1 //===- AArch64InstructionSelector.cpp ----------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the InstructionSelector class for
10 /// AArch64.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13
14 #include "AArch64InstrInfo.h"
15 #include "AArch64MachineFunctionInfo.h"
16 #include "AArch64RegisterBankInfo.h"
17 #include "AArch64RegisterInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "AArch64TargetMachine.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "MCTargetDesc/AArch64MCTargetDesc.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
24 #include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
25 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
26 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
27 #include "llvm/CodeGen/GlobalISel/Utils.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineConstantPool.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/IntrinsicsAArch64.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44
45 #define DEBUG_TYPE "aarch64-isel"
46
47 using namespace llvm;
48 using namespace MIPatternMatch;
49
50 namespace {
51
52 #define GET_GLOBALISEL_PREDICATE_BITSET
53 #include "AArch64GenGlobalISel.inc"
54 #undef GET_GLOBALISEL_PREDICATE_BITSET
55
56 class AArch64InstructionSelector : public InstructionSelector {
57 public:
58 AArch64InstructionSelector(const AArch64TargetMachine &TM,
59 const AArch64Subtarget &STI,
60 const AArch64RegisterBankInfo &RBI);
61
62 bool select(MachineInstr &I) override;
getName()63 static const char *getName() { return DEBUG_TYPE; }
64
setupMF(MachineFunction & MF,GISelKnownBits & KB,CodeGenCoverage & CoverageInfo)65 void setupMF(MachineFunction &MF, GISelKnownBits &KB,
66 CodeGenCoverage &CoverageInfo) override {
67 InstructionSelector::setupMF(MF, KB, CoverageInfo);
68
69 // hasFnAttribute() is expensive to call on every BRCOND selection, so
70 // cache it here for each run of the selector.
71 ProduceNonFlagSettingCondBr =
72 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
73 MFReturnAddr = Register();
74
75 processPHIs(MF);
76 }
77
78 private:
79 /// tblgen-erated 'select' implementation, used as the initial selector for
80 /// the patterns that don't require complex C++.
81 bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
82
83 // A lowering phase that runs before any selection attempts.
84 // Returns true if the instruction was modified.
85 bool preISelLower(MachineInstr &I);
86
87 // An early selection function that runs before the selectImpl() call.
88 bool earlySelect(MachineInstr &I) const;
89
90 // Do some preprocessing of G_PHIs before we begin selection.
91 void processPHIs(MachineFunction &MF);
92
93 bool earlySelectSHL(MachineInstr &I, MachineRegisterInfo &MRI) const;
94
95 /// Eliminate same-sized cross-bank copies into stores before selectImpl().
96 bool contractCrossBankCopyIntoStore(MachineInstr &I,
97 MachineRegisterInfo &MRI);
98
99 bool convertPtrAddToAdd(MachineInstr &I, MachineRegisterInfo &MRI);
100
101 bool selectVaStartAAPCS(MachineInstr &I, MachineFunction &MF,
102 MachineRegisterInfo &MRI) const;
103 bool selectVaStartDarwin(MachineInstr &I, MachineFunction &MF,
104 MachineRegisterInfo &MRI) const;
105
106 ///@{
107 /// Helper functions for selectCompareBranch.
108 bool selectCompareBranchFedByFCmp(MachineInstr &I, MachineInstr &FCmp,
109 MachineIRBuilder &MIB) const;
110 bool selectCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp,
111 MachineIRBuilder &MIB) const;
112 bool tryOptCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp,
113 MachineIRBuilder &MIB) const;
114 bool tryOptAndIntoCompareBranch(MachineInstr &AndInst, bool Invert,
115 MachineBasicBlock *DstMBB,
116 MachineIRBuilder &MIB) const;
117 ///@}
118
119 bool selectCompareBranch(MachineInstr &I, MachineFunction &MF,
120 MachineRegisterInfo &MRI) const;
121
122 bool selectVectorAshrLshr(MachineInstr &I, MachineRegisterInfo &MRI) const;
123 bool selectVectorSHL(MachineInstr &I, MachineRegisterInfo &MRI) const;
124
125 // Helper to generate an equivalent of scalar_to_vector into a new register,
126 // returned via 'Dst'.
127 MachineInstr *emitScalarToVector(unsigned EltSize,
128 const TargetRegisterClass *DstRC,
129 Register Scalar,
130 MachineIRBuilder &MIRBuilder) const;
131
132 /// Emit a lane insert into \p DstReg, or a new vector register if None is
133 /// provided.
134 ///
135 /// The lane inserted into is defined by \p LaneIdx. The vector source
136 /// register is given by \p SrcReg. The register containing the element is
137 /// given by \p EltReg.
138 MachineInstr *emitLaneInsert(Optional<Register> DstReg, Register SrcReg,
139 Register EltReg, unsigned LaneIdx,
140 const RegisterBank &RB,
141 MachineIRBuilder &MIRBuilder) const;
142 bool selectInsertElt(MachineInstr &I, MachineRegisterInfo &MRI) const;
143 bool tryOptConstantBuildVec(MachineInstr &MI, LLT DstTy,
144 MachineRegisterInfo &MRI) const;
145 bool selectBuildVector(MachineInstr &I, MachineRegisterInfo &MRI) const;
146 bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const;
147 bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI) const;
148
149 bool selectShuffleVector(MachineInstr &I, MachineRegisterInfo &MRI) const;
150 bool selectExtractElt(MachineInstr &I, MachineRegisterInfo &MRI) const;
151 bool selectConcatVectors(MachineInstr &I, MachineRegisterInfo &MRI) const;
152 bool selectSplitVectorUnmerge(MachineInstr &I,
153 MachineRegisterInfo &MRI) const;
154 bool selectIntrinsicWithSideEffects(MachineInstr &I,
155 MachineRegisterInfo &MRI) const;
156 bool selectIntrinsic(MachineInstr &I, MachineRegisterInfo &MRI);
157 bool selectVectorICmp(MachineInstr &I, MachineRegisterInfo &MRI) const;
158 bool selectIntrinsicTrunc(MachineInstr &I, MachineRegisterInfo &MRI) const;
159 bool selectIntrinsicRound(MachineInstr &I, MachineRegisterInfo &MRI) const;
160 bool selectJumpTable(MachineInstr &I, MachineRegisterInfo &MRI) const;
161 bool selectBrJT(MachineInstr &I, MachineRegisterInfo &MRI) const;
162 bool selectTLSGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI) const;
163 bool selectReduction(MachineInstr &I, MachineRegisterInfo &MRI) const;
164
165 unsigned emitConstantPoolEntry(const Constant *CPVal,
166 MachineFunction &MF) const;
167 MachineInstr *emitLoadFromConstantPool(const Constant *CPVal,
168 MachineIRBuilder &MIRBuilder) const;
169
170 // Emit a vector concat operation.
171 MachineInstr *emitVectorConcat(Optional<Register> Dst, Register Op1,
172 Register Op2,
173 MachineIRBuilder &MIRBuilder) const;
174
175 // Emit an integer compare between LHS and RHS, which checks for Predicate.
176 MachineInstr *emitIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
177 MachineOperand &Predicate,
178 MachineIRBuilder &MIRBuilder) const;
179
180 /// Emit a floating point comparison between \p LHS and \p RHS.
181 /// \p Pred if given is the intended predicate to use.
182 MachineInstr *emitFPCompare(Register LHS, Register RHS,
183 MachineIRBuilder &MIRBuilder,
184 Optional<CmpInst::Predicate> = None) const;
185
186 MachineInstr *emitInstr(unsigned Opcode,
187 std::initializer_list<llvm::DstOp> DstOps,
188 std::initializer_list<llvm::SrcOp> SrcOps,
189 MachineIRBuilder &MIRBuilder,
190 const ComplexRendererFns &RenderFns = None) const;
191 /// Helper function to emit an add or sub instruction.
192 ///
193 /// \p AddrModeAndSizeToOpcode must contain each of the opcode variants above
194 /// in a specific order.
195 ///
196 /// Below is an example of the expected input to \p AddrModeAndSizeToOpcode.
197 ///
198 /// \code
199 /// const std::array<std::array<unsigned, 2>, 4> Table {
200 /// {{AArch64::ADDXri, AArch64::ADDWri},
201 /// {AArch64::ADDXrs, AArch64::ADDWrs},
202 /// {AArch64::ADDXrr, AArch64::ADDWrr},
203 /// {AArch64::SUBXri, AArch64::SUBWri},
204 /// {AArch64::ADDXrx, AArch64::ADDWrx}}};
205 /// \endcode
206 ///
207 /// Each row in the table corresponds to a different addressing mode. Each
208 /// column corresponds to a different register size.
209 ///
210 /// \attention Rows must be structured as follows:
211 /// - Row 0: The ri opcode variants
212 /// - Row 1: The rs opcode variants
213 /// - Row 2: The rr opcode variants
214 /// - Row 3: The ri opcode variants for negative immediates
215 /// - Row 4: The rx opcode variants
216 ///
217 /// \attention Columns must be structured as follows:
218 /// - Column 0: The 64-bit opcode variants
219 /// - Column 1: The 32-bit opcode variants
220 ///
221 /// \p Dst is the destination register of the binop to emit.
222 /// \p LHS is the left-hand operand of the binop to emit.
223 /// \p RHS is the right-hand operand of the binop to emit.
224 MachineInstr *emitAddSub(
225 const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode,
226 Register Dst, MachineOperand &LHS, MachineOperand &RHS,
227 MachineIRBuilder &MIRBuilder) const;
228 MachineInstr *emitADD(Register DefReg, MachineOperand &LHS,
229 MachineOperand &RHS,
230 MachineIRBuilder &MIRBuilder) const;
231 MachineInstr *emitADDS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
232 MachineIRBuilder &MIRBuilder) const;
233 MachineInstr *emitSUBS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
234 MachineIRBuilder &MIRBuilder) const;
235 MachineInstr *emitCMN(MachineOperand &LHS, MachineOperand &RHS,
236 MachineIRBuilder &MIRBuilder) const;
237 MachineInstr *emitTST(MachineOperand &LHS, MachineOperand &RHS,
238 MachineIRBuilder &MIRBuilder) const;
239 MachineInstr *emitSelect(Register Dst, Register LHS, Register RHS,
240 AArch64CC::CondCode CC,
241 MachineIRBuilder &MIRBuilder) const;
242 MachineInstr *emitExtractVectorElt(Optional<Register> DstReg,
243 const RegisterBank &DstRB, LLT ScalarTy,
244 Register VecReg, unsigned LaneIdx,
245 MachineIRBuilder &MIRBuilder) const;
246
247 /// Helper function for selecting G_FCONSTANT. If the G_FCONSTANT can be
248 /// materialized using a FMOV instruction, then update MI and return it.
249 /// Otherwise, do nothing and return a nullptr.
250 MachineInstr *emitFMovForFConstant(MachineInstr &MI,
251 MachineRegisterInfo &MRI) const;
252
253 /// Emit a CSet for an integer compare.
254 ///
255 /// \p DefReg is expected to be a 32-bit scalar register.
256 MachineInstr *emitCSetForICMP(Register DefReg, unsigned Pred,
257 MachineIRBuilder &MIRBuilder) const;
258 /// Emit a CSet for a FP compare.
259 ///
260 /// \p Dst is expected to be a 32-bit scalar register.
261 MachineInstr *emitCSetForFCmp(Register Dst, CmpInst::Predicate Pred,
262 MachineIRBuilder &MIRBuilder) const;
263
264 /// Emit the overflow op for \p Opcode.
265 ///
266 /// \p Opcode is expected to be an overflow op's opcode, e.g. G_UADDO,
267 /// G_USUBO, etc.
268 std::pair<MachineInstr *, AArch64CC::CondCode>
269 emitOverflowOp(unsigned Opcode, Register Dst, MachineOperand &LHS,
270 MachineOperand &RHS, MachineIRBuilder &MIRBuilder) const;
271
272 /// Emit a TB(N)Z instruction which tests \p Bit in \p TestReg.
273 /// \p IsNegative is true if the test should be "not zero".
274 /// This will also optimize the test bit instruction when possible.
275 MachineInstr *emitTestBit(Register TestReg, uint64_t Bit, bool IsNegative,
276 MachineBasicBlock *DstMBB,
277 MachineIRBuilder &MIB) const;
278
279 /// Emit a CB(N)Z instruction which branches to \p DestMBB.
280 MachineInstr *emitCBZ(Register CompareReg, bool IsNegative,
281 MachineBasicBlock *DestMBB,
282 MachineIRBuilder &MIB) const;
283
284 // Equivalent to the i32shift_a and friends from AArch64InstrInfo.td.
285 // We use these manually instead of using the importer since it doesn't
286 // support SDNodeXForm.
287 ComplexRendererFns selectShiftA_32(const MachineOperand &Root) const;
288 ComplexRendererFns selectShiftB_32(const MachineOperand &Root) const;
289 ComplexRendererFns selectShiftA_64(const MachineOperand &Root) const;
290 ComplexRendererFns selectShiftB_64(const MachineOperand &Root) const;
291
292 ComplexRendererFns select12BitValueWithLeftShift(uint64_t Immed) const;
293 ComplexRendererFns selectArithImmed(MachineOperand &Root) const;
294 ComplexRendererFns selectNegArithImmed(MachineOperand &Root) const;
295
296 ComplexRendererFns selectAddrModeUnscaled(MachineOperand &Root,
297 unsigned Size) const;
298
selectAddrModeUnscaled8(MachineOperand & Root) const299 ComplexRendererFns selectAddrModeUnscaled8(MachineOperand &Root) const {
300 return selectAddrModeUnscaled(Root, 1);
301 }
selectAddrModeUnscaled16(MachineOperand & Root) const302 ComplexRendererFns selectAddrModeUnscaled16(MachineOperand &Root) const {
303 return selectAddrModeUnscaled(Root, 2);
304 }
selectAddrModeUnscaled32(MachineOperand & Root) const305 ComplexRendererFns selectAddrModeUnscaled32(MachineOperand &Root) const {
306 return selectAddrModeUnscaled(Root, 4);
307 }
selectAddrModeUnscaled64(MachineOperand & Root) const308 ComplexRendererFns selectAddrModeUnscaled64(MachineOperand &Root) const {
309 return selectAddrModeUnscaled(Root, 8);
310 }
selectAddrModeUnscaled128(MachineOperand & Root) const311 ComplexRendererFns selectAddrModeUnscaled128(MachineOperand &Root) const {
312 return selectAddrModeUnscaled(Root, 16);
313 }
314
315 /// Helper to try to fold in a GISEL_ADD_LOW into an immediate, to be used
316 /// from complex pattern matchers like selectAddrModeIndexed().
317 ComplexRendererFns tryFoldAddLowIntoImm(MachineInstr &RootDef, unsigned Size,
318 MachineRegisterInfo &MRI) const;
319
320 ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root,
321 unsigned Size) const;
322 template <int Width>
selectAddrModeIndexed(MachineOperand & Root) const323 ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root) const {
324 return selectAddrModeIndexed(Root, Width / 8);
325 }
326
327 bool isWorthFoldingIntoExtendedReg(MachineInstr &MI,
328 const MachineRegisterInfo &MRI) const;
329 ComplexRendererFns
330 selectAddrModeShiftedExtendXReg(MachineOperand &Root,
331 unsigned SizeInBytes) const;
332
333 /// Returns a \p ComplexRendererFns which contains a base, offset, and whether
334 /// or not a shift + extend should be folded into an addressing mode. Returns
335 /// None when this is not profitable or possible.
336 ComplexRendererFns
337 selectExtendedSHL(MachineOperand &Root, MachineOperand &Base,
338 MachineOperand &Offset, unsigned SizeInBytes,
339 bool WantsExt) const;
340 ComplexRendererFns selectAddrModeRegisterOffset(MachineOperand &Root) const;
341 ComplexRendererFns selectAddrModeXRO(MachineOperand &Root,
342 unsigned SizeInBytes) const;
343 template <int Width>
selectAddrModeXRO(MachineOperand & Root) const344 ComplexRendererFns selectAddrModeXRO(MachineOperand &Root) const {
345 return selectAddrModeXRO(Root, Width / 8);
346 }
347
348 ComplexRendererFns selectAddrModeWRO(MachineOperand &Root,
349 unsigned SizeInBytes) const;
350 template <int Width>
selectAddrModeWRO(MachineOperand & Root) const351 ComplexRendererFns selectAddrModeWRO(MachineOperand &Root) const {
352 return selectAddrModeWRO(Root, Width / 8);
353 }
354
355 ComplexRendererFns selectShiftedRegister(MachineOperand &Root) const;
356
selectArithShiftedRegister(MachineOperand & Root) const357 ComplexRendererFns selectArithShiftedRegister(MachineOperand &Root) const {
358 return selectShiftedRegister(Root);
359 }
360
selectLogicalShiftedRegister(MachineOperand & Root) const361 ComplexRendererFns selectLogicalShiftedRegister(MachineOperand &Root) const {
362 // TODO: selectShiftedRegister should allow for rotates on logical shifts.
363 // For now, make them the same. The only difference between the two is that
364 // logical shifts are allowed to fold in rotates. Otherwise, these are
365 // functionally the same.
366 return selectShiftedRegister(Root);
367 }
368
369 /// Given an extend instruction, determine the correct shift-extend type for
370 /// that instruction.
371 ///
372 /// If the instruction is going to be used in a load or store, pass
373 /// \p IsLoadStore = true.
374 AArch64_AM::ShiftExtendType
375 getExtendTypeForInst(MachineInstr &MI, MachineRegisterInfo &MRI,
376 bool IsLoadStore = false) const;
377
378 /// Move \p Reg to \p RC if \p Reg is not already on \p RC.
379 ///
380 /// \returns Either \p Reg if no change was necessary, or the new register
381 /// created by moving \p Reg.
382 ///
383 /// Note: This uses emitCopy right now.
