1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include <utility>
52
53 using namespace llvm;
54
55 #define DEBUG_TYPE "stack-protector"
56
57 STATISTIC(NumFunProtected, "Number of functions protected");
58 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
59 " taken.");
60
61 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
62 cl::init(true), cl::Hidden);
63
64 char StackProtector::ID = 0;
65
StackProtector()66 StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) {
67 initializeStackProtectorPass(*PassRegistry::getPassRegistry());
68 }
69
70 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
71 "Insert stack protectors", false, true)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)72 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
73 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
74 "Insert stack protectors", false, true)
75
76 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
77
getAnalysisUsage(AnalysisUsage & AU) const78 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
79 AU.addRequired<TargetPassConfig>();
80 AU.addPreserved<DominatorTreeWrapperPass>();
81 }
82
runOnFunction(Function & Fn)83 bool StackProtector::runOnFunction(Function &Fn) {
84 F = &Fn;
85 M = F->getParent();
86 DominatorTreeWrapperPass *DTWP =
87 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
88 DT = DTWP ? &DTWP->getDomTree() : nullptr;
89 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
90 Trip = TM->getTargetTriple();
91 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
92 HasPrologue = false;
93 HasIRCheck = false;
94
95 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
96 if (Attr.isStringAttribute() &&
97 Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
98 return false; // Invalid integer string
99
100 if (!RequiresStackProtector())
101 return false;
102
103 // TODO(etienneb): Functions with funclets are not correctly supported now.
104 // Do nothing if this is funclet-based personality.
105 if (Fn.hasPersonalityFn()) {
106 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
107 if (isFuncletEHPersonality(Personality))
108 return false;
109 }
110
111 ++NumFunProtected;
112 return InsertStackProtectors();
113 }
114
115 /// \param [out] IsLarge is set to true if a protectable array is found and
116 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with
117 /// multiple arrays, this gets set if any of them is large.
ContainsProtectableArray(Type * Ty,bool & IsLarge,bool Strong,bool InStruct) const118 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
119 bool Strong,
120 bool InStruct) const {
121 if (!Ty)
122 return false;
123 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
124 if (!AT->getElementType()->isIntegerTy(8)) {
125 // If we're on a non-Darwin platform or we're inside of a structure, don't
126 // add stack protectors unless the array is a character array.
127 // However, in strong mode any array, regardless of type and size,
128 // triggers a protector.
129 if (!Strong && (InStruct || !Trip.isOSDarwin()))
130 return false;
131 }
132
133 // If an array has more than SSPBufferSize bytes of allocated space, then we
134 // emit stack protectors.
135 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
136 IsLarge = true;
137 return true;
138 }
139
140 if (Strong)
141 // Require a protector for all arrays in strong mode
142 return true;
143 }
144
145 const StructType *ST = dyn_cast<StructType>(Ty);
146 if (!ST)
147 return false;
148
149 bool NeedsProtector = false;
150 for (StructType::element_iterator I = ST->element_begin(),
151 E = ST->element_end();
152 I != E; ++I)
153 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
154 // If the element is a protectable array and is large (>= SSPBufferSize)
155 // then we are done. If the protectable array is not large, then
156 // keep looking in case a subsequent element is a large array.
157 if (IsLarge)
158 return true;
159 NeedsProtector = true;
160 }
161
162 return NeedsProtector;
163 }
164
HasAddressTaken(const Instruction * AI,uint64_t AllocSize)165 bool StackProtector::HasAddressTaken(const Instruction *AI,
166 uint64_t AllocSize) {
167 const DataLayout &DL = M->getDataLayout();
168 for (const User *U : AI->users()) {
169 const auto *I = cast<Instruction>(U);
170 // If this instruction accesses memory make sure it doesn't access beyond
171 // the bounds of the allocated object.
