1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/EquivalenceClasses.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AliasSetTracker.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <cstdlib>
64 #include <iterator>
65 #include <utility>
66 #include <vector>
67
68 using namespace llvm;
69
70 #define DEBUG_TYPE "loop-accesses"
71
72 static cl::opt<unsigned, true>
73 VectorizationFactor("force-vector-width", cl::Hidden,
74 cl::desc("Sets the SIMD width. Zero is autoselect."),
75 cl::location(VectorizerParams::VectorizationFactor));
76 unsigned VectorizerParams::VectorizationFactor;
77
78 static cl::opt<unsigned, true>
79 VectorizationInterleave("force-vector-interleave", cl::Hidden,
80 cl::desc("Sets the vectorization interleave count. "
81 "Zero is autoselect."),
82 cl::location(
83 VectorizerParams::VectorizationInterleave));
84 unsigned VectorizerParams::VectorizationInterleave;
85
86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
87 "runtime-memory-check-threshold", cl::Hidden,
88 cl::desc("When performing memory disambiguation checks at runtime do not "
89 "generate more than this number of comparisons (default = 8)."),
90 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
92
93 /// The maximum iterations used to merge memory checks
94 static cl::opt<unsigned> MemoryCheckMergeThreshold(
95 "memory-check-merge-threshold", cl::Hidden,
96 cl::desc("Maximum number of comparisons done when trying to merge "
97 "runtime memory checks. (default = 100)"),
98 cl::init(100));
99
100 /// Maximum SIMD width.
101 const unsigned VectorizerParams::MaxVectorWidth = 64;
102
103 /// We collect dependences up to this threshold.
104 static cl::opt<unsigned>
105 MaxDependences("max-dependences", cl::Hidden,
106 cl::desc("Maximum number of dependences collected by "
107 "loop-access analysis (default = 100)"),
108 cl::init(100));
109
110 /// This enables versioning on the strides of symbolically striding memory
111 /// accesses in code like the following.
112 /// for (i = 0; i < N; ++i)
113 /// A[i * Stride1] += B[i * Stride2] ...
114 ///
115 /// Will be roughly translated to
116 /// if (Stride1 == 1 && Stride2 == 1) {
117 /// for (i = 0; i < N; i+=4)
118 /// A[i:i+3] += ...
119 /// } else
120 /// ...
121 static cl::opt<bool> EnableMemAccessVersioning(
122 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
123 cl::desc("Enable symbolic stride memory access versioning"));
124
125 /// Enable store-to-load forwarding conflict detection. This option can
126 /// be disabled for correctness testing.
127 static cl::opt<bool> EnableForwardingConflictDetection(
128 "store-to-load-forwarding-conflict-detection", cl::Hidden,
129 cl::desc("Enable conflict detection in loop-access analysis"),
130 cl::init(true));
131
isInterleaveForced()132 bool VectorizerParams::isInterleaveForced() {
133 return ::VectorizationInterleave.getNumOccurrences() > 0;
134 }
135
stripIntegerCast(Value * V)136 Value *llvm::stripIntegerCast(Value *V) {
137 if (auto *CI = dyn_cast<CastInst>(V))
138 if (CI->getOperand(0)->getType()->isIntegerTy())
139 return CI->getOperand(0);
140 return V;
141 }
142
replaceSymbolicStrideSCEV(PredicatedScalarEvolution & PSE,const ValueToValueMap & PtrToStride,Value * Ptr,Value * OrigPtr)143 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
144 const ValueToValueMap &PtrToStride,
145 Value *Ptr, Value *OrigPtr) {
146 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
147
148 // If there is an entry in the map return the SCEV of the pointer with the
149 // symbolic stride replaced by one.
150 ValueToValueMap::const_iterator SI =
151 PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
152 if (SI == PtrToStride.end())
153 // For a non-symbolic stride, just return the original expression.
154 return OrigSCEV;
155
156 Value *StrideVal = stripIntegerCast(SI->second);
157
158 ScalarEvolution *SE = PSE.getSE();
159 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
160 const auto *CT =
161 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
162
163 PSE.addPredicate(*SE->getEqualPredicate(U, CT));
164 auto *Expr = PSE.getSCEV(Ptr);
165
166 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
167 << " by: " << *Expr << "\n");
168 return Expr;
169 }
170
RuntimeCheckingPtrGroup(unsigned Index,RuntimePointerChecking & RtCheck)171 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
172 unsigned Index, RuntimePointerChecking &RtCheck)
173 : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End),
174 Low(RtCheck.Pointers[Index].Start) {
175 Members.push_back(Index);
176 }
177
178 /// Calculate Start and End points of memory access.
179 /// Let's assume A is the first access and B is a memory access on N-th loop
180 /// iteration. Then B is calculated as:
181 /// B = A + Step*N .
182 /// Step value may be positive or negative.
183 /// N is a calculated back-edge taken count:
184 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
185 /// Start and End points are calculated in the following way:
186 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
187 /// where SizeOfElt is the size of single memory access in bytes.
188 ///
189 /// There is no conflict when the intervals are disjoint:
190 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
insert(Loop * Lp,Value * Ptr,bool WritePtr,unsigned DepSetId,unsigned ASId,const ValueToValueMap & Strides,PredicatedScalarEvolution & PSE)191 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
192 unsigned DepSetId, unsigned ASId,
193 const ValueToValueMap &Strides,
194 PredicatedScalarEvolution &PSE) {
195 // Get the stride replaced scev.
196 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
197 ScalarEvolution *SE = PSE.getSE();
198
199 const SCEV *ScStart;
200 const SCEV *ScEnd;
201
202 if (SE->isLoopInvariant(Sc, Lp))
203 ScStart = ScEnd = Sc;
204 else {
205 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
206 assert(AR && "Invalid addrec expression");
207 const SCEV *Ex = PSE.getBackedgeTakenCount();
208
209 ScStart = AR->getStart();
210 ScEnd = AR->evaluateAtIteration(Ex, *SE);
211 const SCEV *Step = AR->getStepRecurrence(*SE);
212
213 // For expressions with negative step, the upper bound is ScStart and the
214 // lower bound is ScEnd.
215 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
216 if (CStep->getValue()->isNegative())
217 std::swap(ScStart, ScEnd);
218 } else {
219 // Fallback case: the step is not constant, but we can still
220 // get the upper and lower bounds of the interval by using min/max
221 // expressions.
222 ScStart = SE->getUMinExpr(ScStart, ScEnd);
223 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
224 }
225 // Add the size of the pointed element to ScEnd.
226 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
227 Type *IdxTy = DL.getIndexType(Ptr->getType());
228 const SCEV *EltSizeSCEV =
229 SE->getStoreSizeOfExpr(IdxTy, Ptr->getType()->getPointerElementType());
230 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
231 }
232
233 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
234 }
235
236 SmallVector<RuntimePointerCheck, 4>
generateChecks() const237 RuntimePointerChecking::generateChecks() const {
238 SmallVector<RuntimePointerCheck, 4> Checks;
239
240 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
241 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
242 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
243 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
244
245 if (needsChecking(CGI, CGJ))
246 Checks.push_back(std::make_pair(&CGI, &CGJ));
247 }
248 }
249 return Checks;
250 }
251
generateChecks(MemoryDepChecker::DepCandidates & DepCands,bool UseDependencies)252 void RuntimePointerChecking::generateChecks(
253 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
254 assert(Checks.empty() && "Checks is not empty");
255 groupChecks(DepCands, UseDependencies);
256 Checks = generateChecks();
257 }
258
needsChecking(const RuntimeCheckingPtrGroup & M,const RuntimeCheckingPtrGroup & N) const259 bool RuntimePointerChecking::needsChecking(
260 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
261 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
262 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
263 if (needsChecking(M.Members[I], N.Members[J]))
264 return true;
265 return false;
266 }
267
268 /// Compare \p I and \p J and return the minimum.
269 /// Return nullptr in case we couldn't find an answer.
getMinFromExprs(const SCEV * I,const SCEV * J,ScalarEvolution * SE)270 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
271 ScalarEvolution *SE) {
272 const SCEV *Diff = SE->getMinusSCEV(J, I);
273 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
274
275 if (!C)
276 return nullptr;
277 if (C->getValue()->isNegative())
278 return J;
279 return I;
280 }
281
addPointer(unsigned Index)282 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index) {
283 const SCEV *Start = RtCheck.Pointers[Index].Start;
284 const SCEV *End = RtCheck.Pointers[Index].End;
285
286 // Compare the starts and ends with the known minimum and maximum
287 // of this set. We need to know how we compare against the min/max
288 // of the set in order to be able to emit memchecks.
289 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
290 if (!Min0)
291 return false;
292
293 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
294 if (!Min1)
295 return false;
296
297 // Update the low bound expression if we've found a new min value.
298 if (Min0 == Start)
299 Low = Start;
300
301 // Update the high bound expression if we've found a new max value.
302 if (Min1 != End)
303 High = End;
304
305 Members.push_back(Index);
306 return true;
307 }
308
groupChecks(MemoryDepChecker::DepCandidates & DepCands,bool UseDependencies)309 void RuntimePointerChecking::groupChecks(
310 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
311 // We build the groups from dependency candidates equivalence classes
312 // because:
313 // - We know that pointers in the same equivalence class share
314 // the same underlying object and therefore there is a chance
315 // that we can compare pointers
316 // - We wouldn't be able to merge two pointers for which we need
317 // to emit a memcheck. The classes in DepCands are already
318 // conveniently built such that no two pointers in the same
319 // class need checking against each other.
320
321 // We use the following (greedy) algorithm to construct the groups
322 // For every pointer in the equivalence class:
323 // For each existing group:
324 // - if the difference between this pointer and the min/max bounds
325 // of the group is a constant, then make the pointer part of the
326 // group and update the min/max bounds of that group as required.
327
328 CheckingGroups.clear();
329
330 // If we need to check two pointers to the same underlying object
331 // with a non-constant difference, we shouldn't perform any pointer
332 // grouping with those pointers. This is because we can easily get
333 // into cases where the resulting check would return false, even when
334 // the accesses are safe.