384 Register moveScalarRegClass(Register Reg, const TargetRegisterClass &RC,
385 MachineIRBuilder &MIB) const;
386
387 ComplexRendererFns selectArithExtendedRegister(MachineOperand &Root) const;
388
389 void renderTruncImm(MachineInstrBuilder &MIB, const MachineInstr &MI,
390 int OpIdx = -1) const;
391 void renderLogicalImm32(MachineInstrBuilder &MIB, const MachineInstr &I,
392 int OpIdx = -1) const;
393 void renderLogicalImm64(MachineInstrBuilder &MIB, const MachineInstr &I,
394 int OpIdx = -1) const;
395
396 // Materialize a GlobalValue or BlockAddress using a movz+movk sequence.
397 void materializeLargeCMVal(MachineInstr &I, const Value *V,
398 unsigned OpFlags) const;
399
400 // Optimization methods.
401 bool tryOptSelect(MachineInstr &MI) const;
402 MachineInstr *tryFoldIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
403 MachineOperand &Predicate,
404 MachineIRBuilder &MIRBuilder) const;
405
406 /// Return true if \p MI is a load or store of \p NumBytes bytes.
407 bool isLoadStoreOfNumBytes(const MachineInstr &MI, unsigned NumBytes) const;
408
409 /// Returns true if \p MI is guaranteed to have the high-half of a 64-bit
410 /// register zeroed out. In other words, the result of MI has been explicitly
411 /// zero extended.
412 bool isDef32(const MachineInstr &MI) const;
413
414 const AArch64TargetMachine &TM;
415 const AArch64Subtarget &STI;
416 const AArch64InstrInfo &TII;
417 const AArch64RegisterInfo &TRI;
418 const AArch64RegisterBankInfo &RBI;
419
420 bool ProduceNonFlagSettingCondBr = false;
421
422 // Some cached values used during selection.
423 // We use LR as a live-in register, and we keep track of it here as it can be
424 // clobbered by calls.
425 Register MFReturnAddr;
426
427 #define GET_GLOBALISEL_PREDICATES_DECL
428 #include "AArch64GenGlobalISel.inc"
429 #undef GET_GLOBALISEL_PREDICATES_DECL
430
431 // We declare the temporaries used by selectImpl() in the class to minimize the
432 // cost of constructing placeholder values.
433 #define GET_GLOBALISEL_TEMPORARIES_DECL
434 #include "AArch64GenGlobalISel.inc"
435 #undef GET_GLOBALISEL_TEMPORARIES_DECL
436 };
437
438 } // end anonymous namespace
439
440 #define GET_GLOBALISEL_IMPL
441 #include "AArch64GenGlobalISel.inc"
442 #undef GET_GLOBALISEL_IMPL
443
AArch64InstructionSelector(const AArch64TargetMachine & TM,const AArch64Subtarget & STI,const AArch64RegisterBankInfo & RBI)444 AArch64InstructionSelector::AArch64InstructionSelector(
445 const AArch64TargetMachine &TM, const AArch64Subtarget &STI,
446 const AArch64RegisterBankInfo &RBI)
447 : InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()),
448 TRI(*STI.getRegisterInfo()), RBI(RBI),
449 #define GET_GLOBALISEL_PREDICATES_INIT
450 #include "AArch64GenGlobalISel.inc"
451 #undef GET_GLOBALISEL_PREDICATES_INIT
452 #define GET_GLOBALISEL_TEMPORARIES_INIT
453 #include "AArch64GenGlobalISel.inc"
454 #undef GET_GLOBALISEL_TEMPORARIES_INIT
455 {
456 }
457
458 // FIXME: This should be target-independent, inferred from the types declared
459 // for each class in the bank.
460 static const TargetRegisterClass *
getRegClassForTypeOnBank(LLT Ty,const RegisterBank & RB,const RegisterBankInfo & RBI,bool GetAllRegSet=false)461 getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB,
462 const RegisterBankInfo &RBI,
463 bool GetAllRegSet = false) {
464 if (RB.getID() == AArch64::GPRRegBankID) {
465 if (Ty.getSizeInBits() <= 32)
466 return GetAllRegSet ? &AArch64::GPR32allRegClass
467 : &AArch64::GPR32RegClass;
468 if (Ty.getSizeInBits() == 64)
469 return GetAllRegSet ? &AArch64::GPR64allRegClass
470 : &AArch64::GPR64RegClass;
471 return nullptr;
472 }
473
474 if (RB.getID() == AArch64::FPRRegBankID) {
475 if (Ty.getSizeInBits() <= 16)
476 return &AArch64::FPR16RegClass;
477 if (Ty.getSizeInBits() == 32)
478 return &AArch64::FPR32RegClass;
479 if (Ty.getSizeInBits() == 64)
480 return &AArch64::FPR64RegClass;
481 if (Ty.getSizeInBits() == 128)
482 return &AArch64::FPR128RegClass;
483 return nullptr;
484 }
485
486 return nullptr;
487 }
488
489 /// Given a register bank, and size in bits, return the smallest register class
490 /// that can represent that combination.
491 static const TargetRegisterClass *
getMinClassForRegBank(const RegisterBank & RB,unsigned SizeInBits,bool GetAllRegSet=false)492 getMinClassForRegBank(const RegisterBank &RB, unsigned SizeInBits,
493 bool GetAllRegSet = false) {
494 unsigned RegBankID = RB.getID();
495
496 if (RegBankID == AArch64::GPRRegBankID) {
497 if (SizeInBits <= 32)
498 return GetAllRegSet ? &AArch64::GPR32allRegClass
499 : &AArch64::GPR32RegClass;
500 if (SizeInBits == 64)
501 return GetAllRegSet ? &AArch64::GPR64allRegClass
502 : &AArch64::GPR64RegClass;
503 }
504
505 if (RegBankID == AArch64::FPRRegBankID) {
506 switch (SizeInBits) {
507 default:
508 return nullptr;
509 case 8:
510 return &AArch64::FPR8RegClass;
511 case 16:
512 return &AArch64::FPR16RegClass;
513 case 32:
514 return &AArch64::FPR32RegClass;
515 case 64:
516 return &AArch64::FPR64RegClass;
517 case 128:
518 return &AArch64::FPR128RegClass;
519 }
520 }
521
522 return nullptr;
523 }
524
525 /// Returns the correct subregister to use for a given register class.
getSubRegForClass(const TargetRegisterClass * RC,const TargetRegisterInfo & TRI,unsigned & SubReg)526 static bool getSubRegForClass(const TargetRegisterClass *RC,
527 const TargetRegisterInfo &TRI, unsigned &SubReg) {
528 switch (TRI.getRegSizeInBits(*RC)) {
529 case 8:
530 SubReg = AArch64::bsub;
531 break;
532 case 16:
533 SubReg = AArch64::hsub;
534 break;
535 case 32:
536 if (RC != &AArch64::FPR32RegClass)
537 SubReg = AArch64::sub_32;
538 else
539 SubReg = AArch64::ssub;
540 break;
541 case 64:
542 SubReg = AArch64::dsub;
543 break;
544 default:
545 LLVM_DEBUG(
546 dbgs() << "Couldn't find appropriate subregister for register class.");
547 return false;
548 }
549
550 return true;
551 }
552
553 /// Returns the minimum size the given register bank can hold.
getMinSizeForRegBank(const RegisterBank & RB)554 static unsigned getMinSizeForRegBank(const RegisterBank &RB) {
555 switch (RB.getID()) {
556 case AArch64::GPRRegBankID:
557 return 32;
558 case AArch64::FPRRegBankID:
559 return 8;
560 default:
561 llvm_unreachable("Tried to get minimum size for unknown register bank.");
562 }
563 }
564
getImmedFromMO(const MachineOperand & Root)565 static Optional<uint64_t> getImmedFromMO(const MachineOperand &Root) {
566 auto &MI = *Root.getParent();
567 auto &MBB = *MI.getParent();
568 auto &MF = *MBB.getParent();
569 auto &MRI = MF.getRegInfo();
570 uint64_t Immed;
571 if (Root.isImm())
572 Immed = Root.getImm();
573 else if (Root.isCImm())
574 Immed = Root.getCImm()->getZExtValue();
575 else if (Root.isReg()) {
576 auto ValAndVReg =
577 getConstantVRegValWithLookThrough(Root.getReg(), MRI, true);
578 if (!ValAndVReg)
579 return None;
580 Immed = ValAndVReg->Value.getSExtValue();
581 } else
582 return None;
583 return Immed;
584 }
585
586 /// Check whether \p I is a currently unsupported binary operation:
587 /// - it has an unsized type
588 /// - an operand is not a vreg
589 /// - all operands are not in the same bank
590 /// These are checks that should someday live in the verifier, but right now,
591 /// these are mostly limitations of the aarch64 selector.
unsupportedBinOp(const MachineInstr & I,const AArch64RegisterBankInfo & RBI,const MachineRegisterInfo & MRI,const AArch64RegisterInfo & TRI)592 static bool unsupportedBinOp(const MachineInstr &I,
593 const AArch64RegisterBankInfo &RBI,
594 const MachineRegisterInfo &MRI,
595 const AArch64RegisterInfo &TRI) {
596 LLT Ty = MRI.getType(I.getOperand(0).getReg());
597 if (!Ty.isValid()) {
598 LLVM_DEBUG(dbgs() << "Generic binop register should be typed\n");
599 return true;
600 }
601
602 const RegisterBank *PrevOpBank = nullptr;
603 for (auto &MO : I.operands()) {
604 // FIXME: Support non-register operands.
605 if (!MO.isReg()) {
606 LLVM_DEBUG(dbgs() << "Generic inst non-reg operands are unsupported\n");
607 return true;
608 }
609
610 // FIXME: Can generic operations have physical registers operands? If
611 // so, this will need to be taught about that, and we'll need to get the
612 // bank out of the minimal class for the register.
613 // Either way, this needs to be documented (and possibly verified).
614 if (!Register::isVirtualRegister(MO.getReg())) {
615 LLVM_DEBUG(dbgs() << "Generic inst has physical register operand\n");
616 return true;
617 }
618
619 const RegisterBank *OpBank = RBI.getRegBank(MO.getReg(), MRI, TRI);
620 if (!OpBank) {
621 LLVM_DEBUG(dbgs() << "Generic register has no bank or class\n");
622 return true;
623 }
624
625 if (PrevOpBank && OpBank != PrevOpBank) {
626 LLVM_DEBUG(dbgs() << "Generic inst operands have different banks\n");
627 return true;
628 }
629 PrevOpBank = OpBank;
630 }
631 return false;
632 }
633
634 /// Select the AArch64 opcode for the basic binary operation \p GenericOpc
635 /// (such as G_OR or G_SDIV), appropriate for the register bank \p RegBankID
636 /// and of size \p OpSize.
637 /// \returns \p GenericOpc if the combination is unsupported.
selectBinaryOp(unsigned GenericOpc,unsigned RegBankID,unsigned OpSize)638 static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID,
639 unsigned OpSize) {
640 switch (RegBankID) {
641 case AArch64::GPRRegBankID:
642 if (OpSize == 32) {
643 switch (GenericOpc) {
644 case TargetOpcode::G_SHL:
645 return AArch64::LSLVWr;
646 case TargetOpcode::G_LSHR:
647 return AArch64::LSRVWr;
648 case TargetOpcode::G_ASHR:
649 return AArch64::ASRVWr;
650 default:
651 return GenericOpc;
652 }
653 } else if (OpSize == 64) {
654 switch (GenericOpc) {
655 case TargetOpcode::G_PTR_ADD:
656 return AArch64::ADDXrr;
657 case TargetOpcode::G_SHL:
658 return AArch64::LSLVXr;
659 case TargetOpcode::G_LSHR:
660 return AArch64::LSRVXr;
661 case TargetOpcode::G_ASHR:
662 return AArch64::ASRVXr;
663 default:
664 return GenericOpc;
665 }
666 }
667 break;
668 case AArch64::FPRRegBankID:
669 switch (OpSize) {
670 case 32:
671 switch (GenericOpc) {
672 case TargetOpcode::G_FADD:
673 return AArch64::FADDSrr;
674 case TargetOpcode::G_FSUB:
675 return AArch64::FSUBSrr;
676 case TargetOpcode::G_FMUL:
677 return AArch64::FMULSrr;
678 case TargetOpcode::G_FDIV:
679 return AArch64::FDIVSrr;
680 default:
681 return GenericOpc;
682 }
683 case 64:
684 switch (GenericOpc) {
685 case TargetOpcode::G_FADD:
686 return AArch64::FADDDrr;
687 case TargetOpcode::G_FSUB:
688 return AArch64::FSUBDrr;
689 case TargetOpcode::G_FMUL:
690 return AArch64::FMULDrr;
691 case TargetOpcode::G_FDIV:
692 return AArch64::FDIVDrr;
693 case TargetOpcode::G_OR:
694 return AArch64::ORRv8i8;
695 default:
696 return GenericOpc;
697 }
698 }
699 break;
700 }
701 return GenericOpc;
702 }
703
704 /// Select the AArch64 opcode for the G_LOAD or G_STORE operation \p GenericOpc,
705 /// appropriate for the (value) register bank \p RegBankID and of memory access
706 /// size \p OpSize. This returns the variant with the base+unsigned-immediate
707 /// addressing mode (e.g., LDRXui).
708 /// \returns \p GenericOpc if the combination is unsupported.
selectLoadStoreUIOp(unsigned GenericOpc,unsigned RegBankID,unsigned OpSize)709 static unsigned selectLoadStoreUIOp(unsigned GenericOpc, unsigned RegBankID,
710 unsigned OpSize) {
711 const bool isStore = GenericOpc == TargetOpcode::G_STORE;
712 switch (RegBankID) {
713 case AArch64::GPRRegBankID:
714 switch (OpSize) {
715 case 8:
716 return isStore ? AArch64::STRBBui : AArch64::LDRBBui;
717 case 16:
718 return isStore ? AArch64::STRHHui : AArch64::LDRHHui;
719 case 32:
720 return isStore ? AArch64::STRWui : AArch64::LDRWui;
721 case 64:
722 return isStore ? AArch64::STRXui : AArch64::LDRXui;
723 }
724 break;
725 case AArch64::FPRRegBankID:
726 switch (OpSize) {
727 case 8:
728 return isStore ? AArch64::STRBui : AArch64::LDRBui;
729 case 16:
730 return isStore ? AArch64::STRHui : AArch64::LDRHui;
731 case 32:
732 return isStore ? AArch64::STRSui : AArch64::LDRSui;
733 case 64:
734 return isStore ? AArch64::STRDui : AArch64::LDRDui;
735 }
736 break;
737 }
738 return GenericOpc;
739 }
740
741 #ifndef NDEBUG
742 /// Helper function that verifies that we have a valid copy at the end of
743 /// selectCopy. Verifies that the source and dest have the expected sizes and
744 /// then returns true.
isValidCopy(const MachineInstr & I,const RegisterBank & DstBank,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,const RegisterBankInfo & RBI)745 static bool isValidCopy(const MachineInstr &I, const RegisterBank &DstBank,
746 const MachineRegisterInfo &MRI,
747 const TargetRegisterInfo &TRI,
748 const RegisterBankInfo &RBI) {
749 const Register DstReg = I.getOperand(0).getReg();
750 const Register SrcReg = I.getOperand(1).getReg();
751 const unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
752 const unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
753
754 // Make sure the size of the source and dest line up.
755 assert(
756 (DstSize == SrcSize ||
757 // Copies are a mean to setup initial types, the number of
758 // bits may not exactly match.
759 (Register::isPhysicalRegister(SrcReg) && DstSize <= SrcSize) ||
760 // Copies are a mean to copy bits around, as long as we are
761 // on the same register class, that's fine. Otherwise, that
762 // means we need some SUBREG_TO_REG or AND & co.
763 (((DstSize + 31) / 32 == (SrcSize + 31) / 32) && DstSize > SrcSize)) &&
764 "Copy with different width?!");
765
766 // Check the size of the destination.
767 assert((DstSize <= 64 || DstBank.getID() == AArch64::FPRRegBankID) &&
768 "GPRs cannot get more than 64-bit width values");
769
770 return true;
771 }
772 #endif
773
774 /// Helper function for selectCopy. Inserts a subregister copy from \p SrcReg
775 /// to \p *To.
776 ///
777 /// E.g "To = COPY SrcReg:SubReg"
copySubReg(MachineInstr & I,MachineRegisterInfo & MRI,const RegisterBankInfo & RBI,Register SrcReg,const TargetRegisterClass * To,unsigned SubReg)778 static bool copySubReg(MachineInstr &I, MachineRegisterInfo &MRI,
779 const RegisterBankInfo &RBI, Register SrcReg,
780 const TargetRegisterClass *To, unsigned SubReg) {
781 assert(SrcReg.isValid() && "Expected a valid source register?");
782 assert(To && "Destination register class cannot be null");
783 assert(SubReg && "Expected a valid subregister");
784
785 MachineIRBuilder MIB(I);
786 auto SubRegCopy =
787 MIB.buildInstr(TargetOpcode::COPY, {To}, {}).addReg(SrcReg, 0, SubReg);
788 MachineOperand &RegOp = I.getOperand(1);
789 RegOp.setReg(SubRegCopy.getReg(0));
790
791 // It's possible that the destination register won't be constrained. Make
792 // sure that happens.
793 if (!Register::isPhysicalRegister(I.getOperand(0).getReg()))
794 RBI.constrainGenericRegister(I.getOperand(0).getReg(), *To, MRI);
795
796 return true;
797 }
798
799 /// Helper function to get the source and destination register classes for a
800 /// copy. Returns a std::pair containing the source register class for the
801 /// copy, and the destination register class for the copy. If a register class
802 /// cannot be determined, then it will be nullptr.
