1 //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LegalizerHelper class to legalize
10 /// individual instructions and the LegalizeMachineIR wrapper pass for the
11 /// primary legalization.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #define DEBUG_TYPE "legalizer"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace MIPatternMatch;
34 
35 /// Try to break down \p OrigTy into \p NarrowTy sized pieces.
36 ///
37 /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
38 /// with any leftover piece as type \p LeftoverTy
39 ///
40 /// Returns -1 in the first element of the pair if the breakdown is not
41 /// satisfiable.
42 static std::pair<int, int>
getNarrowTypeBreakDown(LLT OrigTy,LLT NarrowTy,LLT & LeftoverTy)43 getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
44   assert(!LeftoverTy.isValid() && "this is an out argument");
45 
46   unsigned Size = OrigTy.getSizeInBits();
47   unsigned NarrowSize = NarrowTy.getSizeInBits();
48   unsigned NumParts = Size / NarrowSize;
49   unsigned LeftoverSize = Size - NumParts * NarrowSize;
50   assert(Size > NarrowSize);
51 
52   if (LeftoverSize == 0)
53     return {NumParts, 0};
54 
55   if (NarrowTy.isVector()) {
56     unsigned EltSize = OrigTy.getScalarSizeInBits();
57     if (LeftoverSize % EltSize != 0)
58       return {-1, -1};
59     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
60   } else {
61     LeftoverTy = LLT::scalar(LeftoverSize);
62   }
63 
64   int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
65   return std::make_pair(NumParts, NumLeftover);
66 }
67 
getFloatTypeForLLT(LLVMContext & Ctx,LLT Ty)68 static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
69 
70   if (!Ty.isScalar())
71     return nullptr;
72 
73   switch (Ty.getSizeInBits()) {
74   case 16:
75     return Type::getHalfTy(Ctx);
76   case 32:
77     return Type::getFloatTy(Ctx);
78   case 64:
79     return Type::getDoubleTy(Ctx);
80   case 80:
81     return Type::getX86_FP80Ty(Ctx);
82   case 128:
83     return Type::getFP128Ty(Ctx);
84   default:
85     return nullptr;
86   }
87 }
88 
LegalizerHelper(MachineFunction & MF,GISelChangeObserver & Observer,MachineIRBuilder & Builder)89 LegalizerHelper::LegalizerHelper(MachineFunction &MF,
90                                  GISelChangeObserver &Observer,
91                                  MachineIRBuilder &Builder)
92     : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
93       LI(*MF.getSubtarget().getLegalizerInfo()),
94       TLI(*MF.getSubtarget().getTargetLowering()) { }
95 
LegalizerHelper(MachineFunction & MF,const LegalizerInfo & LI,GISelChangeObserver & Observer,MachineIRBuilder & B)96 LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
97                                  GISelChangeObserver &Observer,
98                                  MachineIRBuilder &B)
99   : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
100     TLI(*MF.getSubtarget().getTargetLowering()) { }
101 
102 LegalizerHelper::LegalizeResult
legalizeInstrStep(MachineInstr & MI)103 LegalizerHelper::legalizeInstrStep(MachineInstr &MI) {
104   LLVM_DEBUG(dbgs() << "Legalizing: " << MI);
105 
106   MIRBuilder.setInstrAndDebugLoc(MI);
107 
108   if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
109       MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
110     return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
111   auto Step = LI.getAction(MI, MRI);
112   switch (Step.Action) {
113   case Legal:
114     LLVM_DEBUG(dbgs() << ".. Already legal\n");
115     return AlreadyLegal;
116   case Libcall:
117     LLVM_DEBUG(dbgs() << ".. Convert to libcall\n");
118     return libcall(MI);
119   case NarrowScalar:
120     LLVM_DEBUG(dbgs() << ".. Narrow scalar\n");
121     return narrowScalar(MI, Step.TypeIdx, Step.NewType);
122   case WidenScalar:
123     LLVM_DEBUG(dbgs() << ".. Widen scalar\n");
124     return widenScalar(MI, Step.TypeIdx, Step.NewType);
125   case Bitcast:
126     LLVM_DEBUG(dbgs() << ".. Bitcast type\n");
127     return bitcast(MI, Step.TypeIdx, Step.NewType);
128   case Lower:
129     LLVM_DEBUG(dbgs() << ".. Lower\n");
130     return lower(MI, Step.TypeIdx, Step.NewType);
131   case FewerElements:
132     LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n");
133     return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
134   case MoreElements:
135     LLVM_DEBUG(dbgs() << ".. Increase number of elements\n");
136     return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
137   case Custom:
138     LLVM_DEBUG(dbgs() << ".. Custom legalization\n");
139     return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
140   default:
141     LLVM_DEBUG(dbgs() << ".. Unable to legalize\n");
142     return UnableToLegalize;
143   }
144 }
145 
extractParts(Register Reg,LLT Ty,int NumParts,SmallVectorImpl<Register> & VRegs)146 void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
147                                    SmallVectorImpl<Register> &VRegs) {
148   for (int i = 0; i < NumParts; ++i)
149     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
150   MIRBuilder.buildUnmerge(VRegs, Reg);
151 }
152 
extractParts(Register Reg,LLT RegTy,LLT MainTy,LLT & LeftoverTy,SmallVectorImpl<Register> & VRegs,SmallVectorImpl<Register> & LeftoverRegs)153 bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
154                                    LLT MainTy, LLT &LeftoverTy,
155                                    SmallVectorImpl<Register> &VRegs,
156                                    SmallVectorImpl<Register> &LeftoverRegs) {
157   assert(!LeftoverTy.isValid() && "this is an out argument");
158 
159   unsigned RegSize = RegTy.getSizeInBits();
160   unsigned MainSize = MainTy.getSizeInBits();
161   unsigned NumParts = RegSize / MainSize;
162   unsigned LeftoverSize = RegSize - NumParts * MainSize;
163 
164   // Use an unmerge when possible.
165   if (LeftoverSize == 0) {
166     for (unsigned I = 0; I < NumParts; ++I)
167       VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
168     MIRBuilder.buildUnmerge(VRegs, Reg);
169     return true;
170   }
171 
172   if (MainTy.isVector()) {
173     unsigned EltSize = MainTy.getScalarSizeInBits();
174     if (LeftoverSize % EltSize != 0)
175       return false;
176     LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize);
177   } else {
178     LeftoverTy = LLT::scalar(LeftoverSize);
179   }
180 
181   // For irregular sizes, extract the individual parts.
182   for (unsigned I = 0; I != NumParts; ++I) {
183     Register NewReg = MRI.createGenericVirtualRegister(MainTy);
184     VRegs.push_back(NewReg);
185     MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
186   }
187 
188   for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
189        Offset += LeftoverSize) {
190     Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
191     LeftoverRegs.push_back(NewReg);
192     MIRBuilder.buildExtract(NewReg, Reg, Offset);
193   }
194 
195   return true;
196 }
197 
insertParts(Register DstReg,LLT ResultTy,LLT PartTy,ArrayRef<Register> PartRegs,LLT LeftoverTy,ArrayRef<Register> LeftoverRegs)198 void LegalizerHelper::insertParts(Register DstReg,
199                                   LLT ResultTy, LLT PartTy,
200                                   ArrayRef<Register> PartRegs,
201                                   LLT LeftoverTy,
202                                   ArrayRef<Register> LeftoverRegs) {
203   if (!LeftoverTy.isValid()) {
204     assert(LeftoverRegs.empty());
205 
206     if (!ResultTy.isVector()) {
207       MIRBuilder.buildMerge(DstReg, PartRegs);
208       return;
209     }
210 
211     if (PartTy.isVector())
212       MIRBuilder.buildConcatVectors(DstReg, PartRegs);
213     else
214       MIRBuilder.buildBuildVector(DstReg, PartRegs);
215     return;
216   }
217 
218   unsigned PartSize = PartTy.getSizeInBits();
219   unsigned LeftoverPartSize = LeftoverTy.getSizeInBits();
220 
221   Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy);
222   MIRBuilder.buildUndef(CurResultReg);
223 
224   unsigned Offset = 0;
225   for (Register PartReg : PartRegs) {
226     Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy);
227     MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset);
228     CurResultReg = NewResultReg;
229     Offset += PartSize;
230   }
231 
232   for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) {
233     // Use the original output register for the final insert to avoid a copy.
234     Register NewResultReg = (I + 1 == E) ?
235       DstReg : MRI.createGenericVirtualRegister(ResultTy);
236 
237     MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset);
238     CurResultReg = NewResultReg;
239     Offset += LeftoverPartSize;
240   }
241 }
242 
243 /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
getUnmergeResults(SmallVectorImpl<Register> & Regs,const MachineInstr & MI)244 static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
245                               const MachineInstr &MI) {
246   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES);
247 
248   const int StartIdx = Regs.size();
249   const int NumResults = MI.getNumOperands() - 1;
250   Regs.resize(Regs.size() + NumResults);
251   for (int I = 0; I != NumResults; ++I)
252     Regs[StartIdx + I] = MI.getOperand(I).getReg();
253 }
254 
extractGCDType(SmallVectorImpl<Register> & Parts,LLT GCDTy,Register SrcReg)255 void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
256                                      LLT GCDTy, Register SrcReg) {
257   LLT SrcTy = MRI.getType(SrcReg);
258   if (SrcTy == GCDTy) {
259     // If the source already evenly divides the result type, we don't need to do
260     // anything.
261     Parts.push_back(SrcReg);
262   } else {
263     // Need to split into common type sized pieces.
264     auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
265     getUnmergeResults(Parts, *Unmerge);
266   }
267 }
268 
extractGCDType(SmallVectorImpl<Register> & Parts,LLT DstTy,LLT NarrowTy,Register SrcReg)269 LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
270                                     LLT NarrowTy, Register SrcReg) {
271   LLT SrcTy = MRI.getType(SrcReg);
272   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
273   extractGCDType(Parts, GCDTy, SrcReg);
274   return GCDTy;
275 }
276 
buildLCMMergePieces(LLT DstTy,LLT NarrowTy,LLT GCDTy,SmallVectorImpl<Register> & VRegs,unsigned PadStrategy)277 LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
278                                          SmallVectorImpl<Register> &VRegs,
279                                          unsigned PadStrategy) {
280   LLT LCMTy = getLCMType(DstTy, NarrowTy);
281 
282   int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
283   int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
284   int NumOrigSrc = VRegs.size();
285 
286   Register PadReg;
287 
288   // Get a value we can use to pad the source value if the sources won't evenly
289   // cover the result type.
290   if (NumOrigSrc < NumParts * NumSubParts) {
291     if (PadStrategy == TargetOpcode::G_ZEXT)
292       PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
293     else if (PadStrategy == TargetOpcode::G_ANYEXT)
294       PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
295     else {
296       assert(PadStrategy == TargetOpcode::G_SEXT);
297 
298       // Shift the sign bit of the low register through the high register.
299       auto ShiftAmt =
300         MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
301       PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
302     }
303   }
304 
305   // Registers for the final merge to be produced.
306   SmallVector<Register, 4> Remerge(NumParts);
307 
308   // Registers needed for intermediate merges, which will be merged into a
309   // source for Remerge.
310   SmallVector<Register, 4> SubMerge(NumSubParts);
311 
312   // Once we've fully read off the end of the original source bits, we can reuse
313   // the same high bits for remaining padding elements.
314   Register AllPadReg;
315 
316   // Build merges to the LCM type to cover the original result type.
317   for (int I = 0; I != NumParts; ++I) {
318     bool AllMergePartsArePadding = true;
319 
320     // Build the requested merges to the requested type.
321     for (int J = 0; J != NumSubParts; ++J) {
322       int Idx = I * NumSubParts + J;
323       if (Idx >= NumOrigSrc) {
324         SubMerge[J] = PadReg;
325         continue;
326       }
327 
328       SubMerge[J] = VRegs[Idx];
329 
330       // There are meaningful bits here we can't reuse later.
331       AllMergePartsArePadding = false;
332     }
333 
334     // If we've filled up a complete piece with padding bits, we can directly
335     // emit the natural sized constant if applicable, rather than a merge of
336     // smaller constants.
337     if (AllMergePartsArePadding && !AllPadReg) {
338       if (PadStrategy == TargetOpcode::G_ANYEXT)
339         AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
340       else if (PadStrategy == TargetOpcode::G_ZEXT)
341         AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
342 
343       // If this is a sign extension, we can't materialize a trivial constant
344       // with the right type and have to produce a merge.
345     }
346 
347     if (AllPadReg) {
348       // Avoid creating additional instructions if we're just adding additional
349       // copies of padding bits.
350       Remerge[I] = AllPadReg;
351       continue;
352     }
353 
354     if (NumSubParts == 1)
355       Remerge[I] = SubMerge[0];
356     else
357       Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
358 
359     // In the sign extend padding case, re-use the first all-signbit merge.
360     if (AllMergePartsArePadding && !AllPadReg)
361       AllPadReg = Remerge[I];
362   }
363 
364   VRegs = std::move(Remerge);
365   return LCMTy;
366 }
367 
buildWidenedRemergeToDst(Register DstReg,LLT LCMTy,ArrayRef<Register> RemergeRegs)368 void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
369                                                ArrayRef<Register> RemergeRegs) {
370   LLT DstTy = MRI.getType(DstReg);
371 
372   // Create the merge to the widened source, and extract the relevant bits into
373   // the result.
374 
375   if (DstTy == LCMTy) {
376     MIRBuilder.buildMerge(DstReg, RemergeRegs);
377     return;
378   }
379 
380   auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
381   if (DstTy.isScalar() && LCMTy.isScalar()) {
382     MIRBuilder.buildTrunc(DstReg, Remerge);
383     return;
384   }
385 
386   if (LCMTy.isVector()) {
387     unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
388     SmallVector<Register, 8> UnmergeDefs(NumDefs);
389     UnmergeDefs[0] = DstReg;
390     for (unsigned I = 1; I != NumDefs; ++I)
391       UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
392 
393     MIRBuilder.buildUnmerge(UnmergeDefs,
394                             MIRBuilder.buildMerge(LCMTy, RemergeRegs));
395     return;
396   }
397 
398   llvm_unreachable("unhandled case");
399 }
400 
getRTLibDesc(unsigned Opcode,unsigned Size)401 static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
402 #define RTLIBCASE_INT(LibcallPrefix)                                           \
403   do {                                                                         \
404     switch (Size) {                                                            \
405     case 32:                                                                   \
406       return RTLIB::LibcallPrefix##32;                                         \
407     case 64:                                                                   \
408       return RTLIB::LibcallPrefix##64;                                         \
409     case 128:                                                                  \
410       return RTLIB::LibcallPrefix##128;                                        \
411     default:                                                                   \
412       llvm_unreachable("unexpected size");                                     \
413     }                                                                          \
414   } while (0)
415 
416 #define RTLIBCASE(LibcallPrefix)                                               \
417   do {                                                                         \
418     switch (Size) {                                                            \
419     case 32:                                                                   \
420       return RTLIB::LibcallPrefix##32;                                         \
421     case 64:                                                                   \
422       return RTLIB::LibcallPrefix##64;                                         \
423     case 80:                                                                   \
424       return RTLIB::LibcallPrefix##80;                                         \
425     case 128:                                                                  \
426       return RTLIB::LibcallPrefix##128;                                        \
427     default:                                                                   \
428       llvm_unreachable("unexpected size");                                     \
429     }                                                                          \
430   } while (0)
431 
432   switch (Opcode) {
433   case TargetOpcode::G_SDIV:
434     RTLIBCASE_INT(SDIV_I);
435   case TargetOpcode::G_UDIV:
436     RTLIBCASE_INT(UDIV_I);
437   case TargetOpcode::G_SREM:
438     RTLIBCASE_INT(SREM_I);
439   case TargetOpcode::G_UREM:
440     RTLIBCASE_INT(UREM_I);
441   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
442     RTLIBCASE_INT(CTLZ_I);
443   case TargetOpcode::G_FADD:
444     RTLIBCASE(ADD_F);
445   case TargetOpcode::G_FSUB:
446     RTLIBCASE(SUB_F);
447   case TargetOpcode::G_FMUL:
448     RTLIBCASE(MUL_F);
449   case TargetOpcode::G_FDIV:
450     RTLIBCASE(DIV_F);
451   case TargetOpcode::G_FEXP:
452     RTLIBCASE(EXP_F);
453   case TargetOpcode::G_FEXP2:
454     RTLIBCASE(EXP2_F);
455   case TargetOpcode::G_FREM:
456     RTLIBCASE(REM_F);
457   case TargetOpcode::G_FPOW:
458     RTLIBCASE(POW_F);
459   case TargetOpcode::G_FMA:
460     RTLIBCASE(FMA_F);
461   case TargetOpcode::G_FSIN:
462     RTLIBCASE(SIN_F);
463   case TargetOpcode::G_FCOS:
464     RTLIBCASE(COS_F);
465   case TargetOpcode::G_FLOG10:
466     RTLIBCASE(LOG10_F);
467   case TargetOpcode::G_FLOG:
468     RTLIBCASE(LOG_F);
469   case TargetOpcode::G_FLOG2:
470     RTLIBCASE(LOG2_F);
471   case TargetOpcode::G_FCEIL:
472     RTLIBCASE(CEIL_F);
473   case TargetOpcode::G_FFLOOR:
474     RTLIBCASE(FLOOR_F);
475   case TargetOpcode::G_FMINNUM:
476     RTLIBCASE(FMIN_F);
477   case TargetOpcode::G_FMAXNUM:
478     RTLIBCASE(FMAX_F);
479   case TargetOpcode::G_FSQRT:
480     RTLIBCASE(SQRT_F);
481   case TargetOpcode::G_FRINT:
482     RTLIBCASE(RINT_F);
483   case TargetOpcode::G_FNEARBYINT:
484     RTLIBCASE(NEARBYINT_F);
485   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
486     RTLIBCASE(ROUNDEVEN_F);
487   }
488   llvm_unreachable("Unknown libcall function");
489 }
490 
491 /// True if an instruction is in tail position in its caller. Intended for
492 /// legalizing libcalls as tail calls when possible.
isLibCallInTailPosition(const TargetInstrInfo & TII,MachineInstr & MI)493 static bool isLibCallInTailPosition(const TargetInstrInfo &TII,
494                                     MachineInstr &MI) {
495   MachineBasicBlock &MBB = *MI.getParent();
496   const Function &F = MBB.getParent()->getFunction();
497 
498   // Conservatively require the attributes of the call to match those of
499   // the return. Ignore NoAlias and NonNull because they don't affect the
500   // call sequence.
501   AttributeList CallerAttrs = F.getAttributes();
502   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
503           .removeAttribute(Attribute::NoAlias)
504           .removeAttribute(Attribute::NonNull)
505           .hasAttributes())
506     return false;
507 
508   // It's not safe to eliminate the sign / zero extension of the return value.
509   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
510       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
511     return false;
512 
513   // Only tail call if the following instruction is a standard return.
514   auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
515   if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
516     return false;
517 
518   return true;
519 }
520 
521 LegalizerHelper::LegalizeResult
createLibcall(MachineIRBuilder & MIRBuilder,const char * Name,const CallLowering::ArgInfo & Result,ArrayRef<CallLowering::ArgInfo> Args,const CallingConv::ID CC)522 llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
523                     const CallLowering::ArgInfo &Result,
524                     ArrayRef<CallLowering::ArgInfo> Args,
525                     const CallingConv::ID CC) {
526   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
527 
528   CallLowering::CallLoweringInfo Info;
529   Info.CallConv = CC;
530   Info.Callee = MachineOperand::CreateES(Name);
531   Info.OrigRet = Result;
532   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
533   if (!CLI.lowerCall(MIRBuilder, Info))
534     return LegalizerHelper::UnableToLegalize;
535 
536   return LegalizerHelper::Legalized;
537 }
538 
539 LegalizerHelper::LegalizeResult
createLibcall(MachineIRBuilder & MIRBuilder,RTLIB::Libcall Libcall,const CallLowering::ArgInfo & Result,ArrayRef<CallLowering::ArgInfo> Args)540 llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
541                     const CallLowering::ArgInfo &Result,
542                     ArrayRef<CallLowering::ArgInfo> Args) {
543   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
544   const char *Name = TLI.getLibcallName(Libcall);
545   const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
546   return createLibcall(MIRBuilder, Name, Result, Args, CC);
547 }
548 
549 // Useful for libcalls where all operands have the same type.
550 static LegalizerHelper::LegalizeResult
simpleLibcall(MachineInstr & MI,MachineIRBuilder & MIRBuilder,unsigned Size,Type * OpType)551 simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
552               Type *OpType) {
553   auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
554 
555   SmallVector<CallLowering::ArgInfo, 3> Args;
556   for (unsigned i = 1; i < MI.getNumOperands(); i++)
557     Args.push_back({MI.getOperand(i).getReg(), OpType});
558   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType},
559                        Args);
560 }
561 
562 LegalizerHelper::LegalizeResult
createMemLibcall(MachineIRBuilder & MIRBuilder,MachineRegisterInfo & MRI,MachineInstr & MI)563 llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
564                        MachineInstr &MI) {
565   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
566 
567   SmallVector<CallLowering::ArgInfo, 3> Args;
568   // Add all the args, except for the last which is an imm denoting 'tail'.
569   for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
570     Register Reg = MI.getOperand(i).getReg();
571 
572     // Need derive an IR type for call lowering.
573     LLT OpLLT = MRI.getType(Reg);
574     Type *OpTy = nullptr;
575     if (OpLLT.isPointer())
576       OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
577     else
578       OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
579     Args.push_back({Reg, OpTy});
580   }
581 
582   auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
583   auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
584   RTLIB::Libcall RTLibcall;
585   switch (MI.getOpcode()) {
586   case TargetOpcode::G_MEMCPY:
587     RTLibcall = RTLIB::MEMCPY;
588     break;
589   case TargetOpcode::G_MEMMOVE:
590     RTLibcall = RTLIB::MEMMOVE;
591     break;
592   case TargetOpcode::G_MEMSET:
593     RTLibcall = RTLIB::MEMSET;
594     break;
595   default:
596     return LegalizerHelper::UnableToLegalize;
597   }
598   const char *Name = TLI.getLibcallName(RTLibcall);
599 
600   CallLowering::CallLoweringInfo Info;
601   Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
602   Info.Callee = MachineOperand::CreateES(Name);
603   Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx));
604   Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
605                     isLibCallInTailPosition(MIRBuilder.getTII(), MI);
606 
607   std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
608   if (!CLI.lowerCall(MIRBuilder, Info))
609     return LegalizerHelper::UnableToLegalize;
610 
611   if (Info.LoweredTailCall) {
612     assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?");
613     // We must have a return following the call (or debug insts) to get past
614     // isLibCallInTailPosition.
615     do {
616       MachineInstr *Next = MI.getNextNode();
617       assert(Next && (Next->isReturn() || Next->isDebugInstr()) &&
618              "Expected instr following MI to be return or debug inst?");
619       // We lowered a tail call, so the call is now the return from the block.
620       // Delete the old return.
621       Next->eraseFromParent();
622     } while (MI.getNextNode());
623   }
624 
625   return LegalizerHelper::Legalized;
626 }
627 
getConvRTLibDesc(unsigned Opcode,Type * ToType,Type * FromType)628 static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
629                                        Type *FromType) {
630   auto ToMVT = MVT::getVT(ToType);
631   auto FromMVT = MVT::getVT(FromType);
632 
633   switch (Opcode) {
634   case TargetOpcode::G_FPEXT:
635     return RTLIB::getFPEXT(FromMVT, ToMVT);
636   case TargetOpcode::G_FPTRUNC:
637     return RTLIB::getFPROUND(FromMVT, ToMVT);
638   case TargetOpcode::G_FPTOSI:
639     return RTLIB::getFPTOSINT(FromMVT, ToMVT);
640   case TargetOpcode::G_FPTOUI:
641     return RTLIB::getFPTOUINT(FromMVT, ToMVT);
642   case TargetOpcode::G_SITOFP:
643     return RTLIB::getSINTTOFP(FromMVT, ToMVT);
644   case TargetOpcode::G_UITOFP:
645     return RTLIB::getUINTTOFP(FromMVT, ToMVT);
646   }
647   llvm_unreachable("Unsupported libcall function");
648 }
649 
650 static LegalizerHelper::LegalizeResult
conversionLibcall(MachineInstr & MI,MachineIRBuilder & MIRBuilder,Type * ToType,Type * FromType)651 conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
652                   Type *FromType) {
653   RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
654   return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType},
655                        {{MI.getOperand(1).getReg(), FromType}});
656 }
657 
658 LegalizerHelper::LegalizeResult
libcall(MachineInstr & MI)659 LegalizerHelper::libcall(MachineInstr &MI) {
660   LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
661   unsigned Size = LLTy.getSizeInBits();
662   auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
663 
664   switch (MI.getOpcode()) {
665   default:
666     return UnableToLegalize;
667   case TargetOpcode::G_SDIV:
668   case TargetOpcode::G_UDIV:
669   case TargetOpcode::G_SREM:
670   case TargetOpcode::G_UREM:
671   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
672     Type *HLTy = IntegerType::get(Ctx, Size);
673     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
674     if (Status != Legalized)
675       return Status;
676     break;
677   }
678   case TargetOpcode::G_FADD:
679   case TargetOpcode::G_FSUB:
680   case TargetOpcode::G_FMUL:
681   case TargetOpcode::G_FDIV:
682   case TargetOpcode::G_FMA:
683   case TargetOpcode::G_FPOW:
684   case TargetOpcode::G_FREM:
685   case TargetOpcode::G_FCOS:
686   case TargetOpcode::G_FSIN:
687   case TargetOpcode::G_FLOG10:
688   case TargetOpcode::G_FLOG:
689   case TargetOpcode::G_FLOG2:
690   case TargetOpcode::G_FEXP:
691   case TargetOpcode::G_FEXP2:
692   case TargetOpcode::G_FCEIL:
693   case TargetOpcode::G_FFLOOR:
694   case TargetOpcode::G_FMINNUM:
695   case TargetOpcode::G_FMAXNUM:
696   case TargetOpcode::G_FSQRT:
697   case TargetOpcode::G_FRINT:
698   case TargetOpcode::G_FNEARBYINT:
699   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
700     Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
701     if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
702       LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n");
703       return UnableToLegalize;
704     }
705     auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
706     if (Status != Legalized)
707       return Status;
708     break;
709   }
710   case TargetOpcode::G_FPEXT:
711   case TargetOpcode::G_FPTRUNC: {
712     Type *FromTy = getFloatTypeForLLT(Ctx,  MRI.getType(MI.getOperand(1).getReg()));
713     Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
714     if (!FromTy || !ToTy)
715       return UnableToLegalize;
716     LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
717     if (Status != Legalized)
718       return Status;
719     break;
720   }
721   case TargetOpcode::G_FPTOSI:
722   case TargetOpcode::G_FPTOUI: {
723     // FIXME: Support other types
724     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
725     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
726     if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
727       return UnableToLegalize;
728     LegalizeResult Status = conversionLibcall(
729         MI, MIRBuilder,
730         ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
731         FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
732     if (Status != Legalized)
733       return Status;
734     break;
735   }
736   case TargetOpcode::G_SITOFP:
737   case TargetOpcode::G_UITOFP: {
738     // FIXME: Support other types
739     unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
740     unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
741     if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
742       return UnableToLegalize;
743     LegalizeResult Status = conversionLibcall(
744         MI, MIRBuilder,
745         ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
746         FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
747     if (Status != Legalized)
748       return Status;
749     break;
750   }
751   case TargetOpcode::G_MEMCPY:
752   case TargetOpcode::G_MEMMOVE:
753   case TargetOpcode::G_MEMSET: {
754     LegalizeResult Result = createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI);
755     MI.eraseFromParent();
756     return Result;
757   }
758   }
759 
760   MI.eraseFromParent();
761   return Legalized;
762 }
763 
narrowScalar(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)764 LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
765                                                               unsigned TypeIdx,
766                                                               LLT NarrowTy) {
767   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
768   uint64_t NarrowSize = NarrowTy.getSizeInBits();
769 
770   switch (MI.getOpcode()) {
771   default:
772     return UnableToLegalize;
773   case TargetOpcode::G_IMPLICIT_DEF: {
774     Register DstReg = MI.getOperand(0).getReg();
775     LLT DstTy = MRI.getType(DstReg);
776 
777     // If SizeOp0 is not an exact multiple of NarrowSize, emit
778     // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
779     // FIXME: Although this would also be legal for the general case, it causes
780     //  a lot of regressions in the emitted code (superfluous COPYs, artifact
781     //  combines not being hit). This seems to be a problem related to the
782     //  artifact combiner.