335 //
336 // The following example shows this:
337 // for (i = 0; i < 1000; ++i)
338 // a[5000 + i * m] = a[i] + a[i + 9000]
339 //
340 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
341 // (0, 10000) which is always false. However, if m is 1, there is no
342 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
343 // us to perform an accurate check in this case.
344 //
345 // The above case requires that we have an UnknownDependence between
346 // accesses to the same underlying object. This cannot happen unless
347 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
348 // is also false. In this case we will use the fallback path and create
349 // separate checking groups for all pointers.
350
351 // If we don't have the dependency partitions, construct a new
352 // checking pointer group for each pointer. This is also required
353 // for correctness, because in this case we can have checking between
354 // pointers to the same underlying object.
355 if (!UseDependencies) {
356 for (unsigned I = 0; I < Pointers.size(); ++I)
357 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
358 return;
359 }
360
361 unsigned TotalComparisons = 0;
362
363 DenseMap<Value *, unsigned> PositionMap;
364 for (unsigned Index = 0; Index < Pointers.size(); ++Index)
365 PositionMap[Pointers[Index].PointerValue] = Index;
366
367 // We need to keep track of what pointers we've already seen so we
368 // don't process them twice.
369 SmallSet<unsigned, 2> Seen;
370
371 // Go through all equivalence classes, get the "pointer check groups"
372 // and add them to the overall solution. We use the order in which accesses
373 // appear in 'Pointers' to enforce determinism.
374 for (unsigned I = 0; I < Pointers.size(); ++I) {
375 // We've seen this pointer before, and therefore already processed
376 // its equivalence class.
377 if (Seen.count(I))
378 continue;
379
380 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
381 Pointers[I].IsWritePtr);
382
383 SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
384 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
385
386 // Because DepCands is constructed by visiting accesses in the order in
387 // which they appear in alias sets (which is deterministic) and the
388 // iteration order within an equivalence class member is only dependent on
389 // the order in which unions and insertions are performed on the
390 // equivalence class, the iteration order is deterministic.
391 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
392 MI != ME; ++MI) {
393 auto PointerI = PositionMap.find(MI->getPointer());
394 assert(PointerI != PositionMap.end() &&
395 "pointer in equivalence class not found in PositionMap");
396 unsigned Pointer = PointerI->second;
397 bool Merged = false;
398 // Mark this pointer as seen.
399 Seen.insert(Pointer);
400
401 // Go through all the existing sets and see if we can find one
402 // which can include this pointer.
403 for (RuntimeCheckingPtrGroup &Group : Groups) {
404 // Don't perform more than a certain amount of comparisons.
405 // This should limit the cost of grouping the pointers to something
406 // reasonable. If we do end up hitting this threshold, the algorithm
407 // will create separate groups for all remaining pointers.
408 if (TotalComparisons > MemoryCheckMergeThreshold)
409 break;
410
411 TotalComparisons++;
412
413 if (Group.addPointer(Pointer)) {
414 Merged = true;
415 break;
416 }
417 }
418
419 if (!Merged)
420 // We couldn't add this pointer to any existing set or the threshold
421 // for the number of comparisons has been reached. Create a new group
422 // to hold the current pointer.
423 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
424 }
425
426 // We've computed the grouped checks for this partition.
427 // Save the results and continue with the next one.
428 llvm::copy(Groups, std::back_inserter(CheckingGroups));
429 }
430 }
431
arePointersInSamePartition(const SmallVectorImpl<int> & PtrToPartition,unsigned PtrIdx1,unsigned PtrIdx2)432 bool RuntimePointerChecking::arePointersInSamePartition(
433 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
434 unsigned PtrIdx2) {
435 return (PtrToPartition[PtrIdx1] != -1 &&
436 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
437 }
438
needsChecking(unsigned I,unsigned J) const439 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
440 const PointerInfo &PointerI = Pointers[I];
441 const PointerInfo &PointerJ = Pointers[J];
442
443 // No need to check if two readonly pointers intersect.
444 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
445 return false;
446
447 // Only need to check pointers between two different dependency sets.
448 if (PointerI.DependencySetId == PointerJ.DependencySetId)
449 return false;
450
451 // Only need to check pointers in the same alias set.
452 if (PointerI.AliasSetId != PointerJ.AliasSetId)
453 return false;
454
455 return true;
456 }
457
printChecks(raw_ostream & OS,const SmallVectorImpl<RuntimePointerCheck> & Checks,unsigned Depth) const458 void RuntimePointerChecking::printChecks(
459 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
460 unsigned Depth) const {
461 unsigned N = 0;
462 for (const auto &Check : Checks) {
463 const auto &First = Check.first->Members, &Second = Check.second->Members;
464
465 OS.indent(Depth) << "Check " << N++ << ":\n";
466
467 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
468 for (unsigned K = 0; K < First.size(); ++K)
469 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
470
471 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
472 for (unsigned K = 0; K < Second.size(); ++K)
473 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
474 }
475 }
476
print(raw_ostream & OS,unsigned Depth) const477 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
478
479 OS.indent(Depth) << "Run-time memory checks:\n";
480 printChecks(OS, Checks, Depth);
481
482 OS.indent(Depth) << "Grouped accesses:\n";
483 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
484 const auto &CG = CheckingGroups[I];
485
486 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
487 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
488 << ")\n";
489 for (unsigned J = 0; J < CG.Members.size(); ++J) {
490 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
491 << "\n";
492 }
493 }
494 }
495
496 namespace {
497
498 /// Analyses memory accesses in a loop.
499 ///
500 /// Checks whether run time pointer checks are needed and builds sets for data
501 /// dependence checking.
502 class AccessAnalysis {
503 public:
504 /// Read or write access location.
505 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
506 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
507
AccessAnalysis(Loop * TheLoop,AAResults * AA,LoopInfo * LI,MemoryDepChecker::DepCandidates & DA,PredicatedScalarEvolution & PSE)508 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
509 MemoryDepChecker::DepCandidates &DA,
510 PredicatedScalarEvolution &PSE)
511 : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA),
512 IsRTCheckAnalysisNeeded(false), PSE(PSE) {}
513
514 /// Register a load and whether it is only read from.
addLoad(MemoryLocation & Loc,bool IsReadOnly)515 void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
516 Value *Ptr = const_cast<Value*>(Loc.Ptr);
517 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
518 Accesses.insert(MemAccessInfo(Ptr, false));
519 if (IsReadOnly)
520 ReadOnlyPtr.insert(Ptr);
521 }
522
523 /// Register a store.
addStore(MemoryLocation & Loc)524 void addStore(MemoryLocation &Loc) {
525 Value *Ptr = const_cast<Value*>(Loc.Ptr);
526 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags);
527 Accesses.insert(MemAccessInfo(Ptr, true));
528 }
529
530 /// Check if we can emit a run-time no-alias check for \p Access.
531 ///
532 /// Returns true if we can emit a run-time no alias check for \p Access.
533 /// If we can check this access, this also adds it to a dependence set and
534 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
535 /// we will attempt to use additional run-time checks in order to get
536 /// the bounds of the pointer.
537 bool createCheckForAccess(RuntimePointerChecking &RtCheck,
538 MemAccessInfo Access,
539 const ValueToValueMap &Strides,
540 DenseMap<Value *, unsigned> &DepSetId,
541 Loop *TheLoop, unsigned &RunningDepId,
542 unsigned ASId, bool ShouldCheckStride,
543 bool Assume);
544
545 /// Check whether we can check the pointers at runtime for
546 /// non-intersection.
547 ///
548 /// Returns true if we need no check or if we do and we can generate them
549 /// (i.e. the pointers have computable bounds).
550 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
551 Loop *TheLoop, const ValueToValueMap &Strides,
552 bool ShouldCheckWrap = false);
553
554 /// Goes over all memory accesses, checks whether a RT check is needed
555 /// and builds sets of dependent accesses.
buildDependenceSets()556 void buildDependenceSets() {
557 processMemAccesses();
558 }
559
560 /// Initial processing of memory accesses determined that we need to
561 /// perform dependency checking.
562 ///
563 /// Note that this can later be cleared if we retry memcheck analysis without
564 /// dependency checking (i.e. FoundNonConstantDistanceDependence).
isDependencyCheckNeeded()565 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
566
567 /// We decided that no dependence analysis would be used. Reset the state.
resetDepChecks(MemoryDepChecker & DepChecker)568 void resetDepChecks(MemoryDepChecker &DepChecker) {
569 CheckDeps.clear();
570 DepChecker.clearDependences();
571 }
572
getDependenciesToCheck()573 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
574
575 private:
576 typedef SetVector<MemAccessInfo> PtrAccessSet;
577
578 /// Go over all memory access and check whether runtime pointer checks
579 /// are needed and build sets of dependency check candidates.
580 void processMemAccesses();
581
582 /// Set of all accesses.
583 PtrAccessSet Accesses;
584
585 /// The loop being checked.
586 const Loop *TheLoop;
587
588 /// List of accesses that need a further dependence check.
589 MemAccessInfoList CheckDeps;
590
591 /// Set of pointers that are read only.
592 SmallPtrSet<Value*, 16> ReadOnlyPtr;
593
594 /// An alias set tracker to partition the access set by underlying object and
595 //intrinsic property (such as TBAA metadata).
596 AliasSetTracker AST;
597
598 LoopInfo *LI;
599
600 /// Sets of potentially dependent accesses - members of one set share an
601 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
602 /// dependence check.
603 MemoryDepChecker::DepCandidates &DepCands;
604
605 /// Initial processing of memory accesses determined that we may need
606 /// to add memchecks. Perform the analysis to determine the necessary checks.
607 ///
608 /// Note that, this is different from isDependencyCheckNeeded. When we retry
609 /// memcheck analysis without dependency checking
610 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
611 /// cleared while this remains set if we have potentially dependent accesses.