803 static std::pair<const TargetRegisterClass *, const TargetRegisterClass *>
getRegClassesForCopy(MachineInstr & I,const TargetInstrInfo & TII,MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,const RegisterBankInfo & RBI)804 getRegClassesForCopy(MachineInstr &I, const TargetInstrInfo &TII,
805 MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
806 const RegisterBankInfo &RBI) {
807 Register DstReg = I.getOperand(0).getReg();
808 Register SrcReg = I.getOperand(1).getReg();
809 const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
810 const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
811 unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
812 unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
813
814 // Special casing for cross-bank copies of s1s. We can technically represent
815 // a 1-bit value with any size of register. The minimum size for a GPR is 32
816 // bits. So, we need to put the FPR on 32 bits as well.
817 //
818 // FIXME: I'm not sure if this case holds true outside of copies. If it does,
819 // then we can pull it into the helpers that get the appropriate class for a
820 // register bank. Or make a new helper that carries along some constraint
821 // information.
822 if (SrcRegBank != DstRegBank && (DstSize == 1 && SrcSize == 1))
823 SrcSize = DstSize = 32;
824
825 return {getMinClassForRegBank(SrcRegBank, SrcSize, true),
826 getMinClassForRegBank(DstRegBank, DstSize, true)};
827 }
828
selectCopy(MachineInstr & I,const TargetInstrInfo & TII,MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,const RegisterBankInfo & RBI)829 static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII,
830 MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
831 const RegisterBankInfo &RBI) {
832 Register DstReg = I.getOperand(0).getReg();
833 Register SrcReg = I.getOperand(1).getReg();
834 const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
835 const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
836
837 // Find the correct register classes for the source and destination registers.
838 const TargetRegisterClass *SrcRC;
839 const TargetRegisterClass *DstRC;
840 std::tie(SrcRC, DstRC) = getRegClassesForCopy(I, TII, MRI, TRI, RBI);
841
842 if (!DstRC) {
843 LLVM_DEBUG(dbgs() << "Unexpected dest size "
844 << RBI.getSizeInBits(DstReg, MRI, TRI) << '\n');
845 return false;
846 }
847
848 // A couple helpers below, for making sure that the copy we produce is valid.
849
850 // Set to true if we insert a SUBREG_TO_REG. If we do this, then we don't want
851 // to verify that the src and dst are the same size, since that's handled by
852 // the SUBREG_TO_REG.
853 bool KnownValid = false;
854
855 // Returns true, or asserts if something we don't expect happens. Instead of
856 // returning true, we return isValidCopy() to ensure that we verify the
857 // result.
858 auto CheckCopy = [&]() {
859 // If we have a bitcast or something, we can't have physical registers.
860 assert((I.isCopy() ||
861 (!Register::isPhysicalRegister(I.getOperand(0).getReg()) &&
862 !Register::isPhysicalRegister(I.getOperand(1).getReg()))) &&
863 "No phys reg on generic operator!");
864 bool ValidCopy = true;
865 #ifndef NDEBUG
866 ValidCopy = KnownValid || isValidCopy(I, DstRegBank, MRI, TRI, RBI);
867 assert(ValidCopy && "Invalid copy.");
868 (void)KnownValid;
869 #endif
870 return ValidCopy;
871 };
872
873 // Is this a copy? If so, then we may need to insert a subregister copy.
874 if (I.isCopy()) {
875 // Yes. Check if there's anything to fix up.
876 if (!SrcRC) {
877 LLVM_DEBUG(dbgs() << "Couldn't determine source register class\n");
878 return false;
879 }
880
881 unsigned SrcSize = TRI.getRegSizeInBits(*SrcRC);
882 unsigned DstSize = TRI.getRegSizeInBits(*DstRC);
883 unsigned SubReg;
884
885 // If the source bank doesn't support a subregister copy small enough,
886 // then we first need to copy to the destination bank.
887 if (getMinSizeForRegBank(SrcRegBank) > DstSize) {
888 const TargetRegisterClass *DstTempRC =
889 getMinClassForRegBank(DstRegBank, SrcSize, /* GetAllRegSet */ true);
890 getSubRegForClass(DstRC, TRI, SubReg);
891
892 MachineIRBuilder MIB(I);
893 auto Copy = MIB.buildCopy({DstTempRC}, {SrcReg});
894 copySubReg(I, MRI, RBI, Copy.getReg(0), DstRC, SubReg);
895 } else if (SrcSize > DstSize) {
896 // If the source register is bigger than the destination we need to
897 // perform a subregister copy.
898 const TargetRegisterClass *SubRegRC =
899 getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true);
900 getSubRegForClass(SubRegRC, TRI, SubReg);
901 copySubReg(I, MRI, RBI, SrcReg, DstRC, SubReg);
902 } else if (DstSize > SrcSize) {
903 // If the destination register is bigger than the source we need to do
904 // a promotion using SUBREG_TO_REG.
905 const TargetRegisterClass *PromotionRC =
906 getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true);
907 getSubRegForClass(SrcRC, TRI, SubReg);
908
909 Register PromoteReg = MRI.createVirtualRegister(PromotionRC);
910 BuildMI(*I.getParent(), I, I.getDebugLoc(),
911 TII.get(AArch64::SUBREG_TO_REG), PromoteReg)
912 .addImm(0)
913 .addUse(SrcReg)
914 .addImm(SubReg);
915 MachineOperand &RegOp = I.getOperand(1);
916 RegOp.setReg(PromoteReg);
917
918 // Promise that the copy is implicitly validated by the SUBREG_TO_REG.
919 KnownValid = true;
920 }
921
922 // If the destination is a physical register, then there's nothing to
923 // change, so we're done.
924 if (Register::isPhysicalRegister(DstReg))
925 return CheckCopy();
926 }
927
928 // No need to constrain SrcReg. It will get constrained when we hit another
929 // of its use or its defs. Copies do not have constraints.
930 if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
931 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
932 << " operand\n");
933 return false;
934 }
935 I.setDesc(TII.get(AArch64::COPY));
936 return CheckCopy();
937 }
938
selectFPConvOpc(unsigned GenericOpc,LLT DstTy,LLT SrcTy)939 static unsigned selectFPConvOpc(unsigned GenericOpc, LLT DstTy, LLT SrcTy) {
940 if (!DstTy.isScalar() || !SrcTy.isScalar())
941 return GenericOpc;
942
943 const unsigned DstSize = DstTy.getSizeInBits();
944 const unsigned SrcSize = SrcTy.getSizeInBits();
945
946 switch (DstSize) {
947 case 32:
948 switch (SrcSize) {
949 case 32:
950 switch (GenericOpc) {
951 case TargetOpcode::G_SITOFP:
952 return AArch64::SCVTFUWSri;
953 case TargetOpcode::G_UITOFP:
954 return AArch64::UCVTFUWSri;
955 case TargetOpcode::G_FPTOSI:
956 return AArch64::FCVTZSUWSr;
957 case TargetOpcode::G_FPTOUI:
958 return AArch64::FCVTZUUWSr;
959 default:
960 return GenericOpc;
961 }
962 case 64:
963 switch (GenericOpc) {
964 case TargetOpcode::G_SITOFP:
965 return AArch64::SCVTFUXSri;
966 case TargetOpcode::G_UITOFP:
967 return AArch64::UCVTFUXSri;
968 case TargetOpcode::G_FPTOSI:
969 return AArch64::FCVTZSUWDr;
970 case TargetOpcode::G_FPTOUI:
971 return AArch64::FCVTZUUWDr;
972 default:
973 return GenericOpc;
974 }
975 default:
976 return GenericOpc;
977 }
978 case 64:
979 switch (SrcSize) {
980 case 32:
981 switch (GenericOpc) {
982 case TargetOpcode::G_SITOFP:
983 return AArch64::SCVTFUWDri;
984 case TargetOpcode::G_UITOFP:
985 return AArch64::UCVTFUWDri;
986 case TargetOpcode::G_FPTOSI:
987 return AArch64::FCVTZSUXSr;
988 case TargetOpcode::G_FPTOUI:
989 return AArch64::FCVTZUUXSr;
990 default:
991 return GenericOpc;
992 }
993 case 64:
994 switch (GenericOpc) {
995 case TargetOpcode::G_SITOFP:
996 return AArch64::SCVTFUXDri;
997 case TargetOpcode::G_UITOFP:
998 return AArch64::UCVTFUXDri;
999 case TargetOpcode::G_FPTOSI:
1000 return AArch64::FCVTZSUXDr;
1001 case TargetOpcode::G_FPTOUI:
1002 return AArch64::FCVTZUUXDr;
1003 default:
1004 return GenericOpc;
1005 }
1006 default:
1007 return GenericOpc;
1008 }
1009 default:
1010 return GenericOpc;
1011 };
1012 return GenericOpc;
1013 }
1014
1015 MachineInstr *
emitSelect(Register Dst,Register True,Register False,AArch64CC::CondCode CC,MachineIRBuilder & MIB) const1016 AArch64InstructionSelector::emitSelect(Register Dst, Register True,
1017 Register False, AArch64CC::CondCode CC,
1018 MachineIRBuilder &MIB) const {
1019 MachineRegisterInfo &MRI = *MIB.getMRI();
1020 assert(RBI.getRegBank(False, MRI, TRI)->getID() ==
1021 RBI.getRegBank(True, MRI, TRI)->getID() &&
1022 "Expected both select operands to have the same regbank?");
1023 LLT Ty = MRI.getType(True);
1024 if (Ty.isVector())
1025 return nullptr;
1026 const unsigned Size = Ty.getSizeInBits();
1027 assert((Size == 32 || Size == 64) &&
1028 "Expected 32 bit or 64 bit select only?");
1029 const bool Is32Bit = Size == 32;
1030 if (RBI.getRegBank(True, MRI, TRI)->getID() != AArch64::GPRRegBankID) {
1031 unsigned Opc = Is32Bit ? AArch64::FCSELSrrr : AArch64::FCSELDrrr;
1032 auto FCSel = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC);
1033 constrainSelectedInstRegOperands(*FCSel, TII, TRI, RBI);
1034 return &*FCSel;
1035 }
1036
1037 // By default, we'll try and emit a CSEL.
1038 unsigned Opc = Is32Bit ? AArch64::CSELWr : AArch64::CSELXr;
1039 bool Optimized = false;
1040 auto TryFoldBinOpIntoSelect = [&Opc, Is32Bit, &CC, &MRI,
1041 &Optimized](Register &Reg, Register &OtherReg,
1042 bool Invert) {
1043 if (Optimized)
1044 return false;
1045
1046 // Attempt to fold:
1047 //
1048 // %sub = G_SUB 0, %x
1049 // %select = G_SELECT cc, %reg, %sub
1050 //
1051 // Into:
1052 // %select = CSNEG %reg, %x, cc
1053 Register MatchReg;
1054 if (mi_match(Reg, MRI, m_Neg(m_Reg(MatchReg)))) {
1055 Opc = Is32Bit ? AArch64::CSNEGWr : AArch64::CSNEGXr;
1056 Reg = MatchReg;
1057 if (Invert) {
1058 CC = AArch64CC::getInvertedCondCode(CC);
1059 std::swap(Reg, OtherReg);
1060 }
1061 return true;
1062 }
1063
1064 // Attempt to fold:
1065 //
1066 // %xor = G_XOR %x, -1
1067 // %select = G_SELECT cc, %reg, %xor
1068 //
1069 // Into:
1070 // %select = CSINV %reg, %x, cc
1071 if (mi_match(Reg, MRI, m_Not(m_Reg(MatchReg)))) {
1072 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1073 Reg = MatchReg;
1074 if (Invert) {
1075 CC = AArch64CC::getInvertedCondCode(CC);
1076 std::swap(Reg, OtherReg);
1077 }
1078 return true;
1079 }
1080
1081 // Attempt to fold:
1082 //
1083 // %add = G_ADD %x, 1
1084 // %select = G_SELECT cc, %reg, %add
1085 //
1086 // Into:
1087 // %select = CSINC %reg, %x, cc
1088 if (mi_match(Reg, MRI, m_GAdd(m_Reg(MatchReg), m_SpecificICst(1)))) {
1089 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1090 Reg = MatchReg;
1091 if (Invert) {
1092 CC = AArch64CC::getInvertedCondCode(CC);
1093 std::swap(Reg, OtherReg);
1094 }
1095 return true;
1096 }
1097
1098 return false;
1099 };
1100
1101 // Helper lambda which tries to use CSINC/CSINV for the instruction when its
1102 // true/false values are constants.
1103 // FIXME: All of these patterns already exist in tablegen. We should be
1104 // able to import these.
1105 auto TryOptSelectCst = [&Opc, &True, &False, &CC, Is32Bit, &MRI,
1106 &Optimized]() {
1107 if (Optimized)
1108 return false;
1109 auto TrueCst = getConstantVRegValWithLookThrough(True, MRI);
1110 auto FalseCst = getConstantVRegValWithLookThrough(False, MRI);
1111 if (!TrueCst && !FalseCst)
1112 return false;
1113
1114 Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR;
1115 if (TrueCst && FalseCst) {
1116 int64_t T = TrueCst->Value.getSExtValue();
1117 int64_t F = FalseCst->Value.getSExtValue();
1118
1119 if (T == 0 && F == 1) {
1120 // G_SELECT cc, 0, 1 -> CSINC zreg, zreg, cc
1121 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1122 True = ZReg;
1123 False = ZReg;
1124 return true;
1125 }
1126
1127 if (T == 0 && F == -1) {
1128 // G_SELECT cc 0, -1 -> CSINV zreg, zreg cc
1129 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1130 True = ZReg;
1131 False = ZReg;
1132 return true;
1133 }
1134 }
1135
1136 if (TrueCst) {
1137 int64_t T = TrueCst->Value.getSExtValue();
1138 if (T == 1) {
1139 // G_SELECT cc, 1, f -> CSINC f, zreg, inv_cc
1140 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1141 True = False;
1142 False = ZReg;
1143 CC = AArch64CC::getInvertedCondCode(CC);
1144 return true;
1145 }
1146
1147 if (T == -1) {
1148 // G_SELECT cc, -1, f -> CSINV f, zreg, inv_cc
1149 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1150 True = False;
1151 False = ZReg;
1152 CC = AArch64CC::getInvertedCondCode(CC);
1153 return true;
1154 }
1155 }
1156
1157 if (FalseCst) {
1158 int64_t F = FalseCst->Value.getSExtValue();
1159 if (F == 1) {
1160 // G_SELECT cc, t, 1 -> CSINC t, zreg, cc
1161 Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1162 False = ZReg;
1163 return true;
1164 }
1165
1166 if (F == -1) {
1167 // G_SELECT cc, t, -1 -> CSINC t, zreg, cc
1168 Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1169 False = ZReg;
1170 return true;
1171 }
1172 }
1173 return false;
1174 };
1175
1176 Optimized |= TryFoldBinOpIntoSelect(False, True, /*Invert = */ false);
1177 Optimized |= TryFoldBinOpIntoSelect(True, False, /*Invert = */ true);
1178 Optimized |= TryOptSelectCst();
1179 auto SelectInst = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC);
1180 constrainSelectedInstRegOperands(*SelectInst, TII, TRI, RBI);
1181 return &*SelectInst;
1182 }
1183
changeICMPPredToAArch64CC(CmpInst::Predicate P)1184 static AArch64CC::CondCode changeICMPPredToAArch64CC(CmpInst::Predicate P) {
1185 switch (P) {
1186 default:
1187 llvm_unreachable("Unknown condition code!");
1188 case CmpInst::ICMP_NE:
1189 return AArch64CC::NE;
1190 case CmpInst::ICMP_EQ:
1191 return AArch64CC::EQ;
1192 case CmpInst::ICMP_SGT:
1193 return AArch64CC::GT;
1194 case CmpInst::ICMP_SGE:
1195 return AArch64CC::GE;
1196 case CmpInst::ICMP_SLT:
1197 return AArch64CC::LT;
1198 case CmpInst::ICMP_SLE:
1199 return AArch64CC::LE;
1200 case CmpInst::ICMP_UGT:
1201 return AArch64CC::HI;
1202 case CmpInst::ICMP_UGE:
1203 return AArch64CC::HS;
1204 case CmpInst::ICMP_ULT:
1205 return AArch64CC::LO;
1206 case CmpInst::ICMP_ULE:
1207 return AArch64CC::LS;
1208 }
1209 }
1210
changeFCMPPredToAArch64CC(CmpInst::Predicate P,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)1211 static void changeFCMPPredToAArch64CC(CmpInst::Predicate P,
1212 AArch64CC::CondCode &CondCode,
1213 AArch64CC::CondCode &CondCode2) {
1214 CondCode2 = AArch64CC::AL;
1215 switch (P) {
1216 default:
1217 llvm_unreachable("Unknown FP condition!");
1218 case CmpInst::FCMP_OEQ:
1219 CondCode = AArch64CC::EQ;
1220 break;
1221 case CmpInst::FCMP_OGT:
1222 CondCode = AArch64CC::GT;
1223 break;
1224 case CmpInst::FCMP_OGE:
1225 CondCode = AArch64CC::GE;
1226 break;
1227 case CmpInst::FCMP_OLT:
1228 CondCode = AArch64CC::MI;
1229 break;
1230 case CmpInst::FCMP_OLE:
1231 CondCode = AArch64CC::LS;
1232 break;
1233 case CmpInst::FCMP_ONE:
1234 CondCode = AArch64CC::MI;
1235 CondCode2 = AArch64CC::GT;
1236 break;
1237 case CmpInst::FCMP_ORD:
1238 CondCode = AArch64CC::VC;
1239 break;
1240 case CmpInst::FCMP_UNO:
1241 CondCode = AArch64CC::VS;
1242 break;
1243 case CmpInst::FCMP_UEQ:
1244 CondCode = AArch64CC::EQ;
1245 CondCode2 = AArch64CC::VS;
1246 break;
1247 case CmpInst::FCMP_UGT:
1248 CondCode = AArch64CC::HI;
1249 break;
1250 case CmpInst::FCMP_UGE:
1251 CondCode = AArch64CC::PL;
1252 break;
1253 case CmpInst::FCMP_ULT:
1254 CondCode = AArch64CC::LT;
1255 break;
1256 case CmpInst::FCMP_ULE:
1257 CondCode = AArch64CC::LE;
1258 break;
1259 case CmpInst::FCMP_UNE:
1260 CondCode = AArch64CC::NE;
1261 break;
1262 }
1263 }
1264
1265 /// Return a register which can be used as a bit to test in a TB(N)Z.
getTestBitReg(Register Reg,uint64_t & Bit,bool & Invert,MachineRegisterInfo & MRI)1266 static Register getTestBitReg(Register Reg, uint64_t &Bit, bool &Invert,
1267 MachineRegisterInfo &MRI) {
1268 assert(Reg.isValid() && "Expected valid register!");
1269 while (MachineInstr *MI = getDefIgnoringCopies(Reg, MRI)) {
1270 unsigned Opc = MI->getOpcode();
1271
1272 if (!MI->getOperand(0).isReg() ||
1273 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1274 break;
1275
1276 // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
1277 //
1278 // (tbz (trunc x), b) -> (tbz x, b) is always safe, because the bit number
1279 // on the truncated x is the same as the bit number on x.
