI__builtin_arm_addg ||
2514 BuiltinID == AArch64::BI__builtin_arm_gmi ||
2515 BuiltinID == AArch64::BI__builtin_arm_ldg ||
2516 BuiltinID == AArch64::BI__builtin_arm_stg ||
2517 BuiltinID == AArch64::BI__builtin_arm_subp) {
2518 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
2519 }
2520
2521 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
2522 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2523 BuiltinID == AArch64::BI__builtin_arm_wsr ||
2524 BuiltinID == AArch64::BI__builtin_arm_wsrp)
2525 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2526
2527 // Only check the valid encoding range. Any constant in this range would be
2528 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
2529 // an exception for incorrect registers. This matches MSVC behavior.
2530 if (BuiltinID == AArch64::BI_ReadStatusReg ||
2531 BuiltinID == AArch64::BI_WriteStatusReg)
2532 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
2533
2534 if (BuiltinID == AArch64::BI__getReg)
2535 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
2536
2537 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2538 return true;
2539
2540 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
2541 return true;
2542
2543 // For intrinsics which take an immediate value as part of the instruction,
2544 // range check them here.
2545 unsigned i = 0, l = 0, u = 0;
2546 switch (BuiltinID) {
2547 default: return false;
2548 case AArch64::BI__builtin_arm_dmb:
2549 case AArch64::BI__builtin_arm_dsb:
2550 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
2551 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
2552 }
2553
2554 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2555 }
2556
isValidBPFPreserveFieldInfoArg(Expr * Arg)2557 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
2558 if (Arg->getType()->getAsPlaceholderType())
2559 return false;
2560
2561 // The first argument needs to be a record field access.
2562 // If it is an array element access, we delay decision
2563 // to BPF backend to check whether the access is a
2564 // field access or not.
2565 return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
2566 dyn_cast<MemberExpr>(Arg->IgnoreParens()) ||
2567 dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()));
2568 }
2569
isEltOfVectorTy(ASTContext & Context,CallExpr * Call,Sema & S,QualType VectorTy,QualType EltTy)2570 static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S,
2571 QualType VectorTy, QualType EltTy) {
2572 QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType();
2573 if (!Context.hasSameType(VectorEltTy, EltTy)) {
2574 S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types)
2575 << Call->getSourceRange() << VectorEltTy << EltTy;
2576 return false;
2577 }
2578 return true;
2579 }
2580
isValidBPFPreserveTypeInfoArg(Expr * Arg)2581 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
2582 QualType ArgType = Arg->getType();
2583 if (ArgType->getAsPlaceholderType())
2584 return false;
2585
2586 // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type
2587 // format:
2588 // 1. __builtin_preserve_type_info(*(<type> *)0, flag);
2589 // 2. <type> var;
2590 // __builtin_preserve_type_info(var, flag);
2591 if (!dyn_cast<DeclRefExpr>(Arg->IgnoreParens()) &&
2592 !dyn_cast<UnaryOperator>(Arg->IgnoreParens()))
2593 return false;
2594
2595 // Typedef type.
2596 if (ArgType->getAs<TypedefType>())
2597 return true;
2598
2599 // Record type or Enum type.
2600 const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2601 if (const auto *RT = Ty->getAs<RecordType>()) {
2602 if (!RT->getDecl()->getDeclName().isEmpty())
2603 return true;
2604 } else if (const auto *ET = Ty->getAs<EnumType>()) {
2605 if (!ET->getDecl()->getDeclName().isEmpty())
2606 return true;
2607 }
2608
2609 return false;
2610 }
2611
isValidBPFPreserveEnumValueArg(Expr * Arg)2612 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
2613 QualType ArgType = Arg->getType();
2614 if (ArgType->getAsPlaceholderType())
2615 return false;
2616
2617 // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
2618 // format:
2619 // __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
2620 // flag);
2621 const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
2622 if (!UO)
2623 return false;
2624
2625 const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
2626 if (!CE)
2627 return false;
2628 if (CE->getCastKind() != CK_IntegralToPointer &&
2629 CE->getCastKind() != CK_NullToPointer)
2630 return false;
2631
2632 // The integer must be from an EnumConstantDecl.
2633 const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
2634 if (!DR)
2635 return false;
2636
2637 const EnumConstantDecl *Enumerator =
2638 dyn_cast<EnumConstantDecl>(DR->getDecl());
2639 if (!Enumerator)
2640 return false;
2641
2642 // The type must be EnumType.
2643 const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2644 const auto *ET = Ty->getAs<EnumType>();
2645 if (!ET)
2646 return false;
2647
2648 // The enum value must be supported.
2649 for (auto *EDI : ET->getDecl()->enumerators()) {
2650 if (EDI == Enumerator)
2651 return true;
2652 }
2653
2654 return false;
2655 }
2656
CheckBPFBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)2657 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
2658 CallExpr *TheCall) {
2659 assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
2660 BuiltinID == BPF::BI__builtin_btf_type_id ||
2661 BuiltinID == BPF::BI__builtin_preserve_type_info ||
2662 BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
2663 "unexpected BPF builtin");
2664
2665 if (checkArgCount(*this, TheCall, 2))
2666 return true;
2667
2668 // The second argument needs to be a constant int
2669 Expr *Arg = TheCall->getArg(1);
2670 Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
2671 diag::kind kind;
2672 if (!Value) {
2673 if (BuiltinID == BPF::BI__builtin_preserve_field_info)
2674 kind = diag::err_preserve_field_info_not_const;
2675 else if (BuiltinID == BPF::BI__builtin_btf_type_id)
2676 kind = diag::err_btf_type_id_not_const;
2677 else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
2678 kind = diag::err_preserve_type_info_not_const;
2679 else
2680 kind = diag::err_preserve_enum_value_not_const;
2681 Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
2682 return true;
2683 }
2684
2685 // The first argument
2686 Arg = TheCall->getArg(0);
2687 bool InvalidArg = false;
2688 bool ReturnUnsignedInt = true;
2689 if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
2690 if (!isValidBPFPreserveFieldInfoArg(Arg)) {
2691 InvalidArg = true;
2692 kind = diag::err_preserve_field_info_not_field;
2693 }
2694 } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
2695 if (!isValidBPFPreserveTypeInfoArg(Arg)) {
2696 InvalidArg = true;
2697 kind = diag::err_preserve_type_info_invalid;
2698 }
2699 } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
2700 if (!isValidBPFPreserveEnumValueArg(Arg)) {
2701 InvalidArg = true;
2702 kind = diag::err_preserve_enum_value_invalid;
2703 }
2704 ReturnUnsignedInt = false;
2705 } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
2706 ReturnUnsignedInt = false;
2707 }
2708
2709 if (InvalidArg) {
2710 Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
2711 return true;
2712 }
2713
2714 if (ReturnUnsignedInt)
2715 TheCall->setType(Context.UnsignedIntTy);
2716 else
2717 TheCall->setType(Context.UnsignedLongTy);
2718 return false;
2719 }
2720
CheckHexagonBuiltinArgument(unsigned BuiltinID,CallExpr * TheCall)2721 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2722 struct ArgInfo {
2723 uint8_t OpNum;
2724 bool IsSigned;
2725 uint8_t BitWidth;
2726 uint8_t Align;
2727 };
2728 struct BuiltinInfo {
2729 unsigned BuiltinID;
2730 ArgInfo Infos[2];
2731 };
2732
2733 static BuiltinInfo Infos[] = {
2734 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} },
2735 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} },
2736 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} },
2737 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} },
2738 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} },
2739 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} },
2740 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} },
2741 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} },
2742 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} },
2743 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} },
2744 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} },
2745
2746 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} },
2747 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} },
2748 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} },
2749 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} },
2750 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} },
2751 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} },
2752 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} },
2753 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} },
2754 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} },
2755 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} },
2756 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} },
2757
2758 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} },
2759 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} },
2760 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} },
2761 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} },
2762 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} },
2763 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} },
2764 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} },
2765 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} },
2766 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} },
2767 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} },
2768 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} },
2769 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} },
2770 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} },
2771 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} },
2772 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} },
2773 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} },
2774 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} },
2775 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} },
2776 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} },
2777 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} },
2778 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} },
2779 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} },
2780 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} },
2781 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} },
2782 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} },
2783 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} },
2784 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} },
2785 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} },
2786 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} },
2787 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} },
2788 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} },
2789 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} },
2790 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} },
2791 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} },
2792 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} },
2793 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} },
2794 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} },
2795 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} },
2796 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} },
2797 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} },
2798 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} },
2799 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} },
2800 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} },
2801 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} },
2802 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} },
2803 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} },
2804 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} },
2805 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} },
2806 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} },
2807 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} },
2808 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} },
2809 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
2810 {{ 1, false, 6, 0 }} },
2811 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} },
2812 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} },
2813 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} },
2814 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} },
2815 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} },
2816 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} },
2817 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
2818 {{ 1, false, 5, 0 }} },
2819 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} },
2820 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} },
2821 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} },
2822 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} },
2823 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} },
2824 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 },
2825 { 2, false, 5, 0 }} },
2826 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 },
2827 { 2, false, 6, 0 }} },
2828 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 },
2829 { 3, false, 5, 0 }} },
2830 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 },
2831 { 3, false, 6, 0 }} },
2832 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} },
2833 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} },
2834 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} },
2835 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} },
2836 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} },
2837 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} },
2838 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} },
2839 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} },
2840 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} },
2841 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} },
2842 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} },
2843 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} },
2844 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} },
2845 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} },
2846 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} },
2847 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
2848 {{ 2, false, 4, 0 },
2849 { 3, false, 5, 0 }} },
2850 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
2851 {{ 2, false, 4, 0 },
2852 { 3, false, 5, 0 }} },
2853 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
2854 {{ 2, false, 4, 0 },
2855 { 3, false, 5, 0 }} },
2856 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
2857 {{ 2, false, 4, 0 },
2858 { 3, false, 5, 0 }} },
2859 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} },
2860 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} },
2861 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} },
2862 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} },
2863 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} },
2864 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} },
2865 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} },
2866 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} },
2867 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} },
2868 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} },
2869 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 },
2870 { 2, false, 5, 0 }} },
2871 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 },
2872 { 2, false, 6, 0 }} },
2873 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} },
2874 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} },
2875 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} },
2876 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} },
2877 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} },
2878 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} },
2879 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} },
2880 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} },
2881 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
2882 {{ 1, false, 4, 0 }} },
2883 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} },
2884 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
2885 {{ 1, false, 4, 0 }} },
2886 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} },
2887 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} },
2888 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} },
2889 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} },
2890 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} },
2891 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} },
2892 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} },
2893 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} },
2894 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} },
2895 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} },
2896 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} },
2897 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} },
2898 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} },
2899 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} },
2900 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} },
2901 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} },
2902 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} },
2903 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} },
2904 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} },
2905 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
2906 {{ 3, false, 1, 0 }} },
2907 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} },
2908 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} },
2909 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} },
2910 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
2911 {{ 3, false, 1, 0 }} },
2912 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} },
2913 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} },
2914 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} },
2915 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
2916 {{ 3, false, 1, 0 }} },
2917 };
2918
2919 // Use a dynamically initialized static to sort the table exactly once on
2920 // first run.
2921 static const bool SortOnce =
2922 (llvm::sort(Infos,
2923 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
2924 return LHS.BuiltinID < RHS.BuiltinID;
2925 }),
2926 true);
2927 (void)SortOnce;
2928
2929 const BuiltinInfo *F = llvm::partition_point(
2930 Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
2931 if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
2932 return false;
2933
2934 bool Error = false;
2935
2936 for (const ArgInfo &A : F->Infos) {
2937 // Ignore empty ArgInfo elements.
2938 if (A.BitWidth == 0)
2939 continue;
2940
2941 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
2942 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
2943 if (!A.Align) {
2944 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
2945 } else {
2946 unsigned M = 1 << A.Align;
2947 Min *= M;
2948 Max *= M;
2949 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) |
2950 SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
2951 }
2952 }
2953 return Error;
2954 }
2955
CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)2956 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
2957 CallExpr *TheCall) {
2958 return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
2959 }
2960
CheckMipsBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)2961 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
2962 unsigned BuiltinID, CallExpr *TheCall) {
2963 return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
2964 CheckMipsBuiltinArgument(BuiltinID, TheCall);
2965 }
2966
CheckMipsBuiltinCpu(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)2967 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
2968 CallExpr *TheCall) {
2969
2970 if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
2971 BuiltinID <= Mips::BI__builtin_mips_lwx) {
2972 if (!TI.hasFeature("dsp"))
2973 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
2974 }
2975
2976 if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
2977 BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
2978 if (!TI.hasFeature("dspr2"))
2979 return Diag(TheCall->getBeginLoc(),
2980 diag::err_mips_builtin_requires_dspr2);
2981 }
2982
2983 if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
2984 BuiltinID <= Mips::BI__builtin_msa_xori_b) {
2985 if (!TI.hasFeature("msa"))
2986 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
2987 }
2988
2989 return false;
2990 }
2991
2992 // CheckMipsBuiltinArgument - Checks the constant value passed to the
2993 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
2994 // ordering for DSP is unspecified. MSA is ordered by the data format used
2995 // by the underlying instruction i.e., df/m, df/n and then by size.
2996 //
2997 // FIXME: The size tests here should instead be tablegen'd along with the
2998 // definitions from include/clang/Basic/BuiltinsMips.def.
2999 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
3000 // be too.
CheckMipsBuiltinArgument(unsigned BuiltinID,CallExpr * TheCall)3001 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3002 unsigned i = 0, l = 0, u = 0, m = 0;
3003 switch (BuiltinID) {
3004 default: return false;
3005 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3006 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3007 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3008 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3009 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3010 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3011 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3012 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3013 // df/m field.
3014 // These intrinsics take an unsigned 3 bit immediate.
3015 case Mips::BI__builtin_msa_bclri_b:
3016 case Mips::BI__builtin_msa_bnegi_b:
3017 case Mips::BI__builtin_msa_bseti_b:
3018 case Mips::BI__builtin_msa_sat_s_b:
3019 case Mips::BI__builtin_msa_sat_u_b:
3020 case Mips::BI__builtin_msa_slli_b:
3021 case Mips::BI__builtin_msa_srai_b:
3022 case Mips::BI__builtin_msa_srari_b:
3023 case Mips::BI__builtin_msa_srli_b:
3024 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3025 case Mips::BI__builtin_msa_binsli_b:
3026 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3027 // These intrinsics take an unsigned 4 bit immediate.
3028 case Mips::BI__builtin_msa_bclri_h:
3029 case Mips::BI__builtin_msa_bnegi_h:
3030 case Mips::BI__builtin_msa_bseti_h:
3031 case Mips::BI__builtin_msa_sat_s_h:
3032 case Mips::BI__builtin_msa_sat_u_h:
3033 case Mips::BI__builtin_msa_slli_h:
3034 case Mips::BI__builtin_msa_srai_h:
3035 case Mips::BI__builtin_msa_srari_h:
3036 case Mips::BI__builtin_msa_srli_h:
3037 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3038 case Mips::BI__builtin_msa_binsli_h:
3039 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3040 // These intrinsics take an unsigned 5 bit immediate.
3041 // The first block of intrinsics actually have an unsigned 5 bit field,
3042 // not a df/n field.
3043 case Mips::BI__builtin_msa_cfcmsa:
3044 case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3045 case Mips::BI__builtin_msa_clei_u_b:
3046 case Mips::BI__builtin_msa_clei_u_h:
3047 case Mips::BI__builtin_msa_clei_u_w:
3048 case Mips::BI__builtin_msa_clei_u_d:
3049 case Mips::BI__builtin_msa_clti_u_b:
3050 case Mips::BI__builtin_msa_clti_u_h:
3051 case Mips::BI__builtin_msa_clti_u_w:
3052 case Mips::BI__builtin_msa_clti_u_d:
3053 case Mips::BI__builtin_msa_maxi_u_b:
3054 case Mips::BI__builtin_msa_maxi_u_h:
3055 case Mips::BI__builtin_msa_maxi_u_w:
3056 case Mips::BI__builtin_msa_maxi_u_d:
3057 case Mips::BI__builtin_msa_mini_u_b:
3058 case Mips::BI__builtin_msa_mini_u_h:
3059 case Mips::BI__builtin_msa_mini_u_w:
3060 case Mips::BI__builtin_msa_mini_u_d:
3061 case Mips::BI__builtin_msa_addvi_b:
3062 case Mips::BI__builtin_msa_addvi_h:
3063 case Mips::BI__builtin_msa_addvi_w:
3064 case Mips::BI__builtin_msa_addvi_d:
3065 case Mips::BI__builtin_msa_bclri_w:
3066 case Mips::BI__builtin_msa_bnegi_w:
3067 case Mips::BI__builtin_msa_bseti_w:
3068 case Mips::BI__builtin_msa_sat_s_w:
3069 case Mips::BI__builtin_msa_sat_u_w:
3070 case Mips::BI__builtin_msa_slli_w:
3071 case Mips::BI__builtin_msa_srai_w:
3072 case Mips::BI__builtin_msa_srari_w:
3073 case Mips::BI__builtin_msa_srli_w:
3074 case Mips::BI__builtin_msa_srlri_w:
3075 case Mips::BI__builtin_msa_subvi_b:
3076 case Mips::BI__builtin_msa_subvi_h:
3077 case Mips::BI__builtin_msa_subvi_w:
3078 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3079 case Mips::BI__builtin_msa_binsli_w:
3080 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3081 // These intrinsics take an unsigned 6 bit immediate.
3082 case Mips::BI__builtin_msa_bclri_d:
3083 case Mips::BI__builtin_msa_bnegi_d:
3084 case Mips::BI__builtin_msa_bseti_d:
3085 case Mips::BI__builtin_msa_sat_s_d:
3086 case Mips::BI__builtin_msa_sat_u_d:
3087 case Mips::BI__builtin_msa_slli_d:
3088 case Mips::BI__builtin_msa_srai_d:
3089 case Mips::BI__builtin_msa_srari_d:
3090 case Mips::BI__builtin_msa_srli_d:
3091 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3092 case Mips::BI__builtin_msa_binsli_d:
3093 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3094 // These intrinsics take a signed 5 bit immediate.
3095 case Mips::BI__builtin_msa_ceqi_b:
3096 case Mips::BI__builtin_msa_ceqi_h:
3097 case Mips::BI__builtin_msa_ceqi_w:
3098 case Mips::BI__builtin_msa_ceqi_d:
3099 case Mips::BI__builtin_msa_clti_s_b:
3100 case Mips::BI__builtin_msa_clti_s_h:
3101 case Mips::BI__builtin_msa_clti_s_w:
3102 case Mips::BI__builtin_msa_clti_s_d:
3103 case Mips::BI__builtin_msa_clei_s_b:
3104 case Mips::BI__builtin_msa_clei_s_h:
3105 case Mips::BI__builtin_msa_clei_s_w:
3106 case Mips::BI__builtin_msa_clei_s_d:
3107 case Mips::BI__builtin_msa_maxi_s_b:
3108 case Mips::BI__builtin_msa_maxi_s_h:
3109 case Mips::BI__builtin_msa_maxi_s_w:
3110 case Mips::BI__builtin_msa_maxi_s_d:
3111 case Mips::BI__builtin_msa_mini_s_b:
3112 case Mips::BI__builtin_msa_mini_s_h:
3113 case Mips::BI__builtin_msa_mini_s_w:
3114 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3115 // These intrinsics take an unsigned 8 bit immediate.
3116 case Mips::BI__builtin_msa_andi_b:
3117 case Mips::BI__builtin_msa_nori_b:
3118 case Mips::BI__builtin_msa_ori_b:
3119 case Mips::BI__builtin_msa_shf_b:
3120 case Mips::BI__builtin_msa_shf_h:
3121 case Mips::BI__builtin_msa_shf_w:
3122 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3123 case Mips::BI__builtin_msa_bseli_b:
3124 case Mips::BI__builtin_msa_bmnzi_b:
3125 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3126 // df/n format
3127 // These intrinsics take an unsigned 4 bit immediate.
3128 case Mips::BI__builtin_msa_copy_s_b:
3129 case Mips::BI__builtin_msa_copy_u_b:
3130 case Mips::BI__builtin_msa_insve_b:
3131 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3132 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3133 // These intrinsics take an unsigned 3 bit immediate.
3134 case Mips::BI__builtin_msa_copy_s_h:
3135 case Mips::BI__builtin_msa_copy_u_h:
3136 case Mips::BI__builtin_msa_insve_h:
3137 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3138 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3139 // These intrinsics take an unsigned 2 bit immediate.
3140 case Mips::BI__builtin_msa_copy_s_w:
3141 case Mips::BI__builtin_msa_copy_u_w:
3142 case Mips::BI__builtin_msa_insve_w:
3143 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3144 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3145 // These intrinsics take an unsigned 1 bit immediate.
3146 case Mips::BI__builtin_msa_copy_s_d:
3147 case Mips::BI__builtin_msa_copy_u_d:
3148 case Mips::BI__builtin_msa_insve_d:
3149 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3150 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3151 // Memory offsets and immediate loads.
3152 // These intrinsics take a signed 10 bit immediate.
3153 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3154 case Mips::BI__builtin_msa_ldi_h:
3155 case Mips::BI__builtin_msa_ldi_w:
3156 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3157 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3158 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3159 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3160 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3161 case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
3162 case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
3163 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3164 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3165 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3166 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3167 case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
3168 case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
3169 }
3170
3171 if (!m)
3172 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3173
3174 return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3175 SemaBuiltinConstantArgMultiple(TheCall, i, m);
3176 }
3177
3178 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
3179 /// advancing the pointer over the consumed characters. The decoded type is
3180 /// returned. If the decoded type represents a constant integer with a
3181 /// constraint on its value then Mask is set to that value. The type descriptors
3182 /// used in Str are specific to PPC MMA builtins and are documented in the file
3183 /// defining the PPC builtins.
DecodePPCMMATypeFromStr(ASTContext & Context,const char * & Str,unsigned & Mask)3184 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
3185 unsigned &Mask) {
3186 bool RequireICE = false;
3187 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
3188 switch (*Str++) {
3189 case 'V':
3190 return Context.getVectorType(Context.UnsignedCharTy, 16,
3191 VectorType::VectorKind::AltiVecVector);
3192 case 'i': {
3193 char *End;
3194 unsigned size = strtoul(Str, &End, 10);
3195 assert(End != Str && "Missing constant parameter constraint");
3196 Str = End;
3197 Mask = size;
3198 return Context.IntTy;
3199 }
3200 case 'W': {
3201 char *End;
3202 unsigned size = strtoul(Str, &End, 10);
3203 assert(End != Str && "Missing PowerPC MMA type size");
3204 Str = End;
3205 QualType Type;
3206 switch (size) {
3207 #define PPC_VECTOR_TYPE(typeName, Id, size) \
3208 case size: Type = Context.Id##Ty; break;
3209 #include "clang/Basic/PPCTypes.def"
3210 default: llvm_unreachable("Invalid PowerPC MMA vector type");
3211 }
3212 bool CheckVectorArgs = false;
3213 while (!CheckVectorArgs) {
3214 switch (*Str++) {
3215 case '*':
3216 Type = Context.getPointerType(Type);
3217 break;
3218 case 'C':
3219 Type = Type.withConst();
3220 break;
3221 default:
3222 CheckVectorArgs = true;
3223 --Str;
3224 break;
3225 }
3226 }
3227 return Type;
3228 }
3229 default:
3230 return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
3231 }
3232 }
3233
CheckPPCBuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)3234 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3235 CallExpr *TheCall) {
3236 unsigned i = 0, l = 0, u = 0;
3237 bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
3238 BuiltinID == PPC::BI__builtin_divdeu ||
3239 BuiltinID == PPC::BI__builtin_bpermd;
3240 bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
3241 bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
3242 BuiltinID == PPC::BI__builtin_divweu ||
3243 BuiltinID == PPC::BI__builtin_divde ||
3244 BuiltinID == PPC::BI__builtin_divdeu;
3245
3246 if (Is64BitBltin && !IsTarget64Bit)
3247 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3248 << TheCall->getSourceRange();
3249
3250 if ((IsBltinExtDiv && !TI.hasFeature("extdiv")) ||
3251 (BuiltinID == PPC::BI__builtin_bpermd && !TI.hasFeature("bpermd")))
3252 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3253 << TheCall->getSourceRange();
3254
3255 auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool {
3256 if (!TI.hasFeature("vsx"))
3257 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3258 << TheCall->getSourceRange();
3259 return false;
3260 };
3261
3262 switch (BuiltinID) {
3263 default: return false;
3264 case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3265 case PPC::BI__builtin_altivec_crypto_vshasigmad:
3266 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3267 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3268 case PPC::BI__builtin_altivec_dss:
3269 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3270 case PPC::BI__builtin_tbegin:
3271 case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
3272 case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
3273 case PPC::BI__builtin_tabortwc:
3274 case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
3275 case PPC::BI__builtin_tabortwci:
3276 case PPC::BI__builtin_tabortdci:
3277 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3278 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
3279 case PPC::BI__builtin_altivec_dst:
3280 case PPC::BI__builtin_altivec_dstt:
3281 case PPC::BI__builtin_altivec_dstst:
3282 case PPC::BI__builtin_altivec_dststt:
3283 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
3284 case PPC::BI__builtin_vsx_xxpermdi:
3285 case PPC::BI__builtin_vsx_xxsldwi:
3286 return SemaBuiltinVSX(TheCall);
3287 case PPC::BI__builtin_unpack_vector_int128:
3288 return SemaVSXCheck(TheCall) ||
3289 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3290 case PPC::BI__builtin_pack_vector_int128:
3291 return SemaVSXCheck(TheCall);
3292 case PPC::BI__builtin_altivec_vgnb:
3293 return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
3294 case PPC::BI__builtin_altivec_vec_replace_elt:
3295 case PPC::BI__builtin_altivec_vec_replace_unaligned: {
3296 QualType VecTy = TheCall->getArg(0)->getType();
3297 QualType EltTy = TheCall->getArg(1)->getType();
3298 unsigned Width = Context.getIntWidth(EltTy);
3299 return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) ||
3300 !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy);
3301 }
3302 case PPC::BI__builtin_vsx_xxeval:
3303 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
3304 case PPC::BI__builtin_altivec_vsldbi:
3305 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3306 case PPC::BI__builtin_altivec_vsrdbi:
3307 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3308 case PPC::BI__builtin_vsx_xxpermx:
3309 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
3310 #define CUSTOM_BUILTIN(Name, Types, Acc) \
3311 case PPC::BI__builtin_##Name: \
3312 return SemaBuiltinPPCMMACall(TheCall, Types);
3313 #include "clang/Basic/BuiltinsPPC.def"
3314 }
3315 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3316 }
3317
3318 // Check if the given type is a non-pointer PPC MMA type. This function is used
3319 // in Sema to prevent invalid uses of restricted PPC MMA types.
CheckPPCMMAType(QualType Type,SourceLocation TypeLoc)3320 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
3321 if (Type->isPointerType() || Type->isArrayType())
3322 return false;
3323
3324 QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
3325 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
3326 if (false
3327 #include "clang/Basic/PPCTypes.def"
3328 ) {
3329 Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
3330 return true;
3331 }
3332 return false;
3333 }
3334
CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)3335 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
3336 CallExpr *TheCall) {
3337 // position of memory order and scope arguments in the builtin
3338 unsigned OrderIndex, ScopeIndex;
3339 switch (BuiltinID) {
3340 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
3341 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
3342 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
3343 case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
3344 OrderIndex = 2;
3345 ScopeIndex = 3;
3346 break;
3347 case AMDGPU::BI__builtin_amdgcn_fence:
3348 OrderIndex = 0;
3349 ScopeIndex = 1;
3350 break;
3351 default:
3352 return false;
3353 }
3354
3355 ExprResult Arg = TheCall->getArg(OrderIndex);
3356 auto ArgExpr = Arg.get();
3357 Expr::EvalResult ArgResult;
3358
3359 if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
3360 return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
3361 << ArgExpr->getType();
3362 int ord = ArgResult.Val.getInt().getZExtValue();
3363
3364 // Check valididty of memory ordering as per C11 / C++11's memody model.
3365 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
3366 case llvm::AtomicOrderingCABI::acquire:
3367 case llvm::AtomicOrderingCABI::release:
3368 case llvm::AtomicOrderingCABI::acq_rel:
3369 case llvm::AtomicOrderingCABI::seq_cst:
3370 break;
3371 default: {
3372 return Diag(ArgExpr->getBeginLoc(),
3373 diag::warn_atomic_op_has_invalid_memory_order)
3374 << ArgExpr->getSourceRange();
3375 }
3376 }
3377
3378 Arg = TheCall->getArg(ScopeIndex);
3379 ArgExpr = Arg.get();
3380 Expr::EvalResult ArgResult1;
3381 // Check that sync scope is a constant literal
3382 if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
3383 return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
3384 << ArgExpr->getType();
3385
3386 return false;
3387 }
3388
CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)3389 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
3390 CallExpr *TheCall) {
3391 if (BuiltinID == SystemZ::BI__builtin_tabort) {
3392 Expr *Arg = TheCall->getArg(0);
3393 if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
3394 if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
3395 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
3396 << Arg->getSourceRange();
3397 }
3398
3399 // For intrinsics which take an immediate value as part of the instruction,
3400 // range check them here.
3401 unsigned i = 0, l = 0, u = 0;
3402 switch (BuiltinID) {
3403 default: return false;
3404 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
3405 case SystemZ::BI__builtin_s390_verimb:
3406 case SystemZ::BI__builtin_s390_verimh:
3407 case SystemZ::BI__builtin_s390_verimf:
3408 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
3409 case SystemZ::BI__builtin_s390_vfaeb:
3410 case SystemZ::BI__builtin_s390_vfaeh:
3411 case SystemZ::BI__builtin_s390_vfaef:
3412 case SystemZ::BI__builtin_s390_vfaebs:
3413 case SystemZ::BI__builtin_s390_vfaehs:
3414 case SystemZ::BI__builtin_s390_vfaefs:
3415 case SystemZ::BI__builtin_s390_vfaezb:
3416 case SystemZ::BI__builtin_s390_vfaezh:
3417 case SystemZ::BI__builtin_s390_vfaezf:
3418 case SystemZ::BI__builtin_s390_vfaezbs:
3419 case SystemZ::BI__builtin_s390_vfaezhs:
3420 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
3421 case SystemZ::BI__builtin_s390_vfisb:
3422 case SystemZ::BI__builtin_s390_vfidb:
3423 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
3424 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3425 case SystemZ::BI__builtin_s390_vftcisb:
3426 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
3427 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
3428 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
3429 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
3430 case SystemZ::BI__builtin_s390_vstrcb:
3431 case SystemZ::BI__builtin_s390_vstrch:
3432 case SystemZ::BI__builtin_s390_vstrcf:
3433 case SystemZ::BI__builtin_s390_vstrczb:
3434 case SystemZ::BI__builtin_s390_vstrczh:
3435 case SystemZ::BI__builtin_s390_vstrczf:
3436 case SystemZ::BI__builtin_s390_vstrcbs:
3437 case SystemZ::BI__builtin_s390_vstrchs:
3438 case SystemZ::BI__builtin_s390_vstrcfs:
3439 case SystemZ::BI__builtin_s390_vstrczbs:
3440 case SystemZ::BI__builtin_s390_vstrczhs:
3441 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
3442 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
3443 case SystemZ::BI__builtin_s390_vfminsb:
3444 case SystemZ::BI__builtin_s390_vfmaxsb:
3445 case SystemZ::BI__builtin_s390_vfmindb:
3446 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
3447 case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
3448 case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
3449 }
3450 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3451 }
3452
3453 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
3454 /// This checks that the target supports __builtin_cpu_supports and
3455 /// that the string argument is constant and valid.
SemaBuiltinCpuSupports(Sema & S,const TargetInfo & TI,CallExpr * TheCall)3456 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
3457 CallExpr *TheCall) {
3458 Expr *Arg = TheCall->getArg(0);
3459
3460 // Check if the argument is a string literal.
3461 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3462 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3463 << Arg->getSourceRange();
3464
3465 // Check the contents of the string.
3466 StringRef Feature =
3467 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3468 if (!TI.validateCpuSupports(Feature))
3469 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
3470 << Arg->getSourceRange();
3471 return false;
3472 }
3473
3474 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
3475 /// This checks that the target supports __builtin_cpu_is and
3476 /// that the string argument is constant and valid.
SemaBuiltinCpuIs(Sema & S,const TargetInfo & TI,CallExpr * TheCall)3477 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
3478 Expr *Arg = TheCall->getArg(0);
3479
3480 // Check if the argument is a string literal.
3481 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3482 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3483 << Arg->getSourceRange();
3484
3485 // Check the contents of the string.
3486 StringRef Feature =
3487 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3488 if (!TI.validateCpuIs(Feature))
3489 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
3490 << Arg->getSourceRange();
3491 return false;
3492 }
3493
3494 // Check if the rounding mode is legal.
CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID,CallExpr * TheCall)3495 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
3496 // Indicates if this instruction has rounding control or just SAE.
3497 bool HasRC = false;
3498
3499 unsigned ArgNum = 0;
3500 switch (BuiltinID) {
3501 default:
3502 return false;
3503 case X86::BI__builtin_ia32_vcvttsd2si32:
3504 case X86::BI__builtin_ia32_vcvttsd2si64:
3505 case X86::BI__builtin_ia32_vcvttsd2usi32:
3506 case X86::BI__builtin_ia32_vcvttsd2usi64:
3507 case X86::BI__builtin_ia32_vcvttss2si32:
3508 case X86::BI__builtin_ia32_vcvttss2si64:
3509 case X86::BI__builtin_ia32_vcvttss2usi32:
3510 case X86::BI__builtin_ia32_vcvttss2usi64:
3511 ArgNum = 1;
3512 break;
3513 case X86::BI__builtin_ia32_maxpd512:
3514 case X86::BI__builtin_ia32_maxps512:
3515 case X86::BI__builtin_ia32_minpd512:
3516 case X86::BI__builtin_ia32_minps512:
3517 ArgNum = 2;
3518 break;
3519 case X86::BI__builtin_ia32_cvtps2pd512_mask:
3520 case X86::BI__builtin_ia32_cvttpd2dq512_mask:
3521 case X86::BI__builtin_ia32_cvttpd2qq512_mask:
3522 case X86::BI__builtin_ia32_cvttpd2udq512_mask:
3523 case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
3524 case X86::BI__builtin_ia32_cvttps2dq512_mask:
3525 case X86::BI__builtin_ia32_cvttps2qq512_mask:
3526 case X86::BI__builtin_ia32_cvttps2udq512_mask:
3527 case X86::BI__builtin_ia32_cvttps2uqq512_mask:
3528 case X86::BI__builtin_ia32_exp2pd_mask:
3529 case X86::BI__builtin_ia32_exp2ps_mask:
3530 case X86::BI__builtin_ia32_getexppd512_mask:
3531 case X86::BI__builtin_ia32_getexpps512_mask:
3532 case X86::BI__builtin_ia32_rcp28pd_mask:
3533 case X86::BI__builtin_ia32_rcp28ps_mask:
3534 case X86::BI__builtin_ia32_rsqrt28pd_mask:
3535 case X86::BI__builtin_ia32_rsqrt28ps_mask:
3536 case X86::BI__builtin_ia32_vcomisd:
3537 case X86::BI__builtin_ia32_vcomiss:
3538 case X86::BI__builtin_ia32_vcvtph2ps512_mask:
3539 ArgNum = 3;
3540 break;
3541 case X86::BI__builtin_ia32_cmppd512_mask:
3542 case X86::BI__builtin_ia32_cmpps512_mask:
3543 case X86::BI__builtin_ia32_cmpsd_mask:
3544 case X86::BI__builtin_ia32_cmpss_mask:
3545 case X86::BI__builtin_ia32_cvtss2sd_round_mask:
3546 case X86::BI__builtin_ia32_getexpsd128_round_mask:
3547 case X86::BI__builtin_ia32_getexpss128_round_mask:
3548 case X86::BI__builtin_ia32_getmantpd512_mask:
3549 case X86::BI__builtin_ia32_getmantps512_mask:
3550 case X86::BI__builtin_ia32_maxsd_round_mask:
3551 case X86::BI__builtin_ia32_maxss_round_mask:
3552 case X86::BI__builtin_ia32_minsd_round_mask:
3553 case X86::BI__builtin_ia32_minss_round_mask:
3554 case X86::BI__builtin_ia32_rcp28sd_round_mask:
3555 case X86::BI__builtin_ia32_rcp28ss_round_mask:
3556 case X86::BI__builtin_ia32_reducepd512_mask:
3557 case X86::BI__builtin_ia32_reduceps512_mask:
3558 case X86::BI__builtin_ia32_rndscalepd_mask:
3559 case X86::BI__builtin_ia32_rndscaleps_mask:
3560 case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
3561 case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
3562 ArgNum = 4;
3563 break;
3564 case X86::BI__builtin_ia32_fixupimmpd512_mask:
3565 case X86::BI__builtin_ia32_fixupimmpd512_maskz:
3566 case X86::BI__builtin_ia32_fixupimmps512_mask:
3567 case X86::BI__builtin_ia32_fixupimmps512_maskz:
3568 case X86::BI__builtin_ia32_fixupimmsd_mask:
3569 case X86::BI__builtin_ia32_fixupimmsd_maskz:
3570 case X86::BI__builtin_ia32_fixupimmss_mask:
3571 case X86::BI__builtin_ia32_fixupimmss_maskz:
3572 case X86::BI__builtin_ia32_getmantsd_round_mask:
3573 case X86::BI__builtin_ia32_getmantss_round_mask:
3574 case X86::BI__builtin_ia32_rangepd512_mask:
3575 case X86::BI__builtin_ia32_rangeps512_mask:
3576 case X86::BI__builtin_ia32_rangesd128_round_mask:
3577 case X86::BI__builtin_ia32_rangess128_round_mask:
3578 case X86::BI__builtin_ia32_reducesd_mask:
3579 case X86::BI__builtin_ia32_reducess_mask:
3580 case X86::BI__builtin_ia32_rndscalesd_round_mask:
3581 case X86::BI__builtin_ia32_rndscaless_round_mask:
3582 ArgNum = 5;
3583 break;
3584 case X86::BI__builtin_ia32_vcvtsd2si64:
3585 case X86::BI__builtin_ia32_vcvtsd2si32:
3586 case X86::BI__builtin_ia32_vcvtsd2usi32:
3587 case X86::BI__builtin_ia32_vcvtsd2usi64:
3588 case X86::BI__builtin_ia32_vcvtss2si32:
3589 case X86::BI__builtin_ia32_vcvtss2si64:
3590 case X86::BI__builtin_ia32_vcvtss2usi32:
3591 case X86::BI__builtin_ia32_vcvtss2usi64:
3592 case X86::BI__builtin_ia32_sqrtpd512:
3593 case X86::BI__builtin_ia32_sqrtps512:
3594 ArgNum = 1;
3595 HasRC = true;
3596 break;
3597 case X86::BI__builtin_ia32_addpd512:
3598 case X86::BI__builtin_ia32_addps512:
3599 case X86::BI__builtin_ia32_divpd512:
3600 case X86::BI__builtin_ia32_divps512:
3601 case X86::BI__builtin_ia32_mulpd512:
3602 case X86::BI__builtin_ia32_mulps512:
3603 case X86::BI__builtin_ia32_subpd512:
3604 case X86::BI__builtin_ia32_subps512:
3605 case X86::BI__builtin_ia32_cvtsi2sd64:
3606 case X86::BI__builtin_ia32_cvtsi2ss32:
3607 case X86::BI__builtin_ia32_cvtsi2ss64:
3608 case X86::BI__builtin_ia32_cvtusi2sd64:
3609 case X86::BI__builtin_ia32_cvtusi2ss32:
3610 case X86::BI__builtin_ia32_cvtusi2ss64:
3611 ArgNum = 2;
3612 HasRC = true;
3613 break;
3614 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
3615 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
3616 case X86::BI__builtin_ia32_cvtpd2ps512_mask:
3617 case X86::BI__builtin_ia32_cvtpd2dq512_mask:
3618 case X86::BI__builtin_ia32_cvtpd2qq512_mask:
3619 case X86::BI__builtin_ia32_cvtpd2udq512_mask:
3620 case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
3621 case X86::BI__builtin_ia32_cvtps2dq512_mask:
3622 case X86::BI__builtin_ia32_cvtps2qq512_mask:
3623 case X86::BI__builtin_ia32_cvtps2udq512_mask:
3624 case X86::BI__builtin_ia32_cvtps2uqq512_mask:
3625 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
3626 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
3627 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
3628 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
3629 ArgNum = 3;
3630 HasRC = true;
3631 break;
3632 case X86::BI__builtin_ia32_addss_round_mask:
3633 case X86::BI__builtin_ia32_addsd_round_mask:
3634 case X86::BI__builtin_ia32_divss_round_mask:
3635 case X86::BI__builtin_ia32_divsd_round_mask:
3636 case X86::BI__builtin_ia32_mulss_round_mask:
3637 case X86::BI__builtin_ia32_mulsd_round_mask:
3638 case X86::BI__builtin_ia32_subss_round_mask:
3639 case X86::BI__builtin_ia32_subsd_round_mask:
3640 case X86::BI__builtin_ia32_scalefpd512_mask:
3641 case X86::BI__builtin_ia32_scalefps512_mask:
3642 case X86::BI__builtin_ia32_scalefsd_round_mask:
3643 case X86::BI__builtin_ia32_scalefss_round_mask:
3644 case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
3645 case X86::BI__builtin_ia32_sqrtsd_round_mask:
3646 case X86::BI__builtin_ia32_sqrtss_round_mask:
3647 case X86::BI__builtin_ia32_vfmaddsd3_mask:
3648 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
3649 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
3650 case X86::BI__builtin_ia32_vfmaddss3_mask:
3651 case X86::BI__builtin_ia32_vfmaddss3_maskz:
3652 case X86::BI__builtin_ia32_vfmaddss3_mask3:
3653 case X86::BI__builtin_ia32_vfmaddpd512_mask:
3654 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
3655 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
3656 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
3657 case X86::BI__builtin_ia32_vfmaddps512_mask:
3658 case X86::BI__builtin_ia32_vfmaddps512_maskz:
3659 case X86::BI__builtin_ia32_vfmaddps512_mask3:
3660 case X86::BI__builtin_ia32_vfmsubps512_mask3:
3661 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
3662 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
3663 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
3664 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
3665 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
3666 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
3667 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
3668 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
3669 ArgNum = 4;
3670 HasRC = true;
3671 break;
3672 }
3673
3674 llvm::APSInt Result;
3675
3676 // We can't check the value of a dependent argument.
3677 Expr *Arg = TheCall->getArg(ArgNum);
3678 if (Arg->isTypeDependent() || Arg->isValueDependent())
3679 return false;
3680
3681 // Check constant-ness first.
3682 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3683 return true;
3684
3685 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
3686 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
3687 // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
3688 // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
3689 if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
3690 Result == 8/*ROUND_NO_EXC*/ ||
3691 (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
3692 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
3693 return false;
3694
3695 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
3696 << Arg->getSourceRange();
3697 }
3698
3699 // Check if the gather/scatter scale is legal.
CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,CallExpr * TheCall)3700 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
3701 CallExpr *TheCall) {
3702 unsigned ArgNum = 0;
3703 switch (BuiltinID) {
3704 default:
3705 return false;
3706 case X86::BI__builtin_ia32_gatherpfdpd:
3707 case X86::BI__builtin_ia32_gatherpfdps:
3708 case X86::BI__builtin_ia32_gatherpfqpd:
3709 case X86::BI__builtin_ia32_gatherpfqps:
3710 case X86::BI__builtin_ia32_scatterpfdpd:
3711 case X86::BI__builtin_ia32_scatterpfdps:
3712 case X86::BI__builtin_ia32_scatterpfqpd:
3713 case X86::BI__builtin_ia32_scatterpfqps:
3714 ArgNum = 3;
3715 break;
3716 case X86::BI__builtin_ia32_gatherd_pd:
3717 case X86::BI__builtin_ia32_gatherd_pd256:
3718 case X86::BI__builtin_ia32_gatherq_pd:
3719 case X86::BI__builtin_ia32_gatherq_pd256:
3720 case X86::BI__builtin_ia32_gatherd_ps:
3721 case X86::BI__builtin_ia32_gatherd_ps256:
3722 case X86::BI__builtin_ia32_gatherq_ps:
3723 case X86::BI__builtin_ia32_gatherq_ps256:
3724 case X86::BI__builtin_ia32_gatherd_q:
3725 case X86::BI__builtin_ia32_gatherd_q256:
3726 case X86::BI__builtin_ia32_gatherq_q:
3727 case X86::BI__builtin_ia32_gatherq_q256:
3728 case X86::BI__builtin_ia32_gatherd_d:
3729 case X86::BI__builtin_ia32_gatherd_d256:
3730 case X86::BI__builtin_ia32_gatherq_d:
3731 case X86::BI__builtin_ia32_gatherq_d256:
3732 case X86::BI__builtin_ia32_gather3div2df:
3733 case X86::BI__builtin_ia32_gather3div2di:
3734 case X86::BI__builtin_ia32_gather3div4df:
3735 case X86::BI__builtin_ia32_gather3div4di:
3736 case X86::BI__builtin_ia32_gather3div4sf:
3737 case X86::BI__builtin_ia32_gather3div4si:
3738 case X86::BI__builtin_ia32_gather3div8sf:
3739 case X86::BI__builtin_ia32_gather3div8si:
3740 case X86::BI__builtin_ia32_gather3siv2df:
3741 case X86::BI__builtin_ia32_gather3siv2di:
3742 case X86::BI__builtin_ia32_gather3siv4df:
3743 case X86::BI__builtin_ia32_gather3siv4di:
3744 case X86::BI__builtin_ia32_gather3siv4sf:
3745 case X86::BI__builtin_ia32_gather3siv4si:
3746 case X86::BI__builtin_ia32_gather3siv8sf:
3747 case X86::BI__builtin_ia32_gather3siv8si:
3748 case X86::BI__builtin_ia32_gathersiv8df:
3749 case X86::BI__builtin_ia32_gathersiv16sf:
3750 case X86::BI__builtin_ia32_gatherdiv8df:
3751 case X86::BI__builtin_ia32_gatherdiv16sf:
3752 case X86::BI__builtin_ia32_gathersiv8di:
3753 case X86::BI__builtin_ia32_gathersiv16si:
3754 case X86::BI__builtin_ia32_gatherdiv8di:
3755 case X86::BI__builtin_ia32_gatherdiv16si:
3756 case X86::BI__builtin_ia32_scatterdiv2df:
3757 case X86::BI__builtin_ia32_scatterdiv2di:
3758 case X86::BI__builtin_ia32_scatterdiv4df:
3759 case X86::BI__builtin_ia32_scatterdiv4di:
3760 case X86::BI__builtin_ia32_scatterdiv4sf:
3761 case X86::BI__builtin_ia32_scatterdiv4si:
3762 case X86::BI__builtin_ia32_scatterdiv8sf:
3763 case X86::BI__builtin_ia32_scatterdiv8si:
3764 case X86::BI__builtin_ia32_scattersiv2df:
3765 case X86::BI__builtin_ia32_scattersiv2di:
3766 case X86::BI__builtin_ia32_scattersiv4df:
3767 case X86::BI__builtin_ia32_scattersiv4di:
3768 case X86::BI__builtin_ia32_scattersiv4sf:
3769 case X86::BI__builtin_ia32_scattersiv4si:
3770 case X86::BI__builtin_ia32_scattersiv8sf:
3771 case X86::BI__builtin_ia32_scattersiv8si:
3772 case X86::BI__builtin_ia32_scattersiv8df:
3773 case X86::BI__builtin_ia32_scattersiv16sf:
3774 case X86::BI__builtin_ia32_scatterdiv8df:
3775 case X86::BI__builtin_ia32_scatterdiv16sf:
3776 case X86::BI__builtin_ia32_scattersiv8di:
3777 case X86::BI__builtin_ia32_scattersiv16si:
3778 case X86::BI__builtin_ia32_scatterdiv8di:
3779 case X86::BI__builtin_ia32_scatterdiv16si:
3780 ArgNum = 4;
3781 break;
3782 }
3783
3784 llvm::APSInt Result;
3785
3786 // We can't check the value of a dependent argument.
3787 Expr *Arg = TheCall->getArg(ArgNum);
3788 if (Arg->isTypeDependent() || Arg->isValueDependent())
3789 return false;
3790
3791 // Check constant-ness first.
3792 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3793 return true;
3794
3795 if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
3796 return false;
3797
3798 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
3799 << Arg->getSourceRange();
3800 }
3801
3802 enum { TileRegLow = 0, TileRegHigh = 7 };
3803
CheckX86BuiltinTileArgumentsRange(CallExpr * TheCall,ArrayRef<int> ArgNums)3804 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
3805 ArrayRef<int> ArgNums) {
3806 for (int ArgNum : ArgNums) {
3807 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
3808 return true;
3809 }
3810 return false;
3811 }
3812
CheckX86BuiltinTileDuplicate(CallExpr * TheCall,ArrayRef<int> ArgNums)3813 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
3814 ArrayRef<int> ArgNums) {
3815 // Because the max number of tile register is TileRegHigh + 1, so here we use
3816 // each bit to represent the usage of them in bitset.
3817 std::bitset<TileRegHigh + 1> ArgValues;
3818 for (int ArgNum : ArgNums) {
3819 Expr *Arg = TheCall->getArg(ArgNum);
3820 if (Arg->isTypeDependent() || Arg->isValueDependent())
3821 continue;
3822
3823 llvm::APSInt Result;
3824 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3825 return true;
3826 int ArgExtValue = Result.getExtValue();
3827 assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&
3828 "Incorrect tile register num.");
3829 if (ArgValues.test(ArgExtValue))
3830 return Diag(TheCall->getBeginLoc(),
3831 diag::err_x86_builtin_tile_arg_duplicate)
3832 << TheCall->getArg(ArgNum)->getSourceRange();
3833 ArgValues.set(ArgExtValue);
3834 }
3835 return false;
3836 }
3837
CheckX86BuiltinTileRangeAndDuplicate(CallExpr * TheCall,ArrayRef<int> ArgNums)3838 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
3839 ArrayRef<int> ArgNums) {
3840 return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
3841 CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
3842 }
3843
CheckX86BuiltinTileArguments(unsigned BuiltinID,CallExpr * TheCall)3844 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
3845 switch (BuiltinID) {
3846 default:
3847 return false;
3848 case X86::BI__builtin_ia32_tileloadd64:
3849 case X86::BI__builtin_ia32_tileloaddt164:
3850 case X86::BI__builtin_ia32_tilestored64:
3851 case X86::BI__builtin_ia32_tilezero:
3852 return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
3853 case X86::BI__builtin_ia32_tdpbssd:
3854 case X86::BI__builtin_ia32_tdpbsud:
3855 case X86::BI__builtin_ia32_tdpbusd:
3856 case X86::BI__builtin_ia32_tdpbuud:
3857 case X86::BI__builtin_ia32_tdpbf16ps:
3858 return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
3859 }
3860 }
isX86_32Builtin(unsigned BuiltinID)3861 static bool isX86_32Builtin(unsigned BuiltinID) {
3862 // These builtins only work on x86-32 targets.
3863 switch (BuiltinID) {
3864 case X86::BI__builtin_ia32_readeflags_u32:
3865 case X86::BI__builtin_ia32_writeeflags_u32:
3866 return true;
3867 }
3868
3869 return false;
3870 }
3871
CheckX86BuiltinFunctionCall(const TargetInfo & TI,unsigned BuiltinID,CallExpr * TheCall)3872 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3873 CallExpr *TheCall) {
3874 if (BuiltinID == X86::BI__builtin_cpu_supports)
3875 return SemaBuiltinCpuSupports(*this, TI, TheCall);
3876
3877 if (BuiltinID == X86::BI__builtin_cpu_is)
3878 return SemaBuiltinCpuIs(*this, TI, TheCall);
3879
3880 // Check for 32-bit only builtins on a 64-bit target.
3881 const llvm::Triple &TT = TI.getTriple();
3882 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
3883 return Diag(TheCall->getCallee()->getBeginLoc(),
3884 diag::err_32_bit_builtin_64_bit_tgt);
3885
3886 // If the intrinsic has rounding or SAE make sure its valid.
3887 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
3888 return true;
3889
3890 // If the intrinsic has a gather/scatter scale immediate make sure its valid.
3891 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
3892 return true;
3893
3894 // If the intrinsic has a tile arguments, make sure they are valid.
3895 if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
3896 return true;
3897
3898 // For intrinsics which take an immediate value as part of the instruction,
3899 // range check them here.