783     if (SizeOp0 % NarrowSize != 0) {
784       LLT ImplicitTy = NarrowTy;
785       if (DstTy.isVector())
786         ImplicitTy = LLT::vector(DstTy.getNumElements(), ImplicitTy);
787 
788       Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
789       MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
790 
791       MI.eraseFromParent();
792       return Legalized;
793     }
794 
795     int NumParts = SizeOp0 / NarrowSize;
796 
797     SmallVector<Register, 2> DstRegs;
798     for (int i = 0; i < NumParts; ++i)
799       DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
800 
801     if (DstTy.isVector())
802       MIRBuilder.buildBuildVector(DstReg, DstRegs);
803     else
804       MIRBuilder.buildMerge(DstReg, DstRegs);
805     MI.eraseFromParent();
806     return Legalized;
807   }
808   case TargetOpcode::G_CONSTANT: {
809     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
810     const APInt &Val = MI.getOperand(1).getCImm()->getValue();
811     unsigned TotalSize = Ty.getSizeInBits();
812     unsigned NarrowSize = NarrowTy.getSizeInBits();
813     int NumParts = TotalSize / NarrowSize;
814 
815     SmallVector<Register, 4> PartRegs;
816     for (int I = 0; I != NumParts; ++I) {
817       unsigned Offset = I * NarrowSize;
818       auto K = MIRBuilder.buildConstant(NarrowTy,
819                                         Val.lshr(Offset).trunc(NarrowSize));
820       PartRegs.push_back(K.getReg(0));
821     }
822 
823     LLT LeftoverTy;
824     unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
825     SmallVector<Register, 1> LeftoverRegs;
826     if (LeftoverBits != 0) {
827       LeftoverTy = LLT::scalar(LeftoverBits);
828       auto K = MIRBuilder.buildConstant(
829         LeftoverTy,
830         Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
831       LeftoverRegs.push_back(K.getReg(0));
832     }
833 
834     insertParts(MI.getOperand(0).getReg(),
835                 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
836 
837     MI.eraseFromParent();
838     return Legalized;
839   }
840   case TargetOpcode::G_SEXT:
841   case TargetOpcode::G_ZEXT:
842   case TargetOpcode::G_ANYEXT:
843     return narrowScalarExt(MI, TypeIdx, NarrowTy);
844   case TargetOpcode::G_TRUNC: {
845     if (TypeIdx != 1)
846       return UnableToLegalize;
847 
848     uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
849     if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
850       LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n");
851       return UnableToLegalize;
852     }
853 
854     auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
855     MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
856     MI.eraseFromParent();
857     return Legalized;
858   }
859 
860   case TargetOpcode::G_FREEZE:
861     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
862 
863   case TargetOpcode::G_ADD: {
864     // FIXME: add support for when SizeOp0 isn't an exact multiple of
865     // NarrowSize.
866     if (SizeOp0 % NarrowSize != 0)
867       return UnableToLegalize;
868     // Expand in terms of carry-setting/consuming G_ADDE instructions.
869     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
870 
871     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
872     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
873     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
874 
875     Register CarryIn;
876     for (int i = 0; i < NumParts; ++i) {
877       Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
878       Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
879 
880       if (i == 0)
881         MIRBuilder.buildUAddo(DstReg, CarryOut, Src1Regs[i], Src2Regs[i]);
882       else {
883         MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i],
884                               Src2Regs[i], CarryIn);
885       }
886 
887       DstRegs.push_back(DstReg);
888       CarryIn = CarryOut;
889     }
890     Register DstReg = MI.getOperand(0).getReg();
891     if(MRI.getType(DstReg).isVector())
892       MIRBuilder.buildBuildVector(DstReg, DstRegs);
893     else
894       MIRBuilder.buildMerge(DstReg, DstRegs);
895     MI.eraseFromParent();
896     return Legalized;
897   }
898   case TargetOpcode::G_SUB: {
899     // FIXME: add support for when SizeOp0 isn't an exact multiple of
900     // NarrowSize.
901     if (SizeOp0 % NarrowSize != 0)
902       return UnableToLegalize;
903 
904     int NumParts = SizeOp0 / NarrowTy.getSizeInBits();
905 
906     SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
907     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs);
908     extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs);
909 
910     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
911     Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
912     MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut},
913                           {Src1Regs[0], Src2Regs[0]});
914     DstRegs.push_back(DstReg);
915     Register BorrowIn = BorrowOut;
916     for (int i = 1; i < NumParts; ++i) {
917       DstReg = MRI.createGenericVirtualRegister(NarrowTy);
918       BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
919 
920       MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut},
921                             {Src1Regs[i], Src2Regs[i], BorrowIn});
922 
923       DstRegs.push_back(DstReg);
924       BorrowIn = BorrowOut;
925     }
926     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
927     MI.eraseFromParent();
928     return Legalized;
929   }
930   case TargetOpcode::G_MUL:
931   case TargetOpcode::G_UMULH:
932     return narrowScalarMul(MI, NarrowTy);
933   case TargetOpcode::G_EXTRACT:
934     return narrowScalarExtract(MI, TypeIdx, NarrowTy);
935   case TargetOpcode::G_INSERT:
936     return narrowScalarInsert(MI, TypeIdx, NarrowTy);
937   case TargetOpcode::G_LOAD: {
938     auto &MMO = **MI.memoperands_begin();
939     Register DstReg = MI.getOperand(0).getReg();
940     LLT DstTy = MRI.getType(DstReg);
941     if (DstTy.isVector())
942       return UnableToLegalize;
943 
944     if (8 * MMO.getSize() != DstTy.getSizeInBits()) {
945       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
946       MIRBuilder.buildLoad(TmpReg, MI.getOperand(1), MMO);
947       MIRBuilder.buildAnyExt(DstReg, TmpReg);
948       MI.eraseFromParent();
949       return Legalized;
950     }
951 
952     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
953   }
954   case TargetOpcode::G_ZEXTLOAD:
955   case TargetOpcode::G_SEXTLOAD: {
956     bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD;
957     Register DstReg = MI.getOperand(0).getReg();
958     Register PtrReg = MI.getOperand(1).getReg();
959 
960     Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
961     auto &MMO = **MI.memoperands_begin();
962     unsigned MemSize = MMO.getSizeInBits();
963 
964     if (MemSize == NarrowSize) {
965       MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
966     } else if (MemSize < NarrowSize) {
967       MIRBuilder.buildLoadInstr(MI.getOpcode(), TmpReg, PtrReg, MMO);
968     } else if (MemSize > NarrowSize) {
969       // FIXME: Need to split the load.
970       return UnableToLegalize;
971     }
972 
973     if (ZExt)
974       MIRBuilder.buildZExt(DstReg, TmpReg);
975     else
976       MIRBuilder.buildSExt(DstReg, TmpReg);
977 
978     MI.eraseFromParent();
979     return Legalized;
980   }
981   case TargetOpcode::G_STORE: {
982     const auto &MMO = **MI.memoperands_begin();
983 
984     Register SrcReg = MI.getOperand(0).getReg();
985     LLT SrcTy = MRI.getType(SrcReg);
986     if (SrcTy.isVector())
987       return UnableToLegalize;
988 
989     int NumParts = SizeOp0 / NarrowSize;
990     unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
991     unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
992     if (SrcTy.isVector() && LeftoverBits != 0)
993       return UnableToLegalize;
994 
995     if (8 * MMO.getSize() != SrcTy.getSizeInBits()) {
996       Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
997       auto &MMO = **MI.memoperands_begin();
998       MIRBuilder.buildTrunc(TmpReg, SrcReg);
999       MIRBuilder.buildStore(TmpReg, MI.getOperand(1), MMO);
1000       MI.eraseFromParent();
1001       return Legalized;
1002     }
1003 
1004     return reduceLoadStoreWidth(MI, 0, NarrowTy);
1005   }
1006   case TargetOpcode::G_SELECT:
1007     return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1008   case TargetOpcode::G_AND:
1009   case TargetOpcode::G_OR:
1010   case TargetOpcode::G_XOR: {
1011     // Legalize bitwise operation:
1012     // A = BinOp<Ty> B, C
1013     // into:
1014     // B1, ..., BN = G_UNMERGE_VALUES B
1015     // C1, ..., CN = G_UNMERGE_VALUES C
1016     // A1 = BinOp<Ty/N> B1, C2
1017     // ...
1018     // AN = BinOp<Ty/N> BN, CN
1019     // A = G_MERGE_VALUES A1, ..., AN
1020     return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1021   }
1022   case TargetOpcode::G_SHL:
1023   case TargetOpcode::G_LSHR:
1024   case TargetOpcode::G_ASHR:
1025     return narrowScalarShift(MI, TypeIdx, NarrowTy);
1026   case TargetOpcode::G_CTLZ:
1027   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1028   case TargetOpcode::G_CTTZ:
1029   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1030   case TargetOpcode::G_CTPOP:
1031     if (TypeIdx == 1)
1032       switch (MI.getOpcode()) {
1033       case TargetOpcode::G_CTLZ:
1034       case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1035         return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1036       case TargetOpcode::G_CTTZ:
1037       case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1038         return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1039       case TargetOpcode::G_CTPOP:
1040         return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1041       default:
1042         return UnableToLegalize;
1043       }
1044 
1045     Observer.changingInstr(MI);
1046     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1047     Observer.changedInstr(MI);
1048     return Legalized;
1049   case TargetOpcode::G_INTTOPTR:
1050     if (TypeIdx != 1)
1051       return UnableToLegalize;
1052 
1053     Observer.changingInstr(MI);
1054     narrowScalarSrc(MI, NarrowTy, 1);
1055     Observer.changedInstr(MI);
1056     return Legalized;
1057   case TargetOpcode::G_PTRTOINT:
1058     if (TypeIdx != 0)
1059       return UnableToLegalize;
1060 
1061     Observer.changingInstr(MI);
1062     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1063     Observer.changedInstr(MI);
1064     return Legalized;
1065   case TargetOpcode::G_PHI: {
1066     // FIXME: add support for when SizeOp0 isn't an exact multiple of
1067     // NarrowSize.
1068     if (SizeOp0 % NarrowSize != 0)
1069       return UnableToLegalize;
1070 
1071     unsigned NumParts = SizeOp0 / NarrowSize;
1072     SmallVector<Register, 2> DstRegs(NumParts);
1073     SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1074     Observer.changingInstr(MI);
1075     for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1076       MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1077       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1078       extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1079                    SrcRegs[i / 2]);
1080     }
1081     MachineBasicBlock &MBB = *MI.getParent();
1082     MIRBuilder.setInsertPt(MBB, MI);
1083     for (unsigned i = 0; i < NumParts; ++i) {
1084       DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1085       MachineInstrBuilder MIB =
1086           MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1087       for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1088         MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1089     }
1090     MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1091     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1092     Observer.changedInstr(MI);
1093     MI.eraseFromParent();
1094     return Legalized;
1095   }
1096   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1097   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1098     if (TypeIdx != 2)
1099       return UnableToLegalize;
1100 
1101     int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1102     Observer.changingInstr(MI);
1103     narrowScalarSrc(MI, NarrowTy, OpIdx);
1104     Observer.changedInstr(MI);
1105     return Legalized;
1106   }
1107   case TargetOpcode::G_ICMP: {
1108     uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
1109     if (NarrowSize * 2 != SrcSize)
1110       return UnableToLegalize;
1111 
1112     Observer.changingInstr(MI);
1113     Register LHSL = MRI.createGenericVirtualRegister(NarrowTy);
1114     Register LHSH = MRI.createGenericVirtualRegister(NarrowTy);
1115     MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2));
1116 
1117     Register RHSL = MRI.createGenericVirtualRegister(NarrowTy);
1118     Register RHSH = MRI.createGenericVirtualRegister(NarrowTy);
1119     MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3));
1120 
1121     CmpInst::Predicate Pred =
1122         static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1123     LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
1124 
1125     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1126       MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL);
1127       MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH);
1128       MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH);
1129       MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1130       MIRBuilder.buildICmp(Pred, MI.getOperand(0), Or, Zero);
1131     } else {
1132       MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1133       MachineInstrBuilder CmpHEQ =
1134           MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1135       MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1136           ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1137       MIRBuilder.buildSelect(MI.getOperand(0), CmpHEQ, CmpLU, CmpH);
1138     }
1139     Observer.changedInstr(MI);
1140     MI.eraseFromParent();
1141     return Legalized;
1142   }
1143   case TargetOpcode::G_SEXT_INREG: {
1144     if (TypeIdx != 0)
1145       return UnableToLegalize;
1146 
1147     int64_t SizeInBits = MI.getOperand(2).getImm();
1148 
1149     // So long as the new type has more bits than the bits we're extending we
1150     // don't need to break it apart.
1151     if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1152       Observer.changingInstr(MI);
1153       // We don't lose any non-extension bits by truncating the src and
1154       // sign-extending the dst.
1155       MachineOperand &MO1 = MI.getOperand(1);
1156       auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1157       MO1.setReg(TruncMIB.getReg(0));
1158 
1159       MachineOperand &MO2 = MI.getOperand(0);
1160       Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1161       MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1162       MIRBuilder.buildSExt(MO2, DstExt);
1163       MO2.setReg(DstExt);
1164       Observer.changedInstr(MI);
1165       return Legalized;
1166     }
1167 
1168     // Break it apart. Components below the extension point are unmodified. The
1169     // component containing the extension point becomes a narrower SEXT_INREG.
1170     // Components above it are ashr'd from the component containing the
1171     // extension point.
1172     if (SizeOp0 % NarrowSize != 0)
1173       return UnableToLegalize;
1174     int NumParts = SizeOp0 / NarrowSize;
1175 
1176     // List the registers where the destination will be scattered.
1177     SmallVector<Register, 2> DstRegs;
1178     // List the registers where the source will be split.
1179     SmallVector<Register, 2> SrcRegs;
1180 
1181     // Create all the temporary registers.
1182     for (int i = 0; i < NumParts; ++i) {
1183       Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1184 
1185       SrcRegs.push_back(SrcReg);
1186     }
1187 
1188     // Explode the big arguments into smaller chunks.
1189     MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1190 
1191     Register AshrCstReg =
1192         MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1193             .getReg(0);
1194     Register FullExtensionReg = 0;
1195     Register PartialExtensionReg = 0;
1196 
1197     // Do the operation on each small part.
1198     for (int i = 0; i < NumParts; ++i) {
1199       if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1200         DstRegs.push_back(SrcRegs[i]);
1201       else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1202         assert(PartialExtensionReg &&
1203                "Expected to visit partial extension before full");
1204         if (FullExtensionReg) {
1205           DstRegs.push_back(FullExtensionReg);
1206           continue;
1207         }
1208         DstRegs.push_back(
1209             MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1210                 .getReg(0));
1211         FullExtensionReg = DstRegs.back();
1212       } else {
1213         DstRegs.push_back(
1214             MIRBuilder
1215                 .buildInstr(
1216                     TargetOpcode::G_SEXT_INREG, {NarrowTy},
1217                     {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1218                 .getReg(0));
1219         PartialExtensionReg = DstRegs.back();
1220       }
1221     }
1222 
1223     // Gather the destination registers into the final destination.
1224     Register DstReg = MI.getOperand(0).getReg();
1225     MIRBuilder.buildMerge(DstReg, DstRegs);
1226     MI.eraseFromParent();
1227     return Legalized;
1228   }
1229   case TargetOpcode::G_BSWAP:
1230   case TargetOpcode::G_BITREVERSE: {
1231     if (SizeOp0 % NarrowSize != 0)
1232       return UnableToLegalize;
1233 
1234     Observer.changingInstr(MI);
1235     SmallVector<Register, 2> SrcRegs, DstRegs;
1236     unsigned NumParts = SizeOp0 / NarrowSize;
1237     extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1238 
1239     for (unsigned i = 0; i < NumParts; ++i) {
1240       auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1241                                            {SrcRegs[NumParts - 1 - i]});
1242       DstRegs.push_back(DstPart.getReg(0));
1243     }
1244 
1245     MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1246 
1247     Observer.changedInstr(MI);
1248     MI.eraseFromParent();
1249     return Legalized;
1250   }
1251   case TargetOpcode::G_PTR_ADD:
1252   case TargetOpcode::G_PTRMASK: {
1253     if (TypeIdx != 1)
1254       return UnableToLegalize;
1255     Observer.changingInstr(MI);
1256     narrowScalarSrc(MI, NarrowTy, 2);
1257     Observer.changedInstr(MI);
1258     return Legalized;
1259   }
1260   case TargetOpcode::G_FPTOUI:
1261   case TargetOpcode::G_FPTOSI:
1262     return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1263   case TargetOpcode::G_FPEXT:
1264     if (TypeIdx != 0)
1265       return UnableToLegalize;
1266     Observer.changingInstr(MI);
1267     narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1268     Observer.changedInstr(MI);
1269     return Legalized;
1270   }
1271 }
1272 
coerceToScalar(Register Val)1273 Register LegalizerHelper::coerceToScalar(Register Val) {
1274   LLT Ty = MRI.getType(Val);
1275   if (Ty.isScalar())
1276     return Val;
1277 
1278   const DataLayout &DL = MIRBuilder.getDataLayout();
1279   LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1280   if (Ty.isPointer()) {
1281     if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1282       return Register();
1283     return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1284   }
1285 
1286   Register NewVal = Val;
1287 
1288   assert(Ty.isVector());
1289   LLT EltTy = Ty.getElementType();
1290   if (EltTy.isPointer())
1291     NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1292   return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1293 }
1294 
widenScalarSrc(MachineInstr & MI,LLT WideTy,unsigned OpIdx,unsigned ExtOpcode)1295 void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1296                                      unsigned OpIdx, unsigned ExtOpcode) {
1297   MachineOperand &MO = MI.getOperand(OpIdx);
1298   auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1299   MO.setReg(ExtB.getReg(0));
1300 }
1301 
narrowScalarSrc(MachineInstr & MI,LLT NarrowTy,unsigned OpIdx)1302 void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1303                                       unsigned OpIdx) {
1304   MachineOperand &MO = MI.getOperand(OpIdx);
1305   auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1306   MO.setReg(ExtB.getReg(0));
1307 }
1308 
widenScalarDst(MachineInstr & MI,LLT WideTy,unsigned OpIdx,unsigned TruncOpcode)1309 void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1310                                      unsigned OpIdx, unsigned TruncOpcode) {
1311   MachineOperand &MO = MI.getOperand(OpIdx);
1312   Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1313   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1314   MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1315   MO.setReg(DstExt);
1316 }
1317 
narrowScalarDst(MachineInstr & MI,LLT NarrowTy,unsigned OpIdx,unsigned ExtOpcode)1318 void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1319                                       unsigned OpIdx, unsigned ExtOpcode) {
1320   MachineOperand &MO = MI.getOperand(OpIdx);
1321   Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1322   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1323   MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1324   MO.setReg(DstTrunc);
1325 }
1326 
moreElementsVectorDst(MachineInstr & MI,LLT WideTy,unsigned OpIdx)1327 void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1328                                             unsigned OpIdx) {
1329   MachineOperand &MO = MI.getOperand(OpIdx);
1330   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1331   MO.setReg(widenWithUnmerge(WideTy, MO.getReg()));
1332 }
1333 
moreElementsVectorSrc(MachineInstr & MI,LLT MoreTy,unsigned OpIdx)1334 void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1335                                             unsigned OpIdx) {
1336   MachineOperand &MO = MI.getOperand(OpIdx);
1337 
1338   LLT OldTy = MRI.getType(MO.getReg());
1339   unsigned OldElts = OldTy.getNumElements();
1340   unsigned NewElts = MoreTy.getNumElements();
1341 
1342   unsigned NumParts = NewElts / OldElts;
1343 
1344   // Use concat_vectors if the result is a multiple of the number of elements.
1345   if (NumParts * OldElts == NewElts) {
1346     SmallVector<Register, 8> Parts;
1347     Parts.push_back(MO.getReg());
1348 
1349     Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0);
1350     for (unsigned I = 1; I != NumParts; ++I)
1351       Parts.push_back(ImpDef);
1352 
1353     auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts);
1354     MO.setReg(Concat.getReg(0));
1355     return;
1356   }
1357 
1358   Register MoreReg = MRI.createGenericVirtualRegister(MoreTy);
1359   Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0);
1360   MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0);
1361   MO.setReg(MoreReg);
1362 }
1363 
bitcastSrc(MachineInstr & MI,LLT CastTy,unsigned OpIdx)1364 void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1365   MachineOperand &Op = MI.getOperand(OpIdx);
1366   Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1367 }
1368 
bitcastDst(MachineInstr & MI,LLT CastTy,unsigned OpIdx)1369 void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1370   MachineOperand &MO = MI.getOperand(OpIdx);
1371   Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1372   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1373   MIRBuilder.buildBitcast(MO, CastDst);
1374   MO.setReg(CastDst);
1375 }
1376 
1377 LegalizerHelper::LegalizeResult
widenScalarMergeValues(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1378 LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1379                                         LLT WideTy) {
1380   if (TypeIdx != 1)
1381     return UnableToLegalize;
1382 
1383   Register DstReg = MI.getOperand(0).getReg();
1384   LLT DstTy = MRI.getType(DstReg);
1385   if (DstTy.isVector())
1386     return UnableToLegalize;
1387 
1388   Register Src1 = MI.getOperand(1).getReg();
1389   LLT SrcTy = MRI.getType(Src1);
1390   const int DstSize = DstTy.getSizeInBits();
1391   const int SrcSize = SrcTy.getSizeInBits();
1392   const int WideSize = WideTy.getSizeInBits();
1393   const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1394 
1395   unsigned NumOps = MI.getNumOperands();
1396   unsigned NumSrc = MI.getNumOperands() - 1;
1397   unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1398 
1399   if (WideSize >= DstSize) {
1400     // Directly pack the bits in the target type.
1401     Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1402 
1403     for (unsigned I = 2; I != NumOps; ++I) {
1404       const unsigned Offset = (I - 1) * PartSize;
1405 
1406       Register SrcReg = MI.getOperand(I).getReg();
1407       assert(MRI.getType(SrcReg) == LLT::scalar(PartSize));
1408 
1409       auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1410 
1411       Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1412         MRI.createGenericVirtualRegister(WideTy);
1413 
1414       auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1415       auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1416       MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1417       ResultReg = NextResult;
1418     }
1419 
1420     if (WideSize > DstSize)
1421       MIRBuilder.buildTrunc(DstReg, ResultReg);
1422     else if (DstTy.isPointer())
1423       MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1424 
1425     MI.eraseFromParent();
1426     return Legalized;
1427   }
1428 
1429   // Unmerge the original values to the GCD type, and recombine to the next
1430   // multiple greater than the original type.
1431   //
1432   // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1433   // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1434   // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1435   // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1436   // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1437   // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1438   // %12:_(s12) = G_MERGE_VALUES %10, %11
1439   //
1440   // Padding with undef if necessary:
1441   //
1442   // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1443   // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1444   // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1445   // %7:_(s2) = G_IMPLICIT_DEF
1446   // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1447   // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1448   // %10:_(s12) = G_MERGE_VALUES %8, %9
1449 
1450   const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1451   LLT GCDTy = LLT::scalar(GCD);
1452 
1453   SmallVector<Register, 8> Parts;
1454   SmallVector<Register, 8> NewMergeRegs;
1455   SmallVector<Register, 8> Unmerges;
1456   LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1457 
1458   // Decompose the original operands if they don't evenly divide.
1459   for (int I = 1, E = MI.getNumOperands(); I != E; ++I) {
1460     Register SrcReg = MI.getOperand(I).getReg();
1461     if (GCD == SrcSize) {
1462       Unmerges.push_back(SrcReg);
1463     } else {
1464       auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1465       for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1466         Unmerges.push_back(Unmerge.getReg(J));
1467     }
1468   }
1469 
1470   // Pad with undef to the next size that is a multiple of the requested size.
1471   if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1472     Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1473     for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1474       Unmerges.push_back(UndefReg);
1475   }
1476 
1477   const int PartsPerGCD = WideSize / GCD;
1478 
1479   // Build merges of each piece.
1480   ArrayRef<Register> Slicer(Unmerges);
1481   for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1482     auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1483     NewMergeRegs.push_back(Merge.getReg(0));
1484   }
1485 
1486   // A truncate may be necessary if the requested type doesn't evenly divide the
1487   // original result type.
1488   if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1489     MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1490   } else {
1491     auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1492     MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1493   }
1494 
1495   MI.eraseFromParent();
1496   return Legalized;
1497 }
1498 
widenWithUnmerge(LLT WideTy,Register OrigReg)1499 Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1500   Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1501   LLT OrigTy = MRI.getType(OrigReg);
1502   LLT LCMTy = getLCMType(WideTy, OrigTy);
1503 
1504   const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1505   const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1506 
1507   Register UnmergeSrc = WideReg;
1508 
1509   // Create a merge to the LCM type, padding with undef
1510   // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1511   // =>
1512   // %1:_(<4 x s32>) = G_FOO
1513   // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1514   // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1515   // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1516   if (NumMergeParts > 1) {
1517     Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1518     SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1519     MergeParts[0] = WideReg;
1520     UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1521   }
1522 
1523   // Unmerge to the original register and pad with dead defs.