1280 if (Opc == TargetOpcode::G_ANYEXT || Opc == TargetOpcode::G_ZEXT ||
1281 Opc == TargetOpcode::G_TRUNC) {
1282 Register NextReg = MI->getOperand(1).getReg();
1283 // Did we find something worth folding?
1284 if (!NextReg.isValid() || !MRI.hasOneNonDBGUse(NextReg))
1285 break;
1286
1287 // NextReg is worth folding. Keep looking.
1288 Reg = NextReg;
1289 continue;
1290 }
1291
1292 // Attempt to find a suitable operation with a constant on one side.
1293 Optional<uint64_t> C;
1294 Register TestReg;
1295 switch (Opc) {
1296 default:
1297 break;
1298 case TargetOpcode::G_AND:
1299 case TargetOpcode::G_XOR: {
1300 TestReg = MI->getOperand(1).getReg();
1301 Register ConstantReg = MI->getOperand(2).getReg();
1302 auto VRegAndVal = getConstantVRegValWithLookThrough(ConstantReg, MRI);
1303 if (!VRegAndVal) {
1304 // AND commutes, check the other side for a constant.
1305 // FIXME: Can we canonicalize the constant so that it's always on the
1306 // same side at some point earlier?
1307 std::swap(ConstantReg, TestReg);
1308 VRegAndVal = getConstantVRegValWithLookThrough(ConstantReg, MRI);
1309 }
1310 if (VRegAndVal)
1311 C = VRegAndVal->Value.getSExtValue();
1312 break;
1313 }
1314 case TargetOpcode::G_ASHR:
1315 case TargetOpcode::G_LSHR:
1316 case TargetOpcode::G_SHL: {
1317 TestReg = MI->getOperand(1).getReg();
1318 auto VRegAndVal =
1319 getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1320 if (VRegAndVal)
1321 C = VRegAndVal->Value.getSExtValue();
1322 break;
1323 }
1324 }
1325
1326 // Didn't find a constant or viable register. Bail out of the loop.
1327 if (!C || !TestReg.isValid())
1328 break;
1329
1330 // We found a suitable instruction with a constant. Check to see if we can
1331 // walk through the instruction.
1332 Register NextReg;
1333 unsigned TestRegSize = MRI.getType(TestReg).getSizeInBits();
1334 switch (Opc) {
1335 default:
1336 break;
1337 case TargetOpcode::G_AND:
1338 // (tbz (and x, m), b) -> (tbz x, b) when the b-th bit of m is set.
1339 if ((*C >> Bit) & 1)
1340 NextReg = TestReg;
1341 break;
1342 case TargetOpcode::G_SHL:
1343 // (tbz (shl x, c), b) -> (tbz x, b-c) when b-c is positive and fits in
1344 // the type of the register.
1345 if (*C <= Bit && (Bit - *C) < TestRegSize) {
1346 NextReg = TestReg;
1347 Bit = Bit - *C;
1348 }
1349 break;
1350 case TargetOpcode::G_ASHR:
1351 // (tbz (ashr x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits
1352 // in x
1353 NextReg = TestReg;
1354 Bit = Bit + *C;
1355 if (Bit >= TestRegSize)
1356 Bit = TestRegSize - 1;
1357 break;
1358 case TargetOpcode::G_LSHR:
1359 // (tbz (lshr x, c), b) -> (tbz x, b+c) when b + c is < # bits in x
1360 if ((Bit + *C) < TestRegSize) {
1361 NextReg = TestReg;
1362 Bit = Bit + *C;
1363 }
1364 break;
1365 case TargetOpcode::G_XOR:
1366 // We can walk through a G_XOR by inverting whether we use tbz/tbnz when
1367 // appropriate.
1368 //
1369 // e.g. If x' = xor x, c, and the b-th bit is set in c then
1370 //
1371 // tbz x', b -> tbnz x, b
1372 //
1373 // Because x' only has the b-th bit set if x does not.
1374 if ((*C >> Bit) & 1)
1375 Invert = !Invert;
1376 NextReg = TestReg;
1377 break;
1378 }
1379
1380 // Check if we found anything worth folding.
1381 if (!NextReg.isValid())
1382 return Reg;
1383 Reg = NextReg;
1384 }
1385
1386 return Reg;
1387 }
1388
emitTestBit(Register TestReg,uint64_t Bit,bool IsNegative,MachineBasicBlock * DstMBB,MachineIRBuilder & MIB) const1389 MachineInstr *AArch64InstructionSelector::emitTestBit(
1390 Register TestReg, uint64_t Bit, bool IsNegative, MachineBasicBlock *DstMBB,
1391 MachineIRBuilder &MIB) const {
1392 assert(TestReg.isValid());
1393 assert(ProduceNonFlagSettingCondBr &&
1394 "Cannot emit TB(N)Z with speculation tracking!");
1395 MachineRegisterInfo &MRI = *MIB.getMRI();
1396
1397 // Attempt to optimize the test bit by walking over instructions.
1398 TestReg = getTestBitReg(TestReg, Bit, IsNegative, MRI);
1399 LLT Ty = MRI.getType(TestReg);
1400 unsigned Size = Ty.getSizeInBits();
1401 assert(!Ty.isVector() && "Expected a scalar!");
1402 assert(Bit < 64 && "Bit is too large!");
1403
1404 // When the test register is a 64-bit register, we have to narrow to make
1405 // TBNZW work.
1406 bool UseWReg = Bit < 32;
1407 unsigned NecessarySize = UseWReg ? 32 : 64;
1408 if (Size != NecessarySize)
1409 TestReg = moveScalarRegClass(
1410 TestReg, UseWReg ? AArch64::GPR32RegClass : AArch64::GPR64RegClass,
1411 MIB);
1412
1413 static const unsigned OpcTable[2][2] = {{AArch64::TBZX, AArch64::TBNZX},
1414 {AArch64::TBZW, AArch64::TBNZW}};
1415 unsigned Opc = OpcTable[UseWReg][IsNegative];
1416 auto TestBitMI =
1417 MIB.buildInstr(Opc).addReg(TestReg).addImm(Bit).addMBB(DstMBB);
1418 constrainSelectedInstRegOperands(*TestBitMI, TII, TRI, RBI);
1419 return &*TestBitMI;
1420 }
1421
tryOptAndIntoCompareBranch(MachineInstr & AndInst,bool Invert,MachineBasicBlock * DstMBB,MachineIRBuilder & MIB) const1422 bool AArch64InstructionSelector::tryOptAndIntoCompareBranch(
1423 MachineInstr &AndInst, bool Invert, MachineBasicBlock *DstMBB,
1424 MachineIRBuilder &MIB) const {
1425 assert(AndInst.getOpcode() == TargetOpcode::G_AND && "Expected G_AND only?");
1426 // Given something like this:
1427 //
1428 // %x = ...Something...
1429 // %one = G_CONSTANT i64 1
1430 // %zero = G_CONSTANT i64 0
1431 // %and = G_AND %x, %one
1432 // %cmp = G_ICMP intpred(ne), %and, %zero
1433 // %cmp_trunc = G_TRUNC %cmp
1434 // G_BRCOND %cmp_trunc, %bb.3
1435 //
1436 // We want to try and fold the AND into the G_BRCOND and produce either a
1437 // TBNZ (when we have intpred(ne)) or a TBZ (when we have intpred(eq)).
1438 //
1439 // In this case, we'd get
1440 //
1441 // TBNZ %x %bb.3
1442 //
1443
1444 // Check if the AND has a constant on its RHS which we can use as a mask.
1445 // If it's a power of 2, then it's the same as checking a specific bit.
1446 // (e.g, ANDing with 8 == ANDing with 000...100 == testing if bit 3 is set)
1447 auto MaybeBit = getConstantVRegValWithLookThrough(
1448 AndInst.getOperand(2).getReg(), *MIB.getMRI());
1449 if (!MaybeBit)
1450 return false;
1451
1452 int32_t Bit = MaybeBit->Value.exactLogBase2();
1453 if (Bit < 0)
1454 return false;
1455
1456 Register TestReg = AndInst.getOperand(1).getReg();
1457
1458 // Emit a TB(N)Z.
1459 emitTestBit(TestReg, Bit, Invert, DstMBB, MIB);
1460 return true;
1461 }
1462
emitCBZ(Register CompareReg,bool IsNegative,MachineBasicBlock * DestMBB,MachineIRBuilder & MIB) const1463 MachineInstr *AArch64InstructionSelector::emitCBZ(Register CompareReg,
1464 bool IsNegative,
1465 MachineBasicBlock *DestMBB,
1466 MachineIRBuilder &MIB) const {
1467 assert(ProduceNonFlagSettingCondBr && "CBZ does not set flags!");
1468 MachineRegisterInfo &MRI = *MIB.getMRI();
1469 assert(RBI.getRegBank(CompareReg, MRI, TRI)->getID() ==
1470 AArch64::GPRRegBankID &&
1471 "Expected GPRs only?");
1472 auto Ty = MRI.getType(CompareReg);
1473 unsigned Width = Ty.getSizeInBits();
1474 assert(!Ty.isVector() && "Expected scalar only?");
1475 assert(Width <= 64 && "Expected width to be at most 64?");
1476 static const unsigned OpcTable[2][2] = {{AArch64::CBZW, AArch64::CBZX},
1477 {AArch64::CBNZW, AArch64::CBNZX}};
1478 unsigned Opc = OpcTable[IsNegative][Width == 64];
1479 auto BranchMI = MIB.buildInstr(Opc, {}, {CompareReg}).addMBB(DestMBB);
1480 constrainSelectedInstRegOperands(*BranchMI, TII, TRI, RBI);
1481 return &*BranchMI;
1482 }
1483
selectCompareBranchFedByFCmp(MachineInstr & I,MachineInstr & FCmp,MachineIRBuilder & MIB) const1484 bool AArch64InstructionSelector::selectCompareBranchFedByFCmp(
1485 MachineInstr &I, MachineInstr &FCmp, MachineIRBuilder &MIB) const {
1486 assert(FCmp.getOpcode() == TargetOpcode::G_FCMP);
1487 assert(I.getOpcode() == TargetOpcode::G_BRCOND);
1488 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
1489 // totally clean. Some of them require two branches to implement.
1490 auto Pred = (CmpInst::Predicate)FCmp.getOperand(1).getPredicate();
1491 emitFPCompare(FCmp.getOperand(2).getReg(), FCmp.getOperand(3).getReg(), MIB,
1492 Pred);
1493 AArch64CC::CondCode CC1, CC2;
1494 changeFCMPPredToAArch64CC(static_cast<CmpInst::Predicate>(Pred), CC1, CC2);
1495 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1496 MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC1).addMBB(DestMBB);
1497 if (CC2 != AArch64CC::AL)
1498 MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC2).addMBB(DestMBB);
1499 I.eraseFromParent();
1500 return true;
1501 }
1502
tryOptCompareBranchFedByICmp(MachineInstr & I,MachineInstr & ICmp,MachineIRBuilder & MIB) const1503 bool AArch64InstructionSelector::tryOptCompareBranchFedByICmp(
1504 MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const {
1505 assert(ICmp.getOpcode() == TargetOpcode::G_ICMP);
1506 assert(I.getOpcode() == TargetOpcode::G_BRCOND);
1507 // Attempt to optimize the G_BRCOND + G_ICMP into a TB(N)Z/CB(N)Z.
1508 //
1509 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
1510 // instructions will not be produced, as they are conditional branch
1511 // instructions that do not set flags.
1512 if (!ProduceNonFlagSettingCondBr)
1513 return false;
1514
1515 MachineRegisterInfo &MRI = *MIB.getMRI();
1516 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1517 auto Pred =
1518 static_cast<CmpInst::Predicate>(ICmp.getOperand(1).getPredicate());
1519 Register LHS = ICmp.getOperand(2).getReg();
1520 Register RHS = ICmp.getOperand(3).getReg();
1521
1522 // We're allowed to emit a TB(N)Z/CB(N)Z. Try to do that.
1523 auto VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI);
1524 MachineInstr *AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI);
1525
1526 // When we can emit a TB(N)Z, prefer that.
1527 //
1528 // Handle non-commutative condition codes first.
1529 // Note that we don't want to do this when we have a G_AND because it can
1530 // become a tst. The tst will make the test bit in the TB(N)Z redundant.
1531 if (VRegAndVal && !AndInst) {
1532 int64_t C = VRegAndVal->Value.getSExtValue();
1533
1534 // When we have a greater-than comparison, we can just test if the msb is
1535 // zero.
1536 if (C == -1 && Pred == CmpInst::ICMP_SGT) {
1537 uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
1538 emitTestBit(LHS, Bit, /*IsNegative = */ false, DestMBB, MIB);
1539 I.eraseFromParent();
1540 return true;
1541 }
1542
1543 // When we have a less than comparison, we can just test if the msb is not
1544 // zero.
1545 if (C == 0 && Pred == CmpInst::ICMP_SLT) {
1546 uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
1547 emitTestBit(LHS, Bit, /*IsNegative = */ true, DestMBB, MIB);
1548 I.eraseFromParent();
1549 return true;
1550 }
1551 }
1552
1553 // Attempt to handle commutative condition codes. Right now, that's only
1554 // eq/ne.
1555 if (ICmpInst::isEquality(Pred)) {
1556 if (!VRegAndVal) {
1557 std::swap(RHS, LHS);
1558 VRegAndVal = getConstantVRegValWithLookThrough(RHS, MRI);
1559 AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI);
1560 }
1561
1562 if (VRegAndVal && VRegAndVal->Value == 0) {
1563 // If there's a G_AND feeding into this branch, try to fold it away by
1564 // emitting a TB(N)Z instead.
1565 //
1566 // Note: If we have LT, then it *is* possible to fold, but it wouldn't be
1567 // beneficial. When we have an AND and LT, we need a TST/ANDS, so folding
1568 // would be redundant.
1569 if (AndInst &&
1570 tryOptAndIntoCompareBranch(
1571 *AndInst, /*Invert = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB)) {
1572 I.eraseFromParent();
1573 return true;
1574 }
1575
1576 // Otherwise, try to emit a CB(N)Z instead.
1577 auto LHSTy = MRI.getType(LHS);
1578 if (!LHSTy.isVector() && LHSTy.getSizeInBits() <= 64) {
1579 emitCBZ(LHS, /*IsNegative = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB);
1580 I.eraseFromParent();
1581 return true;
1582 }
1583 }
1584 }
1585
1586 return false;
1587 }
1588
selectCompareBranchFedByICmp(MachineInstr & I,MachineInstr & ICmp,MachineIRBuilder & MIB) const1589 bool AArch64InstructionSelector::selectCompareBranchFedByICmp(
1590 MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const {
1591 assert(ICmp.getOpcode() == TargetOpcode::G_ICMP);
1592 assert(I.getOpcode() == TargetOpcode::G_BRCOND);
1593 if (tryOptCompareBranchFedByICmp(I, ICmp, MIB))
1594 return true;
1595
1596 // Couldn't optimize. Emit a compare + a Bcc.
1597 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1598 auto PredOp = ICmp.getOperand(1);
1599 emitIntegerCompare(ICmp.getOperand(2), ICmp.getOperand(3), PredOp, MIB);
1600 const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(
1601 static_cast<CmpInst::Predicate>(PredOp.getPredicate()));
1602 MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC).addMBB(DestMBB);
1603 I.eraseFromParent();
1604 return true;
1605 }
1606
selectCompareBranch(MachineInstr & I,MachineFunction & MF,MachineRegisterInfo & MRI) const1607 bool AArch64InstructionSelector::selectCompareBranch(
1608 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
1609 Register CondReg = I.getOperand(0).getReg();
1610 MachineInstr *CCMI = MRI.getVRegDef(CondReg);
1611 if (CCMI->getOpcode() == TargetOpcode::G_TRUNC) {
1612 CondReg = CCMI->getOperand(1).getReg();
1613 CCMI = MRI.getVRegDef(CondReg);
1614 }
1615
1616 // Try to select the G_BRCOND using whatever is feeding the condition if
1617 // possible.
1618 MachineIRBuilder MIB(I);
1619 unsigned CCMIOpc = CCMI->getOpcode();
1620 if (CCMIOpc == TargetOpcode::G_FCMP)
1621 return selectCompareBranchFedByFCmp(I, *CCMI, MIB);
1622 if (CCMIOpc == TargetOpcode::G_ICMP)
1623 return selectCompareBranchFedByICmp(I, *CCMI, MIB);
1624
1625 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
1626 // instructions will not be produced, as they are conditional branch
1627 // instructions that do not set flags.