172 Optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I);
173 if (MemLoc.hasValue() && MemLoc->Size.hasValue() &&
174 MemLoc->Size.getValue() > AllocSize)
175 return true;
176 switch (I->getOpcode()) {
177 case Instruction::Store:
178 if (AI == cast<StoreInst>(I)->getValueOperand())
179 return true;
180 break;
181 case Instruction::AtomicCmpXchg:
182 // cmpxchg conceptually includes both a load and store from the same
183 // location. So, like store, the value being stored is what matters.
184 if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
185 return true;
186 break;
187 case Instruction::PtrToInt:
188 if (AI == cast<PtrToIntInst>(I)->getOperand(0))
189 return true;
190 break;
191 case Instruction::Call: {
192 // Ignore intrinsics that do not become real instructions.
193 // TODO: Narrow this to intrinsics that have store-like effects.
194 const auto *CI = cast<CallInst>(I);
195 if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd())
196 return true;
197 break;
198 }
199 case Instruction::Invoke:
200 return true;
201 case Instruction::GetElementPtr: {
202 // If the GEP offset is out-of-bounds, or is non-constant and so has to be
203 // assumed to be potentially out-of-bounds, then any memory access that
204 // would use it could also be out-of-bounds meaning stack protection is
205 // required.
206 const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
207 unsigned TypeSize = DL.getIndexTypeSizeInBits(I->getType());
208 APInt Offset(TypeSize, 0);
209 APInt MaxOffset(TypeSize, AllocSize);
210 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.ugt(MaxOffset))
211 return true;
212 // Adjust AllocSize to be the space remaining after this offset.
213 if (HasAddressTaken(I, AllocSize - Offset.getLimitedValue()))
214 return true;
215 break;
216 }
217 case Instruction::BitCast:
218 case Instruction::Select:
219 case Instruction::AddrSpaceCast:
220 if (HasAddressTaken(I, AllocSize))
221 return true;
222 break;
223 case Instruction::PHI: {
224 // Keep track of what PHI nodes we have already visited to ensure
225 // they are only visited once.
226 const auto *PN = cast<PHINode>(I);
227 if (VisitedPHIs.insert(PN).second)
228 if (HasAddressTaken(PN, AllocSize))
229 return true;
230 break;
231 }
232 case Instruction::Load:
233 case Instruction::AtomicRMW:
234 case Instruction::Ret:
235 // These instructions take an address operand, but have load-like or
236 // other innocuous behavior that should not trigger a stack protector.
237 // atomicrmw conceptually has both load and store semantics, but the
238 // value being stored must be integer; so if a pointer is being stored,
239 // we'll catch it in the PtrToInt case above.
240 break;
241 default:
242 // Conservatively return true for any instruction that takes an address
243 // operand, but is not handled above.
244 return true;
245 }
246 }
247 return false;
248 }
249
250 /// Search for the first call to the llvm.stackprotector intrinsic and return it
251 /// if present.
findStackProtectorIntrinsic(Function & F)252 static const CallInst *findStackProtectorIntrinsic(Function &F) {
253 for (const BasicBlock &BB : F)
254 for (const Instruction &I : BB)
255 if (const auto *II = dyn_cast<IntrinsicInst>(&I))
256 if (II->getIntrinsicID() == Intrinsic::stackprotector)
257 return II;
258 return nullptr;
259 }
260
261 /// Check whether or not this function needs a stack protector based
262 /// upon the stack protector level.
263 ///
264 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
265 /// The standard heuristic which will add a guard variable to functions that
266 /// call alloca with a either a variable size or a size >= SSPBufferSize,
267 /// functions with character buffers larger than SSPBufferSize, and functions
268 /// with aggregates containing character buffers larger than SSPBufferSize. The
269 /// strong heuristic will add a guard variables to functions that call alloca
270 /// regardless of size, functions with any buffer regardless of type and size,
271 /// functions with aggregates that contain any buffer regardless of type and
272 /// size, and functions that contain stack-based variables that have had their
273 /// address taken.