1524   SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1525   UnmergeResults[0] = OrigReg;
1526   for (int I = 1; I != NumUnmergeParts; ++I)
1527     UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1528 
1529   MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1530   return WideReg;
1531 }
1532 
1533 LegalizerHelper::LegalizeResult
widenScalarUnmergeValues(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1534 LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1535                                           LLT WideTy) {
1536   if (TypeIdx != 0)
1537     return UnableToLegalize;
1538 
1539   int NumDst = MI.getNumOperands() - 1;
1540   Register SrcReg = MI.getOperand(NumDst).getReg();
1541   LLT SrcTy = MRI.getType(SrcReg);
1542   if (SrcTy.isVector())
1543     return UnableToLegalize;
1544 
1545   Register Dst0Reg = MI.getOperand(0).getReg();
1546   LLT DstTy = MRI.getType(Dst0Reg);
1547   if (!DstTy.isScalar())
1548     return UnableToLegalize;
1549 
1550   if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1551     if (SrcTy.isPointer()) {
1552       const DataLayout &DL = MIRBuilder.getDataLayout();
1553       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1554         LLVM_DEBUG(
1555             dbgs() << "Not casting non-integral address space integer\n");
1556         return UnableToLegalize;
1557       }
1558 
1559       SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1560       SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1561     }
1562 
1563     // Widen SrcTy to WideTy. This does not affect the result, but since the
1564     // user requested this size, it is probably better handled than SrcTy and
1565     // should reduce the total number of legalization artifacts
1566     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1567       SrcTy = WideTy;
1568       SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1569     }
1570 
1571     // Theres no unmerge type to target. Directly extract the bits from the
1572     // source type
1573     unsigned DstSize = DstTy.getSizeInBits();
1574 
1575     MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1576     for (int I = 1; I != NumDst; ++I) {
1577       auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1578       auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1579       MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1580     }
1581 
1582     MI.eraseFromParent();
1583     return Legalized;
1584   }
1585 
1586   // Extend the source to a wider type.
1587   LLT LCMTy = getLCMType(SrcTy, WideTy);
1588 
1589   Register WideSrc = SrcReg;
1590   if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1591     // TODO: If this is an integral address space, cast to integer and anyext.
1592     if (SrcTy.isPointer()) {
1593       LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n");
1594       return UnableToLegalize;
1595     }
1596 
1597     WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1598   }
1599 
1600   auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1601 
1602   // Create a sequence of unmerges and merges to the original results. Since we
1603   // may have widened the source, we will need to pad the results with dead defs
1604   // to cover the source register.
1605   // e.g. widen s48 to s64:
1606   // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1607   //
1608   // =>
1609   //  %4:_(s192) = G_ANYEXT %0:_(s96)
1610   //  %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1611   //  ; unpack to GCD type, with extra dead defs
1612   //  %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1613   //  %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1614   //  dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1615   //  %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10   ; Remerge to destination
1616   //  %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1617   const LLT GCDTy = getGCDType(WideTy, DstTy);
1618   const int NumUnmerge = Unmerge->getNumOperands() - 1;
1619   const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1620 
1621   // Directly unmerge to the destination without going through a GCD type
1622   // if possible
1623   if (PartsPerRemerge == 1) {
1624     const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1625 
1626     for (int I = 0; I != NumUnmerge; ++I) {
1627       auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1628 
1629       for (int J = 0; J != PartsPerUnmerge; ++J) {
1630         int Idx = I * PartsPerUnmerge + J;
1631         if (Idx < NumDst)
1632           MIB.addDef(MI.getOperand(Idx).getReg());
1633         else {
1634           // Create dead def for excess components.
1635           MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1636         }
1637       }
1638 
1639       MIB.addUse(Unmerge.getReg(I));
1640     }
1641   } else {
1642     SmallVector<Register, 16> Parts;
1643     for (int J = 0; J != NumUnmerge; ++J)
1644       extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1645 
1646     SmallVector<Register, 8> RemergeParts;
1647     for (int I = 0; I != NumDst; ++I) {
1648       for (int J = 0; J < PartsPerRemerge; ++J) {
1649         const int Idx = I * PartsPerRemerge + J;
1650         RemergeParts.emplace_back(Parts[Idx]);
1651       }
1652 
1653       MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1654       RemergeParts.clear();
1655     }
1656   }
1657 
1658   MI.eraseFromParent();
1659   return Legalized;
1660 }
1661 
1662 LegalizerHelper::LegalizeResult
widenScalarExtract(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1663 LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1664                                     LLT WideTy) {
1665   Register DstReg = MI.getOperand(0).getReg();
1666   Register SrcReg = MI.getOperand(1).getReg();
1667   LLT SrcTy = MRI.getType(SrcReg);
1668 
1669   LLT DstTy = MRI.getType(DstReg);
1670   unsigned Offset = MI.getOperand(2).getImm();
1671 
1672   if (TypeIdx == 0) {
1673     if (SrcTy.isVector() || DstTy.isVector())
1674       return UnableToLegalize;
1675 
1676     SrcOp Src(SrcReg);
1677     if (SrcTy.isPointer()) {
1678       // Extracts from pointers can be handled only if they are really just
1679       // simple integers.
1680       const DataLayout &DL = MIRBuilder.getDataLayout();
1681       if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1682         return UnableToLegalize;
1683 
1684       LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1685       Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1686       SrcTy = SrcAsIntTy;
1687     }
1688 
1689     if (DstTy.isPointer())
1690       return UnableToLegalize;
1691 
1692     if (Offset == 0) {
1693       // Avoid a shift in the degenerate case.
1694       MIRBuilder.buildTrunc(DstReg,
1695                             MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1696       MI.eraseFromParent();
1697       return Legalized;
1698     }
1699 
1700     // Do a shift in the source type.
1701     LLT ShiftTy = SrcTy;
1702     if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1703       Src = MIRBuilder.buildAnyExt(WideTy, Src);
1704       ShiftTy = WideTy;
1705     }
1706 
1707     auto LShr = MIRBuilder.buildLShr(
1708       ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1709     MIRBuilder.buildTrunc(DstReg, LShr);
1710     MI.eraseFromParent();
1711     return Legalized;
1712   }
1713 
1714   if (SrcTy.isScalar()) {
1715     Observer.changingInstr(MI);
1716     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1717     Observer.changedInstr(MI);
1718     return Legalized;
1719   }
1720 
1721   if (!SrcTy.isVector())
1722     return UnableToLegalize;
1723 
1724   if (DstTy != SrcTy.getElementType())
1725     return UnableToLegalize;
1726 
1727   if (Offset % SrcTy.getScalarSizeInBits() != 0)
1728     return UnableToLegalize;
1729 
1730   Observer.changingInstr(MI);
1731   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1732 
1733   MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1734                           Offset);
1735   widenScalarDst(MI, WideTy.getScalarType(), 0);
1736   Observer.changedInstr(MI);
1737   return Legalized;
1738 }
1739 
1740 LegalizerHelper::LegalizeResult
widenScalarInsert(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1741 LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1742                                    LLT WideTy) {
1743   if (TypeIdx != 0 || WideTy.isVector())
1744     return UnableToLegalize;
1745   Observer.changingInstr(MI);
1746   widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1747   widenScalarDst(MI, WideTy);
1748   Observer.changedInstr(MI);
1749   return Legalized;
1750 }
1751 
1752 LegalizerHelper::LegalizeResult
widenScalarAddoSubo(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1753 LegalizerHelper::widenScalarAddoSubo(MachineInstr &MI, unsigned TypeIdx,
1754                                      LLT WideTy) {
1755   if (TypeIdx == 1)
1756     return UnableToLegalize; // TODO
1757   unsigned Op = MI.getOpcode();
1758   unsigned Opcode = Op == TargetOpcode::G_UADDO || Op == TargetOpcode::G_SADDO
1759                         ? TargetOpcode::G_ADD
1760                         : TargetOpcode::G_SUB;
1761   unsigned ExtOpcode =
1762       Op == TargetOpcode::G_UADDO || Op == TargetOpcode::G_USUBO
1763           ? TargetOpcode::G_ZEXT
1764           : TargetOpcode::G_SEXT;
1765   auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1766   auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1767   // Do the arithmetic in the larger type.
1768   auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt});
1769   LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1770   auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1771   auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1772   // There is no overflow if the ExtOp is the same as NewOp.
1773   MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1774   // Now trunc the NewOp to the original result.
1775   MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1776   MI.eraseFromParent();
1777   return Legalized;
1778 }
1779 
1780 LegalizerHelper::LegalizeResult
widenScalarAddSubShlSat(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1781 LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1782                                          LLT WideTy) {
1783   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1784                   MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1785                   MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1786   bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1787                  MI.getOpcode() == TargetOpcode::G_USHLSAT;
1788   // We can convert this to:
1789   //   1. Any extend iN to iM
1790   //   2. SHL by M-N
1791   //   3. [US][ADD|SUB|SHL]SAT
1792   //   4. L/ASHR by M-N
1793   //
1794   // It may be more efficient to lower this to a min and a max operation in
1795   // the higher precision arithmetic if the promoted operation isn't legal,
1796   // but this decision is up to the target's lowering request.
1797   Register DstReg = MI.getOperand(0).getReg();
1798 
1799   unsigned NewBits = WideTy.getScalarSizeInBits();
1800   unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1801 
1802   // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1803   // must not left shift the RHS to preserve the shift amount.
1804   auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1805   auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1806                      : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1807   auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1808   auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1809   auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1810 
1811   auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1812                                         {ShiftL, ShiftR}, MI.getFlags());
1813 
1814   // Use a shift that will preserve the number of sign bits when the trunc is
1815   // folded away.
1816   auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1817                          : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1818 
1819   MIRBuilder.buildTrunc(DstReg, Result);
1820   MI.eraseFromParent();
1821   return Legalized;
1822 }
1823 
1824 LegalizerHelper::LegalizeResult
widenScalar(MachineInstr & MI,unsigned TypeIdx,LLT WideTy)1825 LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
1826   switch (MI.getOpcode()) {
1827   default:
1828     return UnableToLegalize;
1829   case TargetOpcode::G_EXTRACT:
1830     return widenScalarExtract(MI, TypeIdx, WideTy);
1831   case TargetOpcode::G_INSERT:
1832     return widenScalarInsert(MI, TypeIdx, WideTy);
1833   case TargetOpcode::G_MERGE_VALUES:
1834     return widenScalarMergeValues(MI, TypeIdx, WideTy);
1835   case TargetOpcode::G_UNMERGE_VALUES:
1836     return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
1837   case TargetOpcode::G_SADDO:
1838   case TargetOpcode::G_SSUBO:
1839   case TargetOpcode::G_UADDO:
1840   case TargetOpcode::G_USUBO:
1841     return widenScalarAddoSubo(MI, TypeIdx, WideTy);
1842   case TargetOpcode::G_SADDSAT:
1843   case TargetOpcode::G_SSUBSAT:
1844   case TargetOpcode::G_SSHLSAT:
1845   case TargetOpcode::G_UADDSAT:
1846   case TargetOpcode::G_USUBSAT:
1847   case TargetOpcode::G_USHLSAT:
1848     return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
1849   case TargetOpcode::G_CTTZ:
1850   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1851   case TargetOpcode::G_CTLZ:
1852   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1853   case TargetOpcode::G_CTPOP: {
1854     if (TypeIdx == 0) {
1855       Observer.changingInstr(MI);
1856       widenScalarDst(MI, WideTy, 0);
1857       Observer.changedInstr(MI);
1858       return Legalized;
1859     }
1860 
1861     Register SrcReg = MI.getOperand(1).getReg();
1862 
1863     // First ZEXT the input.
1864     auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg);
1865     LLT CurTy = MRI.getType(SrcReg);
1866     if (MI.getOpcode() == TargetOpcode::G_CTTZ) {
1867       // The count is the same in the larger type except if the original
1868       // value was zero.  This can be handled by setting the bit just off
1869       // the top of the original type.
1870       auto TopBit =
1871           APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
1872       MIBSrc = MIRBuilder.buildOr(
1873         WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
1874     }
1875 
1876     // Perform the operation at the larger size.
1877     auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc});
1878     // This is already the correct result for CTPOP and CTTZs
1879     if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
1880         MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
1881       // The correct result is NewOp - (Difference in widety and current ty).
1882       unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
1883       MIBNewOp = MIRBuilder.buildSub(
1884           WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
1885     }
1886 
1887     MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
1888     MI.eraseFromParent();
1889     return Legalized;
1890   }
1891   case TargetOpcode::G_BSWAP: {
1892     Observer.changingInstr(MI);
1893     Register DstReg = MI.getOperand(0).getReg();
1894 
1895     Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
1896     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1897     Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
1898     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1899 
1900     MI.getOperand(0).setReg(DstExt);
1901 
1902     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1903 
1904     LLT Ty = MRI.getType(DstReg);
1905     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1906     MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
1907     MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
1908 
1909     MIRBuilder.buildTrunc(DstReg, ShrReg);
1910     Observer.changedInstr(MI);
1911     return Legalized;
1912   }
1913   case TargetOpcode::G_BITREVERSE: {
1914     Observer.changingInstr(MI);
1915 
1916     Register DstReg = MI.getOperand(0).getReg();
1917     LLT Ty = MRI.getType(DstReg);
1918     unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
1919 
1920     Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1921     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1922     MI.getOperand(0).setReg(DstExt);
1923     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1924 
1925     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
1926     auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
1927     MIRBuilder.buildTrunc(DstReg, Shift);
1928     Observer.changedInstr(MI);
1929     return Legalized;
1930   }
1931   case TargetOpcode::G_FREEZE:
1932     Observer.changingInstr(MI);
1933     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1934     widenScalarDst(MI, WideTy);
1935     Observer.changedInstr(MI);
1936     return Legalized;
1937 
1938   case TargetOpcode::G_ADD:
1939   case TargetOpcode::G_AND:
1940   case TargetOpcode::G_MUL:
1941   case TargetOpcode::G_OR:
1942   case TargetOpcode::G_XOR:
1943   case TargetOpcode::G_SUB:
1944     // Perform operation at larger width (any extension is fines here, high bits
1945     // don't affect the result) and then truncate the result back to the
1946     // original type.
1947     Observer.changingInstr(MI);
1948     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1949     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
1950     widenScalarDst(MI, WideTy);
1951     Observer.changedInstr(MI);
1952     return Legalized;
1953 
1954   case TargetOpcode::G_SHL:
1955     Observer.changingInstr(MI);
1956 
1957     if (TypeIdx == 0) {
1958       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1959       widenScalarDst(MI, WideTy);
1960     } else {
1961       assert(TypeIdx == 1);
1962       // The "number of bits to shift" operand must preserve its value as an
1963       // unsigned integer:
1964       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1965     }
1966 
1967     Observer.changedInstr(MI);
1968     return Legalized;
1969 
1970   case TargetOpcode::G_SDIV:
1971   case TargetOpcode::G_SREM:
1972   case TargetOpcode::G_SMIN:
1973   case TargetOpcode::G_SMAX:
1974     Observer.changingInstr(MI);
1975     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
1976     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
1977     widenScalarDst(MI, WideTy);
1978     Observer.changedInstr(MI);
1979     return Legalized;
1980 
1981   case TargetOpcode::G_ASHR:
1982   case TargetOpcode::G_LSHR:
1983     Observer.changingInstr(MI);
1984 
1985     if (TypeIdx == 0) {
1986       unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
1987         TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
1988 
1989       widenScalarSrc(MI, WideTy, 1, CvtOp);
1990       widenScalarDst(MI, WideTy);
1991     } else {
1992       assert(TypeIdx == 1);
1993       // The "number of bits to shift" operand must preserve its value as an
1994       // unsigned integer:
1995       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
1996     }
1997 
1998     Observer.changedInstr(MI);
1999     return Legalized;
2000   case TargetOpcode::G_UDIV:
2001   case TargetOpcode::G_UREM:
2002   case TargetOpcode::G_UMIN:
2003   case TargetOpcode::G_UMAX:
2004     Observer.changingInstr(MI);
2005     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2006     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2007     widenScalarDst(MI, WideTy);
2008     Observer.changedInstr(MI);
2009     return Legalized;
2010 
2011   case TargetOpcode::G_SELECT:
2012     Observer.changingInstr(MI);
2013     if (TypeIdx == 0) {
2014       // Perform operation at larger width (any extension is fine here, high
2015       // bits don't affect the result) and then truncate the result back to the
2016       // original type.
2017       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2018       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2019       widenScalarDst(MI, WideTy);
2020     } else {
2021       bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2022       // Explicit extension is required here since high bits affect the result.
2023       widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2024     }
2025     Observer.changedInstr(MI);
2026     return Legalized;
2027 
2028   case TargetOpcode::G_FPTOSI:
2029   case TargetOpcode::G_FPTOUI:
2030     Observer.changingInstr(MI);
2031 
2032     if (TypeIdx == 0)
2033       widenScalarDst(MI, WideTy);
2034     else
2035       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2036 
2037     Observer.changedInstr(MI);
2038     return Legalized;
2039   case TargetOpcode::G_SITOFP:
2040     Observer.changingInstr(MI);
2041 
2042     if (TypeIdx == 0)
2043       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2044     else
2045       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2046 
2047     Observer.changedInstr(MI);
2048     return Legalized;
2049   case TargetOpcode::G_UITOFP:
2050     Observer.changingInstr(MI);
2051 
2052     if (TypeIdx == 0)
2053       widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2054     else
2055       widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2056 
2057     Observer.changedInstr(MI);
2058     return Legalized;
2059   case TargetOpcode::G_LOAD:
2060   case TargetOpcode::G_SEXTLOAD:
2061   case TargetOpcode::G_ZEXTLOAD:
2062     Observer.changingInstr(MI);
2063     widenScalarDst(MI, WideTy);
2064     Observer.changedInstr(MI);
2065     return Legalized;
2066 
2067   case TargetOpcode::G_STORE: {
2068     if (TypeIdx != 0)
2069       return UnableToLegalize;
2070 
2071     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2072     if (!Ty.isScalar())
2073       return UnableToLegalize;
2074 
2075     Observer.changingInstr(MI);
2076 
2077     unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2078       TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2079     widenScalarSrc(MI, WideTy, 0, ExtType);
2080 
2081     Observer.changedInstr(MI);
2082     return Legalized;
2083   }
2084   case TargetOpcode::G_CONSTANT: {
2085     MachineOperand &SrcMO = MI.getOperand(1);
2086     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2087     unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2088         MRI.getType(MI.getOperand(0).getReg()));
2089     assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||
2090             ExtOpc == TargetOpcode::G_ANYEXT) &&
2091            "Illegal Extend");
2092     const APInt &SrcVal = SrcMO.getCImm()->getValue();
2093     const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2094                            ? SrcVal.sext(WideTy.getSizeInBits())
2095                            : SrcVal.zext(WideTy.getSizeInBits());
2096     Observer.changingInstr(MI);
2097     SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2098 
2099     widenScalarDst(MI, WideTy);
2100     Observer.changedInstr(MI);
2101     return Legalized;
2102   }
2103   case TargetOpcode::G_FCONSTANT: {
2104     MachineOperand &SrcMO = MI.getOperand(1);
2105     LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2106     APFloat Val = SrcMO.getFPImm()->getValueAPF();
2107     bool LosesInfo;
2108     switch (WideTy.getSizeInBits()) {
2109     case 32:
2110       Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2111                   &LosesInfo);
2112       break;
2113     case 64:
2114       Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2115                   &LosesInfo);
2116       break;
2117     default:
2118       return UnableToLegalize;
2119     }
2120 
2121     assert(!LosesInfo && "extend should always be lossless");
2122 
2123     Observer.changingInstr(MI);
2124     SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2125 
2126     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2127     Observer.changedInstr(MI);
2128     return Legalized;
2129   }
2130   case TargetOpcode::G_IMPLICIT_DEF: {
2131     Observer.changingInstr(MI);
2132     widenScalarDst(MI, WideTy);
2133     Observer.changedInstr(MI);
2134     return Legalized;
2135   }
2136   case TargetOpcode::G_BRCOND:
2137     Observer.changingInstr(MI);
2138     widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2139     Observer.changedInstr(MI);
2140     return Legalized;
2141 
2142   case TargetOpcode::G_FCMP:
2143     Observer.changingInstr(MI);
2144     if (TypeIdx == 0)
2145       widenScalarDst(MI, WideTy);
2146     else {
2147       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2148       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2149     }
2150     Observer.changedInstr(MI);
2151     return Legalized;
2152 
2153   case TargetOpcode::G_ICMP:
2154     Observer.changingInstr(MI);
2155     if (TypeIdx == 0)
2156       widenScalarDst(MI, WideTy);
2157     else {
2158       unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2159                                MI.getOperand(1).getPredicate()))
2160                                ? TargetOpcode::G_SEXT
2161                                : TargetOpcode::G_ZEXT;
2162       widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2163       widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2164     }
2165     Observer.changedInstr(MI);
2166     return Legalized;
2167 
2168   case TargetOpcode::G_PTR_ADD:
2169     assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD");
2170     Observer.changingInstr(MI);
2171     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2172     Observer.changedInstr(MI);
2173     return Legalized;
2174 
2175   case TargetOpcode::G_PHI: {
2176     assert(TypeIdx == 0 && "Expecting only Idx 0");
2177 
2178     Observer.changingInstr(MI);
2179     for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2180       MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2181       MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2182       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2183     }
2184 
2185     MachineBasicBlock &MBB = *MI.getParent();
2186     MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2187     widenScalarDst(MI, WideTy);
2188     Observer.changedInstr(MI);
2189     return Legalized;
2190   }
2191   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2192     if (TypeIdx == 0) {
2193       Register VecReg = MI.getOperand(1).getReg();
2194       LLT VecTy = MRI.getType(VecReg);
2195       Observer.changingInstr(MI);
2196 
2197       widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(),
2198                                      WideTy.getSizeInBits()),
2199                      1, TargetOpcode::G_SEXT);
2200 
2201       widenScalarDst(MI, WideTy, 0);
2202       Observer.changedInstr(MI);
2203       return Legalized;
2204     }
2205 
2206     if (TypeIdx != 2)
2207       return UnableToLegalize;
2208     Observer.changingInstr(MI);
2209     // TODO: Probably should be zext
2210     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2211     Observer.changedInstr(MI);
2212     return Legalized;
2213   }
2214   case TargetOpcode::G_INSERT_VECTOR_ELT: {
2215     if (TypeIdx == 1) {
2216       Observer.changingInstr(MI);
2217 
2218       Register VecReg = MI.getOperand(1).getReg();
2219       LLT VecTy = MRI.getType(VecReg);
2220       LLT WideVecTy = LLT::vector(VecTy.getNumElements(), WideTy);
2221 
2222       widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2223       widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2224       widenScalarDst(MI, WideVecTy, 0);
2225       Observer.changedInstr(MI);
2226       return Legalized;
2227     }
2228 
2229     if (TypeIdx == 2) {
2230       Observer.changingInstr(MI);
2231       // TODO: Probably should be zext
2232       widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2233       Observer.changedInstr(MI);
2234       return Legalized;
2235     }
2236 
2237     return UnableToLegalize;
2238   }
2239   case TargetOpcode::G_FADD:
2240   case TargetOpcode::G_FMUL:
2241   case TargetOpcode::G_FSUB:
2242   case TargetOpcode::G_FMA:
2243   case TargetOpcode::G_FMAD:
2244   case TargetOpcode::G_FNEG:
2245   case TargetOpcode::G_FABS:
2246   case TargetOpcode::G_FCANONICALIZE:
2247   case TargetOpcode::G_FMINNUM:
2248   case TargetOpcode::G_FMAXNUM:
2249   case TargetOpcode::G_FMINNUM_IEEE:
2250   case TargetOpcode::G_FMAXNUM_IEEE:
2251   case TargetOpcode::G_FMINIMUM:
2252   case TargetOpcode::G_FMAXIMUM:
2253   case TargetOpcode::G_FDIV:
2254   case TargetOpcode::G_FREM:
2255   case TargetOpcode::G_FCEIL:
2256   case TargetOpcode::G_FFLOOR:
2257   case TargetOpcode::G_FCOS:
2258   case TargetOpcode::G_FSIN:
2259   case TargetOpcode::G_FLOG10:
2260   case TargetOpcode::G_FLOG:
2261   case TargetOpcode::G_FLOG2:
2262   case TargetOpcode::G_FRINT:
2263   case TargetOpcode::G_FNEARBYINT:
2264   case TargetOpcode::G_FSQRT:
2265   case TargetOpcode::G_FEXP:
2266   case TargetOpcode::G_FEXP2:
2267   case TargetOpcode::G_FPOW:
2268   case TargetOpcode::G_INTRINSIC_TRUNC:
2269   case TargetOpcode::G_INTRINSIC_ROUND:
2270   case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2271     assert(TypeIdx == 0);
2272     Observer.changingInstr(MI);
2273 
2274     for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2275       widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2276 
2277     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2278     Observer.changedInstr(MI);
2279     return Legalized;
2280   case TargetOpcode::G_FPOWI: {
2281     if (TypeIdx != 0)
2282       return UnableToLegalize;
2283     Observer.changingInstr(MI);
2284     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2285     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2286     Observer.changedInstr(MI);
2287     return Legalized;
2288   }
2289   case TargetOpcode::G_INTTOPTR:
2290     if (TypeIdx != 1)
2291       return UnableToLegalize;
2292 
2293     Observer.changingInstr(MI);
2294     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2295     Observer.changedInstr(MI);
2296     return Legalized;
2297   case TargetOpcode::G_PTRTOINT:
2298     if (TypeIdx != 0)
2299       return UnableToLegalize;
2300 
2301     Observer.changingInstr(MI);
2302     widenScalarDst(MI, WideTy, 0);
2303     Observer.changedInstr(MI);
2304     return Legalized;
2305   case TargetOpcode::G_BUILD_VECTOR: {
2306     Observer.changingInstr(MI);
2307 
2308     const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2309     for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2310       widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2311 
2312     // Avoid changing the result vector type if the source element type was
2313     // requested.
2314     if (TypeIdx == 1) {
2315       MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2316     } else {
2317       widenScalarDst(MI, WideTy, 0);
2318     }
2319 
2320     Observer.changedInstr(MI);
2321     return Legalized;
2322   }
2323   case TargetOpcode::G_SEXT_INREG:
2324     if (TypeIdx != 0)
2325       return UnableToLegalize;
2326 
2327     Observer.changingInstr(MI);
2328     widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2329     widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2330     Observer.changedInstr(MI);
2331     return Legalized;
2332   case TargetOpcode::G_PTRMASK: {
2333     if (TypeIdx != 1)
2334       return UnableToLegalize;
2335     Observer.changingInstr(MI);
2336     widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2337     Observer.changedInstr(MI);
2338     return Legalized;
2339   }
2340   }
2341 }
2342 
getUnmergePieces(SmallVectorImpl<Register> & Pieces,MachineIRBuilder & B,Register Src,LLT Ty)2343 static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2344                              MachineIRBuilder &B, Register Src, LLT Ty) {
2345   auto Unmerge = B.buildUnmerge(Ty, Src);
2346   for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2347     Pieces.push_back(Unmerge.getReg(I));
2348 }
2349 
2350 LegalizerHelper::LegalizeResult
lowerBitcast(MachineInstr & MI)2351 LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2352   Register Dst = MI.getOperand(0).getReg();
2353   Register Src = MI.getOperand(1).getReg();
2354   LLT DstTy = MRI.getType(Dst);
2355   LLT SrcTy = MRI.getType(Src);
2356 
2357   if (SrcTy.isVector()) {
2358     LLT SrcEltTy = SrcTy.getElementType();
2359     SmallVector<Register, 8> SrcRegs;
2360 
2361     if (DstTy.isVector()) {
2362       int NumDstElt = DstTy.getNumElements();
2363       int NumSrcElt = SrcTy.getNumElements();
2364 
2365       LLT DstEltTy = DstTy.getElementType();
2366       LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2367       LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2368 
2369       // If there's an element size mismatch, insert intermediate casts to match
2370       // the result element type.
