1 //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This pass exposes codegen information to IR-level passes. Every
10 /// transformation that uses codegen information is broken into three parts:
11 /// 1. The IR-level analysis pass.
12 /// 2. The IR-level transformation interface which provides the needed
13 ///    information.
14 /// 3. Codegen-level implementation which uses target-specific hooks.
15 ///
16 /// This file defines #2, which is the interface that IR-level transformations
17 /// use for querying the codegen.
18 ///
19 //===----------------------------------------------------------------------===//
20 
21 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22 #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23 
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PassManager.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/AtomicOrdering.h"
29 #include "llvm/Support/DataTypes.h"
30 #include "llvm/Support/InstructionCost.h"
31 #include <functional>
32 
33 namespace llvm {
34 
35 namespace Intrinsic {
36 typedef unsigned ID;
37 }
38 
39 class AssumptionCache;
40 class BlockFrequencyInfo;
41 class DominatorTree;
42 class BranchInst;
43 class CallBase;
44 class ExtractElementInst;
45 class Function;
46 class GlobalValue;
47 class InstCombiner;
48 class IntrinsicInst;
49 class LoadInst;
50 class LoopAccessInfo;
51 class Loop;
52 class LoopInfo;
53 class ProfileSummaryInfo;
54 class SCEV;
55 class ScalarEvolution;
56 class StoreInst;
57 class SwitchInst;
58 class TargetLibraryInfo;
59 class Type;
60 class User;
61 class Value;
62 struct KnownBits;
63 template <typename T> class Optional;
64 
65 /// Information about a load/store intrinsic defined by the target.
66 struct MemIntrinsicInfo {
67   /// This is the pointer that the intrinsic is loading from or storing to.
68   /// If this is non-null, then analysis/optimization passes can assume that
69   /// this intrinsic is functionally equivalent to a load/store from this
70   /// pointer.
71   Value *PtrVal = nullptr;
72 
73   // Ordering for atomic operations.
74   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
75 
76   // Same Id is set by the target for corresponding load/store intrinsics.
77   unsigned short MatchingId = 0;
78 
79   bool ReadMem = false;
80   bool WriteMem = false;
81   bool IsVolatile = false;
82 
isUnorderedMemIntrinsicInfo83   bool isUnordered() const {
84     return (Ordering == AtomicOrdering::NotAtomic ||
85             Ordering == AtomicOrdering::Unordered) &&
86            !IsVolatile;
87   }
88 };
89 
90 /// Attributes of a target dependent hardware loop.
91 struct HardwareLoopInfo {
92   HardwareLoopInfo() = delete;
HardwareLoopInfoHardwareLoopInfo93   HardwareLoopInfo(Loop *L) : L(L) {}
94   Loop *L = nullptr;
95   BasicBlock *ExitBlock = nullptr;
96   BranchInst *ExitBranch = nullptr;
97   const SCEV *ExitCount = nullptr;
98   const SCEV *TripCount = nullptr;
99   IntegerType *CountType = nullptr;
100   Value *LoopDecrement = nullptr; // Decrement the loop counter by this
101                                   // value in every iteration.
102   bool IsNestingLegal = false;    // Can a hardware loop be a parent to
103                                   // another hardware loop?
104   bool CounterInReg = false;      // Should loop counter be updated in
105                                   // the loop via a phi?
106   bool PerformEntryTest = false;  // Generate the intrinsic which also performs
107                                   // icmp ne zero on the loop counter value and
108                                   // produces an i1 to guard the loop entry.
109   bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI,
110                                DominatorTree &DT, bool ForceNestedLoop = false,
111                                bool ForceHardwareLoopPHI = false);
112   bool canAnalyze(LoopInfo &LI);
113 };
114 
115 class IntrinsicCostAttributes {
116   const IntrinsicInst *II = nullptr;
117   Type *RetTy = nullptr;
118   Intrinsic::ID IID;
119   SmallVector<Type *, 4> ParamTys;
120   SmallVector<const Value *, 4> Arguments;
121   FastMathFlags FMF;
122   ElementCount VF = ElementCount::getFixed(1);
123   // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
124   // arguments and the return value will be computed based on types.
125   unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
126 
127 public:
128   IntrinsicCostAttributes(const IntrinsicInst &I);
129 
130   IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI);
131 
132   IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI,
133                           ElementCount Factor);
134 
135   IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI,
136                           ElementCount Factor, unsigned ScalarCost);
137 
138   IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
139                           ArrayRef<Type *> Tys, FastMathFlags Flags);
140 
141   IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
142                           ArrayRef<Type *> Tys, FastMathFlags Flags,
143                           unsigned ScalarCost);
144 
145   IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
146                           ArrayRef<Type *> Tys, FastMathFlags Flags,
147                           unsigned ScalarCost,
148                           const IntrinsicInst *I);
149 
150   IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
151                           ArrayRef<Type *> Tys);
152 
153   IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
154                           ArrayRef<const Value *> Args);
155 
getID()156   Intrinsic::ID getID() const { return IID; }
getInst()157   const IntrinsicInst *getInst() const { return II; }
getReturnType()158   Type *getReturnType() const { return RetTy; }
getVectorFactor()159   ElementCount getVectorFactor() const { return VF; }
getFlags()160   FastMathFlags getFlags() const { return FMF; }
getScalarizationCost()161   unsigned getScalarizationCost() const { return ScalarizationCost; }
getArgs()162   const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
getArgTypes()163   const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
164 
isTypeBasedOnly()165   bool isTypeBasedOnly() const {
166     return Arguments.empty();
167   }
168 
skipScalarizationCost()169   bool skipScalarizationCost() const {
170     return ScalarizationCost != std::numeric_limits<unsigned>::max();
171   }
172 };
173 
174 class TargetTransformInfo;
175 typedef TargetTransformInfo TTI;
176 
177 /// This pass provides access to the codegen interfaces that are needed
178 /// for IR-level transformations.
179 class TargetTransformInfo {
180 public:
181   /// Construct a TTI object using a type implementing the \c Concept
182   /// API below.
183   ///
184   /// This is used by targets to construct a TTI wrapping their target-specific
185   /// implementation that encodes appropriate costs for their target.
186   template <typename T> TargetTransformInfo(T Impl);
187 
188   /// Construct a baseline TTI object using a minimal implementation of
189   /// the \c Concept API below.
190   ///
191   /// The TTI implementation will reflect the information in the DataLayout
192   /// provided if non-null.
193   explicit TargetTransformInfo(const DataLayout &DL);
194 
195   // Provide move semantics.
196   TargetTransformInfo(TargetTransformInfo &&Arg);
197   TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
198 
199   // We need to define the destructor out-of-line to define our sub-classes
200   // out-of-line.
201   ~TargetTransformInfo();
202 
203   /// Handle the invalidation of this information.
204   ///
205   /// When used as a result of \c TargetIRAnalysis this method will be called
206   /// when the function this was computed for changes. When it returns false,
207   /// the information is preserved across those changes.
invalidate(Function &,const PreservedAnalyses &,FunctionAnalysisManager::Invalidator &)208   bool invalidate(Function &, const PreservedAnalyses &,
209                   FunctionAnalysisManager::Invalidator &) {
210     // FIXME: We should probably in some way ensure that the subtarget
211     // information for a function hasn't changed.
212     return false;
213   }
214 
215   /// \name Generic Target Information
216   /// @{
217 
218   /// The kind of cost model.
219   ///
220   /// There are several different cost models that can be customized by the
221   /// target. The normalization of each cost model may be target specific.
222   enum TargetCostKind {
223     TCK_RecipThroughput, ///< Reciprocal throughput.
224     TCK_Latency,         ///< The latency of instruction.
225     TCK_CodeSize,        ///< Instruction code size.
226     TCK_SizeAndLatency   ///< The weighted sum of size and latency.
227   };
228 
229   /// Query the cost of a specified instruction.
230   ///
231   /// Clients should use this interface to query the cost of an existing
232   /// instruction. The instruction must have a valid parent (basic block).
233   ///
234   /// Note, this method does not cache the cost calculation and it
235   /// can be expensive in some cases.
getInstructionCost(const Instruction * I,enum TargetCostKind kind)236   InstructionCost getInstructionCost(const Instruction *I,
237                                      enum TargetCostKind kind) const {
238     InstructionCost Cost;
239     switch (kind) {
240     case TCK_RecipThroughput:
241       Cost = getInstructionThroughput(I);
242       break;
243     case TCK_Latency:
244       Cost = getInstructionLatency(I);
245       break;
246     case TCK_CodeSize:
247     case TCK_SizeAndLatency:
248       Cost = getUserCost(I, kind);
249       break;
250     }
251     if (Cost == -1)
252       Cost.setInvalid();
253     return Cost;
254   }
255 
256   /// Underlying constants for 'cost' values in this interface.
257   ///
258   /// Many APIs in this interface return a cost. This enum defines the
259   /// fundamental values that should be used to interpret (and produce) those
260   /// costs. The costs are returned as an int rather than a member of this
261   /// enumeration because it is expected that the cost of one IR instruction
262   /// may have a multiplicative factor to it or otherwise won't fit directly
263   /// into the enum. Moreover, it is common to sum or average costs which works
264   /// better as simple integral values. Thus this enum only provides constants.
265   /// Also note that the returned costs are signed integers to make it natural
266   /// to add, subtract, and test with zero (a common boundary condition). It is
267   /// not expected that 2^32 is a realistic cost to be modeling at any point.
268   ///
269   /// Note that these costs should usually reflect the intersection of code-size
270   /// cost and execution cost. A free instruction is typically one that folds
271   /// into another instruction. For example, reg-to-reg moves can often be
272   /// skipped by renaming the registers in the CPU, but they still are encoded
273   /// and thus wouldn't be considered 'free' here.
274   enum TargetCostConstants {
275     TCC_Free = 0,     ///< Expected to fold away in lowering.
276     TCC_Basic = 1,    ///< The cost of a typical 'add' instruction.
277     TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
278   };
279 
280   /// Estimate the cost of a GEP operation when lowered.
281   int getGEPCost(Type *PointeeType, const Value *Ptr,
282                  ArrayRef<const Value *> Operands,
283                  TargetCostKind CostKind = TCK_SizeAndLatency) const;
284 
285   /// \returns A value by which our inlining threshold should be multiplied.
286   /// This is primarily used to bump up the inlining threshold wholesale on
287   /// targets where calls are unusually expensive.
288   ///
289   /// TODO: This is a rather blunt instrument.  Perhaps altering the costs of
290   /// individual classes of instructions would be better.
291   unsigned getInliningThresholdMultiplier() const;
292 
293   /// \returns A value to be added to the inlining threshold.
294   unsigned adjustInliningThreshold(const CallBase *CB) const;
295 
296   /// \returns Vector bonus in percent.
297   ///
298   /// Vector bonuses: We want to more aggressively inline vector-dense kernels
299   /// and apply this bonus based on the percentage of vector instructions. A
300   /// bonus is applied if the vector instructions exceed 50% and half that
301   /// amount is applied if it exceeds 10%. Note that these bonuses are some what
302   /// arbitrary and evolved over time by accident as much as because they are
303   /// principled bonuses.
304   /// FIXME: It would be nice to base the bonus values on something more
305   /// scientific. A target may has no bonus on vector instructions.
306   int getInlinerVectorBonusPercent() const;
307 
308   /// \return the expected cost of a memcpy, which could e.g. depend on the
309   /// source/destination type and alignment and the number of bytes copied.
310   int getMemcpyCost(const Instruction *I) const;
311 
312   /// \return The estimated number of case clusters when lowering \p 'SI'.
313   /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
314   /// table.
315   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
316                                             unsigned &JTSize,
317                                             ProfileSummaryInfo *PSI,
318                                             BlockFrequencyInfo *BFI) const;
319 
320   /// Estimate the cost of a given IR user when lowered.
321   ///
322   /// This can estimate the cost of either a ConstantExpr or Instruction when
323   /// lowered.
324   ///
325   /// \p Operands is a list of operands which can be a result of transformations
326   /// of the current operands. The number of the operands on the list must equal
327   /// to the number of the current operands the IR user has. Their order on the
328   /// list must be the same as the order of the current operands the IR user
329   /// has.
330   ///
331   /// The returned cost is defined in terms of \c TargetCostConstants, see its
332   /// comments for a detailed explanation of the cost values.
333   int getUserCost(const User *U, ArrayRef<const Value *> Operands,
334                   TargetCostKind CostKind) const;
335 
336   /// This is a helper function which calls the two-argument getUserCost
337   /// with \p Operands which are the current operands U has.
getUserCost(const User * U,TargetCostKind CostKind)338   int getUserCost(const User *U, TargetCostKind CostKind) const {
339     SmallVector<const Value *, 4> Operands(U->operand_values());
340     return getUserCost(U, Operands, CostKind);
341   }
342 
343   /// Return true if branch divergence exists.