RequiresStackProtector()274 bool StackProtector::RequiresStackProtector() {
275 bool Strong = false;
276 bool NeedsProtector = false;
277
278 if (F->hasFnAttribute(Attribute::SafeStack))
279 return false;
280
281 // We are constructing the OptimizationRemarkEmitter on the fly rather than
282 // using the analysis pass to avoid building DominatorTree and LoopInfo which
283 // are not available this late in the IR pipeline.
284 OptimizationRemarkEmitter ORE(F);
285
286 if (F->hasFnAttribute(Attribute::StackProtectReq)) {
287 ORE.emit([&]() {
288 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
289 << "Stack protection applied to function "
290 << ore::NV("Function", F)
291 << " due to a function attribute or command-line switch";
292 });
293 NeedsProtector = true;
294 Strong = true; // Use the same heuristic as strong to determine SSPLayout
295 } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
296 Strong = true;
297 else if (!F->hasFnAttribute(Attribute::StackProtect))
298 return false;
299
300 for (const BasicBlock &BB : *F) {
301 for (const Instruction &I : BB) {
302 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
303 if (AI->isArrayAllocation()) {
304 auto RemarkBuilder = [&]() {
305 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
306 &I)
307 << "Stack protection applied to function "
308 << ore::NV("Function", F)
309 << " due to a call to alloca or use of a variable length "
310 "array";
311 };
312 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
313 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
314 // A call to alloca with size >= SSPBufferSize requires
315 // stack protectors.
316 Layout.insert(std::make_pair(AI,
317 MachineFrameInfo::SSPLK_LargeArray));
318 ORE.emit(RemarkBuilder);
319 NeedsProtector = true;
320 } else if (Strong) {
321 // Require protectors for all alloca calls in strong mode.
322 Layout.insert(std::make_pair(AI,
323 MachineFrameInfo::SSPLK_SmallArray));
324 ORE.emit(RemarkBuilder);
325 NeedsProtector = true;
326 }
327 } else {
328 // A call to alloca with a variable size requires protectors.
329 Layout.insert(std::make_pair(AI,
330 MachineFrameInfo::SSPLK_LargeArray));
331 ORE.emit(RemarkBuilder);
332 NeedsProtector = true;
333 }
334 continue;
335 }
336
337 bool IsLarge = false;
338 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
339 Layout.insert(std::make_pair(AI, IsLarge
340 ? MachineFrameInfo::SSPLK_LargeArray
341 : MachineFrameInfo::SSPLK_SmallArray));
342 ORE.emit([&]() {
343 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
344 << "Stack protection applied to function "
345 << ore::NV("Function", F)
346 << " due to a stack allocated buffer or struct containing a "
347 "buffer";
348 });
349 NeedsProtector = true;
350 continue;
351 }
352
353 if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize(
354 AI->getAllocatedType()))) {
355 ++NumAddrTaken;
356 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
357 ORE.emit([&]() {
358 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
359 &I)
360 << "Stack protection applied to function "
361 << ore::NV("Function", F)
362 << " due to the address of a local variable being taken";
363 });
364 NeedsProtector = true;
365 }
366 // Clear any PHIs that we visited, to make sure we examine all uses of
367 // any subsequent allocas that we look at.
368 VisitedPHIs.clear();
369 }
370 }
371 }
372
373 return NeedsProtector;
374 }
375
376 /// Create a stack guard loading and populate whether SelectionDAG SSP is
377 /// supported.
getStackGuard(const TargetLoweringBase * TLI,Module * M,IRBuilder<> & B,bool * SupportsSelectionDAGSP=nullptr)378 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
379 IRBuilder<> &B,
380 bool *SupportsSelectionDAGSP = nullptr) {
381 Value *Guard = TLI->getIRStackGuard(B);
382 auto GuardMode = TLI->getTargetMachine().Options.StackProtectorGuard;
383 if ((GuardMode == llvm::StackProtectorGuards::TLS ||
384 GuardMode == llvm::StackProtectorGuards::None) && Guard)
385 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
386
387 // Use SelectionDAG SSP handling, since there isn't an IR guard.