2371       if (NumSrcElt < NumDstElt) { // Source element type is larger.
2372         // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2373         //
2374         // =>
2375         //
2376         // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2377         // %3:_(<2 x s8>) = G_BITCAST %2
2378         // %4:_(<2 x s8>) = G_BITCAST %3
2379         // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2380         DstCastTy = LLT::vector(NumDstElt / NumSrcElt, DstEltTy);
2381         SrcPartTy = SrcEltTy;
2382       } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2383         //
2384         // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2385         //
2386         // =>
2387         //
2388         // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2389         // %3:_(s16) = G_BITCAST %2
2390         // %4:_(s16) = G_BITCAST %3
2391         // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2392         SrcPartTy = LLT::vector(NumSrcElt / NumDstElt, SrcEltTy);
2393         DstCastTy = DstEltTy;
2394       }
2395 
2396       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2397       for (Register &SrcReg : SrcRegs)
2398         SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2399     } else
2400       getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2401 
2402     MIRBuilder.buildMerge(Dst, SrcRegs);
2403     MI.eraseFromParent();
2404     return Legalized;
2405   }
2406 
2407   if (DstTy.isVector()) {
2408     SmallVector<Register, 8> SrcRegs;
2409     getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2410     MIRBuilder.buildMerge(Dst, SrcRegs);
2411     MI.eraseFromParent();
2412     return Legalized;
2413   }
2414 
2415   return UnableToLegalize;
2416 }
2417 
2418 /// Figure out the bit offset into a register when coercing a vector index for
2419 /// the wide element type. This is only for the case when promoting vector to
2420 /// one with larger elements.
2421 //
2422 ///
2423 /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2424 /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
getBitcastWiderVectorElementOffset(MachineIRBuilder & B,Register Idx,unsigned NewEltSize,unsigned OldEltSize)2425 static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2426                                                    Register Idx,
2427                                                    unsigned NewEltSize,
2428                                                    unsigned OldEltSize) {
2429   const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2430   LLT IdxTy = B.getMRI()->getType(Idx);
2431 
2432   // Now figure out the amount we need to shift to get the target bits.
2433   auto OffsetMask = B.buildConstant(
2434     IdxTy, ~(APInt::getAllOnesValue(IdxTy.getSizeInBits()) << Log2EltRatio));
2435   auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2436   return B.buildShl(IdxTy, OffsetIdx,
2437                     B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2438 }
2439 
2440 /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2441 /// is casting to a vector with a smaller element size, perform multiple element
2442 /// extracts and merge the results. If this is coercing to a vector with larger
2443 /// elements, index the bitcasted vector and extract the target element with bit
2444 /// operations. This is intended to force the indexing in the native register
2445 /// size for architectures that can dynamically index the register file.
2446 LegalizerHelper::LegalizeResult
bitcastExtractVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)2447 LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2448                                          LLT CastTy) {
2449   if (TypeIdx != 1)
2450     return UnableToLegalize;
2451 
2452   Register Dst = MI.getOperand(0).getReg();
2453   Register SrcVec = MI.getOperand(1).getReg();
2454   Register Idx = MI.getOperand(2).getReg();
2455   LLT SrcVecTy = MRI.getType(SrcVec);
2456   LLT IdxTy = MRI.getType(Idx);
2457 
2458   LLT SrcEltTy = SrcVecTy.getElementType();
2459   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2460   unsigned OldNumElts = SrcVecTy.getNumElements();
2461 
2462   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2463   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2464 
2465   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2466   const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2467   if (NewNumElts > OldNumElts) {
2468     // Decreasing the vector element size
2469     //
2470     // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2471     //  =>
2472     //  v4i32:castx = bitcast x:v2i64
2473     //
2474     // i64 = bitcast
2475     //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2476     //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
2477     //
2478     if (NewNumElts % OldNumElts != 0)
2479       return UnableToLegalize;
2480 
2481     // Type of the intermediate result vector.
2482     const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2483     LLT MidTy = LLT::scalarOrVector(NewEltsPerOldElt, NewEltTy);
2484 
2485     auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2486 
2487     SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2488     auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2489 
2490     for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2491       auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2492       auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2493       auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2494       NewOps[I] = Elt.getReg(0);
2495     }
2496 
2497     auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2498     MIRBuilder.buildBitcast(Dst, NewVec);
2499     MI.eraseFromParent();
2500     return Legalized;
2501   }
2502 
2503   if (NewNumElts < OldNumElts) {
2504     if (NewEltSize % OldEltSize != 0)
2505       return UnableToLegalize;
2506 
2507     // This only depends on powers of 2 because we use bit tricks to figure out
2508     // the bit offset we need to shift to get the target element. A general
2509     // expansion could emit division/multiply.
2510     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2511       return UnableToLegalize;
2512 
2513     // Increasing the vector element size.
2514     // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2515     //
2516     //   =>
2517     //
2518     // %cast = G_BITCAST %vec
2519     // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2520     // %wide_elt  = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2521     // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2522     // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2523     // %elt_bits = G_LSHR %wide_elt, %offset_bits
2524     // %elt = G_TRUNC %elt_bits
2525 
2526     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2527     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2528 
2529     // Divide to get the index in the wider element type.
2530     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2531 
2532     Register WideElt = CastVec;
2533     if (CastTy.isVector()) {
2534       WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2535                                                      ScaledIdx).getReg(0);
2536     }
2537 
2538     // Compute the bit offset into the register of the target element.
2539     Register OffsetBits = getBitcastWiderVectorElementOffset(
2540       MIRBuilder, Idx, NewEltSize, OldEltSize);
2541 
2542     // Shift the wide element to get the target element.
2543     auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2544     MIRBuilder.buildTrunc(Dst, ExtractedBits);
2545     MI.eraseFromParent();
2546     return Legalized;
2547   }
2548 
2549   return UnableToLegalize;
2550 }
2551 
2552 /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2553 /// TargetReg, while preserving other bits in \p TargetReg.
2554 ///
2555 /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
buildBitFieldInsert(MachineIRBuilder & B,Register TargetReg,Register InsertReg,Register OffsetBits)2556 static Register buildBitFieldInsert(MachineIRBuilder &B,
2557                                     Register TargetReg, Register InsertReg,
2558                                     Register OffsetBits) {
2559   LLT TargetTy = B.getMRI()->getType(TargetReg);
2560   LLT InsertTy = B.getMRI()->getType(InsertReg);
2561   auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2562   auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2563 
2564   // Produce a bitmask of the value to insert
2565   auto EltMask = B.buildConstant(
2566     TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2567                                    InsertTy.getSizeInBits()));
2568   // Shift it into position
2569   auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2570   auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2571 
2572   // Clear out the bits in the wide element
2573   auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2574 
2575   // The value to insert has all zeros already, so stick it into the masked
2576   // wide element.
2577   return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2578 }
2579 
2580 /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2581 /// is increasing the element size, perform the indexing in the target element
2582 /// type, and use bit operations to insert at the element position. This is
2583 /// intended for architectures that can dynamically index the register file and
2584 /// want to force indexing in the native register size.
2585 LegalizerHelper::LegalizeResult
bitcastInsertVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)2586 LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2587                                         LLT CastTy) {
2588   if (TypeIdx != 0)
2589     return UnableToLegalize;
2590 
2591   Register Dst = MI.getOperand(0).getReg();
2592   Register SrcVec = MI.getOperand(1).getReg();
2593   Register Val = MI.getOperand(2).getReg();
2594   Register Idx = MI.getOperand(3).getReg();
2595 
2596   LLT VecTy = MRI.getType(Dst);
2597   LLT IdxTy = MRI.getType(Idx);
2598 
2599   LLT VecEltTy = VecTy.getElementType();
2600   LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2601   const unsigned NewEltSize = NewEltTy.getSizeInBits();
2602   const unsigned OldEltSize = VecEltTy.getSizeInBits();
2603 
2604   unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2605   unsigned OldNumElts = VecTy.getNumElements();
2606 
2607   Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2608   if (NewNumElts < OldNumElts) {
2609     if (NewEltSize % OldEltSize != 0)
2610       return UnableToLegalize;
2611 
2612     // This only depends on powers of 2 because we use bit tricks to figure out
2613     // the bit offset we need to shift to get the target element. A general
2614     // expansion could emit division/multiply.
2615     if (!isPowerOf2_32(NewEltSize / OldEltSize))
2616       return UnableToLegalize;
2617 
2618     const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2619     auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2620 
2621     // Divide to get the index in the wider element type.
2622     auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2623 
2624     Register ExtractedElt = CastVec;
2625     if (CastTy.isVector()) {
2626       ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2627                                                           ScaledIdx).getReg(0);
2628     }
2629 
2630     // Compute the bit offset into the register of the target element.
2631     Register OffsetBits = getBitcastWiderVectorElementOffset(
2632       MIRBuilder, Idx, NewEltSize, OldEltSize);
2633 
2634     Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2635                                                Val, OffsetBits);
2636     if (CastTy.isVector()) {
2637       InsertedElt = MIRBuilder.buildInsertVectorElement(
2638         CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2639     }
2640 
2641     MIRBuilder.buildBitcast(Dst, InsertedElt);
2642     MI.eraseFromParent();
2643     return Legalized;
2644   }
2645 
2646   return UnableToLegalize;
2647 }
2648 
2649 LegalizerHelper::LegalizeResult
lowerLoad(MachineInstr & MI)2650 LegalizerHelper::lowerLoad(MachineInstr &MI) {
2651   // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2652   Register DstReg = MI.getOperand(0).getReg();
2653   Register PtrReg = MI.getOperand(1).getReg();
2654   LLT DstTy = MRI.getType(DstReg);
2655   auto &MMO = **MI.memoperands_begin();
2656 
2657   if (DstTy.getSizeInBits() == MMO.getSizeInBits()) {
2658     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
2659       // This load needs splitting into power of 2 sized loads.
2660       if (DstTy.isVector())
2661         return UnableToLegalize;
2662       if (isPowerOf2_32(DstTy.getSizeInBits()))
2663         return UnableToLegalize; // Don't know what we're being asked to do.
2664 
2665       // Our strategy here is to generate anyextending loads for the smaller
2666       // types up to next power-2 result type, and then combine the two larger
2667       // result values together, before truncating back down to the non-pow-2
2668       // type.
2669       // E.g. v1 = i24 load =>
2670       // v2 = i32 zextload (2 byte)
2671       // v3 = i32 load (1 byte)
2672       // v4 = i32 shl v3, 16
2673       // v5 = i32 or v4, v2
2674       // v1 = i24 trunc v5
2675       // By doing this we generate the correct truncate which should get
2676       // combined away as an artifact with a matching extend.
2677       uint64_t LargeSplitSize = PowerOf2Floor(DstTy.getSizeInBits());
2678       uint64_t SmallSplitSize = DstTy.getSizeInBits() - LargeSplitSize;
2679 
2680       MachineFunction &MF = MIRBuilder.getMF();
2681       MachineMemOperand *LargeMMO =
2682         MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2683       MachineMemOperand *SmallMMO = MF.getMachineMemOperand(
2684         &MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2685 
2686       LLT PtrTy = MRI.getType(PtrReg);
2687       unsigned AnyExtSize = NextPowerOf2(DstTy.getSizeInBits());
2688       LLT AnyExtTy = LLT::scalar(AnyExtSize);
2689       Register LargeLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2690       Register SmallLdReg = MRI.createGenericVirtualRegister(AnyExtTy);
2691       auto LargeLoad = MIRBuilder.buildLoadInstr(
2692         TargetOpcode::G_ZEXTLOAD, LargeLdReg, PtrReg, *LargeMMO);
2693 
2694       auto OffsetCst = MIRBuilder.buildConstant(
2695         LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2696       Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2697       auto SmallPtr =
2698         MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2699       auto SmallLoad = MIRBuilder.buildLoad(SmallLdReg, SmallPtr.getReg(0),
2700                                             *SmallMMO);
2701 
2702       auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
2703       auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
2704       auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
2705       MIRBuilder.buildTrunc(DstReg, {Or.getReg(0)});
2706       MI.eraseFromParent();
2707       return Legalized;
2708     }
2709 
2710     MIRBuilder.buildLoad(DstReg, PtrReg, MMO);
2711     MI.eraseFromParent();
2712     return Legalized;
2713   }
2714 
2715   if (DstTy.isScalar()) {
2716     Register TmpReg =
2717       MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits()));
2718     MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
2719     switch (MI.getOpcode()) {
2720     default:
2721       llvm_unreachable("Unexpected opcode");
2722     case TargetOpcode::G_LOAD:
2723       MIRBuilder.buildAnyExtOrTrunc(DstReg, TmpReg);
2724       break;
2725     case TargetOpcode::G_SEXTLOAD:
2726       MIRBuilder.buildSExt(DstReg, TmpReg);
2727       break;
2728     case TargetOpcode::G_ZEXTLOAD:
2729       MIRBuilder.buildZExt(DstReg, TmpReg);
2730       break;
2731     }
2732 
2733     MI.eraseFromParent();
2734     return Legalized;
2735   }
2736 
2737   return UnableToLegalize;
2738 }
2739 
2740 LegalizerHelper::LegalizeResult
lowerStore(MachineInstr & MI)2741 LegalizerHelper::lowerStore(MachineInstr &MI) {
2742   // Lower a non-power of 2 store into multiple pow-2 stores.
2743   // E.g. split an i24 store into an i16 store + i8 store.
2744   // We do this by first extending the stored value to the next largest power
2745   // of 2 type, and then using truncating stores to store the components.
2746   // By doing this, likewise with G_LOAD, generate an extend that can be
2747   // artifact-combined away instead of leaving behind extracts.
2748   Register SrcReg = MI.getOperand(0).getReg();
2749   Register PtrReg = MI.getOperand(1).getReg();
2750   LLT SrcTy = MRI.getType(SrcReg);
2751   MachineMemOperand &MMO = **MI.memoperands_begin();
2752   if (SrcTy.getSizeInBits() != MMO.getSizeInBits())
2753     return UnableToLegalize;
2754   if (SrcTy.isVector())
2755     return UnableToLegalize;
2756   if (isPowerOf2_32(SrcTy.getSizeInBits()))
2757     return UnableToLegalize; // Don't know what we're being asked to do.
2758 
2759   // Extend to the next pow-2.
2760   const LLT ExtendTy = LLT::scalar(NextPowerOf2(SrcTy.getSizeInBits()));
2761   auto ExtVal = MIRBuilder.buildAnyExt(ExtendTy, SrcReg);
2762 
2763   // Obtain the smaller value by shifting away the larger value.
2764   uint64_t LargeSplitSize = PowerOf2Floor(SrcTy.getSizeInBits());
2765   uint64_t SmallSplitSize = SrcTy.getSizeInBits() - LargeSplitSize;
2766   auto ShiftAmt = MIRBuilder.buildConstant(ExtendTy, LargeSplitSize);
2767   auto SmallVal = MIRBuilder.buildLShr(ExtendTy, ExtVal, ShiftAmt);
2768 
2769   // Generate the PtrAdd and truncating stores.
2770   LLT PtrTy = MRI.getType(PtrReg);
2771   auto OffsetCst = MIRBuilder.buildConstant(
2772     LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
2773   Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
2774   auto SmallPtr =
2775     MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst.getReg(0));
2776 
2777   MachineFunction &MF = MIRBuilder.getMF();
2778   MachineMemOperand *LargeMMO =
2779     MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
2780   MachineMemOperand *SmallMMO =
2781     MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
2782   MIRBuilder.buildStore(ExtVal.getReg(0), PtrReg, *LargeMMO);
2783   MIRBuilder.buildStore(SmallVal.getReg(0), SmallPtr.getReg(0), *SmallMMO);
2784   MI.eraseFromParent();
2785   return Legalized;
2786 }
2787 
2788 LegalizerHelper::LegalizeResult
bitcast(MachineInstr & MI,unsigned TypeIdx,LLT CastTy)2789 LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
2790   switch (MI.getOpcode()) {
2791   case TargetOpcode::G_LOAD: {
2792     if (TypeIdx != 0)
2793       return UnableToLegalize;
2794 
2795     Observer.changingInstr(MI);
2796     bitcastDst(MI, CastTy, 0);
2797     Observer.changedInstr(MI);
2798     return Legalized;
2799   }
2800   case TargetOpcode::G_STORE: {
2801     if (TypeIdx != 0)
2802       return UnableToLegalize;
2803 
2804     Observer.changingInstr(MI);
2805     bitcastSrc(MI, CastTy, 0);
2806     Observer.changedInstr(MI);
2807     return Legalized;
2808   }
2809   case TargetOpcode::G_SELECT: {
2810     if (TypeIdx != 0)
2811       return UnableToLegalize;
2812 
2813     if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
2814       LLVM_DEBUG(
2815           dbgs() << "bitcast action not implemented for vector select\n");
2816       return UnableToLegalize;
2817     }
2818 
2819     Observer.changingInstr(MI);
2820     bitcastSrc(MI, CastTy, 2);
2821     bitcastSrc(MI, CastTy, 3);
2822     bitcastDst(MI, CastTy, 0);
2823     Observer.changedInstr(MI);
2824     return Legalized;
2825   }
2826   case TargetOpcode::G_AND:
2827   case TargetOpcode::G_OR:
2828   case TargetOpcode::G_XOR: {
2829     Observer.changingInstr(MI);
2830     bitcastSrc(MI, CastTy, 1);
2831     bitcastSrc(MI, CastTy, 2);
2832     bitcastDst(MI, CastTy, 0);
2833     Observer.changedInstr(MI);
2834     return Legalized;
2835   }
2836   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2837     return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
2838   case TargetOpcode::G_INSERT_VECTOR_ELT:
2839     return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
2840   default:
2841     return UnableToLegalize;
2842   }
2843 }
2844 
2845 // Legalize an instruction by changing the opcode in place.
changeOpcode(MachineInstr & MI,unsigned NewOpcode)2846 void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
2847     Observer.changingInstr(MI);
2848     MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
2849     Observer.changedInstr(MI);
2850 }
2851 
2852 LegalizerHelper::LegalizeResult
lower(MachineInstr & MI,unsigned TypeIdx,LLT LowerHintTy)2853 LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
2854   using namespace TargetOpcode;
2855 
2856   switch(MI.getOpcode()) {
2857   default:
2858     return UnableToLegalize;
2859   case TargetOpcode::G_BITCAST:
2860     return lowerBitcast(MI);
2861   case TargetOpcode::G_SREM:
2862   case TargetOpcode::G_UREM: {
2863     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2864     auto Quot =
2865         MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
2866                               {MI.getOperand(1), MI.getOperand(2)});
2867 
2868     auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
2869     MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
2870     MI.eraseFromParent();
2871     return Legalized;
2872   }
2873   case TargetOpcode::G_SADDO:
2874   case TargetOpcode::G_SSUBO:
2875     return lowerSADDO_SSUBO(MI);
2876   case TargetOpcode::G_UMULH:
2877   case TargetOpcode::G_SMULH:
2878     return lowerSMULH_UMULH(MI);
2879   case TargetOpcode::G_SMULO:
2880   case TargetOpcode::G_UMULO: {
2881     // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
2882     // result.
2883     Register Res = MI.getOperand(0).getReg();
2884     Register Overflow = MI.getOperand(1).getReg();
2885     Register LHS = MI.getOperand(2).getReg();
2886     Register RHS = MI.getOperand(3).getReg();
2887     LLT Ty = MRI.getType(Res);
2888 
2889     unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
2890                           ? TargetOpcode::G_SMULH
2891                           : TargetOpcode::G_UMULH;
2892 
2893     Observer.changingInstr(MI);
2894     const auto &TII = MIRBuilder.getTII();
2895     MI.setDesc(TII.get(TargetOpcode::G_MUL));
2896     MI.RemoveOperand(1);
2897     Observer.changedInstr(MI);
2898 
2899     auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
2900     auto Zero = MIRBuilder.buildConstant(Ty, 0);
2901 
2902     // Move insert point forward so we can use the Res register if needed.
2903     MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2904 
2905     // For *signed* multiply, overflow is detected by checking:
2906     // (hi != (lo >> bitwidth-1))
2907     if (Opcode == TargetOpcode::G_SMULH) {
2908       auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
2909       auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
2910       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
2911     } else {
2912       MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
2913     }
2914     return Legalized;
2915   }
2916   case TargetOpcode::G_FNEG: {
2917     Register Res = MI.getOperand(0).getReg();
2918     LLT Ty = MRI.getType(Res);
2919 
2920     // TODO: Handle vector types once we are able to
2921     // represent them.
2922     if (Ty.isVector())
2923       return UnableToLegalize;
2924     auto SignMask =
2925         MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
2926     Register SubByReg = MI.getOperand(1).getReg();
2927     MIRBuilder.buildXor(Res, SubByReg, SignMask);
2928     MI.eraseFromParent();
2929     return Legalized;
2930   }
2931   case TargetOpcode::G_FSUB: {
2932     Register Res = MI.getOperand(0).getReg();
2933     LLT Ty = MRI.getType(Res);
2934 
2935     // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
2936     // First, check if G_FNEG is marked as Lower. If so, we may
2937     // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
2938     if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
2939       return UnableToLegalize;
2940     Register LHS = MI.getOperand(1).getReg();
2941     Register RHS = MI.getOperand(2).getReg();
2942     Register Neg = MRI.createGenericVirtualRegister(Ty);
2943     MIRBuilder.buildFNeg(Neg, RHS);
2944     MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
2945     MI.eraseFromParent();
2946     return Legalized;
2947   }
2948   case TargetOpcode::G_FMAD:
2949     return lowerFMad(MI);
2950   case TargetOpcode::G_FFLOOR:
2951     return lowerFFloor(MI);
2952   case TargetOpcode::G_INTRINSIC_ROUND:
2953     return lowerIntrinsicRound(MI);
2954   case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
2955     // Since round even is the assumed rounding mode for unconstrained FP
2956     // operations, rint and roundeven are the same operation.
2957     changeOpcode(MI, TargetOpcode::G_FRINT);
2958     return Legalized;
2959   }
2960   case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
2961     Register OldValRes = MI.getOperand(0).getReg();
2962     Register SuccessRes = MI.getOperand(1).getReg();
2963     Register Addr = MI.getOperand(2).getReg();
2964     Register CmpVal = MI.getOperand(3).getReg();
2965     Register NewVal = MI.getOperand(4).getReg();
2966     MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
2967                                   **MI.memoperands_begin());
2968     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
2969     MI.eraseFromParent();
2970     return Legalized;
2971   }
2972   case TargetOpcode::G_LOAD:
2973   case TargetOpcode::G_SEXTLOAD:
2974   case TargetOpcode::G_ZEXTLOAD:
2975     return lowerLoad(MI);
2976   case TargetOpcode::G_STORE:
2977     return lowerStore(MI);
2978   case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2979   case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2980   case TargetOpcode::G_CTLZ:
2981   case TargetOpcode::G_CTTZ:
2982   case TargetOpcode::G_CTPOP:
2983     return lowerBitCount(MI);
2984   case G_UADDO: {
2985     Register Res = MI.getOperand(0).getReg();
2986     Register CarryOut = MI.getOperand(1).getReg();
2987     Register LHS = MI.getOperand(2).getReg();
2988     Register RHS = MI.getOperand(3).getReg();
2989 
2990     MIRBuilder.buildAdd(Res, LHS, RHS);
2991     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
2992 
2993     MI.eraseFromParent();
2994     return Legalized;
2995   }
2996   case G_UADDE: {
2997     Register Res = MI.getOperand(0).getReg();
2998     Register CarryOut = MI.getOperand(1).getReg();
2999     Register LHS = MI.getOperand(2).getReg();
3000     Register RHS = MI.getOperand(3).getReg();
3001     Register CarryIn = MI.getOperand(4).getReg();
3002     LLT Ty = MRI.getType(Res);
3003 
3004     auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3005     auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3006     MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3007     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3008 
3009     MI.eraseFromParent();
3010     return Legalized;
3011   }
3012   case G_USUBO: {
3013     Register Res = MI.getOperand(0).getReg();
3014     Register BorrowOut = MI.getOperand(1).getReg();
3015     Register LHS = MI.getOperand(2).getReg();
3016     Register RHS = MI.getOperand(3).getReg();
3017 
3018     MIRBuilder.buildSub(Res, LHS, RHS);
3019     MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3020 
3021     MI.eraseFromParent();
3022     return Legalized;
3023   }
3024   case G_USUBE: {
3025     Register Res = MI.getOperand(0).getReg();
3026     Register BorrowOut = MI.getOperand(1).getReg();
3027     Register LHS = MI.getOperand(2).getReg();
3028     Register RHS = MI.getOperand(3).getReg();
3029     Register BorrowIn = MI.getOperand(4).getReg();
3030     const LLT CondTy = MRI.getType(BorrowOut);
3031     const LLT Ty = MRI.getType(Res);
3032 
3033     auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3034     auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3035     MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3036 
3037     auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3038     auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3039     MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3040 
3041     MI.eraseFromParent();
3042     return Legalized;
3043   }
3044   case G_UITOFP:
3045     return lowerUITOFP(MI);
3046   case G_SITOFP:
3047     return lowerSITOFP(MI);
3048   case G_FPTOUI:
3049     return lowerFPTOUI(MI);
3050   case G_FPTOSI:
3051     return lowerFPTOSI(MI);
3052   case G_FPTRUNC:
3053     return lowerFPTRUNC(MI);
3054   case G_FPOWI:
3055     return lowerFPOWI(MI);
3056   case G_SMIN:
3057   case G_SMAX:
3058   case G_UMIN:
3059   case G_UMAX:
3060     return lowerMinMax(MI);
3061   case G_FCOPYSIGN:
3062     return lowerFCopySign(MI);
3063   case G_FMINNUM:
3064   case G_FMAXNUM:
3065     return lowerFMinNumMaxNum(MI);
3066   case G_MERGE_VALUES:
3067     return lowerMergeValues(MI);
3068   case G_UNMERGE_VALUES:
3069     return lowerUnmergeValues(MI);
3070   case TargetOpcode::G_SEXT_INREG: {
3071     assert(MI.getOperand(2).isImm() && "Expected immediate");
3072     int64_t SizeInBits = MI.getOperand(2).getImm();
3073 
3074     Register DstReg = MI.getOperand(0).getReg();
3075     Register SrcReg = MI.getOperand(1).getReg();
3076     LLT DstTy = MRI.getType(DstReg);
3077     Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3078 
3079     auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3080     MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3081     MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3082     MI.eraseFromParent();
3083     return Legalized;
3084   }
3085   case G_EXTRACT_VECTOR_ELT:
3086   case G_INSERT_VECTOR_ELT:
3087     return lowerExtractInsertVectorElt(MI);
3088   case G_SHUFFLE_VECTOR:
3089     return lowerShuffleVector(MI);
3090   case G_DYN_STACKALLOC:
3091     return lowerDynStackAlloc(MI);
3092   case G_EXTRACT:
3093     return lowerExtract(MI);
3094   case G_INSERT:
3095     return lowerInsert(MI);
3096   case G_BSWAP:
3097     return lowerBswap(MI);
3098   case G_BITREVERSE:
3099     return lowerBitreverse(MI);
3100   case G_READ_REGISTER:
3101   case G_WRITE_REGISTER:
3102     return lowerReadWriteRegister(MI);
3103   case G_UADDSAT:
3104   case G_USUBSAT: {
3105     // Try to make a reasonable guess about which lowering strategy to use. The
3106     // target can override this with custom lowering and calling the
3107     // implementation functions.