344   ///
345   /// Branch divergence has a significantly negative impact on GPU performance
346   /// when threads in the same wavefront take different paths due to conditional
347   /// branches.
348   bool hasBranchDivergence() const;
349 
350   /// Return true if the target prefers to use GPU divergence analysis to
351   /// replace the legacy version.
352   bool useGPUDivergenceAnalysis() const;
353 
354   /// Returns whether V is a source of divergence.
355   ///
356   /// This function provides the target-dependent information for
357   /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis
358   /// first builds the dependency graph, and then runs the reachability
359   /// algorithm starting with the sources of divergence.
360   bool isSourceOfDivergence(const Value *V) const;
361 
362   // Returns true for the target specific
363   // set of operations which produce uniform result
364   // even taking non-uniform arguments
365   bool isAlwaysUniform(const Value *V) const;
366 
367   /// Returns the address space ID for a target's 'flat' address space. Note
368   /// this is not necessarily the same as addrspace(0), which LLVM sometimes
369   /// refers to as the generic address space. The flat address space is a
370   /// generic address space that can be used access multiple segments of memory
371   /// with different address spaces. Access of a memory location through a
372   /// pointer with this address space is expected to be legal but slower
373   /// compared to the same memory location accessed through a pointer with a
374   /// different address space.
375   //
376   /// This is for targets with different pointer representations which can
377   /// be converted with the addrspacecast instruction. If a pointer is converted
378   /// to this address space, optimizations should attempt to replace the access
379   /// with the source address space.
380   ///
381   /// \returns ~0u if the target does not have such a flat address space to
382   /// optimize away.
383   unsigned getFlatAddressSpace() const;
384 
385   /// Return any intrinsic address operand indexes which may be rewritten if
386   /// they use a flat address space pointer.
387   ///
388   /// \returns true if the intrinsic was handled.
389   bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
390                                   Intrinsic::ID IID) const;
391 
392   bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
393 
394   unsigned getAssumedAddrSpace(const Value *V) const;
395 
396   /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
397   /// NewV, which has a different address space. This should happen for every
398   /// operand index that collectFlatAddressOperands returned for the intrinsic.
399   /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
400   /// new value (which may be the original \p II with modified operands).
401   Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
402                                           Value *NewV) const;
403 
404   /// Test whether calls to a function lower to actual program function
405   /// calls.
406   ///
407   /// The idea is to test whether the program is likely to require a 'call'
408   /// instruction or equivalent in order to call the given function.
409   ///
410   /// FIXME: It's not clear that this is a good or useful query API. Client's
411   /// should probably move to simpler cost metrics using the above.
412   /// Alternatively, we could split the cost interface into distinct code-size
413   /// and execution-speed costs. This would allow modelling the core of this
414   /// query more accurately as a call is a single small instruction, but
415   /// incurs significant execution cost.
416   bool isLoweredToCall(const Function *F) const;
417 
418   struct LSRCost {
419     /// TODO: Some of these could be merged. Also, a lexical ordering
420     /// isn't always optimal.
421     unsigned Insns;
422     unsigned NumRegs;
423     unsigned AddRecCost;
424     unsigned NumIVMuls;
425     unsigned NumBaseAdds;
426     unsigned ImmCost;
427     unsigned SetupCost;
428     unsigned ScaleCost;
429   };
430 
431   /// Parameters that control the generic loop unrolling transformation.
432   struct UnrollingPreferences {
433     /// The cost threshold for the unrolled loop. Should be relative to the
434     /// getUserCost values returned by this API, and the expectation is that
435     /// the unrolled loop's instructions when run through that interface should
436     /// not exceed this cost. However, this is only an estimate. Also, specific
437     /// loops may be unrolled even with a cost above this threshold if deemed
438     /// profitable. Set this to UINT_MAX to disable the loop body cost
439     /// restriction.
440     unsigned Threshold;
441     /// If complete unrolling will reduce the cost of the loop, we will boost
442     /// the Threshold by a certain percent to allow more aggressive complete
443     /// unrolling. This value provides the maximum boost percentage that we
444     /// can apply to Threshold (The value should be no less than 100).
445     /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
446     ///                                    MaxPercentThresholdBoost / 100)
447     /// E.g. if complete unrolling reduces the loop execution time by 50%
448     /// then we boost the threshold by the factor of 2x. If unrolling is not
449     /// expected to reduce the running time, then we do not increase the
450     /// threshold.
451     unsigned MaxPercentThresholdBoost;
452     /// The cost threshold for the unrolled loop when optimizing for size (set
453     /// to UINT_MAX to disable).
454     unsigned OptSizeThreshold;
455     /// The cost threshold for the unrolled loop, like Threshold, but used
456     /// for partial/runtime unrolling (set to UINT_MAX to disable).
457     unsigned PartialThreshold;
458     /// The cost threshold for the unrolled loop when optimizing for size, like
459     /// OptSizeThreshold, but used for partial/runtime unrolling (set to
460     /// UINT_MAX to disable).
461     unsigned PartialOptSizeThreshold;
462     /// A forced unrolling factor (the number of concatenated bodies of the
463     /// original loop in the unrolled loop body). When set to 0, the unrolling
464     /// transformation will select an unrolling factor based on the current cost
465     /// threshold and other factors.
466     unsigned Count;
467     /// Default unroll count for loops with run-time trip count.
468     unsigned DefaultUnrollRuntimeCount;
469     // Set the maximum unrolling factor. The unrolling factor may be selected
470     // using the appropriate cost threshold, but may not exceed this number
471     // (set to UINT_MAX to disable). This does not apply in cases where the
472     // loop is being fully unrolled.
473     unsigned MaxCount;
474     /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
475     /// applies even if full unrolling is selected. This allows a target to fall
476     /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
477     unsigned FullUnrollMaxCount;
478     // Represents number of instructions optimized when "back edge"
479     // becomes "fall through" in unrolled loop.
480     // For now we count a conditional branch on a backedge and a comparison
481     // feeding it.
482     unsigned BEInsns;
483     /// Allow partial unrolling (unrolling of loops to expand the size of the
484     /// loop body, not only to eliminate small constant-trip-count loops).
485     bool Partial;
486     /// Allow runtime unrolling (unrolling of loops to expand the size of the
487     /// loop body even when the number of loop iterations is not known at
488     /// compile time).
489     bool Runtime;
490     /// Allow generation of a loop remainder (extra iterations after unroll).
491     bool AllowRemainder;
492     /// Allow emitting expensive instructions (such as divisions) when computing
493     /// the trip count of a loop for runtime unrolling.
494     bool AllowExpensiveTripCount;
495     /// Apply loop unroll on any kind of loop
496     /// (mainly to loops that fail runtime unrolling).
497     bool Force;
498     /// Allow using trip count upper bound to unroll loops.
499     bool UpperBound;
500     /// Allow unrolling of all the iterations of the runtime loop remainder.
501     bool UnrollRemainder;
502     /// Allow unroll and jam. Used to enable unroll and jam for the target.
503     bool UnrollAndJam;
504     /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
505     /// value above is used during unroll and jam for the outer loop size.
506     /// This value is used in the same manner to limit the size of the inner
507     /// loop.
508     unsigned UnrollAndJamInnerLoopThreshold;
509     /// Don't allow loop unrolling to simulate more than this number of
510     /// iterations when checking full unroll profitability
511     unsigned MaxIterationsCountToAnalyze;
512   };
513 
514   /// Get target-customized preferences for the generic loop unrolling
515   /// transformation. The caller will initialize UP with the current
516   /// target-independent defaults.
517   void getUnrollingPreferences(Loop *L, ScalarEvolution &,
518                                UnrollingPreferences &UP) const;
519 
520   /// Query the target whether it would be profitable to convert the given loop
521   /// into a hardware loop.
522   bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
523                                 AssumptionCache &AC, TargetLibraryInfo *LibInfo,
524                                 HardwareLoopInfo &HWLoopInfo) const;
525 
526   /// Query the target whether it would be prefered to create a predicated
527   /// vector loop, which can avoid the need to emit a scalar epilogue loop.
528   bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
529                                    AssumptionCache &AC, TargetLibraryInfo *TLI,
530                                    DominatorTree *DT,
531                                    const LoopAccessInfo *LAI) const;
532 
533   /// Query the target whether lowering of the llvm.get.active.lane.mask
534   /// intrinsic is supported.
535   bool emitGetActiveLaneMask() const;
536 
537   // Parameters that control the loop peeling transformation
538   struct PeelingPreferences {
539     /// A forced peeling factor (the number of bodied of the original loop
540     /// that should be peeled off before the loop body). When set to 0, the
541     /// a peeling factor based on profile information and other factors.
542     unsigned PeelCount;
543     /// Allow peeling off loop iterations.
544     bool AllowPeeling;
545     /// Allow peeling off loop iterations for loop nests.
546     bool AllowLoopNestsPeeling;
547     /// Allow peeling basing on profile. Uses to enable peeling off all
548     /// iterations basing on provided profile.
549     /// If the value is true the peeling cost model can decide to peel only
550     /// some iterations and in this case it will set this to false.
551     bool PeelProfiledIterations;
552   };
553 
554   /// Get target-customized preferences for the generic loop peeling
555   /// transformation. The caller will initialize \p PP with the current
556   /// target-independent defaults with information from \p L and \p SE.
557   void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
558                              PeelingPreferences &PP) const;
559 
560   /// Targets can implement their own combinations for target-specific
561   /// intrinsics. This function will be called from the InstCombine pass every
562   /// time a target-specific intrinsic is encountered.
563   ///
564   /// \returns None to not do anything target specific or a value that will be
565   /// returned from the InstCombiner. It is possible to return null and stop
566   /// further processing of the intrinsic by returning nullptr.
567   Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
568                                                IntrinsicInst &II) const;
569   /// Can be used to implement target-specific instruction combining.
570   /// \see instCombineIntrinsic
571   Optional<Value *>
572   simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
573                                    APInt DemandedMask, KnownBits &Known,
574                                    bool &KnownBitsComputed) const;
575   /// Can be used to implement target-specific instruction combining.
576   /// \see instCombineIntrinsic
577   Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
578       InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
579       APInt &UndefElts2, APInt &UndefElts3,
580       std::function<void(Instruction *, unsigned, APInt, APInt &)>
581           SimplifyAndSetOp) const;
582   /// @}
583 
584   /// \name Scalar Target Information
585   /// @{
586 
587   /// Flags indicating the kind of support for population count.
588   ///
589   /// Compared to the SW implementation, HW support is supposed to
590   /// significantly boost the performance when the population is dense, and it
591   /// may or may not degrade performance if the population is sparse. A HW
592   /// support is considered as "Fast" if it can outperform, or is on a par
593   /// with, SW implementation when the population is sparse; otherwise, it is
594   /// considered as "Slow".
595   enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
596 
597   /// Return true if the specified immediate is legal add immediate, that
598   /// is the target has add instructions which can add a register with the
599   /// immediate without having to materialize the immediate into a register.
600   bool isLegalAddImmediate(int64_t Imm) const;
601 
602   /// Return true if the specified immediate is legal icmp immediate,
603   /// that is the target has icmp instructions which can compare a register
604   /// against the immediate without having to materialize the immediate into a
605   /// register.
606   bool isLegalICmpImmediate(int64_t Imm) const;
607 
608   /// Return true if the addressing mode represented by AM is legal for
609   /// this target, for a load/store of the specified type.
610   /// The type may be VoidTy, in which case only return true if the addressing
611   /// mode is legal for a load/store of any legal type.
612   /// If target returns true in LSRWithInstrQueries(), I may be valid.
613   /// TODO: Handle pre/postinc as well.
614   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
615                              bool HasBaseReg, int64_t Scale,
616                              unsigned AddrSpace = 0,
617                              Instruction *I = nullptr) const;
618 
619   /// Return true if LSR cost of C1 is lower than C1.
620   bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
621                      TargetTransformInfo::LSRCost &C2) const;
622 
623   /// Return true if LSR major cost is number of registers. Targets which
624   /// implement their own isLSRCostLess and unset number of registers as major
625   /// cost should return false, otherwise return true.
626   bool isNumRegsMajorCostOfLSR() const;
627 
628   /// \returns true if LSR should not optimize a chain that includes \p I.
629   bool isProfitableLSRChainElement(Instruction *I) const;
630 
631   /// Return true if the target can fuse a compare and branch.
632   /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
633   /// calculation for the instructions in a loop.
634   bool canMacroFuseCmp() const;
635 
636   /// Return true if the target can save a compare for loop count, for example
637   /// hardware loop saves a compare.
638   bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
639                   DominatorTree *DT, AssumptionCache *AC,
640                   TargetLibraryInfo *LibInfo) const;
641 
642   /// \return True is LSR should make efforts to create/preserve post-inc
643   /// addressing mode expressions.