612 bool IsRTCheckAnalysisNeeded;
613
614 /// The SCEV predicate containing all the SCEV-related assumptions.
615 PredicatedScalarEvolution &PSE;
616 };
617
618 } // end anonymous namespace
619
620 /// Check whether a pointer can participate in a runtime bounds check.
621 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
622 /// by adding run-time checks (overflow checks) if necessary.
hasComputableBounds(PredicatedScalarEvolution & PSE,const ValueToValueMap & Strides,Value * Ptr,Loop * L,bool Assume)623 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
624 const ValueToValueMap &Strides, Value *Ptr,
625 Loop *L, bool Assume) {
626 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
627
628 // The bounds for loop-invariant pointer is trivial.
629 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
630 return true;
631
632 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
633
634 if (!AR && Assume)
635 AR = PSE.getAsAddRec(Ptr);
636
637 if (!AR)
638 return false;
639
640 return AR->isAffine();
641 }
642
643 /// Check whether a pointer address cannot wrap.
isNoWrap(PredicatedScalarEvolution & PSE,const ValueToValueMap & Strides,Value * Ptr,Loop * L)644 static bool isNoWrap(PredicatedScalarEvolution &PSE,
645 const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
646 const SCEV *PtrScev = PSE.getSCEV(Ptr);
647 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
648 return true;
649
650 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
651 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
652 return true;
653
654 return false;
655 }
656
createCheckForAccess(RuntimePointerChecking & RtCheck,MemAccessInfo Access,const ValueToValueMap & StridesMap,DenseMap<Value *,unsigned> & DepSetId,Loop * TheLoop,unsigned & RunningDepId,unsigned ASId,bool ShouldCheckWrap,bool Assume)657 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
658 MemAccessInfo Access,
659 const ValueToValueMap &StridesMap,
660 DenseMap<Value *, unsigned> &DepSetId,
661 Loop *TheLoop, unsigned &RunningDepId,
662 unsigned ASId, bool ShouldCheckWrap,
663 bool Assume) {
664 Value *Ptr = Access.getPointer();
665
666 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
667 return false;
668
669 // When we run after a failing dependency check we have to make sure
670 // we don't have wrapping pointers.
671 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
672 auto *Expr = PSE.getSCEV(Ptr);
673 if (!Assume || !isa<SCEVAddRecExpr>(Expr))
674 return false;
675 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
676 }
677
678 // The id of the dependence set.
679 unsigned DepId;
680
681 if (isDependencyCheckNeeded()) {
682 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
683 unsigned &LeaderId = DepSetId[Leader];
684 if (!LeaderId)
685 LeaderId = RunningDepId++;
686 DepId = LeaderId;
687 } else
688 // Each access has its own dependence set.
689 DepId = RunningDepId++;
690
691 bool IsWrite = Access.getInt();
692 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
693 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
694
695 return true;
696 }
697
canCheckPtrAtRT(RuntimePointerChecking & RtCheck,ScalarEvolution * SE,Loop * TheLoop,const ValueToValueMap & StridesMap,bool ShouldCheckWrap)698 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
699 ScalarEvolution *SE, Loop *TheLoop,
700 const ValueToValueMap &StridesMap,
701 bool ShouldCheckWrap) {
702 // Find pointers with computable bounds. We are going to use this information
703 // to place a runtime bound check.
704 bool CanDoRT = true;
705
706 bool MayNeedRTCheck = false;
707 if (!IsRTCheckAnalysisNeeded) return true;
708
709 bool IsDepCheckNeeded = isDependencyCheckNeeded();
710
711 // We assign a consecutive id to access from different alias sets.
712 // Accesses between different groups doesn't need to be checked.
713 unsigned ASId = 0;
714 for (auto &AS : AST) {
715 int NumReadPtrChecks = 0;
716 int NumWritePtrChecks = 0;
717 bool CanDoAliasSetRT = true;
718 ++ASId;
719
720 // We assign consecutive id to access from different dependence sets.
721 // Accesses within the same set don't need a runtime check.
722 unsigned RunningDepId = 1;
723 DenseMap<Value *, unsigned> DepSetId;
724
725 SmallVector<MemAccessInfo, 4> Retries;
726
727 // First, count how many write and read accesses are in the alias set. Also
728 // collect MemAccessInfos for later.
729 SmallVector<MemAccessInfo, 4> AccessInfos;
730 for (const auto &A : AS) {
731 Value *Ptr = A.getValue();
732 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
733
734 if (IsWrite)
735 ++NumWritePtrChecks;
736 else
737 ++NumReadPtrChecks;
738 AccessInfos.emplace_back(Ptr, IsWrite);
739 }
740
741 // We do not need runtime checks for this alias set, if there are no writes
742 // or a single write and no reads.
743 if (NumWritePtrChecks == 0 ||
744 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
745 assert((AS.size() <= 1 ||
746 all_of(AS,
747 [this](auto AC) {
748 MemAccessInfo AccessWrite(AC.getValue(), true);
749 return DepCands.findValue(AccessWrite) == DepCands.end();
750 })) &&
751 "Can only skip updating CanDoRT below, if all entries in AS "
752 "are reads or there is at most 1 entry");
753 continue;
754 }
755
756 for (auto &Access : AccessInfos) {
757 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
758 RunningDepId, ASId, ShouldCheckWrap, false)) {
759 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
760 << *Access.getPointer() << '\n');
761 Retries.push_back(Access);
762 CanDoAliasSetRT = false;
763 }
764 }
765
766 // Note that this function computes CanDoRT and MayNeedRTCheck
767 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
768 // we have a pointer for which we couldn't find the bounds but we don't
769 // actually need to emit any checks so it does not matter.
770 //
771 // We need runtime checks for this alias set, if there are at least 2
772 // dependence sets (in which case RunningDepId > 2) or if we need to re-try
773 // any bound checks (because in that case the number of dependence sets is
774 // incomplete).
775 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
776
777 // We need to perform run-time alias checks, but some pointers had bounds
778 // that couldn't be checked.
779 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
780 // Reset the CanDoSetRt flag and retry all accesses that have failed.
781 // We know that we need these checks, so we can now be more aggressive
782 // and add further checks if required (overflow checks).
783 CanDoAliasSetRT = true;
784 for (auto Access : Retries)
785 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
786 TheLoop, RunningDepId, ASId,
787 ShouldCheckWrap, /*Assume=*/true)) {
788 CanDoAliasSetRT = false;
789 break;
790 }
791 }
792
793 CanDoRT &= CanDoAliasSetRT;
794 MayNeedRTCheck |= NeedsAliasSetRTCheck;
795 ++ASId;
796 }
797
798 // If the pointers that we would use for the bounds comparison have different
799 // address spaces, assume the values aren't directly comparable, so we can't
800 // use them for the runtime check. We also have to assume they could
801 // overlap. In the future there should be metadata for whether address spaces
802 // are disjoint.
803 unsigned NumPointers = RtCheck.Pointers.size();
804 for (unsigned i = 0; i < NumPointers; ++i) {
805 for (unsigned j = i + 1; j < NumPointers; ++j) {
806 // Only need to check pointers between two different dependency sets.
807 if (RtCheck.Pointers[i].DependencySetId ==
808 RtCheck.Pointers[j].DependencySetId)
809 continue;
810 // Only need to check pointers in the same alias set.
811 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
812 continue;
813
814 Value *PtrI = RtCheck.Pointers[i].PointerValue;
815 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
816
817 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
818 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
819 if (ASi != ASj) {
820 LLVM_DEBUG(
821 dbgs() << "LAA: Runtime check would require comparison between"
822 " different address spaces\n");
823 return false;
824 }
825 }
826 }
827
828 if (MayNeedRTCheck && CanDoRT)
829 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
830
831 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
832 << " pointer comparisons.\n");
833
834 // If we can do run-time checks, but there are no checks, no runtime checks
835 // are needed. This can happen when all pointers point to the same underlying
836 // object for example.
837 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
838
839 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
840 if (!CanDoRTIfNeeded)
841 RtCheck.reset();
842 return CanDoRTIfNeeded;
843 }
844
processMemAccesses()845 void AccessAnalysis::processMemAccesses() {
846 // We process the set twice: first we process read-write pointers, last we
847 // process read-only pointers. This allows us to skip dependence tests for
848 // read-only pointers.
849
850 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
851 LLVM_DEBUG(dbgs() << " AST: "; AST.dump());
852 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
853 LLVM_DEBUG({
854 for (auto A : Accesses)
855 dbgs() << "\t" << *A.getPointer() << " (" <<
856 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
857 "read-only" : "read")) << ")\n";
858 });
859
860 // The AliasSetTracker has nicely partitioned our pointers by metadata
861 // compatibility and potential for underlying-object overlap. As a result, we
862 // only need to check for potential pointer dependencies within each alias
863 // set.
864 for (const auto &AS : AST) {
865 // Note that both the alias-set tracker and the alias sets themselves used
866 // linked lists internally and so the iteration order here is deterministic
867 // (matching the original instruction order within each set).
868
869 bool SetHasWrite = false;
870
871 // Map of pointers to last access encountered.
872 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
873 UnderlyingObjToAccessMap ObjToLastAccess;
874
875 // Set of access to check after all writes have been processed.
876 PtrAccessSet DeferredAccesses;
877
878 // Iterate over each alias set twice, once to process read/write pointers,
879 // and then to process read-only pointers.
880 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
881 bool UseDeferred = SetIteration > 0;
882 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
883
884 for (const auto &AV : AS) {
885 Value *Ptr = AV.getValue();
886
887 // For a single memory access in AliasSetTracker, Accesses may contain
888 // both read and write, and they both need to be handled for CheckDeps.
889 for (const auto &AC : S) {
890 if (AC.getPointer() != Ptr)
891 continue;
892
893 bool IsWrite = AC.getInt();
894
895 // If we're using the deferred access set, then it contains only
896 // reads.
897 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
898 if (UseDeferred && !IsReadOnlyPtr)
899 continue;
900 // Otherwise, the pointer must be in the PtrAccessSet, either as a
901 // read or a write.