1628 if (ProduceNonFlagSettingCondBr) {
1629 emitTestBit(CondReg, /*Bit = */ 0, /*IsNegative = */ true,
1630 I.getOperand(1).getMBB(), MIB);
1631 I.eraseFromParent();
1632 return true;
1633 }
1634
1635 // Can't emit TB(N)Z/CB(N)Z. Emit a tst + bcc instead.
1636 auto TstMI =
1637 MIB.buildInstr(AArch64::ANDSWri, {LLT::scalar(32)}, {CondReg}).addImm(1);
1638 constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
1639 auto Bcc = MIB.buildInstr(AArch64::Bcc)
1640 .addImm(AArch64CC::EQ)
1641 .addMBB(I.getOperand(1).getMBB());
1642 I.eraseFromParent();
1643 return constrainSelectedInstRegOperands(*Bcc, TII, TRI, RBI);
1644 }
1645
1646 /// Returns the element immediate value of a vector shift operand if found.
1647 /// This needs to detect a splat-like operation, e.g. a G_BUILD_VECTOR.
getVectorShiftImm(Register Reg,MachineRegisterInfo & MRI)1648 static Optional<int64_t> getVectorShiftImm(Register Reg,
1649 MachineRegisterInfo &MRI) {
1650 assert(MRI.getType(Reg).isVector() && "Expected a *vector* shift operand");
1651 MachineInstr *OpMI = MRI.getVRegDef(Reg);
1652 assert(OpMI && "Expected to find a vreg def for vector shift operand");
1653 if (OpMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR)
1654 return None;
1655
1656 // Check all operands are identical immediates.
1657 int64_t ImmVal = 0;
1658 for (unsigned Idx = 1; Idx < OpMI->getNumOperands(); ++Idx) {
1659 auto VRegAndVal = getConstantVRegValWithLookThrough(OpMI->getOperand(Idx).getReg(), MRI);
1660 if (!VRegAndVal)
1661 return None;
1662
1663 if (Idx == 1)
1664 ImmVal = VRegAndVal->Value.getSExtValue();
1665 if (ImmVal != VRegAndVal->Value.getSExtValue())
1666 return None;
1667 }
1668
1669 return ImmVal;
1670 }
1671
1672 /// Matches and returns the shift immediate value for a SHL instruction given
1673 /// a shift operand.
getVectorSHLImm(LLT SrcTy,Register Reg,MachineRegisterInfo & MRI)1674 static Optional<int64_t> getVectorSHLImm(LLT SrcTy, Register Reg, MachineRegisterInfo &MRI) {
1675 Optional<int64_t> ShiftImm = getVectorShiftImm(Reg, MRI);
1676 if (!ShiftImm)
1677 return None;
1678 // Check the immediate is in range for a SHL.
1679 int64_t Imm = *ShiftImm;
1680 if (Imm < 0)
1681 return None;
1682 switch (SrcTy.getElementType().getSizeInBits()) {
1683 default:
1684 LLVM_DEBUG(dbgs() << "Unhandled element type for vector shift");
1685 return None;
1686 case 8:
1687 if (Imm > 7)
1688 return None;
1689 break;
1690 case 16:
1691 if (Imm > 15)
1692 return None;
1693 break;
1694 case 32:
1695 if (Imm > 31)
1696 return None;
1697 break;
1698 case 64:
1699 if (Imm > 63)
1700 return None;
1701 break;
1702 }
1703 return Imm;
1704 }
1705
selectVectorSHL(MachineInstr & I,MachineRegisterInfo & MRI) const1706 bool AArch64InstructionSelector::selectVectorSHL(
1707 MachineInstr &I, MachineRegisterInfo &MRI) const {
1708 assert(I.getOpcode() == TargetOpcode::G_SHL);
1709 Register DstReg = I.getOperand(0).getReg();
1710 const LLT Ty = MRI.getType(DstReg);
1711 Register Src1Reg = I.getOperand(1).getReg();
1712 Register Src2Reg = I.getOperand(2).getReg();
1713
1714 if (!Ty.isVector())
1715 return false;
1716
1717 // Check if we have a vector of constants on RHS that we can select as the
1718 // immediate form.
1719 Optional<int64_t> ImmVal = getVectorSHLImm(Ty, Src2Reg, MRI);
1720
1721 unsigned Opc = 0;
1722 if (Ty == LLT::vector(2, 64)) {
1723 Opc = ImmVal ? AArch64::SHLv2i64_shift : AArch64::USHLv2i64;
1724 } else if (Ty == LLT::vector(4, 32)) {
1725 Opc = ImmVal ? AArch64::SHLv4i32_shift : AArch64::USHLv4i32;
1726 } else if (Ty == LLT::vector(2, 32)) {
1727 Opc = ImmVal ? AArch64::SHLv2i32_shift : AArch64::USHLv2i32;
1728 } else if (Ty == LLT::vector(4, 16)) {
1729 Opc = ImmVal ? AArch64::SHLv4i16_shift : AArch64::USHLv4i16;
1730 } else if (Ty == LLT::vector(8, 16)) {
1731 Opc = ImmVal ? AArch64::SHLv8i16_shift : AArch64::USHLv8i16;
1732 } else if (Ty == LLT::vector(16, 8)) {
1733 Opc = ImmVal ? AArch64::SHLv16i8_shift : AArch64::USHLv16i8;
1734 } else if (Ty == LLT::vector(8, 8)) {
1735 Opc = ImmVal ? AArch64::SHLv8i8_shift : AArch64::USHLv8i8;
1736 } else {
1737 LLVM_DEBUG(dbgs() << "Unhandled G_SHL type");
1738 return false;
1739 }
1740
1741 MachineIRBuilder MIB(I);
1742 auto Shl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg});
1743 if (ImmVal)
1744 Shl.addImm(*ImmVal);
1745 else
1746 Shl.addUse(Src2Reg);
1747 constrainSelectedInstRegOperands(*Shl, TII, TRI, RBI);
1748 I.eraseFromParent();
1749 return true;
1750 }
1751
selectVectorAshrLshr(MachineInstr & I,MachineRegisterInfo & MRI) const1752 bool AArch64InstructionSelector::selectVectorAshrLshr(
1753 MachineInstr &I, MachineRegisterInfo &MRI) const {
1754 assert(I.getOpcode() == TargetOpcode::G_ASHR ||
1755 I.getOpcode() == TargetOpcode::G_LSHR);
1756 Register DstReg = I.getOperand(0).getReg();
1757 const LLT Ty = MRI.getType(DstReg);
1758 Register Src1Reg = I.getOperand(1).getReg();
1759 Register Src2Reg = I.getOperand(2).getReg();
1760
1761 if (!Ty.isVector())
1762 return false;
1763
1764 bool IsASHR = I.getOpcode() == TargetOpcode::G_ASHR;
1765
1766 // We expect the immediate case to be lowered in the PostLegalCombiner to
1767 // AArch64ISD::VASHR or AArch64ISD::VLSHR equivalents.
1768
1769 // There is not a shift right register instruction, but the shift left
1770 // register instruction takes a signed value, where negative numbers specify a
1771 // right shift.
1772
1773 unsigned Opc = 0;
1774 unsigned NegOpc = 0;
1775 const TargetRegisterClass *RC =
1776 getRegClassForTypeOnBank(Ty, RBI.getRegBank(AArch64::FPRRegBankID), RBI);
1777 if (Ty == LLT::vector(2, 64)) {
1778 Opc = IsASHR ? AArch64::SSHLv2i64 : AArch64::USHLv2i64;
1779 NegOpc = AArch64::NEGv2i64;
1780 } else if (Ty == LLT::vector(4, 32)) {
1781 Opc = IsASHR ? AArch64::SSHLv4i32 : AArch64::USHLv4i32;
1782 NegOpc = AArch64::NEGv4i32;
1783 } else if (Ty == LLT::vector(2, 32)) {
1784 Opc = IsASHR ? AArch64::SSHLv2i32 : AArch64::USHLv2i32;
1785 NegOpc = AArch64::NEGv2i32;
1786 } else if (Ty == LLT::vector(4, 16)) {
1787 Opc = IsASHR ? AArch64::SSHLv4i16 : AArch64::USHLv4i16;
1788 NegOpc = AArch64::NEGv4i16;
1789 } else if (Ty == LLT::vector(8, 16)) {
1790 Opc = IsASHR ? AArch64::SSHLv8i16 : AArch64::USHLv8i16;
1791 NegOpc = AArch64::NEGv8i16;
1792 } else if (Ty == LLT::vector(16, 8)) {
1793 Opc = IsASHR ? AArch64::SSHLv16i8 : AArch64::USHLv16i8;
1794 NegOpc = AArch64::NEGv16i8;
1795 } else if (Ty == LLT::vector(8, 8)) {
1796 Opc = IsASHR ? AArch64::SSHLv8i8 : AArch64::USHLv8i8;
1797 NegOpc = AArch64::NEGv8i8;
1798 } else {
1799 LLVM_DEBUG(dbgs() << "Unhandled G_ASHR type");
1800 return false;
1801 }
1802
1803 MachineIRBuilder MIB(I);
1804 auto Neg = MIB.buildInstr(NegOpc, {RC}, {Src2Reg});
1805 constrainSelectedInstRegOperands(*Neg, TII, TRI, RBI);
1806 auto SShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Neg});
1807 constrainSelectedInstRegOperands(*SShl, TII, TRI, RBI);
1808 I.eraseFromParent();
1809 return true;
1810 }
1811
selectVaStartAAPCS(MachineInstr & I,MachineFunction & MF,MachineRegisterInfo & MRI) const1812 bool AArch64InstructionSelector::selectVaStartAAPCS(
1813 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
1814 return false;
1815 }
1816
selectVaStartDarwin(MachineInstr & I,MachineFunction & MF,MachineRegisterInfo & MRI) const1817 bool AArch64InstructionSelector::selectVaStartDarwin(
1818 MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
1819 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
1820 Register ListReg = I.getOperand(0).getReg();
1821
1822 Register ArgsAddrReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
1823
1824 auto MIB =
1825 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::ADDXri))
1826 .addDef(ArgsAddrReg)
1827 .addFrameIndex(FuncInfo->getVarArgsStackIndex())
1828 .addImm(0)
1829 .addImm(0);
1830
1831 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
1832
1833 MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::STRXui))
1834 .addUse(ArgsAddrReg)
1835 .addUse(ListReg)
1836 .addImm(0)
1837 .addMemOperand(*I.memoperands_begin());
1838
1839 constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
1840 I.eraseFromParent();
1841 return true;
1842 }
1843
materializeLargeCMVal(MachineInstr & I,const Value * V,unsigned OpFlags) const1844 void AArch64InstructionSelector::materializeLargeCMVal(
1845 MachineInstr &I, const Value *V, unsigned OpFlags) const {
1846 MachineBasicBlock &MBB = *I.getParent();
1847 MachineFunction &MF = *MBB.getParent();
1848 MachineRegisterInfo &MRI = MF.getRegInfo();
1849 MachineIRBuilder MIB(I);
1850
1851 auto MovZ = MIB.buildInstr(AArch64::MOVZXi, {&AArch64::GPR64RegClass}, {});
1852 MovZ->addOperand(MF, I.getOperand(1));
1853 MovZ->getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_G0 |
1854 AArch64II::MO_NC);
1855 MovZ->addOperand(MF, MachineOperand::CreateImm(0));
1856 constrainSelectedInstRegOperands(*MovZ, TII, TRI, RBI);
1857
1858 auto BuildMovK = [&](Register SrcReg, unsigned char Flags, unsigned Offset,
1859 Register ForceDstReg) {
1860 Register DstReg = ForceDstReg
1861 ? ForceDstReg
1862 : MRI.createVirtualRegister(&AArch64::GPR64RegClass);
1863 auto MovI = MIB.buildInstr(AArch64::MOVKXi).addDef(DstReg).addUse(SrcReg);
1864 if (auto *GV = dyn_cast<GlobalValue>(V)) {
1865 MovI->addOperand(MF, MachineOperand::CreateGA(
1866 GV, MovZ->getOperand(1).getOffset(), Flags));
1867 } else {
1868 MovI->addOperand(
1869 MF, MachineOperand::CreateBA(cast<BlockAddress>(V),
1870 MovZ->getOperand(1).getOffset(), Flags));
1871 }
1872 MovI->addOperand(MF, MachineOperand::CreateImm(Offset));
1873 constrainSelectedInstRegOperands(*MovI, TII, TRI, RBI);
1874 return DstReg;
1875 };
1876 Register DstReg = BuildMovK(MovZ.getReg(0),
1877 AArch64II::MO_G1 | AArch64II::MO_NC, 16, 0);
1878 DstReg = BuildMovK(DstReg, AArch64II::MO_G2 | AArch64II::MO_NC, 32, 0);
1879 BuildMovK(DstReg, AArch64II::MO_G3, 48, I.getOperand(0).getReg());
1880 }
1881
preISelLower(MachineInstr & I)1882 bool AArch64InstructionSelector::preISelLower(MachineInstr &I) {
1883 MachineBasicBlock &MBB = *I.getParent();
1884 MachineFunction &MF = *MBB.getParent();
1885 MachineRegisterInfo &MRI = MF.getRegInfo();
1886
1887 switch (I.getOpcode()) {
1888 case TargetOpcode::G_SHL:
1889 case TargetOpcode::G_ASHR:
1890 case TargetOpcode::G_LSHR: {
1891 // These shifts are legalized to have 64 bit shift amounts because we want
1892 // to take advantage of the existing imported selection patterns that assume
1893 // the immediates are s64s. However, if the shifted type is 32 bits and for
1894 // some reason we receive input GMIR that has an s64 shift amount that's not
1895 // a G_CONSTANT, insert a truncate so that we can still select the s32
1896 // register-register variant.
1897 Register SrcReg = I.getOperand(1).getReg();
1898 Register ShiftReg = I.getOperand(2).getReg();
1899 const LLT ShiftTy = MRI.getType(ShiftReg);
1900 const LLT SrcTy = MRI.getType(SrcReg);
1901 if (SrcTy.isVector())
1902 return false;
1903 assert(!ShiftTy.isVector() && "unexpected vector shift ty");
1904 if (SrcTy.getSizeInBits() != 32 || ShiftTy.getSizeInBits() != 64)
1905 return false;
1906 auto *AmtMI = MRI.getVRegDef(ShiftReg);
1907 assert(AmtMI && "could not find a vreg definition for shift amount");
1908 if (AmtMI->getOpcode() != TargetOpcode::G_CONSTANT) {
1909 // Insert a subregister copy to implement a 64->32 trunc
1910 MachineIRBuilder MIB(I);
1911 auto Trunc = MIB.buildInstr(TargetOpcode::COPY, {SrcTy}, {})
1912 .addReg(ShiftReg, 0, AArch64::sub_32);
1913 MRI.setRegBank(Trunc.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
1914 I.getOperand(2).setReg(Trunc.getReg(0));
1915 }
1916 return true;
1917 }
1918 case TargetOpcode::G_STORE:
1919 return contractCrossBankCopyIntoStore(I, MRI);
1920 case TargetOpcode::G_PTR_ADD:
1921 return convertPtrAddToAdd(I, MRI);
1922 case TargetOpcode::G_LOAD: {
1923 // For scalar loads of pointers, we try to convert the dest type from p0
1924 // to s64 so that our imported patterns can match. Like with the G_PTR_ADD
1925 // conversion, this should be ok because all users should have been
1926 // selected already, so the type doesn't matter for them.
1927 Register DstReg = I.getOperand(0).getReg();
1928 const LLT DstTy = MRI.getType(DstReg);
1929 if (!DstTy.isPointer())
1930 return false;
1931 MRI.setType(DstReg, LLT::scalar(64));
1932 return true;
1933 }
1934 case AArch64::G_DUP: {
1935 // Convert the type from p0 to s64 to help selection.
1936 LLT DstTy = MRI.getType(I.getOperand(0).getReg());
1937 if (!DstTy.getElementType().isPointer())
1938 return false;
1939 MachineIRBuilder MIB(I);
1940 auto NewSrc = MIB.buildCopy(LLT::scalar(64), I.getOperand(1).getReg());
1941 MRI.setType(I.getOperand(0).getReg(),
1942 DstTy.changeElementType(LLT::scalar(64)));
1943 MRI.setRegBank(NewSrc.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
1944 I.getOperand(1).setReg(NewSrc.getReg(0));
1945 return true;
1946 }
1947 case TargetOpcode::G_UITOFP:
1948 case TargetOpcode::G_SITOFP: {
1949 // If both source and destination regbanks are FPR, then convert the opcode
1950 // to G_SITOF so that the importer can select it to an fpr variant.
1951 // Otherwise, it ends up matching an fpr/gpr variant and adding a cross-bank
1952 // copy.
1953 Register SrcReg = I.getOperand(1).getReg();
1954 LLT SrcTy = MRI.getType(SrcReg);
1955 LLT DstTy = MRI.getType(I.getOperand(0).getReg());
1956 if (SrcTy.isVector() || SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1957 return false;
1958
1959 if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::FPRRegBankID) {
1960 if (I.getOpcode() == TargetOpcode::G_SITOFP)
1961 I.setDesc(TII.get(AArch64::G_SITOF));
1962 else
1963 I.setDesc(TII.get(AArch64::G_UITOF));
1964 return true;
1965 }
1966 return false;
1967 }
1968 default:
1969 return false;
1970 }
1971 }
1972
1973 /// This lowering tries to look for G_PTR_ADD instructions and then converts
1974 /// them to a standard G_ADD with a COPY on the source.