644   bool shouldFavorPostInc() const;
645 
646   /// Return true if LSR should make efforts to generate indexed addressing
647   /// modes that operate across loop iterations.
648   bool shouldFavorBackedgeIndex(const Loop *L) const;
649 
650   /// Return true if the target supports masked store.
651   bool isLegalMaskedStore(Type *DataType, Align Alignment) const;
652   /// Return true if the target supports masked load.
653   bool isLegalMaskedLoad(Type *DataType, Align Alignment) const;
654 
655   /// Return true if the target supports nontemporal store.
656   bool isLegalNTStore(Type *DataType, Align Alignment) const;
657   /// Return true if the target supports nontemporal load.
658   bool isLegalNTLoad(Type *DataType, Align Alignment) const;
659 
660   /// Return true if the target supports masked scatter.
661   bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
662   /// Return true if the target supports masked gather.
663   bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
664 
665   /// Return true if the target supports masked compress store.
666   bool isLegalMaskedCompressStore(Type *DataType) const;
667   /// Return true if the target supports masked expand load.
668   bool isLegalMaskedExpandLoad(Type *DataType) const;
669 
670   /// Return true if the target has a unified operation to calculate division
671   /// and remainder. If so, the additional implicit multiplication and
672   /// subtraction required to calculate a remainder from division are free. This
673   /// can enable more aggressive transformations for division and remainder than
674   /// would typically be allowed using throughput or size cost models.
675   bool hasDivRemOp(Type *DataType, bool IsSigned) const;
676 
677   /// Return true if the given instruction (assumed to be a memory access
678   /// instruction) has a volatile variant. If that's the case then we can avoid
679   /// addrspacecast to generic AS for volatile loads/stores. Default
680   /// implementation returns false, which prevents address space inference for
681   /// volatile loads/stores.
682   bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
683 
684   /// Return true if target doesn't mind addresses in vectors.
685   bool prefersVectorizedAddressing() const;
686 
687   /// Return the cost of the scaling factor used in the addressing
688   /// mode represented by AM for this target, for a load/store
689   /// of the specified type.
690   /// If the AM is supported, the return value must be >= 0.
691   /// If the AM is not supported, it returns a negative value.
692   /// TODO: Handle pre/postinc as well.
693   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
694                            bool HasBaseReg, int64_t Scale,
695                            unsigned AddrSpace = 0) const;
696 
697   /// Return true if the loop strength reduce pass should make
698   /// Instruction* based TTI queries to isLegalAddressingMode(). This is
699   /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
700   /// immediate offset and no index register.
701   bool LSRWithInstrQueries() const;
702 
703   /// Return true if it's free to truncate a value of type Ty1 to type
704   /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
705   /// by referencing its sub-register AX.
706   bool isTruncateFree(Type *Ty1, Type *Ty2) const;
707 
708   /// Return true if it is profitable to hoist instruction in the
709   /// then/else to before if.
710   bool isProfitableToHoist(Instruction *I) const;
711 
712   bool useAA() const;
713 
714   /// Return true if this type is legal.
715   bool isTypeLegal(Type *Ty) const;
716 
717   /// Returns the estimated number of registers required to represent \p Ty.
718   unsigned getRegUsageForType(Type *Ty) const;
719 
720   /// Return true if switches should be turned into lookup tables for the
721   /// target.
722   bool shouldBuildLookupTables() const;
723 
724   /// Return true if switches should be turned into lookup tables
725   /// containing this constant value for the target.
726   bool shouldBuildLookupTablesForConstant(Constant *C) const;
727 
728   /// Return true if the input function which is cold at all call sites,
729   ///  should use coldcc calling convention.
730   bool useColdCCForColdCall(Function &F) const;
731 
732   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
733   /// are set if the demanded result elements need to be inserted and/or
734   /// extracted from vectors.
735   unsigned getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts,
736                                     bool Insert, bool Extract) const;
737 
738   /// Estimate the overhead of scalarizing an instructions unique
739   /// non-constant operands. The types of the arguments are ordinarily
740   /// scalar, in which case the costs are multiplied with VF.
741   unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
742                                             unsigned VF) const;
743 
744   /// If target has efficient vector element load/store instructions, it can
745   /// return true here so that insertion/extraction costs are not added to
746   /// the scalarization cost of a load/store.
747   bool supportsEfficientVectorElementLoadStore() const;
748 
749   /// Don't restrict interleaved unrolling to small loops.
750   bool enableAggressiveInterleaving(bool LoopHasReductions) const;
751 
752   /// Returns options for expansion of memcmp. IsZeroCmp is
753   // true if this is the expansion of memcmp(p1, p2, s) == 0.
754   struct MemCmpExpansionOptions {
755     // Return true if memcmp expansion is enabled.
756     operator bool() const { return MaxNumLoads > 0; }
757 
758     // Maximum number of load operations.
759     unsigned MaxNumLoads = 0;
760 
761     // The list of available load sizes (in bytes), sorted in decreasing order.
762     SmallVector<unsigned, 8> LoadSizes;
763 
764     // For memcmp expansion when the memcmp result is only compared equal or
765     // not-equal to 0, allow up to this number of load pairs per block. As an
766     // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
767     //   a0 = load2bytes &a[0]
768     //   b0 = load2bytes &b[0]
769     //   a2 = load1byte  &a[2]
770     //   b2 = load1byte  &b[2]
771     //   r  = cmp eq (a0 ^ b0 | a2 ^ b2), 0
772     unsigned NumLoadsPerBlock = 1;
773 
774     // Set to true to allow overlapping loads. For example, 7-byte compares can
775     // be done with two 4-byte compares instead of 4+2+1-byte compares. This
776     // requires all loads in LoadSizes to be doable in an unaligned way.
777     bool AllowOverlappingLoads = false;
778   };
779   MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
780                                                bool IsZeroCmp) const;
781 
782   /// Enable matching of interleaved access groups.
783   bool enableInterleavedAccessVectorization() const;
784 
785   /// Enable matching of interleaved access groups that contain predicated
786   /// accesses or gaps and therefore vectorized using masked
787   /// vector loads/stores.
788   bool enableMaskedInterleavedAccessVectorization() const;
789 
790   /// Indicate that it is potentially unsafe to automatically vectorize
791   /// floating-point operations because the semantics of vector and scalar
792   /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
793   /// does not support IEEE-754 denormal numbers, while depending on the
794   /// platform, scalar floating-point math does.
795   /// This applies to floating-point math operations and calls, not memory
796   /// operations, shuffles, or casts.
797   bool isFPVectorizationPotentiallyUnsafe() const;
798 
799   /// Determine if the target supports unaligned memory accesses.
800   bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
801                                       unsigned AddressSpace = 0,
802                                       unsigned Alignment = 1,
803                                       bool *Fast = nullptr) const;
804 
805   /// Return hardware support for population count.
806   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
807 
808   /// Return true if the hardware has a fast square-root instruction.
809   bool haveFastSqrt(Type *Ty) const;
810 
811   /// Return true if it is faster to check if a floating-point value is NaN
812   /// (or not-NaN) versus a comparison against a constant FP zero value.
813   /// Targets should override this if materializing a 0.0 for comparison is
814   /// generally as cheap as checking for ordered/unordered.
815   bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
816 
817   /// Return the expected cost of supporting the floating point operation
818   /// of the specified type.
819   int getFPOpCost(Type *Ty) const;
820 
821   /// Return the expected cost of materializing for the given integer
822   /// immediate of the specified type.
823   int getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) const;
824 
825   /// Return the expected cost of materialization for the given integer
826   /// immediate of the specified type for a given instruction. The cost can be
827   /// zero if the immediate can be folded into the specified instruction.
828   int getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty,
829                         TargetCostKind CostKind,
830                         Instruction *Inst = nullptr) const;
831   int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
832                           Type *Ty, TargetCostKind CostKind) const;
833 
834   /// Return the expected cost for the given integer when optimising
835   /// for size. This is different than the other integer immediate cost
836   /// functions in that it is subtarget agnostic. This is useful when you e.g.
837   /// target one ISA such as Aarch32 but smaller encodings could be possible
838   /// with another such as Thumb. This return value is used as a penalty when
839   /// the total costs for a constant is calculated (the bigger the cost, the
840   /// more beneficial constant hoisting is).
841   int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
842                             Type *Ty) const;
843   /// @}
844 
845   /// \name Vector Target Information
846   /// @{
847 
848   /// The various kinds of shuffle patterns for vector queries.
849   enum ShuffleKind {
850     SK_Broadcast,        ///< Broadcast element 0 to all other elements.
851     SK_Reverse,          ///< Reverse the order of the vector.
852     SK_Select,           ///< Selects elements from the corresponding lane of
853                          ///< either source operand. This is equivalent to a
854                          ///< vector select with a constant condition operand.
855     SK_Transpose,        ///< Transpose two vectors.
856     SK_InsertSubvector,  ///< InsertSubvector. Index indicates start offset.
857     SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
858     SK_PermuteTwoSrc,    ///< Merge elements from two source vectors into one
859                          ///< with any shuffle mask.
860     SK_PermuteSingleSrc  ///< Shuffle elements of single source vector with any
861                          ///< shuffle mask.
862   };
863 
864   /// Kind of the reduction data.
865   enum ReductionKind {
866     RK_None,           /// Not a reduction.
867     RK_Arithmetic,     /// Binary reduction data.
868     RK_MinMax,         /// Min/max reduction data.
869     RK_UnsignedMinMax, /// Unsigned min/max reduction data.
870   };
871 
872   /// Contains opcode + LHS/RHS parts of the reduction operations.
873   struct ReductionData {
874     ReductionData() = delete;
ReductionDataReductionData875     ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
876         : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
877       assert(Kind != RK_None && "expected binary or min/max reduction only.");
878     }
879     unsigned Opcode = 0;
880     Value *LHS = nullptr;
881     Value *RHS = nullptr;
882     ReductionKind Kind = RK_None;
hasSameDataReductionData883     bool hasSameData(ReductionData &RD) const {
884       return Kind == RD.Kind && Opcode == RD.Opcode;
885     }
886   };
887 
888   static ReductionKind matchPairwiseReduction(
889     const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty);
890 
891   static ReductionKind matchVectorSplittingReduction(
892     const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty);
893 
894   static ReductionKind matchVectorReduction(const ExtractElementInst *ReduxRoot,
895                                             unsigned &Opcode, VectorType *&Ty,
896                                             bool &IsPairwise);
897 
898   /// Additional information about an operand's possible values.
899   enum OperandValueKind {
900     OK_AnyValue,               // Operand can have any value.
901     OK_UniformValue,           // Operand is uniform (splat of a value).
902     OK_UniformConstantValue,   // Operand is uniform constant.
903     OK_NonUniformConstantValue // Operand is a non uniform constant value.
904   };
905 
906   /// Additional properties of an operand's values.
907   enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
908 
909   /// \return the number of registers in the target-provided register class.
910   unsigned getNumberOfRegisters(unsigned ClassID) const;
911 
912   /// \return the target-provided register class ID for the provided type,
913   /// accounting for type promotion and other type-legalization techniques that
914   /// the target might apply. However, it specifically does not account for the
915   /// scalarization or splitting of vector types. Should a vector type require
916   /// scalarization or splitting into multiple underlying vector registers, that
917   /// type should be mapped to a register class containing no registers.
918   /// Specifically, this is designed to provide a simple, high-level view of the
919   /// register allocation later performed by the backend. These register classes
920   /// don't necessarily map onto the register classes used by the backend.
921   /// FIXME: It's not currently possible to determine how many registers
922   /// are used by the provided type.
923   unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const;
924 
925   /// \return the target-provided register class name
926   const char *getRegisterClassName(unsigned ClassID) const;
927 
928   /// \return The width of the largest scalar or vector register type.
929   unsigned getRegisterBitWidth(bool Vector) const;
930 
931   /// \return The width of the smallest vector register type.
932   unsigned getMinVectorRegisterBitWidth() const;
933 
934   /// \return The maximum value of vscale if the target specifies an
935   ///  architectural maximum vector length, and None otherwise.
936   Optional<unsigned> getMaxVScale() const;
937 
938   /// \return True if the vectorization factor should be chosen to
939   /// make the vector of the smallest element type match the size of a
940   /// vector register. For wider element types, this could result in
941   /// creating vectors that span multiple vector registers.
942   /// If false, the vectorization factor will be chosen based on the
943   /// size of the widest element type.
944   bool shouldMaximizeVectorBandwidth(bool OptSize) const;
945 
946   /// \return The minimum vectorization factor for types of given element
947   /// bit width, or 0 if there is no minimum VF. The returned value only
948   /// applies when shouldMaximizeVectorBandwidth returns true.