902 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
903 S.count(MemAccessInfo(Ptr, false))) &&
904 "Alias-set pointer not in the access set?");
905
906 MemAccessInfo Access(Ptr, IsWrite);
907 DepCands.insert(Access);
908
909 // Memorize read-only pointers for later processing and skip them in
910 // the first round (they need to be checked after we have seen all
911 // write pointers). Note: we also mark pointer that are not
912 // consecutive as "read-only" pointers (so that we check
913 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
914 if (!UseDeferred && IsReadOnlyPtr) {
915 DeferredAccesses.insert(Access);
916 continue;
917 }
918
919 // If this is a write - check other reads and writes for conflicts. If
920 // this is a read only check other writes for conflicts (but only if
921 // there is no other write to the ptr - this is an optimization to
922 // catch "a[i] = a[i] + " without having to do a dependence check).
923 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
924 CheckDeps.push_back(Access);
925 IsRTCheckAnalysisNeeded = true;
926 }
927
928 if (IsWrite)
929 SetHasWrite = true;
930
931 // Create sets of pointers connected by a shared alias set and
932 // underlying object.
933 typedef SmallVector<const Value *, 16> ValueVector;
934 ValueVector TempObjects;
935
936 getUnderlyingObjects(Ptr, TempObjects, LI);
937 LLVM_DEBUG(dbgs()
938 << "Underlying objects for pointer " << *Ptr << "\n");
939 for (const Value *UnderlyingObj : TempObjects) {
940 // nullptr never alias, don't join sets for pointer that have "null"
941 // in their UnderlyingObjects list.
942 if (isa<ConstantPointerNull>(UnderlyingObj) &&
943 !NullPointerIsDefined(
944 TheLoop->getHeader()->getParent(),
945 UnderlyingObj->getType()->getPointerAddressSpace()))
946 continue;
947
948 UnderlyingObjToAccessMap::iterator Prev =
949 ObjToLastAccess.find(UnderlyingObj);
950 if (Prev != ObjToLastAccess.end())
951 DepCands.unionSets(Access, Prev->second);
952
953 ObjToLastAccess[UnderlyingObj] = Access;
954 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
955 }
956 }
957 }
958 }
959 }
960 }
961
isInBoundsGep(Value * Ptr)962 static bool isInBoundsGep(Value *Ptr) {
963 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
964 return GEP->isInBounds();
965 return false;
966 }
967
968 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
969 /// i.e. monotonically increasing/decreasing.
isNoWrapAddRec(Value * Ptr,const SCEVAddRecExpr * AR,PredicatedScalarEvolution & PSE,const Loop * L)970 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
971 PredicatedScalarEvolution &PSE, const Loop *L) {
972 // FIXME: This should probably only return true for NUW.
973 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
974 return true;
975
976 // Scalar evolution does not propagate the non-wrapping flags to values that
977 // are derived from a non-wrapping induction variable because non-wrapping
978 // could be flow-sensitive.
979 //
980 // Look through the potentially overflowing instruction to try to prove
981 // non-wrapping for the *specific* value of Ptr.
982
983 // The arithmetic implied by an inbounds GEP can't overflow.
984 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
985 if (!GEP || !GEP->isInBounds())
986 return false;
987
988 // Make sure there is only one non-const index and analyze that.
989 Value *NonConstIndex = nullptr;
990 for (Value *Index : GEP->indices())
991 if (!isa<ConstantInt>(Index)) {
992 if (NonConstIndex)
993 return false;
994 NonConstIndex = Index;
995 }
996 if (!NonConstIndex)
997 // The recurrence is on the pointer, ignore for now.
998 return false;
999
1000 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
1001 // AddRec using a NSW operation.
1002 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1003 if (OBO->hasNoSignedWrap() &&
1004 // Assume constant for other the operand so that the AddRec can be
1005 // easily found.
1006 isa<ConstantInt>(OBO->getOperand(1))) {
1007 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
1008
1009 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1010 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1011 }
1012
1013 return false;
1014 }
1015
1016 /// Check whether the access through \p Ptr has a constant stride.
getPtrStride(PredicatedScalarEvolution & PSE,Value * Ptr,const Loop * Lp,const ValueToValueMap & StridesMap,bool Assume,bool ShouldCheckWrap)1017 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
1018 const Loop *Lp, const ValueToValueMap &StridesMap,
1019 bool Assume, bool ShouldCheckWrap) {
1020 Type *Ty = Ptr->getType();
1021 assert(Ty->isPointerTy() && "Unexpected non-ptr");
1022
1023 // Make sure that the pointer does not point to aggregate types.
1024 auto *PtrTy = cast<PointerType>(Ty);
1025 if (PtrTy->getElementType()->isAggregateType()) {
1026 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
1027 << *Ptr << "\n");
1028 return 0;
1029 }
1030
1031 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1032
1033 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1034 if (Assume && !AR)
1035 AR = PSE.getAsAddRec(Ptr);
1036
1037 if (!AR) {
1038 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1039 << " SCEV: " << *PtrScev << "\n");
1040 return 0;
1041 }
1042
1043 // The access function must stride over the innermost loop.
1044 if (Lp != AR->getLoop()) {
1045 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1046 << *Ptr << " SCEV: " << *AR << "\n");
1047 return 0;
1048 }
1049
1050 // The address calculation must not wrap. Otherwise, a dependence could be
1051 // inverted.
1052 // An inbounds getelementptr that is a AddRec with a unit stride
1053 // cannot wrap per definition. The unit stride requirement is checked later.
1054 // An getelementptr without an inbounds attribute and unit stride would have
1055 // to access the pointer value "0" which is undefined behavior in address
1056 // space 0, therefore we can also vectorize this case.
1057 bool IsInBoundsGEP = isInBoundsGep(Ptr);
1058 bool IsNoWrapAddRec = !ShouldCheckWrap ||
1059 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
1060 isNoWrapAddRec(Ptr, AR, PSE, Lp);
1061 if (!IsNoWrapAddRec && !IsInBoundsGEP &&
1062 NullPointerIsDefined(Lp->getHeader()->getParent(),
1063 PtrTy->getAddressSpace())) {
1064 if (Assume) {
1065 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1066 IsNoWrapAddRec = true;
1067 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
1068 << "LAA: Pointer: " << *Ptr << "\n"
1069 << "LAA: SCEV: " << *AR << "\n"
1070 << "LAA: Added an overflow assumption\n");
1071 } else {
1072 LLVM_DEBUG(
1073 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1074 << *Ptr << " SCEV: " << *AR << "\n");
1075 return 0;
1076 }
1077 }
1078
1079 // Check the step is constant.
1080 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1081
1082 // Calculate the pointer stride and check if it is constant.
1083 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1084 if (!C) {
1085 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1086 << " SCEV: " << *AR << "\n");
1087 return 0;
1088 }
1089
1090 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1091 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
1092 const APInt &APStepVal = C->getAPInt();
1093
1094 // Huge step value - give up.
1095 if (APStepVal.getBitWidth() > 64)
1096 return 0;
1097
1098 int64_t StepVal = APStepVal.getSExtValue();
1099
1100 // Strided access.
1101 int64_t Stride = StepVal / Size;
1102 int64_t Rem = StepVal % Size;
1103 if (Rem)
1104 return 0;
1105
1106 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
1107 // know we can't "wrap around the address space". In case of address space
1108 // zero we know that this won't happen without triggering undefined behavior.
1109 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
1110 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
1111 PtrTy->getAddressSpace()))) {
1112 if (Assume) {
1113 // We can avoid this case by adding a run-time check.
1114 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
1115 << "inbounds or in address space 0 may wrap:\n"
1116 << "LAA: Pointer: " << *Ptr << "\n"
1117 << "LAA: SCEV: " << *AR << "\n"
1118 << "LAA: Added an overflow assumption\n");
1119 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1120 } else
1121 return 0;
1122 }
1123
1124 return Stride;
1125 }
1126
sortPtrAccesses(ArrayRef<Value * > VL,const DataLayout & DL,ScalarEvolution & SE,SmallVectorImpl<unsigned> & SortedIndices)1127 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
1128 ScalarEvolution &SE,
1129 SmallVectorImpl<unsigned> &SortedIndices) {
1130 assert(llvm::all_of(
1131 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1132 "Expected list of pointer operands.");
1133 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
1134 OffValPairs.reserve(VL.size());
1135
1136 // Walk over the pointers, and map each of them to an offset relative to
1137 // first pointer in the array.
1138 Value *Ptr0 = VL[0];
1139 const SCEV *Scev0 = SE.getSCEV(Ptr0);
1140 Value *Obj0 = getUnderlyingObject(Ptr0);
1141
1142 llvm::SmallSet<int64_t, 4> Offsets;
1143 for (auto *Ptr : VL) {
1144 // TODO: Outline this code as a special, more time consuming, version of
1145 // computeConstantDifference() function.
1146 if (Ptr->getType()->getPointerAddressSpace() !=
1147 Ptr0->getType()->getPointerAddressSpace())
1148 return false;
1149 // If a pointer refers to a different underlying object, bail - the
1150 // pointers are by definition incomparable.
1151 Value *CurrObj = getUnderlyingObject(Ptr);
1152 if (CurrObj != Obj0)
1153 return false;
1154
1155 const SCEV *Scev = SE.getSCEV(Ptr);
1156 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0));
1157 // The pointers may not have a constant offset from each other, or SCEV
1158 // may just not be smart enough to figure out they do. Regardless,
1159 // there's nothing we can do.
1160 if (!Diff)
1161 return false;
1162
1163 // Check if the pointer with the same offset is found.
1164 int64_t Offset = Diff->getAPInt().getSExtValue();
1165 if (!Offsets.insert(Offset).second)
1166 return false;
1167 OffValPairs.emplace_back(Offset, Ptr);
1168 }
1169 SortedIndices.clear();
1170 SortedIndices.resize(VL.size());
1171 std::iota(SortedIndices.begin(), SortedIndices.end(), 0);
1172
1173 // Sort the memory accesses and keep the order of their uses in UseOrder.