1975 ///
1976 /// The motivation behind this is to expose the add semantics to the imported
1977 /// tablegen patterns. We shouldn't need to check for uses being loads/stores,
1978 /// because the selector works bottom up, uses before defs. By the time we
1979 /// end up trying to select a G_PTR_ADD, we should have already attempted to
1980 /// fold this into addressing modes and were therefore unsuccessful.
convertPtrAddToAdd(MachineInstr & I,MachineRegisterInfo & MRI)1981 bool AArch64InstructionSelector::convertPtrAddToAdd(
1982 MachineInstr &I, MachineRegisterInfo &MRI) {
1983 assert(I.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
1984 Register DstReg = I.getOperand(0).getReg();
1985 Register AddOp1Reg = I.getOperand(1).getReg();
1986 const LLT PtrTy = MRI.getType(DstReg);
1987 if (PtrTy.getAddressSpace() != 0)
1988 return false;
1989
1990 MachineIRBuilder MIB(I);
1991 const LLT CastPtrTy = PtrTy.isVector() ? LLT::vector(2, 64) : LLT::scalar(64);
1992 auto PtrToInt = MIB.buildPtrToInt(CastPtrTy, AddOp1Reg);
1993 // Set regbanks on the registers.
1994 if (PtrTy.isVector())
1995 MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::FPRRegBankID));
1996 else
1997 MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
1998
1999 // Now turn the %dst(p0) = G_PTR_ADD %base, off into:
2000 // %dst(intty) = G_ADD %intbase, off
2001 I.setDesc(TII.get(TargetOpcode::G_ADD));
2002 MRI.setType(DstReg, CastPtrTy);
2003 I.getOperand(1).setReg(PtrToInt.getReg(0));
2004 if (!select(*PtrToInt)) {
2005 LLVM_DEBUG(dbgs() << "Failed to select G_PTRTOINT in convertPtrAddToAdd");
2006 return false;
2007 }
2008
2009 // Also take the opportunity here to try to do some optimization.
2010 // Try to convert this into a G_SUB if the offset is a 0-x negate idiom.
2011 Register NegatedReg;
2012 if (!mi_match(I.getOperand(2).getReg(), MRI, m_Neg(m_Reg(NegatedReg))))
2013 return true;
2014 I.getOperand(2).setReg(NegatedReg);
2015 I.setDesc(TII.get(TargetOpcode::G_SUB));
2016 return true;
2017 }
2018
earlySelectSHL(MachineInstr & I,MachineRegisterInfo & MRI) const2019 bool AArch64InstructionSelector::earlySelectSHL(
2020 MachineInstr &I, MachineRegisterInfo &MRI) const {
2021 // We try to match the immediate variant of LSL, which is actually an alias
2022 // for a special case of UBFM. Otherwise, we fall back to the imported
2023 // selector which will match the register variant.
2024 assert(I.getOpcode() == TargetOpcode::G_SHL && "unexpected op");
2025 const auto &MO = I.getOperand(2);
2026 auto VRegAndVal = getConstantVRegVal(MO.getReg(), MRI);
2027 if (!VRegAndVal)
2028 return false;
2029
2030 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2031 if (DstTy.isVector())
2032 return false;
2033 bool Is64Bit = DstTy.getSizeInBits() == 64;
2034 auto Imm1Fn = Is64Bit ? selectShiftA_64(MO) : selectShiftA_32(MO);
2035 auto Imm2Fn = Is64Bit ? selectShiftB_64(MO) : selectShiftB_32(MO);
2036 MachineIRBuilder MIB(I);
2037
2038 if (!Imm1Fn || !Imm2Fn)
2039 return false;
2040
2041 auto NewI =
2042 MIB.buildInstr(Is64Bit ? AArch64::UBFMXri : AArch64::UBFMWri,
2043 {I.getOperand(0).getReg()}, {I.getOperand(1).getReg()});
2044
2045 for (auto &RenderFn : *Imm1Fn)
2046 RenderFn(NewI);
2047 for (auto &RenderFn : *Imm2Fn)
2048 RenderFn(NewI);
2049
2050 I.eraseFromParent();
2051 return constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI);
2052 }
2053
contractCrossBankCopyIntoStore(MachineInstr & I,MachineRegisterInfo & MRI)2054 bool AArch64InstructionSelector::contractCrossBankCopyIntoStore(
2055 MachineInstr &I, MachineRegisterInfo &MRI) {
2056 assert(I.getOpcode() == TargetOpcode::G_STORE && "Expected G_STORE");
2057 // If we're storing a scalar, it doesn't matter what register bank that
2058 // scalar is on. All that matters is the size.
2059 //
2060 // So, if we see something like this (with a 32-bit scalar as an example):
2061 //
2062 // %x:gpr(s32) = ... something ...
2063 // %y:fpr(s32) = COPY %x:gpr(s32)
2064 // G_STORE %y:fpr(s32)
2065 //
2066 // We can fix this up into something like this:
2067 //
2068 // G_STORE %x:gpr(s32)
2069 //
2070 // And then continue the selection process normally.
2071 Register DefDstReg = getSrcRegIgnoringCopies(I.getOperand(0).getReg(), MRI);
2072 if (!DefDstReg.isValid())
2073 return false;
2074 LLT DefDstTy = MRI.getType(DefDstReg);
2075 Register StoreSrcReg = I.getOperand(0).getReg();
2076 LLT StoreSrcTy = MRI.getType(StoreSrcReg);
2077
2078 // If we get something strange like a physical register, then we shouldn't
2079 // go any further.
2080 if (!DefDstTy.isValid())
2081 return false;
2082
2083 // Are the source and dst types the same size?
2084 if (DefDstTy.getSizeInBits() != StoreSrcTy.getSizeInBits())
2085 return false;
2086
2087 if (RBI.getRegBank(StoreSrcReg, MRI, TRI) ==
2088 RBI.getRegBank(DefDstReg, MRI, TRI))
2089 return false;
2090
2091 // We have a cross-bank copy, which is entering a store. Let's fold it.
2092 I.getOperand(0).setReg(DefDstReg);
2093 return true;
2094 }
2095
earlySelect(MachineInstr & I) const2096 bool AArch64InstructionSelector::earlySelect(MachineInstr &I) const {
2097 assert(I.getParent() && "Instruction should be in a basic block!");
2098 assert(I.getParent()->getParent() && "Instruction should be in a function!");
2099
2100 MachineBasicBlock &MBB = *I.getParent();
2101 MachineFunction &MF = *MBB.getParent();
2102 MachineRegisterInfo &MRI = MF.getRegInfo();
2103
2104 switch (I.getOpcode()) {
2105 case TargetOpcode::G_BR: {
2106 // If the branch jumps to the fallthrough block, don't bother emitting it.
2107 // Only do this for -O0 for a good code size improvement, because when
2108 // optimizations are enabled we want to leave this choice to
2109 // MachineBlockPlacement.
2110 bool EnableOpt = MF.getTarget().getOptLevel() != CodeGenOpt::None;
2111 if (EnableOpt || !MBB.isLayoutSuccessor(I.getOperand(0).getMBB()))
2112 return false;
2113 I.eraseFromParent();
2114 return true;
2115 }
2116 case TargetOpcode::G_SHL:
2117 return earlySelectSHL(I, MRI);
2118 case TargetOpcode::G_CONSTANT: {
2119 bool IsZero = false;
2120 if (I.getOperand(1).isCImm())
2121 IsZero = I.getOperand(1).getCImm()->getZExtValue() == 0;
2122 else if (I.getOperand(1).isImm())
2123 IsZero = I.getOperand(1).getImm() == 0;
2124
2125 if (!IsZero)
2126 return false;
2127
2128 Register DefReg = I.getOperand(0).getReg();
2129 LLT Ty = MRI.getType(DefReg);
2130 if (Ty.getSizeInBits() == 64) {
2131 I.getOperand(1).ChangeToRegister(AArch64::XZR, false);
2132 RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
2133 } else if (Ty.getSizeInBits() == 32) {
2134 I.getOperand(1).ChangeToRegister(AArch64::WZR, false);
2135 RBI.constrainGenericRegister(DefReg, AArch64::GPR32RegClass, MRI);
2136 } else
2137 return false;
2138
2139 I.setDesc(TII.get(TargetOpcode::COPY));
2140 return true;
2141 }
2142 default:
2143 return false;
2144 }
2145 }
2146
select(MachineInstr & I)2147 bool AArch64InstructionSelector::select(MachineInstr &I) {
2148 assert(I.getParent() && "Instruction should be in a basic block!");
2149 assert(I.getParent()->getParent() && "Instruction should be in a function!");
2150
2151 MachineBasicBlock &MBB = *I.getParent();
2152 MachineFunction &MF = *MBB.getParent();
2153 MachineRegisterInfo &MRI = MF.getRegInfo();
2154
2155 const AArch64Subtarget *Subtarget =
2156 &static_cast<const AArch64Subtarget &>(MF.getSubtarget());
2157 if (Subtarget->requiresStrictAlign()) {
2158 // We don't support this feature yet.
2159 LLVM_DEBUG(dbgs() << "AArch64 GISel does not support strict-align yet\n");
2160 return false;
2161 }
2162
2163 unsigned Opcode = I.getOpcode();
2164 // G_PHI requires same handling as PHI
2165 if (!I.isPreISelOpcode() || Opcode == TargetOpcode::G_PHI) {
2166 // Certain non-generic instructions also need some special handling.
2167
2168 if (Opcode == TargetOpcode::LOAD_STACK_GUARD)
2169 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2170
2171 if (Opcode == TargetOpcode::PHI || Opcode == TargetOpcode::G_PHI) {
2172 const Register DefReg = I.getOperand(0).getReg();
2173 const LLT DefTy = MRI.getType(DefReg);
2174
2175 const RegClassOrRegBank &RegClassOrBank =
2176 MRI.getRegClassOrRegBank(DefReg);
2177
2178 const TargetRegisterClass *DefRC
2179 = RegClassOrBank.dyn_cast<const TargetRegisterClass *>();
2180 if (!DefRC) {
2181 if (!DefTy.isValid()) {
2182 LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n");
2183 return false;
2184 }
2185 const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>();
2186 DefRC = getRegClassForTypeOnBank(DefTy, RB, RBI);
2187 if (!DefRC) {
2188 LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n");
2189 return false;
2190 }
2191 }
2192
2193 I.setDesc(TII.get(TargetOpcode::PHI));
2194
2195 return RBI.constrainGenericRegister(DefReg, *DefRC, MRI);
2196 }
2197
2198 if (I.isCopy())
2199 return selectCopy(I, TII, MRI, TRI, RBI);
2200
2201 return true;
2202 }
2203
2204
2205 if (I.getNumOperands() != I.getNumExplicitOperands()) {
2206 LLVM_DEBUG(
2207 dbgs() << "Generic instruction has unexpected implicit operands\n");
2208 return false;
2209 }
2210
2211 // Try to do some lowering before we start instruction selecting. These
2212 // lowerings are purely transformations on the input G_MIR and so selection
2213 // must continue after any modification of the instruction.
2214 if (preISelLower(I)) {
2215 Opcode = I.getOpcode(); // The opcode may have been modified, refresh it.
2216 }
2217
2218 // There may be patterns where the importer can't deal with them optimally,
2219 // but does select it to a suboptimal sequence so our custom C++ selection
2220 // code later never has a chance to work on it. Therefore, we have an early
2221 // selection attempt here to give priority to certain selection routines
2222 // over the imported ones.
2223 if (earlySelect(I))
2224 return true;
2225
2226 if (selectImpl(I, *CoverageInfo))
2227 return true;
2228
2229 LLT Ty =
2230 I.getOperand(0).isReg() ? MRI.getType(I.getOperand(0).getReg()) : LLT{};
2231
2232 MachineIRBuilder MIB(I);
2233
2234 switch (Opcode) {
2235 case TargetOpcode::G_BRCOND:
2236 return selectCompareBranch(I, MF, MRI);
2237
2238 case TargetOpcode::G_BRINDIRECT: {
2239 I.setDesc(TII.get(AArch64::BR));
2240 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2241 }
2242
2243 case TargetOpcode::G_BRJT:
2244 return selectBrJT(I, MRI);
2245
2246 case AArch64::G_ADD_LOW: {
2247 // This op may have been separated from it's ADRP companion by the localizer
2248 // or some other code motion pass. Given that many CPUs will try to
2249 // macro fuse these operations anyway, select this into a MOVaddr pseudo
2250 // which will later be expanded into an ADRP+ADD pair after scheduling.
2251 MachineInstr *BaseMI = MRI.getVRegDef(I.getOperand(1).getReg());
2252 if (BaseMI->getOpcode() != AArch64::ADRP) {
2253 I.setDesc(TII.get(AArch64::ADDXri));
2254 I.addOperand(MachineOperand::CreateImm(0));
2255 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2256 }
2257 assert(TM.getCodeModel() == CodeModel::Small &&
2258 "Expected small code model");
2259 MachineIRBuilder MIB(I);
2260 auto Op1 = BaseMI->getOperand(1);
2261 auto Op2 = I.getOperand(2);
2262 auto MovAddr = MIB.buildInstr(AArch64::MOVaddr, {I.getOperand(0)}, {})
2263 .addGlobalAddress(Op1.getGlobal(), Op1.getOffset(),
2264 Op1.getTargetFlags())
2265 .addGlobalAddress(Op2.getGlobal(), Op2.getOffset(),
2266 Op2.getTargetFlags());
2267 I.eraseFromParent();
2268 return constrainSelectedInstRegOperands(*MovAddr, TII, TRI, RBI);
2269 }
2270
2271 case TargetOpcode::G_BSWAP: {
2272 // Handle vector types for G_BSWAP directly.
2273 Register DstReg = I.getOperand(0).getReg();
2274 LLT DstTy = MRI.getType(DstReg);
2275
2276 // We should only get vector types here; everything else is handled by the
2277 // importer right now.
2278 if (!DstTy.isVector() || DstTy.getSizeInBits() > 128) {
2279 LLVM_DEBUG(dbgs() << "Dst type for G_BSWAP currently unsupported.\n");
2280 return false;
2281 }
2282
2283 // Only handle 4 and 2 element vectors for now.
2284 // TODO: 16-bit elements.
2285 unsigned NumElts = DstTy.getNumElements();
2286 if (NumElts != 4 && NumElts != 2) {
2287 LLVM_DEBUG(dbgs() << "Unsupported number of elements for G_BSWAP.\n");
2288 return false;
2289 }
2290
2291 // Choose the correct opcode for the supported types. Right now, that's
2292 // v2s32, v4s32, and v2s64.
2293 unsigned Opc = 0;
2294 unsigned EltSize = DstTy.getElementType().getSizeInBits();
2295 if (EltSize == 32)
2296 Opc = (DstTy.getNumElements() == 2) ? AArch64::REV32v8i8
2297 : AArch64::REV32v16i8;
2298 else if (EltSize == 64)
2299 Opc = AArch64::REV64v16i8;
2300
2301 // We should always get something by the time we get here...
2302 assert(Opc != 0 && "Didn't get an opcode for G_BSWAP?");
2303
2304 I.setDesc(TII.get(Opc));
2305 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2306 }
2307
2308 case TargetOpcode::G_FCONSTANT:
2309 case TargetOpcode::G_CONSTANT: {
2310 const bool isFP = Opcode == TargetOpcode::G_FCONSTANT;
2311
2312 const LLT s8 = LLT::scalar(8);
2313 const LLT s16 = LLT::scalar(16);
2314 const LLT s32 = LLT::scalar(32);
2315 const LLT s64 = LLT::scalar(64);
2316 const LLT s128 = LLT::scalar(128);
2317 const LLT p0 = LLT::pointer(0, 64);
2318
2319 const Register DefReg = I.getOperand(0).getReg();
2320 const LLT DefTy = MRI.getType(DefReg);
2321 const unsigned DefSize = DefTy.getSizeInBits();
2322 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
2323
2324 // FIXME: Redundant check, but even less readable when factored out.
2325 if (isFP) {
2326 if (Ty != s32 && Ty != s64 && Ty != s128) {
2327 LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
2328 << " constant, expected: " << s32 << " or " << s64
2329 << " or " << s128 << '\n');
2330 return false;
2331 }
2332
2333 if (RB.getID() != AArch64::FPRRegBankID) {
2334 LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
2335 << " constant on bank: " << RB
2336 << ", expected: FPR\n");
2337 return false;
2338 }
2339
2340 // The case when we have 0.0 is covered by tablegen. Reject it here so we
2341 // can be sure tablegen works correctly and isn't rescued by this code.
2342 // 0.0 is not covered by tablegen for FP128. So we will handle this
2343 // scenario in the code here.
2344 if (DefSize != 128 && I.getOperand(1).getFPImm()->isExactlyValue(0.0))
2345 return false;
2346 } else {
2347 // s32 and s64 are covered by tablegen.
2348 if (Ty != p0 && Ty != s8 && Ty != s16) {
2349 LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
2350 << " constant, expected: " << s32 << ", " << s64
2351 << ", or " << p0 << '\n');
2352 return false;
2353 }
2354
2355 if (RB.getID() != AArch64::GPRRegBankID) {
2356 LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
2357 << " constant on bank: " << RB
2358 << ", expected: GPR\n");
2359 return false;
2360 }
2361 }
2362
2363 // We allow G_CONSTANT of types < 32b.
2364 const unsigned MovOpc =
2365 DefSize == 64 ? AArch64::MOVi64imm : AArch64::MOVi32imm;
2366
2367 if (isFP) {
2368 // Either emit a FMOV, or emit a copy to emit a normal mov.
2369 const TargetRegisterClass &GPRRC =
2370 DefSize == 32 ? AArch64::GPR32RegClass : AArch64::GPR64RegClass;
2371 const TargetRegisterClass &FPRRC =
2372 DefSize == 32 ? AArch64::FPR32RegClass
2373 : (DefSize == 64 ? AArch64::FPR64RegClass
2374 : AArch64::FPR128RegClass);
2375
2376 // Can we use a FMOV instruction to represent the immediate?
2377 if (emitFMovForFConstant(I, MRI))
2378 return true;
2379
2380 // For 64b values, emit a constant pool load instead.