949   unsigned getMinimumVF(unsigned ElemWidth) const;
950 
951   /// \return The maximum vectorization factor for types of given element
952   /// bit width and opcode, or 0 if there is no maximum VF.
953   /// Currently only used by the SLP vectorizer.
954   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
955 
956   /// \return True if it should be considered for address type promotion.
957   /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
958   /// profitable without finding other extensions fed by the same input.
959   bool shouldConsiderAddressTypePromotion(
960       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
961 
962   /// \return The size of a cache line in bytes.
963   unsigned getCacheLineSize() const;
964 
965   /// The possible cache levels
966   enum class CacheLevel {
967     L1D, // The L1 data cache
968     L2D, // The L2 data cache
969 
970     // We currently do not model L3 caches, as their sizes differ widely between
971     // microarchitectures. Also, we currently do not have a use for L3 cache
972     // size modeling yet.
973   };
974 
975   /// \return The size of the cache level in bytes, if available.
976   Optional<unsigned> getCacheSize(CacheLevel Level) const;
977 
978   /// \return The associativity of the cache level, if available.
979   Optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
980 
981   /// \return How much before a load we should place the prefetch
982   /// instruction.  This is currently measured in number of
983   /// instructions.
984   unsigned getPrefetchDistance() const;
985 
986   /// Some HW prefetchers can handle accesses up to a certain constant stride.
987   /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
988   /// and the arguments provided are meant to serve as a basis for deciding this
989   /// for a particular loop.
990   ///
991   /// \param NumMemAccesses        Number of memory accesses in the loop.
992   /// \param NumStridedMemAccesses Number of the memory accesses that
993   ///                              ScalarEvolution could find a known stride
994   ///                              for.
995   /// \param NumPrefetches         Number of software prefetches that will be
996   ///                              emitted as determined by the addresses
997   ///                              involved and the cache line size.
998   /// \param HasCall               True if the loop contains a call.
999   ///
1000   /// \return This is the minimum stride in bytes where it makes sense to start
1001   ///         adding SW prefetches. The default is 1, i.e. prefetch with any
1002   ///         stride.
1003   unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1004                                 unsigned NumStridedMemAccesses,
1005                                 unsigned NumPrefetches, bool HasCall) const;
1006 
1007   /// \return The maximum number of iterations to prefetch ahead.  If
1008   /// the required number of iterations is more than this number, no
1009   /// prefetching is performed.
1010   unsigned getMaxPrefetchIterationsAhead() const;
1011 
1012   /// \return True if prefetching should also be done for writes.
1013   bool enableWritePrefetching() const;
1014 
1015   /// \return The maximum interleave factor that any transform should try to
1016   /// perform for this target. This number depends on the level of parallelism
1017   /// and the number of execution units in the CPU.
1018   unsigned getMaxInterleaveFactor(unsigned VF) const;
1019 
1020   /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
1021   static OperandValueKind getOperandInfo(const Value *V,
1022                                          OperandValueProperties &OpProps);
1023 
1024   /// This is an approximation of reciprocal throughput of a math/logic op.
1025   /// A higher cost indicates less expected throughput.
1026   /// From Agner Fog's guides, reciprocal throughput is "the average number of
1027   /// clock cycles per instruction when the instructions are not part of a
1028   /// limiting dependency chain."
1029   /// Therefore, costs should be scaled to account for multiple execution units
1030   /// on the target that can process this type of instruction. For example, if
1031   /// there are 5 scalar integer units and 2 vector integer units that can
1032   /// calculate an 'add' in a single cycle, this model should indicate that the
1033   /// cost of the vector add instruction is 2.5 times the cost of the scalar
1034   /// add instruction.
1035   /// \p Args is an optional argument which holds the instruction operands
1036   /// values so the TTI can analyze those values searching for special
1037   /// cases or optimizations based on those values.
1038   /// \p CxtI is the optional original context instruction, if one exists, to
1039   /// provide even more information.
1040   int getArithmeticInstrCost(
1041       unsigned Opcode, Type *Ty,
1042       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1043       OperandValueKind Opd1Info = OK_AnyValue,
1044       OperandValueKind Opd2Info = OK_AnyValue,
1045       OperandValueProperties Opd1PropInfo = OP_None,
1046       OperandValueProperties Opd2PropInfo = OP_None,
1047       ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
1048       const Instruction *CxtI = nullptr) const;
1049 
1050   /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
1051   /// The index and subtype parameters are used by the subvector insertion and
1052   /// extraction shuffle kinds to show the insert/extract point and the type of
1053   /// the subvector being inserted/extracted.
1054   /// NOTE: For subvector extractions Tp represents the source type.
1055   int getShuffleCost(ShuffleKind Kind, VectorType *Tp, int Index = 0,
1056                      VectorType *SubTp = nullptr) const;
1057 
1058   /// Represents a hint about the context in which a cast is used.
1059   ///
1060   /// For zext/sext, the context of the cast is the operand, which must be a
1061   /// load of some kind. For trunc, the context is of the cast is the single
1062   /// user of the instruction, which must be a store of some kind.
1063   ///
1064   /// This enum allows the vectorizer to give getCastInstrCost an idea of the
1065   /// type of cast it's dealing with, as not every cast is equal. For instance,
1066   /// the zext of a load may be free, but the zext of an interleaving load can
1067   //// be (very) expensive!
1068   ///
1069   /// See \c getCastContextHint to compute a CastContextHint from a cast
1070   /// Instruction*. Callers can use it if they don't need to override the
1071   /// context and just want it to be calculated from the instruction.
1072   ///
1073   /// FIXME: This handles the types of load/store that the vectorizer can
1074   /// produce, which are the cases where the context instruction is most
1075   /// likely to be incorrect. There are other situations where that can happen
1076   /// too, which might be handled here but in the long run a more general
1077   /// solution of costing multiple instructions at the same times may be better.
1078   enum class CastContextHint : uint8_t {
1079     None,          ///< The cast is not used with a load/store of any kind.
1080     Normal,        ///< The cast is used with a normal load/store.
1081     Masked,        ///< The cast is used with a masked load/store.
1082     GatherScatter, ///< The cast is used with a gather/scatter.
1083     Interleave,    ///< The cast is used with an interleaved load/store.
1084     Reversed,      ///< The cast is used with a reversed load/store.
1085   };
1086 
1087   /// Calculates a CastContextHint from \p I.
1088   /// This should be used by callers of getCastInstrCost if they wish to
1089   /// determine the context from some instruction.
1090   /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
1091   /// or if it's another type of cast.
1092   static CastContextHint getCastContextHint(const Instruction *I);
1093 
1094   /// \return The expected cost of cast instructions, such as bitcast, trunc,
1095   /// zext, etc. If there is an existing instruction that holds Opcode, it
1096   /// may be passed in the 'I' parameter.
1097   int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1098                        TTI::CastContextHint CCH,
1099                        TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
1100                        const Instruction *I = nullptr) const;
1101 
1102   /// \return The expected cost of a sign- or zero-extended vector extract. Use
1103   /// -1 to indicate that there is no information about the index value.
1104   int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
1105                                unsigned Index = -1) const;
1106 
1107   /// \return The expected cost of control-flow related instructions such as
1108   /// Phi, Ret, Br.
1109   int getCFInstrCost(unsigned Opcode,
1110                      TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const;
1111 
1112   /// \returns The expected cost of compare and select instructions. If there
1113   /// is an existing instruction that holds Opcode, it may be passed in the
1114   /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
1115   /// is using a compare with the specified predicate as condition. When vector
1116   /// types are passed, \p VecPred must be used for all lanes.
1117   int getCmpSelInstrCost(
1118       unsigned Opcode, Type *ValTy, Type *CondTy = nullptr,
1119       CmpInst::Predicate VecPred = CmpInst::BAD_ICMP_PREDICATE,
1120       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1121       const Instruction *I = nullptr) const;
1122 
1123   /// \return The expected cost of vector Insert and Extract.
1124   /// Use -1 to indicate that there is no information on the index value.
1125   int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;
1126 
1127   /// \return The cost of Load and Store instructions.
1128   int getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1129                       unsigned AddressSpace,
1130                       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1131                       const Instruction *I = nullptr) const;
1132 
1133   /// \return The cost of masked Load and Store instructions.
1134   int getMaskedMemoryOpCost(
1135       unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1136       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1137 
1138   /// \return The cost of Gather or Scatter operation
1139   /// \p Opcode - is a type of memory access Load or Store
1140   /// \p DataTy - a vector type of the data to be loaded or stored
1141   /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
1142   /// \p VariableMask - true when the memory access is predicated with a mask
1143   ///                   that is not a compile-time constant
1144   /// \p Alignment - alignment of single element
1145   /// \p I - the optional original context instruction, if one exists, e.g. the
1146   ///        load/store to transform or the call to the gather/scatter intrinsic
1147   int getGatherScatterOpCost(
1148       unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1149       Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1150       const Instruction *I = nullptr) const;
1151 
1152   /// \return The cost of the interleaved memory operation.
1153   /// \p Opcode is the memory operation code
1154   /// \p VecTy is the vector type of the interleaved access.
1155   /// \p Factor is the interleave factor
1156   /// \p Indices is the indices for interleaved load members (as interleaved
1157   ///    load allows gaps)
1158   /// \p Alignment is the alignment of the memory operation
1159   /// \p AddressSpace is address space of the pointer.
1160   /// \p UseMaskForCond indicates if the memory access is predicated.
1161   /// \p UseMaskForGaps indicates if gaps should be masked.
1162   int getInterleavedMemoryOpCost(
1163       unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1164       Align Alignment, unsigned AddressSpace,
1165       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
1166       bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
1167 
1168   /// Calculate the cost of performing a vector reduction.
1169   ///
1170   /// This is the cost of reducing the vector value of type \p Ty to a scalar
1171   /// value using the operation denoted by \p Opcode. The form of the reduction
1172   /// can either be a pairwise reduction or a reduction that splits the vector
1173   /// at every reduction level.
1174   ///
1175   /// Pairwise:
1176   ///  (v0, v1, v2, v3)
1177   ///  ((v0+v1), (v2+v3), undef, undef)
1178   /// Split:
1179   ///  (v0, v1, v2, v3)
1180   ///  ((v0+v2), (v1+v3), undef, undef)
1181   int getArithmeticReductionCost(
1182     unsigned Opcode, VectorType *Ty, bool IsPairwiseForm,
1183     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1184 
1185   int getMinMaxReductionCost(
1186     VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned,
1187     TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1188 
1189   /// Calculate the cost of an extended reduction pattern, similar to
1190   /// getArithmeticReductionCost of an Add reduction with an extension and
1191   /// optional multiply. This is the cost of as:
1192   /// ResTy vecreduce.add(ext(Ty A)), or if IsMLA flag is set then:
1193   /// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)). The reduction happens
1194   /// on a VectorType with ResTy elements and Ty lanes.
1195   InstructionCost getExtendedAddReductionCost(
1196       bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1197       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
1198 
1199   /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
1200   /// Three cases are handled: 1. scalar instruction 2. vector instruction
1201   /// 3. scalar instruction which is to be vectorized.
1202   int getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1203                             TTI::TargetCostKind CostKind) const;
1204 
1205   /// \returns The cost of Call instructions.
1206   int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys,
1207                  TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const;
1208 
1209   /// \returns The number of pieces into which the provided type must be
1210   /// split during legalization. Zero is returned when the answer is unknown.
1211   unsigned getNumberOfParts(Type *Tp) const;
1212 
1213   /// \returns The cost of the address computation. For most targets this can be
1214   /// merged into the instruction indexing mode. Some targets might want to
1215   /// distinguish between address computation for memory operations on vector
1216   /// types and scalar types. Such targets should override this function.
1217   /// The 'SE' parameter holds pointer for the scalar evolution object which
1218   /// is used in order to get the Ptr step value in case of constant stride.
1219   /// The 'Ptr' parameter holds SCEV of the access pointer.
1220   int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr,
1221                                 const SCEV *Ptr = nullptr) const;
1222 
1223   /// \returns The cost, if any, of keeping values of the given types alive
1224   /// over a callsite.
1225   ///
1226   /// Some types may require the use of register classes that do not have
1227   /// any callee-saved registers, so would require a spill and fill.
1228   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
1229 
1230   /// \returns True if the intrinsic is a supported memory intrinsic.  Info
1231   /// will contain additional information - whether the intrinsic may write
1232   /// or read to memory, volatility and the pointer.  Info is undefined
1233   /// if false is returned.
1234   bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
1235 
1236   /// \returns The maximum element size, in bytes, for an element
1237   /// unordered-atomic memory intrinsic.
1238   unsigned getAtomicMemIntrinsicMaxElementSize() const;
1239 
1240   /// \returns A value which is the result of the given memory intrinsic.  New
1241   /// instructions may be created to extract the result from the given intrinsic
1242   /// memory operation.  Returns nullptr if the target cannot create a result
1243   /// from the given intrinsic.