1174 llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) {
1175 return OffValPairs[Left].first < OffValPairs[Right].first;
1176 });
1177
1178 // Check if the order is consecutive already.
1179 if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) {
1180 return I == SortedIndices[I];
1181 }))
1182 SortedIndices.clear();
1183
1184 return true;
1185 }
1186
1187 /// Take the address space operand from the Load/Store instruction.
1188 /// Returns -1 if this is not a valid Load/Store instruction.
getAddressSpaceOperand(Value * I)1189 static unsigned getAddressSpaceOperand(Value *I) {
1190 if (LoadInst *L = dyn_cast<LoadInst>(I))
1191 return L->getPointerAddressSpace();
1192 if (StoreInst *S = dyn_cast<StoreInst>(I))
1193 return S->getPointerAddressSpace();
1194 return -1;
1195 }
1196
1197 /// Returns true if the memory operations \p A and \p B are consecutive.
isConsecutiveAccess(Value * A,Value * B,const DataLayout & DL,ScalarEvolution & SE,bool CheckType)1198 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1199 ScalarEvolution &SE, bool CheckType) {
1200 Value *PtrA = getLoadStorePointerOperand(A);
1201 Value *PtrB = getLoadStorePointerOperand(B);
1202 unsigned ASA = getAddressSpaceOperand(A);
1203 unsigned ASB = getAddressSpaceOperand(B);
1204
1205 // Check that the address spaces match and that the pointers are valid.
1206 if (!PtrA || !PtrB || (ASA != ASB))
1207 return false;
1208
1209 // Make sure that A and B are different pointers.
1210 if (PtrA == PtrB)
1211 return false;
1212
1213 // Make sure that A and B have the same type if required.
1214 if (CheckType && PtrA->getType() != PtrB->getType())
1215 return false;
1216
1217 unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1218 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1219
1220 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1221 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1222 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1223
1224 // Retrieve the address space again as pointer stripping now tracks through
1225 // `addrspacecast`.
1226 ASA = cast<PointerType>(PtrA->getType())->getAddressSpace();
1227 ASB = cast<PointerType>(PtrB->getType())->getAddressSpace();
1228 // Check that the address spaces match and that the pointers are valid.
1229 if (ASA != ASB)
1230 return false;
1231
1232 IdxWidth = DL.getIndexSizeInBits(ASA);
1233 OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1234 OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1235
1236 APInt Size(IdxWidth, DL.getTypeStoreSize(Ty));
1237
1238 // OffsetDelta = OffsetB - OffsetA;
1239 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
1240 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
1241 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
1242 const APInt &OffsetDelta = cast<SCEVConstant>(OffsetDeltaSCEV)->getAPInt();
1243
1244 // Check if they are based on the same pointer. That makes the offsets
1245 // sufficient.
1246 if (PtrA == PtrB)
1247 return OffsetDelta == Size;
1248
1249 // Compute the necessary base pointer delta to have the necessary final delta
1250 // equal to the size.
1251 // BaseDelta = Size - OffsetDelta;
1252 const SCEV *SizeSCEV = SE.getConstant(Size);
1253 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
1254
1255 // Otherwise compute the distance with SCEV between the base pointers.
1256 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1257 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1258 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
1259 return X == PtrSCEVB;
1260 }
1261
1262 MemoryDepChecker::VectorizationSafetyStatus
isSafeForVectorization(DepType Type)1263 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1264 switch (Type) {
1265 case NoDep:
1266 case Forward:
1267 case BackwardVectorizable:
1268 return VectorizationSafetyStatus::Safe;
1269
1270 case Unknown:
1271 return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1272 case ForwardButPreventsForwarding:
1273 case Backward:
1274 case BackwardVectorizableButPreventsForwarding:
1275 return VectorizationSafetyStatus::Unsafe;
1276 }
1277 llvm_unreachable("unexpected DepType!");
1278 }
1279
isBackward() const1280 bool MemoryDepChecker::Dependence::isBackward() const {
1281 switch (Type) {
1282 case NoDep:
1283 case Forward:
1284 case ForwardButPreventsForwarding:
1285 case Unknown:
1286 return false;
1287
1288 case BackwardVectorizable:
1289 case Backward:
1290 case BackwardVectorizableButPreventsForwarding:
1291 return true;
1292 }
1293 llvm_unreachable("unexpected DepType!");
1294 }
1295
isPossiblyBackward() const1296 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1297 return isBackward() || Type == Unknown;
1298 }
1299
isForward() const1300 bool MemoryDepChecker::Dependence::isForward() const {
1301 switch (Type) {
1302 case Forward:
1303 case ForwardButPreventsForwarding:
1304 return true;
1305
1306 case NoDep:
1307 case Unknown:
1308 case BackwardVectorizable:
1309 case Backward:
1310 case BackwardVectorizableButPreventsForwarding:
1311 return false;
1312 }
1313 llvm_unreachable("unexpected DepType!");
1314 }
1315
couldPreventStoreLoadForward(uint64_t Distance,uint64_t TypeByteSize)1316 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1317 uint64_t TypeByteSize) {
1318 // If loads occur at a distance that is not a multiple of a feasible vector
1319 // factor store-load forwarding does not take place.
1320 // Positive dependences might cause troubles because vectorizing them might
1321 // prevent store-load forwarding making vectorized code run a lot slower.
1322 // a[i] = a[i-3] ^ a[i-8];
1323 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1324 // hence on your typical architecture store-load forwarding does not take
1325 // place. Vectorizing in such cases does not make sense.
1326 // Store-load forwarding distance.
1327
1328 // After this many iterations store-to-load forwarding conflicts should not
1329 // cause any slowdowns.
1330 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1331 // Maximum vector factor.
1332 uint64_t MaxVFWithoutSLForwardIssues = std::min(
1333 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
1334
1335 // Compute the smallest VF at which the store and load would be misaligned.
1336 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1337 VF *= 2) {
1338 // If the number of vector iteration between the store and the load are
1339 // small we could incur conflicts.
1340 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1341 MaxVFWithoutSLForwardIssues = (VF >> 1);
1342 break;
1343 }
1344 }
1345
1346 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1347 LLVM_DEBUG(
1348 dbgs() << "LAA: Distance " << Distance
1349 << " that could cause a store-load forwarding conflict\n");
1350 return true;
1351 }
1352
1353 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
1354 MaxVFWithoutSLForwardIssues !=
1355 VectorizerParams::MaxVectorWidth * TypeByteSize)
1356 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
1357 return false;
1358 }
1359
mergeInStatus(VectorizationSafetyStatus S)1360 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1361 if (Status < S)
1362 Status = S;
1363 }
1364
1365 /// Given a non-constant (unknown) dependence-distance \p Dist between two
1366 /// memory accesses, that have the same stride whose absolute value is given
1367 /// in \p Stride, and that have the same type size \p TypeByteSize,
1368 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1369 /// possible to prove statically that the dependence distance is larger
1370 /// than the range that the accesses will travel through the execution of
1371 /// the loop. If so, return true; false otherwise. This is useful for
1372 /// example in loops such as the following (PR31098):
1373 /// for (i = 0; i < D; ++i) {
1374 /// = out[i];
1375 /// out[i+D] =
1376 /// }
isSafeDependenceDistance(const DataLayout & DL,ScalarEvolution & SE,const SCEV & BackedgeTakenCount,const SCEV & Dist,uint64_t Stride,uint64_t TypeByteSize)1377 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1378 const SCEV &BackedgeTakenCount,
1379 const SCEV &Dist, uint64_t Stride,
1380 uint64_t TypeByteSize) {
1381
1382 // If we can prove that
1383 // (**) |Dist| > BackedgeTakenCount * Step
1384 // where Step is the absolute stride of the memory accesses in bytes,
1385 // then there is no dependence.
1386 //
1387 // Rationale:
1388 // We basically want to check if the absolute distance (|Dist/Step|)
1389 // is >= the loop iteration count (or > BackedgeTakenCount).
1390 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1391 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1392 // that the dependence distance is >= VF; This is checked elsewhere.
1393 // But in some cases we can prune unknown dependence distances early, and
1394 // even before selecting the VF, and without a runtime test, by comparing
1395 // the distance against the loop iteration count. Since the vectorized code
1396 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1397 // also guarantees that distance >= VF.
1398 //
1399 const uint64_t ByteStride = Stride * TypeByteSize;
1400 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1401 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1402
1403 const SCEV *CastedDist = &Dist;
1404 const SCEV *CastedProduct = Product;
1405 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
1406 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());
1407
1408 // The dependence distance can be positive/negative, so we sign extend Dist;
1409 // The multiplication of the absolute stride in bytes and the
1410 // backedgeTakenCount is non-negative, so we zero extend Product.
1411 if (DistTypeSize > ProductTypeSize)
1412 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1413 else
1414 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1415
1416 // Is Dist - (BackedgeTakenCount * Step) > 0 ?
1417 // (If so, then we have proven (**) because |Dist| >= Dist)
1418 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1419 if (SE.isKnownPositive(Minus))
1420 return true;
1421
1422 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ?
1423 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1424 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1425 Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1426 if (SE.isKnownPositive(Minus))
1427 return true;
1428
1429 return false;
1430 }
1431
1432 /// Check the dependence for two accesses with the same stride \p Stride.
1433 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1434 /// bytes.
1435 ///
1436 /// \returns true if they are independent.
areStridedAccessesIndependent(uint64_t Distance,uint64_t Stride,uint64_t TypeByteSize)1437 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1438 uint64_t TypeByteSize) {
1439 assert(Stride > 1 && "The stride must be greater than 1");
1440 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1441 assert(Distance > 0 && "The distance must be non-zero");
1442
1443 // Skip if the distance is not multiple of type byte size.
1444 if (Distance % TypeByteSize)
1445 return false;
1446
1447 uint64_t ScaledDist = Distance / TypeByteSize;
1448
1449 // No dependence if the scaled distance is not multiple of the stride.
1450 // E.g.