3900 int i = 0, l = 0, u = 0;
3901 switch (BuiltinID) {
3902 default:
3903 return false;
3904 case X86::BI__builtin_ia32_vec_ext_v2si:
3905 case X86::BI__builtin_ia32_vec_ext_v2di:
3906 case X86::BI__builtin_ia32_vextractf128_pd256:
3907 case X86::BI__builtin_ia32_vextractf128_ps256:
3908 case X86::BI__builtin_ia32_vextractf128_si256:
3909 case X86::BI__builtin_ia32_extract128i256:
3910 case X86::BI__builtin_ia32_extractf64x4_mask:
3911 case X86::BI__builtin_ia32_extracti64x4_mask:
3912 case X86::BI__builtin_ia32_extractf32x8_mask:
3913 case X86::BI__builtin_ia32_extracti32x8_mask:
3914 case X86::BI__builtin_ia32_extractf64x2_256_mask:
3915 case X86::BI__builtin_ia32_extracti64x2_256_mask:
3916 case X86::BI__builtin_ia32_extractf32x4_256_mask:
3917 case X86::BI__builtin_ia32_extracti32x4_256_mask:
3918 i = 1; l = 0; u = 1;
3919 break;
3920 case X86::BI__builtin_ia32_vec_set_v2di:
3921 case X86::BI__builtin_ia32_vinsertf128_pd256:
3922 case X86::BI__builtin_ia32_vinsertf128_ps256:
3923 case X86::BI__builtin_ia32_vinsertf128_si256:
3924 case X86::BI__builtin_ia32_insert128i256:
3925 case X86::BI__builtin_ia32_insertf32x8:
3926 case X86::BI__builtin_ia32_inserti32x8:
3927 case X86::BI__builtin_ia32_insertf64x4:
3928 case X86::BI__builtin_ia32_inserti64x4:
3929 case X86::BI__builtin_ia32_insertf64x2_256:
3930 case X86::BI__builtin_ia32_inserti64x2_256:
3931 case X86::BI__builtin_ia32_insertf32x4_256:
3932 case X86::BI__builtin_ia32_inserti32x4_256:
3933 i = 2; l = 0; u = 1;
3934 break;
3935 case X86::BI__builtin_ia32_vpermilpd:
3936 case X86::BI__builtin_ia32_vec_ext_v4hi:
3937 case X86::BI__builtin_ia32_vec_ext_v4si:
3938 case X86::BI__builtin_ia32_vec_ext_v4sf:
3939 case X86::BI__builtin_ia32_vec_ext_v4di:
3940 case X86::BI__builtin_ia32_extractf32x4_mask:
3941 case X86::BI__builtin_ia32_extracti32x4_mask:
3942 case X86::BI__builtin_ia32_extractf64x2_512_mask:
3943 case X86::BI__builtin_ia32_extracti64x2_512_mask:
3944 i = 1; l = 0; u = 3;
3945 break;
3946 case X86::BI_mm_prefetch:
3947 case X86::BI__builtin_ia32_vec_ext_v8hi:
3948 case X86::BI__builtin_ia32_vec_ext_v8si:
3949 i = 1; l = 0; u = 7;
3950 break;
3951 case X86::BI__builtin_ia32_sha1rnds4:
3952 case X86::BI__builtin_ia32_blendpd:
3953 case X86::BI__builtin_ia32_shufpd:
3954 case X86::BI__builtin_ia32_vec_set_v4hi:
3955 case X86::BI__builtin_ia32_vec_set_v4si:
3956 case X86::BI__builtin_ia32_vec_set_v4di:
3957 case X86::BI__builtin_ia32_shuf_f32x4_256:
3958 case X86::BI__builtin_ia32_shuf_f64x2_256:
3959 case X86::BI__builtin_ia32_shuf_i32x4_256:
3960 case X86::BI__builtin_ia32_shuf_i64x2_256:
3961 case X86::BI__builtin_ia32_insertf64x2_512:
3962 case X86::BI__builtin_ia32_inserti64x2_512:
3963 case X86::BI__builtin_ia32_insertf32x4:
3964 case X86::BI__builtin_ia32_inserti32x4:
3965 i = 2; l = 0; u = 3;
3966 break;
3967 case X86::BI__builtin_ia32_vpermil2pd:
3968 case X86::BI__builtin_ia32_vpermil2pd256:
3969 case X86::BI__builtin_ia32_vpermil2ps:
3970 case X86::BI__builtin_ia32_vpermil2ps256:
3971 i = 3; l = 0; u = 3;
3972 break;
3973 case X86::BI__builtin_ia32_cmpb128_mask:
3974 case X86::BI__builtin_ia32_cmpw128_mask:
3975 case X86::BI__builtin_ia32_cmpd128_mask:
3976 case X86::BI__builtin_ia32_cmpq128_mask:
3977 case X86::BI__builtin_ia32_cmpb256_mask:
3978 case X86::BI__builtin_ia32_cmpw256_mask:
3979 case X86::BI__builtin_ia32_cmpd256_mask:
3980 case X86::BI__builtin_ia32_cmpq256_mask:
3981 case X86::BI__builtin_ia32_cmpb512_mask:
3982 case X86::BI__builtin_ia32_cmpw512_mask:
3983 case X86::BI__builtin_ia32_cmpd512_mask:
3984 case X86::BI__builtin_ia32_cmpq512_mask:
3985 case X86::BI__builtin_ia32_ucmpb128_mask:
3986 case X86::BI__builtin_ia32_ucmpw128_mask:
3987 case X86::BI__builtin_ia32_ucmpd128_mask:
3988 case X86::BI__builtin_ia32_ucmpq128_mask:
3989 case X86::BI__builtin_ia32_ucmpb256_mask:
3990 case X86::BI__builtin_ia32_ucmpw256_mask:
3991 case X86::BI__builtin_ia32_ucmpd256_mask:
3992 case X86::BI__builtin_ia32_ucmpq256_mask:
3993 case X86::BI__builtin_ia32_ucmpb512_mask:
3994 case X86::BI__builtin_ia32_ucmpw512_mask:
3995 case X86::BI__builtin_ia32_ucmpd512_mask:
3996 case X86::BI__builtin_ia32_ucmpq512_mask:
3997 case X86::BI__builtin_ia32_vpcomub:
3998 case X86::BI__builtin_ia32_vpcomuw:
3999 case X86::BI__builtin_ia32_vpcomud:
4000 case X86::BI__builtin_ia32_vpcomuq:
4001 case X86::BI__builtin_ia32_vpcomb:
4002 case X86::BI__builtin_ia32_vpcomw:
4003 case X86::BI__builtin_ia32_vpcomd:
4004 case X86::BI__builtin_ia32_vpcomq:
4005 case X86::BI__builtin_ia32_vec_set_v8hi:
4006 case X86::BI__builtin_ia32_vec_set_v8si:
4007 i = 2; l = 0; u = 7;
4008 break;
4009 case X86::BI__builtin_ia32_vpermilpd256:
4010 case X86::BI__builtin_ia32_roundps:
4011 case X86::BI__builtin_ia32_roundpd:
4012 case X86::BI__builtin_ia32_roundps256:
4013 case X86::BI__builtin_ia32_roundpd256:
4014 case X86::BI__builtin_ia32_getmantpd128_mask:
4015 case X86::BI__builtin_ia32_getmantpd256_mask:
4016 case X86::BI__builtin_ia32_getmantps128_mask:
4017 case X86::BI__builtin_ia32_getmantps256_mask:
4018 case X86::BI__builtin_ia32_getmantpd512_mask:
4019 case X86::BI__builtin_ia32_getmantps512_mask:
4020 case X86::BI__builtin_ia32_vec_ext_v16qi:
4021 case X86::BI__builtin_ia32_vec_ext_v16hi:
4022 i = 1; l = 0; u = 15;
4023 break;
4024 case X86::BI__builtin_ia32_pblendd128:
4025 case X86::BI__builtin_ia32_blendps:
4026 case X86::BI__builtin_ia32_blendpd256:
4027 case X86::BI__builtin_ia32_shufpd256:
4028 case X86::BI__builtin_ia32_roundss:
4029 case X86::BI__builtin_ia32_roundsd:
4030 case X86::BI__builtin_ia32_rangepd128_mask:
4031 case X86::BI__builtin_ia32_rangepd256_mask:
4032 case X86::BI__builtin_ia32_rangepd512_mask:
4033 case X86::BI__builtin_ia32_rangeps128_mask:
4034 case X86::BI__builtin_ia32_rangeps256_mask:
4035 case X86::BI__builtin_ia32_rangeps512_mask:
4036 case X86::BI__builtin_ia32_getmantsd_round_mask:
4037 case X86::BI__builtin_ia32_getmantss_round_mask:
4038 case X86::BI__builtin_ia32_vec_set_v16qi:
4039 case X86::BI__builtin_ia32_vec_set_v16hi:
4040 i = 2; l = 0; u = 15;
4041 break;
4042 case X86::BI__builtin_ia32_vec_ext_v32qi:
4043 i = 1; l = 0; u = 31;
4044 break;
4045 case X86::BI__builtin_ia32_cmpps:
4046 case X86::BI__builtin_ia32_cmpss:
4047 case X86::BI__builtin_ia32_cmppd:
4048 case X86::BI__builtin_ia32_cmpsd:
4049 case X86::BI__builtin_ia32_cmpps256:
4050 case X86::BI__builtin_ia32_cmppd256:
4051 case X86::BI__builtin_ia32_cmpps128_mask:
4052 case X86::BI__builtin_ia32_cmppd128_mask:
4053 case X86::BI__builtin_ia32_cmpps256_mask:
4054 case X86::BI__builtin_ia32_cmppd256_mask:
4055 case X86::BI__builtin_ia32_cmpps512_mask:
4056 case X86::BI__builtin_ia32_cmppd512_mask:
4057 case X86::BI__builtin_ia32_cmpsd_mask:
4058 case X86::BI__builtin_ia32_cmpss_mask:
4059 case X86::BI__builtin_ia32_vec_set_v32qi:
4060 i = 2; l = 0; u = 31;
4061 break;
4062 case X86::BI__builtin_ia32_permdf256:
4063 case X86::BI__builtin_ia32_permdi256:
4064 case X86::BI__builtin_ia32_permdf512:
4065 case X86::BI__builtin_ia32_permdi512:
4066 case X86::BI__builtin_ia32_vpermilps:
4067 case X86::BI__builtin_ia32_vpermilps256:
4068 case X86::BI__builtin_ia32_vpermilpd512:
4069 case X86::BI__builtin_ia32_vpermilps512:
4070 case X86::BI__builtin_ia32_pshufd:
4071 case X86::BI__builtin_ia32_pshufd256:
4072 case X86::BI__builtin_ia32_pshufd512:
4073 case X86::BI__builtin_ia32_pshufhw:
4074 case X86::BI__builtin_ia32_pshufhw256:
4075 case X86::BI__builtin_ia32_pshufhw512:
4076 case X86::BI__builtin_ia32_pshuflw:
4077 case X86::BI__builtin_ia32_pshuflw256:
4078 case X86::BI__builtin_ia32_pshuflw512:
4079 case X86::BI__builtin_ia32_vcvtps2ph:
4080 case X86::BI__builtin_ia32_vcvtps2ph_mask:
4081 case X86::BI__builtin_ia32_vcvtps2ph256:
4082 case X86::BI__builtin_ia32_vcvtps2ph256_mask:
4083 case X86::BI__builtin_ia32_vcvtps2ph512_mask:
4084 case X86::BI__builtin_ia32_rndscaleps_128_mask:
4085 case X86::BI__builtin_ia32_rndscalepd_128_mask:
4086 case X86::BI__builtin_ia32_rndscaleps_256_mask:
4087 case X86::BI__builtin_ia32_rndscalepd_256_mask:
4088 case X86::BI__builtin_ia32_rndscaleps_mask:
4089 case X86::BI__builtin_ia32_rndscalepd_mask:
4090 case X86::BI__builtin_ia32_reducepd128_mask:
4091 case X86::BI__builtin_ia32_reducepd256_mask:
4092 case X86::BI__builtin_ia32_reducepd512_mask:
4093 case X86::BI__builtin_ia32_reduceps128_mask:
4094 case X86::BI__builtin_ia32_reduceps256_mask:
4095 case X86::BI__builtin_ia32_reduceps512_mask:
4096 case X86::BI__builtin_ia32_prold512:
4097 case X86::BI__builtin_ia32_prolq512:
4098 case X86::BI__builtin_ia32_prold128:
4099 case X86::BI__builtin_ia32_prold256:
4100 case X86::BI__builtin_ia32_prolq128:
4101 case X86::BI__builtin_ia32_prolq256:
4102 case X86::BI__builtin_ia32_prord512:
4103 case X86::BI__builtin_ia32_prorq512:
4104 case X86::BI__builtin_ia32_prord128:
4105 case X86::BI__builtin_ia32_prord256:
4106 case X86::BI__builtin_ia32_prorq128:
4107 case X86::BI__builtin_ia32_prorq256:
4108 case X86::BI__builtin_ia32_fpclasspd128_mask:
4109 case X86::BI__builtin_ia32_fpclasspd256_mask:
4110 case X86::BI__builtin_ia32_fpclassps128_mask:
4111 case X86::BI__builtin_ia32_fpclassps256_mask:
4112 case X86::BI__builtin_ia32_fpclassps512_mask:
4113 case X86::BI__builtin_ia32_fpclasspd512_mask:
4114 case X86::BI__builtin_ia32_fpclasssd_mask:
4115 case X86::BI__builtin_ia32_fpclassss_mask:
4116 case X86::BI__builtin_ia32_pslldqi128_byteshift:
4117 case X86::BI__builtin_ia32_pslldqi256_byteshift:
4118 case X86::BI__builtin_ia32_pslldqi512_byteshift:
4119 case X86::BI__builtin_ia32_psrldqi128_byteshift:
4120 case X86::BI__builtin_ia32_psrldqi256_byteshift:
4121 case X86::BI__builtin_ia32_psrldqi512_byteshift:
4122 case X86::BI__builtin_ia32_kshiftliqi:
4123 case X86::BI__builtin_ia32_kshiftlihi:
4124 case X86::BI__builtin_ia32_kshiftlisi:
4125 case X86::BI__builtin_ia32_kshiftlidi:
4126 case X86::BI__builtin_ia32_kshiftriqi:
4127 case X86::BI__builtin_ia32_kshiftrihi:
4128 case X86::BI__builtin_ia32_kshiftrisi:
4129 case X86::BI__builtin_ia32_kshiftridi:
4130 i = 1; l = 0; u = 255;
4131 break;
4132 case X86::BI__builtin_ia32_vperm2f128_pd256:
4133 case X86::BI__builtin_ia32_vperm2f128_ps256:
4134 case X86::BI__builtin_ia32_vperm2f128_si256:
4135 case X86::BI__builtin_ia32_permti256:
4136 case X86::BI__builtin_ia32_pblendw128:
4137 case X86::BI__builtin_ia32_pblendw256:
4138 case X86::BI__builtin_ia32_blendps256:
4139 case X86::BI__builtin_ia32_pblendd256:
4140 case X86::BI__builtin_ia32_palignr128:
4141 case X86::BI__builtin_ia32_palignr256:
4142 case X86::BI__builtin_ia32_palignr512:
4143 case X86::BI__builtin_ia32_alignq512:
4144 case X86::BI__builtin_ia32_alignd512:
4145 case X86::BI__builtin_ia32_alignd128:
4146 case X86::BI__builtin_ia32_alignd256:
4147 case X86::BI__builtin_ia32_alignq128:
4148 case X86::BI__builtin_ia32_alignq256:
4149 case X86::BI__builtin_ia32_vcomisd:
4150 case X86::BI__builtin_ia32_vcomiss:
4151 case X86::BI__builtin_ia32_shuf_f32x4:
4152 case X86::BI__builtin_ia32_shuf_f64x2:
4153 case X86::BI__builtin_ia32_shuf_i32x4:
4154 case X86::BI__builtin_ia32_shuf_i64x2:
4155 case X86::BI__builtin_ia32_shufpd512:
4156 case X86::BI__builtin_ia32_shufps:
4157 case X86::BI__builtin_ia32_shufps256:
4158 case X86::BI__builtin_ia32_shufps512:
4159 case X86::BI__builtin_ia32_dbpsadbw128:
4160 case X86::BI__builtin_ia32_dbpsadbw256:
4161 case X86::BI__builtin_ia32_dbpsadbw512:
4162 case X86::BI__builtin_ia32_vpshldd128:
4163 case X86::BI__builtin_ia32_vpshldd256:
4164 case X86::BI__builtin_ia32_vpshldd512:
4165 case X86::BI__builtin_ia32_vpshldq128:
4166 case X86::BI__builtin_ia32_vpshldq256:
4167 case X86::BI__builtin_ia32_vpshldq512:
4168 case X86::BI__builtin_ia32_vpshldw128:
4169 case X86::BI__builtin_ia32_vpshldw256:
4170 case X86::BI__builtin_ia32_vpshldw512:
4171 case X86::BI__builtin_ia32_vpshrdd128:
4172 case X86::BI__builtin_ia32_vpshrdd256:
4173 case X86::BI__builtin_ia32_vpshrdd512:
4174 case X86::BI__builtin_ia32_vpshrdq128:
4175 case X86::BI__builtin_ia32_vpshrdq256:
4176 case X86::BI__builtin_ia32_vpshrdq512:
4177 case X86::BI__builtin_ia32_vpshrdw128:
4178 case X86::BI__builtin_ia32_vpshrdw256:
4179 case X86::BI__builtin_ia32_vpshrdw512:
4180 i = 2; l = 0; u = 255;
4181 break;
4182 case X86::BI__builtin_ia32_fixupimmpd512_mask:
4183 case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4184 case X86::BI__builtin_ia32_fixupimmps512_mask:
4185 case X86::BI__builtin_ia32_fixupimmps512_maskz:
4186 case X86::BI__builtin_ia32_fixupimmsd_mask:
4187 case X86::BI__builtin_ia32_fixupimmsd_maskz:
4188 case X86::BI__builtin_ia32_fixupimmss_mask:
4189 case X86::BI__builtin_ia32_fixupimmss_maskz:
4190 case X86::BI__builtin_ia32_fixupimmpd128_mask:
4191 case X86::BI__builtin_ia32_fixupimmpd128_maskz:
4192 case X86::BI__builtin_ia32_fixupimmpd256_mask:
4193 case X86::BI__builtin_ia32_fixupimmpd256_maskz:
4194 case X86::BI__builtin_ia32_fixupimmps128_mask:
4195 case X86::BI__builtin_ia32_fixupimmps128_maskz:
4196 case X86::BI__builtin_ia32_fixupimmps256_mask:
4197 case X86::BI__builtin_ia32_fixupimmps256_maskz:
4198 case X86::BI__builtin_ia32_pternlogd512_mask:
4199 case X86::BI__builtin_ia32_pternlogd512_maskz:
4200 case X86::BI__builtin_ia32_pternlogq512_mask:
4201 case X86::BI__builtin_ia32_pternlogq512_maskz:
4202 case X86::BI__builtin_ia32_pternlogd128_mask:
4203 case X86::BI__builtin_ia32_pternlogd128_maskz:
4204 case X86::BI__builtin_ia32_pternlogd256_mask:
4205 case X86::BI__builtin_ia32_pternlogd256_maskz:
4206 case X86::BI__builtin_ia32_pternlogq128_mask:
4207 case X86::BI__builtin_ia32_pternlogq128_maskz:
4208 case X86::BI__builtin_ia32_pternlogq256_mask:
4209 case X86::BI__builtin_ia32_pternlogq256_maskz:
4210 i = 3; l = 0; u = 255;
4211 break;
4212 case X86::BI__builtin_ia32_gatherpfdpd:
4213 case X86::BI__builtin_ia32_gatherpfdps:
4214 case X86::BI__builtin_ia32_gatherpfqpd:
4215 case X86::BI__builtin_ia32_gatherpfqps:
4216 case X86::BI__builtin_ia32_scatterpfdpd:
4217 case X86::BI__builtin_ia32_scatterpfdps:
4218 case X86::BI__builtin_ia32_scatterpfqpd:
4219 case X86::BI__builtin_ia32_scatterpfqps:
4220 i = 4; l = 2; u = 3;
4221 break;
4222 case X86::BI__builtin_ia32_reducesd_mask:
4223 case X86::BI__builtin_ia32_reducess_mask:
4224 case X86::BI__builtin_ia32_rndscalesd_round_mask:
4225 case X86::BI__builtin_ia32_rndscaless_round_mask:
4226 i = 4; l = 0; u = 255;
4227 break;
4228 }
4229
4230 // Note that we don't force a hard error on the range check here, allowing
4231 // template-generated or macro-generated dead code to potentially have out-of-
4232 // range values. These need to code generate, but don't need to necessarily
4233 // make any sense. We use a warning that defaults to an error.
4234 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
4235 }
4236
4237 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
4238 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
4239 /// Returns true when the format fits the function and the FormatStringInfo has
4240 /// been populated.
getFormatStringInfo(const FormatAttr * Format,bool IsCXXMember,FormatStringInfo * FSI)4241 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4242 FormatStringInfo *FSI) {
4243 FSI->HasVAListArg = Format->getFirstArg() == 0;
4244 FSI->FormatIdx = Format->getFormatIdx() - 1;
4245 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4246
4247 // The way the format attribute works in GCC, the implicit this argument
4248 // of member functions is counted. However, it doesn't appear in our own
4249 // lists, so decrement format_idx in that case.
4250 if (IsCXXMember) {
4251 if(FSI->FormatIdx == 0)
4252 return false;
4253 --FSI->FormatIdx;
4254 if (FSI->FirstDataArg != 0)
4255 --FSI->FirstDataArg;
4256 }
4257 return true;
4258 }
4259
4260 /// Checks if a the given expression evaluates to null.
4261 ///
4262 /// Returns true if the value evaluates to null.
CheckNonNullExpr(Sema & S,const Expr * Expr)4263 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
4264 // If the expression has non-null type, it doesn't evaluate to null.
4265 if (auto nullability
4266 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
4267 if (*nullability == NullabilityKind::NonNull)
4268 return false;
4269 }
4270
4271 // As a special case, transparent unions initialized with zero are
4272 // considered null for the purposes of the nonnull attribute.
4273 if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
4274 if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
4275 if (const CompoundLiteralExpr *CLE =
4276 dyn_cast<CompoundLiteralExpr>(Expr))
4277 if (const InitListExpr *ILE =
4278 dyn_cast<InitListExpr>(CLE->getInitializer()))
4279 Expr = ILE->getInit(0);
4280 }
4281
4282 bool Result;
4283 return (!Expr->isValueDependent() &&
4284 Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
4285 !Result);
4286 }
4287
CheckNonNullArgument(Sema & S,const Expr * ArgExpr,SourceLocation CallSiteLoc)4288 static void CheckNonNullArgument(Sema &S,
4289 const Expr *ArgExpr,
4290 SourceLocation CallSiteLoc) {
4291 if (CheckNonNullExpr(S, ArgExpr))
4292 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
4293 S.PDiag(diag::warn_null_arg)
4294 << ArgExpr->getSourceRange());
4295 }
4296
GetFormatNSStringIdx(const FormatAttr * Format,unsigned & Idx)4297 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
4298 FormatStringInfo FSI;
4299 if ((GetFormatStringType(Format) == FST_NSString) &&
4300 getFormatStringInfo(Format, false, &FSI)) {
4301 Idx = FSI.FormatIdx;
4302 return true;
4303 }
4304 return false;
4305 }
4306
4307 /// Diagnose use of %s directive in an NSString which is being passed
4308 /// as formatting string to formatting method.
4309 static void
DiagnoseCStringFormatDirectiveInCFAPI(Sema & S,const NamedDecl * FDecl,Expr ** Args,unsigned NumArgs)4310 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
4311 const NamedDecl *FDecl,
4312 Expr **Args,
4313 unsigned NumArgs) {
4314 unsigned Idx = 0;
4315 bool Format = false;
4316 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
4317 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
4318 Idx = 2;
4319 Format = true;
4320 }
4321 else
4322 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4323 if (S.GetFormatNSStringIdx(I, Idx)) {
4324 Format = true;
4325 break;
4326 }
4327 }
4328 if (!Format || NumArgs <= Idx)
4329 return;
4330 const Expr *FormatExpr = Args[Idx];
4331 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
4332 FormatExpr = CSCE->getSubExpr();
4333 const StringLiteral *FormatString;
4334 if (const ObjCStringLiteral *OSL =
4335 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
4336 FormatString = OSL->getString();
4337 else
4338 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
4339 if (!FormatString)
4340 return;
4341 if (S.FormatStringHasSArg(FormatString)) {
4342 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
4343 << "%s" << 1 << 1;
4344 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
4345 << FDecl->getDeclName();
4346 }
4347 }
4348
4349 /// Determine whether the given type has a non-null nullability annotation.
isNonNullType(ASTContext & ctx,QualType type)4350 static bool isNonNullType(ASTContext &ctx, QualType type) {
4351 if (auto nullability = type->getNullability(ctx))
4352 return *nullability == NullabilityKind::NonNull;
4353
4354 return false;
4355 }
4356
CheckNonNullArguments(Sema & S,const NamedDecl * FDecl,const FunctionProtoType * Proto,ArrayRef<const Expr * > Args,SourceLocation CallSiteLoc)4357 static void CheckNonNullArguments(Sema &S,
4358 const NamedDecl *FDecl,
4359 const FunctionProtoType *Proto,
4360 ArrayRef<const Expr *> Args,
4361 SourceLocation CallSiteLoc) {
4362 assert((FDecl || Proto) && "Need a function declaration or prototype");
4363
4364 // Already checked by by constant evaluator.
4365 if (S.isConstantEvaluated())
4366 return;
4367 // Check the attributes attached to the method/function itself.
4368 llvm::SmallBitVector NonNullArgs;
4369 if (FDecl) {
4370 // Handle the nonnull attribute on the function/method declaration itself.
4371 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
4372 if (!NonNull->args_size()) {
4373 // Easy case: all pointer arguments are nonnull.
4374 for (const auto *Arg : Args)
4375 if (S.isValidPointerAttrType(Arg->getType()))
4376 CheckNonNullArgument(S, Arg, CallSiteLoc);
4377 return;
4378 }
4379
4380 for (const ParamIdx &Idx : NonNull->args()) {
4381 unsigned IdxAST = Idx.getASTIndex();
4382 if (IdxAST >= Args.size())
4383 continue;
4384 if (NonNullArgs.empty())
4385 NonNullArgs.resize(Args.size());
4386 NonNullArgs.set(IdxAST);
4387 }
4388 }
4389 }
4390
4391 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
4392 // Handle the nonnull attribute on the parameters of the
4393 // function/method.
4394 ArrayRef<ParmVarDecl*> parms;
4395 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
4396 parms = FD->parameters();
4397 else
4398 parms = cast<ObjCMethodDecl>(FDecl)->parameters();
4399
4400 unsigned ParamIndex = 0;
4401 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
4402 I != E; ++I, ++ParamIndex) {
4403 const ParmVarDecl *PVD = *I;
4404 if (PVD->hasAttr<NonNullAttr>() ||
4405 isNonNullType(S.Context, PVD->getType())) {
4406 if (NonNullArgs.empty())
4407 NonNullArgs.resize(Args.size());
4408
4409 NonNullArgs.set(ParamIndex);
4410 }
4411 }
4412 } else {
4413 // If we have a non-function, non-method declaration but no
4414 // function prototype, try to dig out the function prototype.
4415 if (!Proto) {
4416 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
4417 QualType type = VD->getType().getNonReferenceType();
4418 if (auto pointerType = type->getAs<PointerType>())
4419 type = pointerType->getPointeeType();
4420 else if (auto blockType = type->getAs<BlockPointerType>())
4421 type = blockType->getPointeeType();
4422 // FIXME: data member pointers?
4423
4424 // Dig out the function prototype, if there is one.
4425 Proto = type->getAs<FunctionProtoType>();
4426 }
4427 }
4428
4429 // Fill in non-null argument information from the nullability
4430 // information on the parameter types (if we have them).
4431 if (Proto) {
4432 unsigned Index = 0;
4433 for (auto paramType : Proto->getParamTypes()) {
4434 if (isNonNullType(S.Context, paramType)) {
4435 if (NonNullArgs.empty())
4436 NonNullArgs.resize(Args.size());
4437
4438 NonNullArgs.set(Index);
4439 }
4440
4441 ++Index;
4442 }
4443 }
4444 }
4445
4446 // Check for non-null arguments.
4447 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
4448 ArgIndex != ArgIndexEnd; ++ArgIndex) {
4449 if (NonNullArgs[ArgIndex])
4450 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
4451 }
4452 }
4453
4454 /// Handles the checks for format strings, non-POD arguments to vararg
4455 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
4456 /// attributes.
checkCall(NamedDecl * FDecl,const FunctionProtoType * Proto,const Expr * ThisArg,ArrayRef<const Expr * > Args,bool IsMemberFunction,SourceLocation Loc,SourceRange Range,VariadicCallType CallType)4457 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
4458 const Expr *ThisArg, ArrayRef<const Expr *> Args,
4459 bool IsMemberFunction, SourceLocation Loc,
4460 SourceRange Range, VariadicCallType CallType) {
4461 // FIXME: We should check as much as we can in the template definition.
4462 if (CurContext->isDependentContext())
4463 return;
4464
4465 // Printf and scanf checking.
4466 llvm::SmallBitVector CheckedVarArgs;
4467 if (FDecl) {
4468 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4469 // Only create vector if there are format attributes.
4470 CheckedVarArgs.resize(Args.size());
4471
4472 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
4473 CheckedVarArgs);
4474 }
4475 }
4476
4477 // Refuse POD arguments that weren't caught by the format string
4478 // checks above.
4479 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
4480 if (CallType != VariadicDoesNotApply &&
4481 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
4482 unsigned NumParams = Proto ? Proto->getNumParams()
4483 : FDecl && isa<FunctionDecl>(FDecl)
4484 ? cast<FunctionDecl>(FDecl)->getNumParams()
4485 : FDecl && isa<ObjCMethodDecl>(FDecl)
4486 ? cast<ObjCMethodDecl>(FDecl)->param_size()
4487 : 0;
4488
4489 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
4490 // Args[ArgIdx] can be null in malformed code.
4491 if (const Expr *Arg = Args[ArgIdx]) {
4492 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
4493 checkVariadicArgument(Arg, CallType);
4494 }
4495 }
4496 }
4497
4498 if (FDecl || Proto) {
4499 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
4500
4501 // Type safety checking.
4502 if (FDecl) {
4503 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
4504 CheckArgumentWithTypeTag(I, Args, Loc);
4505 }
4506 }
4507
4508 if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
4509 auto *AA = FDecl->getAttr<AllocAlignAttr>();
4510 const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
4511 if (!Arg->isValueDependent()) {
4512 Expr::EvalResult Align;
4513 if (Arg->EvaluateAsInt(Align, Context)) {
4514 const llvm::APSInt &I = Align.Val.getInt();
4515 if (!I.isPowerOf2())
4516 Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
4517 << Arg->getSourceRange();
4518
4519 if (I > Sema::MaximumAlignment)
4520 Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
4521 << Arg->getSourceRange() << Sema::MaximumAlignment;
4522 }
4523 }
4524 }
4525
4526 if (FD)
4527 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
4528 }
4529
4530 /// CheckConstructorCall - Check a constructor call for correctness and safety
4531 /// properties not enforced by the C type system.
CheckConstructorCall(FunctionDecl * FDecl,ArrayRef<const Expr * > Args,const FunctionProtoType * Proto,SourceLocation Loc)4532 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
4533 ArrayRef<const Expr *> Args,
4534 const FunctionProtoType *Proto,
4535 SourceLocation Loc) {
4536 VariadicCallType CallType =
4537 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4538 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
4539 Loc, SourceRange(), CallType);
4540 }
4541
4542 /// CheckFunctionCall - Check a direct function call for various correctness
4543 /// and safety properties not strictly enforced by the C type system.
CheckFunctionCall(FunctionDecl * FDecl,CallExpr * TheCall,const FunctionProtoType * Proto)4544 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
4545 const FunctionProtoType *Proto) {
4546 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
4547 isa<CXXMethodDecl>(FDecl);
4548 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
4549 IsMemberOperatorCall;
4550 VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
4551 TheCall->getCallee());
4552 Expr** Args = TheCall->getArgs();
4553 unsigned NumArgs = TheCall->getNumArgs();
4554
4555 Expr *ImplicitThis = nullptr;
4556 if (IsMemberOperatorCall) {
4557 // If this is a call to a member operator, hide the first argument
4558 // from checkCall.
4559 // FIXME: Our choice of AST representation here is less than ideal.
4560 ImplicitThis = Args[0];
4561 ++Args;
4562 --NumArgs;
4563 } else if (IsMemberFunction)
4564 ImplicitThis =
4565 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
4566
4567 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
4568 IsMemberFunction, TheCall->getRParenLoc(),
4569 TheCall->getCallee()->getSourceRange(), CallType);
4570
4571 IdentifierInfo *FnInfo = FDecl->getIdentifier();
4572 // None of the checks below are needed for functions that don't have
4573 // simple names (e.g., C++ conversion functions).
4574 if (!FnInfo)
4575 return false;
4576
4577 CheckTCBEnforcement(TheCall, FDecl);
4578
4579 CheckAbsoluteValueFunction(TheCall, FDecl);
4580 CheckMaxUnsignedZero(TheCall, FDecl);
4581
4582 if (getLangOpts().ObjC)
4583 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
4584
4585 unsigned CMId = FDecl->getMemoryFunctionKind();
4586
4587 // Handle memory setting and copying functions.
4588 switch (CMId) {
4589 case 0:
4590 return false;
4591 case Builtin::BIstrlcpy: // fallthrough
4592 case Builtin::BIstrlcat:
4593 CheckStrlcpycatArguments(TheCall, FnInfo);
4594 break;
4595 case Builtin::BIstrncat:
4596 CheckStrncatArguments(TheCall, FnInfo);
4597 break;
4598 case Builtin::BIfree:
4599 CheckFreeArguments(TheCall);
4600 break;
4601 default:
4602 CheckMemaccessArguments(TheCall, CMId, FnInfo);
4603 }
4604
4605 return false;
4606 }
4607
CheckObjCMethodCall(ObjCMethodDecl * Method,SourceLocation lbrac,ArrayRef<const Expr * > Args)4608 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
4609 ArrayRef<const Expr *> Args) {
4610 VariadicCallType CallType =
4611 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
4612
4613 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
4614 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
4615 CallType);
4616
4617 return false;
4618 }
4619
CheckPointerCall(NamedDecl * NDecl,CallExpr * TheCall,const FunctionProtoType * Proto)4620 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
4621 const FunctionProtoType *Proto) {
4622 QualType Ty;
4623 if (const auto *V = dyn_cast<VarDecl>(NDecl))
4624 Ty = V->getType().getNonReferenceType();
4625 else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
4626 Ty = F->getType().getNonReferenceType();
4627 else
4628 return false;
4629
4630 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
4631 !Ty->isFunctionProtoType())
4632 return false;
4633
4634 VariadicCallType CallType;
4635 if (!Proto || !Proto->isVariadic()) {
4636 CallType = VariadicDoesNotApply;
4637 } else if (Ty->isBlockPointerType()) {
4638 CallType = VariadicBlock;
4639 } else { // Ty->isFunctionPointerType()
4640 CallType = VariadicFunction;
4641 }
4642
4643 checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
4644 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4645 /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4646 TheCall->getCallee()->getSourceRange(), CallType);
4647
4648 return false;
4649 }
4650
4651 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
4652 /// such as function pointers returned from functions.
CheckOtherCall(CallExpr * TheCall,const FunctionProtoType * Proto)4653 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
4654 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
4655 TheCall->getCallee());
4656 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
4657 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4658 /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4659 TheCall->getCallee()->getSourceRange(), CallType);
4660
4661 return false;
4662 }
4663
isValidOrderingForOp(int64_t Ordering,AtomicExpr::AtomicOp Op)4664 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
4665 if (!llvm::isValidAtomicOrderingCABI(Ordering))
4666 return false;
4667
4668 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
4669 switch (Op) {
4670 case AtomicExpr::AO__c11_atomic_init:
4671 case AtomicExpr::AO__opencl_atomic_init:
4672 llvm_unreachable("There is no ordering argument for an init");
4673
4674 case AtomicExpr::AO__c11_atomic_load:
4675 case AtomicExpr::AO__opencl_atomic_load:
4676 case AtomicExpr::AO__atomic_load_n:
4677 case AtomicExpr::AO__atomic_load:
4678 return OrderingCABI != llvm::AtomicOrderingCABI::release &&
4679 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4680
4681 case AtomicExpr::AO__c11_atomic_store:
4682 case AtomicExpr::AO__opencl_atomic_store:
4683 case AtomicExpr::AO__atomic_store:
4684 case AtomicExpr::AO__atomic_store_n:
4685 return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
4686 OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
4687 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4688
4689 default:
4690 return true;
4691 }
4692 }
4693
SemaAtomicOpsOverloaded(ExprResult TheCallResult,AtomicExpr::AtomicOp Op)4694 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
4695 AtomicExpr::AtomicOp Op) {
4696 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
4697 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
4698 MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
4699 return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
4700 DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
4701 Op);
4702 }
4703
BuildAtomicExpr(SourceRange CallRange,SourceRange ExprRange,SourceLocation RParenLoc,MultiExprArg Args,AtomicExpr::AtomicOp Op,AtomicArgumentOrder ArgOrder)4704 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
4705 SourceLocation RParenLoc, MultiExprArg Args,
4706 AtomicExpr::AtomicOp Op,
4707 AtomicArgumentOrder ArgOrder) {
4708 // All the non-OpenCL operations take one of the following forms.
4709 // The OpenCL operations take the __c11 forms with one extra argument for
4710 // synchronization scope.
4711 enum {
4712 // C __c11_atomic_init(A *, C)
4713 Init,
4714
4715 // C __c11_atomic_load(A *, int)
4716 Load,
4717
4718 // void __atomic_load(A *, CP, int)
4719 LoadCopy,
4720
4721 // void __atomic_store(A *, CP, int)
4722 Copy,
4723
4724 // C __c11_atomic_add(A *, M, int)
4725 Arithmetic,
4726
4727 // C __atomic_exchange_n(A *, CP, int)
4728 Xchg,
4729
4730 // void __atomic_exchange(A *, C *, CP, int)
4731 GNUXchg,
4732
4733 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
4734 C11CmpXchg,
4735
4736 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
4737 GNUCmpXchg
4738 } Form = Init;
4739
4740 const unsigned NumForm = GNUCmpXchg + 1;
4741 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
4742 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
4743 // where:
4744 // C is an appropriate type,
4745 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
4746 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
4747 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and
4748 // the int parameters are for orderings.
4749
4750 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
4751 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
4752 "need to update code for modified forms");
4753 static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
4754 AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
4755 AtomicExpr::AO__atomic_load,
4756 "need to update code for modified C11 atomics");
4757 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
4758 Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
4759 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
4760 Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
4761 IsOpenCL;
4762 bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
4763 Op == AtomicExpr::AO__atomic_store_n ||
4764 Op == AtomicExpr::AO__atomic_exchange_n ||
4765 Op == AtomicExpr::AO__atomic_compare_exchange_n;
4766 bool IsAddSub = false;
4767
4768 switch (Op) {
4769 case AtomicExpr::AO__c11_atomic_init:
4770 case AtomicExpr::AO__opencl_atomic_init:
4771 Form = Init;
4772 break;
4773
4774 case AtomicExpr::AO__c11_atomic_load:
4775 case AtomicExpr::AO__opencl_atomic_load:
4776 case AtomicExpr::AO__atomic_load_n:
4777 Form = Load;
4778 break;
4779
4780 case AtomicExpr::AO__atomic_load:
4781 Form = LoadCopy;
4782 break;
4783
4784 case AtomicExpr::AO__c11_atomic_store:
4785 case AtomicExpr::AO__opencl_atomic_store:
4786 case AtomicExpr::AO__atomic_store:
4787 case AtomicExpr::AO__atomic_store_n:
4788 Form = Copy;
4789 break;
4790
4791 case AtomicExpr::AO__c11_atomic_fetch_add:
4792 case AtomicExpr::AO__c11_atomic_fetch_sub:
4793 case AtomicExpr::AO__opencl_atomic_fetch_add:
4794 case AtomicExpr::AO__opencl_atomic_fetch_sub:
4795 case AtomicExpr::AO__atomic_fetch_add:
4796 case AtomicExpr::AO__atomic_fetch_sub:
4797 case AtomicExpr::AO__atomic_add_fetch:
4798 case AtomicExpr::AO__atomic_sub_fetch:
4799 IsAddSub = true;
4800 LLVM_FALLTHROUGH;
4801 case AtomicExpr::AO__c11_atomic_fetch_and:
4802 case AtomicExpr::AO__c11_atomic_fetch_or:
4803 case AtomicExpr::AO__c11_atomic_fetch_xor:
4804 case AtomicExpr::AO__opencl_atomic_fetch_and:
4805 case AtomicExpr::AO__opencl_atomic_fetch_or:
4806 case AtomicExpr::AO__opencl_atomic_fetch_xor:
4807 case AtomicExpr::AO__atomic_fetch_and:
4808 case AtomicExpr::AO__atomic_fetch_or:
4809 case AtomicExpr::AO__atomic_fetch_xor:
4810 case AtomicExpr::AO__atomic_fetch_nand:
4811 case AtomicExpr::AO__atomic_and_fetch:
4812 case AtomicExpr::AO__atomic_or_fetch:
4813 case AtomicExpr::AO__atomic_xor_fetch:
4814 case AtomicExpr::AO__atomic_nand_fetch:
4815 case AtomicExpr::AO__c11_atomic_fetch_min:
4816 case AtomicExpr::AO__c11_atomic_fetch_max:
4817 case AtomicExpr::AO__opencl_atomic_fetch_min:
4818 case AtomicExpr::AO__opencl_atomic_fetch_max:
4819 case AtomicExpr::AO__atomic_min_fetch:
4820 case AtomicExpr::AO__atomic_max_fetch:
4821 case AtomicExpr::AO__atomic_fetch_min:
4822 case AtomicExpr::AO__atomic_fetch_max:
4823 Form = Arithmetic;
4824 break;
4825
4826 case AtomicExpr::AO__c11_atomic_exchange:
4827 case AtomicExpr::AO__opencl_atomic_exchange:
4828 case AtomicExpr::AO__atomic_exchange_n:
4829 Form = Xchg;
4830 break;
4831
4832 case AtomicExpr::AO__atomic_exchange:
4833 Form = GNUXchg;
4834 break;
4835
4836 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
4837 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
4838 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
4839 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
4840 Form = C11CmpXchg;
4841 break;
4842
4843 case AtomicExpr::AO__atomic_compare_exchange:
4844 case AtomicExpr::AO__atomic_compare_exchange_n:
4845 Form = GNUCmpXchg;
4846 break;
4847 }
4848
4849 unsigned AdjustedNumArgs = NumArgs[Form];
4850 if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
4851 ++AdjustedNumArgs;
4852 // Check we have the right number of arguments.
4853 if (Args.size() < AdjustedNumArgs) {
4854 Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
4855 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4856 << ExprRange;
4857 return ExprError();
4858 } else if (Args.size() > AdjustedNumArgs) {
4859 Diag(Args[AdjustedNumArgs]->getBeginLoc(),
4860 diag::err_typecheck_call_too_many_args)
4861 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4862 << ExprRange;
4863 return ExprError();
4864 }
4865
4866 // Inspect the first argument of the atomic operation.
4867 Expr *Ptr = Args[0];
4868 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
4869 if (ConvertedPtr.isInvalid())
4870 return ExprError();
4871
4872 Ptr = ConvertedPtr.get();
4873 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
4874 if (!pointerType) {
4875 Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
4876 << Ptr->getType() << Ptr->getSourceRange();
4877 return ExprError();
4878 }
4879
4880 // For a __c11 builtin, this should be a pointer to an _Atomic type.
4881 QualType AtomTy = pointerType->getPointeeType(); // 'A'
4882 QualType ValType = AtomTy; // 'C'
4883 if (IsC11) {
4884 if (!AtomTy->isAtomicType()) {
4885 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
4886 << Ptr->getType() << Ptr->getSourceRange();
4887 return ExprError();
4888 }
4889 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
4890 AtomTy.getAddressSpace() == LangAS::opencl_constant) {
4891 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
4892 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
4893 << Ptr->getSourceRange();
4894 return ExprError();
4895 }
4896 ValType = AtomTy->castAs<AtomicType>()->getValueType();
4897 } else if (Form != Load && Form != LoadCopy) {
4898 if (ValType.isConstQualified()) {
4899 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
4900 << Ptr->getType() << Ptr->getSourceRange();
4901 return ExprError();
4902 }
4903 }
4904
4905 // For an arithmetic operation, the implied arithmetic must be well-formed.
4906 if (Form == Arithmetic) {
4907 // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
4908 if (IsAddSub && !ValType->isIntegerType()
4909 && !ValType->isPointerType()) {
4910 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4911 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4912 return ExprError();
4913 }
4914 if (!IsAddSub && !ValType->isIntegerType()) {
4915 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
4916 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4917 return ExprError();
4918 }
4919 if (IsC11 && ValType->isPointerType() &&
4920 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
4921 diag::err_incomplete_type)) {
4922 return ExprError();
4923 }
4924 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
4925 // For __atomic_*_n operations, the value type must be a scalar integral or
4926 // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
4927 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4928 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4929 return ExprError();
4930 }
4931
4932 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
4933 !AtomTy->isScalarType()) {
4934 // For GNU atomics, require a trivially-copyable type. This is not part of
4935 // the GNU atomics specification, but we enforce it for sanity.
4936 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
4937 << Ptr->getType() << Ptr->getSourceRange();
4938 return ExprError();
4939 }
4940
4941 switch (ValType.getObjCLifetime()) {
4942 case Qualifiers::OCL_None:
4943 case Qualifiers::OCL_ExplicitNone:
4944 // okay
4945 break;
4946
4947 case Qualifiers::OCL_Weak:
4948 case Qualifiers::OCL_Strong:
4949 case Qualifiers::OCL_Autoreleasing:
4950 // FIXME: Can this happen? By this point, ValType should be known
4951 // to be trivially copyable.
4952 Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
4953 << ValType << Ptr->getSourceRange();
4954 return ExprError();
4955 }
4956
4957 // All atomic operations have an overload which takes a pointer to a volatile
4958 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself
4959 // into the result or the other operands. Similarly atomic_load takes a
4960 // pointer to a const 'A'.
4961 ValType.removeLocalVolatile();
4962 ValType.removeLocalConst();
4963 QualType ResultType = ValType;
4964 if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
4965 Form == Init)
4966 ResultType = Context.VoidTy;
4967 else if (Form == C11CmpXchg || Form == GNUCmpXchg)
4968 ResultType = Context.BoolTy;
4969
4970 // The type of a parameter passed 'by value'. In the GNU atomics, such
4971 // arguments are actually passed as pointers.
4972 QualType ByValType = ValType; // 'CP'
4973 bool IsPassedByAddress = false;
4974 if (!IsC11 && !IsN) {
4975 ByValType = Ptr->getType();
4976 IsPassedByAddress = true;
4977 }
4978
4979 SmallVector<Expr *, 5> APIOrderedArgs;
4980 if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
4981 APIOrderedArgs.push_back(Args[0]);
4982 switch (Form) {
4983 case Init:
4984 case Load:
4985 APIOrderedArgs.push_back(Args[1]); // Val1/Order
4986 break;
4987 case LoadCopy:
4988 case Copy:
4989 case Arithmetic:
4990 case Xchg:
4991 APIOrderedArgs.push_back(Args[2]); // Val1
4992 APIOrderedArgs.push_back(Args[1]); // Order
4993 break;
4994 case GNUXchg:
4995 APIOrderedArgs.push_back(Args[2]); // Val1
4996 APIOrderedArgs.push_back(Args[3]); // Val2
4997 APIOrderedArgs.push_back(Args[1]); // Order
4998 break;
4999 case C11CmpXchg:
5000 APIOrderedArgs.push_back(Args[2]); // Val1
5001 APIOrderedArgs.push_back(Args[4]); // Val2
5002 APIOrderedArgs.push_back(Args[1]); // Order
5003 APIOrderedArgs.push_back(Args[3]); // OrderFail
5004 break;
5005 case GNUCmpXchg:
5006 APIOrderedArgs.push_back(Args[2]); // Val1
5007 APIOrderedArgs.push_back(Args[4]); // Val2
5008 APIOrderedArgs.push_back(Args[5]); // Weak
5009 APIOrderedArgs.push_back(Args[1]); // Order
5010 APIOrderedArgs.push_back(Args[3]); // OrderFail
5011 break;
5012 }
5013 } else
5014 APIOrderedArgs.append(Args.begin(), Args.end());
5015
5016 // The first argument's non-CV pointer type is used to deduce the type of
5017 // subsequent arguments, except for:
5018 // - weak flag (always converted to bool)
5019 // - memory order (always converted to int)
5020 // - scope (always converted to int)
5021 for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
5022 QualType Ty;
5023 if (i < NumVals[Form] + 1) {
5024 switch (i) {
5025 case 0:
5026 // The first argument is always a pointer. It has a fixed type.
5027 // It is always dereferenced, a nullptr is undefined.
5028 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5029 // Nothing else to do: we already know all we want about this pointer.
5030 continue;
5031 case 1:
5032 // The second argument is the non-atomic operand. For arithmetic, this
5033 // is always passed by value, and for a compare_exchange it is always
5034 // passed by address. For the rest, GNU uses by-address and C11 uses
5035 // by-value.
5036 assert(Form != Load);
5037 if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
5038 Ty = ValType;
5039 else if (Form == Copy || Form == Xchg) {
5040 if (IsPassedByAddress) {
5041 // The value pointer is always dereferenced, a nullptr is undefined.
5042 CheckNonNullArgument(*this, APIOrderedArgs[i],
5043 ExprRange.getBegin());
5044 }
5045 Ty = ByValType;
5046 } else if (Form == Arithmetic)
5047 Ty = Context.getPointerDiffType();
5048 else {
5049 Expr *ValArg = APIOrderedArgs[i];
5050 // The value pointer is always dereferenced, a nullptr is undefined.
5051 CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
5052 LangAS AS = LangAS::Default;
5053 // Keep address space of non-atomic pointer type.
5054 if (const PointerType *PtrTy =
5055 ValArg->getType()->getAs<PointerType>()) {
5056 AS = PtrTy->getPointeeType().getAddressSpace();
5057 }
5058 Ty = Context.getPointerType(
5059 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
5060 }
5061 break;
5062 case 2:
5063 // The third argument to compare_exchange / GNU exchange is the desired
5064 // value, either by-value (for the C11 and *_n variant) or as a pointer.
5065 if (IsPassedByAddress)
5066 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5067 Ty = ByValType;
5068 break;
5069 case 3:
5070 // The fourth argument to GNU compare_exchange is a 'weak' flag.
5071 Ty = Context.BoolTy;
5072 break;
5073 }
5074 } else {
5075 // The order(s) and scope are always converted to int.
5076 Ty = Context.IntTy;
5077 }
5078
5079 InitializedEntity Entity =
5080 InitializedEntity::InitializeParameter(Context, Ty, false);
5081 ExprResult Arg = APIOrderedArgs[i];
5082 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5083 if (Arg.isInvalid())
5084 return true;
5085 APIOrderedArgs[i] = Arg.get();
5086 }
5087
5088 // Permute the arguments into a 'consistent' order.
5089 SmallVector<Expr*, 5> SubExprs;
5090 SubExprs.push_back(Ptr);
5091 switch (Form) {
5092 case Init:
5093 // Note, AtomicExpr::getVal1() has a special case for this atomic.
5094 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5095 break;
5096 case Load:
5097 SubExprs.push_back(APIOrderedArgs[1]); // Order
5098 break;
5099 case LoadCopy:
5100 case Copy:
5101 case Arithmetic:
5102 case Xchg:
5103 SubExprs.push_back(APIOrderedArgs[2]); // Order
5104 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5105 break;
5106 case GNUXchg:
5107 // Note, AtomicExpr::getVal2() has a special case for this atomic.
5108 SubExprs.push_back(APIOrderedArgs[3]); // Order
5109 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5110 SubExprs.push_back(APIOrderedArgs[2]); // Val2
5111 break;
5112 case C11CmpXchg:
5113 SubExprs.push_back(APIOrderedArgs[3]); // Order
5114 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5115 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
5116 SubExprs.push_back(APIOrderedArgs[2]); // Val2
5117 break;
5118 case GNUCmpXchg:
5119 SubExprs.push_back(APIOrderedArgs[4]); // Order
5120 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5121 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
5122 SubExprs.push_back(APIOrderedArgs[2]); // Val2
5123 SubExprs.push_back(APIOrderedArgs[3]); // Weak
5124 break;
5125 }
5126
5127 if (SubExprs.size() >= 2 && Form != Init) {
5128 if (Optional<llvm::APSInt> Result =
5129 SubExprs[1]->getIntegerConstantExpr(Context))
5130 if (!isValidOrderingForOp(Result->getSExtValue(), Op))
5131 Diag(SubExprs[1]->getBeginLoc(),
5132 diag::warn_atomic_op_has_invalid_memory_order)
5133 << SubExprs[1]->getSourceRange();
5134 }
5135
5136 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
5137 auto *Scope = Args[Args.size() - 1];
5138 if (Optional<llvm::APSInt> Result =
5139 Scope->getIntegerConstantExpr(Context)) {
5140 if (!ScopeModel->isValid(Result->getZExtValue()))
5141 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
5142 << Scope->getSourceRange();
5143 }
5144 SubExprs.push_back(Scope);
5145 }
5146
5147 AtomicExpr *AE = new (Context)
5148 AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
5149
5150 if ((Op == AtomicExpr::AO__c11_atomic_load ||
5151 Op == AtomicExpr::AO__c11_atomic_store ||
5152 Op == AtomicExpr::AO__opencl_atomic_load ||
5153 Op == AtomicExpr::AO__opencl_atomic_store ) &&
5154 Context.AtomicUsesUnsupportedLibcall(AE))
5155 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
5156 << ((Op == AtomicExpr::AO__c11_atomic_load ||
5157 Op == AtomicExpr::AO__opencl_atomic_load)
5158 ? 0
5159 : 1);
5160
5161 if (ValType->isExtIntType()) {
5162 Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit);
5163 return ExprError();
5164 }
5165
5166 return AE;
5167 }
5168
5169 /// checkBuiltinArgument - Given a call to a builtin function, perform
5170 /// normal type-checking on the given argument, updating the call in
5171 /// place. This is useful when a builtin function requires custom
5172 /// type-checking for some of its arguments but not necessarily all of
5173 /// them.
5174 ///
5175 /// Returns true on error.
checkBuiltinArgument(Sema & S,CallExpr * E,unsigned ArgIndex)5176 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
5177 FunctionDecl *Fn = E->getDirectCallee();
5178 assert(Fn && "builtin call without direct callee!");
5179
5180 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
5181 InitializedEntity Entity =
5182 InitializedEntity::InitializeParameter(S.Context, Param);
5183
5184 ExprResult Arg = E->getArg(0);
5185 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
5186 if (Arg.isInvalid())
5187 return true;
5188
5189 E->setArg(ArgIndex, Arg.get());
5190 return false;
5191 }
5192
5193 /// We have a call to a function like __sync_fetch_and_add, which is an
5194 /// overloaded function based on the pointer type of its first argument.
5195 /// The main BuildCallExpr routines have already promoted the types of
5196 /// arguments because all of these calls are prototyped as void(...).
5197 ///
5198 /// This function goes through and does final semantic checking for these
5199 /// builtins, as well as generating any warnings.
5200 ExprResult
SemaBuiltinAtomicOverloaded(ExprResult TheCallResult)5201 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
5202 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
5203 Expr *Callee = TheCall->getCallee();
5204 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
5205 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5206
5207 // Ensure that we have at least one argument to do type inference from.
5208 if (TheCall->getNumArgs() < 1) {
5209 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5210 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
5211 return ExprError();
5212 }
5213
5214 // Inspect the first argument of the atomic builtin. This should always be
5215 // a pointer type, whose element is an integral scalar or pointer type.
5216 // Because it is a pointer type, we don't have to worry about any implicit
5217 // casts here.
5218 // FIXME: We don't allow floating point scalars as input.
5219 Expr *FirstArg = TheCall->getArg(0);
5220 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
5221 if (FirstArgResult.isInvalid())
5222 return ExprError();
5223 FirstArg = FirstArgResult.get();
5224 TheCall->setArg(0, FirstArg);
5225
5226 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
5227 if (!pointerType) {
5228 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
5229 << FirstArg->getType() << FirstArg->getSourceRange();
5230 return ExprError();
5231 }
5232
5233 QualType ValType = pointerType->getPointeeType();
5234 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5235 !ValType->isBlockPointerType()) {
5236 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
5237 << FirstArg->getType() << FirstArg->getSourceRange();
5238 return ExprError();
5239 }
5240
5241 if (ValType.isConstQualified()) {
5242 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
5243 << FirstArg->getType() << FirstArg->getSourceRange();
5244 return ExprError();
5245 }
5246
5247 switch (ValType.getObjCLifetime()) {
5248 case Qualifiers::OCL_None:
5249 case Qualifiers::OCL_ExplicitNone:
5250 // okay
5251 break;
5252
5253 case Qualifiers::OCL_Weak:
5254 case Qualifiers::OCL_Strong:
5255 case Qualifiers::OCL_Autoreleasing:
5256 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
5257 << ValType << FirstArg->getSourceRange();
5258 return ExprError();
5259 }
5260
5261 // Strip any qualifiers off ValType.
5262 ValType = ValType.getUnqualifiedType();
5263
5264 // The majority of builtins return a value, but a few have special return
5265 // types, so allow them to override appropriately below.
5266 QualType ResultType = ValType;
5267
5268 // We need to figure out which concrete builtin this maps onto. For example,
5269 // __sync_fetch_and_add with a 2 byte object turns into
5270 // __sync_fetch_and_add_2.
5271 #define BUILTIN_ROW(x) \
5272 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
5273 Builtin::BI##x##_8, Builtin::BI##x##_16 }
5274
5275 static const unsigned BuiltinIndices[][5] = {
5276 BUILTIN_ROW(__sync_fetch_and_add),
5277 BUILTIN_ROW(__sync_fetch_and_sub),
5278 BUILTIN_ROW(__sync_fetch_and_or),
5279 BUILTIN_ROW(__sync_fetch_and_and),
5280 BUILTIN_ROW(__sync_fetch_and_xor),
5281 BUILTIN_ROW(__sync_fetch_and_nand),
5282
5283 BUILTIN_ROW(__sync_add_and_fetch),
5284 BUILTIN_ROW(__sync_sub_and_fetch),
5285 BUILTIN_ROW(__sync_and_and_fetch),
5286 BUILTIN_ROW(__sync_or_and_fetch),
5287 BUILTIN_ROW(__sync_xor_and_fetch),
5288 BUILTIN_ROW(__sync_nand_and_fetch),
5289
5290 BUILTIN_ROW(__sync_val_compare_and_swap),
5291 BUILTIN_ROW(__sync_bool_compare_and_swap),
5292 BUILTIN_ROW(__sync_lock_test_and_set),
5293 BUILTIN_ROW(__sync_lock_release),
5294 BUILTIN_ROW(__sync_swap)
5295 };
5296 #undef BUILTIN_ROW
5297
5298 // Determine the index of the size.
5299 unsigned SizeIndex;
5300 switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
5301 case 1: SizeIndex = 0; break;
5302 case 2: SizeIndex = 1; break;
5303 case 4: SizeIndex = 2; break;
5304 case 8: SizeIndex = 3; break;
5305 case 16: SizeIndex = 4; break;
5306 default:
5307 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
5308 << FirstArg->getType() << FirstArg->getSourceRange();
5309 return ExprError();
5310 }
5311
5312 // Each of these builtins has one pointer argument, followed by some number of
5313 // values (0, 1 or 2) followed by a potentially empty varags list of stuff
5314 // that we ignore. Find out which row of BuiltinIndices to read from as well
5315 // as the number of fixed args.
5316 unsigned BuiltinID = FDecl->getBuiltinID();
5317 unsigned BuiltinIndex, NumFixed = 1;
5318 bool WarnAboutSemanticsChange = false;
5319 switch (BuiltinID) {
5320 default: llvm_unreachable("Unknown overloaded atomic builtin!");
5321 case Builtin::BI__sync_fetch_and_add:
5322 case Builtin::BI__sync_fetch_and_add_1:
5323 case Builtin::BI__sync_fetch_and_add_2:
5324 case Builtin::BI__sync_fetch_and_add_4:
5325 case Builtin::BI__sync_fetch_and_add_8:
5326 case Builtin::BI__sync_fetch_and_add_16:
5327 BuiltinIndex = 0;
5328 break;
5329
5330 case Builtin::BI__sync_fetch_and_sub:
5331 case Builtin::BI__sync_fetch_and_sub_1:
5332 case Builtin::BI__sync_fetch_and_sub_2:
5333 case Builtin::BI__sync_fetch_and_sub_4:
5334 case Builtin::BI__sync_fetch_and_sub_8:
5335 case Builtin::BI__sync_fetch_and_sub_16:
5336 BuiltinIndex = 1;
5337 break;
5338
5339 case Builtin::BI__sync_fetch_and_or:
5340 case Builtin::BI__sync_fetch_and_or_1:
5341 case Builtin::BI__sync_fetch_and_or_2:
5342 case Builtin::BI__sync_fetch_and_or_4:
5343 case Builtin::BI__sync_fetch_and_or_8:
5344 case Builtin::BI__sync_fetch_and_or_16:
5345 BuiltinIndex = 2;
5346 break;
5347
5348 case Builtin::BI__sync_fetch_and_and:
5349 case Builtin::BI__sync_fetch_and_and_1:
5350 case Builtin::BI__sync_fetch_and_and_2:
5351 case Builtin::BI__sync_fetch_and_and_4:
5352 case Builtin::BI__sync_fetch_and_and_8:
5353 case Builtin::BI__sync_fetch_and_and_16:
5354 BuiltinIndex = 3;
5355 break;
5356
5357 case Builtin::BI__sync_fetch_and_xor:
5358 case Builtin::BI__sync_fetch_and_xor_1:
5359 case Builtin::BI__sync_fetch_and_xor_2:
5360 case Builtin::BI__sync_fetch_and_xor_4:
5361 case Builtin::BI__sync_fetch_and_xor_8:
5362 case Builtin::BI__sync_fetch_and_xor_16:
5363 BuiltinIndex = 4;
5364 break;
5365
5366 case Builtin::BI__sync_fetch_and_nand:
5367 case Builtin::BI__sync_fetch_and_nand_1:
5368 case Builtin::BI__sync_fetch_and_nand_2:
5369 case Builtin::BI__sync_fetch_and_nand_4:
5370 case Builtin::BI__sync_fetch_and_nand_8:
5371 case Builtin::BI__sync_fetch_and_nand_16:
5372 BuiltinIndex = 5;
5373 WarnAboutSemanticsChange = true;
5374 break;
5375
5376 case Builtin::BI__sync_add_and_fetch:
5377 case Builtin::BI__sync_add_and_fetch_1:
5378 case Builtin::BI__sync_add_and_fetch_2:
5379 case Builtin::BI__sync_add_and_fetch_4:
5380 case Builtin::BI__sync_add_and_fetch_8:
5381 case Builtin::BI__sync_add_and_fetch_16:
5382 BuiltinIndex = 6;
5383 break;
5384
5385 case Builtin::BI__sync_sub_and_fetch:
5386 case Builtin::BI__sync_sub_and_fetch_1:
5387 case Builtin::BI__sync_sub_and_fetch_2:
5388 case Builtin::BI__sync_sub_and_fetch_4:
5389 case Builtin::BI__sync_sub_and_fetch_8:
5390 case Builtin::BI__sync_sub_and_fetch_16:
5391 BuiltinIndex = 7;
5392 break;
5393
5394 case Builtin::BI__sync_and_and_fetch:
5395 case Builtin::BI__sync_and_and_fetch_1:
5396 case Builtin::BI__sync_and_and_fetch_2:
5397 case Builtin::BI__sync_and_and_fetch_4:
5398 case Builtin::BI__sync_and_and_fetch_8:
5399 case Builtin::BI__sync_and_and_fetch_16:
5400 BuiltinIndex = 8;
5401 break;
5402
5403 case Builtin::BI__sync_or_and_fetch:
5404 case Builtin::BI__sync_or_and_fetch_1:
5405 case Builtin::BI__sync_or_and_fetch_2:
5406 case Builtin::BI__sync_or_and_fetch_4:
5407 case Builtin::BI__sync_or_and_fetch_8:
5408 case Builtin::BI__sync_or_and_fetch_16:
5409 BuiltinIndex = 9;
5410 break;
5411
5412 case Builtin::BI__sync_xor_and_fetch:
5413 case Builtin::BI__sync_xor_and_fetch_1:
5414 case Builtin::BI__sync_xor_and_fetch_2:
5415 case Builtin::BI__sync_xor_and_fetch_4:
5416 case Builtin::BI__sync_xor_and_fetch_8:
5417 case Builtin::BI__sync_xor_and_fetch_16:
5418 BuiltinIndex = 10;
5419 break;
5420
5421 case Builtin::BI__sync_nand_and_fetch:
5422 case Builtin::BI__sync_nand_and_fetch_1:
5423 case Builtin::BI__sync_nand_and_fetch_2:
5424 case Builtin::BI__sync_nand_and_fetch_4:
5425 case Builtin::BI__sync_nand_and_fetch_8:
5426 case Builtin::BI__sync_nand_and_fetch_16:
5427 BuiltinIndex = 11;
5428 WarnAboutSemanticsChange = true;
5429 break;
5430
5431 case Builtin::BI__sync_val_compare_and_swap:
5432 case Builtin::BI__sync_val_compare_and_swap_1:
5433 case Builtin::BI__sync_val_compare_and_swap_2:
5434 case Builtin::BI__sync_val_compare_and_swap_4:
5435 case Builtin::BI__sync_val_compare_and_swap_8:
5436 case Builtin::BI__sync_val_compare_and_swap_16:
5437 BuiltinIndex = 12;
5438 NumFixed = 2;
5439 break;
5440
5441 case Builtin::BI__sync_bool_compare_and_swap:
5442 case Builtin::BI__sync_bool_compare_and_swap_1:
5443 case Builtin::BI__sync_bool_compare_and_swap_2:
5444 case Builtin::BI__sync_bool_compare_and_swap_4:
5445 case Builtin::BI__sync_bool_compare_and_swap_8:
5446 case Builtin::BI__sync_bool_compare_and_swap_16:
5447 BuiltinIndex = 13;
5448 NumFixed = 2;
5449 ResultType = Context.BoolTy;
5450 break;
5451
5452 case Builtin::BI__sync_lock_test_and_set:
5453 case Builtin::BI__sync_lock_test_and_set_1:
5454 case Builtin::BI__sync_lock_test_and_set_2:
5455 case Builtin::BI__sync_lock_test_and_set_4:
5456 case Builtin::BI__sync_lock_test_and_set_8:
5457 case Builtin::BI__sync_lock_test_and_set_16:
5458 BuiltinIndex = 14;
5459 break;
5460
5461 case Builtin::BI__sync_lock_release:
5462 case Builtin::BI__sync_lock_release_1:
5463 case Builtin::BI__sync_lock_release_2:
5464 case Builtin::BI__sync_lock_release_4:
5465 case Builtin::BI__sync_lock_release_8:
5466 case Builtin::BI__sync_lock_release_16:
5467 BuiltinIndex = 15;
5468 NumFixed = 0;
5469 ResultType = Context.VoidTy;
5470 break;
5471
5472 case Builtin::BI__sync_swap:
5473 case Builtin::BI__sync_swap_1:
5474 case Builtin::BI__sync_swap_2:
5475 case Builtin::BI__sync_swap_4:
5476 case Builtin::BI__sync_swap_8:
5477 case Builtin::BI__sync_swap_16:
5478 BuiltinIndex = 16;
5479 break;
5480 }
5481
5482 // Now that we know how many fixed arguments we expect, first check that we
5483 // have at least that many.
5484 if (TheCall->getNumArgs() < 1+NumFixed) {
5485 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5486 << 0 << 1 + NumFixed << TheCall->getNumArgs()
5487 << Callee->getSourceRange();
5488 return ExprError();
5489 }
5490
5491 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
5492 << Callee->getSourceRange();
5493
5494 if (WarnAboutSemanticsChange) {
5495 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
5496 << Callee->getSourceRange();
5497 }
5498
5499 // Get the decl for the concrete builtin from this, we can tell what the
5500 // concrete integer type we should convert to is.
5501 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
5502 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
5503 FunctionDecl *NewBuiltinDecl;
5504 if (NewBuiltinID == BuiltinID)
5505 NewBuiltinDecl = FDecl;
5506 else {
5507 // Perform builtin lookup to avoid redeclaring it.
5508 DeclarationName DN(&Context.Idents.get(NewBuiltinName));
5509 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
5510 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
5511 assert(Res.getFoundDecl());
5512 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
5513 if (!NewBuiltinDecl)
5514 return ExprError();
5515 }
5516
5517 // The first argument --- the pointer --- has a fixed type; we
5518 // deduce the types of the rest of the arguments accordingly. Walk
5519 // the remaining arguments, converting them to the deduced value type.
5520 for (unsigned i = 0; i != NumFixed; ++i) {
5521 ExprResult Arg = TheCall->getArg(i+1);
5522
5523 // GCC does an implicit conversion to the pointer or integer ValType. This
5524 // can fail in some cases (1i -> int**), check for this error case now.
5525 // Initialize the argument.
5526 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
5527 ValType, /*consume*/ false);
5528 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5529 if (Arg.isInvalid())
5530 return ExprError();
5531
5532 // Okay, we have something that *can* be converted to the right type. Check
5533 // to see if there is a potentially weird extension going on here. This can
5534 // happen when you do an atomic operation on something like an char* and
5535 // pass in 42. The 42 gets converted to char. This is even more strange
5536 // for things like 45.123 -> char, etc.
5537 // FIXME: Do this check.
5538 TheCall->setArg(i+1, Arg.get());
5539 }
5540
5541 // Create a new DeclRefExpr to refer to the new decl.