3108     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3109     if (LI.isLegalOrCustom({G_UMIN, Ty}))
3110       return lowerAddSubSatToMinMax(MI);
3111     return lowerAddSubSatToAddoSubo(MI);
3112   }
3113   case G_SADDSAT:
3114   case G_SSUBSAT: {
3115     LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3116 
3117     // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3118     // since it's a shorter expansion. However, we would need to figure out the
3119     // preferred boolean type for the carry out for the query.
3120     if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3121       return lowerAddSubSatToMinMax(MI);
3122     return lowerAddSubSatToAddoSubo(MI);
3123   }
3124   case G_SSHLSAT:
3125   case G_USHLSAT:
3126     return lowerShlSat(MI);
3127   case G_ABS: {
3128     // Expand %res = G_ABS %a into:
3129     // %v1 = G_ASHR %a, scalar_size-1
3130     // %v2 = G_ADD %a, %v1
3131     // %res = G_XOR %v2, %v1
3132     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3133     Register OpReg = MI.getOperand(1).getReg();
3134     auto ShiftAmt =
3135         MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
3136     auto Shift =
3137         MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
3138     auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
3139     MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
3140     MI.eraseFromParent();
3141     return Legalized;
3142   }
3143   case G_SELECT:
3144     return lowerSelect(MI);
3145   }
3146 }
3147 
getStackTemporaryAlignment(LLT Ty,Align MinAlign) const3148 Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3149                                                   Align MinAlign) const {
3150   // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3151   // datalayout for the preferred alignment. Also there should be a target hook
3152   // for this to allow targets to reduce the alignment and ignore the
3153   // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3154   // the type.
3155   return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3156 }
3157 
3158 MachineInstrBuilder
createStackTemporary(TypeSize Bytes,Align Alignment,MachinePointerInfo & PtrInfo)3159 LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3160                                       MachinePointerInfo &PtrInfo) {
3161   MachineFunction &MF = MIRBuilder.getMF();
3162   const DataLayout &DL = MIRBuilder.getDataLayout();
3163   int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3164 
3165   unsigned AddrSpace = DL.getAllocaAddrSpace();
3166   LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3167 
3168   PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3169   return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3170 }
3171 
clampDynamicVectorIndex(MachineIRBuilder & B,Register IdxReg,LLT VecTy)3172 static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3173                                         LLT VecTy) {
3174   int64_t IdxVal;
3175   if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3176     return IdxReg;
3177 
3178   LLT IdxTy = B.getMRI()->getType(IdxReg);
3179   unsigned NElts = VecTy.getNumElements();
3180   if (isPowerOf2_32(NElts)) {
3181     APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3182     return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3183   }
3184 
3185   return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3186       .getReg(0);
3187 }
3188 
getVectorElementPointer(Register VecPtr,LLT VecTy,Register Index)3189 Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3190                                                   Register Index) {
3191   LLT EltTy = VecTy.getElementType();
3192 
3193   // Calculate the element offset and add it to the pointer.
3194   unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3195   assert(EltSize * 8 == EltTy.getSizeInBits() &&
3196          "Converting bits to bytes lost precision");
3197 
3198   Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3199 
3200   LLT IdxTy = MRI.getType(Index);
3201   auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3202                                  MIRBuilder.buildConstant(IdxTy, EltSize));
3203 
3204   LLT PtrTy = MRI.getType(VecPtr);
3205   return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3206 }
3207 
fewerElementsVectorImplicitDef(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3208 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef(
3209     MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) {
3210   Register DstReg = MI.getOperand(0).getReg();
3211   LLT DstTy = MRI.getType(DstReg);
3212   LLT LCMTy = getLCMType(DstTy, NarrowTy);
3213 
3214   unsigned NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
3215 
3216   auto NewUndef = MIRBuilder.buildUndef(NarrowTy);
3217   SmallVector<Register, 8> Parts(NumParts, NewUndef.getReg(0));
3218 
3219   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3220   MI.eraseFromParent();
3221   return Legalized;
3222 }
3223 
3224 // Handle splitting vector operations which need to have the same number of
3225 // elements in each type index, but each type index may have a different element
3226 // type.
3227 //
3228 // e.g.  <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3229 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3230 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3231 //
3232 // Also handles some irregular breakdown cases, e.g.
3233 // e.g.  <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3234 //       <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3235 //             s64 = G_SHL s64, s32
3236 LegalizerHelper::LegalizeResult
fewerElementsVectorMultiEltType(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTyArg)3237 LegalizerHelper::fewerElementsVectorMultiEltType(
3238   MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) {
3239   if (TypeIdx != 0)
3240     return UnableToLegalize;
3241 
3242   const LLT NarrowTy0 = NarrowTyArg;
3243   const unsigned NewNumElts =
3244       NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1;
3245 
3246   const Register DstReg = MI.getOperand(0).getReg();
3247   LLT DstTy = MRI.getType(DstReg);
3248   LLT LeftoverTy0;
3249 
3250   // All of the operands need to have the same number of elements, so if we can
3251   // determine a type breakdown for the result type, we can for all of the
3252   // source types.
3253   int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first;
3254   if (NumParts < 0)
3255     return UnableToLegalize;
3256 
3257   SmallVector<MachineInstrBuilder, 4> NewInsts;
3258 
3259   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3260   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3261 
3262   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) {
3263     Register SrcReg = MI.getOperand(I).getReg();
3264     LLT SrcTyI = MRI.getType(SrcReg);
3265     LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType());
3266     LLT LeftoverTyI;
3267 
3268     // Split this operand into the requested typed registers, and any leftover
3269     // required to reproduce the original type.
3270     if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs,
3271                       LeftoverRegs))
3272       return UnableToLegalize;
3273 
3274     if (I == 1) {
3275       // For the first operand, create an instruction for each part and setup
3276       // the result.
3277       for (Register PartReg : PartRegs) {
3278         Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3279         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3280                                .addDef(PartDstReg)
3281                                .addUse(PartReg));
3282         DstRegs.push_back(PartDstReg);
3283       }
3284 
3285       for (Register LeftoverReg : LeftoverRegs) {
3286         Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0);
3287         NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode())
3288                                .addDef(PartDstReg)
3289                                .addUse(LeftoverReg));
3290         LeftoverDstRegs.push_back(PartDstReg);
3291       }
3292     } else {
3293       assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size());
3294 
3295       // Add the newly created operand splits to the existing instructions. The
3296       // odd-sized pieces are ordered after the requested NarrowTyArg sized
3297       // pieces.
3298       unsigned InstCount = 0;
3299       for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J)
3300         NewInsts[InstCount++].addUse(PartRegs[J]);
3301       for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J)
3302         NewInsts[InstCount++].addUse(LeftoverRegs[J]);
3303     }
3304 
3305     PartRegs.clear();
3306     LeftoverRegs.clear();
3307   }
3308 
3309   // Insert the newly built operations and rebuild the result register.
3310   for (auto &MIB : NewInsts)
3311     MIRBuilder.insertInstr(MIB);
3312 
3313   insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs);
3314 
3315   MI.eraseFromParent();
3316   return Legalized;
3317 }
3318 
3319 LegalizerHelper::LegalizeResult
fewerElementsVectorCasts(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3320 LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx,
3321                                           LLT NarrowTy) {
3322   if (TypeIdx != 0)
3323     return UnableToLegalize;
3324 
3325   Register DstReg = MI.getOperand(0).getReg();
3326   Register SrcReg = MI.getOperand(1).getReg();
3327   LLT DstTy = MRI.getType(DstReg);
3328   LLT SrcTy = MRI.getType(SrcReg);
3329 
3330   LLT NarrowTy0 = NarrowTy;
3331   LLT NarrowTy1;
3332   unsigned NumParts;
3333 
3334   if (NarrowTy.isVector()) {
3335     // Uneven breakdown not handled.
3336     NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3337     if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements())
3338       return UnableToLegalize;
3339 
3340     NarrowTy1 = LLT::vector(NarrowTy.getNumElements(), SrcTy.getElementType());
3341   } else {
3342     NumParts = DstTy.getNumElements();
3343     NarrowTy1 = SrcTy.getElementType();
3344   }
3345 
3346   SmallVector<Register, 4> SrcRegs, DstRegs;
3347   extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs);
3348 
3349   for (unsigned I = 0; I < NumParts; ++I) {
3350     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3351     MachineInstr *NewInst =
3352         MIRBuilder.buildInstr(MI.getOpcode(), {DstReg}, {SrcRegs[I]});
3353 
3354     NewInst->setFlags(MI.getFlags());
3355     DstRegs.push_back(DstReg);
3356   }
3357 
3358   if (NarrowTy.isVector())
3359     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3360   else
3361     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3362 
3363   MI.eraseFromParent();
3364   return Legalized;
3365 }
3366 
3367 LegalizerHelper::LegalizeResult
fewerElementsVectorCmp(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3368 LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx,
3369                                         LLT NarrowTy) {
3370   Register DstReg = MI.getOperand(0).getReg();
3371   Register Src0Reg = MI.getOperand(2).getReg();
3372   LLT DstTy = MRI.getType(DstReg);
3373   LLT SrcTy = MRI.getType(Src0Reg);
3374 
3375   unsigned NumParts;
3376   LLT NarrowTy0, NarrowTy1;
3377 
3378   if (TypeIdx == 0) {
3379     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3380     unsigned OldElts = DstTy.getNumElements();
3381 
3382     NarrowTy0 = NarrowTy;
3383     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements();
3384     NarrowTy1 = NarrowTy.isVector() ?
3385       LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) :
3386       SrcTy.getElementType();
3387 
3388   } else {
3389     unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3390     unsigned OldElts = SrcTy.getNumElements();
3391 
3392     NumParts = NarrowTy.isVector() ? (OldElts / NewElts) :
3393       NarrowTy.getNumElements();
3394     NarrowTy0 = LLT::vector(NarrowTy.getNumElements(),
3395                             DstTy.getScalarSizeInBits());
3396     NarrowTy1 = NarrowTy;
3397   }
3398 
3399   // FIXME: Don't know how to handle the situation where the small vectors
3400   // aren't all the same size yet.
3401   if (NarrowTy1.isVector() &&
3402       NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements())
3403     return UnableToLegalize;
3404 
3405   CmpInst::Predicate Pred
3406     = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
3407 
3408   SmallVector<Register, 2> Src1Regs, Src2Regs, DstRegs;
3409   extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs);
3410   extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs);
3411 
3412   for (unsigned I = 0; I < NumParts; ++I) {
3413     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3414     DstRegs.push_back(DstReg);
3415 
3416     if (MI.getOpcode() == TargetOpcode::G_ICMP)
3417       MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3418     else {
3419       MachineInstr *NewCmp
3420         = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]);
3421       NewCmp->setFlags(MI.getFlags());
3422     }
3423   }
3424 
3425   if (NarrowTy1.isVector())
3426     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3427   else
3428     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3429 
3430   MI.eraseFromParent();
3431   return Legalized;
3432 }
3433 
3434 LegalizerHelper::LegalizeResult
fewerElementsVectorSelect(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3435 LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx,
3436                                            LLT NarrowTy) {
3437   Register DstReg = MI.getOperand(0).getReg();
3438   Register CondReg = MI.getOperand(1).getReg();
3439 
3440   unsigned NumParts = 0;
3441   LLT NarrowTy0, NarrowTy1;
3442 
3443   LLT DstTy = MRI.getType(DstReg);
3444   LLT CondTy = MRI.getType(CondReg);
3445   unsigned Size = DstTy.getSizeInBits();
3446 
3447   assert(TypeIdx == 0 || CondTy.isVector());
3448 
3449   if (TypeIdx == 0) {
3450     NarrowTy0 = NarrowTy;
3451     NarrowTy1 = CondTy;
3452 
3453     unsigned NarrowSize = NarrowTy0.getSizeInBits();
3454     // FIXME: Don't know how to handle the situation where the small vectors
3455     // aren't all the same size yet.
3456     if (Size % NarrowSize != 0)
3457       return UnableToLegalize;
3458 
3459     NumParts = Size / NarrowSize;
3460 
3461     // Need to break down the condition type
3462     if (CondTy.isVector()) {
3463       if (CondTy.getNumElements() == NumParts)
3464         NarrowTy1 = CondTy.getElementType();
3465       else
3466         NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts,
3467                                 CondTy.getScalarSizeInBits());
3468     }
3469   } else {
3470     NumParts = CondTy.getNumElements();
3471     if (NarrowTy.isVector()) {
3472       // TODO: Handle uneven breakdown.
3473       if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements())
3474         return UnableToLegalize;
3475 
3476       return UnableToLegalize;
3477     } else {
3478       NarrowTy0 = DstTy.getElementType();
3479       NarrowTy1 = NarrowTy;
3480     }
3481   }
3482 
3483   SmallVector<Register, 2> DstRegs, Src0Regs, Src1Regs, Src2Regs;
3484   if (CondTy.isVector())
3485     extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs);
3486 
3487   extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs);
3488   extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs);
3489 
3490   for (unsigned i = 0; i < NumParts; ++i) {
3491     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0);
3492     MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg,
3493                            Src1Regs[i], Src2Regs[i]);
3494     DstRegs.push_back(DstReg);
3495   }
3496 
3497   if (NarrowTy0.isVector())
3498     MIRBuilder.buildConcatVectors(DstReg, DstRegs);
3499   else
3500     MIRBuilder.buildBuildVector(DstReg, DstRegs);
3501 
3502   MI.eraseFromParent();
3503   return Legalized;
3504 }
3505 
3506 LegalizerHelper::LegalizeResult
fewerElementsVectorPhi(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3507 LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
3508                                         LLT NarrowTy) {
3509   const Register DstReg = MI.getOperand(0).getReg();
3510   LLT PhiTy = MRI.getType(DstReg);
3511   LLT LeftoverTy;
3512 
3513   // All of the operands need to have the same number of elements, so if we can
3514   // determine a type breakdown for the result type, we can for all of the
3515   // source types.
3516   int NumParts, NumLeftover;
3517   std::tie(NumParts, NumLeftover)
3518     = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy);
3519   if (NumParts < 0)
3520     return UnableToLegalize;
3521 
3522   SmallVector<Register, 4> DstRegs, LeftoverDstRegs;
3523   SmallVector<MachineInstrBuilder, 4> NewInsts;
3524 
3525   const int TotalNumParts = NumParts + NumLeftover;
3526 
3527   // Insert the new phis in the result block first.
3528   for (int I = 0; I != TotalNumParts; ++I) {
3529     LLT Ty = I < NumParts ? NarrowTy : LeftoverTy;
3530     Register PartDstReg = MRI.createGenericVirtualRegister(Ty);
3531     NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI)
3532                        .addDef(PartDstReg));
3533     if (I < NumParts)
3534       DstRegs.push_back(PartDstReg);
3535     else
3536       LeftoverDstRegs.push_back(PartDstReg);
3537   }
3538 
3539   MachineBasicBlock *MBB = MI.getParent();
3540   MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI());
3541   insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs);
3542 
3543   SmallVector<Register, 4> PartRegs, LeftoverRegs;
3544 
3545   // Insert code to extract the incoming values in each predecessor block.
3546   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
3547     PartRegs.clear();
3548     LeftoverRegs.clear();
3549 
3550     Register SrcReg = MI.getOperand(I).getReg();
3551     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
3552     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3553 
3554     LLT Unused;
3555     if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs,
3556                       LeftoverRegs))
3557       return UnableToLegalize;
3558 
3559     // Add the newly created operand splits to the existing instructions. The
3560     // odd-sized pieces are ordered after the requested NarrowTyArg sized
3561     // pieces.
3562     for (int J = 0; J != TotalNumParts; ++J) {
3563       MachineInstrBuilder MIB = NewInsts[J];
3564       MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]);
3565       MIB.addMBB(&OpMBB);
3566     }
3567   }
3568 
3569   MI.eraseFromParent();
3570   return Legalized;
3571 }
3572 
3573 LegalizerHelper::LegalizeResult
fewerElementsVectorUnmergeValues(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3574 LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3575                                                   unsigned TypeIdx,
3576                                                   LLT NarrowTy) {
3577   if (TypeIdx != 1)
3578     return UnableToLegalize;
3579 
3580   const int NumDst = MI.getNumOperands() - 1;
3581   const Register SrcReg = MI.getOperand(NumDst).getReg();
3582   LLT SrcTy = MRI.getType(SrcReg);
3583 
3584   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3585 
3586   // TODO: Create sequence of extracts.
3587   if (DstTy == NarrowTy)
3588     return UnableToLegalize;
3589 
3590   LLT GCDTy = getGCDType(SrcTy, NarrowTy);
3591   if (DstTy == GCDTy) {
3592     // This would just be a copy of the same unmerge.
3593     // TODO: Create extracts, pad with undef and create intermediate merges.
3594     return UnableToLegalize;
3595   }
3596 
3597   auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
3598   const int NumUnmerge = Unmerge->getNumOperands() - 1;
3599   const int PartsPerUnmerge = NumDst / NumUnmerge;
3600 
3601   for (int I = 0; I != NumUnmerge; ++I) {
3602     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3603 
3604     for (int J = 0; J != PartsPerUnmerge; ++J)
3605       MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3606     MIB.addUse(Unmerge.getReg(I));
3607   }
3608 
3609   MI.eraseFromParent();
3610   return Legalized;
3611 }
3612 
3613 // Handle FewerElementsVector a G_BUILD_VECTOR or G_CONCAT_VECTORS that produces
3614 // a vector
3615 //
3616 // Create a G_BUILD_VECTOR or G_CONCAT_VECTORS of NarrowTy pieces, padding with
3617 // undef as necessary.
3618 //
3619 // %3:_(<3 x s16>) = G_BUILD_VECTOR %0, %1, %2
3620 //   -> <2 x s16>
3621 //
3622 // %4:_(s16) = G_IMPLICIT_DEF
3623 // %5:_(<2 x s16>) = G_BUILD_VECTOR %0, %1
3624 // %6:_(<2 x s16>) = G_BUILD_VECTOR %2, %4
3625 // %7:_(<2 x s16>) = G_IMPLICIT_DEF
3626 // %8:_(<6 x s16>) = G_CONCAT_VECTORS %5, %6, %7
3627 // %3:_(<3 x s16>), %8:_(<3 x s16>) = G_UNMERGE_VALUES %8
3628 LegalizerHelper::LegalizeResult
fewerElementsVectorMerge(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3629 LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3630                                           LLT NarrowTy) {
3631   Register DstReg = MI.getOperand(0).getReg();
3632   LLT DstTy = MRI.getType(DstReg);
3633   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3634   LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
3635 
3636   // Break into a common type
3637   SmallVector<Register, 16> Parts;
3638   for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
3639     extractGCDType(Parts, GCDTy, MI.getOperand(I).getReg());
3640 
3641   // Build the requested new merge, padding with undef.
3642   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts,
3643                                   TargetOpcode::G_ANYEXT);
3644 
3645   // Pack into the original result register.
3646   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3647 
3648   MI.eraseFromParent();
3649   return Legalized;
3650 }
3651 
3652 LegalizerHelper::LegalizeResult
fewerElementsVectorExtractInsertVectorElt(MachineInstr & MI,unsigned TypeIdx,LLT NarrowVecTy)3653 LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3654                                                            unsigned TypeIdx,
3655                                                            LLT NarrowVecTy) {
3656   Register DstReg = MI.getOperand(0).getReg();
3657   Register SrcVec = MI.getOperand(1).getReg();
3658   Register InsertVal;
3659   bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3660 
3661   assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index");
3662   if (IsInsert)
3663     InsertVal = MI.getOperand(2).getReg();
3664 
3665   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3666 
3667   // TODO: Handle total scalarization case.
3668   if (!NarrowVecTy.isVector())
3669     return UnableToLegalize;
3670 
3671   LLT VecTy = MRI.getType(SrcVec);
3672 
3673   // If the index is a constant, we can really break this down as you would
3674   // expect, and index into the target size pieces.
3675   int64_t IdxVal;
3676   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
3677     // Avoid out of bounds indexing the pieces.
3678     if (IdxVal >= VecTy.getNumElements()) {
3679       MIRBuilder.buildUndef(DstReg);
3680       MI.eraseFromParent();
3681       return Legalized;
3682     }
3683 
3684     SmallVector<Register, 8> VecParts;
3685     LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
3686 
3687     // Build a sequence of NarrowTy pieces in VecParts for this operand.
3688     LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
3689                                     TargetOpcode::G_ANYEXT);
3690 
3691     unsigned NewNumElts = NarrowVecTy.getNumElements();
3692 
3693     LLT IdxTy = MRI.getType(Idx);
3694     int64_t PartIdx = IdxVal / NewNumElts;
3695     auto NewIdx =
3696         MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
3697 
3698     if (IsInsert) {
3699       LLT PartTy = MRI.getType(VecParts[PartIdx]);
3700 
3701       // Use the adjusted index to insert into one of the subvectors.
3702       auto InsertPart = MIRBuilder.buildInsertVectorElement(
3703           PartTy, VecParts[PartIdx], InsertVal, NewIdx);
3704       VecParts[PartIdx] = InsertPart.getReg(0);
3705 
3706       // Recombine the inserted subvector with the others to reform the result
3707       // vector.
3708       buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
3709     } else {
3710       MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
3711     }
3712 
3713     MI.eraseFromParent();
3714     return Legalized;
3715   }
3716 
3717   // With a variable index, we can't perform the operation in a smaller type, so
3718   // we're forced to expand this.
3719   //
3720   // TODO: We could emit a chain of compare/select to figure out which piece to
3721   // index.
3722   return lowerExtractInsertVectorElt(MI);
3723 }
3724 
3725 LegalizerHelper::LegalizeResult
reduceLoadStoreWidth(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3726 LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx,
3727                                       LLT NarrowTy) {
3728   // FIXME: Don't know how to handle secondary types yet.
3729   if (TypeIdx != 0)
3730     return UnableToLegalize;
3731 
3732   MachineMemOperand *MMO = *MI.memoperands_begin();
3733 
3734   // This implementation doesn't work for atomics. Give up instead of doing
3735   // something invalid.
3736   if (MMO->getOrdering() != AtomicOrdering::NotAtomic ||
3737       MMO->getFailureOrdering() != AtomicOrdering::NotAtomic)
3738     return UnableToLegalize;
3739 
3740   bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD;
3741   Register ValReg = MI.getOperand(0).getReg();
3742   Register AddrReg = MI.getOperand(1).getReg();
3743   LLT ValTy = MRI.getType(ValReg);
3744 
3745   // FIXME: Do we need a distinct NarrowMemory legalize action?
3746   if (ValTy.getSizeInBits() != 8 * MMO->getSize()) {
3747     LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n");
3748     return UnableToLegalize;
3749   }
3750 
3751   int NumParts = -1;
3752   int NumLeftover = -1;
3753   LLT LeftoverTy;
3754   SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
3755   if (IsLoad) {
3756     std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
3757   } else {
3758     if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
3759                      NarrowLeftoverRegs)) {
3760       NumParts = NarrowRegs.size();
3761       NumLeftover = NarrowLeftoverRegs.size();
3762     }
3763   }
3764 
3765   if (NumParts == -1)
3766     return UnableToLegalize;
3767 
3768   LLT PtrTy = MRI.getType(AddrReg);
3769   const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
3770 
3771   unsigned TotalSize = ValTy.getSizeInBits();
3772 
3773   // Split the load/store into PartTy sized pieces starting at Offset. If this
3774   // is a load, return the new registers in ValRegs. For a store, each elements
3775   // of ValRegs should be PartTy. Returns the next offset that needs to be
3776   // handled.
3777   auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
3778                              unsigned Offset) -> unsigned {
3779     MachineFunction &MF = MIRBuilder.getMF();
3780     unsigned PartSize = PartTy.getSizeInBits();
3781     for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
3782          Offset += PartSize, ++Idx) {
3783       unsigned ByteSize = PartSize / 8;
3784       unsigned ByteOffset = Offset / 8;
3785       Register NewAddrReg;
3786 
3787       MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
3788 
3789       MachineMemOperand *NewMMO =
3790         MF.getMachineMemOperand(MMO, ByteOffset, ByteSize);
3791 
3792       if (IsLoad) {
3793         Register Dst = MRI.createGenericVirtualRegister(PartTy);
3794         ValRegs.push_back(Dst);
3795         MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
3796       } else {
3797         MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
3798       }
3799     }
3800 
3801     return Offset;
3802   };
3803 
3804   unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
3805 
3806   // Handle the rest of the register if this isn't an even type breakdown.
3807   if (LeftoverTy.isValid())
3808     splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
3809 
3810   if (IsLoad) {
3811     insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
3812                 LeftoverTy, NarrowLeftoverRegs);
3813   }
3814 
3815   MI.eraseFromParent();
3816   return Legalized;
3817 }
3818 
3819 LegalizerHelper::LegalizeResult
reduceOperationWidth(MachineInstr & MI,unsigned int TypeIdx,LLT NarrowTy)3820 LegalizerHelper::reduceOperationWidth(MachineInstr &MI, unsigned int TypeIdx,
3821                                       LLT NarrowTy) {
3822   assert(TypeIdx == 0 && "only one type index expected");
3823 
3824   const unsigned Opc = MI.getOpcode();
3825   const int NumOps = MI.getNumOperands() - 1;
3826   const Register DstReg = MI.getOperand(0).getReg();
3827   const unsigned Flags = MI.getFlags();
3828   const unsigned NarrowSize = NarrowTy.getSizeInBits();
3829   const LLT NarrowScalarTy = LLT::scalar(NarrowSize);
3830 
3831   assert(NumOps <= 3 && "expected instruction with 1 result and 1-3 sources");
3832 
3833   // First of all check whether we are narrowing (changing the element type)
3834   // or reducing the vector elements
3835   const LLT DstTy = MRI.getType(DstReg);
3836   const bool IsNarrow = NarrowTy.getScalarType() != DstTy.getScalarType();
3837 
3838   SmallVector<Register, 8> ExtractedRegs[3];
3839   SmallVector<Register, 8> Parts;
3840 
3841   unsigned NarrowElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
3842 
3843   // Break down all the sources into NarrowTy pieces we can operate on. This may
3844   // involve creating merges to a wider type, padded with undef.
3845   for (int I = 0; I != NumOps; ++I) {
3846     Register SrcReg = MI.getOperand(I + 1).getReg();
3847     LLT SrcTy = MRI.getType(SrcReg);
3848 
3849     // The type to narrow SrcReg to. For narrowing, this is a smaller scalar.
3850     // For fewerElements, this is a smaller vector with the same element type.
3851     LLT OpNarrowTy;
3852     if (IsNarrow) {
3853       OpNarrowTy = NarrowScalarTy;
3854 
3855       // In case of narrowing, we need to cast vectors to scalars for this to
3856       // work properly
3857       // FIXME: Can we do without the bitcast here if we're narrowing?