1244   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1245                                            Type *ExpectedType) const;
1246 
1247   /// \returns The type to use in a loop expansion of a memcpy call.
1248   Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
1249                                   unsigned SrcAddrSpace, unsigned DestAddrSpace,
1250                                   unsigned SrcAlign, unsigned DestAlign) const;
1251 
1252   /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
1253   /// \param RemainingBytes The number of bytes to copy.
1254   ///
1255   /// Calculates the operand types to use when copying \p RemainingBytes of
1256   /// memory, where source and destination alignments are \p SrcAlign and
1257   /// \p DestAlign respectively.
1258   void getMemcpyLoopResidualLoweringType(
1259       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1260       unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1261       unsigned SrcAlign, unsigned DestAlign) const;
1262 
1263   /// \returns True if the two functions have compatible attributes for inlining
1264   /// purposes.
1265   bool areInlineCompatible(const Function *Caller,
1266                            const Function *Callee) const;
1267 
1268   /// \returns True if the caller and callee agree on how \p Args will be passed
1269   /// to the callee.
1270   /// \param[out] Args The list of compatible arguments.  The implementation may
1271   /// filter out any incompatible args from this list.
1272   bool areFunctionArgsABICompatible(const Function *Caller,
1273                                     const Function *Callee,
1274                                     SmallPtrSetImpl<Argument *> &Args) const;
1275 
1276   /// The type of load/store indexing.
1277   enum MemIndexedMode {
1278     MIM_Unindexed, ///< No indexing.
1279     MIM_PreInc,    ///< Pre-incrementing.
1280     MIM_PreDec,    ///< Pre-decrementing.
1281     MIM_PostInc,   ///< Post-incrementing.
1282     MIM_PostDec    ///< Post-decrementing.
1283   };
1284 
1285   /// \returns True if the specified indexed load for the given type is legal.
1286   bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
1287 
1288   /// \returns True if the specified indexed store for the given type is legal.
1289   bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
1290 
1291   /// \returns The bitwidth of the largest vector type that should be used to
1292   /// load/store in the given address space.
1293   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
1294 
1295   /// \returns True if the load instruction is legal to vectorize.
1296   bool isLegalToVectorizeLoad(LoadInst *LI) const;
1297 
1298   /// \returns True if the store instruction is legal to vectorize.
1299   bool isLegalToVectorizeStore(StoreInst *SI) const;
1300 
1301   /// \returns True if it is legal to vectorize the given load chain.
1302   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
1303                                    unsigned AddrSpace) const;
1304 
1305   /// \returns True if it is legal to vectorize the given store chain.
1306   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
1307                                     unsigned AddrSpace) const;
1308 
1309   /// \returns The new vector factor value if the target doesn't support \p
1310   /// SizeInBytes loads or has a better vector factor.
1311   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1312                                unsigned ChainSizeInBytes,
1313                                VectorType *VecTy) const;
1314 
1315   /// \returns The new vector factor value if the target doesn't support \p
1316   /// SizeInBytes stores or has a better vector factor.
1317   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1318                                 unsigned ChainSizeInBytes,
1319                                 VectorType *VecTy) const;
1320 
1321   /// Flags describing the kind of vector reduction.
1322   struct ReductionFlags {
ReductionFlagsReductionFlags1323     ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {}
1324     bool IsMaxOp;  ///< If the op a min/max kind, true if it's a max operation.
1325     bool IsSigned; ///< Whether the operation is a signed int reduction.
1326     bool NoNaN;    ///< If op is an fp min/max, whether NaNs may be present.
1327   };
1328 
1329   /// \returns True if the target wants to handle the given reduction idiom in
1330   /// the intrinsics form instead of the shuffle form.
1331   bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1332                              ReductionFlags Flags) const;
1333 
1334   /// \returns True if the target prefers reductions in loop.
1335   bool preferInLoopReduction(unsigned Opcode, Type *Ty,
1336                              ReductionFlags Flags) const;
1337 
1338   /// \returns True if the target prefers reductions select kept in the loop
1339   /// when tail folding. i.e.
1340   /// loop:
1341   ///   p = phi (0, s)
1342   ///   a = add (p, x)
1343   ///   s = select (mask, a, p)
1344   /// vecreduce.add(s)
1345   ///
1346   /// As opposed to the normal scheme of p = phi (0, a) which allows the select
1347   /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
1348   /// by the target, this can lead to cleaner code generation.
1349   bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
1350                                        ReductionFlags Flags) const;
1351 
1352   /// \returns True if the target wants to expand the given reduction intrinsic
1353   /// into a shuffle sequence.
1354   bool shouldExpandReduction(const IntrinsicInst *II) const;
1355 
1356   /// \returns the size cost of rematerializing a GlobalValue address relative
1357   /// to a stack reload.
1358   unsigned getGISelRematGlobalCost() const;
1359 
1360   /// \returns True if the target supports scalable vectors.
1361   bool supportsScalableVectors() const;
1362 
1363   /// \name Vector Predication Information
1364   /// @{
1365   /// Whether the target supports the %evl parameter of VP intrinsic efficiently
1366   /// in hardware. (see LLVM Language Reference - "Vector Predication
1367   /// Intrinsics") Use of %evl is discouraged when that is not the case.
1368   bool hasActiveVectorLength() const;
1369 
1370   /// @}
1371 
1372   /// @}
1373 
1374 private:
1375   /// Estimate the latency of specified instruction.
1376   /// Returns 1 as the default value.
1377   int getInstructionLatency(const Instruction *I) const;
1378 
1379   /// Returns the expected throughput cost of the instruction.
1380   /// Returns -1 if the cost is unknown.
1381   int getInstructionThroughput(const Instruction *I) const;
1382 
1383   /// The abstract base class used to type erase specific TTI
1384   /// implementations.
1385   class Concept;
1386 
1387   /// The template model for the base class which wraps a concrete
1388   /// implementation in a type erased interface.
1389   template <typename T> class Model;
1390 
1391   std::unique_ptr<Concept> TTIImpl;
1392 };
1393 
1394 class TargetTransformInfo::Concept {
1395 public:
1396   virtual ~Concept() = 0;
1397   virtual const DataLayout &getDataLayout() const = 0;
1398   virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
1399                          ArrayRef<const Value *> Operands,
1400                          TTI::TargetCostKind CostKind) = 0;
1401   virtual unsigned getInliningThresholdMultiplier() = 0;
1402   virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0;
1403   virtual int getInlinerVectorBonusPercent() = 0;
1404   virtual int getMemcpyCost(const Instruction *I) = 0;
1405   virtual unsigned
1406   getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
1407                                    ProfileSummaryInfo *PSI,
1408                                    BlockFrequencyInfo *BFI) = 0;
1409   virtual int getUserCost(const User *U, ArrayRef<const Value *> Operands,
1410                           TargetCostKind CostKind) = 0;
1411   virtual bool hasBranchDivergence() = 0;
1412   virtual bool useGPUDivergenceAnalysis() = 0;
1413   virtual bool isSourceOfDivergence(const Value *V) = 0;
1414   virtual bool isAlwaysUniform(const Value *V) = 0;
1415   virtual unsigned getFlatAddressSpace() = 0;
1416   virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1417                                           Intrinsic::ID IID) const = 0;
1418   virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
1419   virtual unsigned getAssumedAddrSpace(const Value *V) const = 0;
1420   virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
1421                                                   Value *OldV,
1422                                                   Value *NewV) const = 0;
1423   virtual bool isLoweredToCall(const Function *F) = 0;
1424   virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
1425                                        UnrollingPreferences &UP) = 0;
1426   virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1427                                      PeelingPreferences &PP) = 0;
1428   virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
1429                                         AssumptionCache &AC,
1430                                         TargetLibraryInfo *LibInfo,
1431                                         HardwareLoopInfo &HWLoopInfo) = 0;
1432   virtual bool
1433   preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
1434                               AssumptionCache &AC, TargetLibraryInfo *TLI,
1435                               DominatorTree *DT, const LoopAccessInfo *LAI) = 0;
1436   virtual bool emitGetActiveLaneMask() = 0;
1437   virtual Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
1438                                                        IntrinsicInst &II) = 0;
1439   virtual Optional<Value *>
1440   simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
1441                                    APInt DemandedMask, KnownBits &Known,
1442                                    bool &KnownBitsComputed) = 0;
1443   virtual Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
1444       InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
1445       APInt &UndefElts2, APInt &UndefElts3,
1446       std::function<void(Instruction *, unsigned, APInt, APInt &)>
1447           SimplifyAndSetOp) = 0;
1448   virtual bool isLegalAddImmediate(int64_t Imm) = 0;
1449   virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
1450   virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
1451                                      int64_t BaseOffset, bool HasBaseReg,
1452                                      int64_t Scale, unsigned AddrSpace,
1453                                      Instruction *I) = 0;
1454   virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1455                              TargetTransformInfo::LSRCost &C2) = 0;
1456   virtual bool isNumRegsMajorCostOfLSR() = 0;
1457   virtual bool isProfitableLSRChainElement(Instruction *I) = 0;
1458   virtual bool canMacroFuseCmp() = 0;
1459   virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
1460                           LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
1461                           TargetLibraryInfo *LibInfo) = 0;
1462   virtual bool shouldFavorPostInc() const = 0;
1463   virtual bool shouldFavorBackedgeIndex(const Loop *L) const = 0;
1464   virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0;
1465   virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0;
1466   virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0;
1467   virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0;
1468   virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0;
1469   virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0;
1470   virtual bool isLegalMaskedCompressStore(Type *DataType) = 0;
1471   virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0;
1472   virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
1473   virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
1474   virtual bool prefersVectorizedAddressing() = 0;
1475   virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
1476                                    int64_t BaseOffset, bool HasBaseReg,
1477                                    int64_t Scale, unsigned AddrSpace) = 0;
1478   virtual bool LSRWithInstrQueries() = 0;
1479   virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
1480   virtual bool isProfitableToHoist(Instruction *I) = 0;
1481   virtual bool useAA() = 0;
1482   virtual bool isTypeLegal(Type *Ty) = 0;
1483   virtual unsigned getRegUsageForType(Type *Ty) = 0;
1484   virtual bool shouldBuildLookupTables() = 0;
1485   virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
1486   virtual bool useColdCCForColdCall(Function &F) = 0;
1487   virtual unsigned getScalarizationOverhead(VectorType *Ty,
1488                                             const APInt &DemandedElts,
1489                                             bool Insert, bool Extract) = 0;
1490   virtual unsigned
1491   getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1492                                    unsigned VF) = 0;
1493   virtual bool supportsEfficientVectorElementLoadStore() = 0;
1494   virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
1495   virtual MemCmpExpansionOptions
1496   enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0;
1497   virtual bool enableInterleavedAccessVectorization() = 0;
1498   virtual bool enableMaskedInterleavedAccessVectorization() = 0;
1499   virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
1500   virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1501                                               unsigned BitWidth,
1502                                               unsigned AddressSpace,
1503                                               unsigned Alignment,
1504                                               bool *Fast) = 0;
1505   virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
1506   virtual bool haveFastSqrt(Type *Ty) = 0;
1507   virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
1508   virtual int getFPOpCost(Type *Ty) = 0;
1509   virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1510                                     const APInt &Imm, Type *Ty) = 0;
1511   virtual int getIntImmCost(const APInt &Imm, Type *Ty,
1512                             TargetCostKind CostKind) = 0;
1513   virtual int getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm,
1514                                 Type *Ty, TargetCostKind CostKind,
1515                                 Instruction *Inst = nullptr) = 0;
1516   virtual int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
1517                                   const APInt &Imm, Type *Ty,
1518                                   TargetCostKind CostKind) = 0;
1519   virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0;
1520   virtual unsigned getRegisterClassForType(bool Vector,
1521                                            Type *Ty = nullptr) const = 0;
1522   virtual const char *getRegisterClassName(unsigned ClassID) const = 0;
1523   virtual unsigned getRegisterBitWidth(bool Vector) const = 0;
1524   virtual unsigned getMinVectorRegisterBitWidth() = 0;
1525   virtual Optional<unsigned> getMaxVScale() const = 0;
1526   virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0;
1527   virtual unsigned getMinimumVF(unsigned ElemWidth) const = 0;
1528   virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0;
1529   virtual bool shouldConsiderAddressTypePromotion(
1530       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
1531   virtual unsigned getCacheLineSize() const = 0;
1532   virtual Optional<unsigned> getCacheSize(CacheLevel Level) const = 0;
1533   virtual Optional<unsigned> getCacheAssociativity(CacheLevel Level) const = 0;
1534 
1535   /// \return How much before a load we should place the prefetch
1536   /// instruction.  This is currently measured in number of
1537   /// instructions.