5542 DeclRefExpr *NewDRE = DeclRefExpr::Create(
5543 Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
5544 /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
5545 DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
5546
5547 // Set the callee in the CallExpr.
5548 // FIXME: This loses syntactic information.
5549 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
5550 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
5551 CK_BuiltinFnToFnPtr);
5552 TheCall->setCallee(PromotedCall.get());
5553
5554 // Change the result type of the call to match the original value type. This
5555 // is arbitrary, but the codegen for these builtins ins design to handle it
5556 // gracefully.
5557 TheCall->setType(ResultType);
5558
5559 // Prohibit use of _ExtInt with atomic builtins.
5560 // The arguments would have already been converted to the first argument's
5561 // type, so only need to check the first argument.
5562 const auto *ExtIntValType = ValType->getAs<ExtIntType>();
5563 if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) {
5564 Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
5565 return ExprError();
5566 }
5567
5568 return TheCallResult;
5569 }
5570
5571 /// SemaBuiltinNontemporalOverloaded - We have a call to
5572 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
5573 /// overloaded function based on the pointer type of its last argument.
5574 ///
5575 /// This function goes through and does final semantic checking for these
5576 /// builtins.
SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult)5577 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
5578 CallExpr *TheCall = (CallExpr *)TheCallResult.get();
5579 DeclRefExpr *DRE =
5580 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5581 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5582 unsigned BuiltinID = FDecl->getBuiltinID();
5583 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
5584 BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
5585 "Unexpected nontemporal load/store builtin!");
5586 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
5587 unsigned numArgs = isStore ? 2 : 1;
5588
5589 // Ensure that we have the proper number of arguments.
5590 if (checkArgCount(*this, TheCall, numArgs))
5591 return ExprError();
5592
5593 // Inspect the last argument of the nontemporal builtin. This should always
5594 // be a pointer type, from which we imply the type of the memory access.
5595 // Because it is a pointer type, we don't have to worry about any implicit
5596 // casts here.
5597 Expr *PointerArg = TheCall->getArg(numArgs - 1);
5598 ExprResult PointerArgResult =
5599 DefaultFunctionArrayLvalueConversion(PointerArg);
5600
5601 if (PointerArgResult.isInvalid())
5602 return ExprError();
5603 PointerArg = PointerArgResult.get();
5604 TheCall->setArg(numArgs - 1, PointerArg);
5605
5606 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
5607 if (!pointerType) {
5608 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
5609 << PointerArg->getType() << PointerArg->getSourceRange();
5610 return ExprError();
5611 }
5612
5613 QualType ValType = pointerType->getPointeeType();
5614
5615 // Strip any qualifiers off ValType.
5616 ValType = ValType.getUnqualifiedType();
5617 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5618 !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
5619 !ValType->isVectorType()) {
5620 Diag(DRE->getBeginLoc(),
5621 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
5622 << PointerArg->getType() << PointerArg->getSourceRange();
5623 return ExprError();
5624 }
5625
5626 if (!isStore) {
5627 TheCall->setType(ValType);
5628 return TheCallResult;
5629 }
5630
5631 ExprResult ValArg = TheCall->getArg(0);
5632 InitializedEntity Entity = InitializedEntity::InitializeParameter(
5633 Context, ValType, /*consume*/ false);
5634 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
5635 if (ValArg.isInvalid())
5636 return ExprError();
5637
5638 TheCall->setArg(0, ValArg.get());
5639 TheCall->setType(Context.VoidTy);
5640 return TheCallResult;
5641 }
5642
5643 /// CheckObjCString - Checks that the argument to the builtin
5644 /// CFString constructor is correct
5645 /// Note: It might also make sense to do the UTF-16 conversion here (would
5646 /// simplify the backend).
CheckObjCString(Expr * Arg)5647 bool Sema::CheckObjCString(Expr *Arg) {
5648 Arg = Arg->IgnoreParenCasts();
5649 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
5650
5651 if (!Literal || !Literal->isAscii()) {
5652 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
5653 << Arg->getSourceRange();
5654 return true;
5655 }
5656
5657 if (Literal->containsNonAsciiOrNull()) {
5658 StringRef String = Literal->getString();
5659 unsigned NumBytes = String.size();
5660 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
5661 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5662 llvm::UTF16 *ToPtr = &ToBuf[0];
5663
5664 llvm::ConversionResult Result =
5665 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5666 ToPtr + NumBytes, llvm::strictConversion);
5667 // Check for conversion failure.
5668 if (Result != llvm::conversionOK)
5669 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
5670 << Arg->getSourceRange();
5671 }
5672 return false;
5673 }
5674
5675 /// CheckObjCString - Checks that the format string argument to the os_log()
5676 /// and os_trace() functions is correct, and converts it to const char *.
CheckOSLogFormatStringArg(Expr * Arg)5677 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
5678 Arg = Arg->IgnoreParenCasts();
5679 auto *Literal = dyn_cast<StringLiteral>(Arg);
5680 if (!Literal) {
5681 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
5682 Literal = ObjcLiteral->getString();
5683 }
5684 }
5685
5686 if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
5687 return ExprError(
5688 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
5689 << Arg->getSourceRange());
5690 }
5691
5692 ExprResult Result(Literal);
5693 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
5694 InitializedEntity Entity =
5695 InitializedEntity::InitializeParameter(Context, ResultTy, false);
5696 Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
5697 return Result;
5698 }
5699
5700 /// Check that the user is calling the appropriate va_start builtin for the
5701 /// target and calling convention.
checkVAStartABI(Sema & S,unsigned BuiltinID,Expr * Fn)5702 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
5703 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
5704 bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
5705 bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
5706 TT.getArch() == llvm::Triple::aarch64_32);
5707 bool IsWindows = TT.isOSWindows();
5708 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
5709 if (IsX64 || IsAArch64) {
5710 CallingConv CC = CC_C;
5711 if (const FunctionDecl *FD = S.getCurFunctionDecl())
5712 CC = FD->getType()->castAs<FunctionType>()->getCallConv();
5713 if (IsMSVAStart) {
5714 // Don't allow this in System V ABI functions.
5715 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
5716 return S.Diag(Fn->getBeginLoc(),
5717 diag::err_ms_va_start_used_in_sysv_function);
5718 } else {
5719 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
5720 // On x64 Windows, don't allow this in System V ABI functions.
5721 // (Yes, that means there's no corresponding way to support variadic
5722 // System V ABI functions on Windows.)
5723 if ((IsWindows && CC == CC_X86_64SysV) ||
5724 (!IsWindows && CC == CC_Win64))
5725 return S.Diag(Fn->getBeginLoc(),
5726 diag::err_va_start_used_in_wrong_abi_function)
5727 << !IsWindows;
5728 }
5729 return false;
5730 }
5731
5732 if (IsMSVAStart)
5733 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
5734 return false;
5735 }
5736
checkVAStartIsInVariadicFunction(Sema & S,Expr * Fn,ParmVarDecl ** LastParam=nullptr)5737 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
5738 ParmVarDecl **LastParam = nullptr) {
5739 // Determine whether the current function, block, or obj-c method is variadic
5740 // and get its parameter list.
5741 bool IsVariadic = false;
5742 ArrayRef<ParmVarDecl *> Params;
5743 DeclContext *Caller = S.CurContext;
5744 if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
5745 IsVariadic = Block->isVariadic();
5746 Params = Block->parameters();
5747 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
5748 IsVariadic = FD->isVariadic();
5749 Params = FD->parameters();
5750 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
5751 IsVariadic = MD->isVariadic();
5752 // FIXME: This isn't correct for methods (results in bogus warning).
5753 Params = MD->parameters();
5754 } else if (isa<CapturedDecl>(Caller)) {
5755 // We don't support va_start in a CapturedDecl.
5756 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
5757 return true;
5758 } else {
5759 // This must be some other declcontext that parses exprs.
5760 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
5761 return true;
5762 }
5763
5764 if (!IsVariadic) {
5765 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
5766 return true;
5767 }
5768
5769 if (LastParam)
5770 *LastParam = Params.empty() ? nullptr : Params.back();
5771
5772 return false;
5773 }
5774
5775 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
5776 /// for validity. Emit an error and return true on failure; return false
5777 /// on success.
SemaBuiltinVAStart(unsigned BuiltinID,CallExpr * TheCall)5778 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
5779 Expr *Fn = TheCall->getCallee();
5780
5781 if (checkVAStartABI(*this, BuiltinID, Fn))
5782 return true;
5783
5784 if (checkArgCount(*this, TheCall, 2))
5785 return true;
5786
5787 // Type-check the first argument normally.
5788 if (checkBuiltinArgument(*this, TheCall, 0))
5789 return true;
5790
5791 // Check that the current function is variadic, and get its last parameter.
5792 ParmVarDecl *LastParam;
5793 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
5794 return true;
5795
5796 // Verify that the second argument to the builtin is the last argument of the
5797 // current function or method.
5798 bool SecondArgIsLastNamedArgument = false;
5799 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
5800
5801 // These are valid if SecondArgIsLastNamedArgument is false after the next
5802 // block.
5803 QualType Type;
5804 SourceLocation ParamLoc;
5805 bool IsCRegister = false;
5806
5807 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
5808 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
5809 SecondArgIsLastNamedArgument = PV == LastParam;
5810
5811 Type = PV->getType();
5812 ParamLoc = PV->getLocation();
5813 IsCRegister =
5814 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
5815 }
5816 }
5817
5818 if (!SecondArgIsLastNamedArgument)
5819 Diag(TheCall->getArg(1)->getBeginLoc(),
5820 diag::warn_second_arg_of_va_start_not_last_named_param);
5821 else if (IsCRegister || Type->isReferenceType() ||
5822 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
5823 // Promotable integers are UB, but enumerations need a bit of
5824 // extra checking to see what their promotable type actually is.
5825 if (!Type->isPromotableIntegerType())
5826 return false;
5827 if (!Type->isEnumeralType())
5828 return true;
5829 const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
5830 return !(ED &&
5831 Context.typesAreCompatible(ED->getPromotionType(), Type));
5832 }()) {
5833 unsigned Reason = 0;
5834 if (Type->isReferenceType()) Reason = 1;
5835 else if (IsCRegister) Reason = 2;
5836 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
5837 Diag(ParamLoc, diag::note_parameter_type) << Type;
5838 }
5839
5840 TheCall->setType(Context.VoidTy);
5841 return false;
5842 }
5843
SemaBuiltinVAStartARMMicrosoft(CallExpr * Call)5844 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
5845 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
5846 // const char *named_addr);
5847
5848 Expr *Func = Call->getCallee();
5849
5850 if (Call->getNumArgs() < 3)
5851 return Diag(Call->getEndLoc(),
5852 diag::err_typecheck_call_too_few_args_at_least)
5853 << 0 /*function call*/ << 3 << Call->getNumArgs();
5854
5855 // Type-check the first argument normally.
5856 if (checkBuiltinArgument(*this, Call, 0))
5857 return true;
5858
5859 // Check that the current function is variadic.
5860 if (checkVAStartIsInVariadicFunction(*this, Func))
5861 return true;
5862
5863 // __va_start on Windows does not validate the parameter qualifiers
5864
5865 const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
5866 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
5867
5868 const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
5869 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
5870
5871 const QualType &ConstCharPtrTy =
5872 Context.getPointerType(Context.CharTy.withConst());
5873 if (!Arg1Ty->isPointerType() ||
5874 Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy)
5875 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5876 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
5877 << 0 /* qualifier difference */
5878 << 3 /* parameter mismatch */
5879 << 2 << Arg1->getType() << ConstCharPtrTy;
5880
5881 const QualType SizeTy = Context.getSizeType();
5882 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
5883 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5884 << Arg2->getType() << SizeTy << 1 /* different class */
5885 << 0 /* qualifier difference */
5886 << 3 /* parameter mismatch */
5887 << 3 << Arg2->getType() << SizeTy;
5888
5889 return false;
5890 }
5891
5892 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
5893 /// friends. This is declared to take (...), so we have to check everything.
SemaBuiltinUnorderedCompare(CallExpr * TheCall)5894 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
5895 if (checkArgCount(*this, TheCall, 2))
5896 return true;
5897
5898 ExprResult OrigArg0 = TheCall->getArg(0);
5899 ExprResult OrigArg1 = TheCall->getArg(1);
5900
5901 // Do standard promotions between the two arguments, returning their common
5902 // type.
5903 QualType Res = UsualArithmeticConversions(
5904 OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
5905 if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
5906 return true;
5907
5908 // Make sure any conversions are pushed back into the call; this is
5909 // type safe since unordered compare builtins are declared as "_Bool
5910 // foo(...)".
5911 TheCall->setArg(0, OrigArg0.get());
5912 TheCall->setArg(1, OrigArg1.get());
5913
5914 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
5915 return false;
5916
5917 // If the common type isn't a real floating type, then the arguments were
5918 // invalid for this operation.
5919 if (Res.isNull() || !Res->isRealFloatingType())
5920 return Diag(OrigArg0.get()->getBeginLoc(),
5921 diag::err_typecheck_call_invalid_ordered_compare)
5922 << OrigArg0.get()->getType() << OrigArg1.get()->getType()
5923 << SourceRange(OrigArg0.get()->getBeginLoc(),
5924 OrigArg1.get()->getEndLoc());
5925
5926 return false;
5927 }
5928
5929 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
5930 /// __builtin_isnan and friends. This is declared to take (...), so we have
5931 /// to check everything. We expect the last argument to be a floating point
5932 /// value.
SemaBuiltinFPClassification(CallExpr * TheCall,unsigned NumArgs)5933 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
5934 if (checkArgCount(*this, TheCall, NumArgs))
5935 return true;
5936
5937 // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
5938 // on all preceding parameters just being int. Try all of those.
5939 for (unsigned i = 0; i < NumArgs - 1; ++i) {
5940 Expr *Arg = TheCall->getArg(i);
5941
5942 if (Arg->isTypeDependent())
5943 return false;
5944
5945 ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
5946
5947 if (Res.isInvalid())
5948 return true;
5949 TheCall->setArg(i, Res.get());
5950 }
5951
5952 Expr *OrigArg = TheCall->getArg(NumArgs-1);
5953
5954 if (OrigArg->isTypeDependent())
5955 return false;
5956
5957 // Usual Unary Conversions will convert half to float, which we want for
5958 // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
5959 // type how it is, but do normal L->Rvalue conversions.
5960 if (Context.getTargetInfo().useFP16ConversionIntrinsics())
5961 OrigArg = UsualUnaryConversions(OrigArg).get();
5962 else
5963 OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
5964 TheCall->setArg(NumArgs - 1, OrigArg);
5965
5966 // This operation requires a non-_Complex floating-point number.
5967 if (!OrigArg->getType()->isRealFloatingType())
5968 return Diag(OrigArg->getBeginLoc(),
5969 diag::err_typecheck_call_invalid_unary_fp)
5970 << OrigArg->getType() << OrigArg->getSourceRange();
5971
5972 return false;
5973 }
5974
5975 /// Perform semantic analysis for a call to __builtin_complex.
SemaBuiltinComplex(CallExpr * TheCall)5976 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
5977 if (checkArgCount(*this, TheCall, 2))
5978 return true;
5979
5980 bool Dependent = false;
5981 for (unsigned I = 0; I != 2; ++I) {
5982 Expr *Arg = TheCall->getArg(I);
5983 QualType T = Arg->getType();
5984 if (T->isDependentType()) {
5985 Dependent = true;
5986 continue;
5987 }
5988
5989 // Despite supporting _Complex int, GCC requires a real floating point type
5990 // for the operands of __builtin_complex.
5991 if (!T->isRealFloatingType()) {
5992 return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
5993 << Arg->getType() << Arg->getSourceRange();
5994 }
5995
5996 ExprResult Converted = DefaultLvalueConversion(Arg);
5997 if (Converted.isInvalid())
5998 return true;
5999 TheCall->setArg(I, Converted.get());
6000 }
6001
6002 if (Dependent) {
6003 TheCall->setType(Context.DependentTy);
6004 return false;
6005 }
6006
6007 Expr *Real = TheCall->getArg(0);
6008 Expr *Imag = TheCall->getArg(1);
6009 if (!Context.hasSameType(Real->getType(), Imag->getType())) {
6010 return Diag(Real->getBeginLoc(),
6011 diag::err_typecheck_call_different_arg_types)
6012 << Real->getType() << Imag->getType()
6013 << Real->getSourceRange() << Imag->getSourceRange();
6014 }
6015
6016 // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
6017 // don't allow this builtin to form those types either.
6018 // FIXME: Should we allow these types?
6019 if (Real->getType()->isFloat16Type())
6020 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6021 << "_Float16";
6022 if (Real->getType()->isHalfType())
6023 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6024 << "half";
6025
6026 TheCall->setType(Context.getComplexType(Real->getType()));
6027 return false;
6028 }
6029
6030 // Customized Sema Checking for VSX builtins that have the following signature:
6031 // vector [...] builtinName(vector [...], vector [...], const int);
6032 // Which takes the same type of vectors (any legal vector type) for the first
6033 // two arguments and takes compile time constant for the third argument.
6034 // Example builtins are :
6035 // vector double vec_xxpermdi(vector double, vector double, int);
6036 // vector short vec_xxsldwi(vector short, vector short, int);
SemaBuiltinVSX(CallExpr * TheCall)6037 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
6038 unsigned ExpectedNumArgs = 3;
6039 if (checkArgCount(*this, TheCall, ExpectedNumArgs))
6040 return true;
6041
6042 // Check the third argument is a compile time constant
6043 if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
6044 return Diag(TheCall->getBeginLoc(),
6045 diag::err_vsx_builtin_nonconstant_argument)
6046 << 3 /* argument index */ << TheCall->getDirectCallee()
6047 << SourceRange(TheCall->getArg(2)->getBeginLoc(),
6048 TheCall->getArg(2)->getEndLoc());
6049
6050 QualType Arg1Ty = TheCall->getArg(0)->getType();
6051 QualType Arg2Ty = TheCall->getArg(1)->getType();
6052
6053 // Check the type of argument 1 and argument 2 are vectors.
6054 SourceLocation BuiltinLoc = TheCall->getBeginLoc();
6055 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
6056 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
6057 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
6058 << TheCall->getDirectCallee()
6059 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6060 TheCall->getArg(1)->getEndLoc());
6061 }
6062
6063 // Check the first two arguments are the same type.
6064 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
6065 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
6066 << TheCall->getDirectCallee()
6067 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6068 TheCall->getArg(1)->getEndLoc());
6069 }
6070
6071 // When default clang type checking is turned off and the customized type
6072 // checking is used, the returning type of the function must be explicitly
6073 // set. Otherwise it is _Bool by default.
6074 TheCall->setType(Arg1Ty);
6075
6076 return false;
6077 }
6078
6079 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
6080 // This is declared to take (...), so we have to check everything.
SemaBuiltinShuffleVector(CallExpr * TheCall)6081 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
6082 if (TheCall->getNumArgs() < 2)
6083 return ExprError(Diag(TheCall->getEndLoc(),
6084 diag::err_typecheck_call_too_few_args_at_least)
6085 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
6086 << TheCall->getSourceRange());
6087
6088 // Determine which of the following types of shufflevector we're checking:
6089 // 1) unary, vector mask: (lhs, mask)
6090 // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
6091 QualType resType = TheCall->getArg(0)->getType();
6092 unsigned numElements = 0;
6093
6094 if (!TheCall->getArg(0)->isTypeDependent() &&
6095 !TheCall->getArg(1)->isTypeDependent()) {
6096 QualType LHSType = TheCall->getArg(0)->getType();
6097 QualType RHSType = TheCall->getArg(1)->getType();
6098
6099 if (!LHSType->isVectorType() || !RHSType->isVectorType())
6100 return ExprError(
6101 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
6102 << TheCall->getDirectCallee()
6103 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6104 TheCall->getArg(1)->getEndLoc()));
6105
6106 numElements = LHSType->castAs<VectorType>()->getNumElements();
6107 unsigned numResElements = TheCall->getNumArgs() - 2;
6108
6109 // Check to see if we have a call with 2 vector arguments, the unary shuffle
6110 // with mask. If so, verify that RHS is an integer vector type with the
6111 // same number of elts as lhs.
6112 if (TheCall->getNumArgs() == 2) {
6113 if (!RHSType->hasIntegerRepresentation() ||
6114 RHSType->castAs<VectorType>()->getNumElements() != numElements)
6115 return ExprError(Diag(TheCall->getBeginLoc(),
6116 diag::err_vec_builtin_incompatible_vector)
6117 << TheCall->getDirectCallee()
6118 << SourceRange(TheCall->getArg(1)->getBeginLoc(),
6119 TheCall->getArg(1)->getEndLoc()));
6120 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
6121 return ExprError(Diag(TheCall->getBeginLoc(),
6122 diag::err_vec_builtin_incompatible_vector)
6123 << TheCall->getDirectCallee()
6124 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6125 TheCall->getArg(1)->getEndLoc()));
6126 } else if (numElements != numResElements) {
6127 QualType eltType = LHSType->castAs<VectorType>()->getElementType();
6128 resType = Context.getVectorType(eltType, numResElements,
6129 VectorType::GenericVector);
6130 }
6131 }
6132
6133 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
6134 if (TheCall->getArg(i)->isTypeDependent() ||
6135 TheCall->getArg(i)->isValueDependent())
6136 continue;
6137
6138 Optional<llvm::APSInt> Result;
6139 if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
6140 return ExprError(Diag(TheCall->getBeginLoc(),
6141 diag::err_shufflevector_nonconstant_argument)
6142 << TheCall->getArg(i)->getSourceRange());
6143
6144 // Allow -1 which will be translated to undef in the IR.
6145 if (Result->isSigned() && Result->isAllOnesValue())
6146 continue;
6147
6148 if (Result->getActiveBits() > 64 ||
6149 Result->getZExtValue() >= numElements * 2)
6150 return ExprError(Diag(TheCall->getBeginLoc(),
6151 diag::err_shufflevector_argument_too_large)
6152 << TheCall->getArg(i)->getSourceRange());
6153 }
6154
6155 SmallVector<Expr*, 32> exprs;
6156
6157 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
6158 exprs.push_back(TheCall->getArg(i));
6159 TheCall->setArg(i, nullptr);
6160 }
6161
6162 return new (Context) ShuffleVectorExpr(Context, exprs, resType,
6163 TheCall->getCallee()->getBeginLoc(),
6164 TheCall->getRParenLoc());
6165 }
6166
6167 /// SemaConvertVectorExpr - Handle __builtin_convertvector
SemaConvertVectorExpr(Expr * E,TypeSourceInfo * TInfo,SourceLocation BuiltinLoc,SourceLocation RParenLoc)6168 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
6169 SourceLocation BuiltinLoc,
6170 SourceLocation RParenLoc) {
6171 ExprValueKind VK = VK_RValue;
6172 ExprObjectKind OK = OK_Ordinary;
6173 QualType DstTy = TInfo->getType();
6174 QualType SrcTy = E->getType();
6175
6176 if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
6177 return ExprError(Diag(BuiltinLoc,
6178 diag::err_convertvector_non_vector)
6179 << E->getSourceRange());
6180 if (!DstTy->isVectorType() && !DstTy->isDependentType())
6181 return ExprError(Diag(BuiltinLoc,
6182 diag::err_convertvector_non_vector_type));
6183
6184 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
6185 unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
6186 unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
6187 if (SrcElts != DstElts)
6188 return ExprError(Diag(BuiltinLoc,
6189 diag::err_convertvector_incompatible_vector)
6190 << E->getSourceRange());
6191 }
6192
6193 return new (Context)
6194 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6195 }
6196
6197 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
6198 // This is declared to take (const void*, ...) and can take two
6199 // optional constant int args.
SemaBuiltinPrefetch(CallExpr * TheCall)6200 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
6201 unsigned NumArgs = TheCall->getNumArgs();
6202
6203 if (NumArgs > 3)
6204 return Diag(TheCall->getEndLoc(),
6205 diag::err_typecheck_call_too_many_args_at_most)
6206 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6207
6208 // Argument 0 is checked for us and the remaining arguments must be
6209 // constant integers.
6210 for (unsigned i = 1; i != NumArgs; ++i)
6211 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
6212 return true;
6213
6214 return false;
6215 }
6216
6217 /// SemaBuiltinAssume - Handle __assume (MS Extension).
6218 // __assume does not evaluate its arguments, and should warn if its argument
6219 // has side effects.
SemaBuiltinAssume(CallExpr * TheCall)6220 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
6221 Expr *Arg = TheCall->getArg(0);
6222 if (Arg->isInstantiationDependent()) return false;
6223
6224 if (Arg->HasSideEffects(Context))
6225 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
6226 << Arg->getSourceRange()
6227 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
6228
6229 return false;
6230 }
6231
6232 /// Handle __builtin_alloca_with_align. This is declared
6233 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
6234 /// than 8.
SemaBuiltinAllocaWithAlign(CallExpr * TheCall)6235 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
6236 // The alignment must be a constant integer.
6237 Expr *Arg = TheCall->getArg(1);
6238
6239 // We can't check the value of a dependent argument.
6240 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6241 if (const auto *UE =
6242 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
6243 if (UE->getKind() == UETT_AlignOf ||
6244 UE->getKind() == UETT_PreferredAlignOf)
6245 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
6246 << Arg->getSourceRange();
6247
6248 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
6249
6250 if (!Result.isPowerOf2())
6251 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6252 << Arg->getSourceRange();
6253
6254 if (Result < Context.getCharWidth())
6255 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
6256 << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
6257
6258 if (Result > std::numeric_limits<int32_t>::max())
6259 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
6260 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
6261 }
6262
6263 return false;
6264 }
6265
6266 /// Handle __builtin_assume_aligned. This is declared
6267 /// as (const void*, size_t, ...) and can take one optional constant int arg.
SemaBuiltinAssumeAligned(CallExpr * TheCall)6268 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
6269 unsigned NumArgs = TheCall->getNumArgs();
6270
6271 if (NumArgs > 3)
6272 return Diag(TheCall->getEndLoc(),
6273 diag::err_typecheck_call_too_many_args_at_most)
6274 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6275
6276 // The alignment must be a constant integer.
6277 Expr *Arg = TheCall->getArg(1);
6278
6279 // We can't check the value of a dependent argument.
6280 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6281 llvm::APSInt Result;
6282 if (SemaBuiltinConstantArg(TheCall, 1, Result))
6283 return true;
6284
6285 if (!Result.isPowerOf2())
6286 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6287 << Arg->getSourceRange();
6288
6289 if (Result > Sema::MaximumAlignment)
6290 Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
6291 << Arg->getSourceRange() << Sema::MaximumAlignment;
6292 }
6293
6294 if (NumArgs > 2) {
6295 ExprResult Arg(TheCall->getArg(2));
6296 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6297 Context.getSizeType(), false);
6298 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6299 if (Arg.isInvalid()) return true;
6300 TheCall->setArg(2, Arg.get());
6301 }
6302
6303 return false;
6304 }
6305
SemaBuiltinOSLogFormat(CallExpr * TheCall)6306 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
6307 unsigned BuiltinID =
6308 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
6309 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
6310
6311 unsigned NumArgs = TheCall->getNumArgs();
6312 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
6313 if (NumArgs < NumRequiredArgs) {
6314 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
6315 << 0 /* function call */ << NumRequiredArgs << NumArgs
6316 << TheCall->getSourceRange();
6317 }
6318 if (NumArgs >= NumRequiredArgs + 0x100) {
6319 return Diag(TheCall->getEndLoc(),
6320 diag::err_typecheck_call_too_many_args_at_most)
6321 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
6322 << TheCall->getSourceRange();
6323 }
6324 unsigned i = 0;
6325
6326 // For formatting call, check buffer arg.
6327 if (!IsSizeCall) {
6328 ExprResult Arg(TheCall->getArg(i));
6329 InitializedEntity Entity = InitializedEntity::InitializeParameter(
6330 Context, Context.VoidPtrTy, false);
6331 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6332 if (Arg.isInvalid())
6333 return true;
6334 TheCall->setArg(i, Arg.get());
6335 i++;
6336 }
6337
6338 // Check string literal arg.
6339 unsigned FormatIdx = i;
6340 {
6341 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
6342 if (Arg.isInvalid())
6343 return true;
6344 TheCall->setArg(i, Arg.get());
6345 i++;
6346 }
6347
6348 // Make sure variadic args are scalar.
6349 unsigned FirstDataArg = i;
6350 while (i < NumArgs) {
6351 ExprResult Arg = DefaultVariadicArgumentPromotion(
6352 TheCall->getArg(i), VariadicFunction, nullptr);
6353 if (Arg.isInvalid())
6354 return true;
6355 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
6356 if (ArgSize.getQuantity() >= 0x100) {
6357 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
6358 << i << (int)ArgSize.getQuantity() << 0xff
6359 << TheCall->getSourceRange();
6360 }
6361 TheCall->setArg(i, Arg.get());
6362 i++;
6363 }
6364
6365 // Check formatting specifiers. NOTE: We're only doing this for the non-size
6366 // call to avoid duplicate diagnostics.
6367 if (!IsSizeCall) {
6368 llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
6369 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
6370 bool Success = CheckFormatArguments(
6371 Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
6372 VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
6373 CheckedVarArgs);
6374 if (!Success)
6375 return true;
6376 }
6377
6378 if (IsSizeCall) {
6379 TheCall->setType(Context.getSizeType());
6380 } else {
6381 TheCall->setType(Context.VoidPtrTy);
6382 }
6383 return false;
6384 }
6385
6386 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
6387 /// TheCall is a constant expression.
SemaBuiltinConstantArg(CallExpr * TheCall,int ArgNum,llvm::APSInt & Result)6388 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
6389 llvm::APSInt &Result) {
6390 Expr *Arg = TheCall->getArg(ArgNum);
6391 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6392 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6393
6394 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
6395
6396 Optional<llvm::APSInt> R;
6397 if (!(R = Arg->getIntegerConstantExpr(Context)))
6398 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
6399 << FDecl->getDeclName() << Arg->getSourceRange();
6400 Result = *R;
6401 return false;
6402 }
6403
6404 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
6405 /// TheCall is a constant expression in the range [Low, High].
SemaBuiltinConstantArgRange(CallExpr * TheCall,int ArgNum,int Low,int High,bool RangeIsError)6406 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
6407 int Low, int High, bool RangeIsError) {
6408 if (isConstantEvaluated())
6409 return false;
6410 llvm::APSInt Result;
6411
6412 // We can't check the value of a dependent argument.
6413 Expr *Arg = TheCall->getArg(ArgNum);
6414 if (Arg->isTypeDependent() || Arg->isValueDependent())
6415 return false;
6416
6417 // Check constant-ness first.
6418 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6419 return true;
6420
6421 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
6422 if (RangeIsError)
6423 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
6424 << Result.toString(10) << Low << High << Arg->getSourceRange();
6425 else
6426 // Defer the warning until we know if the code will be emitted so that
6427 // dead code can ignore this.
6428 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
6429 PDiag(diag::warn_argument_invalid_range)
6430 << Result.toString(10) << Low << High
6431 << Arg->getSourceRange());
6432 }
6433
6434 return false;
6435 }
6436
6437 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
6438 /// TheCall is a constant expression is a multiple of Num..
SemaBuiltinConstantArgMultiple(CallExpr * TheCall,int ArgNum,unsigned Num)6439 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
6440 unsigned Num) {
6441 llvm::APSInt Result;
6442
6443 // We can't check the value of a dependent argument.
6444 Expr *Arg = TheCall->getArg(ArgNum);
6445 if (Arg->isTypeDependent() || Arg->isValueDependent())
6446 return false;
6447
6448 // Check constant-ness first.
6449 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6450 return true;
6451
6452 if (Result.getSExtValue() % Num != 0)
6453 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
6454 << Num << Arg->getSourceRange();
6455
6456 return false;
6457 }
6458
6459 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
6460 /// constant expression representing a power of 2.
SemaBuiltinConstantArgPower2(CallExpr * TheCall,int ArgNum)6461 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
6462 llvm::APSInt Result;
6463
6464 // We can't check the value of a dependent argument.
6465 Expr *Arg = TheCall->getArg(ArgNum);
6466 if (Arg->isTypeDependent() || Arg->isValueDependent())
6467 return false;
6468
6469 // Check constant-ness first.
6470 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6471 return true;
6472
6473 // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
6474 // and only if x is a power of 2.
6475 if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
6476 return false;
6477
6478 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
6479 << Arg->getSourceRange();
6480 }
6481
IsShiftedByte(llvm::APSInt Value)6482 static bool IsShiftedByte(llvm::APSInt Value) {
6483 if (Value.isNegative())
6484 return false;
6485
6486 // Check if it's a shifted byte, by shifting it down
6487 while (true) {
6488 // If the value fits in the bottom byte, the check passes.
6489 if (Value < 0x100)
6490 return true;
6491
6492 // Otherwise, if the value has _any_ bits in the bottom byte, the check
6493 // fails.
6494 if ((Value & 0xFF) != 0)
6495 return false;
6496
6497 // If the bottom 8 bits are all 0, but something above that is nonzero,
6498 // then shifting the value right by 8 bits won't affect whether it's a
6499 // shifted byte or not. So do that, and go round again.
6500 Value >>= 8;
6501 }
6502 }
6503
6504 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
6505 /// a constant expression representing an arbitrary byte value shifted left by
6506 /// a multiple of 8 bits.
SemaBuiltinConstantArgShiftedByte(CallExpr * TheCall,int ArgNum,unsigned ArgBits)6507 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
6508 unsigned ArgBits) {
6509 llvm::APSInt Result;
6510
6511 // We can't check the value of a dependent argument.
6512 Expr *Arg = TheCall->getArg(ArgNum);
6513 if (Arg->isTypeDependent() || Arg->isValueDependent())
6514 return false;
6515
6516 // Check constant-ness first.
6517 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6518 return true;
6519
6520 // Truncate to the given size.
6521 Result = Result.getLoBits(ArgBits);
6522 Result.setIsUnsigned(true);
6523
6524 if (IsShiftedByte(Result))
6525 return false;
6526
6527 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
6528 << Arg->getSourceRange();
6529 }
6530
6531 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
6532 /// TheCall is a constant expression representing either a shifted byte value,
6533 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
6534 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
6535 /// Arm MVE intrinsics.
SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr * TheCall,int ArgNum,unsigned ArgBits)6536 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
6537 int ArgNum,
6538 unsigned ArgBits) {
6539 llvm::APSInt Result;
6540
6541 // We can't check the value of a dependent argument.
6542 Expr *Arg = TheCall->getArg(ArgNum);
6543 if (Arg->isTypeDependent() || Arg->isValueDependent())
6544 return false;
6545
6546 // Check constant-ness first.
6547 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6548 return true;
6549
6550 // Truncate to the given size.
6551 Result = Result.getLoBits(ArgBits);
6552 Result.setIsUnsigned(true);
6553
6554 // Check to see if it's in either of the required forms.
6555 if (IsShiftedByte(Result) ||
6556 (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
6557 return false;
6558
6559 return Diag(TheCall->getBeginLoc(),
6560 diag::err_argument_not_shifted_byte_or_xxff)
6561 << Arg->getSourceRange();
6562 }
6563
6564 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID,CallExpr * TheCall)6565 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
6566 if (BuiltinID == AArch64::BI__builtin_arm_irg) {
6567 if (checkArgCount(*this, TheCall, 2))
6568 return true;
6569 Expr *Arg0 = TheCall->getArg(0);
6570 Expr *Arg1 = TheCall->getArg(1);
6571
6572 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6573 if (FirstArg.isInvalid())
6574 return true;
6575 QualType FirstArgType = FirstArg.get()->getType();
6576 if (!FirstArgType->isAnyPointerType())
6577 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6578 << "first" << FirstArgType << Arg0->getSourceRange();
6579 TheCall->setArg(0, FirstArg.get());
6580
6581 ExprResult SecArg = DefaultLvalueConversion(Arg1);
6582 if (SecArg.isInvalid())
6583 return true;
6584 QualType SecArgType = SecArg.get()->getType();
6585 if (!SecArgType->isIntegerType())
6586 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6587 << "second" << SecArgType << Arg1->getSourceRange();
6588
6589 // Derive the return type from the pointer argument.
6590 TheCall->setType(FirstArgType);
6591 return false;
6592 }
6593
6594 if (BuiltinID == AArch64::BI__builtin_arm_addg) {
6595 if (checkArgCount(*this, TheCall, 2))
6596 return true;
6597
6598 Expr *Arg0 = TheCall->getArg(0);
6599 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6600 if (FirstArg.isInvalid())
6601 return true;
6602 QualType FirstArgType = FirstArg.get()->getType();
6603 if (!FirstArgType->isAnyPointerType())
6604 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6605 << "first" << FirstArgType << Arg0->getSourceRange();
6606 TheCall->setArg(0, FirstArg.get());
6607
6608 // Derive the return type from the pointer argument.
6609 TheCall->setType(FirstArgType);
6610
6611 // Second arg must be an constant in range [0,15]
6612 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6613 }
6614
6615 if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
6616 if (checkArgCount(*this, TheCall, 2))
6617 return true;
6618 Expr *Arg0 = TheCall->getArg(0);
6619 Expr *Arg1 = TheCall->getArg(1);
6620
6621 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6622 if (FirstArg.isInvalid())
6623 return true;
6624 QualType FirstArgType = FirstArg.get()->getType();
6625 if (!FirstArgType->isAnyPointerType())
6626 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6627 << "first" << FirstArgType << Arg0->getSourceRange();
6628
6629 QualType SecArgType = Arg1->getType();
6630 if (!SecArgType->isIntegerType())
6631 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6632 << "second" << SecArgType << Arg1->getSourceRange();
6633 TheCall->setType(Context.IntTy);
6634 return false;
6635 }
6636
6637 if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
6638 BuiltinID == AArch64::BI__builtin_arm_stg) {
6639 if (checkArgCount(*this, TheCall, 1))
6640 return true;
6641 Expr *Arg0 = TheCall->getArg(0);
6642 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6643 if (FirstArg.isInvalid())
6644 return true;
6645
6646 QualType FirstArgType = FirstArg.get()->getType();
6647 if (!FirstArgType->isAnyPointerType())
6648 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6649 << "first" << FirstArgType << Arg0->getSourceRange();
6650 TheCall->setArg(0, FirstArg.get());
6651
6652 // Derive the return type from the pointer argument.
6653 if (BuiltinID == AArch64::BI__builtin_arm_ldg)
6654 TheCall->setType(FirstArgType);
6655 return false;
6656 }
6657
6658 if (BuiltinID == AArch64::BI__builtin_arm_subp) {
6659 Expr *ArgA = TheCall->getArg(0);
6660 Expr *ArgB = TheCall->getArg(1);
6661
6662 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
6663 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
6664
6665 if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
6666 return true;
6667
6668 QualType ArgTypeA = ArgExprA.get()->getType();
6669 QualType ArgTypeB = ArgExprB.get()->getType();
6670
6671 auto isNull = [&] (Expr *E) -> bool {
6672 return E->isNullPointerConstant(
6673 Context, Expr::NPC_ValueDependentIsNotNull); };
6674
6675 // argument should be either a pointer or null
6676 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
6677 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6678 << "first" << ArgTypeA << ArgA->getSourceRange();
6679
6680 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
6681 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6682 << "second" << ArgTypeB << ArgB->getSourceRange();
6683
6684 // Ensure Pointee types are compatible
6685 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
6686 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
6687 QualType pointeeA = ArgTypeA->getPointeeType();
6688 QualType pointeeB = ArgTypeB->getPointeeType();
6689 if (!Context.typesAreCompatible(
6690 Context.getCanonicalType(pointeeA).getUnqualifiedType(),
6691 Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
6692 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
6693 << ArgTypeA << ArgTypeB << ArgA->getSourceRange()
6694 << ArgB->getSourceRange();
6695 }
6696 }
6697
6698 // at least one argument should be pointer type
6699 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
6700 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
6701 << ArgTypeA << ArgTypeB << ArgA->getSourceRange();
6702
6703 if (isNull(ArgA)) // adopt type of the other pointer
6704 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
6705
6706 if (isNull(ArgB))
6707 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
6708
6709 TheCall->setArg(0, ArgExprA.get());
6710 TheCall->setArg(1, ArgExprB.get());
6711 TheCall->setType(Context.LongLongTy);
6712 return false;
6713 }
6714 assert(false && "Unhandled ARM MTE intrinsic");
6715 return true;
6716 }
6717
6718 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
6719 /// TheCall is an ARM/AArch64 special register string literal.
SemaBuiltinARMSpecialReg(unsigned BuiltinID,CallExpr * TheCall,int ArgNum,unsigned ExpectedFieldNum,bool AllowName)6720 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
6721 int ArgNum, unsigned ExpectedFieldNum,
6722 bool AllowName) {
6723 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6724 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6725 BuiltinID == ARM::BI__builtin_arm_rsr ||
6726 BuiltinID == ARM::BI__builtin_arm_rsrp ||
6727 BuiltinID == ARM::BI__builtin_arm_wsr ||
6728 BuiltinID == ARM::BI__builtin_arm_wsrp;
6729 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
6730 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
6731 BuiltinID == AArch64::BI__builtin_arm_rsr ||
6732 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
6733 BuiltinID == AArch64::BI__builtin_arm_wsr ||
6734 BuiltinID == AArch64::BI__builtin_arm_wsrp;
6735 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
6736
6737 // We can't check the value of a dependent argument.
6738 Expr *Arg = TheCall->getArg(ArgNum);
6739 if (Arg->isTypeDependent() || Arg->isValueDependent())
6740 return false;
6741
6742 // Check if the argument is a string literal.
6743 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
6744 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
6745 << Arg->getSourceRange();
6746
6747 // Check the type of special register given.
6748 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
6749 SmallVector<StringRef, 6> Fields;
6750 Reg.split(Fields, ":");
6751
6752 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
6753 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6754 << Arg->getSourceRange();
6755
6756 // If the string is the name of a register then we cannot check that it is
6757 // valid here but if the string is of one the forms described in ACLE then we
6758 // can check that the supplied fields are integers and within the valid
6759 // ranges.
6760 if (Fields.size() > 1) {
6761 bool FiveFields = Fields.size() == 5;
6762
6763 bool ValidString = true;
6764 if (IsARMBuiltin) {
6765 ValidString &= Fields[0].startswith_lower("cp") ||
6766 Fields[0].startswith_lower("p");
6767 if (ValidString)
6768 Fields[0] =
6769 Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
6770
6771 ValidString &= Fields[2].startswith_lower("c");
6772 if (ValidString)
6773 Fields[2] = Fields[2].drop_front(1);
6774
6775 if (FiveFields) {
6776 ValidString &= Fields[3].startswith_lower("c");
6777 if (ValidString)
6778 Fields[3] = Fields[3].drop_front(1);
6779 }
6780 }
6781
6782 SmallVector<int, 5> Ranges;
6783 if (FiveFields)
6784 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
6785 else
6786 Ranges.append({15, 7, 15});
6787
6788 for (unsigned i=0; i<Fields.size(); ++i) {
6789 int IntField;
6790 ValidString &= !Fields[i].getAsInteger(10, IntField);
6791 ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
6792 }
6793
6794 if (!ValidString)
6795 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6796 << Arg->getSourceRange();
6797 } else if (IsAArch64Builtin && Fields.size() == 1) {
6798 // If the register name is one of those that appear in the condition below
6799 // and the special register builtin being used is one of the write builtins,
6800 // then we require that the argument provided for writing to the register
6801 // is an integer constant expression. This is because it will be lowered to
6802 // an MSR (immediate) instruction, so we need to know the immediate at
6803 // compile time.
6804 if (TheCall->getNumArgs() != 2)
6805 return false;
6806
6807 std::string RegLower = Reg.lower();
6808 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
6809 RegLower != "pan" && RegLower != "uao")
6810 return false;
6811
6812 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6813 }
6814
6815 return false;
6816 }
6817
6818 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
6819 /// Emit an error and return true on failure; return false on success.
6820 /// TypeStr is a string containing the type descriptor of the value returned by
6821 /// the builtin and the descriptors of the expected type of the arguments.
SemaBuiltinPPCMMACall(CallExpr * TheCall,const char * TypeStr)6822 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeStr) {
6823
6824 assert((TypeStr[0] != '\0') &&
6825 "Invalid types in PPC MMA builtin declaration");
6826
6827 unsigned Mask = 0;
6828 unsigned ArgNum = 0;
6829
6830 // The first type in TypeStr is the type of the value returned by the
6831 // builtin. So we first read that type and change the type of TheCall.
6832 QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
6833 TheCall->setType(type);
6834
6835 while (*TypeStr != '\0') {
6836 Mask = 0;
6837 QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
6838 if (ArgNum >= TheCall->getNumArgs()) {
6839 ArgNum++;
6840 break;
6841 }
6842
6843 Expr *Arg = TheCall->getArg(ArgNum);
6844 QualType ArgType = Arg->getType();
6845
6846 if ((ExpectedType->isVoidPointerType() && !ArgType->isPointerType()) ||
6847 (!ExpectedType->isVoidPointerType() &&
6848 ArgType.getCanonicalType() != ExpectedType))
6849 return Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6850 << ArgType << ExpectedType << 1 << 0 << 0;
6851
6852 // If the value of the Mask is not 0, we have a constraint in the size of
6853 // the integer argument so here we ensure the argument is a constant that
6854 // is in the valid range.
6855 if (Mask != 0 &&
6856 SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
6857 return true;
6858
6859 ArgNum++;
6860 }
6861
6862 // In case we exited early from the previous loop, there are other types to
6863 // read from TypeStr. So we need to read them all to ensure we have the right
6864 // number of arguments in TheCall and if it is not the case, to display a
6865 // better error message.
6866 while (*TypeStr != '\0') {
6867 (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
6868 ArgNum++;
6869 }
6870 if (checkArgCount(*this, TheCall, ArgNum))
6871 return true;
6872
6873 return false;
6874 }
6875
6876 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
6877 /// This checks that the target supports __builtin_longjmp and
6878 /// that val is a constant 1.
SemaBuiltinLongjmp(CallExpr * TheCall)6879 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
6880 if (!Context.getTargetInfo().hasSjLjLowering())
6881 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
6882 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6883
6884 Expr *Arg = TheCall->getArg(1);
6885 llvm::APSInt Result;
6886
6887 // TODO: This is less than ideal. Overload this to take a value.
6888 if (SemaBuiltinConstantArg(TheCall, 1, Result))
6889 return true;
6890
6891 if (Result != 1)
6892 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
6893 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
6894
6895 return false;
6896 }
6897
6898 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
6899 /// This checks that the target supports __builtin_setjmp.
SemaBuiltinSetjmp(CallExpr * TheCall)6900 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
6901 if (!Context.getTargetInfo().hasSjLjLowering())
6902 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
6903 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6904 return false;
6905 }
6906
6907 namespace {
6908
6909 class UncoveredArgHandler {
6910 enum { Unknown = -1, AllCovered = -2 };
6911
6912 signed FirstUncoveredArg = Unknown;
6913 SmallVector<const Expr *, 4> DiagnosticExprs;
6914
6915 public:
6916 UncoveredArgHandler() = default;
6917
hasUncoveredArg() const6918 bool hasUncoveredArg() const {
6919 return (FirstUncoveredArg >= 0);
6920 }
6921
getUncoveredArg() const6922 unsigned getUncoveredArg() const {
6923 assert(hasUncoveredArg() && "no uncovered argument");
6924 return FirstUncoveredArg;
6925 }
6926
setAllCovered()6927 void setAllCovered() {
6928 // A string has been found with all arguments covered, so clear out
6929 // the diagnostics.
6930 DiagnosticExprs.clear();
6931 FirstUncoveredArg = AllCovered;
6932 }
6933
Update(signed NewFirstUncoveredArg,const Expr * StrExpr)6934 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
6935 assert(NewFirstUncoveredArg >= 0 && "Outside range");
6936
6937 // Don't update if a previous string covers all arguments.
6938 if (FirstUncoveredArg == AllCovered)
6939 return;
6940
6941 // UncoveredArgHandler tracks the highest uncovered argument index
6942 // and with it all the strings that match this index.
6943 if (NewFirstUncoveredArg == FirstUncoveredArg)
6944 DiagnosticExprs.push_back(StrExpr);
6945 else if (NewFirstUncoveredArg > FirstUncoveredArg) {
6946 DiagnosticExprs.clear();
6947 DiagnosticExprs.push_back(StrExpr);
6948 FirstUncoveredArg = NewFirstUncoveredArg;
6949 }
6950 }
6951
6952 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
6953 };
6954
6955 enum StringLiteralCheckType {
6956 SLCT_NotALiteral,
6957 SLCT_UncheckedLiteral,
6958 SLCT_CheckedLiteral
6959 };
6960
6961 } // namespace
6962
sumOffsets(llvm::APSInt & Offset,llvm::APSInt Addend,BinaryOperatorKind BinOpKind,bool AddendIsRight)6963 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
6964 BinaryOperatorKind BinOpKind,
6965 bool AddendIsRight) {
6966 unsigned BitWidth = Offset.getBitWidth();
6967 unsigned AddendBitWidth = Addend.getBitWidth();
6968 // There might be negative interim results.
6969 if (Addend.isUnsigned()) {
6970 Addend = Addend.zext(++AddendBitWidth);
6971 Addend.setIsSigned(true);
6972 }
6973 // Adjust the bit width of the APSInts.
6974 if (AddendBitWidth > BitWidth) {
6975 Offset = Offset.sext(AddendBitWidth);
6976 BitWidth = AddendBitWidth;
6977 } else if (BitWidth > AddendBitWidth) {
6978 Addend = Addend.sext(BitWidth);
6979 }
6980
6981 bool Ov = false;
6982 llvm::APSInt ResOffset = Offset;
6983 if (BinOpKind == BO_Add)
6984 ResOffset = Offset.sadd_ov(Addend, Ov);
6985 else {
6986 assert(AddendIsRight && BinOpKind == BO_Sub &&
6987 "operator must be add or sub with addend on the right");
6988 ResOffset = Offset.ssub_ov(Addend, Ov);
6989 }
6990
6991 // We add an offset to a pointer here so we should support an offset as big as
6992 // possible.
6993 if (Ov) {
6994 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
6995 "index (intermediate) result too big");
6996 Offset = Offset.sext(2 * BitWidth);
6997 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
6998 return;
6999 }
7000
7001 Offset = ResOffset;
7002 }
7003
7004 namespace {
7005
7006 // This is a wrapper class around StringLiteral to support offsetted string
7007 // literals as format strings. It takes the offset into account when returning
7008 // the string and its length or the source locations to display notes correctly.
7009 class FormatStringLiteral {
7010 const StringLiteral *FExpr;
7011 int64_t Offset;
7012
7013 public:
FormatStringLiteral(const StringLiteral * fexpr,int64_t Offset=0)7014 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
7015 : FExpr(fexpr), Offset(Offset) {}
7016
getString() const7017 StringRef getString() const {
7018 return FExpr->getString().drop_front(Offset);
7019 }
7020
getByteLength() const7021 unsigned getByteLength() const {
7022 return FExpr->getByteLength() - getCharByteWidth() * Offset;
7023 }
7024
getLength() const7025 unsigned getLength() const { return FExpr->getLength() - Offset; }
getCharByteWidth() const7026 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
7027
getKind() const7028 StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
7029
getType() const7030 QualType getType() const { return FExpr->getType(); }
7031
isAscii() const7032 bool isAscii() const { return FExpr->isAscii(); }
isWide() const7033 bool isWide() const { return FExpr->isWide(); }
isUTF8() const7034 bool isUTF8() const { return FExpr->isUTF8(); }
isUTF16() const7035 bool isUTF16() const { return FExpr->isUTF16(); }
isUTF32() const7036 bool isUTF32() const { return FExpr->isUTF32(); }
isPascal() const7037 bool isPascal() const { return FExpr->isPascal(); }
7038
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target,unsigned * StartToken=nullptr,unsigned * StartTokenByteOffset=nullptr) const7039 SourceLocation getLocationOfByte(
7040 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
7041 const TargetInfo &Target, unsigned *StartToken = nullptr,
7042 unsigned *StartTokenByteOffset = nullptr) const {
7043 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
7044 StartToken, StartTokenByteOffset);
7045 }
7046
getBeginLoc() const7047 SourceLocation getBeginLoc() const LLVM_READONLY {
7048 return FExpr->getBeginLoc().getLocWithOffset(Offset);
7049 }
7050
getEndLoc() const7051 SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
7052 };
7053
7054 } // namespace
7055
7056 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
7057 const Expr *OrigFormatExpr,
7058 ArrayRef<const Expr *> Args,
7059 bool HasVAListArg, unsigned format_idx,
7060 unsigned firstDataArg,
7061 Sema::FormatStringType Type,
7062 bool inFunctionCall,
7063 Sema::VariadicCallType CallType,
7064 llvm::SmallBitVector &CheckedVarArgs,
7065 UncoveredArgHandler &UncoveredArg,
7066 bool IgnoreStringsWithoutSpecifiers);
7067
7068 // Determine if an expression is a string literal or constant string.
7069 // If this function returns false on the arguments to a function expecting a
7070 // format string, we will usually need to emit a warning.
7071 // True string literals are then checked by CheckFormatString.
7072 static StringLiteralCheckType
checkFormatStringExpr(Sema & S,const Expr * E,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,Sema::FormatStringType Type,Sema::VariadicCallType CallType,bool InFunctionCall,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg,llvm::APSInt Offset,bool IgnoreStringsWithoutSpecifiers=false)7073 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
7074 bool HasVAListArg, unsigned format_idx,
7075 unsigned firstDataArg, Sema::FormatStringType Type,
7076 Sema::VariadicCallType CallType, bool InFunctionCall,
7077 llvm::SmallBitVector &CheckedVarArgs,
7078 UncoveredArgHandler &UncoveredArg,
7079 llvm::APSInt Offset,
7080 bool IgnoreStringsWithoutSpecifiers = false) {
7081 if (S.isConstantEvaluated())
7082 return SLCT_NotALiteral;
7083 tryAgain:
7084 assert(Offset.isSigned() && "invalid offset");
7085
7086 if (E->isTypeDependent() || E->isValueDependent())
7087 return SLCT_NotALiteral;
7088
7089 E = E->IgnoreParenCasts();
7090
7091 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
7092 // Technically -Wformat-nonliteral does not warn about this case.
7093 // The behavior of printf and friends in this case is implementation
7094 // dependent. Ideally if the format string cannot be null then
7095 // it should have a 'nonnull' attribute in the function prototype.
7096 return SLCT_UncheckedLiteral;
7097
7098 switch (E->getStmtClass()) {
7099 case Stmt::BinaryConditionalOperatorClass:
7100 case Stmt::ConditionalOperatorClass: {
7101 // The expression is a literal if both sub-expressions were, and it was
7102 // completely checked only if both sub-expressions were checked.
7103 const AbstractConditionalOperator *C =
7104 cast<AbstractConditionalOperator>(E);
7105
7106 // Determine whether it is necessary to check both sub-expressions, for
7107 // example, because the condition expression is a constant that can be
7108 // evaluated at compile time.
7109 bool CheckLeft = true, CheckRight = true;
7110
7111 bool Cond;
7112 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
7113 S.isConstantEvaluated())) {
7114 if (Cond)
7115 CheckRight = false;
7116 else
7117 CheckLeft = false;
7118 }
7119
7120 // We need to maintain the offsets for the right and the left hand side
7121 // separately to check if every possible indexed expression is a valid
7122 // string literal. They might have different offsets for different string
7123 // literals in the end.
7124 StringLiteralCheckType Left;
7125 if (!CheckLeft)
7126 Left = SLCT_UncheckedLiteral;
7127 else {
7128 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
7129 HasVAListArg, format_idx, firstDataArg,
7130 Type, CallType, InFunctionCall,
7131 CheckedVarArgs, UncoveredArg, Offset,
7132 IgnoreStringsWithoutSpecifiers);
7133 if (Left == SLCT_NotALiteral || !CheckRight) {
7134 return Left;
7135 }
7136 }
7137
7138 StringLiteralCheckType Right = checkFormatStringExpr(
7139 S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
7140 Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7141 IgnoreStringsWithoutSpecifiers);
7142
7143 return (CheckLeft && Left < Right) ? Left : Right;
7144 }
7145
7146 case Stmt::ImplicitCastExprClass:
7147 E = cast<ImplicitCastExpr>(E)->getSubExpr();
7148 goto tryAgain;
7149
7150 case Stmt::OpaqueValueExprClass:
7151 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
7152 E = src;
7153 goto tryAgain;
7154 }
7155 return SLCT_NotALiteral;
7156
7157 case Stmt::PredefinedExprClass:
7158 // While __func__, etc., are technically not string literals, they
7159 // cannot contain format specifiers and thus are not a security
7160 // liability.
7161 return SLCT_UncheckedLiteral;
7162
7163 case Stmt::DeclRefExprClass: {
7164 const DeclRefExpr *DR = cast<DeclRefExpr>(E);
7165
7166 // As an exception, do not flag errors for variables binding to
7167 // const string literals.
7168 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
7169 bool isConstant = false;
7170 QualType T = DR->getType();
7171
7172 if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
7173 isConstant = AT->getElementType().isConstant(S.Context);
7174 } else if (const PointerType *PT = T->getAs<PointerType>()) {
7175 isConstant = T.isConstant(S.Context) &&
7176 PT->getPointeeType().isConstant(S.Context);
7177 } else if (T->isObjCObjectPointerType()) {
7178 // In ObjC, there is usually no "const ObjectPointer" type,
7179 // so don't check if the pointee type is constant.
7180 isConstant = T.isConstant(S.Context);
7181 }
7182
7183 if (isConstant) {
7184 if (const Expr *Init = VD->getAnyInitializer()) {
7185 // Look through initializers like const char c[] = { "foo" }
7186 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
7187 if (InitList->isStringLiteralInit())
7188 Init = InitList->getInit(0)->IgnoreParenImpCasts();
7189 }
7190 return checkFormatStringExpr(S, Init, Args,
7191 HasVAListArg, format_idx,
7192 firstDataArg, Type, CallType,
7193 /*InFunctionCall*/ false, CheckedVarArgs,
7194 UncoveredArg, Offset);
7195 }
7196 }
7197
7198 // For vprintf* functions (i.e., HasVAListArg==true), we add a
7199 // special check to see if the format string is a function parameter
7200 // of the function calling the printf function. If the function
7201 // has an attribute indicating it is a printf-like function, then we
7202 // should suppress warnings concerning non-literals being used in a call
7203 // to a vprintf function. For example:
7204 //
7205 // void
7206 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
7207 // va_list ap;
7208 // va_start(ap, fmt);
7209 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
7210 // ...
7211 // }
7212 if (HasVAListArg) {
7213 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
7214 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
7215 int PVIndex = PV->getFunctionScopeIndex() + 1;
7216 for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
7217 // adjust for implicit parameter
7218 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7219 if (MD->isInstance())
7220 ++PVIndex;
7221 // We also check if the formats are compatible.
7222 // We can't pass a 'scanf' string to a 'printf' function.
7223 if (PVIndex == PVFormat->getFormatIdx() &&
7224 Type == S.GetFormatStringType(PVFormat))
7225 return SLCT_UncheckedLiteral;
7226 }
7227 }
7228 }
7229 }
7230 }
7231
7232 return SLCT_NotALiteral;
7233 }
7234
7235 case Stmt::CallExprClass:
7236 case Stmt::CXXMemberCallExprClass: {
7237 const CallExpr *CE = cast<CallExpr>(E);
7238 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
7239 bool IsFirst = true;
7240 StringLiteralCheckType CommonResult;
7241 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
7242 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
7243 StringLiteralCheckType Result = checkFormatStringExpr(
7244 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7245 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7246 IgnoreStringsWithoutSpecifiers);
7247 if (IsFirst) {
7248 CommonResult = Result;
7249 IsFirst = false;
7250 }
7251 }
7252 if (!IsFirst)
7253 return CommonResult;
7254
7255 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
7256 unsigned BuiltinID = FD->getBuiltinID();
7257 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
7258 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
7259 const Expr *Arg = CE->getArg(0);
7260 return checkFormatStringExpr(S, Arg, Args,
7261 HasVAListArg, format_idx,
7262 firstDataArg, Type, CallType,
7263 InFunctionCall, CheckedVarArgs,
7264 UncoveredArg, Offset,
7265 IgnoreStringsWithoutSpecifiers);
7266 }
7267 }
7268 }
7269
7270 return SLCT_NotALiteral;
7271 }
7272 case Stmt::ObjCMessageExprClass: {
7273 const auto *ME = cast<ObjCMessageExpr>(E);
7274 if (const auto *MD = ME->getMethodDecl()) {
7275 if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
7276 // As a special case heuristic, if we're using the method -[NSBundle
7277 // localizedStringForKey:value:table:], ignore any key strings that lack
7278 // format specifiers. The idea is that if the key doesn't have any
7279 // format specifiers then its probably just a key to map to the
7280 // localized strings. If it does have format specifiers though, then its
7281 // likely that the text of the key is the format string in the
7282 // programmer's language, and should be checked.