2381 if (DefSize == 64 || DefSize == 128) {
2382 auto *FPImm = I.getOperand(1).getFPImm();
2383 MachineIRBuilder MIB(I);
2384 auto *LoadMI = emitLoadFromConstantPool(FPImm, MIB);
2385 if (!LoadMI) {
2386 LLVM_DEBUG(dbgs() << "Failed to load double constant pool entry\n");
2387 return false;
2388 }
2389 MIB.buildCopy({DefReg}, {LoadMI->getOperand(0).getReg()});
2390 I.eraseFromParent();
2391 return RBI.constrainGenericRegister(DefReg, FPRRC, MRI);
2392 }
2393
2394 // Nope. Emit a copy and use a normal mov instead.
2395 const Register DefGPRReg = MRI.createVirtualRegister(&GPRRC);
2396 MachineOperand &RegOp = I.getOperand(0);
2397 RegOp.setReg(DefGPRReg);
2398 MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
2399 MIB.buildCopy({DefReg}, {DefGPRReg});
2400
2401 if (!RBI.constrainGenericRegister(DefReg, FPRRC, MRI)) {
2402 LLVM_DEBUG(dbgs() << "Failed to constrain G_FCONSTANT def operand\n");
2403 return false;
2404 }
2405
2406 MachineOperand &ImmOp = I.getOperand(1);
2407 // FIXME: Is going through int64_t always correct?
2408 ImmOp.ChangeToImmediate(
2409 ImmOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue());
2410 } else if (I.getOperand(1).isCImm()) {
2411 uint64_t Val = I.getOperand(1).getCImm()->getZExtValue();
2412 I.getOperand(1).ChangeToImmediate(Val);
2413 } else if (I.getOperand(1).isImm()) {
2414 uint64_t Val = I.getOperand(1).getImm();
2415 I.getOperand(1).ChangeToImmediate(Val);
2416 }
2417
2418 I.setDesc(TII.get(MovOpc));
2419 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2420 return true;
2421 }
2422 case TargetOpcode::G_EXTRACT: {
2423 Register DstReg = I.getOperand(0).getReg();
2424 Register SrcReg = I.getOperand(1).getReg();
2425 LLT SrcTy = MRI.getType(SrcReg);
2426 LLT DstTy = MRI.getType(DstReg);
2427 (void)DstTy;
2428 unsigned SrcSize = SrcTy.getSizeInBits();
2429
2430 if (SrcTy.getSizeInBits() > 64) {
2431 // This should be an extract of an s128, which is like a vector extract.
2432 if (SrcTy.getSizeInBits() != 128)
2433 return false;
2434 // Only support extracting 64 bits from an s128 at the moment.
2435 if (DstTy.getSizeInBits() != 64)
2436 return false;
2437
2438 const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
2439 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
2440 // Check we have the right regbank always.
2441 assert(SrcRB.getID() == AArch64::FPRRegBankID &&
2442 DstRB.getID() == AArch64::FPRRegBankID &&
2443 "Wrong extract regbank!");
2444 (void)SrcRB;
2445
2446 // Emit the same code as a vector extract.
2447 // Offset must be a multiple of 64.
2448 unsigned Offset = I.getOperand(2).getImm();
2449 if (Offset % 64 != 0)
2450 return false;
2451 unsigned LaneIdx = Offset / 64;
2452 MachineIRBuilder MIB(I);
2453 MachineInstr *Extract = emitExtractVectorElt(
2454 DstReg, DstRB, LLT::scalar(64), SrcReg, LaneIdx, MIB);
2455 if (!Extract)
2456 return false;
2457 I.eraseFromParent();
2458 return true;
2459 }
2460
2461 I.setDesc(TII.get(SrcSize == 64 ? AArch64::UBFMXri : AArch64::UBFMWri));
2462 MachineInstrBuilder(MF, I).addImm(I.getOperand(2).getImm() +
2463 Ty.getSizeInBits() - 1);
2464
2465 if (SrcSize < 64) {
2466 assert(SrcSize == 32 && DstTy.getSizeInBits() == 16 &&
2467 "unexpected G_EXTRACT types");
2468 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2469 }
2470
2471 DstReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
2472 MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
2473 MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
2474 .addReg(DstReg, 0, AArch64::sub_32);
2475 RBI.constrainGenericRegister(I.getOperand(0).getReg(),
2476 AArch64::GPR32RegClass, MRI);
2477 I.getOperand(0).setReg(DstReg);
2478
2479 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2480 }
2481
2482 case TargetOpcode::G_INSERT: {
2483 LLT SrcTy = MRI.getType(I.getOperand(2).getReg());
2484 LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2485 unsigned DstSize = DstTy.getSizeInBits();
2486 // Larger inserts are vectors, same-size ones should be something else by
2487 // now (split up or turned into COPYs).
2488 if (Ty.getSizeInBits() > 64 || SrcTy.getSizeInBits() > 32)
2489 return false;
2490
2491 I.setDesc(TII.get(DstSize == 64 ? AArch64::BFMXri : AArch64::BFMWri));
2492 unsigned LSB = I.getOperand(3).getImm();
2493 unsigned Width = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
2494 I.getOperand(3).setImm((DstSize - LSB) % DstSize);
2495 MachineInstrBuilder(MF, I).addImm(Width - 1);
2496
2497 if (DstSize < 64) {
2498 assert(DstSize == 32 && SrcTy.getSizeInBits() == 16 &&
2499 "unexpected G_INSERT types");
2500 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2501 }
2502
2503 Register SrcReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
2504 BuildMI(MBB, I.getIterator(), I.getDebugLoc(),
2505 TII.get(AArch64::SUBREG_TO_REG))
2506 .addDef(SrcReg)
2507 .addImm(0)
2508 .addUse(I.getOperand(2).getReg())
2509 .addImm(AArch64::sub_32);
2510 RBI.constrainGenericRegister(I.getOperand(2).getReg(),
2511 AArch64::GPR32RegClass, MRI);
2512 I.getOperand(2).setReg(SrcReg);
2513
2514 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2515 }
2516 case TargetOpcode::G_FRAME_INDEX: {
2517 // allocas and G_FRAME_INDEX are only supported in addrspace(0).
2518 if (Ty != LLT::pointer(0, 64)) {
2519 LLVM_DEBUG(dbgs() << "G_FRAME_INDEX pointer has type: " << Ty
2520 << ", expected: " << LLT::pointer(0, 64) << '\n');
2521 return false;
2522 }
2523 I.setDesc(TII.get(AArch64::ADDXri));
2524
2525 // MOs for a #0 shifted immediate.
2526 I.addOperand(MachineOperand::CreateImm(0));
2527 I.addOperand(MachineOperand::CreateImm(0));
2528
2529 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2530 }
2531
2532 case TargetOpcode::G_GLOBAL_VALUE: {
2533 auto GV = I.getOperand(1).getGlobal();
2534 if (GV->isThreadLocal())
2535 return selectTLSGlobalValue(I, MRI);
2536
2537 unsigned OpFlags = STI.ClassifyGlobalReference(GV, TM);
2538 if (OpFlags & AArch64II::MO_GOT) {
2539 I.setDesc(TII.get(AArch64::LOADgot));
2540 I.getOperand(1).setTargetFlags(OpFlags);
2541 } else if (TM.getCodeModel() == CodeModel::Large) {
2542 // Materialize the global using movz/movk instructions.
2543 materializeLargeCMVal(I, GV, OpFlags);
2544 I.eraseFromParent();
2545 return true;
2546 } else if (TM.getCodeModel() == CodeModel::Tiny) {
2547 I.setDesc(TII.get(AArch64::ADR));
2548 I.getOperand(1).setTargetFlags(OpFlags);
2549 } else {
2550 I.setDesc(TII.get(AArch64::MOVaddr));
2551 I.getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_PAGE);
2552 MachineInstrBuilder MIB(MF, I);
2553 MIB.addGlobalAddress(GV, I.getOperand(1).getOffset(),
2554 OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
2555 }
2556 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2557 }
2558
2559 case TargetOpcode::G_ZEXTLOAD:
2560 case TargetOpcode::G_LOAD:
2561 case TargetOpcode::G_STORE: {
2562 bool IsZExtLoad = I.getOpcode() == TargetOpcode::G_ZEXTLOAD;
2563 MachineIRBuilder MIB(I);
2564
2565 LLT PtrTy = MRI.getType(I.getOperand(1).getReg());
2566
2567 if (PtrTy != LLT::pointer(0, 64)) {
2568 LLVM_DEBUG(dbgs() << "Load/Store pointer has type: " << PtrTy
2569 << ", expected: " << LLT::pointer(0, 64) << '\n');
2570 return false;
2571 }
2572
2573 auto &MemOp = **I.memoperands_begin();
2574 uint64_t MemSizeInBytes = MemOp.getSize();
2575 if (MemOp.isAtomic()) {
2576 // For now we just support s8 acquire loads to be able to compile stack
2577 // protector code.
2578 if (MemOp.getOrdering() == AtomicOrdering::Acquire &&
2579 MemSizeInBytes == 1) {
2580 I.setDesc(TII.get(AArch64::LDARB));
2581 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2582 }
2583 LLVM_DEBUG(dbgs() << "Atomic load/store not fully supported yet\n");
2584 return false;
2585 }
2586 unsigned MemSizeInBits = MemSizeInBytes * 8;
2587
2588 #ifndef NDEBUG
2589 const Register PtrReg = I.getOperand(1).getReg();
2590 const RegisterBank &PtrRB = *RBI.getRegBank(PtrReg, MRI, TRI);
2591 // Sanity-check the pointer register.
2592 assert(PtrRB.getID() == AArch64::GPRRegBankID &&
2593 "Load/Store pointer operand isn't a GPR");
2594 assert(MRI.getType(PtrReg).isPointer() &&
2595 "Load/Store pointer operand isn't a pointer");
2596 #endif
2597
2598 const Register ValReg = I.getOperand(0).getReg();
2599 const RegisterBank &RB = *RBI.getRegBank(ValReg, MRI, TRI);
2600
2601 // Helper lambda for partially selecting I. Either returns the original
2602 // instruction with an updated opcode, or a new instruction.
2603 auto SelectLoadStoreAddressingMode = [&]() -> MachineInstr * {
2604 bool IsStore = I.getOpcode() == TargetOpcode::G_STORE;
2605 const unsigned NewOpc =
2606 selectLoadStoreUIOp(I.getOpcode(), RB.getID(), MemSizeInBits);
2607 if (NewOpc == I.getOpcode())
2608 return nullptr;
2609 // Check if we can fold anything into the addressing mode.
2610 auto AddrModeFns =
2611 selectAddrModeIndexed(I.getOperand(1), MemSizeInBytes);
2612 if (!AddrModeFns) {
2613 // Can't fold anything. Use the original instruction.
2614 I.setDesc(TII.get(NewOpc));
2615 I.addOperand(MachineOperand::CreateImm(0));
2616 return &I;
2617 }
2618
2619 // Folded something. Create a new instruction and return it.
2620 auto NewInst = MIB.buildInstr(NewOpc, {}, {}, I.getFlags());
2621 IsStore ? NewInst.addUse(ValReg) : NewInst.addDef(ValReg);
2622 NewInst.cloneMemRefs(I);
2623 for (auto &Fn : *AddrModeFns)
2624 Fn(NewInst);
2625 I.eraseFromParent();
2626 return &*NewInst;
2627 };
2628
2629 MachineInstr *LoadStore = SelectLoadStoreAddressingMode();
2630 if (!LoadStore)
2631 return false;
2632
2633 // If we're storing a 0, use WZR/XZR.
2634 if (Opcode == TargetOpcode::G_STORE) {
2635 auto CVal = getConstantVRegValWithLookThrough(
2636 LoadStore->getOperand(0).getReg(), MRI, /*LookThroughInstrs = */ true,
2637 /*HandleFConstants = */ false);
2638 if (CVal && CVal->Value == 0) {
2639 switch (LoadStore->getOpcode()) {
2640 case AArch64::STRWui:
2641 case AArch64::STRHHui:
2642 case AArch64::STRBBui:
2643 LoadStore->getOperand(0).setReg(AArch64::WZR);
2644 break;
2645 case AArch64::STRXui:
2646 LoadStore->getOperand(0).setReg(AArch64::XZR);
2647 break;
2648 }
2649 }
2650 }
2651
2652 if (IsZExtLoad) {
2653 // The zextload from a smaller type to i32 should be handled by the
2654 // importer.
2655 if (MRI.getType(LoadStore->getOperand(0).getReg()).getSizeInBits() != 64)
2656 return false;
2657 // If we have a ZEXTLOAD then change the load's type to be a narrower reg
2658 // and zero_extend with SUBREG_TO_REG.
2659 Register LdReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
2660 Register DstReg = LoadStore->getOperand(0).getReg();
2661 LoadStore->getOperand(0).setReg(LdReg);
2662
2663 MIB.setInsertPt(MIB.getMBB(), std::next(LoadStore->getIterator()));
2664 MIB.buildInstr(AArch64::SUBREG_TO_REG, {DstReg}, {})
2665 .addImm(0)
2666 .addUse(LdReg)
2667 .addImm(AArch64::sub_32);
2668 constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI);
2669 return RBI.constrainGenericRegister(DstReg, AArch64::GPR64allRegClass,
2670 MRI);
2671 }
2672 return constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI);
2673 }
2674
2675 case TargetOpcode::G_SMULH:
2676 case TargetOpcode::G_UMULH: {
2677 // Reject the various things we don't support yet.
2678 if (unsupportedBinOp(I, RBI, MRI, TRI))
2679 return false;
2680
2681 const Register DefReg = I.getOperand(0).getReg();
2682 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
2683
2684 if (RB.getID() != AArch64::GPRRegBankID) {
2685 LLVM_DEBUG(dbgs() << "G_[SU]MULH on bank: " << RB << ", expected: GPR\n");
2686 return false;
2687 }
2688
2689 if (Ty != LLT::scalar(64)) {
2690 LLVM_DEBUG(dbgs() << "G_[SU]MULH has type: " << Ty
2691 << ", expected: " << LLT::scalar(64) << '\n');
2692 return false;
2693 }
2694
2695 unsigned NewOpc = I.getOpcode() == TargetOpcode::G_SMULH ? AArch64::SMULHrr
2696 : AArch64::UMULHrr;
2697 I.setDesc(TII.get(NewOpc));
2698
2699 // Now that we selected an opcode, we need to constrain the register
2700 // operands to use appropriate classes.
2701 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2702 }
2703 case TargetOpcode::G_LSHR:
2704 case TargetOpcode::G_ASHR:
2705 if (MRI.getType(I.getOperand(0).getReg()).isVector())
2706 return selectVectorAshrLshr(I, MRI);
2707 LLVM_FALLTHROUGH;
2708 case TargetOpcode::G_SHL:
2709 if (Opcode == TargetOpcode::G_SHL &&
2710 MRI.getType(I.getOperand(0).getReg()).isVector())
2711 return selectVectorSHL(I, MRI);
2712 LLVM_FALLTHROUGH;
2713 case TargetOpcode::G_FADD:
2714 case TargetOpcode::G_FSUB:
2715 case TargetOpcode::G_FMUL:
2716 case TargetOpcode::G_FDIV:
2717 case TargetOpcode::G_OR: {
2718 // Reject the various things we don't support yet.
2719 if (unsupportedBinOp(I, RBI, MRI, TRI))
2720 return false;
2721
2722 const unsigned OpSize = Ty.getSizeInBits();
2723
2724 const Register DefReg = I.getOperand(0).getReg();
2725 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
2726
2727 const unsigned NewOpc = selectBinaryOp(I.getOpcode(), RB.getID(), OpSize);
2728 if (NewOpc == I.getOpcode())
2729 return false;
2730
2731 I.setDesc(TII.get(NewOpc));
2732 // FIXME: Should the type be always reset in setDesc?
2733
2734 // Now that we selected an opcode, we need to constrain the register
2735 // operands to use appropriate classes.
2736 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2737 }
2738
2739 case TargetOpcode::G_PTR_ADD: {
2740 MachineIRBuilder MIRBuilder(I);
2741 emitADD(I.getOperand(0).getReg(), I.getOperand(1), I.getOperand(2),
2742 MIRBuilder);
2743 I.eraseFromParent();
2744 return true;
2745 }
2746 case TargetOpcode::G_SADDO:
2747 case TargetOpcode::G_UADDO:
2748 case TargetOpcode::G_SSUBO:
2749 case TargetOpcode::G_USUBO: {
2750 // Emit the operation and get the correct condition code.
2751 MachineIRBuilder MIRBuilder(I);
2752 auto OpAndCC = emitOverflowOp(Opcode, I.getOperand(0).getReg(),
2753 I.getOperand(2), I.getOperand(3), MIRBuilder);
2754
2755 // Now, put the overflow result in the register given by the first operand
2756 // to the overflow op. CSINC increments the result when the predicate is
2757 // false, so to get the increment when it's true, we need to use the
2758 // inverse. In this case, we want to increment when carry is set.