1451 // for (i = 0; i < 1024 ; i += 4)
1452 // A[i+2] = A[i] + 1;
1453 //
1454 // Two accesses in memory (scaled distance is 2, stride is 4):
1455 // | A[0] | | | | A[4] | | | |
1456 // | | | A[2] | | | | A[6] | |
1457 //
1458 // E.g.
1459 // for (i = 0; i < 1024 ; i += 3)
1460 // A[i+4] = A[i] + 1;
1461 //
1462 // Two accesses in memory (scaled distance is 4, stride is 3):
1463 // | A[0] | | | A[3] | | | A[6] | | |
1464 // | | | | | A[4] | | | A[7] | |
1465 return ScaledDist % Stride;
1466 }
1467
1468 MemoryDepChecker::Dependence::DepType
isDependent(const MemAccessInfo & A,unsigned AIdx,const MemAccessInfo & B,unsigned BIdx,const ValueToValueMap & Strides)1469 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1470 const MemAccessInfo &B, unsigned BIdx,
1471 const ValueToValueMap &Strides) {
1472 assert (AIdx < BIdx && "Must pass arguments in program order");
1473
1474 Value *APtr = A.getPointer();
1475 Value *BPtr = B.getPointer();
1476 bool AIsWrite = A.getInt();
1477 bool BIsWrite = B.getInt();
1478
1479 // Two reads are independent.
1480 if (!AIsWrite && !BIsWrite)
1481 return Dependence::NoDep;
1482
1483 // We cannot check pointers in different address spaces.
1484 if (APtr->getType()->getPointerAddressSpace() !=
1485 BPtr->getType()->getPointerAddressSpace())
1486 return Dependence::Unknown;
1487
1488 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
1489 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
1490
1491 const SCEV *Src = PSE.getSCEV(APtr);
1492 const SCEV *Sink = PSE.getSCEV(BPtr);
1493
1494 // If the induction step is negative we have to invert source and sink of the
1495 // dependence.
1496 if (StrideAPtr < 0) {
1497 std::swap(APtr, BPtr);
1498 std::swap(Src, Sink);
1499 std::swap(AIsWrite, BIsWrite);
1500 std::swap(AIdx, BIdx);
1501 std::swap(StrideAPtr, StrideBPtr);
1502 }
1503
1504 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
1505
1506 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1507 << "(Induction step: " << StrideAPtr << ")\n");
1508 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
1509 << *InstMap[BIdx] << ": " << *Dist << "\n");
1510
1511 // Need accesses with constant stride. We don't want to vectorize
1512 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
1513 // the address space.
1514 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
1515 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1516 return Dependence::Unknown;
1517 }
1518
1519 Type *ATy = APtr->getType()->getPointerElementType();
1520 Type *BTy = BPtr->getType()->getPointerElementType();
1521 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1522 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1523 uint64_t Stride = std::abs(StrideAPtr);
1524 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1525 if (!C) {
1526 if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
1527 isSafeDependenceDistance(DL, *(PSE.getSE()),
1528 *(PSE.getBackedgeTakenCount()), *Dist, Stride,
1529 TypeByteSize))
1530 return Dependence::NoDep;
1531
1532 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1533 FoundNonConstantDistanceDependence = true;
1534 return Dependence::Unknown;
1535 }
1536
1537 const APInt &Val = C->getAPInt();
1538 int64_t Distance = Val.getSExtValue();
1539
1540 // Attempt to prove strided accesses independent.
1541 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
1542 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
1543 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
1544 return Dependence::NoDep;
1545 }
1546
1547 // Negative distances are not plausible dependencies.
1548 if (Val.isNegative()) {
1549 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
1550 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1551 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
1552 ATy != BTy)) {
1553 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
1554 return Dependence::ForwardButPreventsForwarding;
1555 }
1556
1557 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
1558 return Dependence::Forward;
1559 }
1560
1561 // Write to the same location with the same size.
1562 // Could be improved to assert type sizes are the same (i32 == float, etc).
1563 if (Val == 0) {
1564 if (ATy == BTy)
1565 return Dependence::Forward;
1566 LLVM_DEBUG(
1567 dbgs() << "LAA: Zero dependence difference but different types\n");
1568 return Dependence::Unknown;
1569 }
1570
1571 assert(Val.isStrictlyPositive() && "Expect a positive value");
1572
1573 if (ATy != BTy) {
1574 LLVM_DEBUG(
1575 dbgs()
1576 << "LAA: ReadWrite-Write positive dependency with different types\n");
1577 return Dependence::Unknown;
1578 }
1579
1580 // Bail out early if passed-in parameters make vectorization not feasible.
1581 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
1582 VectorizerParams::VectorizationFactor : 1);
1583 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
1584 VectorizerParams::VectorizationInterleave : 1);
1585 // The minimum number of iterations for a vectorized/unrolled version.
1586 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
1587
1588 // It's not vectorizable if the distance is smaller than the minimum distance
1589 // needed for a vectroized/unrolled version. Vectorizing one iteration in
1590 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
1591 // TypeByteSize (No need to plus the last gap distance).
1592 //
1593 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1594 // foo(int *A) {
1595 // int *B = (int *)((char *)A + 14);
1596 // for (i = 0 ; i < 1024 ; i += 2)
1597 // B[i] = A[i] + 1;
1598 // }
1599 //
1600 // Two accesses in memory (stride is 2):
1601 // | A[0] | | A[2] | | A[4] | | A[6] | |
1602 // | B[0] | | B[2] | | B[4] |
1603 //
1604 // Distance needs for vectorizing iterations except the last iteration:
1605 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
1606 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
1607 //
1608 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
1609 // 12, which is less than distance.
1610 //
1611 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
1612 // the minimum distance needed is 28, which is greater than distance. It is
1613 // not safe to do vectorization.
1614 uint64_t MinDistanceNeeded =
1615 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
1616 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
1617 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
1618 << Distance << '\n');
1619 return Dependence::Backward;
1620 }
1621
1622 // Unsafe if the minimum distance needed is greater than max safe distance.
1623 if (MinDistanceNeeded > MaxSafeDepDistBytes) {
1624 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
1625 << MinDistanceNeeded << " size in bytes");
1626 return Dependence::Backward;
1627 }
1628
1629 // Positive distance bigger than max vectorization factor.
1630 // FIXME: Should use max factor instead of max distance in bytes, which could
1631 // not handle different types.
1632 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
1633 // void foo (int *A, char *B) {
1634 // for (unsigned i = 0; i < 1024; i++) {
1635 // A[i+2] = A[i] + 1;
1636 // B[i+2] = B[i] + 1;
1637 // }
1638 // }
1639 //
1640 // This case is currently unsafe according to the max safe distance. If we
1641 // analyze the two accesses on array B, the max safe dependence distance
1642 // is 2. Then we analyze the accesses on array A, the minimum distance needed
1643 // is 8, which is less than 2 and forbidden vectorization, But actually
1644 // both A and B could be vectorized by 2 iterations.
1645 MaxSafeDepDistBytes =
1646 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
1647
1648 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
1649 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
1650 couldPreventStoreLoadForward(Distance, TypeByteSize))
1651 return Dependence::BackwardVectorizableButPreventsForwarding;
1652
1653 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
1654 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
1655 << " with max VF = " << MaxVF << '\n');
1656 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
1657 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
1658 return Dependence::BackwardVectorizable;
1659 }
1660
areDepsSafe(DepCandidates & AccessSets,MemAccessInfoList & CheckDeps,const ValueToValueMap & Strides)1661 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
1662 MemAccessInfoList &CheckDeps,
1663 const ValueToValueMap &Strides) {
1664
1665 MaxSafeDepDistBytes = -1;
1666 SmallPtrSet<MemAccessInfo, 8> Visited;
1667 for (MemAccessInfo CurAccess : CheckDeps) {
1668 if (Visited.count(CurAccess))
1669 continue;
1670
1671 // Get the relevant memory access set.
1672 EquivalenceClasses<MemAccessInfo>::iterator I =
1673 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
1674
1675 // Check accesses within this set.
1676 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
1677 AccessSets.member_begin(I);
1678 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
1679 AccessSets.member_end();
1680
1681 // Check every access pair.
1682 while (AI != AE) {
1683 Visited.insert(*AI);
1684 bool AIIsWrite = AI->getInt();
1685 // Check loads only against next equivalent class, but stores also against
1686 // other stores in the same equivalence class - to the same address.
1687 EquivalenceClasses<MemAccessInfo>::member_iterator OI =
1688 (AIIsWrite ? AI : std::next(AI));
1689 while (OI != AE) {
1690 // Check every accessing instruction pair in program order.
1691 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
1692 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
1693 // Scan all accesses of another equivalence class, but only the next
1694 // accesses of the same equivalent class.
1695 for (std::vector<unsigned>::iterator
1696 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
1697 I2E = (OI == AI ? I1E : Accesses[*OI].end());
1698 I2 != I2E; ++I2) {
1699 auto A = std::make_pair(&*AI, *I1);
1700 auto B = std::make_pair(&*OI, *I2);
1701
1702 assert(*I1 != *I2);
1703 if (*I1 > *I2)
1704 std::swap(A, B);
1705
1706 Dependence::DepType Type =
1707 isDependent(*A.first, A.second, *B.first, B.second, Strides);
1708 mergeInStatus(Dependence::isSafeForVectorization(Type));
1709
1710 // Gather dependences unless we accumulated MaxDependences
1711 // dependences. In that case return as soon as we find the first
1712 // unsafe dependence. This puts a limit on this quadratic
1713 // algorithm.