7283 const ObjCInterfaceDecl *IFace;
7284 if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
7285 IFace->getIdentifier()->isStr("NSBundle") &&
7286 MD->getSelector().isKeywordSelector(
7287 {"localizedStringForKey", "value", "table"})) {
7288 IgnoreStringsWithoutSpecifiers = true;
7289 }
7290
7291 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
7292 return checkFormatStringExpr(
7293 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7294 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7295 IgnoreStringsWithoutSpecifiers);
7296 }
7297 }
7298
7299 return SLCT_NotALiteral;
7300 }
7301 case Stmt::ObjCStringLiteralClass:
7302 case Stmt::StringLiteralClass: {
7303 const StringLiteral *StrE = nullptr;
7304
7305 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
7306 StrE = ObjCFExpr->getString();
7307 else
7308 StrE = cast<StringLiteral>(E);
7309
7310 if (StrE) {
7311 if (Offset.isNegative() || Offset > StrE->getLength()) {
7312 // TODO: It would be better to have an explicit warning for out of
7313 // bounds literals.
7314 return SLCT_NotALiteral;
7315 }
7316 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
7317 CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
7318 firstDataArg, Type, InFunctionCall, CallType,
7319 CheckedVarArgs, UncoveredArg,
7320 IgnoreStringsWithoutSpecifiers);
7321 return SLCT_CheckedLiteral;
7322 }
7323
7324 return SLCT_NotALiteral;
7325 }
7326 case Stmt::BinaryOperatorClass: {
7327 const BinaryOperator *BinOp = cast<BinaryOperator>(E);
7328
7329 // A string literal + an int offset is still a string literal.
7330 if (BinOp->isAdditiveOp()) {
7331 Expr::EvalResult LResult, RResult;
7332
7333 bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
7334 LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7335 bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
7336 RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7337
7338 if (LIsInt != RIsInt) {
7339 BinaryOperatorKind BinOpKind = BinOp->getOpcode();
7340
7341 if (LIsInt) {
7342 if (BinOpKind == BO_Add) {
7343 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
7344 E = BinOp->getRHS();
7345 goto tryAgain;
7346 }
7347 } else {
7348 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
7349 E = BinOp->getLHS();
7350 goto tryAgain;
7351 }
7352 }
7353 }
7354
7355 return SLCT_NotALiteral;
7356 }
7357 case Stmt::UnaryOperatorClass: {
7358 const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
7359 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
7360 if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
7361 Expr::EvalResult IndexResult;
7362 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
7363 Expr::SE_NoSideEffects,
7364 S.isConstantEvaluated())) {
7365 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
7366 /*RHS is int*/ true);
7367 E = ASE->getBase();
7368 goto tryAgain;
7369 }
7370 }
7371
7372 return SLCT_NotALiteral;
7373 }
7374
7375 default:
7376 return SLCT_NotALiteral;
7377 }
7378 }
7379
GetFormatStringType(const FormatAttr * Format)7380 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
7381 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
7382 .Case("scanf", FST_Scanf)
7383 .Cases("printf", "printf0", FST_Printf)
7384 .Cases("NSString", "CFString", FST_NSString)
7385 .Case("strftime", FST_Strftime)
7386 .Case("strfmon", FST_Strfmon)
7387 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
7388 .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
7389 .Case("os_trace", FST_OSLog)
7390 .Case("os_log", FST_OSLog)
7391 .Default(FST_Unknown);
7392 }
7393
7394 /// CheckFormatArguments - Check calls to printf and scanf (and similar
7395 /// functions) for correct use of format strings.
7396 /// Returns true if a format string has been fully checked.
CheckFormatArguments(const FormatAttr * Format,ArrayRef<const Expr * > Args,bool IsCXXMember,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)7397 bool Sema::CheckFormatArguments(const FormatAttr *Format,
7398 ArrayRef<const Expr *> Args,
7399 bool IsCXXMember,
7400 VariadicCallType CallType,
7401 SourceLocation Loc, SourceRange Range,
7402 llvm::SmallBitVector &CheckedVarArgs) {
7403 FormatStringInfo FSI;
7404 if (getFormatStringInfo(Format, IsCXXMember, &FSI))
7405 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
7406 FSI.FirstDataArg, GetFormatStringType(Format),
7407 CallType, Loc, Range, CheckedVarArgs);
7408 return false;
7409 }
7410
CheckFormatArguments(ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)7411 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
7412 bool HasVAListArg, unsigned format_idx,
7413 unsigned firstDataArg, FormatStringType Type,
7414 VariadicCallType CallType,
7415 SourceLocation Loc, SourceRange Range,
7416 llvm::SmallBitVector &CheckedVarArgs) {
7417 // CHECK: printf/scanf-like function is called with no format string.
7418 if (format_idx >= Args.size()) {
7419 Diag(Loc, diag::warn_missing_format_string) << Range;
7420 return false;
7421 }
7422
7423 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
7424
7425 // CHECK: format string is not a string literal.
7426 //
7427 // Dynamically generated format strings are difficult to
7428 // automatically vet at compile time. Requiring that format strings
7429 // are string literals: (1) permits the checking of format strings by
7430 // the compiler and thereby (2) can practically remove the source of
7431 // many format string exploits.
7432
7433 // Format string can be either ObjC string (e.g. @"%d") or
7434 // C string (e.g. "%d")
7435 // ObjC string uses the same format specifiers as C string, so we can use
7436 // the same format string checking logic for both ObjC and C strings.
7437 UncoveredArgHandler UncoveredArg;
7438 StringLiteralCheckType CT =
7439 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
7440 format_idx, firstDataArg, Type, CallType,
7441 /*IsFunctionCall*/ true, CheckedVarArgs,
7442 UncoveredArg,
7443 /*no string offset*/ llvm::APSInt(64, false) = 0);
7444
7445 // Generate a diagnostic where an uncovered argument is detected.
7446 if (UncoveredArg.hasUncoveredArg()) {
7447 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
7448 assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
7449 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
7450 }
7451
7452 if (CT != SLCT_NotALiteral)
7453 // Literal format string found, check done!
7454 return CT == SLCT_CheckedLiteral;
7455
7456 // Strftime is particular as it always uses a single 'time' argument,
7457 // so it is safe to pass a non-literal string.
7458 if (Type == FST_Strftime)
7459 return false;
7460
7461 // Do not emit diag when the string param is a macro expansion and the
7462 // format is either NSString or CFString. This is a hack to prevent
7463 // diag when using the NSLocalizedString and CFCopyLocalizedString macros
7464 // which are usually used in place of NS and CF string literals.
7465 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
7466 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
7467 return false;
7468
7469 // If there are no arguments specified, warn with -Wformat-security, otherwise
7470 // warn only with -Wformat-nonliteral.
7471 if (Args.size() == firstDataArg) {
7472 Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
7473 << OrigFormatExpr->getSourceRange();
7474 switch (Type) {
7475 default:
7476 break;
7477 case FST_Kprintf:
7478 case FST_FreeBSDKPrintf:
7479 case FST_Printf:
7480 Diag(FormatLoc, diag::note_format_security_fixit)
7481 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
7482 break;
7483 case FST_NSString:
7484 Diag(FormatLoc, diag::note_format_security_fixit)
7485 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
7486 break;
7487 }
7488 } else {
7489 Diag(FormatLoc, diag::warn_format_nonliteral)
7490 << OrigFormatExpr->getSourceRange();
7491 }
7492 return false;
7493 }
7494
7495 namespace {
7496
7497 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
7498 protected:
7499 Sema &S;
7500 const FormatStringLiteral *FExpr;
7501 const Expr *OrigFormatExpr;
7502 const Sema::FormatStringType FSType;
7503 const unsigned FirstDataArg;
7504 const unsigned NumDataArgs;
7505 const char *Beg; // Start of format string.
7506 const bool HasVAListArg;
7507 ArrayRef<const Expr *> Args;
7508 unsigned FormatIdx;
7509 llvm::SmallBitVector CoveredArgs;
7510 bool usesPositionalArgs = false;
7511 bool atFirstArg = true;
7512 bool inFunctionCall;
7513 Sema::VariadicCallType CallType;
7514 llvm::SmallBitVector &CheckedVarArgs;
7515 UncoveredArgHandler &UncoveredArg;
7516
7517 public:
CheckFormatHandler(Sema & s,const FormatStringLiteral * fexpr,const Expr * origFormatExpr,const Sema::FormatStringType type,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType callType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)7518 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
7519 const Expr *origFormatExpr,
7520 const Sema::FormatStringType type, unsigned firstDataArg,
7521 unsigned numDataArgs, const char *beg, bool hasVAListArg,
7522 ArrayRef<const Expr *> Args, unsigned formatIdx,
7523 bool inFunctionCall, Sema::VariadicCallType callType,
7524 llvm::SmallBitVector &CheckedVarArgs,
7525 UncoveredArgHandler &UncoveredArg)
7526 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
7527 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
7528 HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
7529 inFunctionCall(inFunctionCall), CallType(callType),
7530 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
7531 CoveredArgs.resize(numDataArgs);
7532 CoveredArgs.reset();
7533 }
7534
7535 void DoneProcessing();
7536
7537 void HandleIncompleteSpecifier(const char *startSpecifier,
7538 unsigned specifierLen) override;
7539
7540 void HandleInvalidLengthModifier(
7541 const analyze_format_string::FormatSpecifier &FS,
7542 const analyze_format_string::ConversionSpecifier &CS,
7543 const char *startSpecifier, unsigned specifierLen,
7544 unsigned DiagID);
7545
7546 void HandleNonStandardLengthModifier(
7547 const analyze_format_string::FormatSpecifier &FS,
7548 const char *startSpecifier, unsigned specifierLen);
7549
7550 void HandleNonStandardConversionSpecifier(
7551 const analyze_format_string::ConversionSpecifier &CS,
7552 const char *startSpecifier, unsigned specifierLen);
7553
7554 void HandlePosition(const char *startPos, unsigned posLen) override;
7555
7556 void HandleInvalidPosition(const char *startSpecifier,
7557 unsigned specifierLen,
7558 analyze_format_string::PositionContext p) override;
7559
7560 void HandleZeroPosition(const char *startPos, unsigned posLen) override;
7561
7562 void HandleNullChar(const char *nullCharacter) override;
7563
7564 template <typename Range>
7565 static void
7566 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
7567 const PartialDiagnostic &PDiag, SourceLocation StringLoc,
7568 bool IsStringLocation, Range StringRange,
7569 ArrayRef<FixItHint> Fixit = None);
7570
7571 protected:
7572 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
7573 const char *startSpec,
7574 unsigned specifierLen,
7575 const char *csStart, unsigned csLen);
7576
7577 void HandlePositionalNonpositionalArgs(SourceLocation Loc,
7578 const char *startSpec,
7579 unsigned specifierLen);
7580
7581 SourceRange getFormatStringRange();
7582 CharSourceRange getSpecifierRange(const char *startSpecifier,
7583 unsigned specifierLen);
7584 SourceLocation getLocationOfByte(const char *x);
7585
7586 const Expr *getDataArg(unsigned i) const;
7587
7588 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
7589 const analyze_format_string::ConversionSpecifier &CS,
7590 const char *startSpecifier, unsigned specifierLen,
7591 unsigned argIndex);
7592
7593 template <typename Range>
7594 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
7595 bool IsStringLocation, Range StringRange,
7596 ArrayRef<FixItHint> Fixit = None);
7597 };
7598
7599 } // namespace
7600
getFormatStringRange()7601 SourceRange CheckFormatHandler::getFormatStringRange() {
7602 return OrigFormatExpr->getSourceRange();
7603 }
7604
7605 CharSourceRange CheckFormatHandler::
getSpecifierRange(const char * startSpecifier,unsigned specifierLen)7606 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
7607 SourceLocation Start = getLocationOfByte(startSpecifier);
7608 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
7609
7610 // Advance the end SourceLocation by one due to half-open ranges.
7611 End = End.getLocWithOffset(1);
7612
7613 return CharSourceRange::getCharRange(Start, End);
7614 }
7615
getLocationOfByte(const char * x)7616 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
7617 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
7618 S.getLangOpts(), S.Context.getTargetInfo());
7619 }
7620
HandleIncompleteSpecifier(const char * startSpecifier,unsigned specifierLen)7621 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
7622 unsigned specifierLen){
7623 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
7624 getLocationOfByte(startSpecifier),
7625 /*IsStringLocation*/true,
7626 getSpecifierRange(startSpecifier, specifierLen));
7627 }
7628
HandleInvalidLengthModifier(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned DiagID)7629 void CheckFormatHandler::HandleInvalidLengthModifier(
7630 const analyze_format_string::FormatSpecifier &FS,
7631 const analyze_format_string::ConversionSpecifier &CS,
7632 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
7633 using namespace analyze_format_string;
7634
7635 const LengthModifier &LM = FS.getLengthModifier();
7636 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7637
7638 // See if we know how to fix this length modifier.
7639 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7640 if (FixedLM) {
7641 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7642 getLocationOfByte(LM.getStart()),
7643 /*IsStringLocation*/true,
7644 getSpecifierRange(startSpecifier, specifierLen));
7645
7646 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7647 << FixedLM->toString()
7648 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7649
7650 } else {
7651 FixItHint Hint;
7652 if (DiagID == diag::warn_format_nonsensical_length)
7653 Hint = FixItHint::CreateRemoval(LMRange);
7654
7655 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7656 getLocationOfByte(LM.getStart()),
7657 /*IsStringLocation*/true,
7658 getSpecifierRange(startSpecifier, specifierLen),
7659 Hint);
7660 }
7661 }
7662
HandleNonStandardLengthModifier(const analyze_format_string::FormatSpecifier & FS,const char * startSpecifier,unsigned specifierLen)7663 void CheckFormatHandler::HandleNonStandardLengthModifier(
7664 const analyze_format_string::FormatSpecifier &FS,
7665 const char *startSpecifier, unsigned specifierLen) {
7666 using namespace analyze_format_string;
7667
7668 const LengthModifier &LM = FS.getLengthModifier();
7669 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7670
7671 // See if we know how to fix this length modifier.
7672 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7673 if (FixedLM) {
7674 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7675 << LM.toString() << 0,
7676 getLocationOfByte(LM.getStart()),
7677 /*IsStringLocation*/true,
7678 getSpecifierRange(startSpecifier, specifierLen));
7679
7680 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7681 << FixedLM->toString()
7682 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7683
7684 } else {
7685 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7686 << LM.toString() << 0,
7687 getLocationOfByte(LM.getStart()),
7688 /*IsStringLocation*/true,
7689 getSpecifierRange(startSpecifier, specifierLen));
7690 }
7691 }
7692
HandleNonStandardConversionSpecifier(const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen)7693 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
7694 const analyze_format_string::ConversionSpecifier &CS,
7695 const char *startSpecifier, unsigned specifierLen) {
7696 using namespace analyze_format_string;
7697
7698 // See if we know how to fix this conversion specifier.
7699 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
7700 if (FixedCS) {
7701 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7702 << CS.toString() << /*conversion specifier*/1,
7703 getLocationOfByte(CS.getStart()),
7704 /*IsStringLocation*/true,
7705 getSpecifierRange(startSpecifier, specifierLen));
7706
7707 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
7708 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
7709 << FixedCS->toString()
7710 << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
7711 } else {
7712 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7713 << CS.toString() << /*conversion specifier*/1,
7714 getLocationOfByte(CS.getStart()),
7715 /*IsStringLocation*/true,
7716 getSpecifierRange(startSpecifier, specifierLen));
7717 }
7718 }
7719
HandlePosition(const char * startPos,unsigned posLen)7720 void CheckFormatHandler::HandlePosition(const char *startPos,
7721 unsigned posLen) {
7722 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
7723 getLocationOfByte(startPos),
7724 /*IsStringLocation*/true,
7725 getSpecifierRange(startPos, posLen));
7726 }
7727
7728 void
HandleInvalidPosition(const char * startPos,unsigned posLen,analyze_format_string::PositionContext p)7729 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
7730 analyze_format_string::PositionContext p) {
7731 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
7732 << (unsigned) p,
7733 getLocationOfByte(startPos), /*IsStringLocation*/true,
7734 getSpecifierRange(startPos, posLen));
7735 }
7736
HandleZeroPosition(const char * startPos,unsigned posLen)7737 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
7738 unsigned posLen) {
7739 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
7740 getLocationOfByte(startPos),
7741 /*IsStringLocation*/true,
7742 getSpecifierRange(startPos, posLen));
7743 }
7744
HandleNullChar(const char * nullCharacter)7745 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
7746 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
7747 // The presence of a null character is likely an error.
7748 EmitFormatDiagnostic(
7749 S.PDiag(diag::warn_printf_format_string_contains_null_char),
7750 getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
7751 getFormatStringRange());
7752 }
7753 }
7754
7755 // Note that this may return NULL if there was an error parsing or building
7756 // one of the argument expressions.
getDataArg(unsigned i) const7757 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
7758 return Args[FirstDataArg + i];
7759 }
7760
DoneProcessing()7761 void CheckFormatHandler::DoneProcessing() {
7762 // Does the number of data arguments exceed the number of
7763 // format conversions in the format string?
7764 if (!HasVAListArg) {
7765 // Find any arguments that weren't covered.
7766 CoveredArgs.flip();
7767 signed notCoveredArg = CoveredArgs.find_first();
7768 if (notCoveredArg >= 0) {
7769 assert((unsigned)notCoveredArg < NumDataArgs);
7770 UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
7771 } else {
7772 UncoveredArg.setAllCovered();
7773 }
7774 }
7775 }
7776
Diagnose(Sema & S,bool IsFunctionCall,const Expr * ArgExpr)7777 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
7778 const Expr *ArgExpr) {
7779 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
7780 "Invalid state");
7781
7782 if (!ArgExpr)
7783 return;
7784
7785 SourceLocation Loc = ArgExpr->getBeginLoc();
7786
7787 if (S.getSourceManager().isInSystemMacro(Loc))
7788 return;
7789
7790 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
7791 for (auto E : DiagnosticExprs)
7792 PDiag << E->getSourceRange();
7793
7794 CheckFormatHandler::EmitFormatDiagnostic(
7795 S, IsFunctionCall, DiagnosticExprs[0],
7796 PDiag, Loc, /*IsStringLocation*/false,
7797 DiagnosticExprs[0]->getSourceRange());
7798 }
7799
7800 bool
HandleInvalidConversionSpecifier(unsigned argIndex,SourceLocation Loc,const char * startSpec,unsigned specifierLen,const char * csStart,unsigned csLen)7801 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
7802 SourceLocation Loc,
7803 const char *startSpec,
7804 unsigned specifierLen,
7805 const char *csStart,
7806 unsigned csLen) {
7807 bool keepGoing = true;
7808 if (argIndex < NumDataArgs) {
7809 // Consider the argument coverered, even though the specifier doesn't
7810 // make sense.
7811 CoveredArgs.set(argIndex);
7812 }
7813 else {
7814 // If argIndex exceeds the number of data arguments we
7815 // don't issue a warning because that is just a cascade of warnings (and
7816 // they may have intended '%%' anyway). We don't want to continue processing
7817 // the format string after this point, however, as we will like just get
7818 // gibberish when trying to match arguments.
7819 keepGoing = false;
7820 }
7821
7822 StringRef Specifier(csStart, csLen);
7823
7824 // If the specifier in non-printable, it could be the first byte of a UTF-8
7825 // sequence. In that case, print the UTF-8 code point. If not, print the byte
7826 // hex value.
7827 std::string CodePointStr;
7828 if (!llvm::sys::locale::isPrint(*csStart)) {
7829 llvm::UTF32 CodePoint;
7830 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
7831 const llvm::UTF8 *E =
7832 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
7833 llvm::ConversionResult Result =
7834 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
7835
7836 if (Result != llvm::conversionOK) {
7837 unsigned char FirstChar = *csStart;
7838 CodePoint = (llvm::UTF32)FirstChar;
7839 }
7840
7841 llvm::raw_string_ostream OS(CodePointStr);
7842 if (CodePoint < 256)
7843 OS << "\\x" << llvm::format("%02x", CodePoint);
7844 else if (CodePoint <= 0xFFFF)
7845 OS << "\\u" << llvm::format("%04x", CodePoint);
7846 else
7847 OS << "\\U" << llvm::format("%08x", CodePoint);
7848 OS.flush();
7849 Specifier = CodePointStr;
7850 }
7851
7852 EmitFormatDiagnostic(
7853 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
7854 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
7855
7856 return keepGoing;
7857 }
7858
7859 void
HandlePositionalNonpositionalArgs(SourceLocation Loc,const char * startSpec,unsigned specifierLen)7860 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
7861 const char *startSpec,
7862 unsigned specifierLen) {
7863 EmitFormatDiagnostic(
7864 S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
7865 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
7866 }
7867
7868 bool
CheckNumArgs(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned argIndex)7869 CheckFormatHandler::CheckNumArgs(
7870 const analyze_format_string::FormatSpecifier &FS,
7871 const analyze_format_string::ConversionSpecifier &CS,
7872 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
7873
7874 if (argIndex >= NumDataArgs) {
7875 PartialDiagnostic PDiag = FS.usesPositionalArg()
7876 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
7877 << (argIndex+1) << NumDataArgs)
7878 : S.PDiag(diag::warn_printf_insufficient_data_args);
7879 EmitFormatDiagnostic(
7880 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
7881 getSpecifierRange(startSpecifier, specifierLen));
7882
7883 // Since more arguments than conversion tokens are given, by extension
7884 // all arguments are covered, so mark this as so.
7885 UncoveredArg.setAllCovered();
7886 return false;
7887 }
7888 return true;
7889 }
7890
7891 template<typename Range>
EmitFormatDiagnostic(PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)7892 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
7893 SourceLocation Loc,
7894 bool IsStringLocation,
7895 Range StringRange,
7896 ArrayRef<FixItHint> FixIt) {
7897 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
7898 Loc, IsStringLocation, StringRange, FixIt);
7899 }
7900
7901 /// If the format string is not within the function call, emit a note
7902 /// so that the function call and string are in diagnostic messages.
7903 ///
7904 /// \param InFunctionCall if true, the format string is within the function
7905 /// call and only one diagnostic message will be produced. Otherwise, an
7906 /// extra note will be emitted pointing to location of the format string.
7907 ///
7908 /// \param ArgumentExpr the expression that is passed as the format string
7909 /// argument in the function call. Used for getting locations when two
7910 /// diagnostics are emitted.
7911 ///
7912 /// \param PDiag the callee should already have provided any strings for the
7913 /// diagnostic message. This function only adds locations and fixits
7914 /// to diagnostics.
7915 ///
7916 /// \param Loc primary location for diagnostic. If two diagnostics are
7917 /// required, one will be at Loc and a new SourceLocation will be created for
7918 /// the other one.
7919 ///
7920 /// \param IsStringLocation if true, Loc points to the format string should be
7921 /// used for the note. Otherwise, Loc points to the argument list and will
7922 /// be used with PDiag.
7923 ///
7924 /// \param StringRange some or all of the string to highlight. This is
7925 /// templated so it can accept either a CharSourceRange or a SourceRange.
7926 ///
7927 /// \param FixIt optional fix it hint for the format string.
7928 template <typename Range>
EmitFormatDiagnostic(Sema & S,bool InFunctionCall,const Expr * ArgumentExpr,const PartialDiagnostic & PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)7929 void CheckFormatHandler::EmitFormatDiagnostic(
7930 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
7931 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
7932 Range StringRange, ArrayRef<FixItHint> FixIt) {
7933 if (InFunctionCall) {
7934 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
7935 D << StringRange;
7936 D << FixIt;
7937 } else {
7938 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
7939 << ArgumentExpr->getSourceRange();
7940
7941 const Sema::SemaDiagnosticBuilder &Note =
7942 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
7943 diag::note_format_string_defined);
7944
7945 Note << StringRange;
7946 Note << FixIt;
7947 }
7948 }
7949
7950 //===--- CHECK: Printf format string checking ------------------------------===//
7951
7952 namespace {
7953
7954 class CheckPrintfHandler : public CheckFormatHandler {
7955 public:
CheckPrintfHandler(Sema & s,const FormatStringLiteral * fexpr,const Expr * origFormatExpr,const Sema::FormatStringType type,unsigned firstDataArg,unsigned numDataArgs,bool isObjC,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)7956 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
7957 const Expr *origFormatExpr,
7958 const Sema::FormatStringType type, unsigned firstDataArg,
7959 unsigned numDataArgs, bool isObjC, const char *beg,
7960 bool hasVAListArg, ArrayRef<const Expr *> Args,
7961 unsigned formatIdx, bool inFunctionCall,
7962 Sema::VariadicCallType CallType,
7963 llvm::SmallBitVector &CheckedVarArgs,
7964 UncoveredArgHandler &UncoveredArg)
7965 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
7966 numDataArgs, beg, hasVAListArg, Args, formatIdx,
7967 inFunctionCall, CallType, CheckedVarArgs,
7968 UncoveredArg) {}
7969
isObjCContext() const7970 bool isObjCContext() const { return FSType == Sema::FST_NSString; }
7971
7972 /// Returns true if '%@' specifiers are allowed in the format string.
allowsObjCArg() const7973 bool allowsObjCArg() const {
7974 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
7975 FSType == Sema::FST_OSTrace;
7976 }
7977
7978 bool HandleInvalidPrintfConversionSpecifier(
7979 const analyze_printf::PrintfSpecifier &FS,
7980 const char *startSpecifier,
7981 unsigned specifierLen) override;
7982
7983 void handleInvalidMaskType(StringRef MaskType) override;
7984
7985 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
7986 const char *startSpecifier,
7987 unsigned specifierLen) override;
7988 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
7989 const char *StartSpecifier,
7990 unsigned SpecifierLen,
7991 const Expr *E);
7992
7993 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
7994 const char *startSpecifier, unsigned specifierLen);
7995 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
7996 const analyze_printf::OptionalAmount &Amt,
7997 unsigned type,
7998 const char *startSpecifier, unsigned specifierLen);
7999 void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8000 const analyze_printf::OptionalFlag &flag,
8001 const char *startSpecifier, unsigned specifierLen);
8002 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
8003 const analyze_printf::OptionalFlag &ignoredFlag,
8004 const analyze_printf::OptionalFlag &flag,
8005 const char *startSpecifier, unsigned specifierLen);
8006 bool checkForCStrMembers(const analyze_printf::ArgType &AT,
8007 const Expr *E);
8008
8009 void HandleEmptyObjCModifierFlag(const char *startFlag,
8010 unsigned flagLen) override;
8011
8012 void HandleInvalidObjCModifierFlag(const char *startFlag,
8013 unsigned flagLen) override;
8014
8015 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
8016 const char *flagsEnd,
8017 const char *conversionPosition)
8018 override;
8019 };
8020
8021 } // namespace
8022
HandleInvalidPrintfConversionSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)8023 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
8024 const analyze_printf::PrintfSpecifier &FS,
8025 const char *startSpecifier,
8026 unsigned specifierLen) {
8027 const analyze_printf::PrintfConversionSpecifier &CS =
8028 FS.getConversionSpecifier();
8029
8030 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8031 getLocationOfByte(CS.getStart()),
8032 startSpecifier, specifierLen,
8033 CS.getStart(), CS.getLength());
8034 }
8035
handleInvalidMaskType(StringRef MaskType)8036 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
8037 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
8038 }
8039
HandleAmount(const analyze_format_string::OptionalAmount & Amt,unsigned k,const char * startSpecifier,unsigned specifierLen)8040 bool CheckPrintfHandler::HandleAmount(
8041 const analyze_format_string::OptionalAmount &Amt,
8042 unsigned k, const char *startSpecifier,
8043 unsigned specifierLen) {
8044 if (Amt.hasDataArgument()) {
8045 if (!HasVAListArg) {
8046 unsigned argIndex = Amt.getArgIndex();
8047 if (argIndex >= NumDataArgs) {
8048 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
8049 << k,
8050 getLocationOfByte(Amt.getStart()),
8051 /*IsStringLocation*/true,
8052 getSpecifierRange(startSpecifier, specifierLen));
8053 // Don't do any more checking. We will just emit
8054 // spurious errors.
8055 return false;
8056 }
8057
8058 // Type check the data argument. It should be an 'int'.
8059 // Although not in conformance with C99, we also allow the argument to be
8060 // an 'unsigned int' as that is a reasonably safe case. GCC also
8061 // doesn't emit a warning for that case.
8062 CoveredArgs.set(argIndex);
8063 const Expr *Arg = getDataArg(argIndex);
8064 if (!Arg)
8065 return false;
8066
8067 QualType T = Arg->getType();
8068
8069 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
8070 assert(AT.isValid());
8071
8072 if (!AT.matchesType(S.Context, T)) {
8073 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
8074 << k << AT.getRepresentativeTypeName(S.Context)
8075 << T << Arg->getSourceRange(),
8076 getLocationOfByte(Amt.getStart()),
8077 /*IsStringLocation*/true,
8078 getSpecifierRange(startSpecifier, specifierLen));
8079 // Don't do any more checking. We will just emit
8080 // spurious errors.
8081 return false;
8082 }
8083 }
8084 }
8085 return true;
8086 }
8087
HandleInvalidAmount(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalAmount & Amt,unsigned type,const char * startSpecifier,unsigned specifierLen)8088 void CheckPrintfHandler::HandleInvalidAmount(
8089 const analyze_printf::PrintfSpecifier &FS,
8090 const analyze_printf::OptionalAmount &Amt,
8091 unsigned type,
8092 const char *startSpecifier,
8093 unsigned specifierLen) {
8094 const analyze_printf::PrintfConversionSpecifier &CS =
8095 FS.getConversionSpecifier();
8096
8097 FixItHint fixit =
8098 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
8099 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
8100 Amt.getConstantLength()))
8101 : FixItHint();
8102
8103 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
8104 << type << CS.toString(),
8105 getLocationOfByte(Amt.getStart()),
8106 /*IsStringLocation*/true,
8107 getSpecifierRange(startSpecifier, specifierLen),
8108 fixit);
8109 }
8110
HandleFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)8111 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8112 const analyze_printf::OptionalFlag &flag,
8113 const char *startSpecifier,
8114 unsigned specifierLen) {
8115 // Warn about pointless flag with a fixit removal.
8116 const analyze_printf::PrintfConversionSpecifier &CS =
8117 FS.getConversionSpecifier();
8118 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
8119 << flag.toString() << CS.toString(),
8120 getLocationOfByte(flag.getPosition()),
8121 /*IsStringLocation*/true,
8122 getSpecifierRange(startSpecifier, specifierLen),
8123 FixItHint::CreateRemoval(
8124 getSpecifierRange(flag.getPosition(), 1)));
8125 }
8126
HandleIgnoredFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & ignoredFlag,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)8127 void CheckPrintfHandler::HandleIgnoredFlag(
8128 const analyze_printf::PrintfSpecifier &FS,
8129 const analyze_printf::OptionalFlag &ignoredFlag,
8130 const analyze_printf::OptionalFlag &flag,
8131 const char *startSpecifier,
8132 unsigned specifierLen) {
8133 // Warn about ignored flag with a fixit removal.
8134 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
8135 << ignoredFlag.toString() << flag.toString(),
8136 getLocationOfByte(ignoredFlag.getPosition()),
8137 /*IsStringLocation*/true,
8138 getSpecifierRange(startSpecifier, specifierLen),
8139 FixItHint::CreateRemoval(
8140 getSpecifierRange(ignoredFlag.getPosition(), 1)));
8141 }
8142
HandleEmptyObjCModifierFlag(const char * startFlag,unsigned flagLen)8143 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
8144 unsigned flagLen) {
8145 // Warn about an empty flag.
8146 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
8147 getLocationOfByte(startFlag),
8148 /*IsStringLocation*/true,
8149 getSpecifierRange(startFlag, flagLen));
8150 }
8151
HandleInvalidObjCModifierFlag(const char * startFlag,unsigned flagLen)8152 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
8153 unsigned flagLen) {
8154 // Warn about an invalid flag.
8155 auto Range = getSpecifierRange(startFlag, flagLen);
8156 StringRef flag(startFlag, flagLen);
8157 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
8158 getLocationOfByte(startFlag),
8159 /*IsStringLocation*/true,
8160 Range, FixItHint::CreateRemoval(Range));
8161 }
8162
HandleObjCFlagsWithNonObjCConversion(const char * flagsStart,const char * flagsEnd,const char * conversionPosition)8163 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
8164 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
8165 // Warn about using '[...]' without a '@' conversion.
8166 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
8167 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
8168 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
8169 getLocationOfByte(conversionPosition),
8170 /*IsStringLocation*/true,
8171 Range, FixItHint::CreateRemoval(Range));
8172 }
8173
8174 // Determines if the specified is a C++ class or struct containing
8175 // a member with the specified name and kind (e.g. a CXXMethodDecl named
8176 // "c_str()").
8177 template<typename MemberKind>
8178 static llvm::SmallPtrSet<MemberKind*, 1>
CXXRecordMembersNamed(StringRef Name,Sema & S,QualType Ty)8179 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
8180 const RecordType *RT = Ty->getAs<RecordType>();
8181 llvm::SmallPtrSet<MemberKind*, 1> Results;
8182
8183 if (!RT)
8184 return Results;
8185 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
8186 if (!RD || !RD->getDefinition())
8187 return Results;
8188
8189 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
8190 Sema::LookupMemberName);
8191 R.suppressDiagnostics();
8192
8193 // We just need to include all members of the right kind turned up by the
8194 // filter, at this point.
8195 if (S.LookupQualifiedName(R, RT->getDecl()))
8196 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8197 NamedDecl *decl = (*I)->getUnderlyingDecl();
8198 if (MemberKind *FK = dyn_cast<MemberKind>(decl))
8199 Results.insert(FK);
8200 }
8201 return Results;
8202 }
8203
8204 /// Check if we could call '.c_str()' on an object.
8205 ///
8206 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
8207 /// allow the call, or if it would be ambiguous).
hasCStrMethod(const Expr * E)8208 bool Sema::hasCStrMethod(const Expr *E) {
8209 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8210
8211 MethodSet Results =
8212 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
8213 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8214 MI != ME; ++MI)
8215 if ((*MI)->getMinRequiredArguments() == 0)
8216 return true;
8217 return false;
8218 }
8219
8220 // Check if a (w)string was passed when a (w)char* was needed, and offer a
8221 // better diagnostic if so. AT is assumed to be valid.
8222 // Returns true when a c_str() conversion method is found.
checkForCStrMembers(const analyze_printf::ArgType & AT,const Expr * E)8223 bool CheckPrintfHandler::checkForCStrMembers(
8224 const analyze_printf::ArgType &AT, const Expr *E) {
8225 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8226
8227 MethodSet Results =
8228 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
8229
8230 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8231 MI != ME; ++MI) {
8232 const CXXMethodDecl *Method = *MI;
8233 if (Method->getMinRequiredArguments() == 0 &&
8234 AT.matchesType(S.Context, Method->getReturnType())) {
8235 // FIXME: Suggest parens if the expression needs them.
8236 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
8237 S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
8238 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
8239 return true;
8240 }
8241 }
8242
8243 return false;
8244 }
8245
8246 bool
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)8247 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
8248 &FS,
8249 const char *startSpecifier,
8250 unsigned specifierLen) {
8251 using namespace analyze_format_string;
8252 using namespace analyze_printf;
8253
8254 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
8255
8256 if (FS.consumesDataArgument()) {
8257 if (atFirstArg) {
8258 atFirstArg = false;
8259 usesPositionalArgs = FS.usesPositionalArg();
8260 }
8261 else if (usesPositionalArgs != FS.usesPositionalArg()) {
8262 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8263 startSpecifier, specifierLen);
8264 return false;
8265 }
8266 }
8267
8268 // First check if the field width, precision, and conversion specifier
8269 // have matching data arguments.
8270 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
8271 startSpecifier, specifierLen)) {
8272 return false;
8273 }
8274
8275 if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
8276 startSpecifier, specifierLen)) {
8277 return false;
8278 }
8279
8280 if (!CS.consumesDataArgument()) {
8281 // FIXME: Technically specifying a precision or field width here
8282 // makes no sense. Worth issuing a warning at some point.
8283 return true;
8284 }
8285
8286 // Consume the argument.
8287 unsigned argIndex = FS.getArgIndex();
8288 if (argIndex < NumDataArgs) {
8289 // The check to see if the argIndex is valid will come later.
8290 // We set the bit here because we may exit early from this
8291 // function if we encounter some other error.
8292 CoveredArgs.set(argIndex);
8293 }
8294
8295 // FreeBSD kernel extensions.
8296 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
8297 CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
8298 // We need at least two arguments.
8299 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
8300 return false;
8301
8302 // Claim the second argument.
8303 CoveredArgs.set(argIndex + 1);
8304
8305 // Type check the first argument (int for %b, pointer for %D)
8306 const Expr *Ex = getDataArg(argIndex);
8307 const analyze_printf::ArgType &AT =
8308 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
8309 ArgType(S.Context.IntTy) : ArgType::CPointerTy;
8310 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
8311 EmitFormatDiagnostic(
8312 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8313 << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
8314 << false << Ex->getSourceRange(),
8315 Ex->getBeginLoc(), /*IsStringLocation*/ false,
8316 getSpecifierRange(startSpecifier, specifierLen));
8317
8318 // Type check the second argument (char * for both %b and %D)
8319 Ex = getDataArg(argIndex + 1);
8320 const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
8321 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
8322 EmitFormatDiagnostic(
8323 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8324 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
8325 << false << Ex->getSourceRange(),
8326 Ex->getBeginLoc(), /*IsStringLocation*/ false,
8327 getSpecifierRange(startSpecifier, specifierLen));
8328
8329 return true;
8330 }
8331
8332 // Check for using an Objective-C specific conversion specifier
8333 // in a non-ObjC literal.
8334 if (!allowsObjCArg() && CS.isObjCArg()) {
8335 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8336 specifierLen);
8337 }
8338
8339 // %P can only be used with os_log.
8340 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
8341 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8342 specifierLen);
8343 }
8344
8345 // %n is not allowed with os_log.
8346 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
8347 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
8348 getLocationOfByte(CS.getStart()),
8349 /*IsStringLocation*/ false,
8350 getSpecifierRange(startSpecifier, specifierLen));
8351
8352 return true;
8353 }
8354
8355 // Only scalars are allowed for os_trace.
8356 if (FSType == Sema::FST_OSTrace &&
8357 (CS.getKind() == ConversionSpecifier::PArg ||
8358 CS.getKind() == ConversionSpecifier::sArg ||
8359 CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
8360 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8361 specifierLen);
8362 }
8363
8364 // Check for use of public/private annotation outside of os_log().
8365 if (FSType != Sema::FST_OSLog) {
8366 if (FS.isPublic().isSet()) {
8367 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8368 << "public",
8369 getLocationOfByte(FS.isPublic().getPosition()),
8370 /*IsStringLocation*/ false,
8371 getSpecifierRange(startSpecifier, specifierLen));
8372 }
8373 if (FS.isPrivate().isSet()) {
8374 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8375 << "private",
8376 getLocationOfByte(FS.isPrivate().getPosition()),
8377 /*IsStringLocation*/ false,
8378 getSpecifierRange(startSpecifier, specifierLen));
8379 }
8380 }
8381
8382 // Check for invalid use of field width
8383 if (!FS.hasValidFieldWidth()) {
8384 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
8385 startSpecifier, specifierLen);
8386 }
8387
8388 // Check for invalid use of precision
8389 if (!FS.hasValidPrecision()) {
8390 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
8391 startSpecifier, specifierLen);
8392 }
8393
8394 // Precision is mandatory for %P specifier.
8395 if (CS.getKind() == ConversionSpecifier::PArg &&
8396 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
8397 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
8398 getLocationOfByte(startSpecifier),
8399 /*IsStringLocation*/ false,
8400 getSpecifierRange(startSpecifier, specifierLen));
8401 }
8402
8403 // Check each flag does not conflict with any other component.
8404 if (!FS.hasValidThousandsGroupingPrefix())
8405 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
8406 if (!FS.hasValidLeadingZeros())
8407 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
8408 if (!FS.hasValidPlusPrefix())
8409 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
8410 if (!FS.hasValidSpacePrefix())
8411 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
8412 if (!FS.hasValidAlternativeForm())
8413 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
8414 if (!FS.hasValidLeftJustified())
8415 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
8416
8417 // Check that flags are not ignored by another flag
8418 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
8419 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
8420 startSpecifier, specifierLen);
8421 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
8422 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
8423 startSpecifier, specifierLen);
8424
8425 // Check the length modifier is valid with the given conversion specifier.
8426 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8427 S.getLangOpts()))
8428 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8429 diag::warn_format_nonsensical_length);
8430 else if (!FS.hasStandardLengthModifier())
8431 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8432 else if (!FS.hasStandardLengthConversionCombination())
8433 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8434 diag::warn_format_non_standard_conversion_spec);
8435
8436 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8437 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8438
8439 // The remaining checks depend on the data arguments.
8440 if (HasVAListArg)
8441 return true;
8442
8443 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8444 return false;
8445
8446 const Expr *Arg = getDataArg(argIndex);
8447 if (!Arg)
8448 return true;
8449
8450 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
8451 }
8452
requiresParensToAddCast(const Expr * E)8453 static bool requiresParensToAddCast(const Expr *E) {
8454 // FIXME: We should have a general way to reason about operator
8455 // precedence and whether parens are actually needed here.
8456 // Take care of a few common cases where they aren't.
8457 const Expr *Inside = E->IgnoreImpCasts();
8458 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
8459 Inside = POE->getSyntacticForm()->IgnoreImpCasts();
8460
8461 switch (Inside->getStmtClass()) {
8462 case Stmt::ArraySubscriptExprClass:
8463 case Stmt::CallExprClass:
8464 case Stmt::CharacterLiteralClass:
8465 case Stmt::CXXBoolLiteralExprClass:
8466 case Stmt::DeclRefExprClass:
8467 case Stmt::FloatingLiteralClass:
8468 case Stmt::IntegerLiteralClass:
8469 case Stmt::MemberExprClass:
8470 case Stmt::ObjCArrayLiteralClass:
8471 case Stmt::ObjCBoolLiteralExprClass:
8472 case Stmt::ObjCBoxedExprClass:
8473 case Stmt::ObjCDictionaryLiteralClass:
8474 case Stmt::ObjCEncodeExprClass:
8475 case Stmt::ObjCIvarRefExprClass:
8476 case Stmt::ObjCMessageExprClass:
8477 case Stmt::ObjCPropertyRefExprClass:
8478 case Stmt::ObjCStringLiteralClass:
8479 case Stmt::ObjCSubscriptRefExprClass:
8480 case Stmt::ParenExprClass:
8481 case Stmt::StringLiteralClass:
8482 case Stmt::UnaryOperatorClass:
8483 return false;
8484 default:
8485 return true;
8486 }
8487 }
8488
8489 static std::pair<QualType, StringRef>
shouldNotPrintDirectly(const ASTContext & Context,QualType IntendedTy,const Expr * E)8490 shouldNotPrintDirectly(const ASTContext &Context,
8491 QualType IntendedTy,
8492 const Expr *E) {
8493 // Use a 'while' to peel off layers of typedefs.
8494 QualType TyTy = IntendedTy;
8495 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
8496 StringRef Name = UserTy->getDecl()->getName();
8497 QualType CastTy = llvm::StringSwitch<QualType>(Name)
8498 .Case("CFIndex", Context.getNSIntegerType())
8499 .Case("NSInteger", Context.getNSIntegerType())
8500 .Case("NSUInteger", Context.getNSUIntegerType())
8501 .Case("SInt32", Context.IntTy)
8502 .Case("UInt32", Context.UnsignedIntTy)
8503 .Default(QualType());
8504
8505 if (!CastTy.isNull())
8506 return std::make_pair(CastTy, Name);
8507
8508 TyTy = UserTy->desugar();
8509 }
8510
8511 // Strip parens if necessary.
8512 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
8513 return shouldNotPrintDirectly(Context,
8514 PE->getSubExpr()->getType(),
8515 PE->getSubExpr());
8516
8517 // If this is a conditional expression, then its result type is constructed
8518 // via usual arithmetic conversions and thus there might be no necessary
8519 // typedef sugar there. Recurse to operands to check for NSInteger &
8520 // Co. usage condition.
8521 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8522 QualType TrueTy, FalseTy;
8523 StringRef TrueName, FalseName;
8524
8525 std::tie(TrueTy, TrueName) =
8526 shouldNotPrintDirectly(Context,
8527 CO->getTrueExpr()->getType(),
8528 CO->getTrueExpr());
8529 std::tie(FalseTy, FalseName) =
8530 shouldNotPrintDirectly(Context,
8531 CO->getFalseExpr()->getType(),
8532 CO->getFalseExpr());
8533
8534 if (TrueTy == FalseTy)
8535 return std::make_pair(TrueTy, TrueName);
8536 else if (TrueTy.isNull())
8537 return std::make_pair(FalseTy, FalseName);
8538 else if (FalseTy.isNull())
8539 return std::make_pair(TrueTy, TrueName);
8540 }
8541
8542 return std::make_pair(QualType(), StringRef());
8543 }
8544
8545 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
8546 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
8547 /// type do not count.
8548 static bool
isArithmeticArgumentPromotion(Sema & S,const ImplicitCastExpr * ICE)8549 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
8550 QualType From = ICE->getSubExpr()->getType();
8551 QualType To = ICE->getType();
8552 // It's an integer promotion if the destination type is the promoted
8553 // source type.
8554 if (ICE->getCastKind() == CK_IntegralCast &&
8555 From->isPromotableIntegerType() &&
8556 S.Context.getPromotedIntegerType(From) == To)
8557 return true;
8558 // Look through vector types, since we do default argument promotion for
8559 // those in OpenCL.
8560 if (const auto *VecTy = From->getAs<ExtVectorType>())
8561 From = VecTy->getElementType();
8562 if (const auto *VecTy = To->getAs<ExtVectorType>())
8563 To = VecTy->getElementType();
8564 // It's a floating promotion if the source type is a lower rank.
8565 return ICE->getCastKind() == CK_FloatingCast &&
8566 S.Context.getFloatingTypeOrder(From, To) < 0;
8567 }
8568
8569 bool
checkFormatExpr(const analyze_printf::PrintfSpecifier & FS,const char * StartSpecifier,unsigned SpecifierLen,const Expr * E)8570 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8571 const char *StartSpecifier,
8572 unsigned SpecifierLen,
8573 const Expr *E) {
8574 using namespace analyze_format_string;
8575 using namespace analyze_printf;
8576
8577 // Now type check the data expression that matches the
8578 // format specifier.
8579 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
8580 if (!AT.isValid())
8581 return true;
8582
8583 QualType ExprTy = E->getType();
8584 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
8585 ExprTy = TET->getUnderlyingExpr()->getType();
8586 }
8587
8588 // Diagnose attempts to print a boolean value as a character. Unlike other
8589 // -Wformat diagnostics, this is fine from a type perspective, but it still
8590 // doesn't make sense.
8591 if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
8592 E->isKnownToHaveBooleanValue()) {
8593 const CharSourceRange &CSR =
8594 getSpecifierRange(StartSpecifier, SpecifierLen);
8595 SmallString<4> FSString;
8596 llvm::raw_svector_ostream os(FSString);
8597 FS.toString(os);
8598 EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
8599 << FSString,
8600 E->getExprLoc(), false, CSR);
8601 return true;
8602 }
8603
8604 analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
8605 if (Match == analyze_printf::ArgType::Match)
8606 return true;
8607
8608 // Look through argument promotions for our error message's reported type.
8609 // This includes the integral and floating promotions, but excludes array
8610 // and function pointer decay (seeing that an argument intended to be a
8611 // string has type 'char [6]' is probably more confusing than 'char *') and
8612 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
8613 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
8614 if (isArithmeticArgumentPromotion(S, ICE)) {
8615 E = ICE->getSubExpr();
8616 ExprTy = E->getType();
8617
8618 // Check if we didn't match because of an implicit cast from a 'char'
8619 // or 'short' to an 'int'. This is done because printf is a varargs
8620 // function.
8621 if (ICE->getType() == S.Context.IntTy ||
8622 ICE->getType() == S.Context.UnsignedIntTy) {
8623 // All further checking is done on the subexpression
8624 const analyze_printf::ArgType::MatchKind ImplicitMatch =
8625 AT.matchesType(S.Context, ExprTy);
8626 if (ImplicitMatch == analyze_printf::ArgType::Match)
8627 return true;
8628 if (ImplicitMatch == ArgType::NoMatchPedantic ||
8629 ImplicitMatch == ArgType::NoMatchTypeConfusion)
8630 Match = ImplicitMatch;
8631 }
8632 }
8633 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
8634 // Special case for 'a', which has type 'int' in C.
8635 // Note, however, that we do /not/ want to treat multibyte constants like
8636 // 'MooV' as characters! This form is deprecated but still exists.
8637 if (ExprTy == S.Context.IntTy)
8638 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
8639 ExprTy = S.Context.CharTy;
8640 }
8641
8642 // Look through enums to their underlying type.
8643 bool IsEnum = false;
8644 if (auto EnumTy = ExprTy->getAs<EnumType>()) {
8645 ExprTy = EnumTy->getDecl()->getIntegerType();
8646 IsEnum = true;
8647 }
8648
8649 // %C in an Objective-C context prints a unichar, not a wchar_t.
8650 // If the argument is an integer of some kind, believe the %C and suggest
8651 // a cast instead of changing the conversion specifier.
8652 QualType IntendedTy = ExprTy;
8653 if (isObjCContext() &&
8654 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
8655 if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
8656 !ExprTy->isCharType()) {
8657 // 'unichar' is defined as a typedef of unsigned short, but we should
8658 // prefer using the typedef if it is visible.
8659 IntendedTy = S.Context.UnsignedShortTy;
8660
8661 // While we are here, check if the value is an IntegerLiteral that happens
8662 // to be within the valid range.
8663 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
8664 const llvm::APInt &V = IL->getValue();
8665 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
8666 return true;
8667 }
8668
8669 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
8670 Sema::LookupOrdinaryName);
8671 if (S.LookupName(Result, S.getCurScope())) {
8672 NamedDecl *ND = Result.getFoundDecl();
8673 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
8674 if (TD->getUnderlyingType() == IntendedTy)
8675 IntendedTy = S.Context.getTypedefType(TD);
8676 }
8677 }
8678 }
8679
8680 // Special-case some of Darwin's platform-independence types by suggesting
8681 // casts to primitive types that are known to be large enough.
8682 bool ShouldNotPrintDirectly = false; StringRef CastTyName;
8683 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
8684 QualType CastTy;
8685 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
8686 if (!CastTy.isNull()) {
8687 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
8688 // (long in ASTContext). Only complain to pedants.
8689 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
8690 (AT.isSizeT() || AT.isPtrdiffT()) &&
8691 AT.matchesType(S.Context, CastTy))
8692 Match = ArgType::NoMatchPedantic;
8693 IntendedTy = CastTy;
8694 ShouldNotPrintDirectly = true;
8695 }
8696 }
8697
8698 // We may be able to offer a FixItHint if it is a supported type.
8699 PrintfSpecifier fixedFS = FS;
8700 bool Success =
8701 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
8702
8703 if (Success) {
8704 // Get the fix string from the fixed format specifier
8705 SmallString<16> buf;
8706 llvm::raw_svector_ostream os(buf);
8707 fixedFS.toString(os);
8708
8709 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
8710
8711 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
8712 unsigned Diag;
8713 switch (Match) {
8714 case ArgType::Match: llvm_unreachable("expected non-matching");
8715 case ArgType::NoMatchPedantic:
8716 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8717 break;
8718 case ArgType::NoMatchTypeConfusion:
8719 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8720 break;
8721 case ArgType::NoMatch:
8722 Diag = diag::warn_format_conversion_argument_type_mismatch;
8723 break;
8724 }
8725
8726 // In this case, the specifier is wrong and should be changed to match
8727 // the argument.
8728 EmitFormatDiagnostic(S.PDiag(Diag)
8729 << AT.getRepresentativeTypeName(S.Context)
8730 << IntendedTy << IsEnum << E->getSourceRange(),
8731 E->getBeginLoc(),
8732 /*IsStringLocation*/ false, SpecRange,
8733 FixItHint::CreateReplacement(SpecRange, os.str()));
8734 } else {
8735 // The canonical type for formatting this value is different from the
8736 // actual type of the expression. (This occurs, for example, with Darwin's
8737 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
8738 // should be printed as 'long' for 64-bit compatibility.)
8739 // Rather than emitting a normal format/argument mismatch, we want to
8740 // add a cast to the recommended type (and correct the format string
8741 // if necessary).
8742 SmallString<16> CastBuf;
8743 llvm::raw_svector_ostream CastFix(CastBuf);
8744 CastFix << "(";
8745 IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
8746 CastFix << ")";
8747
8748 SmallVector<FixItHint,4> Hints;
8749 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
8750 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
8751
8752 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
8753 // If there's already a cast present, just replace it.
8754 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
8755 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
8756
8757 } else if (!requiresParensToAddCast(E)) {
8758 // If the expression has high enough precedence,
8759 // just write the C-style cast.
8760 Hints.push_back(
8761 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8762 } else {
8763 // Otherwise, add parens around the expression as well as the cast.
8764 CastFix << "(";
8765 Hints.push_back(
8766 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8767
8768 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
8769 Hints.push_back(FixItHint::CreateInsertion(After, ")"));
8770 }
8771
8772 if (ShouldNotPrintDirectly) {
8773 // The expression has a type that should not be printed directly.
8774 // We extract the name from the typedef because we don't want to show
8775 // the underlying type in the diagnostic.
8776 StringRef Name;
8777 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
8778 Name = TypedefTy->getDecl()->getName();
8779 else
8780 Name = CastTyName;
8781 unsigned Diag = Match == ArgType::NoMatchPedantic
8782 ? diag::warn_format_argument_needs_cast_pedantic
8783 : diag::warn_format_argument_needs_cast;
8784 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
8785 << E->getSourceRange(),
8786 E->getBeginLoc(), /*IsStringLocation=*/false,
8787 SpecRange, Hints);
8788 } else {
8789 // In this case, the expression could be printed using a different
8790 // specifier, but we've decided that the specifier is probably correct
8791 // and we should cast instead. Just use the normal warning message.
8792 EmitFormatDiagnostic(
8793 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8794 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
8795 << E->getSourceRange(),
8796 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
8797 }
8798 }
8799 } else {
8800 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
8801 SpecifierLen);
8802 // Since the warning for passing non-POD types to variadic functions
8803 // was deferred until now, we emit a warning for non-POD
8804 // arguments here.
8805 switch (S.isValidVarArgType(ExprTy)) {
8806 case Sema::VAK_Valid:
8807 case Sema::VAK_ValidInCXX11: {
8808 unsigned Diag;
8809 switch (Match) {
8810 case ArgType::Match: llvm_unreachable("expected non-matching");
8811 case ArgType::NoMatchPedantic:
8812 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8813 break;
8814 case ArgType::NoMatchTypeConfusion:
8815 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8816 break;
8817 case ArgType::NoMatch:
8818 Diag = diag::warn_format_conversion_argument_type_mismatch;
8819 break;
8820 }
8821
8822 EmitFormatDiagnostic(
8823 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
8824 << IsEnum << CSR << E->getSourceRange(),
8825 E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8826 break;
8827 }
8828 case Sema::VAK_Undefined:
8829 case Sema::VAK_MSVCUndefined:
8830 EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
8831 << S.getLangOpts().CPlusPlus11 << ExprTy
8832 << CallType
8833 << AT.getRepresentativeTypeName(S.Context) << CSR
8834 << E->getSourceRange(),
8835 E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8836 checkForCStrMembers(AT, E);
8837 break;
8838
8839 case Sema::VAK_Invalid:
8840 if (ExprTy->isObjCObjectType())
8841 EmitFormatDiagnostic(
8842 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
8843 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
8844 << AT.getRepresentativeTypeName(S.Context) << CSR
8845 << E->getSourceRange(),
8846 E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8847 else
8848 // FIXME: If this is an initializer list, suggest removing the braces
8849 // or inserting a cast to the target type.
8850 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
8851 << isa<InitListExpr>(E) << ExprTy << CallType
8852 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
8853 break;
8854 }
8855
8856 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
8857 "format string specifier index out of range");
8858 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
8859 }
8860
8861 return true;
8862 }
8863
8864 //===--- CHECK: Scanf format string checking ------------------------------===//
8865
8866 namespace {
8867
8868 class CheckScanfHandler : public CheckFormatHandler {
8869 public:
CheckScanfHandler(Sema & s,const FormatStringLiteral * fexpr,const Expr * origFormatExpr,Sema::FormatStringType type,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)8870 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
8871 const Expr *origFormatExpr, Sema::FormatStringType type,
8872 unsigned firstDataArg, unsigned numDataArgs,
8873 const char *beg, bool hasVAListArg,
8874 ArrayRef<const Expr *> Args, unsigned formatIdx,
8875 bool inFunctionCall, Sema::VariadicCallType CallType,
8876 llvm::SmallBitVector &CheckedVarArgs,
8877 UncoveredArgHandler &UncoveredArg)
8878 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8879 numDataArgs, beg, hasVAListArg, Args, formatIdx,
8880 inFunctionCall, CallType, CheckedVarArgs,
8881 UncoveredArg) {}
8882
8883 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
8884 const char *startSpecifier,
8885 unsigned specifierLen) override;
8886
8887 bool HandleInvalidScanfConversionSpecifier(
8888 const analyze_scanf::ScanfSpecifier &FS,
8889 const char *startSpecifier,
8890 unsigned specifierLen) override;
8891
8892 void HandleIncompleteScanList(const char *start, const char *end) override;
8893 };
8894
8895 } // namespace
8896
HandleIncompleteScanList(const char * start,const char * end)8897 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
8898 const char *end) {
8899 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
8900 getLocationOfByte(end), /*IsStringLocation*/true,
8901 getSpecifierRange(start, end - start));
8902 }
8903
HandleInvalidScanfConversionSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)8904 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
8905 const analyze_scanf::ScanfSpecifier &FS,
8906 const char *startSpecifier,
8907 unsigned specifierLen) {
8908 const analyze_scanf::ScanfConversionSpecifier &CS =
8909 FS.getConversionSpecifier();
8910
8911 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8912 getLocationOfByte(CS.getStart()),
8913 startSpecifier, specifierLen,
8914 CS.getStart(), CS.getLength());
8915 }
8916
HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)8917 bool CheckScanfHandler::HandleScanfSpecifier(
8918 const analyze_scanf::ScanfSpecifier &FS,
8919 const char *startSpecifier,
8920 unsigned specifierLen) {
8921 using namespace analyze_scanf;
8922 using namespace analyze_format_string;
8923
8924 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
8925
8926 // Handle case where '%' and '*' don't consume an argument. These shouldn't
8927 // be used to decide if we are using positional arguments consistently.
8928 if (FS.consumesDataArgument()) {
8929 if (atFirstArg) {
8930 atFirstArg = false;
8931 usesPositionalArgs = FS.usesPositionalArg();
8932 }
8933 else if (usesPositionalArgs != FS.usesPositionalArg()) {
8934 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8935 startSpecifier, specifierLen);
8936 return false;
8937 }
8938 }
8939
8940 // Check if the field with is non-zero.
8941 const OptionalAmount &Amt = FS.getFieldWidth();
8942 if (Amt.getHowSpecified() == OptionalAmount::Constant) {
8943 if (Amt.getConstantAmount() == 0) {
8944 const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
8945 Amt.getConstantLength());
8946 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
8947 getLocationOfByte(Amt.getStart()),
8948 /*IsStringLocation*/true, R,
8949 FixItHint::CreateRemoval(R));
8950 }
8951 }
8952
8953 if (!FS.consumesDataArgument()) {
8954 // FIXME: Technically specifying a precision or field width here
8955 // makes no sense. Worth issuing a warning at some point.
8956 return true;
8957 }
8958
8959 // Consume the argument.
8960 unsigned argIndex = FS.getArgIndex();
8961 if (argIndex < NumDataArgs) {
8962 // The check to see if the argIndex is valid will come later.
8963 // We set the bit here because we may exit early from this
8964 // function if we encounter some other error.
8965 CoveredArgs.set(argIndex);
8966 }
8967
8968 // Check the length modifier is valid with the given conversion specifier.
8969 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8970 S.getLangOpts()))
8971 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8972 diag::warn_format_nonsensical_length);
8973 else if (!FS.hasStandardLengthModifier())
8974 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8975 else if (!FS.hasStandardLengthConversionCombination())
8976 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8977 diag::warn_format_non_standard_conversion_spec);
8978
8979 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8980 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8981
8982 // The remaining checks depend on the data arguments.
8983 if (HasVAListArg)
8984 return true;
8985
8986 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8987 return false;
8988
8989 // Check that the argument type matches the format specifier.
8990 const Expr *Ex = getDataArg(argIndex);
8991 if (!Ex)
8992 return true;
8993
8994 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
8995
8996 if (!AT.isValid()) {
8997 return true;
8998 }
8999
9000 analyze_format_string::ArgType::MatchKind Match =
9001 AT.matchesType(S.Context, Ex->getType());
9002 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
9003 if (Match == analyze_format_string::ArgType::Match)
9004 return true;
9005
9006 ScanfSpecifier fixedFS = FS;
9007 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
9008 S.getLangOpts(), S.Context);
9009
9010 unsigned Diag =
9011 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
9012 : diag::warn_format_conversion_argument_type_mismatch;
9013
9014 if (Success) {
9015 // Get the fix string from the fixed format specifier.