1538   virtual unsigned getPrefetchDistance() const = 0;
1539 
1540   /// \return Some HW prefetchers can handle accesses up to a certain
1541   /// constant stride.  This is the minimum stride in bytes where it
1542   /// makes sense to start adding SW prefetches.  The default is 1,
1543   /// i.e. prefetch with any stride.  Sometimes prefetching is beneficial
1544   /// even below the HW prefetcher limit, and the arguments provided are
1545   /// meant to serve as a basis for deciding this for a particular loop.
1546   virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1547                                         unsigned NumStridedMemAccesses,
1548                                         unsigned NumPrefetches,
1549                                         bool HasCall) const = 0;
1550 
1551   /// \return The maximum number of iterations to prefetch ahead.  If
1552   /// the required number of iterations is more than this number, no
1553   /// prefetching is performed.
1554   virtual unsigned getMaxPrefetchIterationsAhead() const = 0;
1555 
1556   /// \return True if prefetching should also be done for writes.
1557   virtual bool enableWritePrefetching() const = 0;
1558 
1559   virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
1560   virtual unsigned getArithmeticInstrCost(
1561       unsigned Opcode, Type *Ty,
1562       TTI::TargetCostKind CostKind,
1563       OperandValueKind Opd1Info,
1564       OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
1565       OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
1566       const Instruction *CxtI = nullptr) = 0;
1567   virtual int getShuffleCost(ShuffleKind Kind, VectorType *Tp, int Index,
1568                              VectorType *SubTp) = 0;
1569   virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1570                                CastContextHint CCH,
1571                                TTI::TargetCostKind CostKind,
1572                                const Instruction *I) = 0;
1573   virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1574                                        VectorType *VecTy, unsigned Index) = 0;
1575   virtual int getCFInstrCost(unsigned Opcode,
1576                              TTI::TargetCostKind CostKind) = 0;
1577   virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1578                                  CmpInst::Predicate VecPred,
1579                                  TTI::TargetCostKind CostKind,
1580                                  const Instruction *I) = 0;
1581   virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
1582                                  unsigned Index) = 0;
1583   virtual int getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1584                               unsigned AddressSpace,
1585                               TTI::TargetCostKind CostKind,
1586                               const Instruction *I) = 0;
1587   virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1588                                     unsigned AddressSpace,
1589                                     TTI::TargetCostKind CostKind) = 0;
1590   virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
1591                                      const Value *Ptr, bool VariableMask,
1592                                      Align Alignment,
1593                                      TTI::TargetCostKind CostKind,
1594                                      const Instruction *I = nullptr) = 0;
1595 
1596   virtual int getInterleavedMemoryOpCost(
1597       unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1598       Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1599       bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0;
1600   virtual int getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
1601                                          bool IsPairwiseForm,
1602                                          TTI::TargetCostKind CostKind) = 0;
1603   virtual int getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
1604                                      bool IsPairwiseForm, bool IsUnsigned,
1605                                      TTI::TargetCostKind CostKind) = 0;
1606   virtual InstructionCost getExtendedAddReductionCost(
1607       bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1608       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
1609   virtual int getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
1610                                     TTI::TargetCostKind CostKind) = 0;
1611   virtual int getCallInstrCost(Function *F, Type *RetTy,
1612                                ArrayRef<Type *> Tys,
1613                                TTI::TargetCostKind CostKind) = 0;
1614   virtual unsigned getNumberOfParts(Type *Tp) = 0;
1615   virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1616                                         const SCEV *Ptr) = 0;
1617   virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
1618   virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
1619                                   MemIntrinsicInfo &Info) = 0;
1620   virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
1621   virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1622                                                    Type *ExpectedType) = 0;
1623   virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
1624                                           unsigned SrcAddrSpace,
1625                                           unsigned DestAddrSpace,
1626                                           unsigned SrcAlign,
1627                                           unsigned DestAlign) const = 0;
1628   virtual void getMemcpyLoopResidualLoweringType(
1629       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1630       unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1631       unsigned SrcAlign, unsigned DestAlign) const = 0;
1632   virtual bool areInlineCompatible(const Function *Caller,
1633                                    const Function *Callee) const = 0;
1634   virtual bool
1635   areFunctionArgsABICompatible(const Function *Caller, const Function *Callee,
1636                                SmallPtrSetImpl<Argument *> &Args) const = 0;
1637   virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
1638   virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0;
1639   virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
1640   virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
1641   virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
1642   virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1643                                            Align Alignment,
1644                                            unsigned AddrSpace) const = 0;
1645   virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1646                                             Align Alignment,
1647                                             unsigned AddrSpace) const = 0;
1648   virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1649                                        unsigned ChainSizeInBytes,
1650                                        VectorType *VecTy) const = 0;
1651   virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1652                                         unsigned ChainSizeInBytes,
1653                                         VectorType *VecTy) const = 0;
1654   virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1655                                      ReductionFlags) const = 0;
1656   virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty,
1657                                      ReductionFlags) const = 0;
1658   virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
1659                                                ReductionFlags) const = 0;
1660   virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
1661   virtual unsigned getGISelRematGlobalCost() const = 0;
1662   virtual bool supportsScalableVectors() const = 0;
1663   virtual bool hasActiveVectorLength() const = 0;
1664   virtual int getInstructionLatency(const Instruction *I) = 0;
1665 };
1666 
1667 template <typename T>
1668 class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
1669   T Impl;
1670 
1671 public:
Model(T Impl)1672   Model(T Impl) : Impl(std::move(Impl)) {}
~Model()1673   ~Model() override {}
1674 
getDataLayout()1675   const DataLayout &getDataLayout() const override {
1676     return Impl.getDataLayout();
1677   }
1678 
getGEPCost(Type * PointeeType,const Value * Ptr,ArrayRef<const Value * > Operands,enum TargetTransformInfo::TargetCostKind CostKind)1679   int getGEPCost(Type *PointeeType, const Value *Ptr,
1680                  ArrayRef<const Value *> Operands,
1681                  enum TargetTransformInfo::TargetCostKind CostKind) override {
1682     return Impl.getGEPCost(PointeeType, Ptr, Operands);
1683   }
getInliningThresholdMultiplier()1684   unsigned getInliningThresholdMultiplier() override {
1685     return Impl.getInliningThresholdMultiplier();
1686   }
adjustInliningThreshold(const CallBase * CB)1687   unsigned adjustInliningThreshold(const CallBase *CB) override {
1688     return Impl.adjustInliningThreshold(CB);
1689   }
getInlinerVectorBonusPercent()1690   int getInlinerVectorBonusPercent() override {
1691     return Impl.getInlinerVectorBonusPercent();
1692   }
getMemcpyCost(const Instruction * I)1693   int getMemcpyCost(const Instruction *I) override {
1694     return Impl.getMemcpyCost(I);
1695   }
getUserCost(const User * U,ArrayRef<const Value * > Operands,TargetCostKind CostKind)1696   int getUserCost(const User *U, ArrayRef<const Value *> Operands,
1697                   TargetCostKind CostKind) override {
1698     return Impl.getUserCost(U, Operands, CostKind);
1699   }
hasBranchDivergence()1700   bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
useGPUDivergenceAnalysis()1701   bool useGPUDivergenceAnalysis() override {
1702     return Impl.useGPUDivergenceAnalysis();
1703   }
isSourceOfDivergence(const Value * V)1704   bool isSourceOfDivergence(const Value *V) override {
1705     return Impl.isSourceOfDivergence(V);
1706   }
1707 
isAlwaysUniform(const Value * V)1708   bool isAlwaysUniform(const Value *V) override {
1709     return Impl.isAlwaysUniform(V);
1710   }
1711 
getFlatAddressSpace()1712   unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); }
1713 
collectFlatAddressOperands(SmallVectorImpl<int> & OpIndexes,Intrinsic::ID IID)1714   bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1715                                   Intrinsic::ID IID) const override {
1716     return Impl.collectFlatAddressOperands(OpIndexes, IID);
1717   }
1718 
isNoopAddrSpaceCast(unsigned FromAS,unsigned ToAS)1719   bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
1720     return Impl.isNoopAddrSpaceCast(FromAS, ToAS);
1721   }
1722 
getAssumedAddrSpace(const Value * V)1723   unsigned getAssumedAddrSpace(const Value *V) const override {
1724     return Impl.getAssumedAddrSpace(V);
1725   }
1726 
rewriteIntrinsicWithAddressSpace(IntrinsicInst * II,Value * OldV,Value * NewV)1727   Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
1728                                           Value *NewV) const override {
1729     return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
1730   }
1731 
isLoweredToCall(const Function * F)1732   bool isLoweredToCall(const Function *F) override {
1733     return Impl.isLoweredToCall(F);
1734   }
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,UnrollingPreferences & UP)1735   void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1736                                UnrollingPreferences &UP) override {
1737     return Impl.getUnrollingPreferences(L, SE, UP);
1738   }
getPeelingPreferences(Loop * L,ScalarEvolution & SE,PeelingPreferences & PP)1739   void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1740                              PeelingPreferences &PP) override {
1741     return Impl.getPeelingPreferences(L, SE, PP);
1742   }
isHardwareLoopProfitable(Loop * L,ScalarEvolution & SE,AssumptionCache & AC,TargetLibraryInfo * LibInfo,HardwareLoopInfo & HWLoopInfo)1743   bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
1744                                 AssumptionCache &AC, TargetLibraryInfo *LibInfo,
1745                                 HardwareLoopInfo &HWLoopInfo) override {
1746     return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
1747   }
preferPredicateOverEpilogue(Loop * L,LoopInfo * LI,ScalarEvolution & SE,AssumptionCache & AC,TargetLibraryInfo * TLI,DominatorTree * DT,const LoopAccessInfo * LAI)1748   bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
1749                                    AssumptionCache &AC, TargetLibraryInfo *TLI,
1750                                    DominatorTree *DT,
1751                                    const LoopAccessInfo *LAI) override {
1752     return Impl.preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
1753   }
emitGetActiveLaneMask()1754   bool emitGetActiveLaneMask() override {
1755     return Impl.emitGetActiveLaneMask();
1756   }
instCombineIntrinsic(InstCombiner & IC,IntrinsicInst & II)1757   Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
1758                                                IntrinsicInst &II) override {
1759     return Impl.instCombineIntrinsic(IC, II);
1760   }
1761   Optional<Value *>
simplifyDemandedUseBitsIntrinsic(InstCombiner & IC,IntrinsicInst & II,APInt DemandedMask,KnownBits & Known,bool & KnownBitsComputed)1762   simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
1763                                    APInt DemandedMask, KnownBits &Known,
1764                                    bool &KnownBitsComputed) override {
1765     return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