388 //
389 // This is more or less weird, since we optionally output whether we
390 // should perform a SelectionDAG SP here. The reason is that it's strictly
391 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
392 // mutating. There is no way to get this bit without mutating the IR, so
393 // getting this bit has to happen in this right time.
394 //
395 // We could have define a new function TLI::supportsSelectionDAGSP(), but that
396 // will put more burden on the backends' overriding work, especially when it
397 // actually conveys the same information getIRStackGuard() already gives.
398 if (SupportsSelectionDAGSP)
399 *SupportsSelectionDAGSP = true;
400 TLI->insertSSPDeclarations(*M);
401 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
402 }
403
404 /// Insert code into the entry block that stores the stack guard
405 /// variable onto the stack:
406 ///
407 /// entry:
408 /// StackGuardSlot = alloca i8*
409 /// StackGuard = <stack guard>
410 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot)
411 ///
412 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
413 /// node.
CreatePrologue(Function * F,Module * M,ReturnInst * RI,const TargetLoweringBase * TLI,AllocaInst * & AI)414 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
415 const TargetLoweringBase *TLI, AllocaInst *&AI) {
416 bool SupportsSelectionDAGSP = false;
417 IRBuilder<> B(&F->getEntryBlock().front());
418 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
419 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
420
421 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
422 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
423 {GuardSlot, AI});
424 return SupportsSelectionDAGSP;
425 }
426
427 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
428 /// function.
429 ///
430 /// - The prologue code loads and stores the stack guard onto the stack.
431 /// - The epilogue checks the value stored in the prologue against the original
432 /// value. It calls __stack_chk_fail if they differ.
InsertStackProtectors()433 bool StackProtector::InsertStackProtectors() {
434 // If the target wants to XOR the frame pointer into the guard value, it's
435 // impossible to emit the check in IR, so the target *must* support stack
436 // protection in SDAG.
437 bool SupportsSelectionDAGSP =
438 TLI->useStackGuardXorFP() ||
439 (EnableSelectionDAGSP && !TM->Options.EnableFastISel &&
440 !TM->Options.EnableGlobalISel);
441 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
442
443 for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
444 BasicBlock *BB = &*I++;
445 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
446 if (!RI)
447 continue;
448
449 // Generate prologue instrumentation if not already generated.
450 if (!HasPrologue) {
451 HasPrologue = true;
452 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
453 }
454
455 // SelectionDAG based code generation. Nothing else needs to be done here.
456 // The epilogue instrumentation is postponed to SelectionDAG.
457 if (SupportsSelectionDAGSP)
458 break;
459
460 // Find the stack guard slot if the prologue was not created by this pass
461 // itself via a previous call to CreatePrologue().
462 if (!AI) {
463 const CallInst *SPCall = findStackProtectorIntrinsic(*F);
464 assert(SPCall && "Call to llvm.stackprotector is missing");
465 AI = cast<AllocaInst>(SPCall->getArgOperand(1));
466 }
467
468 // Set HasIRCheck to true, so that SelectionDAG will not generate its own
469 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
470 // instrumentation has already been generated.
471 HasIRCheck = true;
472
473 // If we're instrumenting a block with a musttail call, the check has to be
474 // inserted before the call rather than between it and the return. The
475 // verifier guarantees that a musttail call is either directly before the
476 // return or with a single correct bitcast of the return value in between so
477 // we don't need to worry about many situations here.
478 Instruction *CheckLoc = RI;
479 Instruction *Prev = RI->getPrevNonDebugInstruction();
480 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
481 CheckLoc = Prev;
482 else if (Prev) {
483 Prev = Prev->getPrevNonDebugInstruction();
484 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
485 CheckLoc = Prev;
486 }
487
488 // Generate epilogue instrumentation. The epilogue intrumentation can be
489 // function-based or inlined depending on which mechanism the target is
490 // providing.
491 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
492 // Generate the function-based epilogue instrumentation.
493 // The target provides a guard check function, generate a call to it.