9016 SmallString<128> buf;
9017 llvm::raw_svector_ostream os(buf);
9018 fixedFS.toString(os);
9019
9020 EmitFormatDiagnostic(
9021 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
9022 << Ex->getType() << false << Ex->getSourceRange(),
9023 Ex->getBeginLoc(),
9024 /*IsStringLocation*/ false,
9025 getSpecifierRange(startSpecifier, specifierLen),
9026 FixItHint::CreateReplacement(
9027 getSpecifierRange(startSpecifier, specifierLen), os.str()));
9028 } else {
9029 EmitFormatDiagnostic(S.PDiag(Diag)
9030 << AT.getRepresentativeTypeName(S.Context)
9031 << Ex->getType() << false << Ex->getSourceRange(),
9032 Ex->getBeginLoc(),
9033 /*IsStringLocation*/ false,
9034 getSpecifierRange(startSpecifier, specifierLen));
9035 }
9036
9037 return true;
9038 }
9039
CheckFormatString(Sema & S,const FormatStringLiteral * FExpr,const Expr * OrigFormatExpr,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,Sema::FormatStringType Type,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg,bool IgnoreStringsWithoutSpecifiers)9040 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
9041 const Expr *OrigFormatExpr,
9042 ArrayRef<const Expr *> Args,
9043 bool HasVAListArg, unsigned format_idx,
9044 unsigned firstDataArg,
9045 Sema::FormatStringType Type,
9046 bool inFunctionCall,
9047 Sema::VariadicCallType CallType,
9048 llvm::SmallBitVector &CheckedVarArgs,
9049 UncoveredArgHandler &UncoveredArg,
9050 bool IgnoreStringsWithoutSpecifiers) {
9051 // CHECK: is the format string a wide literal?
9052 if (!FExpr->isAscii() && !FExpr->isUTF8()) {
9053 CheckFormatHandler::EmitFormatDiagnostic(
9054 S, inFunctionCall, Args[format_idx],
9055 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
9056 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9057 return;
9058 }
9059
9060 // Str - The format string. NOTE: this is NOT null-terminated!
9061 StringRef StrRef = FExpr->getString();
9062 const char *Str = StrRef.data();
9063 // Account for cases where the string literal is truncated in a declaration.
9064 const ConstantArrayType *T =
9065 S.Context.getAsConstantArrayType(FExpr->getType());
9066 assert(T && "String literal not of constant array type!");
9067 size_t TypeSize = T->getSize().getZExtValue();
9068 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9069 const unsigned numDataArgs = Args.size() - firstDataArg;
9070
9071 if (IgnoreStringsWithoutSpecifiers &&
9072 !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
9073 Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
9074 return;
9075
9076 // Emit a warning if the string literal is truncated and does not contain an
9077 // embedded null character.
9078 if (TypeSize <= StrRef.size() &&
9079 StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
9080 CheckFormatHandler::EmitFormatDiagnostic(
9081 S, inFunctionCall, Args[format_idx],
9082 S.PDiag(diag::warn_printf_format_string_not_null_terminated),
9083 FExpr->getBeginLoc(),
9084 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
9085 return;
9086 }
9087
9088 // CHECK: empty format string?
9089 if (StrLen == 0 && numDataArgs > 0) {
9090 CheckFormatHandler::EmitFormatDiagnostic(
9091 S, inFunctionCall, Args[format_idx],
9092 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
9093 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9094 return;
9095 }
9096
9097 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
9098 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
9099 Type == Sema::FST_OSTrace) {
9100 CheckPrintfHandler H(
9101 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
9102 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
9103 HasVAListArg, Args, format_idx, inFunctionCall, CallType,
9104 CheckedVarArgs, UncoveredArg);
9105
9106 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
9107 S.getLangOpts(),
9108 S.Context.getTargetInfo(),
9109 Type == Sema::FST_FreeBSDKPrintf))
9110 H.DoneProcessing();
9111 } else if (Type == Sema::FST_Scanf) {
9112 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
9113 numDataArgs, Str, HasVAListArg, Args, format_idx,
9114 inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
9115
9116 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
9117 S.getLangOpts(),
9118 S.Context.getTargetInfo()))
9119 H.DoneProcessing();
9120 } // TODO: handle other formats
9121 }
9122
FormatStringHasSArg(const StringLiteral * FExpr)9123 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
9124 // Str - The format string. NOTE: this is NOT null-terminated!
9125 StringRef StrRef = FExpr->getString();
9126 const char *Str = StrRef.data();
9127 // Account for cases where the string literal is truncated in a declaration.
9128 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
9129 assert(T && "String literal not of constant array type!");
9130 size_t TypeSize = T->getSize().getZExtValue();
9131 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9132 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
9133 getLangOpts(),
9134 Context.getTargetInfo());
9135 }
9136
9137 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
9138
9139 // Returns the related absolute value function that is larger, of 0 if one
9140 // does not exist.
getLargerAbsoluteValueFunction(unsigned AbsFunction)9141 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
9142 switch (AbsFunction) {
9143 default:
9144 return 0;
9145
9146 case Builtin::BI__builtin_abs:
9147 return Builtin::BI__builtin_labs;
9148 case Builtin::BI__builtin_labs:
9149 return Builtin::BI__builtin_llabs;
9150 case Builtin::BI__builtin_llabs:
9151 return 0;
9152
9153 case Builtin::BI__builtin_fabsf:
9154 return Builtin::BI__builtin_fabs;
9155 case Builtin::BI__builtin_fabs:
9156 return Builtin::BI__builtin_fabsl;
9157 case Builtin::BI__builtin_fabsl:
9158 return 0;
9159
9160 case Builtin::BI__builtin_cabsf:
9161 return Builtin::BI__builtin_cabs;
9162 case Builtin::BI__builtin_cabs:
9163 return Builtin::BI__builtin_cabsl;
9164 case Builtin::BI__builtin_cabsl:
9165 return 0;
9166
9167 case Builtin::BIabs:
9168 return Builtin::BIlabs;
9169 case Builtin::BIlabs:
9170 return Builtin::BIllabs;
9171 case Builtin::BIllabs:
9172 return 0;
9173
9174 case Builtin::BIfabsf:
9175 return Builtin::BIfabs;
9176 case Builtin::BIfabs:
9177 return Builtin::BIfabsl;
9178 case Builtin::BIfabsl:
9179 return 0;
9180
9181 case Builtin::BIcabsf:
9182 return Builtin::BIcabs;
9183 case Builtin::BIcabs:
9184 return Builtin::BIcabsl;
9185 case Builtin::BIcabsl:
9186 return 0;
9187 }
9188 }
9189
9190 // Returns the argument type of the absolute value function.
getAbsoluteValueArgumentType(ASTContext & Context,unsigned AbsType)9191 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
9192 unsigned AbsType) {
9193 if (AbsType == 0)
9194 return QualType();
9195
9196 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
9197 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
9198 if (Error != ASTContext::GE_None)
9199 return QualType();
9200
9201 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
9202 if (!FT)
9203 return QualType();
9204
9205 if (FT->getNumParams() != 1)
9206 return QualType();
9207
9208 return FT->getParamType(0);
9209 }
9210
9211 // Returns the best absolute value function, or zero, based on type and
9212 // current absolute value function.
getBestAbsFunction(ASTContext & Context,QualType ArgType,unsigned AbsFunctionKind)9213 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
9214 unsigned AbsFunctionKind) {
9215 unsigned BestKind = 0;
9216 uint64_t ArgSize = Context.getTypeSize(ArgType);
9217 for (unsigned Kind = AbsFunctionKind; Kind != 0;
9218 Kind = getLargerAbsoluteValueFunction(Kind)) {
9219 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
9220 if (Context.getTypeSize(ParamType) >= ArgSize) {
9221 if (BestKind == 0)
9222 BestKind = Kind;
9223 else if (Context.hasSameType(ParamType, ArgType)) {
9224 BestKind = Kind;
9225 break;
9226 }
9227 }
9228 }
9229 return BestKind;
9230 }
9231
9232 enum AbsoluteValueKind {
9233 AVK_Integer,
9234 AVK_Floating,
9235 AVK_Complex
9236 };
9237
getAbsoluteValueKind(QualType T)9238 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
9239 if (T->isIntegralOrEnumerationType())
9240 return AVK_Integer;
9241 if (T->isRealFloatingType())
9242 return AVK_Floating;
9243 if (T->isAnyComplexType())
9244 return AVK_Complex;
9245
9246 llvm_unreachable("Type not integer, floating, or complex");
9247 }
9248
9249 // Changes the absolute value function to a different type. Preserves whether
9250 // the function is a builtin.
changeAbsFunction(unsigned AbsKind,AbsoluteValueKind ValueKind)9251 static unsigned changeAbsFunction(unsigned AbsKind,
9252 AbsoluteValueKind ValueKind) {
9253 switch (ValueKind) {
9254 case AVK_Integer:
9255 switch (AbsKind) {
9256 default:
9257 return 0;
9258 case Builtin::BI__builtin_fabsf:
9259 case Builtin::BI__builtin_fabs:
9260 case Builtin::BI__builtin_fabsl:
9261 case Builtin::BI__builtin_cabsf:
9262 case Builtin::BI__builtin_cabs:
9263 case Builtin::BI__builtin_cabsl:
9264 return Builtin::BI__builtin_abs;
9265 case Builtin::BIfabsf:
9266 case Builtin::BIfabs:
9267 case Builtin::BIfabsl:
9268 case Builtin::BIcabsf:
9269 case Builtin::BIcabs:
9270 case Builtin::BIcabsl:
9271 return Builtin::BIabs;
9272 }
9273 case AVK_Floating:
9274 switch (AbsKind) {
9275 default:
9276 return 0;
9277 case Builtin::BI__builtin_abs:
9278 case Builtin::BI__builtin_labs:
9279 case Builtin::BI__builtin_llabs:
9280 case Builtin::BI__builtin_cabsf:
9281 case Builtin::BI__builtin_cabs:
9282 case Builtin::BI__builtin_cabsl:
9283 return Builtin::BI__builtin_fabsf;
9284 case Builtin::BIabs:
9285 case Builtin::BIlabs:
9286 case Builtin::BIllabs:
9287 case Builtin::BIcabsf:
9288 case Builtin::BIcabs:
9289 case Builtin::BIcabsl:
9290 return Builtin::BIfabsf;
9291 }
9292 case AVK_Complex:
9293 switch (AbsKind) {
9294 default:
9295 return 0;
9296 case Builtin::BI__builtin_abs:
9297 case Builtin::BI__builtin_labs:
9298 case Builtin::BI__builtin_llabs:
9299 case Builtin::BI__builtin_fabsf:
9300 case Builtin::BI__builtin_fabs:
9301 case Builtin::BI__builtin_fabsl:
9302 return Builtin::BI__builtin_cabsf;
9303 case Builtin::BIabs:
9304 case Builtin::BIlabs:
9305 case Builtin::BIllabs:
9306 case Builtin::BIfabsf:
9307 case Builtin::BIfabs:
9308 case Builtin::BIfabsl:
9309 return Builtin::BIcabsf;
9310 }
9311 }
9312 llvm_unreachable("Unable to convert function");
9313 }
9314
getAbsoluteValueFunctionKind(const FunctionDecl * FDecl)9315 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
9316 const IdentifierInfo *FnInfo = FDecl->getIdentifier();
9317 if (!FnInfo)
9318 return 0;
9319
9320 switch (FDecl->getBuiltinID()) {
9321 default:
9322 return 0;
9323 case Builtin::BI__builtin_abs:
9324 case Builtin::BI__builtin_fabs:
9325 case Builtin::BI__builtin_fabsf:
9326 case Builtin::BI__builtin_fabsl:
9327 case Builtin::BI__builtin_labs:
9328 case Builtin::BI__builtin_llabs:
9329 case Builtin::BI__builtin_cabs:
9330 case Builtin::BI__builtin_cabsf:
9331 case Builtin::BI__builtin_cabsl:
9332 case Builtin::BIabs:
9333 case Builtin::BIlabs:
9334 case Builtin::BIllabs:
9335 case Builtin::BIfabs:
9336 case Builtin::BIfabsf:
9337 case Builtin::BIfabsl:
9338 case Builtin::BIcabs:
9339 case Builtin::BIcabsf:
9340 case Builtin::BIcabsl:
9341 return FDecl->getBuiltinID();
9342 }
9343 llvm_unreachable("Unknown Builtin type");
9344 }
9345
9346 // If the replacement is valid, emit a note with replacement function.
9347 // Additionally, suggest including the proper header if not already included.
emitReplacement(Sema & S,SourceLocation Loc,SourceRange Range,unsigned AbsKind,QualType ArgType)9348 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
9349 unsigned AbsKind, QualType ArgType) {
9350 bool EmitHeaderHint = true;
9351 const char *HeaderName = nullptr;
9352 const char *FunctionName = nullptr;
9353 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
9354 FunctionName = "std::abs";
9355 if (ArgType->isIntegralOrEnumerationType()) {
9356 HeaderName = "cstdlib";
9357 } else if (ArgType->isRealFloatingType()) {
9358 HeaderName = "cmath";
9359 } else {
9360 llvm_unreachable("Invalid Type");
9361 }
9362
9363 // Lookup all std::abs
9364 if (NamespaceDecl *Std = S.getStdNamespace()) {
9365 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
9366 R.suppressDiagnostics();
9367 S.LookupQualifiedName(R, Std);
9368
9369 for (const auto *I : R) {
9370 const FunctionDecl *FDecl = nullptr;
9371 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
9372 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
9373 } else {
9374 FDecl = dyn_cast<FunctionDecl>(I);
9375 }
9376 if (!FDecl)
9377 continue;
9378
9379 // Found std::abs(), check that they are the right ones.
9380 if (FDecl->getNumParams() != 1)
9381 continue;
9382
9383 // Check that the parameter type can handle the argument.
9384 QualType ParamType = FDecl->getParamDecl(0)->getType();
9385 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
9386 S.Context.getTypeSize(ArgType) <=
9387 S.Context.getTypeSize(ParamType)) {
9388 // Found a function, don't need the header hint.
9389 EmitHeaderHint = false;
9390 break;
9391 }
9392 }
9393 }
9394 } else {
9395 FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
9396 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
9397
9398 if (HeaderName) {
9399 DeclarationName DN(&S.Context.Idents.get(FunctionName));
9400 LookupResult R(S, DN, Loc, Sema::LookupAnyName);
9401 R.suppressDiagnostics();
9402 S.LookupName(R, S.getCurScope());
9403
9404 if (R.isSingleResult()) {
9405 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
9406 if (FD && FD->getBuiltinID() == AbsKind) {
9407 EmitHeaderHint = false;
9408 } else {
9409 return;
9410 }
9411 } else if (!R.empty()) {
9412 return;
9413 }
9414 }
9415 }
9416
9417 S.Diag(Loc, diag::note_replace_abs_function)
9418 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
9419
9420 if (!HeaderName)
9421 return;
9422
9423 if (!EmitHeaderHint)
9424 return;
9425
9426 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
9427 << FunctionName;
9428 }
9429
9430 template <std::size_t StrLen>
IsStdFunction(const FunctionDecl * FDecl,const char (& Str)[StrLen])9431 static bool IsStdFunction(const FunctionDecl *FDecl,
9432 const char (&Str)[StrLen]) {
9433 if (!FDecl)
9434 return false;
9435 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
9436 return false;
9437 if (!FDecl->isInStdNamespace())
9438 return false;
9439
9440 return true;
9441 }
9442
9443 // Warn when using the wrong abs() function.
CheckAbsoluteValueFunction(const CallExpr * Call,const FunctionDecl * FDecl)9444 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
9445 const FunctionDecl *FDecl) {
9446 if (Call->getNumArgs() != 1)
9447 return;
9448
9449 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
9450 bool IsStdAbs = IsStdFunction(FDecl, "abs");
9451 if (AbsKind == 0 && !IsStdAbs)
9452 return;
9453
9454 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9455 QualType ParamType = Call->getArg(0)->getType();
9456
9457 // Unsigned types cannot be negative. Suggest removing the absolute value
9458 // function call.
9459 if (ArgType->isUnsignedIntegerType()) {
9460 const char *FunctionName =
9461 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
9462 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
9463 Diag(Call->getExprLoc(), diag::note_remove_abs)
9464 << FunctionName
9465 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
9466 return;
9467 }
9468
9469 // Taking the absolute value of a pointer is very suspicious, they probably
9470 // wanted to index into an array, dereference a pointer, call a function, etc.
9471 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
9472 unsigned DiagType = 0;
9473 if (ArgType->isFunctionType())
9474 DiagType = 1;
9475 else if (ArgType->isArrayType())
9476 DiagType = 2;
9477
9478 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
9479 return;
9480 }
9481
9482 // std::abs has overloads which prevent most of the absolute value problems
9483 // from occurring.
9484 if (IsStdAbs)
9485 return;
9486
9487 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
9488 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
9489
9490 // The argument and parameter are the same kind. Check if they are the right
9491 // size.
9492 if (ArgValueKind == ParamValueKind) {
9493 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
9494 return;
9495
9496 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
9497 Diag(Call->getExprLoc(), diag::warn_abs_too_small)
9498 << FDecl << ArgType << ParamType;
9499
9500 if (NewAbsKind == 0)
9501 return;
9502
9503 emitReplacement(*this, Call->getExprLoc(),
9504 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9505 return;
9506 }
9507
9508 // ArgValueKind != ParamValueKind
9509 // The wrong type of absolute value function was used. Attempt to find the
9510 // proper one.
9511 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
9512 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
9513 if (NewAbsKind == 0)
9514 return;
9515
9516 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
9517 << FDecl << ParamValueKind << ArgValueKind;
9518
9519 emitReplacement(*this, Call->getExprLoc(),
9520 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9521 }
9522
9523 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
CheckMaxUnsignedZero(const CallExpr * Call,const FunctionDecl * FDecl)9524 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
9525 const FunctionDecl *FDecl) {
9526 if (!Call || !FDecl) return;
9527
9528 // Ignore template specializations and macros.
9529 if (inTemplateInstantiation()) return;
9530 if (Call->getExprLoc().isMacroID()) return;
9531
9532 // Only care about the one template argument, two function parameter std::max
9533 if (Call->getNumArgs() != 2) return;
9534 if (!IsStdFunction(FDecl, "max")) return;
9535 const auto * ArgList = FDecl->getTemplateSpecializationArgs();
9536 if (!ArgList) return;
9537 if (ArgList->size() != 1) return;
9538
9539 // Check that template type argument is unsigned integer.
9540 const auto& TA = ArgList->get(0);
9541 if (TA.getKind() != TemplateArgument::Type) return;
9542 QualType ArgType = TA.getAsType();
9543 if (!ArgType->isUnsignedIntegerType()) return;
9544
9545 // See if either argument is a literal zero.
9546 auto IsLiteralZeroArg = [](const Expr* E) -> bool {
9547 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
9548 if (!MTE) return false;
9549 const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
9550 if (!Num) return false;
9551 if (Num->getValue() != 0) return false;
9552 return true;
9553 };
9554
9555 const Expr *FirstArg = Call->getArg(0);
9556 const Expr *SecondArg = Call->getArg(1);
9557 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
9558 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
9559
9560 // Only warn when exactly one argument is zero.
9561 if (IsFirstArgZero == IsSecondArgZero) return;
9562
9563 SourceRange FirstRange = FirstArg->getSourceRange();
9564 SourceRange SecondRange = SecondArg->getSourceRange();
9565
9566 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
9567
9568 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
9569 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
9570
9571 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
9572 SourceRange RemovalRange;
9573 if (IsFirstArgZero) {
9574 RemovalRange = SourceRange(FirstRange.getBegin(),
9575 SecondRange.getBegin().getLocWithOffset(-1));
9576 } else {
9577 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
9578 SecondRange.getEnd());
9579 }
9580
9581 Diag(Call->getExprLoc(), diag::note_remove_max_call)
9582 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
9583 << FixItHint::CreateRemoval(RemovalRange);
9584 }
9585
9586 //===--- CHECK: Standard memory functions ---------------------------------===//
9587
9588 /// Takes the expression passed to the size_t parameter of functions
9589 /// such as memcmp, strncat, etc and warns if it's a comparison.
9590 ///
9591 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
CheckMemorySizeofForComparison(Sema & S,const Expr * E,IdentifierInfo * FnName,SourceLocation FnLoc,SourceLocation RParenLoc)9592 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
9593 IdentifierInfo *FnName,
9594 SourceLocation FnLoc,
9595 SourceLocation RParenLoc) {
9596 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
9597 if (!Size)
9598 return false;
9599
9600 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
9601 if (!Size->isComparisonOp() && !Size->isLogicalOp())
9602 return false;
9603
9604 SourceRange SizeRange = Size->getSourceRange();
9605 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
9606 << SizeRange << FnName;
9607 S.Diag(FnLoc, diag::note_memsize_comparison_paren)
9608 << FnName
9609 << FixItHint::CreateInsertion(
9610 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
9611 << FixItHint::CreateRemoval(RParenLoc);
9612 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
9613 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
9614 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
9615 ")");
9616
9617 return true;
9618 }
9619
9620 /// Determine whether the given type is or contains a dynamic class type
9621 /// (e.g., whether it has a vtable).
getContainedDynamicClass(QualType T,bool & IsContained)9622 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
9623 bool &IsContained) {
9624 // Look through array types while ignoring qualifiers.
9625 const Type *Ty = T->getBaseElementTypeUnsafe();
9626 IsContained = false;
9627
9628 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
9629 RD = RD ? RD->getDefinition() : nullptr;
9630 if (!RD || RD->isInvalidDecl())
9631 return nullptr;
9632
9633 if (RD->isDynamicClass())
9634 return RD;
9635
9636 // Check all the fields. If any bases were dynamic, the class is dynamic.
9637 // It's impossible for a class to transitively contain itself by value, so
9638 // infinite recursion is impossible.
9639 for (auto *FD : RD->fields()) {
9640 bool SubContained;
9641 if (const CXXRecordDecl *ContainedRD =
9642 getContainedDynamicClass(FD->getType(), SubContained)) {
9643 IsContained = true;
9644 return ContainedRD;
9645 }
9646 }
9647
9648 return nullptr;
9649 }
9650
getAsSizeOfExpr(const Expr * E)9651 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
9652 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
9653 if (Unary->getKind() == UETT_SizeOf)
9654 return Unary;
9655 return nullptr;
9656 }
9657
9658 /// If E is a sizeof expression, returns its argument expression,
9659 /// otherwise returns NULL.
getSizeOfExprArg(const Expr * E)9660 static const Expr *getSizeOfExprArg(const Expr *E) {
9661 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9662 if (!SizeOf->isArgumentType())
9663 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
9664 return nullptr;
9665 }
9666
9667 /// If E is a sizeof expression, returns its argument type.
getSizeOfArgType(const Expr * E)9668 static QualType getSizeOfArgType(const Expr *E) {
9669 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9670 return SizeOf->getTypeOfArgument();
9671 return QualType();
9672 }
9673
9674 namespace {
9675
9676 struct SearchNonTrivialToInitializeField
9677 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
9678 using Super =
9679 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
9680
SearchNonTrivialToInitializeField__anon82590da91611::SearchNonTrivialToInitializeField9681 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
9682
visitWithKind__anon82590da91611::SearchNonTrivialToInitializeField9683 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
9684 SourceLocation SL) {
9685 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9686 asDerived().visitArray(PDIK, AT, SL);
9687 return;
9688 }
9689
9690 Super::visitWithKind(PDIK, FT, SL);
9691 }
9692
visitARCStrong__anon82590da91611::SearchNonTrivialToInitializeField9693 void visitARCStrong(QualType FT, SourceLocation SL) {
9694 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9695 }
visitARCWeak__anon82590da91611::SearchNonTrivialToInitializeField9696 void visitARCWeak(QualType FT, SourceLocation SL) {
9697 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9698 }
visitStruct__anon82590da91611::SearchNonTrivialToInitializeField9699 void visitStruct(QualType FT, SourceLocation SL) {
9700 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9701 visit(FD->getType(), FD->getLocation());
9702 }
visitArray__anon82590da91611::SearchNonTrivialToInitializeField9703 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
9704 const ArrayType *AT, SourceLocation SL) {
9705 visit(getContext().getBaseElementType(AT), SL);
9706 }
visitTrivial__anon82590da91611::SearchNonTrivialToInitializeField9707 void visitTrivial(QualType FT, SourceLocation SL) {}
9708
diag__anon82590da91611::SearchNonTrivialToInitializeField9709 static void diag(QualType RT, const Expr *E, Sema &S) {
9710 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
9711 }
9712
getContext__anon82590da91611::SearchNonTrivialToInitializeField9713 ASTContext &getContext() { return S.getASTContext(); }
9714
9715 const Expr *E;
9716 Sema &S;
9717 };
9718
9719 struct SearchNonTrivialToCopyField
9720 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
9721 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
9722
SearchNonTrivialToCopyField__anon82590da91611::SearchNonTrivialToCopyField9723 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
9724
visitWithKind__anon82590da91611::SearchNonTrivialToCopyField9725 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
9726 SourceLocation SL) {
9727 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9728 asDerived().visitArray(PCK, AT, SL);
9729 return;
9730 }
9731
9732 Super::visitWithKind(PCK, FT, SL);
9733 }
9734
visitARCStrong__anon82590da91611::SearchNonTrivialToCopyField9735 void visitARCStrong(QualType FT, SourceLocation SL) {
9736 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9737 }
visitARCWeak__anon82590da91611::SearchNonTrivialToCopyField9738 void visitARCWeak(QualType FT, SourceLocation SL) {
9739 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9740 }
visitStruct__anon82590da91611::SearchNonTrivialToCopyField9741 void visitStruct(QualType FT, SourceLocation SL) {
9742 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9743 visit(FD->getType(), FD->getLocation());
9744 }
visitArray__anon82590da91611::SearchNonTrivialToCopyField9745 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
9746 SourceLocation SL) {
9747 visit(getContext().getBaseElementType(AT), SL);
9748 }
preVisit__anon82590da91611::SearchNonTrivialToCopyField9749 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
9750 SourceLocation SL) {}
visitTrivial__anon82590da91611::SearchNonTrivialToCopyField9751 void visitTrivial(QualType FT, SourceLocation SL) {}
visitVolatileTrivial__anon82590da91611::SearchNonTrivialToCopyField9752 void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
9753
diag__anon82590da91611::SearchNonTrivialToCopyField9754 static void diag(QualType RT, const Expr *E, Sema &S) {
9755 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
9756 }
9757
getContext__anon82590da91611::SearchNonTrivialToCopyField9758 ASTContext &getContext() { return S.getASTContext(); }
9759
9760 const Expr *E;
9761 Sema &S;
9762 };
9763
9764 }
9765
9766 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
doesExprLikelyComputeSize(const Expr * SizeofExpr)9767 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
9768 SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
9769
9770 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
9771 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
9772 return false;
9773
9774 return doesExprLikelyComputeSize(BO->getLHS()) ||
9775 doesExprLikelyComputeSize(BO->getRHS());
9776 }
9777
9778 return getAsSizeOfExpr(SizeofExpr) != nullptr;
9779 }
9780
9781 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
9782 ///
9783 /// \code
9784 /// #define MACRO 0
9785 /// foo(MACRO);
9786 /// foo(0);
9787 /// \endcode
9788 ///
9789 /// This should return true for the first call to foo, but not for the second
9790 /// (regardless of whether foo is a macro or function).
isArgumentExpandedFromMacro(SourceManager & SM,SourceLocation CallLoc,SourceLocation ArgLoc)9791 static bool isArgumentExpandedFromMacro(SourceManager &SM,
9792 SourceLocation CallLoc,
9793 SourceLocation ArgLoc) {
9794 if (!CallLoc.isMacroID())
9795 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
9796
9797 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
9798 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
9799 }
9800
9801 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
9802 /// last two arguments transposed.
CheckMemaccessSize(Sema & S,unsigned BId,const CallExpr * Call)9803 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
9804 if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
9805 return;
9806
9807 const Expr *SizeArg =
9808 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
9809
9810 auto isLiteralZero = [](const Expr *E) {
9811 return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
9812 };
9813
9814 // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
9815 SourceLocation CallLoc = Call->getRParenLoc();
9816 SourceManager &SM = S.getSourceManager();
9817 if (isLiteralZero(SizeArg) &&
9818 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
9819
9820 SourceLocation DiagLoc = SizeArg->getExprLoc();
9821
9822 // Some platforms #define bzero to __builtin_memset. See if this is the
9823 // case, and if so, emit a better diagnostic.
9824 if (BId == Builtin::BIbzero ||
9825 (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
9826 CallLoc, SM, S.getLangOpts()) == "bzero")) {
9827 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
9828 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
9829 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
9830 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
9831 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
9832 }
9833 return;
9834 }
9835
9836 // If the second argument to a memset is a sizeof expression and the third
9837 // isn't, this is also likely an error. This should catch
9838 // 'memset(buf, sizeof(buf), 0xff)'.
9839 if (BId == Builtin::BImemset &&
9840 doesExprLikelyComputeSize(Call->getArg(1)) &&
9841 !doesExprLikelyComputeSize(Call->getArg(2))) {
9842 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
9843 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
9844 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
9845 return;
9846 }
9847 }
9848
9849 /// Check for dangerous or invalid arguments to memset().
9850 ///
9851 /// This issues warnings on known problematic, dangerous or unspecified
9852 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
9853 /// function calls.
9854 ///
9855 /// \param Call The call expression to diagnose.
CheckMemaccessArguments(const CallExpr * Call,unsigned BId,IdentifierInfo * FnName)9856 void Sema::CheckMemaccessArguments(const CallExpr *Call,
9857 unsigned BId,
9858 IdentifierInfo *FnName) {
9859 assert(BId != 0);
9860
9861 // It is possible to have a non-standard definition of memset. Validate
9862 // we have enough arguments, and if not, abort further checking.
9863 unsigned ExpectedNumArgs =
9864 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
9865 if (Call->getNumArgs() < ExpectedNumArgs)
9866 return;
9867
9868 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
9869 BId == Builtin::BIstrndup ? 1 : 2);
9870 unsigned LenArg =
9871 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
9872 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
9873
9874 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
9875 Call->getBeginLoc(), Call->getRParenLoc()))
9876 return;
9877
9878 // Catch cases like 'memset(buf, sizeof(buf), 0)'.
9879 CheckMemaccessSize(*this, BId, Call);
9880
9881 // We have special checking when the length is a sizeof expression.
9882 QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
9883 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
9884 llvm::FoldingSetNodeID SizeOfArgID;
9885
9886 // Although widely used, 'bzero' is not a standard function. Be more strict
9887 // with the argument types before allowing diagnostics and only allow the
9888 // form bzero(ptr, sizeof(...)).
9889 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9890 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
9891 return;
9892
9893 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
9894 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
9895 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
9896
9897 QualType DestTy = Dest->getType();
9898 QualType PointeeTy;
9899 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
9900 PointeeTy = DestPtrTy->getPointeeType();
9901
9902 // Never warn about void type pointers. This can be used to suppress
9903 // false positives.
9904 if (PointeeTy->isVoidType())
9905 continue;
9906
9907 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
9908 // actually comparing the expressions for equality. Because computing the
9909 // expression IDs can be expensive, we only do this if the diagnostic is
9910 // enabled.
9911 if (SizeOfArg &&
9912 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
9913 SizeOfArg->getExprLoc())) {
9914 // We only compute IDs for expressions if the warning is enabled, and
9915 // cache the sizeof arg's ID.
9916 if (SizeOfArgID == llvm::FoldingSetNodeID())
9917 SizeOfArg->Profile(SizeOfArgID, Context, true);
9918 llvm::FoldingSetNodeID DestID;
9919 Dest->Profile(DestID, Context, true);
9920 if (DestID == SizeOfArgID) {
9921 // TODO: For strncpy() and friends, this could suggest sizeof(dst)
9922 // over sizeof(src) as well.
9923 unsigned ActionIdx = 0; // Default is to suggest dereferencing.
9924 StringRef ReadableName = FnName->getName();
9925
9926 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
9927 if (UnaryOp->getOpcode() == UO_AddrOf)
9928 ActionIdx = 1; // If its an address-of operator, just remove it.
9929 if (!PointeeTy->isIncompleteType() &&
9930 (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
9931 ActionIdx = 2; // If the pointee's size is sizeof(char),
9932 // suggest an explicit length.
9933
9934 // If the function is defined as a builtin macro, do not show macro
9935 // expansion.
9936 SourceLocation SL = SizeOfArg->getExprLoc();
9937 SourceRange DSR = Dest->getSourceRange();
9938 SourceRange SSR = SizeOfArg->getSourceRange();
9939 SourceManager &SM = getSourceManager();
9940
9941 if (SM.isMacroArgExpansion(SL)) {
9942 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
9943 SL = SM.getSpellingLoc(SL);
9944 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
9945 SM.getSpellingLoc(DSR.getEnd()));
9946 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
9947 SM.getSpellingLoc(SSR.getEnd()));
9948 }
9949
9950 DiagRuntimeBehavior(SL, SizeOfArg,
9951 PDiag(diag::warn_sizeof_pointer_expr_memaccess)
9952 << ReadableName
9953 << PointeeTy
9954 << DestTy
9955 << DSR
9956 << SSR);
9957 DiagRuntimeBehavior(SL, SizeOfArg,
9958 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
9959 << ActionIdx
9960 << SSR);
9961
9962 break;
9963 }
9964 }
9965
9966 // Also check for cases where the sizeof argument is the exact same
9967 // type as the memory argument, and where it points to a user-defined
9968 // record type.
9969 if (SizeOfArgTy != QualType()) {
9970 if (PointeeTy->isRecordType() &&
9971 Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
9972 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
9973 PDiag(diag::warn_sizeof_pointer_type_memaccess)
9974 << FnName << SizeOfArgTy << ArgIdx
9975 << PointeeTy << Dest->getSourceRange()
9976 << LenExpr->getSourceRange());
9977 break;
9978 }
9979 }
9980 } else if (DestTy->isArrayType()) {
9981 PointeeTy = DestTy;
9982 }
9983
9984 if (PointeeTy == QualType())
9985 continue;
9986
9987 // Always complain about dynamic classes.
9988 bool IsContained;
9989 if (const CXXRecordDecl *ContainedRD =
9990 getContainedDynamicClass(PointeeTy, IsContained)) {
9991
9992 unsigned OperationType = 0;
9993 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
9994 // "overwritten" if we're warning about the destination for any call
9995 // but memcmp; otherwise a verb appropriate to the call.
9996 if (ArgIdx != 0 || IsCmp) {
9997 if (BId == Builtin::BImemcpy)
9998 OperationType = 1;
9999 else if(BId == Builtin::BImemmove)
10000 OperationType = 2;
10001 else if (IsCmp)
10002 OperationType = 3;
10003 }
10004
10005 DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10006 PDiag(diag::warn_dyn_class_memaccess)
10007 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
10008 << IsContained << ContainedRD << OperationType
10009 << Call->getCallee()->getSourceRange());
10010 } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
10011 BId != Builtin::BImemset)
10012 DiagRuntimeBehavior(
10013 Dest->getExprLoc(), Dest,
10014 PDiag(diag::warn_arc_object_memaccess)
10015 << ArgIdx << FnName << PointeeTy
10016 << Call->getCallee()->getSourceRange());
10017 else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
10018 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
10019 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
10020 DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10021 PDiag(diag::warn_cstruct_memaccess)
10022 << ArgIdx << FnName << PointeeTy << 0);
10023 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
10024 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
10025 RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
10026 DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10027 PDiag(diag::warn_cstruct_memaccess)
10028 << ArgIdx << FnName << PointeeTy << 1);
10029 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
10030 } else {
10031 continue;
10032 }
10033 } else
10034 continue;
10035
10036 DiagRuntimeBehavior(
10037 Dest->getExprLoc(), Dest,
10038 PDiag(diag::note_bad_memaccess_silence)
10039 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
10040 break;
10041 }
10042 }
10043
10044 // A little helper routine: ignore addition and subtraction of integer literals.
10045 // This intentionally does not ignore all integer constant expressions because
10046 // we don't want to remove sizeof().
ignoreLiteralAdditions(const Expr * Ex,ASTContext & Ctx)10047 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
10048 Ex = Ex->IgnoreParenCasts();
10049
10050 while (true) {
10051 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
10052 if (!BO || !BO->isAdditiveOp())
10053 break;
10054
10055 const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
10056 const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
10057
10058 if (isa<IntegerLiteral>(RHS))
10059 Ex = LHS;
10060 else if (isa<IntegerLiteral>(LHS))
10061 Ex = RHS;
10062 else
10063 break;
10064 }
10065
10066 return Ex;
10067 }
10068
isConstantSizeArrayWithMoreThanOneElement(QualType Ty,ASTContext & Context)10069 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
10070 ASTContext &Context) {
10071 // Only handle constant-sized or VLAs, but not flexible members.
10072 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
10073 // Only issue the FIXIT for arrays of size > 1.
10074 if (CAT->getSize().getSExtValue() <= 1)
10075 return false;
10076 } else if (!Ty->isVariableArrayType()) {
10077 return false;
10078 }
10079 return true;
10080 }
10081
10082 // Warn if the user has made the 'size' argument to strlcpy or strlcat
10083 // be the size of the source, instead of the destination.
CheckStrlcpycatArguments(const CallExpr * Call,IdentifierInfo * FnName)10084 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
10085 IdentifierInfo *FnName) {
10086
10087 // Don't crash if the user has the wrong number of arguments
10088 unsigned NumArgs = Call->getNumArgs();
10089 if ((NumArgs != 3) && (NumArgs != 4))
10090 return;
10091
10092 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
10093 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
10094 const Expr *CompareWithSrc = nullptr;
10095
10096 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
10097 Call->getBeginLoc(), Call->getRParenLoc()))
10098 return;
10099
10100 // Look for 'strlcpy(dst, x, sizeof(x))'
10101 if (const Expr *Ex = getSizeOfExprArg(SizeArg))
10102 CompareWithSrc = Ex;
10103 else {
10104 // Look for 'strlcpy(dst, x, strlen(x))'
10105 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
10106 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
10107 SizeCall->getNumArgs() == 1)
10108 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
10109 }
10110 }
10111
10112 if (!CompareWithSrc)
10113 return;
10114
10115 // Determine if the argument to sizeof/strlen is equal to the source
10116 // argument. In principle there's all kinds of things you could do
10117 // here, for instance creating an == expression and evaluating it with
10118 // EvaluateAsBooleanCondition, but this uses a more direct technique:
10119 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
10120 if (!SrcArgDRE)
10121 return;
10122
10123 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
10124 if (!CompareWithSrcDRE ||
10125 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
10126 return;
10127
10128 const Expr *OriginalSizeArg = Call->getArg(2);
10129 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
10130 << OriginalSizeArg->getSourceRange() << FnName;
10131
10132 // Output a FIXIT hint if the destination is an array (rather than a
10133 // pointer to an array). This could be enhanced to handle some
10134 // pointers if we know the actual size, like if DstArg is 'array+2'
10135 // we could say 'sizeof(array)-2'.
10136 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
10137 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
10138 return;
10139
10140 SmallString<128> sizeString;
10141 llvm::raw_svector_ostream OS(sizeString);
10142 OS << "sizeof(";
10143 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10144 OS << ")";
10145
10146 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
10147 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
10148 OS.str());
10149 }
10150
10151 /// Check if two expressions refer to the same declaration.
referToTheSameDecl(const Expr * E1,const Expr * E2)10152 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
10153 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
10154 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
10155 return D1->getDecl() == D2->getDecl();
10156 return false;
10157 }
10158
getStrlenExprArg(const Expr * E)10159 static const Expr *getStrlenExprArg(const Expr *E) {
10160 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
10161 const FunctionDecl *FD = CE->getDirectCallee();
10162 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
10163 return nullptr;
10164 return CE->getArg(0)->IgnoreParenCasts();
10165 }
10166 return nullptr;
10167 }
10168
10169 // Warn on anti-patterns as the 'size' argument to strncat.
10170 // The correct size argument should look like following:
10171 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
CheckStrncatArguments(const CallExpr * CE,IdentifierInfo * FnName)10172 void Sema::CheckStrncatArguments(const CallExpr *CE,
10173 IdentifierInfo *FnName) {
10174 // Don't crash if the user has the wrong number of arguments.
10175 if (CE->getNumArgs() < 3)
10176 return;
10177 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
10178 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
10179 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
10180
10181 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
10182 CE->getRParenLoc()))
10183 return;
10184
10185 // Identify common expressions, which are wrongly used as the size argument
10186 // to strncat and may lead to buffer overflows.
10187 unsigned PatternType = 0;
10188 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
10189 // - sizeof(dst)
10190 if (referToTheSameDecl(SizeOfArg, DstArg))
10191 PatternType = 1;
10192 // - sizeof(src)
10193 else if (referToTheSameDecl(SizeOfArg, SrcArg))
10194 PatternType = 2;
10195 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
10196 if (BE->getOpcode() == BO_Sub) {
10197 const Expr *L = BE->getLHS()->IgnoreParenCasts();
10198 const Expr *R = BE->getRHS()->IgnoreParenCasts();
10199 // - sizeof(dst) - strlen(dst)
10200 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
10201 referToTheSameDecl(DstArg, getStrlenExprArg(R)))
10202 PatternType = 1;
10203 // - sizeof(src) - (anything)
10204 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
10205 PatternType = 2;
10206 }
10207 }
10208
10209 if (PatternType == 0)
10210 return;
10211
10212 // Generate the diagnostic.
10213 SourceLocation SL = LenArg->getBeginLoc();
10214 SourceRange SR = LenArg->getSourceRange();
10215 SourceManager &SM = getSourceManager();
10216
10217 // If the function is defined as a builtin macro, do not show macro expansion.
10218 if (SM.isMacroArgExpansion(SL)) {
10219 SL = SM.getSpellingLoc(SL);
10220 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
10221 SM.getSpellingLoc(SR.getEnd()));
10222 }
10223
10224 // Check if the destination is an array (rather than a pointer to an array).
10225 QualType DstTy = DstArg->getType();
10226 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
10227 Context);
10228 if (!isKnownSizeArray) {
10229 if (PatternType == 1)
10230 Diag(SL, diag::warn_strncat_wrong_size) << SR;
10231 else
10232 Diag(SL, diag::warn_strncat_src_size) << SR;
10233 return;
10234 }
10235
10236 if (PatternType == 1)
10237 Diag(SL, diag::warn_strncat_large_size) << SR;
10238 else
10239 Diag(SL, diag::warn_strncat_src_size) << SR;
10240
10241 SmallString<128> sizeString;
10242 llvm::raw_svector_ostream OS(sizeString);
10243 OS << "sizeof(";
10244 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10245 OS << ") - ";
10246 OS << "strlen(";
10247 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10248 OS << ") - 1";
10249
10250 Diag(SL, diag::note_strncat_wrong_size)
10251 << FixItHint::CreateReplacement(SR, OS.str());
10252 }
10253
10254 namespace {
CheckFreeArgumentsOnLvalue(Sema & S,const std::string & CalleeName,const UnaryOperator * UnaryExpr,const VarDecl * Var)10255 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
10256 const UnaryOperator *UnaryExpr,
10257 const VarDecl *Var) {
10258 StorageClass Class = Var->getStorageClass();
10259 if (Class == StorageClass::SC_Extern ||
10260 Class == StorageClass::SC_PrivateExtern ||
10261 Var->getType()->isReferenceType())
10262 return;
10263
10264 S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
10265 << CalleeName << Var;
10266 }
10267
CheckFreeArgumentsOnLvalue(Sema & S,const std::string & CalleeName,const UnaryOperator * UnaryExpr,const Decl * D)10268 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
10269 const UnaryOperator *UnaryExpr, const Decl *D) {
10270 if (const auto *Field = dyn_cast<FieldDecl>(D))
10271 S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
10272 << CalleeName << Field;
10273 }
10274
CheckFreeArgumentsAddressof(Sema & S,const std::string & CalleeName,const UnaryOperator * UnaryExpr)10275 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
10276 const UnaryOperator *UnaryExpr) {
10277 if (UnaryExpr->getOpcode() != UnaryOperator::Opcode::UO_AddrOf)
10278 return;
10279
10280 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr()))
10281 if (const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl()))
10282 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, Var);
10283
10284 if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
10285 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
10286 Lvalue->getMemberDecl());
10287 }
10288
CheckFreeArgumentsStackArray(Sema & S,const std::string & CalleeName,const DeclRefExpr * Lvalue)10289 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
10290 const DeclRefExpr *Lvalue) {
10291 if (!Lvalue->getType()->isArrayType())
10292 return;
10293
10294 const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
10295 if (Var == nullptr)
10296 return;
10297
10298 S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
10299 << CalleeName << Var;
10300 }
10301 } // namespace
10302
10303 /// Alerts the user that they are attempting to free a non-malloc'd object.
CheckFreeArguments(const CallExpr * E)10304 void Sema::CheckFreeArguments(const CallExpr *E) {
10305 const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
10306 const std::string CalleeName =
10307 dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
10308
10309 if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
10310 return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
10311
10312 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
10313 return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
10314 }
10315
10316 void
CheckReturnValExpr(Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc,bool isObjCMethod,const AttrVec * Attrs,const FunctionDecl * FD)10317 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
10318 SourceLocation ReturnLoc,
10319 bool isObjCMethod,
10320 const AttrVec *Attrs,
10321 const FunctionDecl *FD) {
10322 // Check if the return value is null but should not be.
10323 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
10324 (!isObjCMethod && isNonNullType(Context, lhsType))) &&
10325 CheckNonNullExpr(*this, RetValExp))
10326 Diag(ReturnLoc, diag::warn_null_ret)
10327 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
10328
10329 // C++11 [basic.stc.dynamic.allocation]p4:
10330 // If an allocation function declared with a non-throwing
10331 // exception-specification fails to allocate storage, it shall return
10332 // a null pointer. Any other allocation function that fails to allocate
10333 // storage shall indicate failure only by throwing an exception [...]
10334 if (FD) {
10335 OverloadedOperatorKind Op = FD->getOverloadedOperator();
10336 if (Op == OO_New || Op == OO_Array_New) {
10337 const FunctionProtoType *Proto
10338 = FD->getType()->castAs<FunctionProtoType>();
10339 if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
10340 CheckNonNullExpr(*this, RetValExp))
10341 Diag(ReturnLoc, diag::warn_operator_new_returns_null)
10342 << FD << getLangOpts().CPlusPlus11;
10343 }
10344 }
10345
10346 // PPC MMA non-pointer types are not allowed as return type. Checking the type
10347 // here prevent the user from using a PPC MMA type as trailing return type.
10348 if (Context.getTargetInfo().getTriple().isPPC64())
10349 CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
10350 }
10351
10352 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
10353
10354 /// Check for comparisons of floating point operands using != and ==.
10355 /// Issue a warning if these are no self-comparisons, as they are not likely
10356 /// to do what the programmer intended.
CheckFloatComparison(SourceLocation Loc,Expr * LHS,Expr * RHS)10357 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
10358 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
10359 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
10360
10361 // Special case: check for x == x (which is OK).
10362 // Do not emit warnings for such cases.
10363 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
10364 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
10365 if (DRL->getDecl() == DRR->getDecl())
10366 return;
10367
10368 // Special case: check for comparisons against literals that can be exactly
10369 // represented by APFloat. In such cases, do not emit a warning. This
10370 // is a heuristic: often comparison against such literals are used to
10371 // detect if a value in a variable has not changed. This clearly can
10372 // lead to false negatives.
10373 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
10374 if (FLL->isExact())
10375 return;
10376 } else
10377 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
10378 if (FLR->isExact())
10379 return;
10380
10381 // Check for comparisons with builtin types.
10382 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
10383 if (CL->getBuiltinCallee())
10384 return;
10385
10386 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
10387 if (CR->getBuiltinCallee())
10388 return;
10389
10390 // Emit the diagnostic.
10391 Diag(Loc, diag::warn_floatingpoint_eq)
10392 << LHS->getSourceRange() << RHS->getSourceRange();
10393 }
10394
10395 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
10396 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
10397
10398 namespace {
10399
10400 /// Structure recording the 'active' range of an integer-valued
10401 /// expression.
10402 struct IntRange {
10403 /// The number of bits active in the int. Note that this includes exactly one
10404 /// sign bit if !NonNegative.
10405 unsigned Width;
10406
10407 /// True if the int is known not to have negative values. If so, all leading
10408 /// bits before Width are known zero, otherwise they are known to be the
10409 /// same as the MSB within Width.
10410 bool NonNegative;
10411
IntRange__anon82590da91911::IntRange10412 IntRange(unsigned Width, bool NonNegative)
10413 : Width(Width), NonNegative(NonNegative) {}
10414
10415 /// Number of bits excluding the sign bit.
valueBits__anon82590da91911::IntRange10416 unsigned valueBits() const {
10417 return NonNegative ? Width : Width - 1;
10418 }
10419
10420 /// Returns the range of the bool type.
forBoolType__anon82590da91911::IntRange10421 static IntRange forBoolType() {
10422 return IntRange(1, true);
10423 }
10424
10425 /// Returns the range of an opaque value of the given integral type.
forValueOfType__anon82590da91911::IntRange10426 static IntRange forValueOfType(ASTContext &C, QualType T) {
10427 return forValueOfCanonicalType(C,
10428 T->getCanonicalTypeInternal().getTypePtr());
10429 }
10430
10431 /// Returns the range of an opaque value of a canonical integral type.
forValueOfCanonicalType__anon82590da91911::IntRange10432 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
10433 assert(T->isCanonicalUnqualified());
10434
10435 if (const VectorType *VT = dyn_cast<VectorType>(T))
10436 T = VT->getElementType().getTypePtr();
10437 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10438 T = CT->getElementType().getTypePtr();
10439 if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10440 T = AT->getValueType().getTypePtr();
10441
10442 if (!C.getLangOpts().CPlusPlus) {
10443 // For enum types in C code, use the underlying datatype.
10444 if (const EnumType *ET = dyn_cast<EnumType>(T))
10445 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
10446 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
10447 // For enum types in C++, use the known bit width of the enumerators.
10448 EnumDecl *Enum = ET->getDecl();
10449 // In C++11, enums can have a fixed underlying type. Use this type to
10450 // compute the range.
10451 if (Enum->isFixed()) {
10452 return IntRange(C.getIntWidth(QualType(T, 0)),
10453 !ET->isSignedIntegerOrEnumerationType());
10454 }
10455
10456 unsigned NumPositive = Enum->getNumPositiveBits();
10457 unsigned NumNegative = Enum->getNumNegativeBits();
10458
10459 if (NumNegative == 0)
10460 return IntRange(NumPositive, true/*NonNegative*/);
10461 else
10462 return IntRange(std::max(NumPositive + 1, NumNegative),
10463 false/*NonNegative*/);
10464 }
10465
10466 if (const auto *EIT = dyn_cast<ExtIntType>(T))
10467 return IntRange(EIT->getNumBits(), EIT->isUnsigned());
10468
10469 const BuiltinType *BT = cast<BuiltinType>(T);
10470 assert(BT->isInteger());
10471
10472 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10473 }
10474
10475 /// Returns the "target" range of a canonical integral type, i.e.
10476 /// the range of values expressible in the type.
10477 ///
10478 /// This matches forValueOfCanonicalType except that enums have the
10479 /// full range of their type, not the range of their enumerators.
forTargetOfCanonicalType__anon82590da91911::IntRange10480 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
10481 assert(T->isCanonicalUnqualified());
10482
10483 if (const VectorType *VT = dyn_cast<VectorType>(T))
10484 T = VT->getElementType().getTypePtr();
10485 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10486 T = CT->getElementType().getTypePtr();
10487 if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10488 T = AT->getValueType().getTypePtr();
10489 if (const EnumType *ET = dyn_cast<EnumType>(T))
10490 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
10491
10492 if (const auto *EIT = dyn_cast<ExtIntType>(T))
10493 return IntRange(EIT->getNumBits(), EIT->isUnsigned());
10494
10495 const BuiltinType *BT = cast<BuiltinType>(T);
10496 assert(BT->isInteger());
10497
10498 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10499 }
10500
10501 /// Returns the supremum of two ranges: i.e. their conservative merge.
join__anon82590da91911::IntRange10502 static IntRange join(IntRange L, IntRange R) {
10503 bool Unsigned = L.NonNegative && R.NonNegative;
10504 return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
10505 L.NonNegative && R.NonNegative);
10506 }
10507
10508 /// Return the range of a bitwise-AND of the two ranges.
bit_and__anon82590da91911::IntRange10509 static IntRange bit_and(IntRange L, IntRange R) {
10510 unsigned Bits = std::max(L.Width, R.Width);
10511 bool NonNegative = false;
10512 if (L.NonNegative) {
10513 Bits = std::min(Bits, L.Width);
10514 NonNegative = true;
10515 }
10516 if (R.NonNegative) {
10517 Bits = std::min(Bits, R.Width);
10518 NonNegative = true;
10519 }
10520 return IntRange(Bits, NonNegative);
10521 }
10522
10523 /// Return the range of a sum of the two ranges.
sum__anon82590da91911::IntRange10524 static IntRange sum(IntRange L, IntRange R) {
10525 bool Unsigned = L.NonNegative && R.NonNegative;
10526 return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
10527 Unsigned);
10528 }
10529
10530 /// Return the range of a difference of the two ranges.
difference__anon82590da91911::IntRange10531 static IntRange difference(IntRange L, IntRange R) {
10532 // We need a 1-bit-wider range if:
10533 // 1) LHS can be negative: least value can be reduced.
10534 // 2) RHS can be negative: greatest value can be increased.
10535 bool CanWiden = !L.NonNegative || !R.NonNegative;
10536 bool Unsigned = L.NonNegative && R.Width == 0;
10537 return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
10538 !Unsigned,
10539 Unsigned);
10540 }
10541
10542 /// Return the range of a product of the two ranges.
product__anon82590da91911::IntRange10543 static IntRange product(IntRange L, IntRange R) {
10544 // If both LHS and RHS can be negative, we can form
10545 // -2^L * -2^R = 2^(L + R)
10546 // which requires L + R + 1 value bits to represent.
10547 bool CanWiden = !L.NonNegative && !R.NonNegative;
10548 bool Unsigned = L.NonNegative && R.NonNegative;
10549 return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
10550 Unsigned);
10551 }
10552
10553 /// Return the range of a remainder operation between the two ranges.
rem__anon82590da91911::IntRange10554 static IntRange rem(IntRange L, IntRange R) {
10555 // The result of a remainder can't be larger than the result of
10556 // either side. The sign of the result is the sign of the LHS.
10557 bool Unsigned = L.NonNegative;
10558 return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
10559 Unsigned);
10560 }
10561 };
10562
10563 } // namespace
10564
GetValueRange(ASTContext & C,llvm::APSInt & value,unsigned MaxWidth)10565 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
10566 unsigned MaxWidth) {
10567 if (value.isSigned() && value.isNegative())
10568 return IntRange(value.getMinSignedBits(), false);
10569
10570 if (value.getBitWidth() > MaxWidth)
10571 value = value.trunc(MaxWidth);
10572
10573 // isNonNegative() just checks the sign bit without considering
10574 // signedness.
10575 return IntRange(value.getActiveBits(), true);
10576 }
10577
GetValueRange(ASTContext & C,APValue & result,QualType Ty,unsigned MaxWidth)10578 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
10579 unsigned MaxWidth) {
10580 if (result.isInt())
10581 return GetValueRange(C, result.getInt(), MaxWidth);
10582
10583 if (result.isVector()) {
10584 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
10585 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
10586 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
10587 R = IntRange::join(R, El);
10588 }
10589 return R;
10590 }
10591
10592 if (result.isComplexInt()) {
10593 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
10594 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
10595 return IntRange::join(R, I);
10596 }
10597
10598 // This can happen with lossless casts to intptr_t of "based" lvalues.
10599 // Assume it might use arbitrary bits.
10600 // FIXME: The only reason we need to pass the type in here is to get
10601 // the sign right on this one case. It would be nice if APValue
10602 // preserved this.
10603 assert(result.isLValue() || result.isAddrLabelDiff());
10604 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
10605 }
10606
GetExprType(const Expr * E)10607 static QualType GetExprType(const Expr *E) {
10608 QualType Ty = E->getType();
10609 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
10610 Ty = AtomicRHS->getValueType();
10611 return Ty;
10612 }
10613
10614 /// Pseudo-evaluate the given integer expression, estimating the
10615 /// range of values it might take.
10616 ///
10617 /// \param MaxWidth The width to which the value will be truncated.
10618 /// \param Approximate If \c true, return a likely range for the result: in
10619 /// particular, assume that aritmetic on narrower types doesn't leave
10620 /// those types. If \c false, return a range including all possible
10621 /// result values.
GetExprRange(ASTContext & C,const Expr * E,unsigned MaxWidth,bool InConstantContext,bool Approximate)10622 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
10623 bool InConstantContext, bool Approximate) {
10624 E = E->IgnoreParens();
10625
10626 // Try a full evaluation first.
10627 Expr::EvalResult result;
10628 if (E->EvaluateAsRValue(result, C, InConstantContext))
10629 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
10630
10631 // I think we only want to look through implicit casts here; if the
10632 // user has an explicit widening cast, we should treat the value as
10633 // being of the new, wider type.
10634 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
10635 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
10636 return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
10637 Approximate);
10638
10639 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
10640
10641 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
10642 CE->getCastKind() == CK_BooleanToSignedIntegral;
10643
10644 // Assume that non-integer casts can span the full range of the type.
10645 if (!isIntegerCast)
10646 return OutputTypeRange;
10647
10648 IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
10649 std::min(MaxWidth, OutputTypeRange.Width),
10650 InConstantContext, Approximate);
10651
10652 // Bail out if the subexpr's range is as wide as the cast type.
10653 if (SubRange.Width >= OutputTypeRange.Width)
10654 return OutputTypeRange;
10655
10656 // Otherwise, we take the smaller width, and we're non-negative if
10657 // either the output type or the subexpr is.
10658 return IntRange(SubRange.Width,
10659 SubRange.NonNegative || OutputTypeRange.NonNegative);
10660 }
10661
10662 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
10663 // If we can fold the condition, just take that operand.
10664 bool CondResult;
10665 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
10666 return GetExprRange(C,
10667 CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
10668 MaxWidth, InConstantContext, Approximate);
10669
10670 // Otherwise, conservatively merge.
10671 // GetExprRange requires an integer expression, but a throw expression
10672 // results in a void type.
10673 Expr *E = CO->getTrueExpr();
10674 IntRange L = E->getType()->isVoidType()
10675 ? IntRange{0, true}
10676 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
10677 E = CO->getFalseExpr();
10678 IntRange R = E->getType()->isVoidType()
10679 ? IntRange{0, true}
10680 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
10681 return IntRange::join(L, R);
10682 }
10683
10684 if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
10685 IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
10686
10687 switch (BO->getOpcode()) {
10688 case BO_Cmp:
10689 llvm_unreachable("builtin <=> should have class type");
10690
10691 // Boolean-valued operations are single-bit and positive.
10692 case BO_LAnd:
10693 case BO_LOr:
10694 case BO_LT:
10695 case BO_GT:
10696 case BO_LE:
10697 case BO_GE:
10698 case BO_EQ:
10699 case BO_NE:
10700 return IntRange::forBoolType();
10701
10702 // The type of the assignments is the type of the LHS, so the RHS
10703 // is not necessarily the same type.
10704 case BO_MulAssign:
10705 case BO_DivAssign:
10706 case BO_RemAssign:
10707 case BO_AddAssign:
10708 case BO_SubAssign:
10709 case BO_XorAssign:
10710 case BO_OrAssign:
10711 // TODO: bitfields?
10712 return IntRange::forValueOfType(C, GetExprType(E));
10713
10714 // Simple assignments just pass through the RHS, which will have
10715 // been coerced to the LHS type.
10716 case BO_Assign:
10717 // TODO: bitfields?
10718 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
10719 Approximate);
10720
10721 // Operations with opaque sources are black-listed.
10722 case BO_PtrMemD:
10723 case BO_PtrMemI:
10724 return IntRange::forValueOfType(C, GetExprType(E));
10725
10726 // Bitwise-and uses the *infinum* of the two source ranges.
10727 case BO_And:
10728 case BO_AndAssign:
10729 Combine = IntRange::bit_and;
10730 break;
10731
10732 // Left shift gets black-listed based on a judgement call.
10733 case BO_Shl:
10734 // ...except that we want to treat '1 << (blah)' as logically
10735 // positive. It's an important idiom.
10736 if (IntegerLiteral *I
10737 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
10738 if (I->getValue() == 1) {
10739 IntRange R = IntRange::forValueOfType(C, GetExprType(E));
10740 return IntRange(R.Width, /*NonNegative*/ true);
10741 }
10742 }
10743 LLVM_FALLTHROUGH;
10744
10745 case BO_ShlAssign:
10746 return IntRange::forValueOfType(C, GetExprType(E));
10747
10748 // Right shift by a constant can narrow its left argument.
10749 case BO_Shr:
10750 case BO_ShrAssign: {
10751 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
10752 Approximate);
10753
10754 // If the shift amount is a positive constant, drop the width by
10755 // that much.
10756 if (Optional<llvm::APSInt> shift =
10757 BO->getRHS()->getIntegerConstantExpr(C)) {
10758 if (shift->isNonNegative()) {
10759 unsigned zext = shift->getZExtValue();
10760 if (zext >= L.Width)
10761 L.Width = (L.NonNegative ? 0 : 1);
10762 else
10763 L.Width -= zext;
10764 }
10765 }
10766
10767 return L;
10768 }
10769
10770 // Comma acts as its right operand.
10771 case BO_Comma:
10772 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
10773 Approximate);
10774
10775 case BO_Add:
10776 if (!Approximate)
10777 Combine = IntRange::sum;
10778 break;
10779
10780 case BO_Sub:
10781 if (BO->getLHS()->getType()->isPointerType())
10782 return IntRange::forValueOfType(C, GetExprType(E));
10783 if (!Approximate)
10784 Combine = IntRange::difference;
10785 break;
10786
10787 case BO_Mul:
10788 if (!Approximate)
10789 Combine = IntRange::product;
10790 break;
10791
10792 // The width of a division result is mostly determined by the size
10793 // of the LHS.