1766                                                  KnownBitsComputed);
1767   }
simplifyDemandedVectorEltsIntrinsic(InstCombiner & IC,IntrinsicInst & II,APInt DemandedElts,APInt & UndefElts,APInt & UndefElts2,APInt & UndefElts3,std::function<void (Instruction *,unsigned,APInt,APInt &)> SimplifyAndSetOp)1768   Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
1769       InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
1770       APInt &UndefElts2, APInt &UndefElts3,
1771       std::function<void(Instruction *, unsigned, APInt, APInt &)>
1772           SimplifyAndSetOp) override {
1773     return Impl.simplifyDemandedVectorEltsIntrinsic(
1774         IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
1775         SimplifyAndSetOp);
1776   }
isLegalAddImmediate(int64_t Imm)1777   bool isLegalAddImmediate(int64_t Imm) override {
1778     return Impl.isLegalAddImmediate(Imm);
1779   }
isLegalICmpImmediate(int64_t Imm)1780   bool isLegalICmpImmediate(int64_t Imm) override {
1781     return Impl.isLegalICmpImmediate(Imm);
1782   }
isLegalAddressingMode(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace,Instruction * I)1783   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
1784                              bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
1785                              Instruction *I) override {
1786     return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
1787                                       AddrSpace, I);
1788   }
isLSRCostLess(TargetTransformInfo::LSRCost & C1,TargetTransformInfo::LSRCost & C2)1789   bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1790                      TargetTransformInfo::LSRCost &C2) override {
1791     return Impl.isLSRCostLess(C1, C2);
1792   }
isNumRegsMajorCostOfLSR()1793   bool isNumRegsMajorCostOfLSR() override {
1794     return Impl.isNumRegsMajorCostOfLSR();
1795   }
isProfitableLSRChainElement(Instruction * I)1796   bool isProfitableLSRChainElement(Instruction *I) override {
1797     return Impl.isProfitableLSRChainElement(I);
1798   }
canMacroFuseCmp()1799   bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); }
canSaveCmp(Loop * L,BranchInst ** BI,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,AssumptionCache * AC,TargetLibraryInfo * LibInfo)1800   bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
1801                   DominatorTree *DT, AssumptionCache *AC,
1802                   TargetLibraryInfo *LibInfo) override {
1803     return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
1804   }
shouldFavorPostInc()1805   bool shouldFavorPostInc() const override { return Impl.shouldFavorPostInc(); }
shouldFavorBackedgeIndex(const Loop * L)1806   bool shouldFavorBackedgeIndex(const Loop *L) const override {
1807     return Impl.shouldFavorBackedgeIndex(L);
1808   }
isLegalMaskedStore(Type * DataType,Align Alignment)1809   bool isLegalMaskedStore(Type *DataType, Align Alignment) override {
1810     return Impl.isLegalMaskedStore(DataType, Alignment);
1811   }
isLegalMaskedLoad(Type * DataType,Align Alignment)1812   bool isLegalMaskedLoad(Type *DataType, Align Alignment) override {
1813     return Impl.isLegalMaskedLoad(DataType, Alignment);
1814   }
isLegalNTStore(Type * DataType,Align Alignment)1815   bool isLegalNTStore(Type *DataType, Align Alignment) override {
1816     return Impl.isLegalNTStore(DataType, Alignment);
1817   }
isLegalNTLoad(Type * DataType,Align Alignment)1818   bool isLegalNTLoad(Type *DataType, Align Alignment) override {
1819     return Impl.isLegalNTLoad(DataType, Alignment);
1820   }
isLegalMaskedScatter(Type * DataType,Align Alignment)1821   bool isLegalMaskedScatter(Type *DataType, Align Alignment) override {
1822     return Impl.isLegalMaskedScatter(DataType, Alignment);
1823   }
isLegalMaskedGather(Type * DataType,Align Alignment)1824   bool isLegalMaskedGather(Type *DataType, Align Alignment) override {
1825     return Impl.isLegalMaskedGather(DataType, Alignment);
1826   }
isLegalMaskedCompressStore(Type * DataType)1827   bool isLegalMaskedCompressStore(Type *DataType) override {
1828     return Impl.isLegalMaskedCompressStore(DataType);
1829   }
isLegalMaskedExpandLoad(Type * DataType)1830   bool isLegalMaskedExpandLoad(Type *DataType) override {
1831     return Impl.isLegalMaskedExpandLoad(DataType);
1832   }
hasDivRemOp(Type * DataType,bool IsSigned)1833   bool hasDivRemOp(Type *DataType, bool IsSigned) override {
1834     return Impl.hasDivRemOp(DataType, IsSigned);
1835   }
hasVolatileVariant(Instruction * I,unsigned AddrSpace)1836   bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
1837     return Impl.hasVolatileVariant(I, AddrSpace);
1838   }
prefersVectorizedAddressing()1839   bool prefersVectorizedAddressing() override {
1840     return Impl.prefersVectorizedAddressing();
1841   }
getScalingFactorCost(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace)1842   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
1843                            bool HasBaseReg, int64_t Scale,
1844                            unsigned AddrSpace) override {
1845     return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
1846                                      AddrSpace);
1847   }
LSRWithInstrQueries()1848   bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); }
isTruncateFree(Type * Ty1,Type * Ty2)1849   bool isTruncateFree(Type *Ty1, Type *Ty2) override {
1850     return Impl.isTruncateFree(Ty1, Ty2);
1851   }
isProfitableToHoist(Instruction * I)1852   bool isProfitableToHoist(Instruction *I) override {
1853     return Impl.isProfitableToHoist(I);
1854   }
useAA()1855   bool useAA() override { return Impl.useAA(); }
isTypeLegal(Type * Ty)1856   bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
getRegUsageForType(Type * Ty)1857   unsigned getRegUsageForType(Type *Ty) override {
1858     return Impl.getRegUsageForType(Ty);
1859   }
shouldBuildLookupTables()1860   bool shouldBuildLookupTables() override {
1861     return Impl.shouldBuildLookupTables();
1862   }
shouldBuildLookupTablesForConstant(Constant * C)1863   bool shouldBuildLookupTablesForConstant(Constant *C) override {
1864     return Impl.shouldBuildLookupTablesForConstant(C);
1865   }
useColdCCForColdCall(Function & F)1866   bool useColdCCForColdCall(Function &F) override {
1867     return Impl.useColdCCForColdCall(F);
1868   }
1869 
getScalarizationOverhead(VectorType * Ty,const APInt & DemandedElts,bool Insert,bool Extract)1870   unsigned getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts,
1871                                     bool Insert, bool Extract) override {
1872     return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
1873   }
getOperandsScalarizationOverhead(ArrayRef<const Value * > Args,unsigned VF)1874   unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1875                                             unsigned VF) override {
1876     return Impl.getOperandsScalarizationOverhead(Args, VF);
1877   }
1878 
supportsEfficientVectorElementLoadStore()1879   bool supportsEfficientVectorElementLoadStore() override {
1880     return Impl.supportsEfficientVectorElementLoadStore();
1881   }
1882 
enableAggressiveInterleaving(bool LoopHasReductions)1883   bool enableAggressiveInterleaving(bool LoopHasReductions) override {
1884     return Impl.enableAggressiveInterleaving(LoopHasReductions);
1885   }
enableMemCmpExpansion(bool OptSize,bool IsZeroCmp)1886   MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
1887                                                bool IsZeroCmp) const override {
1888     return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp);
1889   }
enableInterleavedAccessVectorization()1890   bool enableInterleavedAccessVectorization() override {
1891     return Impl.enableInterleavedAccessVectorization();
1892   }
enableMaskedInterleavedAccessVectorization()1893   bool enableMaskedInterleavedAccessVectorization() override {
1894     return Impl.enableMaskedInterleavedAccessVectorization();
1895   }
isFPVectorizationPotentiallyUnsafe()1896   bool isFPVectorizationPotentiallyUnsafe() override {
1897     return Impl.isFPVectorizationPotentiallyUnsafe();
1898   }
allowsMisalignedMemoryAccesses(LLVMContext & Context,unsigned BitWidth,unsigned AddressSpace,unsigned Alignment,bool * Fast)1899   bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
1900                                       unsigned AddressSpace, unsigned Alignment,
1901                                       bool *Fast) override {
1902     return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
1903                                                Alignment, Fast);
1904   }
getPopcntSupport(unsigned IntTyWidthInBit)1905   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
1906     return Impl.getPopcntSupport(IntTyWidthInBit);
1907   }
haveFastSqrt(Type * Ty)1908   bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
1909 
isFCmpOrdCheaperThanFCmpZero(Type * Ty)1910   bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
1911     return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
1912   }
1913 
getFPOpCost(Type * Ty)1914   int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }
1915 
getIntImmCodeSizeCost(unsigned Opc,unsigned Idx,const APInt & Imm,Type * Ty)1916   int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1917                             Type *Ty) override {
1918     return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
1919   }
getIntImmCost(const APInt & Imm,Type * Ty,TargetCostKind CostKind)1920   int getIntImmCost(const APInt &Imm, Type *Ty,
1921                     TargetCostKind CostKind) override {
1922     return Impl.getIntImmCost(Imm, Ty, CostKind);
1923   }
1924   int getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty,
1925                         TargetCostKind CostKind,
1926                         Instruction *Inst = nullptr) override {
1927     return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst);
1928   }
getIntImmCostIntrin(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty,TargetCostKind CostKind)1929   int getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1930                           Type *Ty, TargetCostKind CostKind) override {
1931     return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
1932   }
getNumberOfRegisters(unsigned ClassID)1933   unsigned getNumberOfRegisters(unsigned ClassID) const override {
1934     return Impl.getNumberOfRegisters(ClassID);
1935   }
1936   unsigned getRegisterClassForType(bool Vector,
1937                                    Type *Ty = nullptr) const override {
1938     return Impl.getRegisterClassForType(Vector, Ty);
1939   }
getRegisterClassName(unsigned ClassID)1940   const char *getRegisterClassName(unsigned ClassID) const override {
1941     return Impl.getRegisterClassName(ClassID);
1942   }
getRegisterBitWidth(bool Vector)1943   unsigned getRegisterBitWidth(bool Vector) const override {
1944     return Impl.getRegisterBitWidth(Vector);
1945   }
getMinVectorRegisterBitWidth()1946   unsigned getMinVectorRegisterBitWidth() override {
1947     return Impl.getMinVectorRegisterBitWidth();
1948   }
getMaxVScale()1949   Optional<unsigned> getMaxVScale() const override {
1950     return Impl.getMaxVScale();
1951   }
shouldMaximizeVectorBandwidth(bool OptSize)1952   bool shouldMaximizeVectorBandwidth(bool OptSize) const override {
1953     return Impl.shouldMaximizeVectorBandwidth(OptSize);
1954   }
getMinimumVF(unsigned ElemWidth)1955   unsigned getMinimumVF(unsigned ElemWidth) const override {
1956     return Impl.getMinimumVF(ElemWidth);
1957   }
getMaximumVF(unsigned ElemWidth,unsigned Opcode)1958   unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override {
1959     return Impl.getMaximumVF(ElemWidth, Opcode);
1960   }
shouldConsiderAddressTypePromotion(const Instruction & I,bool & AllowPromotionWithoutCommonHeader)1961   bool shouldConsiderAddressTypePromotion(
1962       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
1963     return Impl.shouldConsiderAddressTypePromotion(
1964         I, AllowPromotionWithoutCommonHeader);
1965   }
getCacheLineSize()1966   unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); }
getCacheSize(CacheLevel Level)1967   Optional<unsigned> getCacheSize(CacheLevel Level) const override {
1968     return Impl.getCacheSize(Level);
1969   }
getCacheAssociativity(CacheLevel Level)1970   Optional<unsigned> getCacheAssociativity(CacheLevel Level) const override {
1971     return Impl.getCacheAssociativity(Level);
1972   }
1973 
1974   /// Return the preferred prefetch distance in terms of instructions.
1975   ///
getPrefetchDistance()1976   unsigned getPrefetchDistance() const override {
1977     return Impl.getPrefetchDistance();
1978   }
1979 
1980   /// Return the minimum stride necessary to trigger software
1981   /// prefetching.
1982   ///
getMinPrefetchStride(unsigned NumMemAccesses,unsigned NumStridedMemAccesses,unsigned NumPrefetches,bool HasCall)1983   unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1984                                 unsigned NumStridedMemAccesses,
1985                                 unsigned NumPrefetches,
1986                                 bool HasCall) const override {
1987     return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
1988                                      NumPrefetches, HasCall);
1989   }
1990 
1991   /// Return the maximum prefetch distance in terms of loop
1992   /// iterations.
1993   ///
getMaxPrefetchIterationsAhead()1994   unsigned getMaxPrefetchIterationsAhead() const override {
1995     return Impl.getMaxPrefetchIterationsAhead();
1996   }
1997 
1998   /// \return True if prefetching should also be done for writes.