3858       if (SrcTy.isVector()) {
3859         SrcTy = LLT::scalar(SrcTy.getSizeInBits());
3860         SrcReg = MIRBuilder.buildBitcast(SrcTy, SrcReg).getReg(0);
3861       }
3862     } else {
3863       OpNarrowTy = LLT::scalarOrVector(NarrowElts, SrcTy.getScalarType());
3864     }
3865 
3866     LLT GCDTy = extractGCDType(ExtractedRegs[I], SrcTy, OpNarrowTy, SrcReg);
3867 
3868     // Build a sequence of NarrowTy pieces in ExtractedRegs for this operand.
3869     buildLCMMergePieces(SrcTy, OpNarrowTy, GCDTy, ExtractedRegs[I],
3870                         TargetOpcode::G_ANYEXT);
3871   }
3872 
3873   SmallVector<Register, 8> ResultRegs;
3874 
3875   // Input operands for each sub-instruction.
3876   SmallVector<SrcOp, 4> InputRegs(NumOps, Register());
3877 
3878   int NumParts = ExtractedRegs[0].size();
3879   const unsigned DstSize = DstTy.getSizeInBits();
3880   const LLT DstScalarTy = LLT::scalar(DstSize);
3881 
3882   // Narrowing needs to use scalar types
3883   LLT DstLCMTy, NarrowDstTy;
3884   if (IsNarrow) {
3885     DstLCMTy = getLCMType(DstScalarTy, NarrowScalarTy);
3886     NarrowDstTy = NarrowScalarTy;
3887   } else {
3888     DstLCMTy = getLCMType(DstTy, NarrowTy);
3889     NarrowDstTy = NarrowTy;
3890   }
3891 
3892   // We widened the source registers to satisfy merge/unmerge size
3893   // constraints. We'll have some extra fully undef parts.
3894   const int NumRealParts = (DstSize + NarrowSize - 1) / NarrowSize;
3895 
3896   for (int I = 0; I != NumRealParts; ++I) {
3897     // Emit this instruction on each of the split pieces.
3898     for (int J = 0; J != NumOps; ++J)
3899       InputRegs[J] = ExtractedRegs[J][I];
3900 
3901     auto Inst = MIRBuilder.buildInstr(Opc, {NarrowDstTy}, InputRegs, Flags);
3902     ResultRegs.push_back(Inst.getReg(0));
3903   }
3904 
3905   // Fill out the widened result with undef instead of creating instructions
3906   // with undef inputs.
3907   int NumUndefParts = NumParts - NumRealParts;
3908   if (NumUndefParts != 0)
3909     ResultRegs.append(NumUndefParts,
3910                       MIRBuilder.buildUndef(NarrowDstTy).getReg(0));
3911 
3912   // Extract the possibly padded result. Use a scratch register if we need to do
3913   // a final bitcast, otherwise use the original result register.
3914   Register MergeDstReg;
3915   if (IsNarrow && DstTy.isVector())
3916     MergeDstReg = MRI.createGenericVirtualRegister(DstScalarTy);
3917   else
3918     MergeDstReg = DstReg;
3919 
3920   buildWidenedRemergeToDst(MergeDstReg, DstLCMTy, ResultRegs);
3921 
3922   // Recast to vector if we narrowed a vector
3923   if (IsNarrow && DstTy.isVector())
3924     MIRBuilder.buildBitcast(DstReg, MergeDstReg);
3925 
3926   MI.eraseFromParent();
3927   return Legalized;
3928 }
3929 
3930 LegalizerHelper::LegalizeResult
fewerElementsVectorSextInReg(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3931 LegalizerHelper::fewerElementsVectorSextInReg(MachineInstr &MI, unsigned TypeIdx,
3932                                               LLT NarrowTy) {
3933   Register DstReg = MI.getOperand(0).getReg();
3934   Register SrcReg = MI.getOperand(1).getReg();
3935   int64_t Imm = MI.getOperand(2).getImm();
3936 
3937   LLT DstTy = MRI.getType(DstReg);
3938 
3939   SmallVector<Register, 8> Parts;
3940   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
3941   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts);
3942 
3943   for (Register &R : Parts)
3944     R = MIRBuilder.buildSExtInReg(NarrowTy, R, Imm).getReg(0);
3945 
3946   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
3947 
3948   MI.eraseFromParent();
3949   return Legalized;
3950 }
3951 
3952 LegalizerHelper::LegalizeResult
fewerElementsVector(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)3953 LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
3954                                      LLT NarrowTy) {
3955   using namespace TargetOpcode;
3956 
3957   switch (MI.getOpcode()) {
3958   case G_IMPLICIT_DEF:
3959     return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy);
3960   case G_TRUNC:
3961   case G_AND:
3962   case G_OR:
3963   case G_XOR:
3964   case G_ADD:
3965   case G_SUB:
3966   case G_MUL:
3967   case G_PTR_ADD:
3968   case G_SMULH:
3969   case G_UMULH:
3970   case G_FADD:
3971   case G_FMUL:
3972   case G_FSUB:
3973   case G_FNEG:
3974   case G_FABS:
3975   case G_FCANONICALIZE:
3976   case G_FDIV:
3977   case G_FREM:
3978   case G_FMA:
3979   case G_FMAD:
3980   case G_FPOW:
3981   case G_FEXP:
3982   case G_FEXP2:
3983   case G_FLOG:
3984   case G_FLOG2:
3985   case G_FLOG10:
3986   case G_FNEARBYINT:
3987   case G_FCEIL:
3988   case G_FFLOOR:
3989   case G_FRINT:
3990   case G_INTRINSIC_ROUND:
3991   case G_INTRINSIC_ROUNDEVEN:
3992   case G_INTRINSIC_TRUNC:
3993   case G_FCOS:
3994   case G_FSIN:
3995   case G_FSQRT:
3996   case G_BSWAP:
3997   case G_BITREVERSE:
3998   case G_SDIV:
3999   case G_UDIV:
4000   case G_SREM:
4001   case G_UREM:
4002   case G_SMIN:
4003   case G_SMAX:
4004   case G_UMIN:
4005   case G_UMAX:
4006   case G_FMINNUM:
4007   case G_FMAXNUM:
4008   case G_FMINNUM_IEEE:
4009   case G_FMAXNUM_IEEE:
4010   case G_FMINIMUM:
4011   case G_FMAXIMUM:
4012   case G_FSHL:
4013   case G_FSHR:
4014   case G_FREEZE:
4015   case G_SADDSAT:
4016   case G_SSUBSAT:
4017   case G_UADDSAT:
4018   case G_USUBSAT:
4019     return reduceOperationWidth(MI, TypeIdx, NarrowTy);
4020   case G_SHL:
4021   case G_LSHR:
4022   case G_ASHR:
4023   case G_SSHLSAT:
4024   case G_USHLSAT:
4025   case G_CTLZ:
4026   case G_CTLZ_ZERO_UNDEF:
4027   case G_CTTZ:
4028   case G_CTTZ_ZERO_UNDEF:
4029   case G_CTPOP:
4030   case G_FCOPYSIGN:
4031     return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy);
4032   case G_ZEXT:
4033   case G_SEXT:
4034   case G_ANYEXT:
4035   case G_FPEXT:
4036   case G_FPTRUNC:
4037   case G_SITOFP:
4038   case G_UITOFP:
4039   case G_FPTOSI:
4040   case G_FPTOUI:
4041   case G_INTTOPTR:
4042   case G_PTRTOINT:
4043   case G_ADDRSPACE_CAST:
4044     return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy);
4045   case G_ICMP:
4046   case G_FCMP:
4047     return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy);
4048   case G_SELECT:
4049     return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy);
4050   case G_PHI:
4051     return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy);
4052   case G_UNMERGE_VALUES:
4053     return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4054   case G_BUILD_VECTOR:
4055     assert(TypeIdx == 0 && "not a vector type index");
4056     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4057   case G_CONCAT_VECTORS:
4058     if (TypeIdx != 1) // TODO: This probably does work as expected already.
4059       return UnableToLegalize;
4060     return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4061   case G_EXTRACT_VECTOR_ELT:
4062   case G_INSERT_VECTOR_ELT:
4063     return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4064   case G_LOAD:
4065   case G_STORE:
4066     return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy);
4067   case G_SEXT_INREG:
4068     return fewerElementsVectorSextInReg(MI, TypeIdx, NarrowTy);
4069   default:
4070     return UnableToLegalize;
4071   }
4072 }
4073 
4074 LegalizerHelper::LegalizeResult
narrowScalarShiftByConstant(MachineInstr & MI,const APInt & Amt,const LLT HalfTy,const LLT AmtTy)4075 LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4076                                              const LLT HalfTy, const LLT AmtTy) {
4077 
4078   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4079   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4080   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4081 
4082   if (Amt.isNullValue()) {
4083     MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4084     MI.eraseFromParent();
4085     return Legalized;
4086   }
4087 
4088   LLT NVT = HalfTy;
4089   unsigned NVTBits = HalfTy.getSizeInBits();
4090   unsigned VTBits = 2 * NVTBits;
4091 
4092   SrcOp Lo(Register(0)), Hi(Register(0));
4093   if (MI.getOpcode() == TargetOpcode::G_SHL) {
4094     if (Amt.ugt(VTBits)) {
4095       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4096     } else if (Amt.ugt(NVTBits)) {
4097       Lo = MIRBuilder.buildConstant(NVT, 0);
4098       Hi = MIRBuilder.buildShl(NVT, InL,
4099                                MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4100     } else if (Amt == NVTBits) {
4101       Lo = MIRBuilder.buildConstant(NVT, 0);
4102       Hi = InL;
4103     } else {
4104       Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4105       auto OrLHS =
4106           MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4107       auto OrRHS = MIRBuilder.buildLShr(
4108           NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4109       Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4110     }
4111   } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4112     if (Amt.ugt(VTBits)) {
4113       Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4114     } else if (Amt.ugt(NVTBits)) {
4115       Lo = MIRBuilder.buildLShr(NVT, InH,
4116                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4117       Hi = MIRBuilder.buildConstant(NVT, 0);
4118     } else if (Amt == NVTBits) {
4119       Lo = InH;
4120       Hi = MIRBuilder.buildConstant(NVT, 0);
4121     } else {
4122       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4123 
4124       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4125       auto OrRHS = MIRBuilder.buildShl(
4126           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4127 
4128       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4129       Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4130     }
4131   } else {
4132     if (Amt.ugt(VTBits)) {
4133       Hi = Lo = MIRBuilder.buildAShr(
4134           NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4135     } else if (Amt.ugt(NVTBits)) {
4136       Lo = MIRBuilder.buildAShr(NVT, InH,
4137                                 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4138       Hi = MIRBuilder.buildAShr(NVT, InH,
4139                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4140     } else if (Amt == NVTBits) {
4141       Lo = InH;
4142       Hi = MIRBuilder.buildAShr(NVT, InH,
4143                                 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4144     } else {
4145       auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4146 
4147       auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4148       auto OrRHS = MIRBuilder.buildShl(
4149           NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4150 
4151       Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4152       Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4153     }
4154   }
4155 
4156   MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4157   MI.eraseFromParent();
4158 
4159   return Legalized;
4160 }
4161 
4162 // TODO: Optimize if constant shift amount.
4163 LegalizerHelper::LegalizeResult
narrowScalarShift(MachineInstr & MI,unsigned TypeIdx,LLT RequestedTy)4164 LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4165                                    LLT RequestedTy) {
4166   if (TypeIdx == 1) {
4167     Observer.changingInstr(MI);
4168     narrowScalarSrc(MI, RequestedTy, 2);
4169     Observer.changedInstr(MI);
4170     return Legalized;
4171   }
4172 
4173   Register DstReg = MI.getOperand(0).getReg();
4174   LLT DstTy = MRI.getType(DstReg);
4175   if (DstTy.isVector())
4176     return UnableToLegalize;
4177 
4178   Register Amt = MI.getOperand(2).getReg();
4179   LLT ShiftAmtTy = MRI.getType(Amt);
4180   const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4181   if (DstEltSize % 2 != 0)
4182     return UnableToLegalize;
4183 
4184   // Ignore the input type. We can only go to exactly half the size of the
4185   // input. If that isn't small enough, the resulting pieces will be further
4186   // legalized.
4187   const unsigned NewBitSize = DstEltSize / 2;
4188   const LLT HalfTy = LLT::scalar(NewBitSize);
4189   const LLT CondTy = LLT::scalar(1);
4190 
4191   if (const MachineInstr *KShiftAmt =
4192           getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) {
4193     return narrowScalarShiftByConstant(
4194         MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy);
4195   }
4196 
4197   // TODO: Expand with known bits.
4198 
4199   // Handle the fully general expansion by an unknown amount.
4200   auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4201 
4202   Register InL = MRI.createGenericVirtualRegister(HalfTy);
4203   Register InH = MRI.createGenericVirtualRegister(HalfTy);
4204   MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4205 
4206   auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4207   auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4208 
4209   auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4210   auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4211   auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4212 
4213   Register ResultRegs[2];
4214   switch (MI.getOpcode()) {
4215   case TargetOpcode::G_SHL: {
4216     // Short: ShAmt < NewBitSize
4217     auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4218 
4219     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4220     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4221     auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4222 
4223     // Long: ShAmt >= NewBitSize
4224     auto LoL = MIRBuilder.buildConstant(HalfTy, 0);         // Lo part is zero.
4225     auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4226 
4227     auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4228     auto Hi = MIRBuilder.buildSelect(
4229         HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4230 
4231     ResultRegs[0] = Lo.getReg(0);
4232     ResultRegs[1] = Hi.getReg(0);
4233     break;
4234   }
4235   case TargetOpcode::G_LSHR:
4236   case TargetOpcode::G_ASHR: {
4237     // Short: ShAmt < NewBitSize
4238     auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4239 
4240     auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4241     auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4242     auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4243 
4244     // Long: ShAmt >= NewBitSize
4245     MachineInstrBuilder HiL;
4246     if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4247       HiL = MIRBuilder.buildConstant(HalfTy, 0);            // Hi part is zero.
4248     } else {
4249       auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4250       HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt);    // Sign of Hi part.
4251     }
4252     auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4253                                      {InH, AmtExcess});     // Lo from Hi part.
4254 
4255     auto Lo = MIRBuilder.buildSelect(
4256         HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4257 
4258     auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4259 
4260     ResultRegs[0] = Lo.getReg(0);
4261     ResultRegs[1] = Hi.getReg(0);
4262     break;
4263   }
4264   default:
4265     llvm_unreachable("not a shift");
4266   }
4267 
4268   MIRBuilder.buildMerge(DstReg, ResultRegs);
4269   MI.eraseFromParent();
4270   return Legalized;
4271 }
4272 
4273 LegalizerHelper::LegalizeResult
moreElementsVectorPhi(MachineInstr & MI,unsigned TypeIdx,LLT MoreTy)4274 LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4275                                        LLT MoreTy) {
4276   assert(TypeIdx == 0 && "Expecting only Idx 0");
4277 
4278   Observer.changingInstr(MI);
4279   for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4280     MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4281     MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4282     moreElementsVectorSrc(MI, MoreTy, I);
4283   }
4284 
4285   MachineBasicBlock &MBB = *MI.getParent();
4286   MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4287   moreElementsVectorDst(MI, MoreTy, 0);
4288   Observer.changedInstr(MI);
4289   return Legalized;
4290 }
4291 
4292 LegalizerHelper::LegalizeResult
moreElementsVector(MachineInstr & MI,unsigned TypeIdx,LLT MoreTy)4293 LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4294                                     LLT MoreTy) {
4295   unsigned Opc = MI.getOpcode();
4296   switch (Opc) {
4297   case TargetOpcode::G_IMPLICIT_DEF:
4298   case TargetOpcode::G_LOAD: {
4299     if (TypeIdx != 0)
4300       return UnableToLegalize;
4301     Observer.changingInstr(MI);
4302     moreElementsVectorDst(MI, MoreTy, 0);
4303     Observer.changedInstr(MI);
4304     return Legalized;
4305   }
4306   case TargetOpcode::G_STORE:
4307     if (TypeIdx != 0)
4308       return UnableToLegalize;
4309     Observer.changingInstr(MI);
4310     moreElementsVectorSrc(MI, MoreTy, 0);
4311     Observer.changedInstr(MI);
4312     return Legalized;
4313   case TargetOpcode::G_AND:
4314   case TargetOpcode::G_OR:
4315   case TargetOpcode::G_XOR:
4316   case TargetOpcode::G_SMIN:
4317   case TargetOpcode::G_SMAX:
4318   case TargetOpcode::G_UMIN:
4319   case TargetOpcode::G_UMAX:
4320   case TargetOpcode::G_FMINNUM:
4321   case TargetOpcode::G_FMAXNUM:
4322   case TargetOpcode::G_FMINNUM_IEEE:
4323   case TargetOpcode::G_FMAXNUM_IEEE:
4324   case TargetOpcode::G_FMINIMUM:
4325   case TargetOpcode::G_FMAXIMUM: {
4326     Observer.changingInstr(MI);
4327     moreElementsVectorSrc(MI, MoreTy, 1);
4328     moreElementsVectorSrc(MI, MoreTy, 2);
4329     moreElementsVectorDst(MI, MoreTy, 0);
4330     Observer.changedInstr(MI);
4331     return Legalized;
4332   }
4333   case TargetOpcode::G_EXTRACT:
4334     if (TypeIdx != 1)
4335       return UnableToLegalize;
4336     Observer.changingInstr(MI);
4337     moreElementsVectorSrc(MI, MoreTy, 1);
4338     Observer.changedInstr(MI);
4339     return Legalized;
4340   case TargetOpcode::G_INSERT:
4341   case TargetOpcode::G_FREEZE:
4342     if (TypeIdx != 0)
4343       return UnableToLegalize;
4344     Observer.changingInstr(MI);
4345     moreElementsVectorSrc(MI, MoreTy, 1);
4346     moreElementsVectorDst(MI, MoreTy, 0);
4347     Observer.changedInstr(MI);
4348     return Legalized;
4349   case TargetOpcode::G_SELECT:
4350     if (TypeIdx != 0)
4351       return UnableToLegalize;
4352     if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4353       return UnableToLegalize;
4354 
4355     Observer.changingInstr(MI);
4356     moreElementsVectorSrc(MI, MoreTy, 2);
4357     moreElementsVectorSrc(MI, MoreTy, 3);
4358     moreElementsVectorDst(MI, MoreTy, 0);
4359     Observer.changedInstr(MI);
4360     return Legalized;
4361   case TargetOpcode::G_UNMERGE_VALUES: {
4362     if (TypeIdx != 1)
4363       return UnableToLegalize;
4364 
4365     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4366     int NumDst = MI.getNumOperands() - 1;
4367     moreElementsVectorSrc(MI, MoreTy, NumDst);
4368 
4369     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
4370     for (int I = 0; I != NumDst; ++I)
4371       MIB.addDef(MI.getOperand(I).getReg());
4372 
4373     int NewNumDst = MoreTy.getSizeInBits() / DstTy.getSizeInBits();
4374     for (int I = NumDst; I != NewNumDst; ++I)
4375       MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
4376 
4377     MIB.addUse(MI.getOperand(NumDst).getReg());
4378     MI.eraseFromParent();
4379     return Legalized;
4380   }
4381   case TargetOpcode::G_PHI:
4382     return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4383   default:
4384     return UnableToLegalize;
4385   }
4386 }
4387 
multiplyRegisters(SmallVectorImpl<Register> & DstRegs,ArrayRef<Register> Src1Regs,ArrayRef<Register> Src2Regs,LLT NarrowTy)4388 void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4389                                         ArrayRef<Register> Src1Regs,
4390                                         ArrayRef<Register> Src2Regs,
4391                                         LLT NarrowTy) {
4392   MachineIRBuilder &B = MIRBuilder;
4393   unsigned SrcParts = Src1Regs.size();
4394   unsigned DstParts = DstRegs.size();
4395 
4396   unsigned DstIdx = 0; // Low bits of the result.
4397   Register FactorSum =
4398       B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4399   DstRegs[DstIdx] = FactorSum;
4400 
4401   unsigned CarrySumPrevDstIdx;
4402   SmallVector<Register, 4> Factors;
4403 
4404   for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4405     // Collect low parts of muls for DstIdx.
4406     for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4407          i <= std::min(DstIdx, SrcParts - 1); ++i) {
4408       MachineInstrBuilder Mul =
4409           B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4410       Factors.push_back(Mul.getReg(0));
4411     }
4412     // Collect high parts of muls from previous DstIdx.
4413     for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4414          i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
4415       MachineInstrBuilder Umulh =
4416           B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
4417       Factors.push_back(Umulh.getReg(0));
4418     }
4419     // Add CarrySum from additions calculated for previous DstIdx.
4420     if (DstIdx != 1) {
4421       Factors.push_back(CarrySumPrevDstIdx);
4422     }
4423 
4424     Register CarrySum;
4425     // Add all factors and accumulate all carries into CarrySum.
4426     if (DstIdx != DstParts - 1) {
4427       MachineInstrBuilder Uaddo =
4428           B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
4429       FactorSum = Uaddo.getReg(0);
4430       CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
4431       for (unsigned i = 2; i < Factors.size(); ++i) {
4432         MachineInstrBuilder Uaddo =
4433             B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
4434         FactorSum = Uaddo.getReg(0);
4435         MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
4436         CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
4437       }
4438     } else {
4439       // Since value for the next index is not calculated, neither is CarrySum.
4440       FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
4441       for (unsigned i = 2; i < Factors.size(); ++i)
4442         FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
4443     }
4444 
4445     CarrySumPrevDstIdx = CarrySum;
4446     DstRegs[DstIdx] = FactorSum;
4447     Factors.clear();
4448   }
4449 }
4450 
4451 LegalizerHelper::LegalizeResult
narrowScalarMul(MachineInstr & MI,LLT NarrowTy)4452 LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
4453   Register DstReg = MI.getOperand(0).getReg();
4454   Register Src1 = MI.getOperand(1).getReg();
4455   Register Src2 = MI.getOperand(2).getReg();
4456 
4457   LLT Ty = MRI.getType(DstReg);
4458   if (Ty.isVector())
4459     return UnableToLegalize;
4460 
4461   unsigned SrcSize = MRI.getType(Src1).getSizeInBits();
4462   unsigned DstSize = Ty.getSizeInBits();
4463   unsigned NarrowSize = NarrowTy.getSizeInBits();
4464   if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0)
4465     return UnableToLegalize;
4466 
4467   unsigned NumDstParts = DstSize / NarrowSize;
4468   unsigned NumSrcParts = SrcSize / NarrowSize;
4469   bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
4470   unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1);
4471 
4472   SmallVector<Register, 2> Src1Parts, Src2Parts;
4473   SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
4474   extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts);
4475   extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts);
4476   multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
4477 
4478   // Take only high half of registers if this is high mul.
4479   ArrayRef<Register> DstRegs(
4480       IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts);
4481   MIRBuilder.buildMerge(DstReg, DstRegs);
4482   MI.eraseFromParent();
4483   return Legalized;
4484 }
4485 
4486 LegalizerHelper::LegalizeResult
narrowScalarFPTOI(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4487 LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
4488                                    LLT NarrowTy) {
4489   if (TypeIdx != 0)
4490     return UnableToLegalize;
4491 
4492   bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
4493 
4494   Register Src = MI.getOperand(1).getReg();
4495   LLT SrcTy = MRI.getType(Src);
4496 
4497   // If all finite floats fit into the narrowed integer type, we can just swap
4498   // out the result type. This is practically only useful for conversions from
4499   // half to at least 16-bits, so just handle the one case.
4500   if (SrcTy.getScalarType() != LLT::scalar(16) ||
4501       NarrowTy.getScalarSizeInBits() < (IsSigned ? 17 : 16))
4502     return UnableToLegalize;
4503 
4504   Observer.changingInstr(MI);
4505   narrowScalarDst(MI, NarrowTy, 0,
4506                   IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
4507   Observer.changedInstr(MI);
4508   return Legalized;
4509 }
4510 
4511 LegalizerHelper::LegalizeResult
narrowScalarExtract(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4512 LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
4513                                      LLT NarrowTy) {
4514   if (TypeIdx != 1)
4515     return UnableToLegalize;
4516 
4517   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4518 
4519   int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
4520   // FIXME: add support for when SizeOp1 isn't an exact multiple of
4521   // NarrowSize.
4522   if (SizeOp1 % NarrowSize != 0)
4523     return UnableToLegalize;
4524   int NumParts = SizeOp1 / NarrowSize;
4525 
4526   SmallVector<Register, 2> SrcRegs, DstRegs;
4527   SmallVector<uint64_t, 2> Indexes;
4528   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4529 
4530   Register OpReg = MI.getOperand(0).getReg();
4531   uint64_t OpStart = MI.getOperand(2).getImm();
4532   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4533   for (int i = 0; i < NumParts; ++i) {
4534     unsigned SrcStart = i * NarrowSize;
4535 
4536     if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
4537       // No part of the extract uses this subregister, ignore it.
4538       continue;
4539     } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4540       // The entire subregister is extracted, forward the value.
4541       DstRegs.push_back(SrcRegs[i]);
4542       continue;
4543     }
4544 
4545     // OpSegStart is where this destination segment would start in OpReg if it
4546     // extended infinitely in both directions.
4547     int64_t ExtractOffset;
4548     uint64_t SegSize;
4549     if (OpStart < SrcStart) {
4550       ExtractOffset = 0;
4551       SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
4552     } else {
4553       ExtractOffset = OpStart - SrcStart;
4554       SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
4555     }
4556 
4557     Register SegReg = SrcRegs[i];
4558     if (ExtractOffset != 0 || SegSize != NarrowSize) {
4559       // A genuine extract is needed.
4560       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4561       MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
4562     }
4563 
4564     DstRegs.push_back(SegReg);
4565   }
4566 
4567   Register DstReg = MI.getOperand(0).getReg();
4568   if (MRI.getType(DstReg).isVector())
4569     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4570   else if (DstRegs.size() > 1)
4571     MIRBuilder.buildMerge(DstReg, DstRegs);
4572   else
4573     MIRBuilder.buildCopy(DstReg, DstRegs[0]);
4574   MI.eraseFromParent();
4575   return Legalized;
4576 }
4577 
4578 LegalizerHelper::LegalizeResult
narrowScalarInsert(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4579 LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
4580                                     LLT NarrowTy) {
4581   // FIXME: Don't know how to handle secondary types yet.
4582   if (TypeIdx != 0)
4583     return UnableToLegalize;
4584 
4585   uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
4586   uint64_t NarrowSize = NarrowTy.getSizeInBits();
4587 
4588   // FIXME: add support for when SizeOp0 isn't an exact multiple of
4589   // NarrowSize.
4590   if (SizeOp0 % NarrowSize != 0)
4591     return UnableToLegalize;
4592 
4593   int NumParts = SizeOp0 / NarrowSize;
4594 
4595   SmallVector<Register, 2> SrcRegs, DstRegs;
4596   SmallVector<uint64_t, 2> Indexes;
4597   extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
4598 
4599   Register OpReg = MI.getOperand(2).getReg();
4600   uint64_t OpStart = MI.getOperand(3).getImm();
4601   uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
4602   for (int i = 0; i < NumParts; ++i) {
4603     unsigned DstStart = i * NarrowSize;
4604 
4605     if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
4606       // No part of the insert affects this subregister, forward the original.