1714 if (RecordDependences) {
1715 if (Type != Dependence::NoDep)
1716 Dependences.push_back(Dependence(A.second, B.second, Type));
1717
1718 if (Dependences.size() >= MaxDependences) {
1719 RecordDependences = false;
1720 Dependences.clear();
1721 LLVM_DEBUG(dbgs()
1722 << "Too many dependences, stopped recording\n");
1723 }
1724 }
1725 if (!RecordDependences && !isSafeForVectorization())
1726 return false;
1727 }
1728 ++OI;
1729 }
1730 AI++;
1731 }
1732 }
1733
1734 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
1735 return isSafeForVectorization();
1736 }
1737
1738 SmallVector<Instruction *, 4>
getInstructionsForAccess(Value * Ptr,bool isWrite) const1739 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
1740 MemAccessInfo Access(Ptr, isWrite);
1741 auto &IndexVector = Accesses.find(Access)->second;
1742
1743 SmallVector<Instruction *, 4> Insts;
1744 transform(IndexVector,
1745 std::back_inserter(Insts),
1746 [&](unsigned Idx) { return this->InstMap[Idx]; });
1747 return Insts;
1748 }
1749
1750 const char *MemoryDepChecker::Dependence::DepName[] = {
1751 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
1752 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
1753
print(raw_ostream & OS,unsigned Depth,const SmallVectorImpl<Instruction * > & Instrs) const1754 void MemoryDepChecker::Dependence::print(
1755 raw_ostream &OS, unsigned Depth,
1756 const SmallVectorImpl<Instruction *> &Instrs) const {
1757 OS.indent(Depth) << DepName[Type] << ":\n";
1758 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
1759 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
1760 }
1761
canAnalyzeLoop()1762 bool LoopAccessInfo::canAnalyzeLoop() {
1763 // We need to have a loop header.
1764 LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
1765 << TheLoop->getHeader()->getParent()->getName() << ": "
1766 << TheLoop->getHeader()->getName() << '\n');
1767
1768 // We can only analyze innermost loops.
1769 if (!TheLoop->isInnermost()) {
1770 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
1771 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
1772 return false;
1773 }
1774
1775 // We must have a single backedge.
1776 if (TheLoop->getNumBackEdges() != 1) {
1777 LLVM_DEBUG(
1778 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
1779 recordAnalysis("CFGNotUnderstood")
1780 << "loop control flow is not understood by analyzer";
1781 return false;
1782 }
1783
1784 // ScalarEvolution needs to be able to find the exit count.
1785 const SCEV *ExitCount = PSE->getBackedgeTakenCount();
1786 if (isa<SCEVCouldNotCompute>(ExitCount)) {
1787 recordAnalysis("CantComputeNumberOfIterations")
1788 << "could not determine number of loop iterations";
1789 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
1790 return false;
1791 }
1792
1793 return true;
1794 }
1795
analyzeLoop(AAResults * AA,LoopInfo * LI,const TargetLibraryInfo * TLI,DominatorTree * DT)1796 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
1797 const TargetLibraryInfo *TLI,
1798 DominatorTree *DT) {
1799 typedef SmallPtrSet<Value*, 16> ValueSet;
1800
1801 // Holds the Load and Store instructions.
1802 SmallVector<LoadInst *, 16> Loads;
1803 SmallVector<StoreInst *, 16> Stores;
1804
1805 // Holds all the different accesses in the loop.
1806 unsigned NumReads = 0;
1807 unsigned NumReadWrites = 0;
1808
1809 bool HasComplexMemInst = false;
1810
1811 // A runtime check is only legal to insert if there are no convergent calls.
1812 HasConvergentOp = false;
1813
1814 PtrRtChecking->Pointers.clear();
1815 PtrRtChecking->Need = false;
1816
1817 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
1818
1819 const bool EnableMemAccessVersioningOfLoop =
1820 EnableMemAccessVersioning &&
1821 !TheLoop->getHeader()->getParent()->hasOptSize();
1822
1823 // For each block.
1824 for (BasicBlock *BB : TheLoop->blocks()) {
1825 // Scan the BB and collect legal loads and stores. Also detect any
1826 // convergent instructions.
1827 for (Instruction &I : *BB) {
1828 if (auto *Call = dyn_cast<CallBase>(&I)) {
1829 if (Call->isConvergent())
1830 HasConvergentOp = true;
1831 }
1832
1833 // With both a non-vectorizable memory instruction and a convergent
1834 // operation, found in this loop, no reason to continue the search.
1835 if (HasComplexMemInst && HasConvergentOp) {
1836 CanVecMem = false;
1837 return;
1838 }
1839
1840 // Avoid hitting recordAnalysis multiple times.
1841 if (HasComplexMemInst)
1842 continue;
1843
1844 // If this is a load, save it. If this instruction can read from memory
1845 // but is not a load, then we quit. Notice that we don't handle function
1846 // calls that read or write.
1847 if (I.mayReadFromMemory()) {
1848 // Many math library functions read the rounding mode. We will only
1849 // vectorize a loop if it contains known function calls that don't set
1850 // the flag. Therefore, it is safe to ignore this read from memory.
1851 auto *Call = dyn_cast<CallInst>(&I);
1852 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
1853 continue;
1854
1855 // If the function has an explicit vectorized counterpart, we can safely
1856 // assume that it can be vectorized.
1857 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
1858 !VFDatabase::getMappings(*Call).empty())
1859 continue;
1860
1861 auto *Ld = dyn_cast<LoadInst>(&I);
1862 if (!Ld) {
1863 recordAnalysis("CantVectorizeInstruction", Ld)
1864 << "instruction cannot be vectorized";
1865 HasComplexMemInst = true;
1866 continue;
1867 }
1868 if (!Ld->isSimple() && !IsAnnotatedParallel) {
1869 recordAnalysis("NonSimpleLoad", Ld)
1870 << "read with atomic ordering or volatile read";
1871 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
1872 HasComplexMemInst = true;
1873 continue;
1874 }
1875 NumLoads++;
1876 Loads.push_back(Ld);
1877 DepChecker->addAccess(Ld);
1878 if (EnableMemAccessVersioningOfLoop)
1879 collectStridedAccess(Ld);
1880 continue;
1881 }
1882
1883 // Save 'store' instructions. Abort if other instructions write to memory.
1884 if (I.mayWriteToMemory()) {
1885 auto *St = dyn_cast<StoreInst>(&I);
1886 if (!St) {
1887 recordAnalysis("CantVectorizeInstruction", St)
1888 << "instruction cannot be vectorized";
1889 HasComplexMemInst = true;
1890 continue;
1891 }
1892 if (!St->isSimple() && !IsAnnotatedParallel) {
1893 recordAnalysis("NonSimpleStore", St)
1894 << "write with atomic ordering or volatile write";
1895 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
1896 HasComplexMemInst = true;
1897 continue;
1898 }
1899 NumStores++;
1900 Stores.push_back(St);
1901 DepChecker->addAccess(St);
1902 if (EnableMemAccessVersioningOfLoop)
1903 collectStridedAccess(St);
1904 }
1905 } // Next instr.
1906 } // Next block.
1907
1908 if (HasComplexMemInst) {
1909 CanVecMem = false;
1910 return;
1911 }
1912
1913 // Now we have two lists that hold the loads and the stores.
1914 // Next, we find the pointers that they use.
1915
1916 // Check if we see any stores. If there are no stores, then we don't
1917 // care if the pointers are *restrict*.
1918 if (!Stores.size()) {
1919 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
1920 CanVecMem = true;
1921 return;
1922 }
1923
1924 MemoryDepChecker::DepCandidates DependentAccesses;
1925 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE);
1926
1927 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
1928 // multiple times on the same object. If the ptr is accessed twice, once
1929 // for read and once for write, it will only appear once (on the write
1930 // list). This is okay, since we are going to check for conflicts between
1931 // writes and between reads and writes, but not between reads and reads.
1932 ValueSet Seen;
1933
1934 // Record uniform store addresses to identify if we have multiple stores
1935 // to the same address.
1936 ValueSet UniformStores;
1937
1938 for (StoreInst *ST : Stores) {
1939 Value *Ptr = ST->getPointerOperand();
1940
1941 if (isUniform(Ptr))
1942 HasDependenceInvolvingLoopInvariantAddress |=
1943 !UniformStores.insert(Ptr).second;
1944
1945 // If we did *not* see this pointer before, insert it to the read-write
1946 // list. At this phase it is only a 'write' list.
1947 if (Seen.insert(Ptr).second) {
1948 ++NumReadWrites;
1949
1950 MemoryLocation Loc = MemoryLocation::get(ST);
1951 // The TBAA metadata could have a control dependency on the predication
1952 // condition, so we cannot rely on it when determining whether or not we
1953 // need runtime pointer checks.
1954 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
1955 Loc.AATags.TBAA = nullptr;
1956
1957 Accesses.addStore(Loc);
1958 }
1959 }
1960
1961 if (IsAnnotatedParallel) {
1962 LLVM_DEBUG(
1963 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
1964 << "checks.\n");
1965 CanVecMem = true;
1966 return;
1967 }
1968
1969 for (LoadInst *LD : Loads) {
1970 Value *Ptr = LD->getPointerOperand();
1971 // If we did *not* see this pointer before, insert it to the
1972 // read list. If we *did* see it before, then it is already in
1973 // the read-write list. This allows us to vectorize expressions
1974 // such as A[i] += x; Because the address of A[i] is a read-write
1975 // pointer. This only works if the index of A[i] is consecutive.
1976 // If the address of i is unknown (for example A[B[i]]) then we may
1977 // read a few words, modify, and write a few words, and some of the
1978 // words may be written to the same address.
1979 bool IsReadOnlyPtr = false;
1980 if (Seen.insert(Ptr).second ||
1981 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
1982 ++NumReads;
1983 IsReadOnlyPtr = true;
1984 }
1985
1986 // See if there is an unsafe dependency between a load to a uniform address and
1987 // store to the same uniform address.
1988 if (UniformStores.count(Ptr)) {
1989 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
1990 "load and uniform store to the same address!\n");
1991 HasDependenceInvolvingLoopInvariantAddress = true;
1992 }
1993
1994 MemoryLocation Loc = MemoryLocation::get(LD);
1995 // The TBAA metadata could have a control dependency on the predication
1996 // condition, so we cannot rely on it when determining whether or not we
1997 // need runtime pointer checks.