10794 case BO_Div: {
10795 // Don't 'pre-truncate' the operands.
10796 unsigned opWidth = C.getIntWidth(GetExprType(E));
10797 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
10798 Approximate);
10799
10800 // If the divisor is constant, use that.
10801 if (Optional<llvm::APSInt> divisor =
10802 BO->getRHS()->getIntegerConstantExpr(C)) {
10803 unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
10804 if (log2 >= L.Width)
10805 L.Width = (L.NonNegative ? 0 : 1);
10806 else
10807 L.Width = std::min(L.Width - log2, MaxWidth);
10808 return L;
10809 }
10810
10811 // Otherwise, just use the LHS's width.
10812 // FIXME: This is wrong if the LHS could be its minimal value and the RHS
10813 // could be -1.
10814 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
10815 Approximate);
10816 return IntRange(L.Width, L.NonNegative && R.NonNegative);
10817 }
10818
10819 case BO_Rem:
10820 Combine = IntRange::rem;
10821 break;
10822
10823 // The default behavior is okay for these.
10824 case BO_Xor:
10825 case BO_Or:
10826 break;
10827 }
10828
10829 // Combine the two ranges, but limit the result to the type in which we
10830 // performed the computation.
10831 QualType T = GetExprType(E);
10832 unsigned opWidth = C.getIntWidth(T);
10833 IntRange L =
10834 GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
10835 IntRange R =
10836 GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
10837 IntRange C = Combine(L, R);
10838 C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
10839 C.Width = std::min(C.Width, MaxWidth);
10840 return C;
10841 }
10842
10843 if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
10844 switch (UO->getOpcode()) {
10845 // Boolean-valued operations are white-listed.
10846 case UO_LNot:
10847 return IntRange::forBoolType();
10848
10849 // Operations with opaque sources are black-listed.
10850 case UO_Deref:
10851 case UO_AddrOf: // should be impossible
10852 return IntRange::forValueOfType(C, GetExprType(E));
10853
10854 default:
10855 return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
10856 Approximate);
10857 }
10858 }
10859
10860 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
10861 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
10862 Approximate);
10863
10864 if (const auto *BitField = E->getSourceBitField())
10865 return IntRange(BitField->getBitWidthValue(C),
10866 BitField->getType()->isUnsignedIntegerOrEnumerationType());
10867
10868 return IntRange::forValueOfType(C, GetExprType(E));
10869 }
10870
GetExprRange(ASTContext & C,const Expr * E,bool InConstantContext,bool Approximate)10871 static IntRange GetExprRange(ASTContext &C, const Expr *E,
10872 bool InConstantContext, bool Approximate) {
10873 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
10874 Approximate);
10875 }
10876
10877 /// Checks whether the given value, which currently has the given
10878 /// source semantics, has the same value when coerced through the
10879 /// target semantics.
IsSameFloatAfterCast(const llvm::APFloat & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)10880 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
10881 const llvm::fltSemantics &Src,
10882 const llvm::fltSemantics &Tgt) {
10883 llvm::APFloat truncated = value;
10884
10885 bool ignored;
10886 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
10887 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
10888
10889 return truncated.bitwiseIsEqual(value);
10890 }
10891
10892 /// Checks whether the given value, which currently has the given
10893 /// source semantics, has the same value when coerced through the
10894 /// target semantics.
10895 ///
10896 /// The value might be a vector of floats (or a complex number).
IsSameFloatAfterCast(const APValue & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)10897 static bool IsSameFloatAfterCast(const APValue &value,
10898 const llvm::fltSemantics &Src,
10899 const llvm::fltSemantics &Tgt) {
10900 if (value.isFloat())
10901 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
10902
10903 if (value.isVector()) {
10904 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
10905 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
10906 return false;
10907 return true;
10908 }
10909
10910 assert(value.isComplexFloat());
10911 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
10912 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
10913 }
10914
10915 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
10916 bool IsListInit = false);
10917
IsEnumConstOrFromMacro(Sema & S,Expr * E)10918 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
10919 // Suppress cases where we are comparing against an enum constant.
10920 if (const DeclRefExpr *DR =
10921 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
10922 if (isa<EnumConstantDecl>(DR->getDecl()))
10923 return true;
10924
10925 // Suppress cases where the value is expanded from a macro, unless that macro
10926 // is how a language represents a boolean literal. This is the case in both C
10927 // and Objective-C.
10928 SourceLocation BeginLoc = E->getBeginLoc();
10929 if (BeginLoc.isMacroID()) {
10930 StringRef MacroName = Lexer::getImmediateMacroName(
10931 BeginLoc, S.getSourceManager(), S.getLangOpts());
10932 return MacroName != "YES" && MacroName != "NO" &&
10933 MacroName != "true" && MacroName != "false";
10934 }
10935
10936 return false;
10937 }
10938
isKnownToHaveUnsignedValue(Expr * E)10939 static bool isKnownToHaveUnsignedValue(Expr *E) {
10940 return E->getType()->isIntegerType() &&
10941 (!E->getType()->isSignedIntegerType() ||
10942 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
10943 }
10944
10945 namespace {
10946 /// The promoted range of values of a type. In general this has the
10947 /// following structure:
10948 ///
10949 /// |-----------| . . . |-----------|
10950 /// ^ ^ ^ ^
10951 /// Min HoleMin HoleMax Max
10952 ///
10953 /// ... where there is only a hole if a signed type is promoted to unsigned
10954 /// (in which case Min and Max are the smallest and largest representable
10955 /// values).
10956 struct PromotedRange {
10957 // Min, or HoleMax if there is a hole.
10958 llvm::APSInt PromotedMin;
10959 // Max, or HoleMin if there is a hole.
10960 llvm::APSInt PromotedMax;
10961
PromotedRange__anon82590da91a11::PromotedRange10962 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
10963 if (R.Width == 0)
10964 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
10965 else if (R.Width >= BitWidth && !Unsigned) {
10966 // Promotion made the type *narrower*. This happens when promoting
10967 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
10968 // Treat all values of 'signed int' as being in range for now.
10969 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
10970 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
10971 } else {
10972 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
10973 .extOrTrunc(BitWidth);
10974 PromotedMin.setIsUnsigned(Unsigned);
10975
10976 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
10977 .extOrTrunc(BitWidth);
10978 PromotedMax.setIsUnsigned(Unsigned);
10979 }
10980 }
10981
10982 // Determine whether this range is contiguous (has no hole).
isContiguous__anon82590da91a11::PromotedRange10983 bool isContiguous() const { return PromotedMin <= PromotedMax; }
10984
10985 // Where a constant value is within the range.
10986 enum ComparisonResult {
10987 LT = 0x1,
10988 LE = 0x2,
10989 GT = 0x4,
10990 GE = 0x8,
10991 EQ = 0x10,
10992 NE = 0x20,
10993 InRangeFlag = 0x40,
10994
10995 Less = LE | LT | NE,
10996 Min = LE | InRangeFlag,
10997 InRange = InRangeFlag,
10998 Max = GE | InRangeFlag,
10999 Greater = GE | GT | NE,
11000
11001 OnlyValue = LE | GE | EQ | InRangeFlag,
11002 InHole = NE
11003 };
11004
compare__anon82590da91a11::PromotedRange11005 ComparisonResult compare(const llvm::APSInt &Value) const {
11006 assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
11007 Value.isUnsigned() == PromotedMin.isUnsigned());
11008 if (!isContiguous()) {
11009 assert(Value.isUnsigned() && "discontiguous range for signed compare");
11010 if (Value.isMinValue()) return Min;
11011 if (Value.isMaxValue()) return Max;
11012 if (Value >= PromotedMin) return InRange;
11013 if (Value <= PromotedMax) return InRange;
11014 return InHole;
11015 }
11016
11017 switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
11018 case -1: return Less;
11019 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
11020 case 1:
11021 switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
11022 case -1: return InRange;
11023 case 0: return Max;
11024 case 1: return Greater;
11025 }
11026 }
11027
11028 llvm_unreachable("impossible compare result");
11029 }
11030
11031 static llvm::Optional<StringRef>
constantValue__anon82590da91a11::PromotedRange11032 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
11033 if (Op == BO_Cmp) {
11034 ComparisonResult LTFlag = LT, GTFlag = GT;
11035 if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
11036
11037 if (R & EQ) return StringRef("'std::strong_ordering::equal'");
11038 if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
11039 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
11040 return llvm::None;
11041 }
11042
11043 ComparisonResult TrueFlag, FalseFlag;
11044 if (Op == BO_EQ) {
11045 TrueFlag = EQ;
11046 FalseFlag = NE;
11047 } else if (Op == BO_NE) {
11048 TrueFlag = NE;
11049 FalseFlag = EQ;
11050 } else {
11051 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
11052 TrueFlag = LT;
11053 FalseFlag = GE;
11054 } else {
11055 TrueFlag = GT;
11056 FalseFlag = LE;
11057 }
11058 if (Op == BO_GE || Op == BO_LE)
11059 std::swap(TrueFlag, FalseFlag);
11060 }
11061 if (R & TrueFlag)
11062 return StringRef("true");
11063 if (R & FalseFlag)
11064 return StringRef("false");
11065 return llvm::None;
11066 }
11067 };
11068 }
11069
HasEnumType(Expr * E)11070 static bool HasEnumType(Expr *E) {
11071 // Strip off implicit integral promotions.
11072 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11073 if (ICE->getCastKind() != CK_IntegralCast &&
11074 ICE->getCastKind() != CK_NoOp)
11075 break;
11076 E = ICE->getSubExpr();
11077 }
11078
11079 return E->getType()->isEnumeralType();
11080 }
11081
classifyConstantValue(Expr * Constant)11082 static int classifyConstantValue(Expr *Constant) {
11083 // The values of this enumeration are used in the diagnostics
11084 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
11085 enum ConstantValueKind {
11086 Miscellaneous = 0,
11087 LiteralTrue,
11088 LiteralFalse
11089 };
11090 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
11091 return BL->getValue() ? ConstantValueKind::LiteralTrue
11092 : ConstantValueKind::LiteralFalse;
11093 return ConstantValueKind::Miscellaneous;
11094 }
11095
CheckTautologicalComparison(Sema & S,BinaryOperator * E,Expr * Constant,Expr * Other,const llvm::APSInt & Value,bool RhsConstant)11096 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
11097 Expr *Constant, Expr *Other,
11098 const llvm::APSInt &Value,
11099 bool RhsConstant) {
11100 if (S.inTemplateInstantiation())
11101 return false;
11102
11103 Expr *OriginalOther = Other;
11104
11105 Constant = Constant->IgnoreParenImpCasts();
11106 Other = Other->IgnoreParenImpCasts();
11107
11108 // Suppress warnings on tautological comparisons between values of the same
11109 // enumeration type. There are only two ways we could warn on this:
11110 // - If the constant is outside the range of representable values of
11111 // the enumeration. In such a case, we should warn about the cast
11112 // to enumeration type, not about the comparison.
11113 // - If the constant is the maximum / minimum in-range value. For an
11114 // enumeratin type, such comparisons can be meaningful and useful.
11115 if (Constant->getType()->isEnumeralType() &&
11116 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
11117 return false;
11118
11119 IntRange OtherValueRange = GetExprRange(
11120 S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
11121
11122 QualType OtherT = Other->getType();
11123 if (const auto *AT = OtherT->getAs<AtomicType>())
11124 OtherT = AT->getValueType();
11125 IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
11126
11127 // Special case for ObjC BOOL on targets where its a typedef for a signed char
11128 // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
11129 bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
11130 S.NSAPIObj->isObjCBOOLType(OtherT) &&
11131 OtherT->isSpecificBuiltinType(BuiltinType::SChar);
11132
11133 // Whether we're treating Other as being a bool because of the form of
11134 // expression despite it having another type (typically 'int' in C).
11135 bool OtherIsBooleanDespiteType =
11136 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
11137 if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
11138 OtherTypeRange = OtherValueRange = IntRange::forBoolType();
11139
11140 // Check if all values in the range of possible values of this expression
11141 // lead to the same comparison outcome.
11142 PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
11143 Value.isUnsigned());
11144 auto Cmp = OtherPromotedValueRange.compare(Value);
11145 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
11146 if (!Result)
11147 return false;
11148
11149 // Also consider the range determined by the type alone. This allows us to
11150 // classify the warning under the proper diagnostic group.
11151 bool TautologicalTypeCompare = false;
11152 {
11153 PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
11154 Value.isUnsigned());
11155 auto TypeCmp = OtherPromotedTypeRange.compare(Value);
11156 if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
11157 RhsConstant)) {
11158 TautologicalTypeCompare = true;
11159 Cmp = TypeCmp;
11160 Result = TypeResult;
11161 }
11162 }
11163
11164 // Don't warn if the non-constant operand actually always evaluates to the
11165 // same value.
11166 if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
11167 return false;
11168
11169 // Suppress the diagnostic for an in-range comparison if the constant comes
11170 // from a macro or enumerator. We don't want to diagnose
11171 //
11172 // some_long_value <= INT_MAX
11173 //
11174 // when sizeof(int) == sizeof(long).
11175 bool InRange = Cmp & PromotedRange::InRangeFlag;
11176 if (InRange && IsEnumConstOrFromMacro(S, Constant))
11177 return false;
11178
11179 // A comparison of an unsigned bit-field against 0 is really a type problem,
11180 // even though at the type level the bit-field might promote to 'signed int'.
11181 if (Other->refersToBitField() && InRange && Value == 0 &&
11182 Other->getType()->isUnsignedIntegerOrEnumerationType())
11183 TautologicalTypeCompare = true;
11184
11185 // If this is a comparison to an enum constant, include that
11186 // constant in the diagnostic.
11187 const EnumConstantDecl *ED = nullptr;
11188 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
11189 ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
11190
11191 // Should be enough for uint128 (39 decimal digits)
11192 SmallString<64> PrettySourceValue;
11193 llvm::raw_svector_ostream OS(PrettySourceValue);
11194 if (ED) {
11195 OS << '\'' << *ED << "' (" << Value << ")";
11196 } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
11197 Constant->IgnoreParenImpCasts())) {
11198 OS << (BL->getValue() ? "YES" : "NO");
11199 } else {
11200 OS << Value;
11201 }
11202
11203 if (!TautologicalTypeCompare) {
11204 S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
11205 << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
11206 << E->getOpcodeStr() << OS.str() << *Result
11207 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11208 return true;
11209 }
11210
11211 if (IsObjCSignedCharBool) {
11212 S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11213 S.PDiag(diag::warn_tautological_compare_objc_bool)
11214 << OS.str() << *Result);
11215 return true;
11216 }
11217
11218 // FIXME: We use a somewhat different formatting for the in-range cases and
11219 // cases involving boolean values for historical reasons. We should pick a
11220 // consistent way of presenting these diagnostics.
11221 if (!InRange || Other->isKnownToHaveBooleanValue()) {
11222
11223 S.DiagRuntimeBehavior(
11224 E->getOperatorLoc(), E,
11225 S.PDiag(!InRange ? diag::warn_out_of_range_compare
11226 : diag::warn_tautological_bool_compare)
11227 << OS.str() << classifyConstantValue(Constant) << OtherT
11228 << OtherIsBooleanDespiteType << *Result
11229 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
11230 } else {
11231 unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
11232 ? (HasEnumType(OriginalOther)
11233 ? diag::warn_unsigned_enum_always_true_comparison
11234 : diag::warn_unsigned_always_true_comparison)
11235 : diag::warn_tautological_constant_compare;
11236
11237 S.Diag(E->getOperatorLoc(), Diag)
11238 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
11239 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11240 }
11241
11242 return true;
11243 }
11244
11245 /// Analyze the operands of the given comparison. Implements the
11246 /// fallback case from AnalyzeComparison.
AnalyzeImpConvsInComparison(Sema & S,BinaryOperator * E)11247 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
11248 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11249 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11250 }
11251
11252 /// Implements -Wsign-compare.
11253 ///
11254 /// \param E the binary operator to check for warnings
AnalyzeComparison(Sema & S,BinaryOperator * E)11255 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
11256 // The type the comparison is being performed in.
11257 QualType T = E->getLHS()->getType();
11258
11259 // Only analyze comparison operators where both sides have been converted to
11260 // the same type.
11261 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
11262 return AnalyzeImpConvsInComparison(S, E);
11263
11264 // Don't analyze value-dependent comparisons directly.
11265 if (E->isValueDependent())
11266 return AnalyzeImpConvsInComparison(S, E);
11267
11268 Expr *LHS = E->getLHS();
11269 Expr *RHS = E->getRHS();
11270
11271 if (T->isIntegralType(S.Context)) {
11272 Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
11273 Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
11274
11275 // We don't care about expressions whose result is a constant.
11276 if (RHSValue && LHSValue)
11277 return AnalyzeImpConvsInComparison(S, E);
11278
11279 // We only care about expressions where just one side is literal
11280 if ((bool)RHSValue ^ (bool)LHSValue) {
11281 // Is the constant on the RHS or LHS?
11282 const bool RhsConstant = (bool)RHSValue;
11283 Expr *Const = RhsConstant ? RHS : LHS;
11284 Expr *Other = RhsConstant ? LHS : RHS;
11285 const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
11286
11287 // Check whether an integer constant comparison results in a value
11288 // of 'true' or 'false'.
11289 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
11290 return AnalyzeImpConvsInComparison(S, E);
11291 }
11292 }
11293
11294 if (!T->hasUnsignedIntegerRepresentation()) {
11295 // We don't do anything special if this isn't an unsigned integral
11296 // comparison: we're only interested in integral comparisons, and
11297 // signed comparisons only happen in cases we don't care to warn about.
11298 return AnalyzeImpConvsInComparison(S, E);
11299 }
11300
11301 LHS = LHS->IgnoreParenImpCasts();
11302 RHS = RHS->IgnoreParenImpCasts();
11303
11304 if (!S.getLangOpts().CPlusPlus) {
11305 // Avoid warning about comparison of integers with different signs when
11306 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
11307 // the type of `E`.
11308 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
11309 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11310 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
11311 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11312 }
11313
11314 // Check to see if one of the (unmodified) operands is of different
11315 // signedness.
11316 Expr *signedOperand, *unsignedOperand;
11317 if (LHS->getType()->hasSignedIntegerRepresentation()) {
11318 assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
11319 "unsigned comparison between two signed integer expressions?");
11320 signedOperand = LHS;
11321 unsignedOperand = RHS;
11322 } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
11323 signedOperand = RHS;
11324 unsignedOperand = LHS;
11325 } else {
11326 return AnalyzeImpConvsInComparison(S, E);
11327 }
11328
11329 // Otherwise, calculate the effective range of the signed operand.
11330 IntRange signedRange = GetExprRange(
11331 S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
11332
11333 // Go ahead and analyze implicit conversions in the operands. Note
11334 // that we skip the implicit conversions on both sides.
11335 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
11336 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
11337
11338 // If the signed range is non-negative, -Wsign-compare won't fire.
11339 if (signedRange.NonNegative)
11340 return;
11341
11342 // For (in)equality comparisons, if the unsigned operand is a
11343 // constant which cannot collide with a overflowed signed operand,
11344 // then reinterpreting the signed operand as unsigned will not
11345 // change the result of the comparison.
11346 if (E->isEqualityOp()) {
11347 unsigned comparisonWidth = S.Context.getIntWidth(T);
11348 IntRange unsignedRange =
11349 GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
11350 /*Approximate*/ true);
11351
11352 // We should never be unable to prove that the unsigned operand is
11353 // non-negative.
11354 assert(unsignedRange.NonNegative && "unsigned range includes negative?");
11355
11356 if (unsignedRange.Width < comparisonWidth)
11357 return;
11358 }
11359
11360 S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11361 S.PDiag(diag::warn_mixed_sign_comparison)
11362 << LHS->getType() << RHS->getType()
11363 << LHS->getSourceRange() << RHS->getSourceRange());
11364 }
11365
11366 /// Analyzes an attempt to assign the given value to a bitfield.
11367 ///
11368 /// Returns true if there was something fishy about the attempt.
AnalyzeBitFieldAssignment(Sema & S,FieldDecl * Bitfield,Expr * Init,SourceLocation InitLoc)11369 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
11370 SourceLocation InitLoc) {
11371 assert(Bitfield->isBitField());
11372 if (Bitfield->isInvalidDecl())
11373 return false;
11374
11375 // White-list bool bitfields.
11376 QualType BitfieldType = Bitfield->getType();
11377 if (BitfieldType->isBooleanType())
11378 return false;
11379
11380 if (BitfieldType->isEnumeralType()) {
11381 EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
11382 // If the underlying enum type was not explicitly specified as an unsigned
11383 // type and the enum contain only positive values, MSVC++ will cause an
11384 // inconsistency by storing this as a signed type.
11385 if (S.getLangOpts().CPlusPlus11 &&
11386 !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
11387 BitfieldEnumDecl->getNumPositiveBits() > 0 &&
11388 BitfieldEnumDecl->getNumNegativeBits() == 0) {
11389 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
11390 << BitfieldEnumDecl;
11391 }
11392 }
11393
11394 if (Bitfield->getType()->isBooleanType())
11395 return false;
11396
11397 // Ignore value- or type-dependent expressions.
11398 if (Bitfield->getBitWidth()->isValueDependent() ||
11399 Bitfield->getBitWidth()->isTypeDependent() ||
11400 Init->isValueDependent() ||
11401 Init->isTypeDependent())
11402 return false;
11403
11404 Expr *OriginalInit = Init->IgnoreParenImpCasts();
11405 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
11406
11407 Expr::EvalResult Result;
11408 if (!OriginalInit->EvaluateAsInt(Result, S.Context,
11409 Expr::SE_AllowSideEffects)) {
11410 // The RHS is not constant. If the RHS has an enum type, make sure the
11411 // bitfield is wide enough to hold all the values of the enum without
11412 // truncation.
11413 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
11414 EnumDecl *ED = EnumTy->getDecl();
11415 bool SignedBitfield = BitfieldType->isSignedIntegerType();
11416
11417 // Enum types are implicitly signed on Windows, so check if there are any
11418 // negative enumerators to see if the enum was intended to be signed or
11419 // not.
11420 bool SignedEnum = ED->getNumNegativeBits() > 0;
11421
11422 // Check for surprising sign changes when assigning enum values to a
11423 // bitfield of different signedness. If the bitfield is signed and we
11424 // have exactly the right number of bits to store this unsigned enum,
11425 // suggest changing the enum to an unsigned type. This typically happens
11426 // on Windows where unfixed enums always use an underlying type of 'int'.
11427 unsigned DiagID = 0;
11428 if (SignedEnum && !SignedBitfield) {
11429 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
11430 } else if (SignedBitfield && !SignedEnum &&
11431 ED->getNumPositiveBits() == FieldWidth) {
11432 DiagID = diag::warn_signed_bitfield_enum_conversion;
11433 }
11434
11435 if (DiagID) {
11436 S.Diag(InitLoc, DiagID) << Bitfield << ED;
11437 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
11438 SourceRange TypeRange =
11439 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
11440 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
11441 << SignedEnum << TypeRange;
11442 }
11443
11444 // Compute the required bitwidth. If the enum has negative values, we need
11445 // one more bit than the normal number of positive bits to represent the
11446 // sign bit.
11447 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
11448 ED->getNumNegativeBits())
11449 : ED->getNumPositiveBits();
11450
11451 // Check the bitwidth.
11452 if (BitsNeeded > FieldWidth) {
11453 Expr *WidthExpr = Bitfield->getBitWidth();
11454 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
11455 << Bitfield << ED;
11456 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
11457 << BitsNeeded << ED << WidthExpr->getSourceRange();
11458 }
11459 }
11460
11461 return false;
11462 }
11463
11464 llvm::APSInt Value = Result.Val.getInt();
11465
11466 unsigned OriginalWidth = Value.getBitWidth();
11467
11468 if (!Value.isSigned() || Value.isNegative())
11469 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
11470 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
11471 OriginalWidth = Value.getMinSignedBits();
11472
11473 if (OriginalWidth <= FieldWidth)
11474 return false;
11475
11476 // Compute the value which the bitfield will contain.
11477 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
11478 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
11479
11480 // Check whether the stored value is equal to the original value.
11481 TruncatedValue = TruncatedValue.extend(OriginalWidth);
11482 if (llvm::APSInt::isSameValue(Value, TruncatedValue))
11483 return false;
11484
11485 // Special-case bitfields of width 1: booleans are naturally 0/1, and
11486 // therefore don't strictly fit into a signed bitfield of width 1.
11487 if (FieldWidth == 1 && Value == 1)
11488 return false;
11489
11490 std::string PrettyValue = Value.toString(10);
11491 std::string PrettyTrunc = TruncatedValue.toString(10);
11492
11493 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
11494 << PrettyValue << PrettyTrunc << OriginalInit->getType()
11495 << Init->getSourceRange();
11496
11497 return true;
11498 }
11499
11500 /// Analyze the given simple or compound assignment for warning-worthy
11501 /// operations.
AnalyzeAssignment(Sema & S,BinaryOperator * E)11502 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
11503 // Just recurse on the LHS.
11504 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11505
11506 // We want to recurse on the RHS as normal unless we're assigning to
11507 // a bitfield.
11508 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
11509 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
11510 E->getOperatorLoc())) {
11511 // Recurse, ignoring any implicit conversions on the RHS.
11512 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
11513 E->getOperatorLoc());
11514 }
11515 }
11516
11517 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11518
11519 // Diagnose implicitly sequentially-consistent atomic assignment.
11520 if (E->getLHS()->getType()->isAtomicType())
11521 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
11522 }
11523
11524 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType SourceType,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)11525 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
11526 SourceLocation CContext, unsigned diag,
11527 bool pruneControlFlow = false) {
11528 if (pruneControlFlow) {
11529 S.DiagRuntimeBehavior(E->getExprLoc(), E,
11530 S.PDiag(diag)
11531 << SourceType << T << E->getSourceRange()
11532 << SourceRange(CContext));
11533 return;
11534 }
11535 S.Diag(E->getExprLoc(), diag)
11536 << SourceType << T << E->getSourceRange() << SourceRange(CContext);
11537 }
11538
11539 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)11540 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
11541 SourceLocation CContext,
11542 unsigned diag, bool pruneControlFlow = false) {
11543 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
11544 }
11545
isObjCSignedCharBool(Sema & S,QualType Ty)11546 static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
11547 return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
11548 S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
11549 }
11550
adornObjCBoolConversionDiagWithTernaryFixit(Sema & S,Expr * SourceExpr,const Sema::SemaDiagnosticBuilder & Builder)11551 static void adornObjCBoolConversionDiagWithTernaryFixit(
11552 Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
11553 Expr *Ignored = SourceExpr->IgnoreImplicit();
11554 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
11555 Ignored = OVE->getSourceExpr();
11556 bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
11557 isa<BinaryOperator>(Ignored) ||
11558 isa<CXXOperatorCallExpr>(Ignored);
11559 SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
11560 if (NeedsParens)
11561 Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
11562 << FixItHint::CreateInsertion(EndLoc, ")");
11563 Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
11564 }
11565
11566 /// Diagnose an implicit cast from a floating point value to an integer value.
DiagnoseFloatingImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext)11567 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
11568 SourceLocation CContext) {
11569 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
11570 const bool PruneWarnings = S.inTemplateInstantiation();
11571
11572 Expr *InnerE = E->IgnoreParenImpCasts();
11573 // We also want to warn on, e.g., "int i = -1.234"
11574 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
11575 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
11576 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
11577
11578 const bool IsLiteral =
11579 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
11580
11581 llvm::APFloat Value(0.0);
11582 bool IsConstant =
11583 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
11584 if (!IsConstant) {
11585 if (isObjCSignedCharBool(S, T)) {
11586 return adornObjCBoolConversionDiagWithTernaryFixit(
11587 S, E,
11588 S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
11589 << E->getType());
11590 }
11591
11592 return DiagnoseImpCast(S, E, T, CContext,
11593 diag::warn_impcast_float_integer, PruneWarnings);
11594 }
11595
11596 bool isExact = false;
11597
11598 llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
11599 T->hasUnsignedIntegerRepresentation());
11600 llvm::APFloat::opStatus Result = Value.convertToInteger(
11601 IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
11602
11603 // FIXME: Force the precision of the source value down so we don't print
11604 // digits which are usually useless (we don't really care here if we
11605 // truncate a digit by accident in edge cases). Ideally, APFloat::toString
11606 // would automatically print the shortest representation, but it's a bit
11607 // tricky to implement.
11608 SmallString<16> PrettySourceValue;
11609 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
11610 precision = (precision * 59 + 195) / 196;
11611 Value.toString(PrettySourceValue, precision);
11612
11613 if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
11614 return adornObjCBoolConversionDiagWithTernaryFixit(
11615 S, E,
11616 S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
11617 << PrettySourceValue);
11618 }
11619
11620 if (Result == llvm::APFloat::opOK && isExact) {
11621 if (IsLiteral) return;
11622 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
11623 PruneWarnings);
11624 }
11625
11626 // Conversion of a floating-point value to a non-bool integer where the
11627 // integral part cannot be represented by the integer type is undefined.
11628 if (!IsBool && Result == llvm::APFloat::opInvalidOp)
11629 return DiagnoseImpCast(
11630 S, E, T, CContext,
11631 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
11632 : diag::warn_impcast_float_to_integer_out_of_range,
11633 PruneWarnings);
11634
11635 unsigned DiagID = 0;
11636 if (IsLiteral) {
11637 // Warn on floating point literal to integer.
11638 DiagID = diag::warn_impcast_literal_float_to_integer;
11639 } else if (IntegerValue == 0) {
11640 if (Value.isZero()) { // Skip -0.0 to 0 conversion.
11641 return DiagnoseImpCast(S, E, T, CContext,
11642 diag::warn_impcast_float_integer, PruneWarnings);
11643 }
11644 // Warn on non-zero to zero conversion.
11645 DiagID = diag::warn_impcast_float_to_integer_zero;
11646 } else {
11647 if (IntegerValue.isUnsigned()) {
11648 if (!IntegerValue.isMaxValue()) {
11649 return DiagnoseImpCast(S, E, T, CContext,
11650 diag::warn_impcast_float_integer, PruneWarnings);
11651 }
11652 } else { // IntegerValue.isSigned()
11653 if (!IntegerValue.isMaxSignedValue() &&
11654 !IntegerValue.isMinSignedValue()) {
11655 return DiagnoseImpCast(S, E, T, CContext,
11656 diag::warn_impcast_float_integer, PruneWarnings);
11657 }
11658 }
11659 // Warn on evaluatable floating point expression to integer conversion.
11660 DiagID = diag::warn_impcast_float_to_integer;
11661 }
11662
11663 SmallString<16> PrettyTargetValue;
11664 if (IsBool)
11665 PrettyTargetValue = Value.isZero() ? "false" : "true";
11666 else
11667 IntegerValue.toString(PrettyTargetValue);
11668
11669 if (PruneWarnings) {
11670 S.DiagRuntimeBehavior(E->getExprLoc(), E,
11671 S.PDiag(DiagID)
11672 << E->getType() << T.getUnqualifiedType()
11673 << PrettySourceValue << PrettyTargetValue
11674 << E->getSourceRange() << SourceRange(CContext));
11675 } else {
11676 S.Diag(E->getExprLoc(), DiagID)
11677 << E->getType() << T.getUnqualifiedType() << PrettySourceValue
11678 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
11679 }
11680 }
11681
11682 /// Analyze the given compound assignment for the possible losing of
11683 /// floating-point precision.
AnalyzeCompoundAssignment(Sema & S,BinaryOperator * E)11684 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
11685 assert(isa<CompoundAssignOperator>(E) &&
11686 "Must be compound assignment operation");
11687 // Recurse on the LHS and RHS in here
11688 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11689 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11690
11691 if (E->getLHS()->getType()->isAtomicType())
11692 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
11693
11694 // Now check the outermost expression
11695 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
11696 const auto *RBT = cast<CompoundAssignOperator>(E)
11697 ->getComputationResultType()
11698 ->getAs<BuiltinType>();
11699
11700 // The below checks assume source is floating point.
11701 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
11702
11703 // If source is floating point but target is an integer.
11704 if (ResultBT->isInteger())
11705 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
11706 E->getExprLoc(), diag::warn_impcast_float_integer);
11707
11708 if (!ResultBT->isFloatingPoint())
11709 return;
11710
11711 // If both source and target are floating points, warn about losing precision.
11712 int Order = S.getASTContext().getFloatingTypeSemanticOrder(
11713 QualType(ResultBT, 0), QualType(RBT, 0));
11714 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
11715 // warn about dropping FP rank.
11716 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
11717 diag::warn_impcast_float_result_precision);
11718 }
11719
PrettyPrintInRange(const llvm::APSInt & Value,IntRange Range)11720 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
11721 IntRange Range) {
11722 if (!Range.Width) return "0";
11723
11724 llvm::APSInt ValueInRange = Value;
11725 ValueInRange.setIsSigned(!Range.NonNegative);
11726 ValueInRange = ValueInRange.trunc(Range.Width);
11727 return ValueInRange.toString(10);
11728 }
11729
IsImplicitBoolFloatConversion(Sema & S,Expr * Ex,bool ToBool)11730 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
11731 if (!isa<ImplicitCastExpr>(Ex))
11732 return false;
11733
11734 Expr *InnerE = Ex->IgnoreParenImpCasts();
11735 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
11736 const Type *Source =
11737 S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
11738 if (Target->isDependentType())
11739 return false;
11740
11741 const BuiltinType *FloatCandidateBT =
11742 dyn_cast<BuiltinType>(ToBool ? Source : Target);
11743 const Type *BoolCandidateType = ToBool ? Target : Source;
11744
11745 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
11746 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
11747 }
11748
CheckImplicitArgumentConversions(Sema & S,CallExpr * TheCall,SourceLocation CC)11749 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
11750 SourceLocation CC) {
11751 unsigned NumArgs = TheCall->getNumArgs();
11752 for (unsigned i = 0; i < NumArgs; ++i) {
11753 Expr *CurrA = TheCall->getArg(i);
11754 if (!IsImplicitBoolFloatConversion(S, CurrA, true))
11755 continue;
11756
11757 bool IsSwapped = ((i > 0) &&
11758 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
11759 IsSwapped |= ((i < (NumArgs - 1)) &&
11760 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
11761 if (IsSwapped) {
11762 // Warn on this floating-point to bool conversion.
11763 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
11764 CurrA->getType(), CC,
11765 diag::warn_impcast_floating_point_to_bool);
11766 }
11767 }
11768 }
11769
DiagnoseNullConversion(Sema & S,Expr * E,QualType T,SourceLocation CC)11770 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
11771 SourceLocation CC) {
11772 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
11773 E->getExprLoc()))
11774 return;
11775
11776 // Don't warn on functions which have return type nullptr_t.
11777 if (isa<CallExpr>(E))
11778 return;
11779
11780 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
11781 const Expr::NullPointerConstantKind NullKind =
11782 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
11783 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
11784 return;
11785
11786 // Return if target type is a safe conversion.
11787 if (T->isAnyPointerType() || T->isBlockPointerType() ||
11788 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
11789 return;
11790
11791 SourceLocation Loc = E->getSourceRange().getBegin();
11792
11793 // Venture through the macro stacks to get to the source of macro arguments.
11794 // The new location is a better location than the complete location that was
11795 // passed in.
11796 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
11797 CC = S.SourceMgr.getTopMacroCallerLoc(CC);
11798
11799 // __null is usually wrapped in a macro. Go up a macro if that is the case.
11800 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
11801 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
11802 Loc, S.SourceMgr, S.getLangOpts());
11803 if (MacroName == "NULL")
11804 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
11805 }
11806
11807 // Only warn if the null and context location are in the same macro expansion.
11808 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
11809 return;
11810
11811 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
11812 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
11813 << FixItHint::CreateReplacement(Loc,
11814 S.getFixItZeroLiteralForType(T, Loc));
11815 }
11816
11817 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11818 ObjCArrayLiteral *ArrayLiteral);
11819
11820 static void
11821 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11822 ObjCDictionaryLiteral *DictionaryLiteral);
11823
11824 /// Check a single element within a collection literal against the
11825 /// target element type.
checkObjCCollectionLiteralElement(Sema & S,QualType TargetElementType,Expr * Element,unsigned ElementKind)11826 static void checkObjCCollectionLiteralElement(Sema &S,
11827 QualType TargetElementType,
11828 Expr *Element,
11829 unsigned ElementKind) {
11830 // Skip a bitcast to 'id' or qualified 'id'.
11831 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
11832 if (ICE->getCastKind() == CK_BitCast &&
11833 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
11834 Element = ICE->getSubExpr();
11835 }
11836
11837 QualType ElementType = Element->getType();
11838 ExprResult ElementResult(Element);
11839 if (ElementType->getAs<ObjCObjectPointerType>() &&
11840 S.CheckSingleAssignmentConstraints(TargetElementType,
11841 ElementResult,
11842 false, false)
11843 != Sema::Compatible) {
11844 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
11845 << ElementType << ElementKind << TargetElementType
11846 << Element->getSourceRange();
11847 }
11848
11849 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
11850 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
11851 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
11852 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
11853 }
11854
11855 /// Check an Objective-C array literal being converted to the given
11856 /// target type.
checkObjCArrayLiteral(Sema & S,QualType TargetType,ObjCArrayLiteral * ArrayLiteral)11857 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11858 ObjCArrayLiteral *ArrayLiteral) {
11859 if (!S.NSArrayDecl)
11860 return;
11861
11862 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11863 if (!TargetObjCPtr)
11864 return;
11865
11866 if (TargetObjCPtr->isUnspecialized() ||
11867 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11868 != S.NSArrayDecl->getCanonicalDecl())
11869 return;
11870
11871 auto TypeArgs = TargetObjCPtr->getTypeArgs();
11872 if (TypeArgs.size() != 1)
11873 return;
11874
11875 QualType TargetElementType = TypeArgs[0];
11876 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
11877 checkObjCCollectionLiteralElement(S, TargetElementType,
11878 ArrayLiteral->getElement(I),
11879 0);
11880 }
11881 }
11882
11883 /// Check an Objective-C dictionary literal being converted to the given
11884 /// target type.
11885 static void
checkObjCDictionaryLiteral(Sema & S,QualType TargetType,ObjCDictionaryLiteral * DictionaryLiteral)11886 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11887 ObjCDictionaryLiteral *DictionaryLiteral) {
11888 if (!S.NSDictionaryDecl)
11889 return;
11890
11891 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11892 if (!TargetObjCPtr)
11893 return;
11894
11895 if (TargetObjCPtr->isUnspecialized() ||
11896 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11897 != S.NSDictionaryDecl->getCanonicalDecl())
11898 return;
11899
11900 auto TypeArgs = TargetObjCPtr->getTypeArgs();
11901 if (TypeArgs.size() != 2)
11902 return;
11903
11904 QualType TargetKeyType = TypeArgs[0];
11905 QualType TargetObjectType = TypeArgs[1];
11906 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
11907 auto Element = DictionaryLiteral->getKeyValueElement(I);
11908 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
11909 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
11910 }
11911 }
11912
11913 // Helper function to filter out cases for constant width constant conversion.
11914 // Don't warn on char array initialization or for non-decimal values.
isSameWidthConstantConversion(Sema & S,Expr * E,QualType T,SourceLocation CC)11915 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
11916 SourceLocation CC) {
11917 // If initializing from a constant, and the constant starts with '0',
11918 // then it is a binary, octal, or hexadecimal. Allow these constants
11919 // to fill all the bits, even if there is a sign change.
11920 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
11921 const char FirstLiteralCharacter =
11922 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
11923 if (FirstLiteralCharacter == '0')
11924 return false;
11925 }
11926
11927 // If the CC location points to a '{', and the type is char, then assume
11928 // assume it is an array initialization.
11929 if (CC.isValid() && T->isCharType()) {
11930 const char FirstContextCharacter =
11931 S.getSourceManager().getCharacterData(CC)[0];
11932 if (FirstContextCharacter == '{')
11933 return false;
11934 }
11935
11936 return true;
11937 }
11938
getIntegerLiteral(Expr * E)11939 static const IntegerLiteral *getIntegerLiteral(Expr *E) {
11940 const auto *IL = dyn_cast<IntegerLiteral>(E);
11941 if (!IL) {
11942 if (auto *UO = dyn_cast<UnaryOperator>(E)) {
11943 if (UO->getOpcode() == UO_Minus)
11944 return dyn_cast<IntegerLiteral>(UO->getSubExpr());
11945 }
11946 }
11947
11948 return IL;
11949 }
11950
DiagnoseIntInBoolContext(Sema & S,Expr * E)11951 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
11952 E = E->IgnoreParenImpCasts();
11953 SourceLocation ExprLoc = E->getExprLoc();
11954
11955 if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11956 BinaryOperator::Opcode Opc = BO->getOpcode();
11957 Expr::EvalResult Result;
11958 // Do not diagnose unsigned shifts.
11959 if (Opc == BO_Shl) {
11960 const auto *LHS = getIntegerLiteral(BO->getLHS());
11961 const auto *RHS = getIntegerLiteral(BO->getRHS());
11962 if (LHS && LHS->getValue() == 0)
11963 S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
11964 else if (!E->isValueDependent() && LHS && RHS &&
11965 RHS->getValue().isNonNegative() &&
11966 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
11967 S.Diag(ExprLoc, diag::warn_left_shift_always)
11968 << (Result.Val.getInt() != 0);
11969 else if (E->getType()->isSignedIntegerType())
11970 S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
11971 }
11972 }
11973
11974 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11975 const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
11976 const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
11977 if (!LHS || !RHS)
11978 return;
11979 if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
11980 (RHS->getValue() == 0 || RHS->getValue() == 1))
11981 // Do not diagnose common idioms.
11982 return;
11983 if (LHS->getValue() != 0 && RHS->getValue() != 0)
11984 S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
11985 }
11986 }
11987
CheckImplicitConversion(Sema & S,Expr * E,QualType T,SourceLocation CC,bool * ICContext=nullptr,bool IsListInit=false)11988 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
11989 SourceLocation CC,
11990 bool *ICContext = nullptr,
11991 bool IsListInit = false) {
11992 if (E->isTypeDependent() || E->isValueDependent()) return;
11993
11994 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
11995 const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
11996 if (Source == Target) return;
11997 if (Target->isDependentType()) return;
11998
11999 // If the conversion context location is invalid don't complain. We also
12000 // don't want to emit a warning if the issue occurs from the expansion of
12001 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
12002 // delay this check as long as possible. Once we detect we are in that
12003 // scenario, we just return.
12004 if (CC.isInvalid())
12005 return;
12006
12007 if (Source->isAtomicType())
12008 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
12009
12010 // Diagnose implicit casts to bool.
12011 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
12012 if (isa<StringLiteral>(E))
12013 // Warn on string literal to bool. Checks for string literals in logical
12014 // and expressions, for instance, assert(0 && "error here"), are
12015 // prevented by a check in AnalyzeImplicitConversions().
12016 return DiagnoseImpCast(S, E, T, CC,
12017 diag::warn_impcast_string_literal_to_bool);
12018 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
12019 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
12020 // This covers the literal expressions that evaluate to Objective-C
12021 // objects.
12022 return DiagnoseImpCast(S, E, T, CC,
12023 diag::warn_impcast_objective_c_literal_to_bool);
12024 }
12025 if (Source->isPointerType() || Source->canDecayToPointerType()) {
12026 // Warn on pointer to bool conversion that is always true.
12027 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
12028 SourceRange(CC));
12029 }
12030 }
12031
12032 // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
12033 // is a typedef for signed char (macOS), then that constant value has to be 1
12034 // or 0.
12035 if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
12036 Expr::EvalResult Result;
12037 if (E->EvaluateAsInt(Result, S.getASTContext(),
12038 Expr::SE_AllowSideEffects)) {
12039 if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
12040 adornObjCBoolConversionDiagWithTernaryFixit(
12041 S, E,
12042 S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
12043 << Result.Val.getInt().toString(10));
12044 }
12045 return;
12046 }
12047 }
12048
12049 // Check implicit casts from Objective-C collection literals to specialized
12050 // collection types, e.g., NSArray<NSString *> *.
12051 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
12052 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
12053 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
12054 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
12055
12056 // Strip vector types.
12057 if (isa<VectorType>(Source)) {
12058 if (!isa<VectorType>(Target)) {
12059 if (S.SourceMgr.isInSystemMacro(CC))
12060 return;
12061 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
12062 }
12063
12064 // If the vector cast is cast between two vectors of the same size, it is
12065 // a bitcast, not a conversion.
12066 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
12067 return;
12068
12069 Source = cast<VectorType>(Source)->getElementType().getTypePtr();
12070 Target = cast<VectorType>(Target)->getElementType().getTypePtr();
12071 }
12072 if (auto VecTy = dyn_cast<VectorType>(Target))
12073 Target = VecTy->getElementType().getTypePtr();
12074
12075 // Strip complex types.
12076 if (isa<ComplexType>(Source)) {
12077 if (!isa<ComplexType>(Target)) {
12078 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
12079 return;
12080
12081 return DiagnoseImpCast(S, E, T, CC,
12082 S.getLangOpts().CPlusPlus
12083 ? diag::err_impcast_complex_scalar
12084 : diag::warn_impcast_complex_scalar);
12085 }
12086
12087 Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
12088 Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
12089 }
12090
12091 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
12092 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
12093
12094 // If the source is floating point...
12095 if (SourceBT && SourceBT->isFloatingPoint()) {
12096 // ...and the target is floating point...
12097 if (TargetBT && TargetBT->isFloatingPoint()) {
12098 // ...then warn if we're dropping FP rank.
12099
12100 int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12101 QualType(SourceBT, 0), QualType(TargetBT, 0));
12102 if (Order > 0) {
12103 // Don't warn about float constants that are precisely
12104 // representable in the target type.
12105 Expr::EvalResult result;
12106 if (E->EvaluateAsRValue(result, S.Context)) {
12107 // Value might be a float, a float vector, or a float complex.
12108 if (IsSameFloatAfterCast(result.Val,
12109 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
12110 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
12111 return;
12112 }
12113
12114 if (S.SourceMgr.isInSystemMacro(CC))
12115 return;
12116
12117 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
12118 }
12119 // ... or possibly if we're increasing rank, too
12120 else if (Order < 0) {
12121 if (S.SourceMgr.isInSystemMacro(CC))
12122 return;
12123
12124 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
12125 }
12126 return;
12127 }
12128
12129 // If the target is integral, always warn.
12130 if (TargetBT && TargetBT->isInteger()) {
12131 if (S.SourceMgr.isInSystemMacro(CC))
12132 return;
12133
12134 DiagnoseFloatingImpCast(S, E, T, CC);
12135 }
12136
12137 // Detect the case where a call result is converted from floating-point to
12138 // to bool, and the final argument to the call is converted from bool, to
12139 // discover this typo:
12140 //
12141 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;"
12142 //
12143 // FIXME: This is an incredibly special case; is there some more general
12144 // way to detect this class of misplaced-parentheses bug?
12145 if (Target->isBooleanType() && isa<CallExpr>(E)) {
12146 // Check last argument of function call to see if it is an
12147 // implicit cast from a type matching the type the result
12148 // is being cast to.
12149 CallExpr *CEx = cast<CallExpr>(E);
12150 if (unsigned NumArgs = CEx->getNumArgs()) {
12151 Expr *LastA = CEx->getArg(NumArgs - 1);
12152 Expr *InnerE = LastA->IgnoreParenImpCasts();
12153 if (isa<ImplicitCastExpr>(LastA) &&
12154 InnerE->getType()->isBooleanType()) {
12155 // Warn on this floating-point to bool conversion
12156 DiagnoseImpCast(S, E, T, CC,
12157 diag::warn_impcast_floating_point_to_bool);
12158 }
12159 }
12160 }
12161 return;
12162 }
12163
12164 // Valid casts involving fixed point types should be accounted for here.
12165 if (Source->isFixedPointType()) {
12166 if (Target->isUnsaturatedFixedPointType()) {
12167 Expr::EvalResult Result;
12168 if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
12169 S.isConstantEvaluated())) {
12170 llvm::APFixedPoint Value = Result.Val.getFixedPoint();
12171 llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
12172 llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
12173 if (Value > MaxVal || Value < MinVal) {
12174 S.DiagRuntimeBehavior(E->getExprLoc(), E,
12175 S.PDiag(diag::warn_impcast_fixed_point_range)
12176 << Value.toString() << T
12177 << E->getSourceRange()
12178 << clang::SourceRange(CC));
12179 return;
12180 }
12181 }
12182 } else if (Target->isIntegerType()) {
12183 Expr::EvalResult Result;
12184 if (!S.isConstantEvaluated() &&
12185 E->EvaluateAsFixedPoint(Result, S.Context,
12186 Expr::SE_AllowSideEffects)) {
12187 llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
12188
12189 bool Overflowed;
12190 llvm::APSInt IntResult = FXResult.convertToInt(
12191 S.Context.getIntWidth(T),
12192 Target->isSignedIntegerOrEnumerationType(), &Overflowed);
12193
12194 if (Overflowed) {
12195 S.DiagRuntimeBehavior(E->getExprLoc(), E,
12196 S.PDiag(diag::warn_impcast_fixed_point_range)
12197 << FXResult.toString() << T
12198 << E->getSourceRange()
12199 << clang::SourceRange(CC));
12200 return;
12201 }
12202 }
12203 }
12204 } else if (Target->isUnsaturatedFixedPointType()) {
12205 if (Source->isIntegerType()) {
12206 Expr::EvalResult Result;
12207 if (!S.isConstantEvaluated() &&
12208 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
12209 llvm::APSInt Value = Result.Val.getInt();
12210
12211 bool Overflowed;
12212 llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
12213 Value, S.Context.getFixedPointSemantics(T), &Overflowed);
12214
12215 if (Overflowed) {
12216 S.DiagRuntimeBehavior(E->getExprLoc(), E,
12217 S.PDiag(diag::warn_impcast_fixed_point_range)
12218 << Value.toString(/*Radix=*/10) << T
12219 << E->getSourceRange()
12220 << clang::SourceRange(CC));
12221 return;
12222 }
12223 }
12224 }
12225 }
12226
12227 // If we are casting an integer type to a floating point type without
12228 // initialization-list syntax, we might lose accuracy if the floating
12229 // point type has a narrower significand than the integer type.
12230 if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
12231 TargetBT->isFloatingType() && !IsListInit) {
12232 // Determine the number of precision bits in the source integer type.
12233 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
12234 /*Approximate*/ true);
12235 unsigned int SourcePrecision = SourceRange.Width;
12236
12237 // Determine the number of precision bits in the
12238 // target floating point type.
12239 unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
12240 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12241
12242 if (SourcePrecision > 0 && TargetPrecision > 0 &&
12243 SourcePrecision > TargetPrecision) {
12244
12245 if (Optional<llvm::APSInt> SourceInt =
12246 E->getIntegerConstantExpr(S.Context)) {
12247 // If the source integer is a constant, convert it to the target
12248 // floating point type. Issue a warning if the value changes
12249 // during the whole conversion.
12250 llvm::APFloat TargetFloatValue(
12251 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12252 llvm::APFloat::opStatus ConversionStatus =
12253 TargetFloatValue.convertFromAPInt(
12254 *SourceInt, SourceBT->isSignedInteger(),
12255 llvm::APFloat::rmNearestTiesToEven);
12256
12257 if (ConversionStatus != llvm::APFloat::opOK) {
12258 std::string PrettySourceValue = SourceInt->toString(10);
12259 SmallString<32> PrettyTargetValue;
12260 TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
12261
12262 S.DiagRuntimeBehavior(
12263 E->getExprLoc(), E,
12264 S.PDiag(diag::warn_impcast_integer_float_precision_constant)
12265 << PrettySourceValue << PrettyTargetValue << E->getType() << T
12266 << E->getSourceRange() << clang::SourceRange(CC));
12267 }
12268 } else {
12269 // Otherwise, the implicit conversion may lose precision.
12270 DiagnoseImpCast(S, E, T, CC,
12271 diag::warn_impcast_integer_float_precision);
12272 }
12273 }
12274 }
12275
12276 DiagnoseNullConversion(S, E, T, CC);
12277
12278 S.DiscardMisalignedMemberAddress(Target, E);
12279
12280 if (Target->isBooleanType())
12281 DiagnoseIntInBoolContext(S, E);
12282
12283 if (!Source->isIntegerType() || !Target->isIntegerType())
12284 return;
12285
12286 // TODO: remove this early return once the false positives for constant->bool
12287 // in templates, macros, etc, are reduced or removed.
12288 if (Target->isSpecificBuiltinType(BuiltinType::Bool))
12289 return;
12290
12291 if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
12292 !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
12293 return adornObjCBoolConversionDiagWithTernaryFixit(
12294 S, E,
12295 S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
12296 << E->getType());
12297 }
12298
12299 IntRange SourceTypeRange =
12300 IntRange::forTargetOfCanonicalType(S.Context, Source);
12301 IntRange LikelySourceRange =
12302 GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
12303 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
12304
12305 if (LikelySourceRange.Width > TargetRange.Width) {
12306 // If the source is a constant, use a default-on diagnostic.
12307 // TODO: this should happen for bitfield stores, too.
12308 Expr::EvalResult Result;
12309 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
12310 S.isConstantEvaluated())) {
12311 llvm::APSInt Value(32);
12312 Value = Result.Val.getInt();
12313
12314 if (S.SourceMgr.isInSystemMacro(CC))
12315 return;
12316
12317 std::string PrettySourceValue = Value.toString(10);
12318 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12319
12320 S.DiagRuntimeBehavior(
12321 E->getExprLoc(), E,
12322 S.PDiag(diag::warn_impcast_integer_precision_constant)
12323 << PrettySourceValue << PrettyTargetValue << E->getType() << T
12324 << E->getSourceRange() << SourceRange(CC));
12325 return;
12326 }
12327
12328 // People want to build with -Wshorten-64-to-32 and not -Wconversion.
12329 if (S.SourceMgr.isInSystemMacro(CC))
12330 return;
12331
12332 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
12333 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
12334 /* pruneControlFlow */ true);
12335 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
12336 }
12337
12338 if (TargetRange.Width > SourceTypeRange.Width) {
12339 if (auto *UO = dyn_cast<UnaryOperator>(E))
12340 if (UO->getOpcode() == UO_Minus)
12341 if (Source->isUnsignedIntegerType()) {
12342 if (Target->isUnsignedIntegerType())
12343 return DiagnoseImpCast(S, E, T, CC,
12344 diag::warn_impcast_high_order_zero_bits);
12345 if (Target->isSignedIntegerType())
12346 return DiagnoseImpCast(S, E, T, CC,
12347 diag::warn_impcast_nonnegative_result);
12348 }
12349 }
12350
12351 if (TargetRange.Width == LikelySourceRange.Width &&
12352 !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
12353 Source->isSignedIntegerType()) {
12354 // Warn when doing a signed to signed conversion, warn if the positive
12355 // source value is exactly the width of the target type, which will
12356 // cause a negative value to be stored.
12357
12358 Expr::EvalResult Result;
12359 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
12360 !S.SourceMgr.isInSystemMacro(CC)) {
12361 llvm::APSInt Value = Result.Val.getInt();
12362 if (isSameWidthConstantConversion(S, E, T, CC)) {
12363 std::string PrettySourceValue = Value.toString(10);
12364 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12365
12366 S.DiagRuntimeBehavior(
12367 E->getExprLoc(), E,
12368 S.PDiag(diag::warn_impcast_integer_precision_constant)
12369 << PrettySourceValue << PrettyTargetValue << E->getType() << T
12370 << E->getSourceRange() << SourceRange(CC));
12371 return;
12372 }
12373 }
12374
12375 // Fall through for non-constants to give a sign conversion warning.
12376 }
12377
12378 if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
12379 (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
12380 LikelySourceRange.Width == TargetRange.Width)) {
12381 if (S.SourceMgr.isInSystemMacro(CC))
12382 return;
12383
12384 unsigned DiagID = diag::warn_impcast_integer_sign;
12385
12386 // Traditionally, gcc has warned about this under -Wsign-compare.
12387 // We also want to warn about it in -Wconversion.
12388 // So if -Wconversion is off, use a completely identical diagnostic
12389 // in the sign-compare group.
12390 // The conditional-checking code will
12391 if (ICContext) {
12392 DiagID = diag::warn_impcast_integer_sign_conditional;
12393 *ICContext = true;
12394 }
12395
12396 return DiagnoseImpCast(S, E, T, CC, DiagID);
12397 }
12398
12399 // Diagnose conversions between different enumeration types.
12400 // In C, we pretend that the type of an EnumConstantDecl is its enumeration
12401 // type, to give us better diagnostics.
12402 QualType SourceType = E->getType();
12403 if (!S.getLangOpts().CPlusPlus) {
12404 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12405 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
12406 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
12407 SourceType = S.Context.getTypeDeclType(Enum);
12408 Source = S.Context.getCanonicalType(SourceType).getTypePtr();
12409 }
12410 }
12411
12412 if (const EnumType *SourceEnum = Source->getAs<EnumType>())
12413 if (const EnumType *TargetEnum = Target->getAs<EnumType>())
12414 if (SourceEnum->getDecl()->hasNameForLinkage() &&
12415 TargetEnum->getDecl()->hasNameForLinkage() &&
12416 SourceEnum != TargetEnum) {
12417 if (S.SourceMgr.isInSystemMacro(CC))
12418 return;
12419
12420 return DiagnoseImpCast(S, E, SourceType, T, CC,
12421 diag::warn_impcast_different_enum_types);
12422 }
12423 }
12424
12425 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
12426 SourceLocation CC, QualType T);
12427
CheckConditionalOperand(Sema & S,Expr * E,QualType T,SourceLocation CC,bool & ICContext)12428 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
12429 SourceLocation CC, bool &ICContext) {
12430 E = E->IgnoreParenImpCasts();
12431
12432 if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
12433 return CheckConditionalOperator(S, CO, CC, T);
12434
12435 AnalyzeImplicitConversions(S, E, CC);
12436 if (E->getType() != T)
12437 return CheckImplicitConversion(S, E, T, CC, &ICContext);
12438 }
12439
CheckConditionalOperator(Sema & S,AbstractConditionalOperator * E,SourceLocation CC,QualType T)12440 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
12441 SourceLocation CC, QualType T) {
12442 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
12443
12444 Expr *TrueExpr = E->getTrueExpr();
12445 if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
12446 TrueExpr = BCO->getCommon();
12447
12448 bool Suspicious = false;
12449 CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
12450 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
12451
12452 if (T->isBooleanType())
12453 DiagnoseIntInBoolContext(S, E);
12454
12455 // If -Wconversion would have warned about either of the candidates
12456 // for a signedness conversion to the context type...
12457 if (!Suspicious) return;
12458
12459 // ...but it's currently ignored...
12460 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
12461 return;
12462
12463 // ...then check whether it would have warned about either of the
12464 // candidates for a signedness conversion to the condition type.
12465 if (E->getType() == T) return;
12466
12467 Suspicious = false;
12468 CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
12469 E->getType(), CC, &Suspicious);
12470 if (!Suspicious)
12471 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
12472 E->getType(), CC, &Suspicious);
12473 }
12474
12475 /// Check conversion of given expression to boolean.
12476 /// Input argument E is a logical expression.
CheckBoolLikeConversion(Sema & S,Expr * E,SourceLocation CC)12477 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
12478 if (S.getLangOpts().Bool)
12479 return;
12480 if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
12481 return;
12482 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
12483 }
12484
12485 namespace {
12486 struct AnalyzeImplicitConversionsWorkItem {
12487 Expr *E;
12488 SourceLocation CC;
12489 bool IsListInit;
12490 };
12491 }
12492
12493 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
12494 /// that should be visited are added to WorkList.
AnalyzeImplicitConversions(Sema & S,AnalyzeImplicitConversionsWorkItem Item,llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> & WorkList)12495 static void AnalyzeImplicitConversions(
12496 Sema &S, AnalyzeImplicitConversionsWorkItem Item,
12497 llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
12498 Expr *OrigE = Item.E;
12499 SourceLocation CC = Item.CC;
12500
12501 QualType T = OrigE->getType();
12502 Expr *E = OrigE->IgnoreParenImpCasts();
12503
12504 // Propagate whether we are in a C++ list initialization expression.
12505 // If so, we do not issue warnings for implicit int-float conversion
12506 // precision loss, because C++11 narrowing already handles it.
12507 bool IsListInit = Item.IsListInit ||
12508 (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
12509
12510 if (E->isTypeDependent() || E->isValueDependent())
12511 return;
12512
12513 Expr *SourceExpr = E;
12514 // Examine, but don't traverse into the source expression of an
12515 // OpaqueValueExpr, since it may have multiple parents and we don't want to
12516 // emit duplicate diagnostics. Its fine to examine the form or attempt to
12517 // evaluate it in the context of checking the specific conversion to T though.
12518 if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
12519 if (auto *Src = OVE->getSourceExpr())
12520 SourceExpr = Src;
12521
12522 if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
12523 if (UO->getOpcode() == UO_Not &&
12524 UO->getSubExpr()->isKnownToHaveBooleanValue())
12525 S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
12526 << OrigE->getSourceRange() << T->isBooleanType()
12527 << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
12528
12529 // For conditional operators, we analyze the arguments as if they
12530 // were being fed directly into the output.