enableWritePrefetching()1999   bool enableWritePrefetching() const override {
2000     return Impl.enableWritePrefetching();
2001   }
2002 
getMaxInterleaveFactor(unsigned VF)2003   unsigned getMaxInterleaveFactor(unsigned VF) override {
2004     return Impl.getMaxInterleaveFactor(VF);
2005   }
getEstimatedNumberOfCaseClusters(const SwitchInst & SI,unsigned & JTSize,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)2006   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
2007                                             unsigned &JTSize,
2008                                             ProfileSummaryInfo *PSI,
2009                                             BlockFrequencyInfo *BFI) override {
2010     return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
2011   }
2012   unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
2013                                   TTI::TargetCostKind CostKind,
2014                                   OperandValueKind Opd1Info,
2015                                   OperandValueKind Opd2Info,
2016                                   OperandValueProperties Opd1PropInfo,
2017                                   OperandValueProperties Opd2PropInfo,
2018                                   ArrayRef<const Value *> Args,
2019                                   const Instruction *CxtI = nullptr) override {
2020     return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
2021                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
2022   }
getShuffleCost(ShuffleKind Kind,VectorType * Tp,int Index,VectorType * SubTp)2023   int getShuffleCost(ShuffleKind Kind, VectorType *Tp, int Index,
2024                      VectorType *SubTp) override {
2025     return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
2026   }
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,CastContextHint CCH,TTI::TargetCostKind CostKind,const Instruction * I)2027   int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
2028                        CastContextHint CCH, TTI::TargetCostKind CostKind,
2029                        const Instruction *I) override {
2030     return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
2031   }
getExtractWithExtendCost(unsigned Opcode,Type * Dst,VectorType * VecTy,unsigned Index)2032   int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
2033                                unsigned Index) override {
2034     return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
2035   }
getCFInstrCost(unsigned Opcode,TTI::TargetCostKind CostKind)2036   int getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) override {
2037     return Impl.getCFInstrCost(Opcode, CostKind);
2038   }
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,CmpInst::Predicate VecPred,TTI::TargetCostKind CostKind,const Instruction * I)2039   int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2040                          CmpInst::Predicate VecPred,
2041                          TTI::TargetCostKind CostKind,
2042                          const Instruction *I) override {
2043     return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2044   }
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)2045   int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
2046     return Impl.getVectorInstrCost(Opcode, Val, Index);
2047   }
getMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,const Instruction * I)2048   int getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2049                       unsigned AddressSpace, TTI::TargetCostKind CostKind,
2050                       const Instruction *I) override {
2051     return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2052                                 CostKind, I);
2053   }
getMaskedMemoryOpCost(unsigned Opcode,Type * Src,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind)2054   int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2055                             unsigned AddressSpace,
2056                             TTI::TargetCostKind CostKind) override {
2057     return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2058                                       CostKind);
2059   }
2060   int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2061                              bool VariableMask, Align Alignment,
2062                              TTI::TargetCostKind CostKind,
2063                              const Instruction *I = nullptr) override {
2064     return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
2065                                        Alignment, CostKind, I);
2066   }
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,Align Alignment,unsigned AddressSpace,TTI::TargetCostKind CostKind,bool UseMaskForCond,bool UseMaskForGaps)2067   int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
2068                                  ArrayRef<unsigned> Indices, Align Alignment,
2069                                  unsigned AddressSpace,
2070                                  TTI::TargetCostKind CostKind,
2071                                  bool UseMaskForCond,
2072                                  bool UseMaskForGaps) override {
2073     return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2074                                            Alignment, AddressSpace, CostKind,
2075                                            UseMaskForCond, UseMaskForGaps);
2076   }
getArithmeticReductionCost(unsigned Opcode,VectorType * Ty,bool IsPairwiseForm,TTI::TargetCostKind CostKind)2077   int getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
2078                                  bool IsPairwiseForm,
2079                                  TTI::TargetCostKind CostKind) override {
2080     return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm,
2081                                            CostKind);
2082   }
getMinMaxReductionCost(VectorType * Ty,VectorType * CondTy,bool IsPairwiseForm,bool IsUnsigned,TTI::TargetCostKind CostKind)2083   int getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
2084                              bool IsPairwiseForm, bool IsUnsigned,
2085                              TTI::TargetCostKind CostKind) override {
2086     return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned,
2087                                        CostKind);
2088   }
2089   InstructionCost getExtendedAddReductionCost(
2090       bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
2091       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override {
2092     return Impl.getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
2093                                             CostKind);
2094   }
getIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)2095   int getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2096                             TTI::TargetCostKind CostKind) override {
2097     return Impl.getIntrinsicInstrCost(ICA, CostKind);
2098   }
getCallInstrCost(Function * F,Type * RetTy,ArrayRef<Type * > Tys,TTI::TargetCostKind CostKind)2099   int getCallInstrCost(Function *F, Type *RetTy,
2100                        ArrayRef<Type *> Tys,
2101                        TTI::TargetCostKind CostKind) override {
2102     return Impl.getCallInstrCost(F, RetTy, Tys, CostKind);
2103   }
getNumberOfParts(Type * Tp)2104   unsigned getNumberOfParts(Type *Tp) override {
2105     return Impl.getNumberOfParts(Tp);
2106   }
getAddressComputationCost(Type * Ty,ScalarEvolution * SE,const SCEV * Ptr)2107   int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
2108                                 const SCEV *Ptr) override {
2109     return Impl.getAddressComputationCost(Ty, SE, Ptr);
2110   }
getCostOfKeepingLiveOverCall(ArrayRef<Type * > Tys)2111   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
2112     return Impl.getCostOfKeepingLiveOverCall(Tys);
2113   }
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info)2114   bool getTgtMemIntrinsic(IntrinsicInst *Inst,
2115                           MemIntrinsicInfo &Info) override {
2116     return Impl.getTgtMemIntrinsic(Inst, Info);
2117   }
getAtomicMemIntrinsicMaxElementSize()2118   unsigned getAtomicMemIntrinsicMaxElementSize() const override {
2119     return Impl.getAtomicMemIntrinsicMaxElementSize();
2120   }
getOrCreateResultFromMemIntrinsic(IntrinsicInst * Inst,Type * ExpectedType)2121   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
2122                                            Type *ExpectedType) override {
2123     return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
2124   }
getMemcpyLoopLoweringType(LLVMContext & Context,Value * Length,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign)2125   Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
2126                                   unsigned SrcAddrSpace, unsigned DestAddrSpace,
2127                                   unsigned SrcAlign,
2128                                   unsigned DestAlign) const override {
2129     return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
2130                                           DestAddrSpace, SrcAlign, DestAlign);
2131   }
getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type * > & OpsOut,LLVMContext & Context,unsigned RemainingBytes,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign)2132   void getMemcpyLoopResidualLoweringType(
2133       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
2134       unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
2135       unsigned SrcAlign, unsigned DestAlign) const override {
2136     Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
2137                                            SrcAddrSpace, DestAddrSpace,
2138                                            SrcAlign, DestAlign);
2139   }
areInlineCompatible(const Function * Caller,const Function * Callee)2140   bool areInlineCompatible(const Function *Caller,
2141                            const Function *Callee) const override {
2142     return Impl.areInlineCompatible(Caller, Callee);
2143   }
areFunctionArgsABICompatible(const Function * Caller,const Function * Callee,SmallPtrSetImpl<Argument * > & Args)2144   bool areFunctionArgsABICompatible(
2145       const Function *Caller, const Function *Callee,
2146       SmallPtrSetImpl<Argument *> &Args) const override {
2147     return Impl.areFunctionArgsABICompatible(Caller, Callee, Args);
2148   }
isIndexedLoadLegal(MemIndexedMode Mode,Type * Ty)2149   bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
2150     return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
2151   }
isIndexedStoreLegal(MemIndexedMode Mode,Type * Ty)2152   bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
2153     return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
2154   }
getLoadStoreVecRegBitWidth(unsigned AddrSpace)2155   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
2156     return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
2157   }
isLegalToVectorizeLoad(LoadInst * LI)2158   bool isLegalToVectorizeLoad(LoadInst *LI) const override {
2159     return Impl.isLegalToVectorizeLoad(LI);
2160   }
isLegalToVectorizeStore(StoreInst * SI)2161   bool isLegalToVectorizeStore(StoreInst *SI) const override {
2162     return Impl.isLegalToVectorizeStore(SI);
2163   }
isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace)2164   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
2165                                    unsigned AddrSpace) const override {
2166     return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
2167                                             AddrSpace);
2168   }
isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace)2169   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
2170                                     unsigned AddrSpace) const override {
2171     return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
2172                                              AddrSpace);
2173   }
getLoadVectorFactor(unsigned VF,unsigned LoadSize,unsigned ChainSizeInBytes,VectorType * VecTy)2174   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
2175                                unsigned ChainSizeInBytes,
2176                                VectorType *VecTy) const override {
2177     return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
2178   }
getStoreVectorFactor(unsigned VF,unsigned StoreSize,unsigned ChainSizeInBytes,VectorType * VecTy)2179   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
2180                                 unsigned ChainSizeInBytes,
2181                                 VectorType *VecTy) const override {
2182     return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
2183   }
useReductionIntrinsic(unsigned Opcode,Type * Ty,ReductionFlags Flags)2184   bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
2185                              ReductionFlags Flags) const override {
2186     return Impl.useReductionIntrinsic(Opcode, Ty, Flags);
2187   }
preferInLoopReduction(unsigned Opcode,Type * Ty,ReductionFlags Flags)2188   bool preferInLoopReduction(unsigned Opcode, Type *Ty,
2189                              ReductionFlags Flags) const override {
2190     return Impl.preferInLoopReduction(Opcode, Ty, Flags);
2191   }
preferPredicatedReductionSelect(unsigned Opcode,Type * Ty,ReductionFlags Flags)2192   bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
2193                                        ReductionFlags Flags) const override {
2194     return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags);
2195   }
shouldExpandReduction(const IntrinsicInst * II)2196   bool shouldExpandReduction(const IntrinsicInst *II) const override {
2197     return Impl.shouldExpandReduction(II);
2198   }
2199 
getGISelRematGlobalCost()2200   unsigned getGISelRematGlobalCost() const override {
2201     return Impl.getGISelRematGlobalCost();
2202   }
2203 
supportsScalableVectors()2204   bool supportsScalableVectors() const override {
2205     return Impl.supportsScalableVectors();
2206   }
2207 
hasActiveVectorLength()2208   bool hasActiveVectorLength() const override {
2209     return Impl.hasActiveVectorLength();
2210   }
2211 
getInstructionLatency(const Instruction * I)2212   int getInstructionLatency(const Instruction *I) override {
2213     return Impl.getInstructionLatency(I);
2214   }
2215 };
2216 
2217 template <typename T>
TargetTransformInfo(T Impl)2218 TargetTransformInfo::TargetTransformInfo(T Impl)
2219     : TTIImpl(new Model<T>(Impl)) {}
2220 
2221 /// Analysis pass providing the \c TargetTransformInfo.
2222 ///
2223 /// The core idea of the TargetIRAnalysis is to expose an interface through
2224 /// which LLVM targets can analyze and provide information about the middle
2225 /// end's target-independent IR. This supports use cases such as target-aware
2226 /// cost modeling of IR constructs.
2227 ///
2228 /// This is a function analysis because much of the cost modeling for targets
2229 /// is done in a subtarget specific way and LLVM supports compiling different
2230 /// functions targeting different subtargets in order to support runtime
2231 /// dispatch according to the observed subtarget.
2232 class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
2233 public:
2234   typedef TargetTransformInfo Result;
2235 
2236   /// Default construct a target IR analysis.
2237   ///
2238   /// This will use the module's datalayout to construct a baseline
2239   /// conservative TTI result.
2240   TargetIRAnalysis();
2241 
2242   /// Construct an IR analysis pass around a target-provide callback.
2243   ///
2244   /// The callback will be called with a particular function for which the TTI
2245   /// is needed and must return a TTI object for that function.
2246   TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
2247 
2248   // Value semantics. We spell out the constructors for MSVC.
TargetIRAnalysis(const TargetIRAnalysis & Arg)2249   TargetIRAnalysis(const TargetIRAnalysis &Arg)
2250       : TTICallback(Arg.TTICallback) {}
TargetIRAnalysis(TargetIRAnalysis && Arg)2251   TargetIRAnalysis(TargetIRAnalysis &&Arg)
2252       : TTICallback(std::move(Arg.TTICallback)) {}
2253   TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
2254     TTICallback = RHS.TTICallback;
2255     return *this;
2256   }
2257   TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
2258     TTICallback = std::move(RHS.TTICallback);
2259     return *this;
2260   }
2261 
2262   Result run(const Function &F, FunctionAnalysisManager &);
2263 
2264 private:
2265   friend AnalysisInfoMixin<TargetIRAnalysis>;
2266   static AnalysisKey Key;
2267 
2268   /// The callback used to produce a result.
2269   ///
2270   /// We use a completely opaque callback so that targets can provide whatever
2271   /// mechanism they desire for constructing the TTI for a given function.
2272   ///
2273   /// FIXME: Should we really use std::function? It's relatively inefficient.
2274   /// It might be possible to arrange for even stateful callbacks to outlive
2275   /// the analysis and thus use a function_ref which would be lighter weight.
2276   /// This may also be less error prone as the callback is likely to reference
2277   /// the external TargetMachine, and that reference needs to never dangle.
2278   std::function<Result(const Function &)> TTICallback;
2279 
2280   /// Helper function used as the callback in the default constructor.
2281   static Result getDefaultTTI(const Function &F);
2282 };
2283 
2284 /// Wrapper pass for TargetTransformInfo.
2285 ///
2286 /// This pass can be constructed from a TTI object which it stores internally
2287 /// and is queried by passes.
2288 class TargetTransformInfoWrapperPass : public ImmutablePass {
2289   TargetIRAnalysis TIRA;
2290   Optional<TargetTransformInfo> TTI;
2291 
2292   virtual void anchor();
2293 
2294 public:
2295   static char ID;
2296 
2297   /// We must provide a default constructor for the pass but it should
2298   /// never be used.
2299   ///
2300   /// Use the constructor below or call one of the creation routines.
2301   TargetTransformInfoWrapperPass();
2302 
2303   explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
2304 
2305   TargetTransformInfo &getTTI(const Function &F);
2306 };
2307 
2308 /// Create an analysis pass wrapper around a TTI object.
2309 ///
2310 /// This analysis pass just holds the TTI instance and makes it available to
2311 /// clients.
2312 ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
2313 
2314 } // namespace llvm
2315 
2316 #endif
2317