1998 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
1999 Loc.AATags.TBAA = nullptr;
2000
2001 Accesses.addLoad(Loc, IsReadOnlyPtr);
2002 }
2003
2004 // If we write (or read-write) to a single destination and there are no
2005 // other reads in this loop then is it safe to vectorize.
2006 if (NumReadWrites == 1 && NumReads == 0) {
2007 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2008 CanVecMem = true;
2009 return;
2010 }
2011
2012 // Build dependence sets and check whether we need a runtime pointer bounds
2013 // check.
2014 Accesses.buildDependenceSets();
2015
2016 // Find pointers with computable bounds. We are going to use this information
2017 // to place a runtime bound check.
2018 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
2019 TheLoop, SymbolicStrides);
2020 if (!CanDoRTIfNeeded) {
2021 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
2022 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2023 << "the array bounds.\n");
2024 CanVecMem = false;
2025 return;
2026 }
2027
2028 LLVM_DEBUG(
2029 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2030
2031 CanVecMem = true;
2032 if (Accesses.isDependencyCheckNeeded()) {
2033 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2034 CanVecMem = DepChecker->areDepsSafe(
2035 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
2036 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
2037
2038 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2039 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2040
2041 // Clear the dependency checks. We assume they are not needed.
2042 Accesses.resetDepChecks(*DepChecker);
2043
2044 PtrRtChecking->reset();
2045 PtrRtChecking->Need = true;
2046
2047 auto *SE = PSE->getSE();
2048 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
2049 SymbolicStrides, true);
2050
2051 // Check that we found the bounds for the pointer.
2052 if (!CanDoRTIfNeeded) {
2053 recordAnalysis("CantCheckMemDepsAtRunTime")
2054 << "cannot check memory dependencies at runtime";
2055 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2056 CanVecMem = false;
2057 return;
2058 }
2059
2060 CanVecMem = true;
2061 }
2062 }
2063
2064 if (HasConvergentOp) {
2065 recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2066 << "cannot add control dependency to convergent operation";
2067 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2068 "would be needed with a convergent operation\n");
2069 CanVecMem = false;
2070 return;
2071 }
2072
2073 if (CanVecMem)
2074 LLVM_DEBUG(
2075 dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
2076 << (PtrRtChecking->Need ? "" : " don't")
2077 << " need runtime memory checks.\n");
2078 else {
2079 recordAnalysis("UnsafeMemDep")
2080 << "unsafe dependent memory operations in loop. Use "
2081 "#pragma loop distribute(enable) to allow loop distribution "
2082 "to attempt to isolate the offending operations into a separate "
2083 "loop";
2084 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2085 }
2086 }
2087
blockNeedsPredication(BasicBlock * BB,Loop * TheLoop,DominatorTree * DT)2088 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2089 DominatorTree *DT) {
2090 assert(TheLoop->contains(BB) && "Unknown block used");
2091
2092 // Blocks that do not dominate the latch need predication.
2093 BasicBlock* Latch = TheLoop->getLoopLatch();
2094 return !DT->dominates(BB, Latch);
2095 }
2096
recordAnalysis(StringRef RemarkName,Instruction * I)2097 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2098 Instruction *I) {
2099 assert(!Report && "Multiple reports generated");
2100
2101 Value *CodeRegion = TheLoop->getHeader();
2102 DebugLoc DL = TheLoop->getStartLoc();
2103
2104 if (I) {
2105 CodeRegion = I->getParent();
2106 // If there is no debug location attached to the instruction, revert back to
2107 // using the loop's.
2108 if (I->getDebugLoc())
2109 DL = I->getDebugLoc();
2110 }
2111
2112 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2113 CodeRegion);
2114 return *Report;
2115 }
2116
isUniform(Value * V) const2117 bool LoopAccessInfo::isUniform(Value *V) const {
2118 auto *SE = PSE->getSE();
2119 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
2120 // never considered uniform.
2121 // TODO: Is this really what we want? Even without FP SCEV, we may want some
2122 // trivially loop-invariant FP values to be considered uniform.
2123 if (!SE->isSCEVable(V->getType()))
2124 return false;
2125 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
2126 }
2127
collectStridedAccess(Value * MemAccess)2128 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2129 Value *Ptr = getLoadStorePointerOperand(MemAccess);
2130 if (!Ptr)
2131 return;
2132
2133 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2134 if (!Stride)
2135 return;
2136
2137 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2138 "versioning:");
2139 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
2140
2141 // Avoid adding the "Stride == 1" predicate when we know that
2142 // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2143 // or zero iteration loop, as Trip-Count <= Stride == 1.
2144 //
2145 // TODO: We are currently not making a very informed decision on when it is
2146 // beneficial to apply stride versioning. It might make more sense that the
2147 // users of this analysis (such as the vectorizer) will trigger it, based on
2148 // their specific cost considerations; For example, in cases where stride
2149 // versioning does not help resolving memory accesses/dependences, the
2150 // vectorizer should evaluate the cost of the runtime test, and the benefit
2151 // of various possible stride specializations, considering the alternatives
2152 // of using gather/scatters (if available).
2153
2154 const SCEV *StrideExpr = PSE->getSCEV(Stride);
2155 const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2156
2157 // Match the types so we can compare the stride and the BETakenCount.
2158 // The Stride can be positive/negative, so we sign extend Stride;
2159 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2160 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2161 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
2162 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
2163 const SCEV *CastedStride = StrideExpr;
2164 const SCEV *CastedBECount = BETakenCount;
2165 ScalarEvolution *SE = PSE->getSE();
2166 if (BETypeSize >= StrideTypeSize)
2167 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2168 else
2169 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2170 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2171 // Since TripCount == BackEdgeTakenCount + 1, checking:
2172 // "Stride >= TripCount" is equivalent to checking:
2173 // Stride - BETakenCount > 0
2174 if (SE->isKnownPositive(StrideMinusBETaken)) {
2175 LLVM_DEBUG(
2176 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2177 "Stride==1 predicate will imply that the loop executes "
2178 "at most once.\n");
2179 return;
2180 }
2181 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");
2182
2183 SymbolicStrides[Ptr] = Stride;
2184 StrideSet.insert(Stride);
2185 }
2186
LoopAccessInfo(Loop * L,ScalarEvolution * SE,const TargetLibraryInfo * TLI,AAResults * AA,DominatorTree * DT,LoopInfo * LI)2187 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2188 const TargetLibraryInfo *TLI, AAResults *AA,
2189 DominatorTree *DT, LoopInfo *LI)
2190 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2191 PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)),
2192 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
2193 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
2194 HasConvergentOp(false),
2195 HasDependenceInvolvingLoopInvariantAddress(false) {
2196 if (canAnalyzeLoop())
2197 analyzeLoop(AA, LI, TLI, DT);
2198 }
2199
print(raw_ostream & OS,unsigned Depth) const2200 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2201 if (CanVecMem) {
2202 OS.indent(Depth) << "Memory dependences are safe";
2203 if (MaxSafeDepDistBytes != -1ULL)
2204 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
2205 << " bytes";
2206 if (PtrRtChecking->Need)
2207 OS << " with run-time checks";
2208 OS << "\n";
2209 }
2210
2211 if (HasConvergentOp)
2212 OS.indent(Depth) << "Has convergent operation in loop\n";
2213
2214 if (Report)
2215 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2216
2217 if (auto *Dependences = DepChecker->getDependences()) {
2218 OS.indent(Depth) << "Dependences:\n";
2219 for (auto &Dep : *Dependences) {
2220 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2221 OS << "\n";
2222 }
2223 } else
2224 OS.indent(Depth) << "Too many dependences, not recorded\n";
2225
2226 // List the pair of accesses need run-time checks to prove independence.
2227 PtrRtChecking->print(OS, Depth);
2228 OS << "\n";
2229
2230 OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2231 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2232 << "found in loop.\n";
2233
2234 OS.indent(Depth) << "SCEV assumptions:\n";
2235 PSE->getUnionPredicate().print(OS, Depth);
2236
2237 OS << "\n";
2238
2239 OS.indent(Depth) << "Expressions re-written:\n";
2240 PSE->print(OS, Depth);
2241 }
2242
LoopAccessLegacyAnalysis()2243 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) {
2244 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
2245 }
2246
getInfo(Loop * L)2247 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
2248 auto &LAI = LoopAccessInfoMap[L];
2249
2250 if (!LAI)
2251 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
2252
2253 return *LAI.get();
2254 }
2255
print(raw_ostream & OS,const Module * M) const2256 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
2257 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
2258
2259 for (Loop *TopLevelLoop : *LI)
2260 for (Loop *L : depth_first(TopLevelLoop)) {
2261 OS.indent(2) << L->getHeader()->getName() << ":\n";
2262 auto &LAI = LAA.getInfo(L);
2263 LAI.print(OS, 4);
2264 }
2265 }
2266
runOnFunction(Function & F)2267 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
2268 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2269 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2270 TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2271 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2272 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2273 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2274
2275 return false;
2276 }
2277
getAnalysisUsage(AnalysisUsage & AU) const2278 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
2279 AU.addRequired<ScalarEvolutionWrapperPass>();
2280 AU.addRequired<AAResultsWrapperPass>();
2281 AU.addRequired<DominatorTreeWrapperPass>();
2282 AU.addRequired<LoopInfoWrapperPass>();
2283
2284 AU.setPreservesAll();
2285 }
2286
2287 char LoopAccessLegacyAnalysis::ID = 0;
2288 static const char laa_name[] = "Loop Access Analysis";
2289 #define LAA_NAME "loop-accesses"
2290
2291 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2292 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2293 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
2294 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2295 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2296 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
2297
2298 AnalysisKey LoopAccessAnalysis::Key;
2299
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR)2300 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
2301 LoopStandardAnalysisResults &AR) {
2302 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
2303 }
2304
2305 namespace llvm {
2306
createLAAPass()2307 Pass *createLAAPass() {
2308 return new LoopAccessLegacyAnalysis();
2309 }
2310
2311 } // end namespace llvm
2312