12531 if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
12532 CheckConditionalOperator(S, CO, CC, T);
12533 return;
12534 }
12535
12536 // Check implicit argument conversions for function calls.
12537 if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
12538 CheckImplicitArgumentConversions(S, Call, CC);
12539
12540 // Go ahead and check any implicit conversions we might have skipped.
12541 // The non-canonical typecheck is just an optimization;
12542 // CheckImplicitConversion will filter out dead implicit conversions.
12543 if (SourceExpr->getType() != T)
12544 CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
12545
12546 // Now continue drilling into this expression.
12547
12548 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
12549 // The bound subexpressions in a PseudoObjectExpr are not reachable
12550 // as transitive children.
12551 // FIXME: Use a more uniform representation for this.
12552 for (auto *SE : POE->semantics())
12553 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
12554 WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
12555 }
12556
12557 // Skip past explicit casts.
12558 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
12559 E = CE->getSubExpr()->IgnoreParenImpCasts();
12560 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
12561 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
12562 WorkList.push_back({E, CC, IsListInit});
12563 return;
12564 }
12565
12566 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12567 // Do a somewhat different check with comparison operators.
12568 if (BO->isComparisonOp())
12569 return AnalyzeComparison(S, BO);
12570
12571 // And with simple assignments.
12572 if (BO->getOpcode() == BO_Assign)
12573 return AnalyzeAssignment(S, BO);
12574 // And with compound assignments.
12575 if (BO->isAssignmentOp())
12576 return AnalyzeCompoundAssignment(S, BO);
12577 }
12578
12579 // These break the otherwise-useful invariant below. Fortunately,
12580 // we don't really need to recurse into them, because any internal
12581 // expressions should have been analyzed already when they were
12582 // built into statements.
12583 if (isa<StmtExpr>(E)) return;
12584
12585 // Don't descend into unevaluated contexts.
12586 if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
12587
12588 // Now just recurse over the expression's children.
12589 CC = E->getExprLoc();
12590 BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
12591 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
12592 for (Stmt *SubStmt : E->children()) {
12593 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
12594 if (!ChildExpr)
12595 continue;
12596
12597 if (IsLogicalAndOperator &&
12598 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
12599 // Ignore checking string literals that are in logical and operators.
12600 // This is a common pattern for asserts.
12601 continue;
12602 WorkList.push_back({ChildExpr, CC, IsListInit});
12603 }
12604
12605 if (BO && BO->isLogicalOp()) {
12606 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
12607 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12608 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12609
12610 SubExpr = BO->getRHS()->IgnoreParenImpCasts();
12611 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12612 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12613 }
12614
12615 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
12616 if (U->getOpcode() == UO_LNot) {
12617 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
12618 } else if (U->getOpcode() != UO_AddrOf) {
12619 if (U->getSubExpr()->getType()->isAtomicType())
12620 S.Diag(U->getSubExpr()->getBeginLoc(),
12621 diag::warn_atomic_implicit_seq_cst);
12622 }
12623 }
12624 }
12625
12626 /// AnalyzeImplicitConversions - Find and report any interesting
12627 /// implicit conversions in the given expression. There are a couple
12628 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
AnalyzeImplicitConversions(Sema & S,Expr * OrigE,SourceLocation CC,bool IsListInit)12629 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
12630 bool IsListInit/*= false*/) {
12631 llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
12632 WorkList.push_back({OrigE, CC, IsListInit});
12633 while (!WorkList.empty())
12634 AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
12635 }
12636
12637 /// Diagnose integer type and any valid implicit conversion to it.
checkOpenCLEnqueueIntType(Sema & S,Expr * E,const QualType & IntT)12638 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
12639 // Taking into account implicit conversions,
12640 // allow any integer.
12641 if (!E->getType()->isIntegerType()) {
12642 S.Diag(E->getBeginLoc(),
12643 diag::err_opencl_enqueue_kernel_invalid_local_size_type);
12644 return true;
12645 }
12646 // Potentially emit standard warnings for implicit conversions if enabled
12647 // using -Wconversion.
12648 CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
12649 return false;
12650 }
12651
12652 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
12653 // Returns true when emitting a warning about taking the address of a reference.
CheckForReference(Sema & SemaRef,const Expr * E,const PartialDiagnostic & PD)12654 static bool CheckForReference(Sema &SemaRef, const Expr *E,
12655 const PartialDiagnostic &PD) {
12656 E = E->IgnoreParenImpCasts();
12657
12658 const FunctionDecl *FD = nullptr;
12659
12660 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
12661 if (!DRE->getDecl()->getType()->isReferenceType())
12662 return false;
12663 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12664 if (!M->getMemberDecl()->getType()->isReferenceType())
12665 return false;
12666 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
12667 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
12668 return false;
12669 FD = Call->getDirectCallee();
12670 } else {
12671 return false;
12672 }
12673
12674 SemaRef.Diag(E->getExprLoc(), PD);
12675
12676 // If possible, point to location of function.
12677 if (FD) {
12678 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
12679 }
12680
12681 return true;
12682 }
12683
12684 // Returns true if the SourceLocation is expanded from any macro body.
12685 // Returns false if the SourceLocation is invalid, is from not in a macro
12686 // expansion, or is from expanded from a top-level macro argument.
IsInAnyMacroBody(const SourceManager & SM,SourceLocation Loc)12687 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
12688 if (Loc.isInvalid())
12689 return false;
12690
12691 while (Loc.isMacroID()) {
12692 if (SM.isMacroBodyExpansion(Loc))
12693 return true;
12694 Loc = SM.getImmediateMacroCallerLoc(Loc);
12695 }
12696
12697 return false;
12698 }
12699
12700 /// Diagnose pointers that are always non-null.
12701 /// \param E the expression containing the pointer
12702 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
12703 /// compared to a null pointer
12704 /// \param IsEqual True when the comparison is equal to a null pointer
12705 /// \param Range Extra SourceRange to highlight in the diagnostic
DiagnoseAlwaysNonNullPointer(Expr * E,Expr::NullPointerConstantKind NullKind,bool IsEqual,SourceRange Range)12706 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
12707 Expr::NullPointerConstantKind NullKind,
12708 bool IsEqual, SourceRange Range) {
12709 if (!E)
12710 return;
12711
12712 // Don't warn inside macros.
12713 if (E->getExprLoc().isMacroID()) {
12714 const SourceManager &SM = getSourceManager();
12715 if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
12716 IsInAnyMacroBody(SM, Range.getBegin()))
12717 return;
12718 }
12719 E = E->IgnoreImpCasts();
12720
12721 const bool IsCompare = NullKind != Expr::NPCK_NotNull;
12722
12723 if (isa<CXXThisExpr>(E)) {
12724 unsigned DiagID = IsCompare ? diag::warn_this_null_compare
12725 : diag::warn_this_bool_conversion;
12726 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
12727 return;
12728 }
12729
12730 bool IsAddressOf = false;
12731
12732 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
12733 if (UO->getOpcode() != UO_AddrOf)
12734 return;
12735 IsAddressOf = true;
12736 E = UO->getSubExpr();
12737 }
12738
12739 if (IsAddressOf) {
12740 unsigned DiagID = IsCompare
12741 ? diag::warn_address_of_reference_null_compare
12742 : diag::warn_address_of_reference_bool_conversion;
12743 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
12744 << IsEqual;
12745 if (CheckForReference(*this, E, PD)) {
12746 return;
12747 }
12748 }
12749
12750 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
12751 bool IsParam = isa<NonNullAttr>(NonnullAttr);
12752 std::string Str;
12753 llvm::raw_string_ostream S(Str);
12754 E->printPretty(S, nullptr, getPrintingPolicy());
12755 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
12756 : diag::warn_cast_nonnull_to_bool;
12757 Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
12758 << E->getSourceRange() << Range << IsEqual;
12759 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
12760 };
12761
12762 // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
12763 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
12764 if (auto *Callee = Call->getDirectCallee()) {
12765 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
12766 ComplainAboutNonnullParamOrCall(A);
12767 return;
12768 }
12769 }
12770 }
12771
12772 // Expect to find a single Decl. Skip anything more complicated.
12773 ValueDecl *D = nullptr;
12774 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
12775 D = R->getDecl();
12776 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12777 D = M->getMemberDecl();
12778 }
12779
12780 // Weak Decls can be null.
12781 if (!D || D->isWeak())
12782 return;
12783
12784 // Check for parameter decl with nonnull attribute
12785 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
12786 if (getCurFunction() &&
12787 !getCurFunction()->ModifiedNonNullParams.count(PV)) {
12788 if (const Attr *A = PV->getAttr<NonNullAttr>()) {
12789 ComplainAboutNonnullParamOrCall(A);
12790 return;
12791 }
12792
12793 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
12794 // Skip function template not specialized yet.
12795 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
12796 return;
12797 auto ParamIter = llvm::find(FD->parameters(), PV);
12798 assert(ParamIter != FD->param_end());
12799 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
12800
12801 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
12802 if (!NonNull->args_size()) {
12803 ComplainAboutNonnullParamOrCall(NonNull);
12804 return;
12805 }
12806
12807 for (const ParamIdx &ArgNo : NonNull->args()) {
12808 if (ArgNo.getASTIndex() == ParamNo) {
12809 ComplainAboutNonnullParamOrCall(NonNull);
12810 return;
12811 }
12812 }
12813 }
12814 }
12815 }
12816 }
12817
12818 QualType T = D->getType();
12819 const bool IsArray = T->isArrayType();
12820 const bool IsFunction = T->isFunctionType();
12821
12822 // Address of function is used to silence the function warning.
12823 if (IsAddressOf && IsFunction) {
12824 return;
12825 }
12826
12827 // Found nothing.
12828 if (!IsAddressOf && !IsFunction && !IsArray)
12829 return;
12830
12831 // Pretty print the expression for the diagnostic.
12832 std::string Str;
12833 llvm::raw_string_ostream S(Str);
12834 E->printPretty(S, nullptr, getPrintingPolicy());
12835
12836 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
12837 : diag::warn_impcast_pointer_to_bool;
12838 enum {
12839 AddressOf,
12840 FunctionPointer,
12841 ArrayPointer
12842 } DiagType;
12843 if (IsAddressOf)
12844 DiagType = AddressOf;
12845 else if (IsFunction)
12846 DiagType = FunctionPointer;
12847 else if (IsArray)
12848 DiagType = ArrayPointer;
12849 else
12850 llvm_unreachable("Could not determine diagnostic.");
12851 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
12852 << Range << IsEqual;
12853
12854 if (!IsFunction)
12855 return;
12856
12857 // Suggest '&' to silence the function warning.
12858 Diag(E->getExprLoc(), diag::note_function_warning_silence)
12859 << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
12860
12861 // Check to see if '()' fixit should be emitted.
12862 QualType ReturnType;
12863 UnresolvedSet<4> NonTemplateOverloads;
12864 tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
12865 if (ReturnType.isNull())
12866 return;
12867
12868 if (IsCompare) {
12869 // There are two cases here. If there is null constant, the only suggest
12870 // for a pointer return type. If the null is 0, then suggest if the return
12871 // type is a pointer or an integer type.
12872 if (!ReturnType->isPointerType()) {
12873 if (NullKind == Expr::NPCK_ZeroExpression ||
12874 NullKind == Expr::NPCK_ZeroLiteral) {
12875 if (!ReturnType->isIntegerType())
12876 return;
12877 } else {
12878 return;
12879 }
12880 }
12881 } else { // !IsCompare
12882 // For function to bool, only suggest if the function pointer has bool
12883 // return type.
12884 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
12885 return;
12886 }
12887 Diag(E->getExprLoc(), diag::note_function_to_function_call)
12888 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
12889 }
12890
12891 /// Diagnoses "dangerous" implicit conversions within the given
12892 /// expression (which is a full expression). Implements -Wconversion
12893 /// and -Wsign-compare.
12894 ///
12895 /// \param CC the "context" location of the implicit conversion, i.e.
12896 /// the most location of the syntactic entity requiring the implicit
12897 /// conversion
CheckImplicitConversions(Expr * E,SourceLocation CC)12898 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
12899 // Don't diagnose in unevaluated contexts.
12900 if (isUnevaluatedContext())
12901 return;
12902
12903 // Don't diagnose for value- or type-dependent expressions.
12904 if (E->isTypeDependent() || E->isValueDependent())
12905 return;
12906
12907 // Check for array bounds violations in cases where the check isn't triggered
12908 // elsewhere for other Expr types (like BinaryOperators), e.g. when an
12909 // ArraySubscriptExpr is on the RHS of a variable initialization.
12910 CheckArrayAccess(E);
12911
12912 // This is not the right CC for (e.g.) a variable initialization.
12913 AnalyzeImplicitConversions(*this, E, CC);
12914 }
12915
12916 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
12917 /// Input argument E is a logical expression.
CheckBoolLikeConversion(Expr * E,SourceLocation CC)12918 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
12919 ::CheckBoolLikeConversion(*this, E, CC);
12920 }
12921
12922 /// Diagnose when expression is an integer constant expression and its evaluation
12923 /// results in integer overflow
CheckForIntOverflow(Expr * E)12924 void Sema::CheckForIntOverflow (Expr *E) {
12925 // Use a work list to deal with nested struct initializers.
12926 SmallVector<Expr *, 2> Exprs(1, E);
12927
12928 do {
12929 Expr *OriginalE = Exprs.pop_back_val();
12930 Expr *E = OriginalE->IgnoreParenCasts();
12931
12932 if (isa<BinaryOperator>(E)) {
12933 E->EvaluateForOverflow(Context);
12934 continue;
12935 }
12936
12937 if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
12938 Exprs.append(InitList->inits().begin(), InitList->inits().end());
12939 else if (isa<ObjCBoxedExpr>(OriginalE))
12940 E->EvaluateForOverflow(Context);
12941 else if (auto Call = dyn_cast<CallExpr>(E))
12942 Exprs.append(Call->arg_begin(), Call->arg_end());
12943 else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
12944 Exprs.append(Message->arg_begin(), Message->arg_end());
12945 } while (!Exprs.empty());
12946 }
12947
12948 namespace {
12949
12950 /// Visitor for expressions which looks for unsequenced operations on the
12951 /// same object.
12952 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
12953 using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
12954
12955 /// A tree of sequenced regions within an expression. Two regions are
12956 /// unsequenced if one is an ancestor or a descendent of the other. When we
12957 /// finish processing an expression with sequencing, such as a comma
12958 /// expression, we fold its tree nodes into its parent, since they are
12959 /// unsequenced with respect to nodes we will visit later.
12960 class SequenceTree {
12961 struct Value {
Value__anon82590da91e11::SequenceChecker::SequenceTree::Value12962 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
12963 unsigned Parent : 31;
12964 unsigned Merged : 1;
12965 };
12966 SmallVector<Value, 8> Values;
12967
12968 public:
12969 /// A region within an expression which may be sequenced with respect
12970 /// to some other region.
12971 class Seq {
12972 friend class SequenceTree;
12973
12974 unsigned Index;
12975
Seq(unsigned N)12976 explicit Seq(unsigned N) : Index(N) {}
12977
12978 public:
Seq()12979 Seq() : Index(0) {}
12980 };
12981
SequenceTree()12982 SequenceTree() { Values.push_back(Value(0)); }
root() const12983 Seq root() const { return Seq(0); }
12984
12985 /// Create a new sequence of operations, which is an unsequenced
12986 /// subset of \p Parent. This sequence of operations is sequenced with
12987 /// respect to other children of \p Parent.
allocate(Seq Parent)12988 Seq allocate(Seq Parent) {
12989 Values.push_back(Value(Parent.Index));
12990 return Seq(Values.size() - 1);
12991 }
12992
12993 /// Merge a sequence of operations into its parent.
merge(Seq S)12994 void merge(Seq S) {
12995 Values[S.Index].Merged = true;
12996 }
12997
12998 /// Determine whether two operations are unsequenced. This operation
12999 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
13000 /// should have been merged into its parent as appropriate.
isUnsequenced(Seq Cur,Seq Old)13001 bool isUnsequenced(Seq Cur, Seq Old) {
13002 unsigned C = representative(Cur.Index);
13003 unsigned Target = representative(Old.Index);
13004 while (C >= Target) {
13005 if (C == Target)
13006 return true;
13007 C = Values[C].Parent;
13008 }
13009 return false;
13010 }
13011
13012 private:
13013 /// Pick a representative for a sequence.
representative(unsigned K)13014 unsigned representative(unsigned K) {
13015 if (Values[K].Merged)
13016 // Perform path compression as we go.
13017 return Values[K].Parent = representative(Values[K].Parent);
13018 return K;
13019 }
13020 };
13021
13022 /// An object for which we can track unsequenced uses.
13023 using Object = const NamedDecl *;
13024
13025 /// Different flavors of object usage which we track. We only track the
13026 /// least-sequenced usage of each kind.
13027 enum UsageKind {
13028 /// A read of an object. Multiple unsequenced reads are OK.
13029 UK_Use,
13030
13031 /// A modification of an object which is sequenced before the value
13032 /// computation of the expression, such as ++n in C++.
13033 UK_ModAsValue,
13034
13035 /// A modification of an object which is not sequenced before the value
13036 /// computation of the expression, such as n++.
13037 UK_ModAsSideEffect,
13038
13039 UK_Count = UK_ModAsSideEffect + 1
13040 };
13041
13042 /// Bundle together a sequencing region and the expression corresponding
13043 /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
13044 struct Usage {
13045 const Expr *UsageExpr;
13046 SequenceTree::Seq Seq;
13047
Usage__anon82590da91e11::SequenceChecker::Usage13048 Usage() : UsageExpr(nullptr), Seq() {}
13049 };
13050
13051 struct UsageInfo {
13052 Usage Uses[UK_Count];
13053
13054 /// Have we issued a diagnostic for this object already?
13055 bool Diagnosed;
13056
UsageInfo__anon82590da91e11::SequenceChecker::UsageInfo13057 UsageInfo() : Uses(), Diagnosed(false) {}
13058 };
13059 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
13060
13061 Sema &SemaRef;
13062
13063 /// Sequenced regions within the expression.
13064 SequenceTree Tree;
13065
13066 /// Declaration modifications and references which we have seen.
13067 UsageInfoMap UsageMap;
13068
13069 /// The region we are currently within.
13070 SequenceTree::Seq Region;
13071
13072 /// Filled in with declarations which were modified as a side-effect
13073 /// (that is, post-increment operations).
13074 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
13075
13076 /// Expressions to check later. We defer checking these to reduce
13077 /// stack usage.
13078 SmallVectorImpl<const Expr *> &WorkList;
13079
13080 /// RAII object wrapping the visitation of a sequenced subexpression of an
13081 /// expression. At the end of this process, the side-effects of the evaluation
13082 /// become sequenced with respect to the value computation of the result, so
13083 /// we downgrade any UK_ModAsSideEffect within the evaluation to
13084 /// UK_ModAsValue.
13085 struct SequencedSubexpression {
SequencedSubexpression__anon82590da91e11::SequenceChecker::SequencedSubexpression13086 SequencedSubexpression(SequenceChecker &Self)
13087 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
13088 Self.ModAsSideEffect = &ModAsSideEffect;
13089 }
13090
~SequencedSubexpression__anon82590da91e11::SequenceChecker::SequencedSubexpression13091 ~SequencedSubexpression() {
13092 for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
13093 // Add a new usage with usage kind UK_ModAsValue, and then restore
13094 // the previous usage with UK_ModAsSideEffect (thus clearing it if
13095 // the previous one was empty).
13096 UsageInfo &UI = Self.UsageMap[M.first];
13097 auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
13098 Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
13099 SideEffectUsage = M.second;
13100 }
13101 Self.ModAsSideEffect = OldModAsSideEffect;
13102 }
13103
13104 SequenceChecker &Self;
13105 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
13106 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
13107 };
13108
13109 /// RAII object wrapping the visitation of a subexpression which we might
13110 /// choose to evaluate as a constant. If any subexpression is evaluated and
13111 /// found to be non-constant, this allows us to suppress the evaluation of
13112 /// the outer expression.
13113 class EvaluationTracker {
13114 public:
EvaluationTracker(SequenceChecker & Self)13115 EvaluationTracker(SequenceChecker &Self)
13116 : Self(Self), Prev(Self.EvalTracker) {
13117 Self.EvalTracker = this;
13118 }
13119
~EvaluationTracker()13120 ~EvaluationTracker() {
13121 Self.EvalTracker = Prev;
13122 if (Prev)
13123 Prev->EvalOK &= EvalOK;
13124 }
13125
evaluate(const Expr * E,bool & Result)13126 bool evaluate(const Expr *E, bool &Result) {
13127 if (!EvalOK || E->isValueDependent())
13128 return false;
13129 EvalOK = E->EvaluateAsBooleanCondition(
13130 Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
13131 return EvalOK;
13132 }
13133
13134 private:
13135 SequenceChecker &Self;
13136 EvaluationTracker *Prev;
13137 bool EvalOK = true;
13138 } *EvalTracker = nullptr;
13139
13140 /// Find the object which is produced by the specified expression,
13141 /// if any.
getObject(const Expr * E,bool Mod) const13142 Object getObject(const Expr *E, bool Mod) const {
13143 E = E->IgnoreParenCasts();
13144 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13145 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
13146 return getObject(UO->getSubExpr(), Mod);
13147 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13148 if (BO->getOpcode() == BO_Comma)
13149 return getObject(BO->getRHS(), Mod);
13150 if (Mod && BO->isAssignmentOp())
13151 return getObject(BO->getLHS(), Mod);
13152 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13153 // FIXME: Check for more interesting cases, like "x.n = ++x.n".
13154 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
13155 return ME->getMemberDecl();
13156 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13157 // FIXME: If this is a reference, map through to its value.
13158 return DRE->getDecl();
13159 return nullptr;
13160 }
13161
13162 /// Note that an object \p O was modified or used by an expression
13163 /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
13164 /// the object \p O as obtained via the \p UsageMap.
addUsage(Object O,UsageInfo & UI,const Expr * UsageExpr,UsageKind UK)13165 void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
13166 // Get the old usage for the given object and usage kind.
13167 Usage &U = UI.Uses[UK];
13168 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
13169 // If we have a modification as side effect and are in a sequenced
13170 // subexpression, save the old Usage so that we can restore it later
13171 // in SequencedSubexpression::~SequencedSubexpression.
13172 if (UK == UK_ModAsSideEffect && ModAsSideEffect)
13173 ModAsSideEffect->push_back(std::make_pair(O, U));
13174 // Then record the new usage with the current sequencing region.
13175 U.UsageExpr = UsageExpr;
13176 U.Seq = Region;
13177 }
13178 }
13179
13180 /// Check whether a modification or use of an object \p O in an expression
13181 /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
13182 /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
13183 /// \p IsModMod is true when we are checking for a mod-mod unsequenced
13184 /// usage and false we are checking for a mod-use unsequenced usage.
checkUsage(Object O,UsageInfo & UI,const Expr * UsageExpr,UsageKind OtherKind,bool IsModMod)13185 void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
13186 UsageKind OtherKind, bool IsModMod) {
13187 if (UI.Diagnosed)
13188 return;
13189
13190 const Usage &U = UI.Uses[OtherKind];
13191 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
13192 return;
13193
13194 const Expr *Mod = U.UsageExpr;
13195 const Expr *ModOrUse = UsageExpr;
13196 if (OtherKind == UK_Use)
13197 std::swap(Mod, ModOrUse);
13198
13199 SemaRef.DiagRuntimeBehavior(
13200 Mod->getExprLoc(), {Mod, ModOrUse},
13201 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
13202 : diag::warn_unsequenced_mod_use)
13203 << O << SourceRange(ModOrUse->getExprLoc()));
13204 UI.Diagnosed = true;
13205 }
13206
13207 // A note on note{Pre, Post}{Use, Mod}:
13208 //
13209 // (It helps to follow the algorithm with an expression such as
13210 // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
13211 // operations before C++17 and both are well-defined in C++17).
13212 //
13213 // When visiting a node which uses/modify an object we first call notePreUse
13214 // or notePreMod before visiting its sub-expression(s). At this point the
13215 // children of the current node have not yet been visited and so the eventual
13216 // uses/modifications resulting from the children of the current node have not
13217 // been recorded yet.
13218 //
13219 // We then visit the children of the current node. After that notePostUse or
13220 // notePostMod is called. These will 1) detect an unsequenced modification
13221 // as side effect (as in "k++ + k") and 2) add a new usage with the
13222 // appropriate usage kind.
13223 //
13224 // We also have to be careful that some operation sequences modification as
13225 // side effect as well (for example: || or ,). To account for this we wrap
13226 // the visitation of such a sub-expression (for example: the LHS of || or ,)
13227 // with SequencedSubexpression. SequencedSubexpression is an RAII object
13228 // which record usages which are modifications as side effect, and then
13229 // downgrade them (or more accurately restore the previous usage which was a
13230 // modification as side effect) when exiting the scope of the sequenced
13231 // subexpression.
13232
notePreUse(Object O,const Expr * UseExpr)13233 void notePreUse(Object O, const Expr *UseExpr) {
13234 UsageInfo &UI = UsageMap[O];
13235 // Uses conflict with other modifications.
13236 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
13237 }
13238
notePostUse(Object O,const Expr * UseExpr)13239 void notePostUse(Object O, const Expr *UseExpr) {
13240 UsageInfo &UI = UsageMap[O];
13241 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
13242 /*IsModMod=*/false);
13243 addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
13244 }
13245
notePreMod(Object O,const Expr * ModExpr)13246 void notePreMod(Object O, const Expr *ModExpr) {
13247 UsageInfo &UI = UsageMap[O];
13248 // Modifications conflict with other modifications and with uses.
13249 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
13250 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
13251 }
13252
notePostMod(Object O,const Expr * ModExpr,UsageKind UK)13253 void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
13254 UsageInfo &UI = UsageMap[O];
13255 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
13256 /*IsModMod=*/true);
13257 addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
13258 }
13259
13260 public:
SequenceChecker(Sema & S,const Expr * E,SmallVectorImpl<const Expr * > & WorkList)13261 SequenceChecker(Sema &S, const Expr *E,
13262 SmallVectorImpl<const Expr *> &WorkList)
13263 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
13264 Visit(E);
13265 // Silence a -Wunused-private-field since WorkList is now unused.
13266 // TODO: Evaluate if it can be used, and if not remove it.
13267 (void)this->WorkList;
13268 }
13269
VisitStmt(const Stmt * S)13270 void VisitStmt(const Stmt *S) {
13271 // Skip all statements which aren't expressions for now.
13272 }
13273
VisitExpr(const Expr * E)13274 void VisitExpr(const Expr *E) {
13275 // By default, just recurse to evaluated subexpressions.
13276 Base::VisitStmt(E);
13277 }
13278
VisitCastExpr(const CastExpr * E)13279 void VisitCastExpr(const CastExpr *E) {
13280 Object O = Object();
13281 if (E->getCastKind() == CK_LValueToRValue)
13282 O = getObject(E->getSubExpr(), false);
13283
13284 if (O)
13285 notePreUse(O, E);
13286 VisitExpr(E);
13287 if (O)
13288 notePostUse(O, E);
13289 }
13290
VisitSequencedExpressions(const Expr * SequencedBefore,const Expr * SequencedAfter)13291 void VisitSequencedExpressions(const Expr *SequencedBefore,
13292 const Expr *SequencedAfter) {
13293 SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
13294 SequenceTree::Seq AfterRegion = Tree.allocate(Region);
13295 SequenceTree::Seq OldRegion = Region;
13296
13297 {
13298 SequencedSubexpression SeqBefore(*this);
13299 Region = BeforeRegion;
13300 Visit(SequencedBefore);
13301 }
13302
13303 Region = AfterRegion;
13304 Visit(SequencedAfter);
13305
13306 Region = OldRegion;
13307
13308 Tree.merge(BeforeRegion);
13309 Tree.merge(AfterRegion);
13310 }
13311
VisitArraySubscriptExpr(const ArraySubscriptExpr * ASE)13312 void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
13313 // C++17 [expr.sub]p1:
13314 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
13315 // expression E1 is sequenced before the expression E2.
13316 if (SemaRef.getLangOpts().CPlusPlus17)
13317 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
13318 else {
13319 Visit(ASE->getLHS());
13320 Visit(ASE->getRHS());
13321 }
13322 }
13323
VisitBinPtrMemD(const BinaryOperator * BO)13324 void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
VisitBinPtrMemI(const BinaryOperator * BO)13325 void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
VisitBinPtrMem(const BinaryOperator * BO)13326 void VisitBinPtrMem(const BinaryOperator *BO) {
13327 // C++17 [expr.mptr.oper]p4:
13328 // Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
13329 // the expression E1 is sequenced before the expression E2.
13330 if (SemaRef.getLangOpts().CPlusPlus17)
13331 VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13332 else {
13333 Visit(BO->getLHS());
13334 Visit(BO->getRHS());
13335 }
13336 }
13337
VisitBinShl(const BinaryOperator * BO)13338 void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
VisitBinShr(const BinaryOperator * BO)13339 void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
VisitBinShlShr(const BinaryOperator * BO)13340 void VisitBinShlShr(const BinaryOperator *BO) {
13341 // C++17 [expr.shift]p4:
13342 // The expression E1 is sequenced before the expression E2.
13343 if (SemaRef.getLangOpts().CPlusPlus17)
13344 VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13345 else {
13346 Visit(BO->getLHS());
13347 Visit(BO->getRHS());
13348 }
13349 }
13350
VisitBinComma(const BinaryOperator * BO)13351 void VisitBinComma(const BinaryOperator *BO) {
13352 // C++11 [expr.comma]p1:
13353 // Every value computation and side effect associated with the left
13354 // expression is sequenced before every value computation and side
13355 // effect associated with the right expression.
13356 VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13357 }
13358
VisitBinAssign(const BinaryOperator * BO)13359 void VisitBinAssign(const BinaryOperator *BO) {
13360 SequenceTree::Seq RHSRegion;
13361 SequenceTree::Seq LHSRegion;
13362 if (SemaRef.getLangOpts().CPlusPlus17) {
13363 RHSRegion = Tree.allocate(Region);
13364 LHSRegion = Tree.allocate(Region);
13365 } else {
13366 RHSRegion = Region;
13367 LHSRegion = Region;
13368 }
13369 SequenceTree::Seq OldRegion = Region;
13370
13371 // C++11 [expr.ass]p1:
13372 // [...] the assignment is sequenced after the value computation
13373 // of the right and left operands, [...]
13374 //
13375 // so check it before inspecting the operands and update the
13376 // map afterwards.
13377 Object O = getObject(BO->getLHS(), /*Mod=*/true);
13378 if (O)
13379 notePreMod(O, BO);
13380
13381 if (SemaRef.getLangOpts().CPlusPlus17) {
13382 // C++17 [expr.ass]p1:
13383 // [...] The right operand is sequenced before the left operand. [...]
13384 {
13385 SequencedSubexpression SeqBefore(*this);
13386 Region = RHSRegion;
13387 Visit(BO->getRHS());
13388 }
13389
13390 Region = LHSRegion;
13391 Visit(BO->getLHS());
13392
13393 if (O && isa<CompoundAssignOperator>(BO))
13394 notePostUse(O, BO);
13395
13396 } else {
13397 // C++11 does not specify any sequencing between the LHS and RHS.
13398 Region = LHSRegion;
13399 Visit(BO->getLHS());
13400
13401 if (O && isa<CompoundAssignOperator>(BO))
13402 notePostUse(O, BO);
13403
13404 Region = RHSRegion;
13405 Visit(BO->getRHS());
13406 }
13407
13408 // C++11 [expr.ass]p1:
13409 // the assignment is sequenced [...] before the value computation of the
13410 // assignment expression.
13411 // C11 6.5.16/3 has no such rule.
13412 Region = OldRegion;
13413 if (O)
13414 notePostMod(O, BO,
13415 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13416 : UK_ModAsSideEffect);
13417 if (SemaRef.getLangOpts().CPlusPlus17) {
13418 Tree.merge(RHSRegion);
13419 Tree.merge(LHSRegion);
13420 }
13421 }
13422
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)13423 void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
13424 VisitBinAssign(CAO);
13425 }
13426
VisitUnaryPreInc(const UnaryOperator * UO)13427 void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreDec(const UnaryOperator * UO)13428 void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreIncDec(const UnaryOperator * UO)13429 void VisitUnaryPreIncDec(const UnaryOperator *UO) {
13430 Object O = getObject(UO->getSubExpr(), true);
13431 if (!O)
13432 return VisitExpr(UO);
13433
13434 notePreMod(O, UO);
13435 Visit(UO->getSubExpr());
13436 // C++11 [expr.pre.incr]p1:
13437 // the expression ++x is equivalent to x+=1
13438 notePostMod(O, UO,
13439 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13440 : UK_ModAsSideEffect);
13441 }
13442
VisitUnaryPostInc(const UnaryOperator * UO)13443 void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostDec(const UnaryOperator * UO)13444 void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostIncDec(const UnaryOperator * UO)13445 void VisitUnaryPostIncDec(const UnaryOperator *UO) {
13446 Object O = getObject(UO->getSubExpr(), true);
13447 if (!O)
13448 return VisitExpr(UO);
13449
13450 notePreMod(O, UO);
13451 Visit(UO->getSubExpr());
13452 notePostMod(O, UO, UK_ModAsSideEffect);
13453 }
13454
VisitBinLOr(const BinaryOperator * BO)13455 void VisitBinLOr(const BinaryOperator *BO) {
13456 // C++11 [expr.log.or]p2:
13457 // If the second expression is evaluated, every value computation and
13458 // side effect associated with the first expression is sequenced before
13459 // every value computation and side effect associated with the
13460 // second expression.
13461 SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13462 SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13463 SequenceTree::Seq OldRegion = Region;
13464
13465 EvaluationTracker Eval(*this);
13466 {
13467 SequencedSubexpression Sequenced(*this);
13468 Region = LHSRegion;
13469 Visit(BO->getLHS());
13470 }
13471
13472 // C++11 [expr.log.or]p1:
13473 // [...] the second operand is not evaluated if the first operand
13474 // evaluates to true.
13475 bool EvalResult = false;
13476 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13477 bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
13478 if (ShouldVisitRHS) {
13479 Region = RHSRegion;
13480 Visit(BO->getRHS());
13481 }
13482
13483 Region = OldRegion;
13484 Tree.merge(LHSRegion);
13485 Tree.merge(RHSRegion);
13486 }
13487
VisitBinLAnd(const BinaryOperator * BO)13488 void VisitBinLAnd(const BinaryOperator *BO) {
13489 // C++11 [expr.log.and]p2:
13490 // If the second expression is evaluated, every value computation and
13491 // side effect associated with the first expression is sequenced before
13492 // every value computation and side effect associated with the
13493 // second expression.
13494 SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13495 SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13496 SequenceTree::Seq OldRegion = Region;
13497
13498 EvaluationTracker Eval(*this);
13499 {
13500 SequencedSubexpression Sequenced(*this);
13501 Region = LHSRegion;
13502 Visit(BO->getLHS());
13503 }
13504
13505 // C++11 [expr.log.and]p1:
13506 // [...] the second operand is not evaluated if the first operand is false.
13507 bool EvalResult = false;
13508 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13509 bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
13510 if (ShouldVisitRHS) {
13511 Region = RHSRegion;
13512 Visit(BO->getRHS());
13513 }
13514
13515 Region = OldRegion;
13516 Tree.merge(LHSRegion);
13517 Tree.merge(RHSRegion);
13518 }
13519
VisitAbstractConditionalOperator(const AbstractConditionalOperator * CO)13520 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
13521 // C++11 [expr.cond]p1:
13522 // [...] Every value computation and side effect associated with the first
13523 // expression is sequenced before every value computation and side effect
13524 // associated with the second or third expression.
13525 SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
13526
13527 // No sequencing is specified between the true and false expression.
13528 // However since exactly one of both is going to be evaluated we can
13529 // consider them to be sequenced. This is needed to avoid warning on
13530 // something like "x ? y+= 1 : y += 2;" in the case where we will visit
13531 // both the true and false expressions because we can't evaluate x.
13532 // This will still allow us to detect an expression like (pre C++17)
13533 // "(x ? y += 1 : y += 2) = y".
13534 //
13535 // We don't wrap the visitation of the true and false expression with
13536 // SequencedSubexpression because we don't want to downgrade modifications
13537 // as side effect in the true and false expressions after the visition
13538 // is done. (for example in the expression "(x ? y++ : y++) + y" we should
13539 // not warn between the two "y++", but we should warn between the "y++"
13540 // and the "y".
13541 SequenceTree::Seq TrueRegion = Tree.allocate(Region);
13542 SequenceTree::Seq FalseRegion = Tree.allocate(Region);
13543 SequenceTree::Seq OldRegion = Region;
13544
13545 EvaluationTracker Eval(*this);
13546 {
13547 SequencedSubexpression Sequenced(*this);
13548 Region = ConditionRegion;
13549 Visit(CO->getCond());
13550 }
13551
13552 // C++11 [expr.cond]p1:
13553 // [...] The first expression is contextually converted to bool (Clause 4).
13554 // It is evaluated and if it is true, the result of the conditional
13555 // expression is the value of the second expression, otherwise that of the
13556 // third expression. Only one of the second and third expressions is
13557 // evaluated. [...]
13558 bool EvalResult = false;
13559 bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
13560 bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
13561 bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
13562 if (ShouldVisitTrueExpr) {
13563 Region = TrueRegion;
13564 Visit(CO->getTrueExpr());
13565 }
13566 if (ShouldVisitFalseExpr) {
13567 Region = FalseRegion;
13568 Visit(CO->getFalseExpr());
13569 }
13570
13571 Region = OldRegion;
13572 Tree.merge(ConditionRegion);
13573 Tree.merge(TrueRegion);
13574 Tree.merge(FalseRegion);
13575 }
13576
VisitCallExpr(const CallExpr * CE)13577 void VisitCallExpr(const CallExpr *CE) {
13578 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
13579
13580 if (CE->isUnevaluatedBuiltinCall(Context))
13581 return;
13582
13583 // C++11 [intro.execution]p15:
13584 // When calling a function [...], every value computation and side effect
13585 // associated with any argument expression, or with the postfix expression
13586 // designating the called function, is sequenced before execution of every
13587 // expression or statement in the body of the function [and thus before
13588 // the value computation of its result].
13589 SequencedSubexpression Sequenced(*this);
13590 SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
13591 // C++17 [expr.call]p5
13592 // The postfix-expression is sequenced before each expression in the
13593 // expression-list and any default argument. [...]
13594 SequenceTree::Seq CalleeRegion;
13595 SequenceTree::Seq OtherRegion;
13596 if (SemaRef.getLangOpts().CPlusPlus17) {
13597 CalleeRegion = Tree.allocate(Region);
13598 OtherRegion = Tree.allocate(Region);
13599 } else {
13600 CalleeRegion = Region;
13601 OtherRegion = Region;
13602 }
13603 SequenceTree::Seq OldRegion = Region;
13604
13605 // Visit the callee expression first.
13606 Region = CalleeRegion;
13607 if (SemaRef.getLangOpts().CPlusPlus17) {
13608 SequencedSubexpression Sequenced(*this);
13609 Visit(CE->getCallee());
13610 } else {
13611 Visit(CE->getCallee());
13612 }
13613
13614 // Then visit the argument expressions.
13615 Region = OtherRegion;
13616 for (const Expr *Argument : CE->arguments())
13617 Visit(Argument);
13618
13619 Region = OldRegion;
13620 if (SemaRef.getLangOpts().CPlusPlus17) {
13621 Tree.merge(CalleeRegion);
13622 Tree.merge(OtherRegion);
13623 }
13624 });
13625 }
13626
VisitCXXOperatorCallExpr(const CXXOperatorCallExpr * CXXOCE)13627 void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
13628 // C++17 [over.match.oper]p2:
13629 // [...] the operator notation is first transformed to the equivalent
13630 // function-call notation as summarized in Table 12 (where @ denotes one
13631 // of the operators covered in the specified subclause). However, the
13632 // operands are sequenced in the order prescribed for the built-in
13633 // operator (Clause 8).
13634 //
13635 // From the above only overloaded binary operators and overloaded call
13636 // operators have sequencing rules in C++17 that we need to handle
13637 // separately.
13638 if (!SemaRef.getLangOpts().CPlusPlus17 ||
13639 (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
13640 return VisitCallExpr(CXXOCE);
13641
13642 enum {
13643 NoSequencing,
13644 LHSBeforeRHS,
13645 RHSBeforeLHS,
13646 LHSBeforeRest
13647 } SequencingKind;
13648 switch (CXXOCE->getOperator()) {
13649 case OO_Equal:
13650 case OO_PlusEqual:
13651 case OO_MinusEqual:
13652 case OO_StarEqual:
13653 case OO_SlashEqual:
13654 case OO_PercentEqual:
13655 case OO_CaretEqual:
13656 case OO_AmpEqual:
13657 case OO_PipeEqual:
13658 case OO_LessLessEqual:
13659 case OO_GreaterGreaterEqual:
13660 SequencingKind = RHSBeforeLHS;
13661 break;
13662
13663 case OO_LessLess:
13664 case OO_GreaterGreater:
13665 case OO_AmpAmp:
13666 case OO_PipePipe:
13667 case OO_Comma:
13668 case OO_ArrowStar:
13669 case OO_Subscript:
13670 SequencingKind = LHSBeforeRHS;
13671 break;
13672
13673 case OO_Call:
13674 SequencingKind = LHSBeforeRest;
13675 break;
13676
13677 default:
13678 SequencingKind = NoSequencing;
13679 break;
13680 }
13681
13682 if (SequencingKind == NoSequencing)
13683 return VisitCallExpr(CXXOCE);
13684
13685 // This is a call, so all subexpressions are sequenced before the result.
13686 SequencedSubexpression Sequenced(*this);
13687
13688 SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
13689 assert(SemaRef.getLangOpts().CPlusPlus17 &&
13690 "Should only get there with C++17 and above!");
13691 assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
13692 "Should only get there with an overloaded binary operator"
13693 " or an overloaded call operator!");
13694
13695 if (SequencingKind == LHSBeforeRest) {
13696 assert(CXXOCE->getOperator() == OO_Call &&
13697 "We should only have an overloaded call operator here!");
13698
13699 // This is very similar to VisitCallExpr, except that we only have the
13700 // C++17 case. The postfix-expression is the first argument of the
13701 // CXXOperatorCallExpr. The expressions in the expression-list, if any,
13702 // are in the following arguments.
13703 //
13704 // Note that we intentionally do not visit the callee expression since
13705 // it is just a decayed reference to a function.
13706 SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
13707 SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
13708 SequenceTree::Seq OldRegion = Region;
13709
13710 assert(CXXOCE->getNumArgs() >= 1 &&
13711 "An overloaded call operator must have at least one argument"
13712 " for the postfix-expression!");
13713 const Expr *PostfixExpr = CXXOCE->getArgs()[0];
13714 llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
13715 CXXOCE->getNumArgs() - 1);
13716
13717 // Visit the postfix-expression first.
13718 {
13719 Region = PostfixExprRegion;
13720 SequencedSubexpression Sequenced(*this);
13721 Visit(PostfixExpr);
13722 }
13723
13724 // Then visit the argument expressions.
13725 Region = ArgsRegion;
13726 for (const Expr *Arg : Args)
13727 Visit(Arg);
13728
13729 Region = OldRegion;
13730 Tree.merge(PostfixExprRegion);
13731 Tree.merge(ArgsRegion);
13732 } else {
13733 assert(CXXOCE->getNumArgs() == 2 &&
13734 "Should only have two arguments here!");
13735 assert((SequencingKind == LHSBeforeRHS ||
13736 SequencingKind == RHSBeforeLHS) &&
13737 "Unexpected sequencing kind!");
13738
13739 // We do not visit the callee expression since it is just a decayed
13740 // reference to a function.
13741 const Expr *E1 = CXXOCE->getArg(0);
13742 const Expr *E2 = CXXOCE->getArg(1);
13743 if (SequencingKind == RHSBeforeLHS)
13744 std::swap(E1, E2);
13745
13746 return VisitSequencedExpressions(E1, E2);
13747 }
13748 });
13749 }
13750
VisitCXXConstructExpr(const CXXConstructExpr * CCE)13751 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
13752 // This is a call, so all subexpressions are sequenced before the result.
13753 SequencedSubexpression Sequenced(*this);
13754
13755 if (!CCE->isListInitialization())
13756 return VisitExpr(CCE);
13757
13758 // In C++11, list initializations are sequenced.
13759 SmallVector<SequenceTree::Seq, 32> Elts;
13760 SequenceTree::Seq Parent = Region;
13761 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
13762 E = CCE->arg_end();
13763 I != E; ++I) {
13764 Region = Tree.allocate(Parent);
13765 Elts.push_back(Region);
13766 Visit(*I);
13767 }
13768
13769 // Forget that the initializers are sequenced.
13770 Region = Parent;
13771 for (unsigned I = 0; I < Elts.size(); ++I)
13772 Tree.merge(Elts[I]);
13773 }
13774
VisitInitListExpr(const InitListExpr * ILE)13775 void VisitInitListExpr(const InitListExpr *ILE) {
13776 if (!SemaRef.getLangOpts().CPlusPlus11)
13777 return VisitExpr(ILE);
13778
13779 // In C++11, list initializations are sequenced.
13780 SmallVector<SequenceTree::Seq, 32> Elts;
13781 SequenceTree::Seq Parent = Region;
13782 for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
13783 const Expr *E = ILE->getInit(I);
13784 if (!E)
13785 continue;
13786 Region = Tree.allocate(Parent);
13787 Elts.push_back(Region);
13788 Visit(E);
13789 }
13790
13791 // Forget that the initializers are sequenced.
13792 Region = Parent;
13793 for (unsigned I = 0; I < Elts.size(); ++I)
13794 Tree.merge(Elts[I]);
13795 }
13796 };
13797
13798 } // namespace
13799
CheckUnsequencedOperations(const Expr * E)13800 void Sema::CheckUnsequencedOperations(const Expr *E) {
13801 SmallVector<const Expr *, 8> WorkList;
13802 WorkList.push_back(E);
13803 while (!WorkList.empty()) {
13804 const Expr *Item = WorkList.pop_back_val();
13805 SequenceChecker(*this, Item, WorkList);
13806 }
13807 }
13808
CheckCompletedExpr(Expr * E,SourceLocation CheckLoc,bool IsConstexpr)13809 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
13810 bool IsConstexpr) {
13811 llvm::SaveAndRestore<bool> ConstantContext(
13812 isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
13813 CheckImplicitConversions(E, CheckLoc);
13814 if (!E->isInstantiationDependent())
13815 CheckUnsequencedOperations(E);
13816 if (!IsConstexpr && !E->isValueDependent())
13817 CheckForIntOverflow(E);
13818 DiagnoseMisalignedMembers();
13819 }
13820
CheckBitFieldInitialization(SourceLocation InitLoc,FieldDecl * BitField,Expr * Init)13821 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
13822 FieldDecl *BitField,
13823 Expr *Init) {
13824 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
13825 }
13826
diagnoseArrayStarInParamType(Sema & S,QualType PType,SourceLocation Loc)13827 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
13828 SourceLocation Loc) {
13829 if (!PType->isVariablyModifiedType())
13830 return;
13831 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
13832 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
13833 return;
13834 }
13835 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
13836 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
13837 return;
13838 }
13839 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
13840 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
13841 return;
13842 }
13843
13844 const ArrayType *AT = S.Context.getAsArrayType(PType);
13845 if (!AT)
13846 return;
13847
13848 if (AT->getSizeModifier() != ArrayType::Star) {
13849 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
13850 return;
13851 }
13852
13853 S.Diag(Loc, diag::err_array_star_in_function_definition);
13854 }
13855
13856 /// CheckParmsForFunctionDef - Check that the parameters of the given
13857 /// function are appropriate for the definition of a function. This
13858 /// takes care of any checks that cannot be performed on the
13859 /// declaration itself, e.g., that the types of each of the function
13860 /// parameters are complete.
CheckParmsForFunctionDef(ArrayRef<ParmVarDecl * > Parameters,bool CheckParameterNames)13861 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
13862 bool CheckParameterNames) {
13863 bool HasInvalidParm = false;
13864 for (ParmVarDecl *Param : Parameters) {
13865 // C99 6.7.5.3p4: the parameters in a parameter type list in a
13866 // function declarator that is part of a function definition of
13867 // that function shall not have incomplete type.
13868 //
13869 // This is also C++ [dcl.fct]p6.
13870 if (!Param->isInvalidDecl() &&
13871 RequireCompleteType(Param->getLocation(), Param->getType(),
13872 diag::err_typecheck_decl_incomplete_type)) {
13873 Param->setInvalidDecl();
13874 HasInvalidParm = true;
13875 }
13876
13877 // C99 6.9.1p5: If the declarator includes a parameter type list, the
13878 // declaration of each parameter shall include an identifier.
13879 if (CheckParameterNames && Param->getIdentifier() == nullptr &&
13880 !Param->isImplicit() && !getLangOpts().CPlusPlus) {
13881 // Diagnose this as an extension in C17 and earlier.
13882 if (!getLangOpts().C2x)
13883 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
13884 }
13885
13886 // C99 6.7.5.3p12:
13887 // If the function declarator is not part of a definition of that
13888 // function, parameters may have incomplete type and may use the [*]
13889 // notation in their sequences of declarator specifiers to specify
13890 // variable length array types.
13891 QualType PType = Param->getOriginalType();
13892 // FIXME: This diagnostic should point the '[*]' if source-location
13893 // information is added for it.
13894 diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
13895
13896 // If the parameter is a c++ class type and it has to be destructed in the
13897 // callee function, declare the destructor so that it can be called by the
13898 // callee function. Do not perform any direct access check on the dtor here.
13899 if (!Param->isInvalidDecl()) {
13900 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
13901 if (!ClassDecl->isInvalidDecl() &&
13902 !ClassDecl->hasIrrelevantDestructor() &&
13903 !ClassDecl->isDependentContext() &&
13904 ClassDecl->isParamDestroyedInCallee()) {
13905 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
13906 MarkFunctionReferenced(Param->getLocation(), Destructor);
13907 DiagnoseUseOfDecl(Destructor, Param->getLocation());
13908 }
13909 }
13910 }
13911
13912 // Parameters with the pass_object_size attribute only need to be marked
13913 // constant at function definitions. Because we lack information about
13914 // whether we're on a declaration or definition when we're instantiating the
13915 // attribute, we need to check for constness here.
13916 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
13917 if (!Param->getType().isConstQualified())
13918 Diag(Param->getLocation(), diag::err_attribute_pointers_only)
13919 << Attr->getSpelling() << 1;
13920
13921 // Check for parameter names shadowing fields from the class.
13922 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
13923 // The owning context for the parameter should be the function, but we
13924 // want to see if this function's declaration context is a record.
13925 DeclContext *DC = Param->getDeclContext();
13926 if (DC && DC->isFunctionOrMethod()) {
13927 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
13928 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
13929 RD, /*DeclIsField*/ false);
13930 }
13931 }
13932 }
13933
13934 return HasInvalidParm;
13935 }
13936
13937 Optional<std::pair<CharUnits, CharUnits>>
13938 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
13939
13940 /// Compute the alignment and offset of the base class object given the
13941 /// derived-to-base cast expression and the alignment and offset of the derived
13942 /// class object.
13943 static std::pair<CharUnits, CharUnits>
getDerivedToBaseAlignmentAndOffset(const CastExpr * CE,QualType DerivedType,CharUnits BaseAlignment,CharUnits Offset,ASTContext & Ctx)13944 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
13945 CharUnits BaseAlignment, CharUnits Offset,
13946 ASTContext &Ctx) {
13947 for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
13948 ++PathI) {
13949 const CXXBaseSpecifier *Base = *PathI;
13950 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
13951 if (Base->isVirtual()) {
13952 // The complete object may have a lower alignment than the non-virtual
13953 // alignment of the base, in which case the base may be misaligned. Choose
13954 // the smaller of the non-virtual alignment and BaseAlignment, which is a
13955 // conservative lower bound of the complete object alignment.
13956 CharUnits NonVirtualAlignment =
13957 Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
13958 BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
13959 Offset = CharUnits::Zero();
13960 } else {
13961 const ASTRecordLayout &RL =
13962 Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
13963 Offset += RL.getBaseClassOffset(BaseDecl);
13964 }
13965 DerivedType = Base->getType();
13966 }
13967
13968 return std::make_pair(BaseAlignment, Offset);
13969 }
13970
13971 /// Compute the alignment and offset of a binary additive operator.
13972 static Optional<std::pair<CharUnits, CharUnits>>
getAlignmentAndOffsetFromBinAddOrSub(const Expr * PtrE,const Expr * IntE,bool IsSub,ASTContext & Ctx)13973 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
13974 bool IsSub, ASTContext &Ctx) {
13975 QualType PointeeType = PtrE->getType()->getPointeeType();
13976
13977 if (!PointeeType->isConstantSizeType())
13978 return llvm::None;
13979
13980 auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
13981
13982 if (!P)
13983 return llvm::None;
13984
13985 CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
13986 if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
13987 CharUnits Offset = EltSize * IdxRes->getExtValue();
13988 if (IsSub)
13989 Offset = -Offset;
13990 return std::make_pair(P->first, P->second + Offset);
13991 }
13992
13993 // If the integer expression isn't a constant expression, compute the lower
13994 // bound of the alignment using the alignment and offset of the pointer
13995 // expression and the element size.
13996 return std::make_pair(
13997 P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
13998 CharUnits::Zero());
13999 }
14000
14001 /// This helper function takes an lvalue expression and returns the alignment of
14002 /// a VarDecl and a constant offset from the VarDecl.
14003 Optional<std::pair<CharUnits, CharUnits>>
getBaseAlignmentAndOffsetFromLValue(const Expr * E,ASTContext & Ctx)14004 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
14005 E = E->IgnoreParens();
14006 switch (E->getStmtClass()) {
14007 default:
14008 break;
14009 case Stmt::CStyleCastExprClass:
14010 case Stmt::CXXStaticCastExprClass:
14011 case Stmt::ImplicitCastExprClass: {
14012 auto *CE = cast<CastExpr>(E);
14013 const Expr *From = CE->getSubExpr();
14014 switch (CE->getCastKind()) {
14015 default:
14016 break;
14017 case CK_NoOp:
14018 return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14019 case CK_UncheckedDerivedToBase:
14020 case CK_DerivedToBase: {
14021 auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14022 if (!P)
14023 break;
14024 return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
14025 P->second, Ctx);
14026 }
14027 }
14028 break;
14029 }
14030 case Stmt::ArraySubscriptExprClass: {
14031 auto *ASE = cast<ArraySubscriptExpr>(E);
14032 return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
14033 false, Ctx);
14034 }
14035 case Stmt::DeclRefExprClass: {
14036 if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
14037 // FIXME: If VD is captured by copy or is an escaping __block variable,
14038 // use the alignment of VD's type.
14039 if (!VD->getType()->isReferenceType())
14040 return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
14041 if (VD->hasInit())
14042 return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
14043 }
14044 break;
14045 }
14046 case Stmt::MemberExprClass: {
14047 auto *ME = cast<MemberExpr>(E);
14048 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
14049 if (!FD || FD->getType()->isReferenceType())
14050 break;
14051 Optional<std::pair<CharUnits, CharUnits>> P;
14052 if (ME->isArrow())
14053 P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
14054 else
14055 P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
14056 if (!P)
14057 break;
14058 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
14059 uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
14060 return std::make_pair(P->first,
14061 P->second + CharUnits::fromQuantity(Offset));
14062 }
14063 case Stmt::UnaryOperatorClass: {
14064 auto *UO = cast<UnaryOperator>(E);
14065 switch (UO->getOpcode()) {
14066 default:
14067 break;
14068 case UO_Deref:
14069 return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
14070 }
14071 break;
14072 }
14073 case Stmt::BinaryOperatorClass: {
14074 auto *BO = cast<BinaryOperator>(E);
14075 auto Opcode = BO->getOpcode();
14076 switch (Opcode) {
14077 default:
14078 break;
14079 case BO_Comma:
14080 return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
14081 }
14082 break;
14083 }
14084 }
14085 return llvm::None;
14086 }
14087
14088 /// This helper function takes a pointer expression and returns the alignment of
14089 /// a VarDecl and a constant offset from the VarDecl.
14090 Optional<std::pair<CharUnits, CharUnits>>
getBaseAlignmentAndOffsetFromPtr(const Expr * E,ASTContext & Ctx)14091 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
14092 E = E->IgnoreParens();
14093 switch (E->getStmtClass()) {
14094 default:
14095 break;
14096 case Stmt::CStyleCastExprClass:
14097 case Stmt::CXXStaticCastExprClass:
14098 case Stmt::ImplicitCastExprClass: {
14099 auto *CE = cast<CastExpr>(E);
14100 const Expr *From = CE->getSubExpr();
14101 switch (CE->getCastKind()) {
14102 default:
14103 break;
14104 case CK_NoOp:
14105 return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14106 case CK_ArrayToPointerDecay:
14107 return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14108 case CK_UncheckedDerivedToBase:
14109 case CK_DerivedToBase: {
14110 auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14111 if (!P)
14112 break;
14113 return getDerivedToBaseAlignmentAndOffset(
14114 CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
14115 }
14116 }
14117 break;
14118 }
14119 case Stmt::CXXThisExprClass: {
14120 auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
14121 CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
14122 return std::make_pair(Alignment, CharUnits::Zero());
14123 }
14124 case Stmt::UnaryOperatorClass: {
14125 auto *UO = cast<UnaryOperator>(E);
14126 if (UO->getOpcode() == UO_AddrOf)
14127 return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
14128 break;
14129 }
14130 case Stmt::BinaryOperatorClass: {
14131 auto *BO = cast<BinaryOperator>(E);
14132 auto Opcode = BO->getOpcode();
14133 switch (Opcode) {
14134 default:
14135 break;
14136 case BO_Add:
14137 case BO_Sub: {
14138 const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
14139 if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
14140 std::swap(LHS, RHS);
14141 return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
14142 Ctx);
14143 }
14144 case BO_Comma:
14145 return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
14146 }
14147 break;
14148 }
14149 }
14150 return llvm::None;
14151 }
14152
getPresumedAlignmentOfPointer(const Expr * E,Sema & S)14153 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
14154 // See if we can compute the alignment of a VarDecl and an offset from it.
14155 Optional<std::pair<CharUnits, CharUnits>> P =
14156 getBaseAlignmentAndOffsetFromPtr(E, S.Context);
14157
14158 if (P)
14159 return P->first.alignmentAtOffset(P->second);
14160
14161 // If that failed, return the type's alignment.
14162 return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
14163 }
14164
14165 /// CheckCastAlign - Implements -Wcast-align, which warns when a
14166 /// pointer cast increases the alignment requirements.
CheckCastAlign(Expr * Op,QualType T,SourceRange TRange)14167 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
14168 // This is actually a lot of work to potentially be doing on every
14169 // cast; don't do it if we're ignoring -Wcast_align (as is the default).
14170 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
14171 return;
14172
14173 // Ignore dependent types.
14174 if (T->isDependentType() || Op->getType()->isDependentType())
14175 return;
14176
14177 // Require that the destination be a pointer type.
14178 const PointerType *DestPtr = T->getAs<PointerType>();
14179 if (!DestPtr) return;
14180
14181 // If the destination has alignment 1, we're done.
14182 QualType DestPointee = DestPtr->getPointeeType();
14183 if (DestPointee->isIncompleteType()) return;
14184 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
14185 if (DestAlign.isOne()) return;
14186
14187 // Require that the source be a pointer type.
14188 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
14189 if (!SrcPtr) return;
14190 QualType SrcPointee = SrcPtr->getPointeeType();
14191
14192 // Explicitly allow casts from cv void*. We already implicitly
14193 // allowed casts to cv void*, since they have alignment 1.
14194 // Also allow casts involving incomplete types, which implicitly
14195 // includes 'void'.
14196 if (SrcPointee->isIncompleteType()) return;
14197
14198 CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
14199
14200 if (SrcAlign >= DestAlign) return;
14201
14202 Diag(TRange.getBegin(), diag::warn_cast_align)
14203 << Op->getType() << T
14204 << static_cast<unsigned>(SrcAlign.getQuantity())
14205 << static_cast<unsigned>(DestAlign.getQuantity())
14206 << TRange << Op->getSourceRange();
14207 }
14208
14209 /// Check whether this array fits the idiom of a size-one tail padded
14210 /// array member of a struct.
14211 ///
14212 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
14213 /// commonly used to emulate flexible arrays in C89 code.
IsTailPaddedMemberArray(Sema & S,const llvm::APInt & Size,const NamedDecl * ND)14214 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
14215 const NamedDecl *ND) {
14216 if (Size != 1 || !ND) return false;
14217
14218 const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
14219 if (!FD) return false;
14220
14221 // Don't consider sizes resulting from macro expansions or template argument
14222 // substitution to form C89 tail-padded arrays.
14223
14224 TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
14225 while (TInfo) {
14226 TypeLoc TL = TInfo->getTypeLoc();
14227 // Look through typedefs.
14228 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
14229 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
14230 TInfo = TDL->getTypeSourceInfo();
14231 continue;
14232 }
14233 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
14234 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
14235 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
14236 return false;
14237 }
14238 break;
14239 }
14240
14241 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
14242 if (!RD) return false;
14243 if (RD->isUnion()) return false;
14244 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
14245 if (!CRD->isStandardLayout()) return false;
14246 }
14247
14248 // See if this is the last field decl in the record.