4607       DstRegs.push_back(SrcRegs[i]);
4608       continue;
4609     } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
4610       // The entire subregister is defined by this insert, forward the new
4611       // value.
4612       DstRegs.push_back(OpReg);
4613       continue;
4614     }
4615 
4616     // OpSegStart is where this destination segment would start in OpReg if it
4617     // extended infinitely in both directions.
4618     int64_t ExtractOffset, InsertOffset;
4619     uint64_t SegSize;
4620     if (OpStart < DstStart) {
4621       InsertOffset = 0;
4622       ExtractOffset = DstStart - OpStart;
4623       SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
4624     } else {
4625       InsertOffset = OpStart - DstStart;
4626       ExtractOffset = 0;
4627       SegSize =
4628         std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
4629     }
4630 
4631     Register SegReg = OpReg;
4632     if (ExtractOffset != 0 || SegSize != OpSize) {
4633       // A genuine extract is needed.
4634       SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
4635       MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
4636     }
4637 
4638     Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
4639     MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset);
4640     DstRegs.push_back(DstReg);
4641   }
4642 
4643   assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered");
4644   Register DstReg = MI.getOperand(0).getReg();
4645   if(MRI.getType(DstReg).isVector())
4646     MIRBuilder.buildBuildVector(DstReg, DstRegs);
4647   else
4648     MIRBuilder.buildMerge(DstReg, DstRegs);
4649   MI.eraseFromParent();
4650   return Legalized;
4651 }
4652 
4653 LegalizerHelper::LegalizeResult
narrowScalarBasic(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4654 LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
4655                                    LLT NarrowTy) {
4656   Register DstReg = MI.getOperand(0).getReg();
4657   LLT DstTy = MRI.getType(DstReg);
4658 
4659   assert(MI.getNumOperands() == 3 && TypeIdx == 0);
4660 
4661   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4662   SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
4663   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4664   LLT LeftoverTy;
4665   if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
4666                     Src0Regs, Src0LeftoverRegs))
4667     return UnableToLegalize;
4668 
4669   LLT Unused;
4670   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
4671                     Src1Regs, Src1LeftoverRegs))
4672     llvm_unreachable("inconsistent extractParts result");
4673 
4674   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4675     auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
4676                                         {Src0Regs[I], Src1Regs[I]});
4677     DstRegs.push_back(Inst.getReg(0));
4678   }
4679 
4680   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4681     auto Inst = MIRBuilder.buildInstr(
4682       MI.getOpcode(),
4683       {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
4684     DstLeftoverRegs.push_back(Inst.getReg(0));
4685   }
4686 
4687   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4688               LeftoverTy, DstLeftoverRegs);
4689 
4690   MI.eraseFromParent();
4691   return Legalized;
4692 }
4693 
4694 LegalizerHelper::LegalizeResult
narrowScalarExt(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4695 LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
4696                                  LLT NarrowTy) {
4697   if (TypeIdx != 0)
4698     return UnableToLegalize;
4699 
4700   Register DstReg = MI.getOperand(0).getReg();
4701   Register SrcReg = MI.getOperand(1).getReg();
4702 
4703   LLT DstTy = MRI.getType(DstReg);
4704   if (DstTy.isVector())
4705     return UnableToLegalize;
4706 
4707   SmallVector<Register, 8> Parts;
4708   LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
4709   LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
4710   buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
4711 
4712   MI.eraseFromParent();
4713   return Legalized;
4714 }
4715 
4716 LegalizerHelper::LegalizeResult
narrowScalarSelect(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4717 LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
4718                                     LLT NarrowTy) {
4719   if (TypeIdx != 0)
4720     return UnableToLegalize;
4721 
4722   Register CondReg = MI.getOperand(1).getReg();
4723   LLT CondTy = MRI.getType(CondReg);
4724   if (CondTy.isVector()) // TODO: Handle vselect
4725     return UnableToLegalize;
4726 
4727   Register DstReg = MI.getOperand(0).getReg();
4728   LLT DstTy = MRI.getType(DstReg);
4729 
4730   SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
4731   SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
4732   SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
4733   LLT LeftoverTy;
4734   if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
4735                     Src1Regs, Src1LeftoverRegs))
4736     return UnableToLegalize;
4737 
4738   LLT Unused;
4739   if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
4740                     Src2Regs, Src2LeftoverRegs))
4741     llvm_unreachable("inconsistent extractParts result");
4742 
4743   for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
4744     auto Select = MIRBuilder.buildSelect(NarrowTy,
4745                                          CondReg, Src1Regs[I], Src2Regs[I]);
4746     DstRegs.push_back(Select.getReg(0));
4747   }
4748 
4749   for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
4750     auto Select = MIRBuilder.buildSelect(
4751       LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
4752     DstLeftoverRegs.push_back(Select.getReg(0));
4753   }
4754 
4755   insertParts(DstReg, DstTy, NarrowTy, DstRegs,
4756               LeftoverTy, DstLeftoverRegs);
4757 
4758   MI.eraseFromParent();
4759   return Legalized;
4760 }
4761 
4762 LegalizerHelper::LegalizeResult
narrowScalarCTLZ(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4763 LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
4764                                   LLT NarrowTy) {
4765   if (TypeIdx != 1)
4766     return UnableToLegalize;
4767 
4768   Register DstReg = MI.getOperand(0).getReg();
4769   Register SrcReg = MI.getOperand(1).getReg();
4770   LLT DstTy = MRI.getType(DstReg);
4771   LLT SrcTy = MRI.getType(SrcReg);
4772   unsigned NarrowSize = NarrowTy.getSizeInBits();
4773 
4774   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4775     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
4776 
4777     MachineIRBuilder &B = MIRBuilder;
4778     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4779     // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
4780     auto C_0 = B.buildConstant(NarrowTy, 0);
4781     auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4782                                 UnmergeSrc.getReg(1), C_0);
4783     auto LoCTLZ = IsUndef ?
4784       B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
4785       B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
4786     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4787     auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
4788     auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
4789     B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
4790 
4791     MI.eraseFromParent();
4792     return Legalized;
4793   }
4794 
4795   return UnableToLegalize;
4796 }
4797 
4798 LegalizerHelper::LegalizeResult
narrowScalarCTTZ(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4799 LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
4800                                   LLT NarrowTy) {
4801   if (TypeIdx != 1)
4802     return UnableToLegalize;
4803 
4804   Register DstReg = MI.getOperand(0).getReg();
4805   Register SrcReg = MI.getOperand(1).getReg();
4806   LLT DstTy = MRI.getType(DstReg);
4807   LLT SrcTy = MRI.getType(SrcReg);
4808   unsigned NarrowSize = NarrowTy.getSizeInBits();
4809 
4810   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4811     const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
4812 
4813     MachineIRBuilder &B = MIRBuilder;
4814     auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
4815     // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
4816     auto C_0 = B.buildConstant(NarrowTy, 0);
4817     auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
4818                                 UnmergeSrc.getReg(0), C_0);
4819     auto HiCTTZ = IsUndef ?
4820       B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
4821       B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
4822     auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
4823     auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
4824     auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
4825     B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
4826 
4827     MI.eraseFromParent();
4828     return Legalized;
4829   }
4830 
4831   return UnableToLegalize;
4832 }
4833 
4834 LegalizerHelper::LegalizeResult
narrowScalarCTPOP(MachineInstr & MI,unsigned TypeIdx,LLT NarrowTy)4835 LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
4836                                    LLT NarrowTy) {
4837   if (TypeIdx != 1)
4838     return UnableToLegalize;
4839 
4840   Register DstReg = MI.getOperand(0).getReg();
4841   LLT DstTy = MRI.getType(DstReg);
4842   LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
4843   unsigned NarrowSize = NarrowTy.getSizeInBits();
4844 
4845   if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
4846     auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
4847 
4848     auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
4849     auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
4850     MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
4851 
4852     MI.eraseFromParent();
4853     return Legalized;
4854   }
4855 
4856   return UnableToLegalize;
4857 }
4858 
4859 LegalizerHelper::LegalizeResult
lowerBitCount(MachineInstr & MI)4860 LegalizerHelper::lowerBitCount(MachineInstr &MI) {
4861   unsigned Opc = MI.getOpcode();
4862   const auto &TII = MIRBuilder.getTII();
4863   auto isSupported = [this](const LegalityQuery &Q) {
4864     auto QAction = LI.getAction(Q).Action;
4865     return QAction == Legal || QAction == Libcall || QAction == Custom;
4866   };
4867   switch (Opc) {
4868   default:
4869     return UnableToLegalize;
4870   case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
4871     // This trivially expands to CTLZ.
4872     Observer.changingInstr(MI);
4873     MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
4874     Observer.changedInstr(MI);
4875     return Legalized;
4876   }
4877   case TargetOpcode::G_CTLZ: {
4878     Register DstReg = MI.getOperand(0).getReg();
4879     Register SrcReg = MI.getOperand(1).getReg();
4880     LLT DstTy = MRI.getType(DstReg);
4881     LLT SrcTy = MRI.getType(SrcReg);
4882     unsigned Len = SrcTy.getSizeInBits();
4883 
4884     if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4885       // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
4886       auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
4887       auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
4888       auto ICmp = MIRBuilder.buildICmp(
4889           CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
4890       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4891       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
4892       MI.eraseFromParent();
4893       return Legalized;
4894     }
4895     // for now, we do this:
4896     // NewLen = NextPowerOf2(Len);
4897     // x = x | (x >> 1);
4898     // x = x | (x >> 2);
4899     // ...
4900     // x = x | (x >>16);
4901     // x = x | (x >>32); // for 64-bit input
4902     // Upto NewLen/2
4903     // return Len - popcount(x);
4904     //
4905     // Ref: "Hacker's Delight" by Henry Warren
4906     Register Op = SrcReg;
4907     unsigned NewLen = PowerOf2Ceil(Len);
4908     for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
4909       auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
4910       auto MIBOp = MIRBuilder.buildOr(
4911           SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
4912       Op = MIBOp.getReg(0);
4913     }
4914     auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
4915     MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
4916                         MIBPop);
4917     MI.eraseFromParent();
4918     return Legalized;
4919   }
4920   case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
4921     // This trivially expands to CTTZ.
4922     Observer.changingInstr(MI);
4923     MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
4924     Observer.changedInstr(MI);
4925     return Legalized;
4926   }
4927   case TargetOpcode::G_CTTZ: {
4928     Register DstReg = MI.getOperand(0).getReg();
4929     Register SrcReg = MI.getOperand(1).getReg();
4930     LLT DstTy = MRI.getType(DstReg);
4931     LLT SrcTy = MRI.getType(SrcReg);
4932 
4933     unsigned Len = SrcTy.getSizeInBits();
4934     if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
4935       // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
4936       // zero.
4937       auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
4938       auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
4939       auto ICmp = MIRBuilder.buildICmp(
4940           CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
4941       auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
4942       MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
4943       MI.eraseFromParent();
4944       return Legalized;
4945     }
4946     // for now, we use: { return popcount(~x & (x - 1)); }
4947     // unless the target has ctlz but not ctpop, in which case we use:
4948     // { return 32 - nlz(~x & (x-1)); }
4949     // Ref: "Hacker's Delight" by Henry Warren
4950     auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
4951     auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
4952     auto MIBTmp = MIRBuilder.buildAnd(
4953         SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
4954     if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
4955         isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
4956       auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
4957       MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
4958                           MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
4959       MI.eraseFromParent();
4960       return Legalized;
4961     }
4962     MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
4963     MI.getOperand(1).setReg(MIBTmp.getReg(0));
4964     return Legalized;
4965   }
4966   case TargetOpcode::G_CTPOP: {
4967     Register SrcReg = MI.getOperand(1).getReg();
4968     LLT Ty = MRI.getType(SrcReg);
4969     unsigned Size = Ty.getSizeInBits();
4970     MachineIRBuilder &B = MIRBuilder;
4971 
4972     // Count set bits in blocks of 2 bits. Default approach would be
4973     // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
4974     // We use following formula instead:
4975     // B2Count = val - { (val >> 1) & 0x55555555 }
4976     // since it gives same result in blocks of 2 with one instruction less.
4977     auto C_1 = B.buildConstant(Ty, 1);
4978     auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
4979     APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
4980     auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
4981     auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
4982     auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
4983 
4984     // In order to get count in blocks of 4 add values from adjacent block of 2.
4985     // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
4986     auto C_2 = B.buildConstant(Ty, 2);
4987     auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
4988     APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
4989     auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
4990     auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
4991     auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
4992     auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
4993 
4994     // For count in blocks of 8 bits we don't have to mask high 4 bits before
4995     // addition since count value sits in range {0,...,8} and 4 bits are enough
4996     // to hold such binary values. After addition high 4 bits still hold count
4997     // of set bits in high 4 bit block, set them to zero and get 8 bit result.
4998     // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
4999     auto C_4 = B.buildConstant(Ty, 4);
5000     auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5001     auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5002     APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5003     auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5004     auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5005 
5006     assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm");
5007     // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5008     // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5009     auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5010     auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5011 
5012     // Shift count result from 8 high bits to low bits.
5013     auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5014     B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5015 
5016     MI.eraseFromParent();
5017     return Legalized;
5018   }
5019   }
5020 }
5021 
5022 // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5023 // representation.
5024 LegalizerHelper::LegalizeResult
lowerU64ToF32BitOps(MachineInstr & MI)5025 LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5026   Register Dst = MI.getOperand(0).getReg();
5027   Register Src = MI.getOperand(1).getReg();
5028   const LLT S64 = LLT::scalar(64);
5029   const LLT S32 = LLT::scalar(32);
5030   const LLT S1 = LLT::scalar(1);
5031 
5032   assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32);
5033 
5034   // unsigned cul2f(ulong u) {
5035   //   uint lz = clz(u);
5036   //   uint e = (u != 0) ? 127U + 63U - lz : 0;
5037   //   u = (u << lz) & 0x7fffffffffffffffUL;
5038   //   ulong t = u & 0xffffffffffUL;
5039   //   uint v = (e << 23) | (uint)(u >> 40);
5040   //   uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5041   //   return as_float(v + r);
5042   // }
5043 
5044   auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5045   auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5046 
5047   auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5048 
5049   auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5050   auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5051 
5052   auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5053   auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5054 
5055   auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5056   auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5057 
5058   auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5059 
5060   auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5061   auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5062 
5063   auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5064   auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5065   auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5066 
5067   auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5068   auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5069   auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5070   auto One = MIRBuilder.buildConstant(S32, 1);
5071 
5072   auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5073   auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5074   auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5075   MIRBuilder.buildAdd(Dst, V, R);
5076 
5077   MI.eraseFromParent();
5078   return Legalized;
5079 }
5080 
lowerUITOFP(MachineInstr & MI)5081 LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5082   Register Dst = MI.getOperand(0).getReg();
5083   Register Src = MI.getOperand(1).getReg();
5084   LLT DstTy = MRI.getType(Dst);
5085   LLT SrcTy = MRI.getType(Src);
5086 
5087   if (SrcTy == LLT::scalar(1)) {
5088     auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5089     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5090     MIRBuilder.buildSelect(Dst, Src, True, False);
5091     MI.eraseFromParent();
5092     return Legalized;
5093   }
5094 
5095   if (SrcTy != LLT::scalar(64))
5096     return UnableToLegalize;
5097 
5098   if (DstTy == LLT::scalar(32)) {
5099     // TODO: SelectionDAG has several alternative expansions to port which may
5100     // be more reasonble depending on the available instructions. If a target
5101     // has sitofp, does not have CTLZ, or can efficiently use f64 as an
5102     // intermediate type, this is probably worse.
5103     return lowerU64ToF32BitOps(MI);
5104   }
5105 
5106   return UnableToLegalize;
5107 }
5108 
lowerSITOFP(MachineInstr & MI)5109 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
5110   Register Dst = MI.getOperand(0).getReg();
5111   Register Src = MI.getOperand(1).getReg();
5112   LLT DstTy = MRI.getType(Dst);
5113   LLT SrcTy = MRI.getType(Src);
5114 
5115   const LLT S64 = LLT::scalar(64);
5116   const LLT S32 = LLT::scalar(32);
5117   const LLT S1 = LLT::scalar(1);
5118 
5119   if (SrcTy == S1) {
5120     auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
5121     auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5122     MIRBuilder.buildSelect(Dst, Src, True, False);
5123     MI.eraseFromParent();
5124     return Legalized;
5125   }
5126 
5127   if (SrcTy != S64)
5128     return UnableToLegalize;
5129 
5130   if (DstTy == S32) {
5131     // signed cl2f(long l) {
5132     //   long s = l >> 63;
5133     //   float r = cul2f((l + s) ^ s);
5134     //   return s ? -r : r;
5135     // }
5136     Register L = Src;
5137     auto SignBit = MIRBuilder.buildConstant(S64, 63);
5138     auto S = MIRBuilder.buildAShr(S64, L, SignBit);
5139 
5140     auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
5141     auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
5142     auto R = MIRBuilder.buildUITOFP(S32, Xor);
5143 
5144     auto RNeg = MIRBuilder.buildFNeg(S32, R);
5145     auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
5146                                             MIRBuilder.buildConstant(S64, 0));
5147     MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
5148     MI.eraseFromParent();
5149     return Legalized;
5150   }
5151 
5152   return UnableToLegalize;
5153 }
5154 
lowerFPTOUI(MachineInstr & MI)5155 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
5156   Register Dst = MI.getOperand(0).getReg();
5157   Register Src = MI.getOperand(1).getReg();
5158   LLT DstTy = MRI.getType(Dst);
5159   LLT SrcTy = MRI.getType(Src);
5160   const LLT S64 = LLT::scalar(64);
5161   const LLT S32 = LLT::scalar(32);
5162 
5163   if (SrcTy != S64 && SrcTy != S32)
5164     return UnableToLegalize;
5165   if (DstTy != S32 && DstTy != S64)
5166     return UnableToLegalize;
5167 
5168   // FPTOSI gives same result as FPTOUI for positive signed integers.
5169   // FPTOUI needs to deal with fp values that convert to unsigned integers
5170   // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
5171 
5172   APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
5173   APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
5174                                                 : APFloat::IEEEdouble(),
5175                     APInt::getNullValue(SrcTy.getSizeInBits()));
5176   TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
5177 
5178   MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
5179 
5180   MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
5181   // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
5182   // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
5183   MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
5184   MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
5185   MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
5186   MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
5187 
5188   const LLT S1 = LLT::scalar(1);
5189 
5190   MachineInstrBuilder FCMP =
5191       MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
5192   MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
5193 
5194   MI.eraseFromParent();
5195   return Legalized;
5196 }
5197 
lowerFPTOSI(MachineInstr & MI)5198 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
5199   Register Dst = MI.getOperand(0).getReg();
5200   Register Src = MI.getOperand(1).getReg();
5201   LLT DstTy = MRI.getType(Dst);
5202   LLT SrcTy = MRI.getType(Src);
5203   const LLT S64 = LLT::scalar(64);
5204   const LLT S32 = LLT::scalar(32);
5205 
5206   // FIXME: Only f32 to i64 conversions are supported.
5207   if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
5208     return UnableToLegalize;
5209 
5210   // Expand f32 -> i64 conversion
5211   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5212   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5213 
5214   unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
5215 
5216   auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
5217   auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
5218 
5219   auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
5220   auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
5221 
5222   auto SignMask = MIRBuilder.buildConstant(SrcTy,
5223                                            APInt::getSignMask(SrcEltBits));
5224   auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
5225   auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
5226   auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
5227   Sign = MIRBuilder.buildSExt(DstTy, Sign);
5228 
5229   auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
5230   auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
5231   auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
5232 
5233   auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
5234   R = MIRBuilder.buildZExt(DstTy, R);
5235 
5236   auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
5237   auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
5238   auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
5239   auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
5240 
5241   auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
5242   auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
5243 
5244   const LLT S1 = LLT::scalar(1);
5245   auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
5246                                     S1, Exponent, ExponentLoBit);
5247 
5248   R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
5249 
5250   auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
5251   auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
5252 
5253   auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
5254 
5255   auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
5256                                           S1, Exponent, ZeroSrcTy);
5257 
5258   auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
5259   MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
5260 
5261   MI.eraseFromParent();
5262   return Legalized;
5263 }
5264 
5265 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
5266 LegalizerHelper::LegalizeResult
lowerFPTRUNC_F64_TO_F16(MachineInstr & MI)5267 LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
5268   Register Dst = MI.getOperand(0).getReg();
5269   Register Src = MI.getOperand(1).getReg();
5270 
5271   if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
5272     return UnableToLegalize;
5273 
5274   const unsigned ExpMask = 0x7ff;
5275   const unsigned ExpBiasf64 = 1023;
5276   const unsigned ExpBiasf16 = 15;
5277   const LLT S32 = LLT::scalar(32);
5278   const LLT S1 = LLT::scalar(1);
5279 
5280   auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
5281   Register U = Unmerge.getReg(0);
5282   Register UH = Unmerge.getReg(1);
5283 
5284   auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
5285   E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
5286 
5287   // Subtract the fp64 exponent bias (1023) to get the real exponent and
5288   // add the f16 bias (15) to get the biased exponent for the f16 format.
5289   E = MIRBuilder.buildAdd(
5290     S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
5291 
5292   auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
5293   M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
5294 
5295   auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
5296                                        MIRBuilder.buildConstant(S32, 0x1ff));
5297   MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
5298 
5299   auto Zero = MIRBuilder.buildConstant(S32, 0);
5300   auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
5301   auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
5302   M = MIRBuilder.buildOr(S32, M, Lo40Set);
5303 
5304   // (M != 0 ? 0x0200 : 0) | 0x7c00;
5305   auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
5306   auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
5307   auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
5308 
5309   auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
5310   auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
5311 
5312   // N = M | (E << 12);
5313   auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
5314   auto N = MIRBuilder.buildOr(S32, M, EShl12);
5315 
5316   // B = clamp(1-E, 0, 13);
5317   auto One = MIRBuilder.buildConstant(S32, 1);
5318   auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
5319   auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
5320   B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
5321 
5322   auto SigSetHigh = MIRBuilder.buildOr(S32, M,
5323                                        MIRBuilder.buildConstant(S32, 0x1000));
5324 
5325   auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
5326   auto D0 = MIRBuilder.buildShl(S32, D, B);
5327 
5328   auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
5329                                              D0, SigSetHigh);
5330   auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
5331   D = MIRBuilder.buildOr(S32, D, D1);
5332 
5333   auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
5334   auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
5335 
5336   auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
5337   V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
5338 
5339   auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
5340                                        MIRBuilder.buildConstant(S32, 3));
5341   auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
5342 
5343   auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
5344                                        MIRBuilder.buildConstant(S32, 5));
5345   auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
5346 
5347   V1 = MIRBuilder.buildOr(S32, V0, V1);
5348   V = MIRBuilder.buildAdd(S32, V, V1);
5349 
5350   auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,  S1,
5351                                        E, MIRBuilder.buildConstant(S32, 30));
5352   V = MIRBuilder.buildSelect(S32, CmpEGt30,
5353                              MIRBuilder.buildConstant(S32, 0x7c00), V);
5354 
5355   auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
5356                                          E, MIRBuilder.buildConstant(S32, 1039));
5357   V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
5358 
5359   // Extract the sign bit.
5360   auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
5361   Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
5362 
5363   // Insert the sign bit
5364   V = MIRBuilder.buildOr(S32, Sign, V);
5365 
5366   MIRBuilder.buildTrunc(Dst, V);
5367   MI.eraseFromParent();
5368   return Legalized;
5369 }
5370 
5371 LegalizerHelper::LegalizeResult
lowerFPTRUNC(MachineInstr & MI)5372 LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
5373   Register Dst = MI.getOperand(0).getReg();
5374   Register Src = MI.getOperand(1).getReg();
5375 
5376   LLT DstTy = MRI.getType(Dst);
5377   LLT SrcTy = MRI.getType(Src);
5378   const LLT S64 = LLT::scalar(64);
5379   const LLT S16 = LLT::scalar(16);
5380 
5381   if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
5382     return lowerFPTRUNC_F64_TO_F16(MI);
5383 
5384   return UnableToLegalize;
5385 }
5386 
5387 // TODO: If RHS is a constant SelectionDAGBuilder expands this into a
5388 // multiplication tree.
lowerFPOWI(MachineInstr & MI)5389 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
5390   Register Dst = MI.getOperand(0).getReg();
5391   Register Src0 = MI.getOperand(1).getReg();
5392   Register Src1 = MI.getOperand(2).getReg();
5393   LLT Ty = MRI.getType(Dst);
5394 
5395   auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
5396   MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
5397   MI.eraseFromParent();
5398   return Legalized;
5399 }
5400 
minMaxToCompare(unsigned Opc)5401 static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
5402   switch (Opc) {
5403   case TargetOpcode::G_SMIN:
5404     return CmpInst::ICMP_SLT;
5405   case TargetOpcode::G_SMAX:
5406     return CmpInst::ICMP_SGT;
5407   case TargetOpcode::G_UMIN:
5408     return CmpInst::ICMP_ULT;
5409   case TargetOpcode::G_UMAX:
5410     return CmpInst::ICMP_UGT;
5411   default:
5412     llvm_unreachable("not in integer min/max");
5413   }
5414 }
5415 
lowerMinMax(MachineInstr & MI)5416 LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
5417   Register Dst = MI.getOperand(0).getReg();
5418   Register Src0 = MI.getOperand(1).getReg();
5419   Register Src1 = MI.getOperand(2).getReg();
5420 
5421   const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
5422   LLT CmpType = MRI.getType(Dst).changeElementSize(1);
5423 
5424   auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
5425   MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
5426 
5427   MI.eraseFromParent();
5428   return Legalized;
5429 }
5430 
5431 LegalizerHelper::LegalizeResult
lowerFCopySign(MachineInstr & MI)5432 LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
5433   Register Dst = MI.getOperand(0).getReg();
5434   Register Src0 = MI.getOperand(1).getReg();
5435   Register Src1 = MI.getOperand(2).getReg();
5436 
5437   const LLT Src0Ty = MRI.getType(Src0);
5438   const LLT Src1Ty = MRI.getType(Src1);
5439 
5440   const int Src0Size = Src0Ty.getScalarSizeInBits();
5441   const int Src1Size = Src1Ty.getScalarSizeInBits();
5442 
5443   auto SignBitMask = MIRBuilder.buildConstant(
5444     Src0Ty, APInt::getSignMask(Src0Size));
5445 
5446   auto NotSignBitMask = MIRBuilder.buildConstant(
5447     Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
5448 
5449   auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask);
5450   MachineInstr *Or;
5451 
5452   if (Src0Ty == Src1Ty) {
5453     auto And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask);
5454     Or = MIRBuilder.buildOr(Dst, And0, And1);
5455   } else if (Src0Size > Src1Size) {
5456     auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
5457     auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
5458     auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
5459     auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask);
5460     Or = MIRBuilder.buildOr(Dst, And0, And1);
5461   } else {
5462     auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
5463     auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
5464     auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
5465     auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask);
5466     Or = MIRBuilder.buildOr(Dst, And0, And1);
5467   }
5468 
5469   // Be careful about setting nsz/nnan/ninf on every instruction, since the
5470   // constants are a nan and -0.0, but the final result should preserve
5471   // everything.