494 IRBuilder<> B(CheckLoc);
495 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
496 CallInst *Call = B.CreateCall(GuardCheck, {Guard});
497 Call->setAttributes(GuardCheck->getAttributes());
498 Call->setCallingConv(GuardCheck->getCallingConv());
499 } else {
500 // Generate the epilogue with inline instrumentation.
501 // If we do not support SelectionDAG based calls, generate IR level
502 // calls.
503 //
504 // For each block with a return instruction, convert this:
505 //
506 // return:
507 // ...
508 // ret ...
509 //
510 // into this:
511 //
512 // return:
513 // ...
514 // %1 = <stack guard>
515 // %2 = load StackGuardSlot
516 // %3 = cmp i1 %1, %2
517 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk
518 //
519 // SP_return:
520 // ret ...
521 //
522 // CallStackCheckFailBlk:
523 // call void @__stack_chk_fail()
524 // unreachable
525
526 // Create the FailBB. We duplicate the BB every time since the MI tail
527 // merge pass will merge together all of the various BB into one including
528 // fail BB generated by the stack protector pseudo instruction.
529 BasicBlock *FailBB = CreateFailBB();
530
531 // Split the basic block before the return instruction.
532 BasicBlock *NewBB =
533 BB->splitBasicBlock(CheckLoc->getIterator(), "SP_return");
534
535 // Update the dominator tree if we need to.
536 if (DT && DT->isReachableFromEntry(BB)) {
537 DT->addNewBlock(NewBB, BB);
538 DT->addNewBlock(FailBB, BB);
539 }
540
541 // Remove default branch instruction to the new BB.
542 BB->getTerminator()->eraseFromParent();
543
544 // Move the newly created basic block to the point right after the old
545 // basic block so that it's in the "fall through" position.
546 NewBB->moveAfter(BB);
547
548 // Generate the stack protector instructions in the old basic block.
549 IRBuilder<> B(BB);
550 Value *Guard = getStackGuard(TLI, M, B);
551 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
552 Value *Cmp = B.CreateICmpEQ(Guard, LI2);
553 auto SuccessProb =
554 BranchProbabilityInfo::getBranchProbStackProtector(true);
555 auto FailureProb =
556 BranchProbabilityInfo::getBranchProbStackProtector(false);
557 MDNode *Weights = MDBuilder(F->getContext())
558 .createBranchWeights(SuccessProb.getNumerator(),
559 FailureProb.getNumerator());
560 B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
561 }
562 }
563
564 // Return if we didn't modify any basic blocks. i.e., there are no return
565 // statements in the function.
566 return HasPrologue;
567 }
568
569 /// CreateFailBB - Create a basic block to jump to when the stack protector
570 /// check fails.
CreateFailBB()571 BasicBlock *StackProtector::CreateFailBB() {
572 LLVMContext &Context = F->getContext();
573 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
574 IRBuilder<> B(FailBB);
575 if (F->getSubprogram())
576 B.SetCurrentDebugLocation(
577 DILocation::get(Context, 0, 0, F->getSubprogram()));
578 if (Trip.isOSOpenBSD()) {
579 FunctionCallee StackChkFail = M->getOrInsertFunction(
580 "__stack_smash_handler", Type::getVoidTy(Context),
581 Type::getInt8PtrTy(Context));
582
583 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
584 } else {
585 FunctionCallee StackChkFail =
586 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
587
588 B.CreateCall(StackChkFail, {});
589 }
590 B.CreateUnreachable();
591 return FailBB;
592 }
593
shouldEmitSDCheck(const BasicBlock & BB) const594 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
595 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
596 }
597
copyToMachineFrameInfo(MachineFrameInfo & MFI) const598 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
599 if (Layout.empty())
600 return;
601
602 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
603 if (MFI.isDeadObjectIndex(I))
604 continue;
605
606 const AllocaInst *AI = MFI.getObjectAllocation(I);
607 if (!AI)
608 continue;
609
610 SSPLayoutMap::const_iterator LI = Layout.find(AI);
611 if (LI == Layout.end())
612 continue;
613
614 MFI.setObjectSSPLayout(I, LI->second);
615 }
616 }
617