14249 const Decl *D = FD;
14250 while ((D = D->getNextDeclInContext()))
14251 if (isa<FieldDecl>(D))
14252 return false;
14253 return true;
14254 }
14255
CheckArrayAccess(const Expr * BaseExpr,const Expr * IndexExpr,const ArraySubscriptExpr * ASE,bool AllowOnePastEnd,bool IndexNegated)14256 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
14257 const ArraySubscriptExpr *ASE,
14258 bool AllowOnePastEnd, bool IndexNegated) {
14259 // Already diagnosed by the constant evaluator.
14260 if (isConstantEvaluated())
14261 return;
14262
14263 IndexExpr = IndexExpr->IgnoreParenImpCasts();
14264 if (IndexExpr->isValueDependent())
14265 return;
14266
14267 const Type *EffectiveType =
14268 BaseExpr->getType()->getPointeeOrArrayElementType();
14269 BaseExpr = BaseExpr->IgnoreParenCasts();
14270 const ConstantArrayType *ArrayTy =
14271 Context.getAsConstantArrayType(BaseExpr->getType());
14272
14273 if (!ArrayTy)
14274 return;
14275
14276 const Type *BaseType = ArrayTy->getElementType().getTypePtr();
14277 if (EffectiveType->isDependentType() || BaseType->isDependentType())
14278 return;
14279
14280 Expr::EvalResult Result;
14281 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
14282 return;
14283
14284 llvm::APSInt index = Result.Val.getInt();
14285 if (IndexNegated)
14286 index = -index;
14287
14288 const NamedDecl *ND = nullptr;
14289 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
14290 ND = DRE->getDecl();
14291 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
14292 ND = ME->getMemberDecl();
14293
14294 if (index.isUnsigned() || !index.isNegative()) {
14295 // It is possible that the type of the base expression after
14296 // IgnoreParenCasts is incomplete, even though the type of the base
14297 // expression before IgnoreParenCasts is complete (see PR39746 for an
14298 // example). In this case we have no information about whether the array
14299 // access exceeds the array bounds. However we can still diagnose an array
14300 // access which precedes the array bounds.
14301 if (BaseType->isIncompleteType())
14302 return;
14303
14304 llvm::APInt size = ArrayTy->getSize();
14305 if (!size.isStrictlyPositive())
14306 return;
14307
14308 if (BaseType != EffectiveType) {
14309 // Make sure we're comparing apples to apples when comparing index to size
14310 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
14311 uint64_t array_typesize = Context.getTypeSize(BaseType);
14312 // Handle ptrarith_typesize being zero, such as when casting to void*
14313 if (!ptrarith_typesize) ptrarith_typesize = 1;
14314 if (ptrarith_typesize != array_typesize) {
14315 // There's a cast to a different size type involved
14316 uint64_t ratio = array_typesize / ptrarith_typesize;
14317 // TODO: Be smarter about handling cases where array_typesize is not a
14318 // multiple of ptrarith_typesize
14319 if (ptrarith_typesize * ratio == array_typesize)
14320 size *= llvm::APInt(size.getBitWidth(), ratio);
14321 }
14322 }
14323
14324 if (size.getBitWidth() > index.getBitWidth())
14325 index = index.zext(size.getBitWidth());
14326 else if (size.getBitWidth() < index.getBitWidth())
14327 size = size.zext(index.getBitWidth());
14328
14329 // For array subscripting the index must be less than size, but for pointer
14330 // arithmetic also allow the index (offset) to be equal to size since
14331 // computing the next address after the end of the array is legal and
14332 // commonly done e.g. in C++ iterators and range-based for loops.
14333 if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
14334 return;
14335
14336 // Also don't warn for arrays of size 1 which are members of some
14337 // structure. These are often used to approximate flexible arrays in C89
14338 // code.
14339 if (IsTailPaddedMemberArray(*this, size, ND))
14340 return;
14341
14342 // Suppress the warning if the subscript expression (as identified by the
14343 // ']' location) and the index expression are both from macro expansions
14344 // within a system header.
14345 if (ASE) {
14346 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
14347 ASE->getRBracketLoc());
14348 if (SourceMgr.isInSystemHeader(RBracketLoc)) {
14349 SourceLocation IndexLoc =
14350 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
14351 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
14352 return;
14353 }
14354 }
14355
14356 unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
14357 if (ASE)
14358 DiagID = diag::warn_array_index_exceeds_bounds;
14359
14360 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
14361 PDiag(DiagID) << index.toString(10, true)
14362 << size.toString(10, true)
14363 << (unsigned)size.getLimitedValue(~0U)
14364 << IndexExpr->getSourceRange());
14365 } else {
14366 unsigned DiagID = diag::warn_array_index_precedes_bounds;
14367 if (!ASE) {
14368 DiagID = diag::warn_ptr_arith_precedes_bounds;
14369 if (index.isNegative()) index = -index;
14370 }
14371
14372 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
14373 PDiag(DiagID) << index.toString(10, true)
14374 << IndexExpr->getSourceRange());
14375 }
14376
14377 if (!ND) {
14378 // Try harder to find a NamedDecl to point at in the note.
14379 while (const ArraySubscriptExpr *ASE =
14380 dyn_cast<ArraySubscriptExpr>(BaseExpr))
14381 BaseExpr = ASE->getBase()->IgnoreParenCasts();
14382 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
14383 ND = DRE->getDecl();
14384 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
14385 ND = ME->getMemberDecl();
14386 }
14387
14388 if (ND)
14389 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
14390 PDiag(diag::note_array_declared_here) << ND);
14391 }
14392
CheckArrayAccess(const Expr * expr)14393 void Sema::CheckArrayAccess(const Expr *expr) {
14394 int AllowOnePastEnd = 0;
14395 while (expr) {
14396 expr = expr->IgnoreParenImpCasts();
14397 switch (expr->getStmtClass()) {
14398 case Stmt::ArraySubscriptExprClass: {
14399 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
14400 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
14401 AllowOnePastEnd > 0);
14402 expr = ASE->getBase();
14403 break;
14404 }
14405 case Stmt::MemberExprClass: {
14406 expr = cast<MemberExpr>(expr)->getBase();
14407 break;
14408 }
14409 case Stmt::OMPArraySectionExprClass: {
14410 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
14411 if (ASE->getLowerBound())
14412 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
14413 /*ASE=*/nullptr, AllowOnePastEnd > 0);
14414 return;
14415 }
14416 case Stmt::UnaryOperatorClass: {
14417 // Only unwrap the * and & unary operators
14418 const UnaryOperator *UO = cast<UnaryOperator>(expr);
14419 expr = UO->getSubExpr();
14420 switch (UO->getOpcode()) {
14421 case UO_AddrOf:
14422 AllowOnePastEnd++;
14423 break;
14424 case UO_Deref:
14425 AllowOnePastEnd--;
14426 break;
14427 default:
14428 return;
14429 }
14430 break;
14431 }
14432 case Stmt::ConditionalOperatorClass: {
14433 const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
14434 if (const Expr *lhs = cond->getLHS())
14435 CheckArrayAccess(lhs);
14436 if (const Expr *rhs = cond->getRHS())
14437 CheckArrayAccess(rhs);
14438 return;
14439 }
14440 case Stmt::CXXOperatorCallExprClass: {
14441 const auto *OCE = cast<CXXOperatorCallExpr>(expr);
14442 for (const auto *Arg : OCE->arguments())
14443 CheckArrayAccess(Arg);
14444 return;
14445 }
14446 default:
14447 return;
14448 }
14449 }
14450 }
14451
14452 //===--- CHECK: Objective-C retain cycles ----------------------------------//
14453
14454 namespace {
14455
14456 struct RetainCycleOwner {
14457 VarDecl *Variable = nullptr;
14458 SourceRange Range;
14459 SourceLocation Loc;
14460 bool Indirect = false;
14461
14462 RetainCycleOwner() = default;
14463
setLocsFrom__anon82590da92211::RetainCycleOwner14464 void setLocsFrom(Expr *e) {
14465 Loc = e->getExprLoc();
14466 Range = e->getSourceRange();
14467 }
14468 };
14469
14470 } // namespace
14471
14472 /// Consider whether capturing the given variable can possibly lead to
14473 /// a retain cycle.
considerVariable(VarDecl * var,Expr * ref,RetainCycleOwner & owner)14474 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
14475 // In ARC, it's captured strongly iff the variable has __strong
14476 // lifetime. In MRR, it's captured strongly if the variable is
14477 // __block and has an appropriate type.
14478 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
14479 return false;
14480
14481 owner.Variable = var;
14482 if (ref)
14483 owner.setLocsFrom(ref);
14484 return true;
14485 }
14486
findRetainCycleOwner(Sema & S,Expr * e,RetainCycleOwner & owner)14487 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
14488 while (true) {
14489 e = e->IgnoreParens();
14490 if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
14491 switch (cast->getCastKind()) {
14492 case CK_BitCast:
14493 case CK_LValueBitCast:
14494 case CK_LValueToRValue:
14495 case CK_ARCReclaimReturnedObject:
14496 e = cast->getSubExpr();
14497 continue;
14498
14499 default:
14500 return false;
14501 }
14502 }
14503
14504 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
14505 ObjCIvarDecl *ivar = ref->getDecl();
14506 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
14507 return false;
14508
14509 // Try to find a retain cycle in the base.
14510 if (!findRetainCycleOwner(S, ref->getBase(), owner))
14511 return false;
14512
14513 if (ref->isFreeIvar()) owner.setLocsFrom(ref);
14514 owner.Indirect = true;
14515 return true;
14516 }
14517
14518 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
14519 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
14520 if (!var) return false;
14521 return considerVariable(var, ref, owner);
14522 }
14523
14524 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
14525 if (member->isArrow()) return false;
14526
14527 // Don't count this as an indirect ownership.
14528 e = member->getBase();
14529 continue;
14530 }
14531
14532 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
14533 // Only pay attention to pseudo-objects on property references.
14534 ObjCPropertyRefExpr *pre
14535 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
14536 ->IgnoreParens());
14537 if (!pre) return false;
14538 if (pre->isImplicitProperty()) return false;
14539 ObjCPropertyDecl *property = pre->getExplicitProperty();
14540 if (!property->isRetaining() &&
14541 !(property->getPropertyIvarDecl() &&
14542 property->getPropertyIvarDecl()->getType()
14543 .getObjCLifetime() == Qualifiers::OCL_Strong))
14544 return false;
14545
14546 owner.Indirect = true;
14547 if (pre->isSuperReceiver()) {
14548 owner.Variable = S.getCurMethodDecl()->getSelfDecl();
14549 if (!owner.Variable)
14550 return false;
14551 owner.Loc = pre->getLocation();
14552 owner.Range = pre->getSourceRange();
14553 return true;
14554 }
14555 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
14556 ->getSourceExpr());
14557 continue;
14558 }
14559
14560 // Array ivars?
14561
14562 return false;
14563 }
14564 }
14565
14566 namespace {
14567
14568 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
14569 ASTContext &Context;
14570 VarDecl *Variable;
14571 Expr *Capturer = nullptr;
14572 bool VarWillBeReased = false;
14573
FindCaptureVisitor__anon82590da92311::FindCaptureVisitor14574 FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
14575 : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
14576 Context(Context), Variable(variable) {}
14577
VisitDeclRefExpr__anon82590da92311::FindCaptureVisitor14578 void VisitDeclRefExpr(DeclRefExpr *ref) {
14579 if (ref->getDecl() == Variable && !Capturer)
14580 Capturer = ref;
14581 }
14582
VisitObjCIvarRefExpr__anon82590da92311::FindCaptureVisitor14583 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
14584 if (Capturer) return;
14585 Visit(ref->getBase());
14586 if (Capturer && ref->isFreeIvar())
14587 Capturer = ref;
14588 }
14589
VisitBlockExpr__anon82590da92311::FindCaptureVisitor14590 void VisitBlockExpr(BlockExpr *block) {
14591 // Look inside nested blocks
14592 if (block->getBlockDecl()->capturesVariable(Variable))
14593 Visit(block->getBlockDecl()->getBody());
14594 }
14595
VisitOpaqueValueExpr__anon82590da92311::FindCaptureVisitor14596 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
14597 if (Capturer) return;
14598 if (OVE->getSourceExpr())
14599 Visit(OVE->getSourceExpr());
14600 }
14601
VisitBinaryOperator__anon82590da92311::FindCaptureVisitor14602 void VisitBinaryOperator(BinaryOperator *BinOp) {
14603 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
14604 return;
14605 Expr *LHS = BinOp->getLHS();
14606 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
14607 if (DRE->getDecl() != Variable)
14608 return;
14609 if (Expr *RHS = BinOp->getRHS()) {
14610 RHS = RHS->IgnoreParenCasts();
14611 Optional<llvm::APSInt> Value;
14612 VarWillBeReased =
14613 (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
14614 *Value == 0);
14615 }
14616 }
14617 }
14618 };
14619
14620 } // namespace
14621
14622 /// Check whether the given argument is a block which captures a
14623 /// variable.
findCapturingExpr(Sema & S,Expr * e,RetainCycleOwner & owner)14624 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
14625 assert(owner.Variable && owner.Loc.isValid());
14626
14627 e = e->IgnoreParenCasts();
14628
14629 // Look through [^{...} copy] and Block_copy(^{...}).
14630 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
14631 Selector Cmd = ME->getSelector();
14632 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
14633 e = ME->getInstanceReceiver();
14634 if (!e)
14635 return nullptr;
14636 e = e->IgnoreParenCasts();
14637 }
14638 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
14639 if (CE->getNumArgs() == 1) {
14640 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
14641 if (Fn) {
14642 const IdentifierInfo *FnI = Fn->getIdentifier();
14643 if (FnI && FnI->isStr("_Block_copy")) {
14644 e = CE->getArg(0)->IgnoreParenCasts();
14645 }
14646 }
14647 }
14648 }
14649
14650 BlockExpr *block = dyn_cast<BlockExpr>(e);
14651 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
14652 return nullptr;
14653
14654 FindCaptureVisitor visitor(S.Context, owner.Variable);
14655 visitor.Visit(block->getBlockDecl()->getBody());
14656 return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
14657 }
14658
diagnoseRetainCycle(Sema & S,Expr * capturer,RetainCycleOwner & owner)14659 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
14660 RetainCycleOwner &owner) {
14661 assert(capturer);
14662 assert(owner.Variable && owner.Loc.isValid());
14663
14664 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
14665 << owner.Variable << capturer->getSourceRange();
14666 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
14667 << owner.Indirect << owner.Range;
14668 }
14669
14670 /// Check for a keyword selector that starts with the word 'add' or
14671 /// 'set'.
isSetterLikeSelector(Selector sel)14672 static bool isSetterLikeSelector(Selector sel) {
14673 if (sel.isUnarySelector()) return false;
14674
14675 StringRef str = sel.getNameForSlot(0);
14676 while (!str.empty() && str.front() == '_') str = str.substr(1);
14677 if (str.startswith("set"))
14678 str = str.substr(3);
14679 else if (str.startswith("add")) {
14680 // Specially allow 'addOperationWithBlock:'.
14681 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
14682 return false;
14683 str = str.substr(3);
14684 }
14685 else
14686 return false;
14687
14688 if (str.empty()) return true;
14689 return !isLowercase(str.front());
14690 }
14691
GetNSMutableArrayArgumentIndex(Sema & S,ObjCMessageExpr * Message)14692 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
14693 ObjCMessageExpr *Message) {
14694 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
14695 Message->getReceiverInterface(),
14696 NSAPI::ClassId_NSMutableArray);
14697 if (!IsMutableArray) {
14698 return None;
14699 }
14700
14701 Selector Sel = Message->getSelector();
14702
14703 Optional<NSAPI::NSArrayMethodKind> MKOpt =
14704 S.NSAPIObj->getNSArrayMethodKind(Sel);
14705 if (!MKOpt) {
14706 return None;
14707 }
14708
14709 NSAPI::NSArrayMethodKind MK = *MKOpt;
14710
14711 switch (MK) {
14712 case NSAPI::NSMutableArr_addObject:
14713 case NSAPI::NSMutableArr_insertObjectAtIndex:
14714 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
14715 return 0;
14716 case NSAPI::NSMutableArr_replaceObjectAtIndex:
14717 return 1;
14718
14719 default:
14720 return None;
14721 }
14722
14723 return None;
14724 }
14725
14726 static
GetNSMutableDictionaryArgumentIndex(Sema & S,ObjCMessageExpr * Message)14727 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
14728 ObjCMessageExpr *Message) {
14729 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
14730 Message->getReceiverInterface(),
14731 NSAPI::ClassId_NSMutableDictionary);
14732 if (!IsMutableDictionary) {
14733 return None;
14734 }
14735
14736 Selector Sel = Message->getSelector();
14737
14738 Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
14739 S.NSAPIObj->getNSDictionaryMethodKind(Sel);
14740 if (!MKOpt) {
14741 return None;
14742 }
14743
14744 NSAPI::NSDictionaryMethodKind MK = *MKOpt;
14745
14746 switch (MK) {
14747 case NSAPI::NSMutableDict_setObjectForKey:
14748 case NSAPI::NSMutableDict_setValueForKey:
14749 case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
14750 return 0;
14751
14752 default:
14753 return None;
14754 }
14755
14756 return None;
14757 }
14758
GetNSSetArgumentIndex(Sema & S,ObjCMessageExpr * Message)14759 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
14760 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
14761 Message->getReceiverInterface(),
14762 NSAPI::ClassId_NSMutableSet);
14763
14764 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
14765 Message->getReceiverInterface(),
14766 NSAPI::ClassId_NSMutableOrderedSet);
14767 if (!IsMutableSet && !IsMutableOrderedSet) {
14768 return None;
14769 }
14770
14771 Selector Sel = Message->getSelector();
14772
14773 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
14774 if (!MKOpt) {
14775 return None;
14776 }
14777
14778 NSAPI::NSSetMethodKind MK = *MKOpt;
14779
14780 switch (MK) {
14781 case NSAPI::NSMutableSet_addObject:
14782 case NSAPI::NSOrderedSet_setObjectAtIndex:
14783 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
14784 case NSAPI::NSOrderedSet_insertObjectAtIndex:
14785 return 0;
14786 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
14787 return 1;
14788 }
14789
14790 return None;
14791 }
14792
CheckObjCCircularContainer(ObjCMessageExpr * Message)14793 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
14794 if (!Message->isInstanceMessage()) {
14795 return;
14796 }
14797
14798 Optional<int> ArgOpt;
14799
14800 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
14801 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
14802 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
14803 return;
14804 }
14805
14806 int ArgIndex = *ArgOpt;
14807
14808 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
14809 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
14810 Arg = OE->getSourceExpr()->IgnoreImpCasts();
14811 }
14812
14813 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
14814 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14815 if (ArgRE->isObjCSelfExpr()) {
14816 Diag(Message->getSourceRange().getBegin(),
14817 diag::warn_objc_circular_container)
14818 << ArgRE->getDecl() << StringRef("'super'");
14819 }
14820 }
14821 } else {
14822 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
14823
14824 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
14825 Receiver = OE->getSourceExpr()->IgnoreImpCasts();
14826 }
14827
14828 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
14829 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14830 if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
14831 ValueDecl *Decl = ReceiverRE->getDecl();
14832 Diag(Message->getSourceRange().getBegin(),
14833 diag::warn_objc_circular_container)
14834 << Decl << Decl;
14835 if (!ArgRE->isObjCSelfExpr()) {
14836 Diag(Decl->getLocation(),
14837 diag::note_objc_circular_container_declared_here)
14838 << Decl;
14839 }
14840 }
14841 }
14842 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
14843 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
14844 if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
14845 ObjCIvarDecl *Decl = IvarRE->getDecl();
14846 Diag(Message->getSourceRange().getBegin(),
14847 diag::warn_objc_circular_container)
14848 << Decl << Decl;
14849 Diag(Decl->getLocation(),
14850 diag::note_objc_circular_container_declared_here)
14851 << Decl;
14852 }
14853 }
14854 }
14855 }
14856 }
14857
14858 /// Check a message send to see if it's likely to cause a retain cycle.
checkRetainCycles(ObjCMessageExpr * msg)14859 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
14860 // Only check instance methods whose selector looks like a setter.
14861 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
14862 return;
14863
14864 // Try to find a variable that the receiver is strongly owned by.
14865 RetainCycleOwner owner;
14866 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
14867 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
14868 return;
14869 } else {
14870 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
14871 owner.Variable = getCurMethodDecl()->getSelfDecl();
14872 owner.Loc = msg->getSuperLoc();
14873 owner.Range = msg->getSuperLoc();
14874 }
14875
14876 // Check whether the receiver is captured by any of the arguments.
14877 const ObjCMethodDecl *MD = msg->getMethodDecl();
14878 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
14879 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
14880 // noescape blocks should not be retained by the method.
14881 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
14882 continue;
14883 return diagnoseRetainCycle(*this, capturer, owner);
14884 }
14885 }
14886 }
14887
14888 /// Check a property assign to see if it's likely to cause a retain cycle.
checkRetainCycles(Expr * receiver,Expr * argument)14889 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
14890 RetainCycleOwner owner;
14891 if (!findRetainCycleOwner(*this, receiver, owner))
14892 return;
14893
14894 if (Expr *capturer = findCapturingExpr(*this, argument, owner))
14895 diagnoseRetainCycle(*this, capturer, owner);
14896 }
14897
checkRetainCycles(VarDecl * Var,Expr * Init)14898 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
14899 RetainCycleOwner Owner;
14900 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
14901 return;
14902
14903 // Because we don't have an expression for the variable, we have to set the
14904 // location explicitly here.
14905 Owner.Loc = Var->getLocation();
14906 Owner.Range = Var->getSourceRange();
14907
14908 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
14909 diagnoseRetainCycle(*this, Capturer, Owner);
14910 }
14911
checkUnsafeAssignLiteral(Sema & S,SourceLocation Loc,Expr * RHS,bool isProperty)14912 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
14913 Expr *RHS, bool isProperty) {
14914 // Check if RHS is an Objective-C object literal, which also can get
14915 // immediately zapped in a weak reference. Note that we explicitly
14916 // allow ObjCStringLiterals, since those are designed to never really die.
14917 RHS = RHS->IgnoreParenImpCasts();
14918
14919 // This enum needs to match with the 'select' in
14920 // warn_objc_arc_literal_assign (off-by-1).
14921 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
14922 if (Kind == Sema::LK_String || Kind == Sema::LK_None)
14923 return false;
14924
14925 S.Diag(Loc, diag::warn_arc_literal_assign)
14926 << (unsigned) Kind
14927 << (isProperty ? 0 : 1)
14928 << RHS->getSourceRange();
14929
14930 return true;
14931 }
14932
checkUnsafeAssignObject(Sema & S,SourceLocation Loc,Qualifiers::ObjCLifetime LT,Expr * RHS,bool isProperty)14933 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
14934 Qualifiers::ObjCLifetime LT,
14935 Expr *RHS, bool isProperty) {
14936 // Strip off any implicit cast added to get to the one ARC-specific.
14937 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
14938 if (cast->getCastKind() == CK_ARCConsumeObject) {
14939 S.Diag(Loc, diag::warn_arc_retained_assign)
14940 << (LT == Qualifiers::OCL_ExplicitNone)
14941 << (isProperty ? 0 : 1)
14942 << RHS->getSourceRange();
14943 return true;
14944 }
14945 RHS = cast->getSubExpr();
14946 }
14947
14948 if (LT == Qualifiers::OCL_Weak &&
14949 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
14950 return true;
14951
14952 return false;
14953 }
14954
checkUnsafeAssigns(SourceLocation Loc,QualType LHS,Expr * RHS)14955 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
14956 QualType LHS, Expr *RHS) {
14957 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
14958
14959 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
14960 return false;
14961
14962 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
14963 return true;
14964
14965 return false;
14966 }
14967
checkUnsafeExprAssigns(SourceLocation Loc,Expr * LHS,Expr * RHS)14968 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
14969 Expr *LHS, Expr *RHS) {
14970 QualType LHSType;
14971 // PropertyRef on LHS type need be directly obtained from
14972 // its declaration as it has a PseudoType.
14973 ObjCPropertyRefExpr *PRE
14974 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
14975 if (PRE && !PRE->isImplicitProperty()) {
14976 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
14977 if (PD)
14978 LHSType = PD->getType();
14979 }
14980
14981 if (LHSType.isNull())
14982 LHSType = LHS->getType();
14983
14984 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
14985
14986 if (LT == Qualifiers::OCL_Weak) {
14987 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
14988 getCurFunction()->markSafeWeakUse(LHS);
14989 }
14990
14991 if (checkUnsafeAssigns(Loc, LHSType, RHS))
14992 return;
14993
14994 // FIXME. Check for other life times.
14995 if (LT != Qualifiers::OCL_None)
14996 return;
14997
14998 if (PRE) {
14999 if (PRE->isImplicitProperty())
15000 return;
15001 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
15002 if (!PD)
15003 return;
15004
15005 unsigned Attributes = PD->getPropertyAttributes();
15006 if (Attributes & ObjCPropertyAttribute::kind_assign) {
15007 // when 'assign' attribute was not explicitly specified
15008 // by user, ignore it and rely on property type itself
15009 // for lifetime info.
15010 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
15011 if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
15012 LHSType->isObjCRetainableType())
15013 return;
15014
15015 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
15016 if (cast->getCastKind() == CK_ARCConsumeObject) {
15017 Diag(Loc, diag::warn_arc_retained_property_assign)
15018 << RHS->getSourceRange();
15019 return;
15020 }
15021 RHS = cast->getSubExpr();
15022 }
15023 } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
15024 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
15025 return;
15026 }
15027 }
15028 }
15029
15030 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
15031
ShouldDiagnoseEmptyStmtBody(const SourceManager & SourceMgr,SourceLocation StmtLoc,const NullStmt * Body)15032 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
15033 SourceLocation StmtLoc,
15034 const NullStmt *Body) {
15035 // Do not warn if the body is a macro that expands to nothing, e.g:
15036 //
15037 // #define CALL(x)
15038 // if (condition)
15039 // CALL(0);
15040 if (Body->hasLeadingEmptyMacro())
15041 return false;
15042
15043 // Get line numbers of statement and body.
15044 bool StmtLineInvalid;
15045 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
15046 &StmtLineInvalid);
15047 if (StmtLineInvalid)
15048 return false;
15049
15050 bool BodyLineInvalid;
15051 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
15052 &BodyLineInvalid);
15053 if (BodyLineInvalid)
15054 return false;
15055
15056 // Warn if null statement and body are on the same line.
15057 if (StmtLine != BodyLine)
15058 return false;
15059
15060 return true;
15061 }
15062
DiagnoseEmptyStmtBody(SourceLocation StmtLoc,const Stmt * Body,unsigned DiagID)15063 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
15064 const Stmt *Body,
15065 unsigned DiagID) {
15066 // Since this is a syntactic check, don't emit diagnostic for template
15067 // instantiations, this just adds noise.
15068 if (CurrentInstantiationScope)
15069 return;
15070
15071 // The body should be a null statement.
15072 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15073 if (!NBody)
15074 return;
15075
15076 // Do the usual checks.
15077 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15078 return;
15079
15080 Diag(NBody->getSemiLoc(), DiagID);
15081 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15082 }
15083
DiagnoseEmptyLoopBody(const Stmt * S,const Stmt * PossibleBody)15084 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
15085 const Stmt *PossibleBody) {
15086 assert(!CurrentInstantiationScope); // Ensured by caller
15087
15088 SourceLocation StmtLoc;
15089 const Stmt *Body;
15090 unsigned DiagID;
15091 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
15092 StmtLoc = FS->getRParenLoc();
15093 Body = FS->getBody();
15094 DiagID = diag::warn_empty_for_body;
15095 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
15096 StmtLoc = WS->getCond()->getSourceRange().getEnd();
15097 Body = WS->getBody();
15098 DiagID = diag::warn_empty_while_body;
15099 } else
15100 return; // Neither `for' nor `while'.
15101
15102 // The body should be a null statement.
15103 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15104 if (!NBody)
15105 return;
15106
15107 // Skip expensive checks if diagnostic is disabled.
15108 if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
15109 return;
15110
15111 // Do the usual checks.
15112 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15113 return;
15114
15115 // `for(...);' and `while(...);' are popular idioms, so in order to keep
15116 // noise level low, emit diagnostics only if for/while is followed by a
15117 // CompoundStmt, e.g.:
15118 // for (int i = 0; i < n; i++);
15119 // {
15120 // a(i);
15121 // }
15122 // or if for/while is followed by a statement with more indentation
15123 // than for/while itself:
15124 // for (int i = 0; i < n; i++);
15125 // a(i);
15126 bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
15127 if (!ProbableTypo) {
15128 bool BodyColInvalid;
15129 unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
15130 PossibleBody->getBeginLoc(), &BodyColInvalid);
15131 if (BodyColInvalid)
15132 return;
15133
15134 bool StmtColInvalid;
15135 unsigned StmtCol =
15136 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
15137 if (StmtColInvalid)
15138 return;
15139
15140 if (BodyCol > StmtCol)
15141 ProbableTypo = true;
15142 }
15143
15144 if (ProbableTypo) {
15145 Diag(NBody->getSemiLoc(), DiagID);
15146 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15147 }
15148 }
15149
15150 //===--- CHECK: Warn on self move with std::move. -------------------------===//
15151
15152 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
DiagnoseSelfMove(const Expr * LHSExpr,const Expr * RHSExpr,SourceLocation OpLoc)15153 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
15154 SourceLocation OpLoc) {
15155 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
15156 return;
15157
15158 if (inTemplateInstantiation())
15159 return;
15160
15161 // Strip parens and casts away.
15162 LHSExpr = LHSExpr->IgnoreParenImpCasts();
15163 RHSExpr = RHSExpr->IgnoreParenImpCasts();
15164
15165 // Check for a call expression
15166 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
15167 if (!CE || CE->getNumArgs() != 1)
15168 return;
15169
15170 // Check for a call to std::move
15171 if (!CE->isCallToStdMove())
15172 return;
15173
15174 // Get argument from std::move
15175 RHSExpr = CE->getArg(0);
15176
15177 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
15178 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
15179
15180 // Two DeclRefExpr's, check that the decls are the same.
15181 if (LHSDeclRef && RHSDeclRef) {
15182 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
15183 return;
15184 if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
15185 RHSDeclRef->getDecl()->getCanonicalDecl())
15186 return;
15187
15188 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15189 << LHSExpr->getSourceRange()
15190 << RHSExpr->getSourceRange();
15191 return;
15192 }
15193
15194 // Member variables require a different approach to check for self moves.
15195 // MemberExpr's are the same if every nested MemberExpr refers to the same
15196 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
15197 // the base Expr's are CXXThisExpr's.
15198 const Expr *LHSBase = LHSExpr;
15199 const Expr *RHSBase = RHSExpr;
15200 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
15201 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
15202 if (!LHSME || !RHSME)
15203 return;
15204
15205 while (LHSME && RHSME) {
15206 if (LHSME->getMemberDecl()->getCanonicalDecl() !=
15207 RHSME->getMemberDecl()->getCanonicalDecl())
15208 return;
15209
15210 LHSBase = LHSME->getBase();
15211 RHSBase = RHSME->getBase();
15212 LHSME = dyn_cast<MemberExpr>(LHSBase);
15213 RHSME = dyn_cast<MemberExpr>(RHSBase);
15214 }
15215
15216 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
15217 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
15218 if (LHSDeclRef && RHSDeclRef) {
15219 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
15220 return;
15221 if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
15222 RHSDeclRef->getDecl()->getCanonicalDecl())
15223 return;
15224
15225 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15226 << LHSExpr->getSourceRange()
15227 << RHSExpr->getSourceRange();
15228 return;
15229 }
15230
15231 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
15232 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15233 << LHSExpr->getSourceRange()
15234 << RHSExpr->getSourceRange();
15235 }
15236
15237 //===--- Layout compatibility ----------------------------------------------//
15238
15239 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
15240
15241 /// Check if two enumeration types are layout-compatible.
isLayoutCompatible(ASTContext & C,EnumDecl * ED1,EnumDecl * ED2)15242 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
15243 // C++11 [dcl.enum] p8:
15244 // Two enumeration types are layout-compatible if they have the same
15245 // underlying type.
15246 return ED1->isComplete() && ED2->isComplete() &&
15247 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
15248 }
15249
15250 /// Check if two fields are layout-compatible.
isLayoutCompatible(ASTContext & C,FieldDecl * Field1,FieldDecl * Field2)15251 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
15252 FieldDecl *Field2) {
15253 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
15254 return false;
15255
15256 if (Field1->isBitField() != Field2->isBitField())
15257 return false;
15258
15259 if (Field1->isBitField()) {
15260 // Make sure that the bit-fields are the same length.
15261 unsigned Bits1 = Field1->getBitWidthValue(C);
15262 unsigned Bits2 = Field2->getBitWidthValue(C);
15263
15264 if (Bits1 != Bits2)
15265 return false;
15266 }
15267
15268 return true;
15269 }
15270
15271 /// Check if two standard-layout structs are layout-compatible.
15272 /// (C++11 [class.mem] p17)
isLayoutCompatibleStruct(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)15273 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
15274 RecordDecl *RD2) {
15275 // If both records are C++ classes, check that base classes match.
15276 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
15277 // If one of records is a CXXRecordDecl we are in C++ mode,
15278 // thus the other one is a CXXRecordDecl, too.
15279 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
15280 // Check number of base classes.
15281 if (D1CXX->getNumBases() != D2CXX->getNumBases())
15282 return false;
15283
15284 // Check the base classes.
15285 for (CXXRecordDecl::base_class_const_iterator
15286 Base1 = D1CXX->bases_begin(),
15287 BaseEnd1 = D1CXX->bases_end(),
15288 Base2 = D2CXX->bases_begin();
15289 Base1 != BaseEnd1;
15290 ++Base1, ++Base2) {
15291 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
15292 return false;
15293 }
15294 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
15295 // If only RD2 is a C++ class, it should have zero base classes.
15296 if (D2CXX->getNumBases() > 0)
15297 return false;
15298 }
15299
15300 // Check the fields.
15301 RecordDecl::field_iterator Field2 = RD2->field_begin(),
15302 Field2End = RD2->field_end(),
15303 Field1 = RD1->field_begin(),
15304 Field1End = RD1->field_end();
15305 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
15306 if (!isLayoutCompatible(C, *Field1, *Field2))
15307 return false;
15308 }
15309 if (Field1 != Field1End || Field2 != Field2End)
15310 return false;
15311
15312 return true;
15313 }
15314
15315 /// Check if two standard-layout unions are layout-compatible.
15316 /// (C++11 [class.mem] p18)
isLayoutCompatibleUnion(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)15317 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
15318 RecordDecl *RD2) {
15319 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
15320 for (auto *Field2 : RD2->fields())
15321 UnmatchedFields.insert(Field2);
15322
15323 for (auto *Field1 : RD1->fields()) {
15324 llvm::SmallPtrSet<FieldDecl *, 8>::iterator
15325 I = UnmatchedFields.begin(),
15326 E = UnmatchedFields.end();
15327
15328 for ( ; I != E; ++I) {
15329 if (isLayoutCompatible(C, Field1, *I)) {
15330 bool Result = UnmatchedFields.erase(*I);
15331 (void) Result;
15332 assert(Result);
15333 break;
15334 }
15335 }
15336 if (I == E)
15337 return false;
15338 }
15339
15340 return UnmatchedFields.empty();
15341 }
15342
isLayoutCompatible(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)15343 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
15344 RecordDecl *RD2) {
15345 if (RD1->isUnion() != RD2->isUnion())
15346 return false;
15347
15348 if (RD1->isUnion())
15349 return isLayoutCompatibleUnion(C, RD1, RD2);
15350 else
15351 return isLayoutCompatibleStruct(C, RD1, RD2);
15352 }
15353
15354 /// Check if two types are layout-compatible in C++11 sense.
isLayoutCompatible(ASTContext & C,QualType T1,QualType T2)15355 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
15356 if (T1.isNull() || T2.isNull())
15357 return false;
15358
15359 // C++11 [basic.types] p11:
15360 // If two types T1 and T2 are the same type, then T1 and T2 are
15361 // layout-compatible types.
15362 if (C.hasSameType(T1, T2))
15363 return true;
15364
15365 T1 = T1.getCanonicalType().getUnqualifiedType();
15366 T2 = T2.getCanonicalType().getUnqualifiedType();
15367
15368 const Type::TypeClass TC1 = T1->getTypeClass();
15369 const Type::TypeClass TC2 = T2->getTypeClass();
15370
15371 if (TC1 != TC2)
15372 return false;
15373
15374 if (TC1 == Type::Enum) {
15375 return isLayoutCompatible(C,
15376 cast<EnumType>(T1)->getDecl(),
15377 cast<EnumType>(T2)->getDecl());
15378 } else if (TC1 == Type::Record) {
15379 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
15380 return false;
15381
15382 return isLayoutCompatible(C,
15383 cast<RecordType>(T1)->getDecl(),
15384 cast<RecordType>(T2)->getDecl());
15385 }
15386
15387 return false;
15388 }
15389
15390 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
15391
15392 /// Given a type tag expression find the type tag itself.
15393 ///
15394 /// \param TypeExpr Type tag expression, as it appears in user's code.
15395 ///
15396 /// \param VD Declaration of an identifier that appears in a type tag.
15397 ///
15398 /// \param MagicValue Type tag magic value.
15399 ///
15400 /// \param isConstantEvaluated wether the evalaution should be performed in
15401
15402 /// constant context.
FindTypeTagExpr(const Expr * TypeExpr,const ASTContext & Ctx,const ValueDecl ** VD,uint64_t * MagicValue,bool isConstantEvaluated)15403 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
15404 const ValueDecl **VD, uint64_t *MagicValue,
15405 bool isConstantEvaluated) {
15406 while(true) {
15407 if (!TypeExpr)
15408 return false;
15409
15410 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
15411
15412 switch (TypeExpr->getStmtClass()) {
15413 case Stmt::UnaryOperatorClass: {
15414 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
15415 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
15416 TypeExpr = UO->getSubExpr();
15417 continue;
15418 }
15419 return false;
15420 }
15421
15422 case Stmt::DeclRefExprClass: {
15423 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
15424 *VD = DRE->getDecl();
15425 return true;
15426 }
15427
15428 case Stmt::IntegerLiteralClass: {
15429 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
15430 llvm::APInt MagicValueAPInt = IL->getValue();
15431 if (MagicValueAPInt.getActiveBits() <= 64) {
15432 *MagicValue = MagicValueAPInt.getZExtValue();
15433 return true;
15434 } else
15435 return false;
15436 }
15437
15438 case Stmt::BinaryConditionalOperatorClass:
15439 case Stmt::ConditionalOperatorClass: {
15440 const AbstractConditionalOperator *ACO =
15441 cast<AbstractConditionalOperator>(TypeExpr);
15442 bool Result;
15443 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
15444 isConstantEvaluated)) {
15445 if (Result)
15446 TypeExpr = ACO->getTrueExpr();
15447 else
15448 TypeExpr = ACO->getFalseExpr();
15449 continue;
15450 }
15451 return false;
15452 }
15453
15454 case Stmt::BinaryOperatorClass: {
15455 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
15456 if (BO->getOpcode() == BO_Comma) {
15457 TypeExpr = BO->getRHS();
15458 continue;
15459 }
15460 return false;
15461 }
15462
15463 default:
15464 return false;
15465 }
15466 }
15467 }
15468
15469 /// Retrieve the C type corresponding to type tag TypeExpr.
15470 ///
15471 /// \param TypeExpr Expression that specifies a type tag.
15472 ///
15473 /// \param MagicValues Registered magic values.
15474 ///
15475 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
15476 /// kind.
15477 ///
15478 /// \param TypeInfo Information about the corresponding C type.
15479 ///
15480 /// \param isConstantEvaluated wether the evalaution should be performed in
15481 /// constant context.
15482 ///
15483 /// \returns true if the corresponding C type was found.
GetMatchingCType(const IdentifierInfo * ArgumentKind,const Expr * TypeExpr,const ASTContext & Ctx,const llvm::DenseMap<Sema::TypeTagMagicValue,Sema::TypeTagData> * MagicValues,bool & FoundWrongKind,Sema::TypeTagData & TypeInfo,bool isConstantEvaluated)15484 static bool GetMatchingCType(
15485 const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
15486 const ASTContext &Ctx,
15487 const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
15488 *MagicValues,
15489 bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
15490 bool isConstantEvaluated) {
15491 FoundWrongKind = false;
15492
15493 // Variable declaration that has type_tag_for_datatype attribute.
15494 const ValueDecl *VD = nullptr;
15495
15496 uint64_t MagicValue;
15497
15498 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
15499 return false;
15500
15501 if (VD) {
15502 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
15503 if (I->getArgumentKind() != ArgumentKind) {
15504 FoundWrongKind = true;
15505 return false;
15506 }
15507 TypeInfo.Type = I->getMatchingCType();
15508 TypeInfo.LayoutCompatible = I->getLayoutCompatible();
15509 TypeInfo.MustBeNull = I->getMustBeNull();
15510 return true;
15511 }
15512 return false;
15513 }
15514
15515 if (!MagicValues)
15516 return false;
15517
15518 llvm::DenseMap<Sema::TypeTagMagicValue,
15519 Sema::TypeTagData>::const_iterator I =
15520 MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
15521 if (I == MagicValues->end())
15522 return false;
15523
15524 TypeInfo = I->second;
15525 return true;
15526 }
15527
RegisterTypeTagForDatatype(const IdentifierInfo * ArgumentKind,uint64_t MagicValue,QualType Type,bool LayoutCompatible,bool MustBeNull)15528 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
15529 uint64_t MagicValue, QualType Type,
15530 bool LayoutCompatible,
15531 bool MustBeNull) {
15532 if (!TypeTagForDatatypeMagicValues)
15533 TypeTagForDatatypeMagicValues.reset(
15534 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
15535
15536 TypeTagMagicValue Magic(ArgumentKind, MagicValue);
15537 (*TypeTagForDatatypeMagicValues)[Magic] =
15538 TypeTagData(Type, LayoutCompatible, MustBeNull);
15539 }
15540
IsSameCharType(QualType T1,QualType T2)15541 static bool IsSameCharType(QualType T1, QualType T2) {
15542 const BuiltinType *BT1 = T1->getAs<BuiltinType>();
15543 if (!BT1)
15544 return false;
15545
15546 const BuiltinType *BT2 = T2->getAs<BuiltinType>();
15547 if (!BT2)
15548 return false;
15549
15550 BuiltinType::Kind T1Kind = BT1->getKind();
15551 BuiltinType::Kind T2Kind = BT2->getKind();
15552
15553 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) ||
15554 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) ||
15555 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
15556 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
15557 }
15558
CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr * Attr,const ArrayRef<const Expr * > ExprArgs,SourceLocation CallSiteLoc)15559 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
15560 const ArrayRef<const Expr *> ExprArgs,
15561 SourceLocation CallSiteLoc) {
15562 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
15563 bool IsPointerAttr = Attr->getIsPointer();
15564
15565 // Retrieve the argument representing the 'type_tag'.
15566 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
15567 if (TypeTagIdxAST >= ExprArgs.size()) {
15568 Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
15569 << 0 << Attr->getTypeTagIdx().getSourceIndex();
15570 return;
15571 }
15572 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
15573 bool FoundWrongKind;
15574 TypeTagData TypeInfo;
15575 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
15576 TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
15577 TypeInfo, isConstantEvaluated())) {
15578 if (FoundWrongKind)
15579 Diag(TypeTagExpr->getExprLoc(),
15580 diag::warn_type_tag_for_datatype_wrong_kind)
15581 << TypeTagExpr->getSourceRange();
15582 return;
15583 }
15584
15585 // Retrieve the argument representing the 'arg_idx'.
15586 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
15587 if (ArgumentIdxAST >= ExprArgs.size()) {
15588 Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
15589 << 1 << Attr->getArgumentIdx().getSourceIndex();
15590 return;
15591 }
15592 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
15593 if (IsPointerAttr) {
15594 // Skip implicit cast of pointer to `void *' (as a function argument).
15595 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
15596 if (ICE->getType()->isVoidPointerType() &&
15597 ICE->getCastKind() == CK_BitCast)
15598 ArgumentExpr = ICE->getSubExpr();
15599 }
15600 QualType ArgumentType = ArgumentExpr->getType();
15601
15602 // Passing a `void*' pointer shouldn't trigger a warning.
15603 if (IsPointerAttr && ArgumentType->isVoidPointerType())
15604 return;
15605
15606 if (TypeInfo.MustBeNull) {
15607 // Type tag with matching void type requires a null pointer.
15608 if (!ArgumentExpr->isNullPointerConstant(Context,
15609 Expr::NPC_ValueDependentIsNotNull)) {
15610 Diag(ArgumentExpr->getExprLoc(),
15611 diag::warn_type_safety_null_pointer_required)
15612 << ArgumentKind->getName()
15613 << ArgumentExpr->getSourceRange()
15614 << TypeTagExpr->getSourceRange();
15615 }
15616 return;
15617 }
15618
15619 QualType RequiredType = TypeInfo.Type;
15620 if (IsPointerAttr)
15621 RequiredType = Context.getPointerType(RequiredType);
15622
15623 bool mismatch = false;
15624 if (!TypeInfo.LayoutCompatible) {
15625 mismatch = !Context.hasSameType(ArgumentType, RequiredType);
15626
15627 // C++11 [basic.fundamental] p1:
15628 // Plain char, signed char, and unsigned char are three distinct types.
15629 //
15630 // But we treat plain `char' as equivalent to `signed char' or `unsigned
15631 // char' depending on the current char signedness mode.
15632 if (mismatch)
15633 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
15634 RequiredType->getPointeeType())) ||
15635 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
15636 mismatch = false;
15637 } else
15638 if (IsPointerAttr)
15639 mismatch = !isLayoutCompatible(Context,
15640 ArgumentType->getPointeeType(),
15641 RequiredType->getPointeeType());
15642 else
15643 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
15644
15645 if (mismatch)
15646 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
15647 << ArgumentType << ArgumentKind
15648 << TypeInfo.LayoutCompatible << RequiredType
15649 << ArgumentExpr->getSourceRange()
15650 << TypeTagExpr->getSourceRange();
15651 }
15652
AddPotentialMisalignedMembers(Expr * E,RecordDecl * RD,ValueDecl * MD,CharUnits Alignment)15653 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
15654 CharUnits Alignment) {
15655 MisalignedMembers.emplace_back(E, RD, MD, Alignment);
15656 }
15657
DiagnoseMisalignedMembers()15658 void Sema::DiagnoseMisalignedMembers() {
15659 for (MisalignedMember &m : MisalignedMembers) {
15660 const NamedDecl *ND = m.RD;
15661 if (ND->getName().empty()) {
15662 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
15663 ND = TD;
15664 }
15665 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
15666 << m.MD << ND << m.E->getSourceRange();
15667 }
15668 MisalignedMembers.clear();
15669 }
15670
DiscardMisalignedMemberAddress(const Type * T,Expr * E)15671 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
15672 E = E->IgnoreParens();
15673 if (!T->isPointerType() && !T->isIntegerType())
15674 return;
15675 if (isa<UnaryOperator>(E) &&
15676 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
15677 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
15678 if (isa<MemberExpr>(Op)) {
15679 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
15680 if (MA != MisalignedMembers.end() &&
15681 (T->isIntegerType() ||
15682 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
15683 Context.getTypeAlignInChars(
15684 T->getPointeeType()) <= MA->Alignment))))
15685 MisalignedMembers.erase(MA);
15686 }
15687 }
15688 }
15689
RefersToMemberWithReducedAlignment(Expr * E,llvm::function_ref<void (Expr *,RecordDecl *,FieldDecl *,CharUnits)> Action)15690 void Sema::RefersToMemberWithReducedAlignment(
15691 Expr *E,
15692 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
15693 Action) {
15694 const auto *ME = dyn_cast<MemberExpr>(E);
15695 if (!ME)
15696 return;
15697
15698 // No need to check expressions with an __unaligned-qualified type.
15699 if (E->getType().getQualifiers().hasUnaligned())
15700 return;
15701
15702 // For a chain of MemberExpr like "a.b.c.d" this list
15703 // will keep FieldDecl's like [d, c, b].
15704 SmallVector<FieldDecl *, 4> ReverseMemberChain;
15705 const MemberExpr *TopME = nullptr;
15706 bool AnyIsPacked = false;
15707 do {
15708 QualType BaseType = ME->getBase()->getType();
15709 if (BaseType->isDependentType())
15710 return;
15711 if (ME->isArrow())
15712 BaseType = BaseType->getPointeeType();
15713 RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
15714 if (RD->isInvalidDecl())
15715 return;
15716
15717 ValueDecl *MD = ME->getMemberDecl();
15718 auto *FD = dyn_cast<FieldDecl>(MD);
15719 // We do not care about non-data members.
15720 if (!FD || FD->isInvalidDecl())
15721 return;
15722
15723 AnyIsPacked =
15724 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
15725 ReverseMemberChain.push_back(FD);
15726
15727 TopME = ME;
15728 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
15729 } while (ME);
15730 assert(TopME && "We did not compute a topmost MemberExpr!");
15731
15732 // Not the scope of this diagnostic.
15733 if (!AnyIsPacked)
15734 return;
15735
15736 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
15737 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
15738 // TODO: The innermost base of the member expression may be too complicated.
15739 // For now, just disregard these cases. This is left for future
15740 // improvement.
15741 if (!DRE && !isa<CXXThisExpr>(TopBase))
15742 return;
15743
15744 // Alignment expected by the whole expression.
15745 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
15746
15747 // No need to do anything else with this case.
15748 if (ExpectedAlignment.isOne())
15749 return;
15750
15751 // Synthesize offset of the whole access.
15752 CharUnits Offset;
15753 for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
15754 I++) {
15755 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
15756 }
15757
15758 // Compute the CompleteObjectAlignment as the alignment of the whole chain.
15759 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
15760 ReverseMemberChain.back()->getParent()->getTypeForDecl());
15761
15762 // The base expression of the innermost MemberExpr may give
15763 // stronger guarantees than the class containing the member.
15764 if (DRE && !TopME->isArrow()) {
15765 const ValueDecl *VD = DRE->getDecl();
15766 if (!VD->getType()->isReferenceType())
15767 CompleteObjectAlignment =
15768 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
15769 }
15770
15771 // Check if the synthesized offset fulfills the alignment.
15772 if (Offset % ExpectedAlignment != 0 ||
15773 // It may fulfill the offset it but the effective alignment may still be
15774 // lower than the expected expression alignment.
15775 CompleteObjectAlignment < ExpectedAlignment) {
15776 // If this happens, we want to determine a sensible culprit of this.
15777 // Intuitively, watching the chain of member expressions from right to
15778 // left, we start with the required alignment (as required by the field
15779 // type) but some packed attribute in that chain has reduced the alignment.
15780 // It may happen that another packed structure increases it again. But if
15781 // we are here such increase has not been enough. So pointing the first
15782 // FieldDecl that either is packed or else its RecordDecl is,
15783 // seems reasonable.
15784 FieldDecl *FD = nullptr;
15785 CharUnits Alignment;
15786 for (FieldDecl *FDI : ReverseMemberChain) {
15787 if (FDI->hasAttr<PackedAttr>() ||
15788 FDI->getParent()->hasAttr<PackedAttr>()) {
15789 FD = FDI;
15790 Alignment = std::min(
15791 Context.getTypeAlignInChars(FD->getType()),
15792 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
15793 break;
15794 }
15795 }
15796 assert(FD && "We did not find a packed FieldDecl!");
15797 Action(E, FD->getParent(), FD, Alignment);
15798 }
15799 }
15800
CheckAddressOfPackedMember(Expr * rhs)15801 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
15802 using namespace std::placeholders;
15803
15804 RefersToMemberWithReducedAlignment(
15805 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
15806 _2, _3, _4));
15807 }
15808
SemaBuiltinMatrixTranspose(CallExpr * TheCall,ExprResult CallResult)15809 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
15810 ExprResult CallResult) {
15811 if (checkArgCount(*this, TheCall, 1))
15812 return ExprError();
15813
15814 ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
15815 if (MatrixArg.isInvalid())
15816 return MatrixArg;
15817 Expr *Matrix = MatrixArg.get();
15818
15819 auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
15820 if (!MType) {
15821 Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg);
15822 return ExprError();
15823 }
15824
15825 // Create returned matrix type by swapping rows and columns of the argument
15826 // matrix type.
15827 QualType ResultType = Context.getConstantMatrixType(
15828 MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
15829
15830 // Change the return type to the type of the returned matrix.
15831 TheCall->setType(ResultType);
15832
15833 // Update call argument to use the possibly converted matrix argument.
15834 TheCall->setArg(0, Matrix);
15835 return CallResult;
15836 }
15837
15838 // Get and verify the matrix dimensions.
15839 static llvm::Optional<unsigned>
getAndVerifyMatrixDimension(Expr * Expr,StringRef Name,Sema & S)15840 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
15841 SourceLocation ErrorPos;
15842 Optional<llvm::APSInt> Value =
15843 Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
15844 if (!Value) {
15845 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
15846 << Name;
15847 return {};
15848 }
15849 uint64_t Dim = Value->getZExtValue();
15850 if (!ConstantMatrixType::isDimensionValid(Dim)) {
15851 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
15852 << Name << ConstantMatrixType::getMaxElementsPerDimension();
15853 return {};
15854 }
15855 return Dim;
15856 }
15857
SemaBuiltinMatrixColumnMajorLoad(CallExpr * TheCall,ExprResult CallResult)15858 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
15859 ExprResult CallResult) {
15860 if (!getLangOpts().MatrixTypes) {
15861 Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
15862 return ExprError();
15863 }
15864
15865 if (checkArgCount(*this, TheCall, 4))
15866 return ExprError();
15867
15868 unsigned PtrArgIdx = 0;
15869 Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
15870 Expr *RowsExpr = TheCall->getArg(1);
15871 Expr *ColumnsExpr = TheCall->getArg(2);
15872 Expr *StrideExpr = TheCall->getArg(3);
15873
15874 bool ArgError = false;
15875
15876 // Check pointer argument.
15877 {
15878 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
15879 if (PtrConv.isInvalid())
15880 return PtrConv;
15881 PtrExpr = PtrConv.get();
15882 TheCall->setArg(0, PtrExpr);
15883 if (PtrExpr->isTypeDependent()) {
15884 TheCall->setType(Context.DependentTy);
15885 return TheCall;
15886 }
15887 }
15888
15889 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
15890 QualType ElementTy;
15891 if (!PtrTy) {
15892 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
15893 << PtrArgIdx + 1;
15894 ArgError = true;
15895 } else {
15896 ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
15897
15898 if (!ConstantMatrixType::isValidElementType(ElementTy)) {
15899 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
15900 << PtrArgIdx + 1;
15901 ArgError = true;
15902 }
15903 }
15904
15905 // Apply default Lvalue conversions and convert the expression to size_t.
15906 auto ApplyArgumentConversions = [this](Expr *E) {
15907 ExprResult Conv = DefaultLvalueConversion(E);
15908 if (Conv.isInvalid())
15909 return Conv;
15910
15911 return tryConvertExprToType(Conv.get(), Context.getSizeType());
15912 };
15913
15914 // Apply conversion to row and column expressions.
15915 ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
15916 if (!RowsConv.isInvalid()) {
15917 RowsExpr = RowsConv.get();
15918 TheCall->setArg(1, RowsExpr);
15919 } else
15920 RowsExpr = nullptr;
15921
15922 ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
15923 if (!ColumnsConv.isInvalid()) {
15924 ColumnsExpr = ColumnsConv.get();
15925 TheCall->setArg(2, ColumnsExpr);
15926 } else
15927 ColumnsExpr = nullptr;
15928
15929 // If any any part of the result matrix type is still pending, just use
15930 // Context.DependentTy, until all parts are resolved.
15931 if ((RowsExpr && RowsExpr->isTypeDependent()) ||
15932 (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
15933 TheCall->setType(Context.DependentTy);
15934 return CallResult;
15935 }
15936
15937 // Check row and column dimenions.
15938 llvm::Optional<unsigned> MaybeRows;
15939 if (RowsExpr)
15940 MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
15941
15942 llvm::Optional<unsigned> MaybeColumns;
15943 if (ColumnsExpr)
15944 MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
15945
15946 // Check stride argument.
15947 ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
15948 if (StrideConv.isInvalid())
15949 return ExprError();
15950 StrideExpr = StrideConv.get();
15951 TheCall->setArg(3, StrideExpr);
15952
15953 if (MaybeRows) {
15954 if (Optional<llvm::APSInt> Value =
15955 StrideExpr->getIntegerConstantExpr(Context)) {
15956 uint64_t Stride = Value->getZExtValue();
15957 if (Stride < *MaybeRows) {
15958 Diag(StrideExpr->getBeginLoc(),
15959 diag::err_builtin_matrix_stride_too_small);
15960 ArgError = true;
15961 }
15962 }
15963 }
15964
15965 if (ArgError || !MaybeRows || !MaybeColumns)
15966 return ExprError();
15967
15968 TheCall->setType(
15969 Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
15970 return CallResult;
15971 }
15972
SemaBuiltinMatrixColumnMajorStore(CallExpr * TheCall,ExprResult CallResult)15973 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
15974 ExprResult CallResult) {
15975 if (checkArgCount(*this, TheCall, 3))
15976 return ExprError();
15977
15978 unsigned PtrArgIdx = 1;
15979 Expr *MatrixExpr = TheCall->getArg(0);
15980 Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
15981 Expr *StrideExpr = TheCall->getArg(2);
15982
15983 bool ArgError = false;
15984
15985 {
15986 ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
15987 if (MatrixConv.isInvalid())
15988 return MatrixConv;
15989 MatrixExpr = MatrixConv.get();
15990 TheCall->setArg(0, MatrixExpr);
15991 }
15992 if (MatrixExpr->isTypeDependent()) {
15993 TheCall->setType(Context.DependentTy);
15994 return TheCall;
15995 }
15996
15997 auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
15998 if (!MatrixTy) {
15999 Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0;
16000 ArgError = true;
16001 }
16002
16003 {
16004 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
16005 if (PtrConv.isInvalid())
16006 return PtrConv;
16007 PtrExpr = PtrConv.get();
16008 TheCall->setArg(1, PtrExpr);
16009 if (PtrExpr->isTypeDependent()) {
16010 TheCall->setType(Context.DependentTy);
16011 return TheCall;
16012 }
16013 }
16014
16015 // Check pointer argument.
16016 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
16017 if (!PtrTy) {
16018 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
16019 << PtrArgIdx + 1;
16020 ArgError = true;
16021 } else {
16022 QualType ElementTy = PtrTy->getPointeeType();
16023 if (ElementTy.isConstQualified()) {
16024 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
16025 ArgError = true;
16026 }
16027 ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
16028 if (MatrixTy &&
16029 !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
16030 Diag(PtrExpr->getBeginLoc(),
16031 diag::err_builtin_matrix_pointer_arg_mismatch)
16032 << ElementTy << MatrixTy->getElementType();
16033 ArgError = true;
16034 }
16035 }
16036
16037 // Apply default Lvalue conversions and convert the stride expression to
16038 // size_t.
16039 {
16040 ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
16041 if (StrideConv.isInvalid())
16042 return StrideConv;
16043
16044 StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
16045 if (StrideConv.isInvalid())
16046 return StrideConv;
16047 StrideExpr = StrideConv.get();
16048 TheCall->setArg(2, StrideExpr);
16049 }
16050
16051 // Check stride argument.
16052 if (MatrixTy) {
16053 if (Optional<llvm::APSInt> Value =
16054 StrideExpr->getIntegerConstantExpr(Context)) {
16055 uint64_t Stride = Value->getZExtValue();
16056 if (Stride < MatrixTy->getNumRows()) {
16057 Diag(StrideExpr->getBeginLoc(),
16058 diag::err_builtin_matrix_stride_too_small);
16059 ArgError = true;
16060 }
16061 }
16062 }
16063
16064 if (ArgError)
16065 return ExprError();
16066
16067 return CallResult;
16068 }
16069
16070 /// \brief Enforce the bounds of a TCB
16071 /// CheckTCBEnforcement - Enforces that every function in a named TCB only
16072 /// directly calls other functions in the same TCB as marked by the enforce_tcb
16073 /// and enforce_tcb_leaf attributes.
CheckTCBEnforcement(const CallExpr * TheCall,const FunctionDecl * Callee)16074 void Sema::CheckTCBEnforcement(const CallExpr *TheCall,
16075 const FunctionDecl *Callee) {
16076 const FunctionDecl *Caller = getCurFunctionDecl();
16077
16078 // Calls to builtins are not enforced.
16079 if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() ||
16080 Callee->getBuiltinID() != 0)
16081 return;
16082
16083 // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
16084 // all TCBs the callee is a part of.
16085 llvm::StringSet<> CalleeTCBs;
16086 for_each(Callee->specific_attrs<EnforceTCBAttr>(),
16087 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
16088 for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(),
16089 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
16090
16091 // Go through the TCBs the caller is a part of and emit warnings if Caller
16092 // is in a TCB that the Callee is not.
16093 for_each(
16094 Caller->specific_attrs<EnforceTCBAttr>(),
16095 [&](const auto *A) {
16096 StringRef CallerTCB = A->getTCBName();
16097 if (CalleeTCBs.count(CallerTCB) == 0) {
16098 this->Diag(TheCall->getExprLoc(),
16099 diag::warn_tcb_enforcement_violation) << Callee
16100 << CallerTCB;
16101 }
16102 });
16103 }
16104