5472   if (unsigned Flags = MI.getFlags())
5473     Or->setFlags(Flags);
5474 
5475   MI.eraseFromParent();
5476   return Legalized;
5477 }
5478 
5479 LegalizerHelper::LegalizeResult
lowerFMinNumMaxNum(MachineInstr & MI)5480 LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
5481   unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
5482     TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
5483 
5484   Register Dst = MI.getOperand(0).getReg();
5485   Register Src0 = MI.getOperand(1).getReg();
5486   Register Src1 = MI.getOperand(2).getReg();
5487   LLT Ty = MRI.getType(Dst);
5488 
5489   if (!MI.getFlag(MachineInstr::FmNoNans)) {
5490     // Insert canonicalizes if it's possible we need to quiet to get correct
5491     // sNaN behavior.
5492 
5493     // Note this must be done here, and not as an optimization combine in the
5494     // absence of a dedicate quiet-snan instruction as we're using an
5495     // omni-purpose G_FCANONICALIZE.
5496     if (!isKnownNeverSNaN(Src0, MRI))
5497       Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
5498 
5499     if (!isKnownNeverSNaN(Src1, MRI))
5500       Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
5501   }
5502 
5503   // If there are no nans, it's safe to simply replace this with the non-IEEE
5504   // version.
5505   MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
5506   MI.eraseFromParent();
5507   return Legalized;
5508 }
5509 
lowerFMad(MachineInstr & MI)5510 LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
5511   // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
5512   Register DstReg = MI.getOperand(0).getReg();
5513   LLT Ty = MRI.getType(DstReg);
5514   unsigned Flags = MI.getFlags();
5515 
5516   auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
5517                                   Flags);
5518   MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
5519   MI.eraseFromParent();
5520   return Legalized;
5521 }
5522 
5523 LegalizerHelper::LegalizeResult
lowerIntrinsicRound(MachineInstr & MI)5524 LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
5525   Register DstReg = MI.getOperand(0).getReg();
5526   Register X = MI.getOperand(1).getReg();
5527   const unsigned Flags = MI.getFlags();
5528   const LLT Ty = MRI.getType(DstReg);
5529   const LLT CondTy = Ty.changeElementSize(1);
5530 
5531   // round(x) =>
5532   //  t = trunc(x);
5533   //  d = fabs(x - t);
5534   //  o = copysign(1.0f, x);
5535   //  return t + (d >= 0.5 ? o : 0.0);
5536 
5537   auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
5538 
5539   auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
5540   auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
5541   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5542   auto One = MIRBuilder.buildFConstant(Ty, 1.0);
5543   auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
5544   auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
5545 
5546   auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
5547                                   Flags);
5548   auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
5549 
5550   MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
5551 
5552   MI.eraseFromParent();
5553   return Legalized;
5554 }
5555 
5556 LegalizerHelper::LegalizeResult
lowerFFloor(MachineInstr & MI)5557 LegalizerHelper::lowerFFloor(MachineInstr &MI) {
5558   Register DstReg = MI.getOperand(0).getReg();
5559   Register SrcReg = MI.getOperand(1).getReg();
5560   unsigned Flags = MI.getFlags();
5561   LLT Ty = MRI.getType(DstReg);
5562   const LLT CondTy = Ty.changeElementSize(1);
5563 
5564   // result = trunc(src);
5565   // if (src < 0.0 && src != result)
5566   //   result += -1.0.
5567 
5568   auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
5569   auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
5570 
5571   auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
5572                                   SrcReg, Zero, Flags);
5573   auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
5574                                       SrcReg, Trunc, Flags);
5575   auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
5576   auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
5577 
5578   MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
5579   MI.eraseFromParent();
5580   return Legalized;
5581 }
5582 
5583 LegalizerHelper::LegalizeResult
lowerMergeValues(MachineInstr & MI)5584 LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
5585   const unsigned NumOps = MI.getNumOperands();
5586   Register DstReg = MI.getOperand(0).getReg();
5587   Register Src0Reg = MI.getOperand(1).getReg();
5588   LLT DstTy = MRI.getType(DstReg);
5589   LLT SrcTy = MRI.getType(Src0Reg);
5590   unsigned PartSize = SrcTy.getSizeInBits();
5591 
5592   LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
5593   Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
5594 
5595   for (unsigned I = 2; I != NumOps; ++I) {
5596     const unsigned Offset = (I - 1) * PartSize;
5597 
5598     Register SrcReg = MI.getOperand(I).getReg();
5599     auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
5600 
5601     Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
5602       MRI.createGenericVirtualRegister(WideTy);
5603 
5604     auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
5605     auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
5606     MIRBuilder.buildOr(NextResult, ResultReg, Shl);
5607     ResultReg = NextResult;
5608   }
5609 
5610   if (DstTy.isPointer()) {
5611     if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
5612           DstTy.getAddressSpace())) {
5613       LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n");
5614       return UnableToLegalize;
5615     }
5616 
5617     MIRBuilder.buildIntToPtr(DstReg, ResultReg);
5618   }
5619 
5620   MI.eraseFromParent();
5621   return Legalized;
5622 }
5623 
5624 LegalizerHelper::LegalizeResult
lowerUnmergeValues(MachineInstr & MI)5625 LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
5626   const unsigned NumDst = MI.getNumOperands() - 1;
5627   Register SrcReg = MI.getOperand(NumDst).getReg();
5628   Register Dst0Reg = MI.getOperand(0).getReg();
5629   LLT DstTy = MRI.getType(Dst0Reg);
5630   if (DstTy.isPointer())
5631     return UnableToLegalize; // TODO
5632 
5633   SrcReg = coerceToScalar(SrcReg);
5634   if (!SrcReg)
5635     return UnableToLegalize;
5636 
5637   // Expand scalarizing unmerge as bitcast to integer and shift.
5638   LLT IntTy = MRI.getType(SrcReg);
5639 
5640   MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
5641 
5642   const unsigned DstSize = DstTy.getSizeInBits();
5643   unsigned Offset = DstSize;
5644   for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
5645     auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
5646     auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
5647     MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
5648   }
5649 
5650   MI.eraseFromParent();
5651   return Legalized;
5652 }
5653 
5654 /// Lower a vector extract or insert by writing the vector to a stack temporary
5655 /// and reloading the element or vector.
5656 ///
5657 /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
5658 ///  =>
5659 ///  %stack_temp = G_FRAME_INDEX
5660 ///  G_STORE %vec, %stack_temp
5661 ///  %idx = clamp(%idx, %vec.getNumElements())
5662 ///  %element_ptr = G_PTR_ADD %stack_temp, %idx
5663 ///  %dst = G_LOAD %element_ptr
5664 LegalizerHelper::LegalizeResult
lowerExtractInsertVectorElt(MachineInstr & MI)5665 LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
5666   Register DstReg = MI.getOperand(0).getReg();
5667   Register SrcVec = MI.getOperand(1).getReg();
5668   Register InsertVal;
5669   if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
5670     InsertVal = MI.getOperand(2).getReg();
5671 
5672   Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
5673 
5674   LLT VecTy = MRI.getType(SrcVec);
5675   LLT EltTy = VecTy.getElementType();
5676   if (!EltTy.isByteSized()) { // Not implemented.
5677     LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n");
5678     return UnableToLegalize;
5679   }
5680 
5681   unsigned EltBytes = EltTy.getSizeInBytes();
5682   Align VecAlign = getStackTemporaryAlignment(VecTy);
5683   Align EltAlign;
5684 
5685   MachinePointerInfo PtrInfo;
5686   auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
5687                                         VecAlign, PtrInfo);
5688   MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
5689 
5690   // Get the pointer to the element, and be sure not to hit undefined behavior
5691   // if the index is out of bounds.
5692   Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
5693 
5694   int64_t IdxVal;
5695   if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
5696     int64_t Offset = IdxVal * EltBytes;
5697     PtrInfo = PtrInfo.getWithOffset(Offset);
5698     EltAlign = commonAlignment(VecAlign, Offset);
5699   } else {
5700     // We lose information with a variable offset.
5701     EltAlign = getStackTemporaryAlignment(EltTy);
5702     PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
5703   }
5704 
5705   if (InsertVal) {
5706     // Write the inserted element
5707     MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
5708 
5709     // Reload the whole vector.
5710     MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
5711   } else {
5712     MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
5713   }
5714 
5715   MI.eraseFromParent();
5716   return Legalized;
5717 }
5718 
5719 LegalizerHelper::LegalizeResult
lowerShuffleVector(MachineInstr & MI)5720 LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
5721   Register DstReg = MI.getOperand(0).getReg();
5722   Register Src0Reg = MI.getOperand(1).getReg();
5723   Register Src1Reg = MI.getOperand(2).getReg();
5724   LLT Src0Ty = MRI.getType(Src0Reg);
5725   LLT DstTy = MRI.getType(DstReg);
5726   LLT IdxTy = LLT::scalar(32);
5727 
5728   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
5729 
5730   if (DstTy.isScalar()) {
5731     if (Src0Ty.isVector())
5732       return UnableToLegalize;
5733 
5734     // This is just a SELECT.
5735     assert(Mask.size() == 1 && "Expected a single mask element");
5736     Register Val;
5737     if (Mask[0] < 0 || Mask[0] > 1)
5738       Val = MIRBuilder.buildUndef(DstTy).getReg(0);
5739     else
5740       Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
5741     MIRBuilder.buildCopy(DstReg, Val);
5742     MI.eraseFromParent();
5743     return Legalized;
5744   }
5745 
5746   Register Undef;
5747   SmallVector<Register, 32> BuildVec;
5748   LLT EltTy = DstTy.getElementType();
5749 
5750   for (int Idx : Mask) {
5751     if (Idx < 0) {
5752       if (!Undef.isValid())
5753         Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
5754       BuildVec.push_back(Undef);
5755       continue;
5756     }
5757 
5758     if (Src0Ty.isScalar()) {
5759       BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
5760     } else {
5761       int NumElts = Src0Ty.getNumElements();
5762       Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
5763       int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
5764       auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
5765       auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
5766       BuildVec.push_back(Extract.getReg(0));
5767     }
5768   }
5769 
5770   MIRBuilder.buildBuildVector(DstReg, BuildVec);
5771   MI.eraseFromParent();
5772   return Legalized;
5773 }
5774 
5775 LegalizerHelper::LegalizeResult
lowerDynStackAlloc(MachineInstr & MI)5776 LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
5777   const auto &MF = *MI.getMF();
5778   const auto &TFI = *MF.getSubtarget().getFrameLowering();
5779   if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
5780     return UnableToLegalize;
5781 
5782   Register Dst = MI.getOperand(0).getReg();
5783   Register AllocSize = MI.getOperand(1).getReg();
5784   Align Alignment = assumeAligned(MI.getOperand(2).getImm());
5785 
5786   LLT PtrTy = MRI.getType(Dst);
5787   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
5788 
5789   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
5790   auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
5791   SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
5792 
5793   // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
5794   // have to generate an extra instruction to negate the alloc and then use
5795   // G_PTR_ADD to add the negative offset.
5796   auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
5797   if (Alignment > Align(1)) {
5798     APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
5799     AlignMask.negate();
5800     auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
5801     Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
5802   }
5803 
5804   SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
5805   MIRBuilder.buildCopy(SPReg, SPTmp);
5806   MIRBuilder.buildCopy(Dst, SPTmp);
5807 
5808   MI.eraseFromParent();
5809   return Legalized;
5810 }
5811 
5812 LegalizerHelper::LegalizeResult
lowerExtract(MachineInstr & MI)5813 LegalizerHelper::lowerExtract(MachineInstr &MI) {
5814   Register Dst = MI.getOperand(0).getReg();
5815   Register Src = MI.getOperand(1).getReg();
5816   unsigned Offset = MI.getOperand(2).getImm();
5817 
5818   LLT DstTy = MRI.getType(Dst);
5819   LLT SrcTy = MRI.getType(Src);
5820 
5821   if (DstTy.isScalar() &&
5822       (SrcTy.isScalar() ||
5823        (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
5824     LLT SrcIntTy = SrcTy;
5825     if (!SrcTy.isScalar()) {
5826       SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
5827       Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
5828     }
5829 
5830     if (Offset == 0)
5831       MIRBuilder.buildTrunc(Dst, Src);
5832     else {
5833       auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
5834       auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
5835       MIRBuilder.buildTrunc(Dst, Shr);
5836     }
5837 
5838     MI.eraseFromParent();
5839     return Legalized;
5840   }
5841 
5842   return UnableToLegalize;
5843 }
5844 
lowerInsert(MachineInstr & MI)5845 LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
5846   Register Dst = MI.getOperand(0).getReg();
5847   Register Src = MI.getOperand(1).getReg();
5848   Register InsertSrc = MI.getOperand(2).getReg();
5849   uint64_t Offset = MI.getOperand(3).getImm();
5850 
5851   LLT DstTy = MRI.getType(Src);
5852   LLT InsertTy = MRI.getType(InsertSrc);
5853 
5854   if (InsertTy.isVector() ||
5855       (DstTy.isVector() && DstTy.getElementType() != InsertTy))
5856     return UnableToLegalize;
5857 
5858   const DataLayout &DL = MIRBuilder.getDataLayout();
5859   if ((DstTy.isPointer() &&
5860        DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
5861       (InsertTy.isPointer() &&
5862        DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
5863     LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n");
5864     return UnableToLegalize;
5865   }
5866 
5867   LLT IntDstTy = DstTy;
5868 
5869   if (!DstTy.isScalar()) {
5870     IntDstTy = LLT::scalar(DstTy.getSizeInBits());
5871     Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
5872   }
5873 
5874   if (!InsertTy.isScalar()) {
5875     const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
5876     InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
5877   }
5878 
5879   Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
5880   if (Offset != 0) {
5881     auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
5882     ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
5883   }
5884 
5885   APInt MaskVal = APInt::getBitsSetWithWrap(
5886       DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
5887 
5888   auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
5889   auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
5890   auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
5891 
5892   MIRBuilder.buildCast(Dst, Or);
5893   MI.eraseFromParent();
5894   return Legalized;
5895 }
5896 
5897 LegalizerHelper::LegalizeResult
lowerSADDO_SSUBO(MachineInstr & MI)5898 LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
5899   Register Dst0 = MI.getOperand(0).getReg();
5900   Register Dst1 = MI.getOperand(1).getReg();
5901   Register LHS = MI.getOperand(2).getReg();
5902   Register RHS = MI.getOperand(3).getReg();
5903   const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
5904 
5905   LLT Ty = MRI.getType(Dst0);
5906   LLT BoolTy = MRI.getType(Dst1);
5907 
5908   if (IsAdd)
5909     MIRBuilder.buildAdd(Dst0, LHS, RHS);
5910   else
5911     MIRBuilder.buildSub(Dst0, LHS, RHS);
5912 
5913   // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
5914 
5915   auto Zero = MIRBuilder.buildConstant(Ty, 0);
5916 
5917   // For an addition, the result should be less than one of the operands (LHS)
5918   // if and only if the other operand (RHS) is negative, otherwise there will
5919   // be overflow.
5920   // For a subtraction, the result should be less than one of the operands
5921   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
5922   // otherwise there will be overflow.
5923   auto ResultLowerThanLHS =
5924       MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
5925   auto ConditionRHS = MIRBuilder.buildICmp(
5926       IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
5927 
5928   MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
5929   MI.eraseFromParent();
5930   return Legalized;
5931 }
5932 
5933 LegalizerHelper::LegalizeResult
lowerAddSubSatToMinMax(MachineInstr & MI)5934 LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
5935   Register Res = MI.getOperand(0).getReg();
5936   Register LHS = MI.getOperand(1).getReg();
5937   Register RHS = MI.getOperand(2).getReg();
5938   LLT Ty = MRI.getType(Res);
5939   bool IsSigned;
5940   bool IsAdd;
5941   unsigned BaseOp;
5942   switch (MI.getOpcode()) {
5943   default:
5944     llvm_unreachable("unexpected addsat/subsat opcode");
5945   case TargetOpcode::G_UADDSAT:
5946     IsSigned = false;
5947     IsAdd = true;
5948     BaseOp = TargetOpcode::G_ADD;
5949     break;
5950   case TargetOpcode::G_SADDSAT:
5951     IsSigned = true;
5952     IsAdd = true;
5953     BaseOp = TargetOpcode::G_ADD;
5954     break;
5955   case TargetOpcode::G_USUBSAT:
5956     IsSigned = false;
5957     IsAdd = false;
5958     BaseOp = TargetOpcode::G_SUB;
5959     break;
5960   case TargetOpcode::G_SSUBSAT:
5961     IsSigned = true;
5962     IsAdd = false;
5963     BaseOp = TargetOpcode::G_SUB;
5964     break;
5965   }
5966 
5967   if (IsSigned) {
5968     // sadd.sat(a, b) ->
5969     //   hi = 0x7fffffff - smax(a, 0)
5970     //   lo = 0x80000000 - smin(a, 0)
5971     //   a + smin(smax(lo, b), hi)
5972     // ssub.sat(a, b) ->
5973     //   lo = smax(a, -1) - 0x7fffffff
5974     //   hi = smin(a, -1) - 0x80000000
5975     //   a - smin(smax(lo, b), hi)
5976     // TODO: AMDGPU can use a "median of 3" instruction here:
5977     //   a +/- med3(lo, b, hi)
5978     uint64_t NumBits = Ty.getScalarSizeInBits();
5979     auto MaxVal =
5980         MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
5981     auto MinVal =
5982         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
5983     MachineInstrBuilder Hi, Lo;
5984     if (IsAdd) {
5985       auto Zero = MIRBuilder.buildConstant(Ty, 0);
5986       Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
5987       Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
5988     } else {
5989       auto NegOne = MIRBuilder.buildConstant(Ty, -1);
5990       Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
5991                                MaxVal);
5992       Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
5993                                MinVal);
5994     }
5995     auto RHSClamped =
5996         MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
5997     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
5998   } else {
5999     // uadd.sat(a, b) -> a + umin(~a, b)
6000     // usub.sat(a, b) -> a - umin(a, b)
6001     Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6002     auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6003     MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6004   }
6005 
6006   MI.eraseFromParent();
6007   return Legalized;
6008 }
6009 
6010 LegalizerHelper::LegalizeResult
lowerAddSubSatToAddoSubo(MachineInstr & MI)6011 LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6012   Register Res = MI.getOperand(0).getReg();
6013   Register LHS = MI.getOperand(1).getReg();
6014   Register RHS = MI.getOperand(2).getReg();
6015   LLT Ty = MRI.getType(Res);
6016   LLT BoolTy = Ty.changeElementSize(1);
6017   bool IsSigned;
6018   bool IsAdd;
6019   unsigned OverflowOp;
6020   switch (MI.getOpcode()) {
6021   default:
6022     llvm_unreachable("unexpected addsat/subsat opcode");
6023   case TargetOpcode::G_UADDSAT:
6024     IsSigned = false;
6025     IsAdd = true;
6026     OverflowOp = TargetOpcode::G_UADDO;
6027     break;
6028   case TargetOpcode::G_SADDSAT:
6029     IsSigned = true;
6030     IsAdd = true;
6031     OverflowOp = TargetOpcode::G_SADDO;
6032     break;
6033   case TargetOpcode::G_USUBSAT:
6034     IsSigned = false;
6035     IsAdd = false;
6036     OverflowOp = TargetOpcode::G_USUBO;
6037     break;
6038   case TargetOpcode::G_SSUBSAT:
6039     IsSigned = true;
6040     IsAdd = false;
6041     OverflowOp = TargetOpcode::G_SSUBO;
6042     break;
6043   }
6044 
6045   auto OverflowRes =
6046       MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
6047   Register Tmp = OverflowRes.getReg(0);
6048   Register Ov = OverflowRes.getReg(1);
6049   MachineInstrBuilder Clamp;
6050   if (IsSigned) {
6051     // sadd.sat(a, b) ->
6052     //   {tmp, ov} = saddo(a, b)
6053     //   ov ? (tmp >>s 31) + 0x80000000 : r
6054     // ssub.sat(a, b) ->
6055     //   {tmp, ov} = ssubo(a, b)
6056     //   ov ? (tmp >>s 31) + 0x80000000 : r
6057     uint64_t NumBits = Ty.getScalarSizeInBits();
6058     auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
6059     auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
6060     auto MinVal =
6061         MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6062     Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
6063   } else {
6064     // uadd.sat(a, b) ->
6065     //   {tmp, ov} = uaddo(a, b)
6066     //   ov ? 0xffffffff : tmp
6067     // usub.sat(a, b) ->
6068     //   {tmp, ov} = usubo(a, b)
6069     //   ov ? 0 : tmp
6070     Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
6071   }
6072   MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
6073 
6074   MI.eraseFromParent();
6075   return Legalized;
6076 }
6077 
6078 LegalizerHelper::LegalizeResult
lowerShlSat(MachineInstr & MI)6079 LegalizerHelper::lowerShlSat(MachineInstr &MI) {
6080   assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
6081           MI.getOpcode() == TargetOpcode::G_USHLSAT) &&
6082          "Expected shlsat opcode!");
6083   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
6084   Register Res = MI.getOperand(0).getReg();
6085   Register LHS = MI.getOperand(1).getReg();
6086   Register RHS = MI.getOperand(2).getReg();
6087   LLT Ty = MRI.getType(Res);
6088   LLT BoolTy = Ty.changeElementSize(1);
6089 
6090   unsigned BW = Ty.getScalarSizeInBits();
6091   auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
6092   auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
6093                        : MIRBuilder.buildLShr(Ty, Result, RHS);
6094 
6095   MachineInstrBuilder SatVal;
6096   if (IsSigned) {
6097     auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
6098     auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
6099     auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
6100                                     MIRBuilder.buildConstant(Ty, 0));
6101     SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
6102   } else {
6103     SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
6104   }
6105   auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
6106   MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
6107 
6108   MI.eraseFromParent();
6109   return Legalized;
6110 }
6111 
6112 LegalizerHelper::LegalizeResult
lowerBswap(MachineInstr & MI)6113 LegalizerHelper::lowerBswap(MachineInstr &MI) {
6114   Register Dst = MI.getOperand(0).getReg();
6115   Register Src = MI.getOperand(1).getReg();
6116   const LLT Ty = MRI.getType(Src);
6117   unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
6118   unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
6119 
6120   // Swap most and least significant byte, set remaining bytes in Res to zero.
6121   auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
6122   auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
6123   auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6124   auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
6125 
6126   // Set i-th high/low byte in Res to i-th low/high byte from Src.
6127   for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
6128     // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
6129     APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
6130     auto Mask = MIRBuilder.buildConstant(Ty, APMask);
6131     auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
6132     // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
6133     auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
6134     auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
6135     Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
6136     // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
6137     auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
6138     auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
6139     Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
6140   }
6141   Res.getInstr()->getOperand(0).setReg(Dst);
6142 
6143   MI.eraseFromParent();
6144   return Legalized;
6145 }
6146 
6147 //{ (Src & Mask) >> N } | { (Src << N) & Mask }
SwapN(unsigned N,DstOp Dst,MachineIRBuilder & B,MachineInstrBuilder Src,APInt Mask)6148 static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
6149                                  MachineInstrBuilder Src, APInt Mask) {
6150   const LLT Ty = Dst.getLLTTy(*B.getMRI());
6151   MachineInstrBuilder C_N = B.buildConstant(Ty, N);
6152   MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
6153   auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
6154   auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
6155   return B.buildOr(Dst, LHS, RHS);
6156 }
6157 
6158 LegalizerHelper::LegalizeResult
lowerBitreverse(MachineInstr & MI)6159 LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
6160   Register Dst = MI.getOperand(0).getReg();
6161   Register Src = MI.getOperand(1).getReg();
6162   const LLT Ty = MRI.getType(Src);
6163   unsigned Size = Ty.getSizeInBits();
6164 
6165   MachineInstrBuilder BSWAP =
6166       MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
6167 
6168   // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
6169   //    [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
6170   // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
6171   MachineInstrBuilder Swap4 =
6172       SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
6173 
6174   // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
6175   //    [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
6176   // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
6177   MachineInstrBuilder Swap2 =
6178       SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
6179 
6180   // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
6181   //    [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
6182   // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
6183   SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
6184 
6185   MI.eraseFromParent();
6186   return Legalized;
6187 }
6188 
6189 LegalizerHelper::LegalizeResult
lowerReadWriteRegister(MachineInstr & MI)6190 LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
6191   MachineFunction &MF = MIRBuilder.getMF();
6192 
6193   bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
6194   int NameOpIdx = IsRead ? 1 : 0;
6195   int ValRegIndex = IsRead ? 0 : 1;
6196 
6197   Register ValReg = MI.getOperand(ValRegIndex).getReg();
6198   const LLT Ty = MRI.getType(ValReg);
6199   const MDString *RegStr = cast<MDString>(
6200     cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
6201 
6202   Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
6203   if (!PhysReg.isValid())
6204     return UnableToLegalize;
6205 
6206   if (IsRead)
6207     MIRBuilder.buildCopy(ValReg, PhysReg);
6208   else
6209     MIRBuilder.buildCopy(PhysReg, ValReg);
6210 
6211   MI.eraseFromParent();
6212   return Legalized;
6213 }
6214 
6215 LegalizerHelper::LegalizeResult
lowerSMULH_UMULH(MachineInstr & MI)6216 LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
6217   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
6218   unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
6219   Register Result = MI.getOperand(0).getReg();
6220   LLT OrigTy = MRI.getType(Result);
6221   auto SizeInBits = OrigTy.getScalarSizeInBits();
6222   LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
6223 
6224   auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
6225   auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
6226   auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
6227   unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
6228 
6229   auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
6230   auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
6231   MIRBuilder.buildTrunc(Result, Shifted);
6232 
6233   MI.eraseFromParent();
6234   return Legalized;
6235 }
6236 
lowerSelect(MachineInstr & MI)6237 LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
6238   // Implement vector G_SELECT in terms of XOR, AND, OR.
6239   Register DstReg = MI.getOperand(0).getReg();
6240   Register MaskReg = MI.getOperand(1).getReg();
6241   Register Op1Reg = MI.getOperand(2).getReg();
6242   Register Op2Reg = MI.getOperand(3).getReg();
6243   LLT DstTy = MRI.getType(DstReg);
6244   LLT MaskTy = MRI.getType(MaskReg);
6245   LLT Op1Ty = MRI.getType(Op1Reg);
6246   if (!DstTy.isVector())
6247     return UnableToLegalize;
6248 
6249   // Vector selects can have a scalar predicate. If so, splat into a vector and
6250   // finish for later legalization attempts to try again.
6251   if (MaskTy.isScalar()) {
6252     Register MaskElt = MaskReg;
6253     if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
6254       MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
6255     // Generate a vector splat idiom to be pattern matched later.
6256     auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
6257     Observer.changingInstr(MI);
6258     MI.getOperand(1).setReg(ShufSplat.getReg(0));
6259     Observer.changedInstr(MI);
6260     return Legalized;
6261   }
6262 
6263   if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
6264     return UnableToLegalize;
6265   }
6266 
6267   auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
6268   auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
6269   auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
6270   MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
6271   MI.eraseFromParent();
6272   return Legalized;
6273 }
6274