2759 Register ZReg = AArch64::WZR;
2760 auto CsetMI = MIRBuilder
2761 .buildInstr(AArch64::CSINCWr, {I.getOperand(1).getReg()},
2762 {ZReg, ZReg})
2763 .addImm(getInvertedCondCode(OpAndCC.second));
2764 constrainSelectedInstRegOperands(*CsetMI, TII, TRI, RBI);
2765 I.eraseFromParent();
2766 return true;
2767 }
2768
2769 case TargetOpcode::G_PTRMASK: {
2770 Register MaskReg = I.getOperand(2).getReg();
2771 Optional<int64_t> MaskVal = getConstantVRegSExtVal(MaskReg, MRI);
2772 // TODO: Implement arbitrary cases
2773 if (!MaskVal || !isShiftedMask_64(*MaskVal))
2774 return false;
2775
2776 uint64_t Mask = *MaskVal;
2777 I.setDesc(TII.get(AArch64::ANDXri));
2778 I.getOperand(2).ChangeToImmediate(
2779 AArch64_AM::encodeLogicalImmediate(Mask, 64));
2780
2781 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2782 }
2783 case TargetOpcode::G_PTRTOINT:
2784 case TargetOpcode::G_TRUNC: {
2785 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2786 const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
2787
2788 const Register DstReg = I.getOperand(0).getReg();
2789 const Register SrcReg = I.getOperand(1).getReg();
2790
2791 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
2792 const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
2793
2794 if (DstRB.getID() != SrcRB.getID()) {
2795 LLVM_DEBUG(
2796 dbgs() << "G_TRUNC/G_PTRTOINT input/output on different banks\n");
2797 return false;
2798 }
2799
2800 if (DstRB.getID() == AArch64::GPRRegBankID) {
2801 const TargetRegisterClass *DstRC =
2802 getRegClassForTypeOnBank(DstTy, DstRB, RBI);
2803 if (!DstRC)
2804 return false;
2805
2806 const TargetRegisterClass *SrcRC =
2807 getRegClassForTypeOnBank(SrcTy, SrcRB, RBI);
2808 if (!SrcRC)
2809 return false;
2810
2811 if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
2812 !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
2813 LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC/G_PTRTOINT\n");
2814 return false;
2815 }
2816
2817 if (DstRC == SrcRC) {
2818 // Nothing to be done
2819 } else if (Opcode == TargetOpcode::G_TRUNC && DstTy == LLT::scalar(32) &&
2820 SrcTy == LLT::scalar(64)) {
2821 llvm_unreachable("TableGen can import this case");
2822 return false;
2823 } else if (DstRC == &AArch64::GPR32RegClass &&
2824 SrcRC == &AArch64::GPR64RegClass) {
2825 I.getOperand(1).setSubReg(AArch64::sub_32);
2826 } else {
2827 LLVM_DEBUG(
2828 dbgs() << "Unhandled mismatched classes in G_TRUNC/G_PTRTOINT\n");
2829 return false;
2830 }
2831
2832 I.setDesc(TII.get(TargetOpcode::COPY));
2833 return true;
2834 } else if (DstRB.getID() == AArch64::FPRRegBankID) {
2835 if (DstTy == LLT::vector(4, 16) && SrcTy == LLT::vector(4, 32)) {
2836 I.setDesc(TII.get(AArch64::XTNv4i16));
2837 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2838 return true;
2839 }
2840
2841 if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128) {
2842 MachineIRBuilder MIB(I);
2843 MachineInstr *Extract = emitExtractVectorElt(
2844 DstReg, DstRB, LLT::scalar(DstTy.getSizeInBits()), SrcReg, 0, MIB);
2845 if (!Extract)
2846 return false;
2847 I.eraseFromParent();
2848 return true;
2849 }
2850
2851 // We might have a vector G_PTRTOINT, in which case just emit a COPY.
2852 if (Opcode == TargetOpcode::G_PTRTOINT) {
2853 assert(DstTy.isVector() && "Expected an FPR ptrtoint to be a vector");
2854 I.setDesc(TII.get(TargetOpcode::COPY));
2855 return true;
2856 }
2857 }
2858
2859 return false;
2860 }
2861
2862 case TargetOpcode::G_ANYEXT: {
2863 const Register DstReg = I.getOperand(0).getReg();
2864 const Register SrcReg = I.getOperand(1).getReg();
2865
2866 const RegisterBank &RBDst = *RBI.getRegBank(DstReg, MRI, TRI);
2867 if (RBDst.getID() != AArch64::GPRRegBankID) {
2868 LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBDst
2869 << ", expected: GPR\n");
2870 return false;
2871 }
2872
2873 const RegisterBank &RBSrc = *RBI.getRegBank(SrcReg, MRI, TRI);
2874 if (RBSrc.getID() != AArch64::GPRRegBankID) {
2875 LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBSrc
2876 << ", expected: GPR\n");
2877 return false;
2878 }
2879
2880 const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
2881
2882 if (DstSize == 0) {
2883 LLVM_DEBUG(dbgs() << "G_ANYEXT operand has no size, not a gvreg?\n");
2884 return false;
2885 }
2886
2887 if (DstSize != 64 && DstSize > 32) {
2888 LLVM_DEBUG(dbgs() << "G_ANYEXT to size: " << DstSize
2889 << ", expected: 32 or 64\n");
2890 return false;
2891 }
2892 // At this point G_ANYEXT is just like a plain COPY, but we need
2893 // to explicitly form the 64-bit value if any.
2894 if (DstSize > 32) {
2895 Register ExtSrc = MRI.createVirtualRegister(&AArch64::GPR64allRegClass);
2896 BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::SUBREG_TO_REG))
2897 .addDef(ExtSrc)
2898 .addImm(0)
2899 .addUse(SrcReg)
2900 .addImm(AArch64::sub_32);
2901 I.getOperand(1).setReg(ExtSrc);
2902 }
2903 return selectCopy(I, TII, MRI, TRI, RBI);
2904 }
2905
2906 case TargetOpcode::G_ZEXT:
2907 case TargetOpcode::G_SEXT_INREG:
2908 case TargetOpcode::G_SEXT: {
2909 unsigned Opcode = I.getOpcode();
2910 const bool IsSigned = Opcode != TargetOpcode::G_ZEXT;
2911 const Register DefReg = I.getOperand(0).getReg();
2912 Register SrcReg = I.getOperand(1).getReg();
2913 const LLT DstTy = MRI.getType(DefReg);
2914 const LLT SrcTy = MRI.getType(SrcReg);
2915 unsigned DstSize = DstTy.getSizeInBits();
2916 unsigned SrcSize = SrcTy.getSizeInBits();
2917
2918 // SEXT_INREG has the same src reg size as dst, the size of the value to be
2919 // extended is encoded in the imm.
2920 if (Opcode == TargetOpcode::G_SEXT_INREG)
2921 SrcSize = I.getOperand(2).getImm();
2922
2923 if (DstTy.isVector())
2924 return false; // Should be handled by imported patterns.
2925
2926 assert((*RBI.getRegBank(DefReg, MRI, TRI)).getID() ==
2927 AArch64::GPRRegBankID &&
2928 "Unexpected ext regbank");
2929
2930 MachineIRBuilder MIB(I);
2931 MachineInstr *ExtI;
2932
2933 // First check if we're extending the result of a load which has a dest type
2934 // smaller than 32 bits, then this zext is redundant. GPR32 is the smallest
2935 // GPR register on AArch64 and all loads which are smaller automatically
2936 // zero-extend the upper bits. E.g.
2937 // %v(s8) = G_LOAD %p, :: (load 1)
2938 // %v2(s32) = G_ZEXT %v(s8)
2939 if (!IsSigned) {
2940 auto *LoadMI = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI);
2941 bool IsGPR =
2942 RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::GPRRegBankID;
2943 if (LoadMI && IsGPR) {
2944 const MachineMemOperand *MemOp = *LoadMI->memoperands_begin();
2945 unsigned BytesLoaded = MemOp->getSize();
2946 if (BytesLoaded < 4 && SrcTy.getSizeInBytes() == BytesLoaded)
2947 return selectCopy(I, TII, MRI, TRI, RBI);
2948 }
2949
2950 // If we are zero extending from 32 bits to 64 bits, it's possible that
2951 // the instruction implicitly does the zero extend for us. In that case,
2952 // we can just emit a SUBREG_TO_REG.
2953 if (IsGPR && SrcSize == 32 && DstSize == 64) {
2954 // Unlike with the G_LOAD case, we don't want to look through copies
2955 // here.
2956 MachineInstr *Def = MRI.getVRegDef(SrcReg);
2957 if (Def && isDef32(*Def)) {
2958 MIB.buildInstr(AArch64::SUBREG_TO_REG, {DefReg}, {})
2959 .addImm(0)
2960 .addUse(SrcReg)
2961 .addImm(AArch64::sub_32);
2962
2963 if (!RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass,
2964 MRI)) {
2965 LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT destination\n");
2966 return false;
2967 }
2968
2969 if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass,
2970 MRI)) {
2971 LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT source\n");
2972 return false;
2973 }
2974
2975 I.eraseFromParent();
2976 return true;
2977 }
2978 }
2979 }
2980
2981 if (DstSize == 64) {
2982 if (Opcode != TargetOpcode::G_SEXT_INREG) {
2983 // FIXME: Can we avoid manually doing this?
2984 if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass,
2985 MRI)) {
2986 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(Opcode)
2987 << " operand\n");
2988 return false;
2989 }
2990 SrcReg = MIB.buildInstr(AArch64::SUBREG_TO_REG,
2991 {&AArch64::GPR64RegClass}, {})
2992 .addImm(0)
2993 .addUse(SrcReg)
2994 .addImm(AArch64::sub_32)
2995 .getReg(0);
2996 }
2997
2998 ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMXri : AArch64::UBFMXri,
2999 {DefReg}, {SrcReg})
3000 .addImm(0)
3001 .addImm(SrcSize - 1);
3002 } else if (DstSize <= 32) {
3003 ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMWri : AArch64::UBFMWri,
3004 {DefReg}, {SrcReg})
3005 .addImm(0)
3006 .addImm(SrcSize - 1);
3007 } else {
3008 return false;
3009 }
3010
3011 constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
3012 I.eraseFromParent();
3013 return true;
3014 }
3015
3016 case TargetOpcode::G_SITOFP:
3017 case TargetOpcode::G_UITOFP:
3018 case TargetOpcode::G_FPTOSI:
3019 case TargetOpcode::G_FPTOUI: {
3020 const LLT DstTy = MRI.getType(I.getOperand(0).getReg()),
3021 SrcTy = MRI.getType(I.getOperand(1).getReg());
3022 const unsigned NewOpc = selectFPConvOpc(Opcode, DstTy, SrcTy);
3023 if (NewOpc == Opcode)
3024 return false;
3025
3026 I.setDesc(TII.get(NewOpc));
3027 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3028
3029 return true;
3030 }
3031
3032 case TargetOpcode::G_FREEZE:
3033 return selectCopy(I, TII, MRI, TRI, RBI);
3034
3035 case TargetOpcode::G_INTTOPTR:
3036 // The importer is currently unable to import pointer types since they
3037 // didn't exist in SelectionDAG.
3038 return selectCopy(I, TII, MRI, TRI, RBI);
3039
3040 case TargetOpcode::G_BITCAST:
3041 // Imported SelectionDAG rules can handle every bitcast except those that
3042 // bitcast from a type to the same type. Ideally, these shouldn't occur
3043 // but we might not run an optimizer that deletes them. The other exception
3044 // is bitcasts involving pointer types, as SelectionDAG has no knowledge
3045 // of them.
3046 return selectCopy(I, TII, MRI, TRI, RBI);
3047
3048 case TargetOpcode::G_SELECT: {
3049 if (MRI.getType(I.getOperand(1).getReg()) != LLT::scalar(1)) {
3050 LLVM_DEBUG(dbgs() << "G_SELECT cond has type: " << Ty
3051 << ", expected: " << LLT::scalar(1) << '\n');
3052 return false;
3053 }
3054
3055 const Register CondReg = I.getOperand(1).getReg();
3056 const Register TReg = I.getOperand(2).getReg();
3057 const Register FReg = I.getOperand(3).getReg();
3058
3059 if (tryOptSelect(I))
3060 return true;
3061
3062 // Make sure to use an unused vreg instead of wzr, so that the peephole
3063 // optimizations will be able to optimize these.
3064 MachineIRBuilder MIB(I);
3065 Register DeadVReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
3066 auto TstMI = MIB.buildInstr(AArch64::ANDSWri, {DeadVReg}, {CondReg})
3067 .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
3068 constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
3069 if (!emitSelect(I.getOperand(0).getReg(), TReg, FReg, AArch64CC::NE, MIB))
3070 return false;
3071 I.eraseFromParent();
3072 return true;
3073 }
3074 case TargetOpcode::G_ICMP: {
3075 if (Ty.isVector())
3076 return selectVectorICmp(I, MRI);
3077
3078 if (Ty != LLT::scalar(32)) {
3079 LLVM_DEBUG(dbgs() << "G_ICMP result has type: " << Ty
3080 << ", expected: " << LLT::scalar(32) << '\n');
3081 return false;
3082 }
3083
3084 MachineIRBuilder MIRBuilder(I);
3085 auto Pred = static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate());
3086 emitIntegerCompare(I.getOperand(2), I.getOperand(3), I.getOperand(1),
3087 MIRBuilder);
3088 emitCSetForICMP(I.getOperand(0).getReg(), Pred, MIRBuilder);
3089 I.eraseFromParent();
3090 return true;
3091 }
3092
3093 case TargetOpcode::G_FCMP: {
3094 MachineIRBuilder MIRBuilder(I);
3095 CmpInst::Predicate Pred =
3096 static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate());
3097 if (!emitFPCompare(I.getOperand(2).getReg(), I.getOperand(3).getReg(),
3098 MIRBuilder, Pred) ||
3099 !emitCSetForFCmp(I.getOperand(0).getReg(), Pred, MIRBuilder))
3100 return false;
3101 I.eraseFromParent();
3102 return true;
3103 }
3104 case TargetOpcode::G_VASTART:
3105 return STI.isTargetDarwin() ? selectVaStartDarwin(I, MF, MRI)
3106 : selectVaStartAAPCS(I, MF, MRI);
3107 case TargetOpcode::G_INTRINSIC:
3108 return selectIntrinsic(I, MRI);
3109 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
3110 return selectIntrinsicWithSideEffects(I, MRI);
3111 case TargetOpcode::G_IMPLICIT_DEF: {
3112 I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF));
3113 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3114 const Register DstReg = I.getOperand(0).getReg();
3115 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
3116 const TargetRegisterClass *DstRC =
3117 getRegClassForTypeOnBank(DstTy, DstRB, RBI);
3118 RBI.constrainGenericRegister(DstReg, *DstRC, MRI);
3119 return true;
3120 }
3121 case TargetOpcode::G_BLOCK_ADDR: {
3122 if (TM.getCodeModel() == CodeModel::Large) {
3123 materializeLargeCMVal(I, I.getOperand(1).getBlockAddress(), 0);
3124 I.eraseFromParent();
3125 return true;
3126 } else {
3127 I.setDesc(TII.get(AArch64::MOVaddrBA));
3128 auto MovMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::MOVaddrBA),
3129 I.getOperand(0).getReg())
3130 .addBlockAddress(I.getOperand(1).getBlockAddress(),
3131 /* Offset */ 0, AArch64II::MO_PAGE)
3132 .addBlockAddress(
3133 I.getOperand(1).getBlockAddress(), /* Offset */ 0,
3134 AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
3135 I.eraseFromParent();
3136 return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
3137 }
3138 }
3139 case AArch64::G_DUP: {
3140 // When the scalar of G_DUP is an s8/s16 gpr, they can't be selected by
3141 // imported patterns. Do it manually here. Avoiding generating s16 gpr is
3142 // difficult because at RBS we may end up pessimizing the fpr case if we
3143 // decided to add an anyextend to fix this. Manual selection is the most
3144 // robust solution for now.
3145 Register SrcReg = I.getOperand(1).getReg();
3146 if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() != AArch64::GPRRegBankID)
3147 return false; // We expect the fpr regbank case to be imported.
3148 LLT SrcTy = MRI.getType(SrcReg);
3149 if (SrcTy.getSizeInBits() == 16)
3150 I.setDesc(TII.get(AArch64::DUPv8i16gpr));
3151 else if (SrcTy.getSizeInBits() == 8)
3152 I.setDesc(TII.get(AArch64::DUPv16i8gpr));
3153 else
3154 return false;
3155 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3156 }
3157 case TargetOpcode::G_INTRINSIC_TRUNC:
3158 return selectIntrinsicTrunc(I, MRI);
3159 case TargetOpcode::G_INTRINSIC_ROUND:
3160 return selectIntrinsicRound(I, MRI);
3161 case TargetOpcode::G_BUILD_VECTOR:
3162 return selectBuildVector(I, MRI);
3163 case TargetOpcode::G_MERGE_VALUES:
3164 return selectMergeValues(I, MRI);
3165 case TargetOpcode::G_UNMERGE_VALUES:
3166 return selectUnmergeValues(I, MRI);
3167 case TargetOpcode::G_SHUFFLE_VECTOR:
3168 return selectShuffleVector(I, MRI);
3169 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3170 return selectExtractElt(I, MRI);
3171 case TargetOpcode::G_INSERT_VECTOR_ELT:
3172 return selectInsertElt(I, MRI);
3173 case TargetOpcode::G_CONCAT_VECTORS:
3174 return selectConcatVectors(I, MRI);
3175 case TargetOpcode::G_JUMP_TABLE:
3176 return selectJumpTable(I, MRI);
3177 case TargetOpcode::G_VECREDUCE_FADD:
3178 case TargetOpcode::G_VECREDUCE_ADD:
3179 return selectReduction(I, MRI);
3180 }
3181
3182 return false;
3183 }
3184
selectReduction(MachineInstr & I,MachineRegisterInfo & MRI) const3185 bool AArch64InstructionSelector::selectReduction(
3186 MachineInstr &I, MachineRegisterInfo &MRI) const {
3187 Register VecReg = I.getOperand(1).getReg();
3188 LLT VecTy = MRI.getType(VecReg);
3189 if (I.getOpcode() == TargetOpcode::G_VECREDUCE_ADD) {
3190 unsigned Opc = 0;
3191 if (VecTy == LLT::vector(16, 8))
3192 Opc = AArch64::ADDVv16i8v;
3193 else if (VecTy == LLT::vector(8, 16))
3194 Opc = AArch64::ADDVv8i16v;
3195 else if (VecTy == LLT::vector(4, 32))
3196 Opc = AArch64::ADDVv4i32v;
3197 else if (VecTy == LLT::vector(2, 64))
3198 Opc = AArch64::ADDPv2i64p;
3199 else {
3200 LLVM_DEBUG(dbgs() << "Unhandled type for add reduction");
3201 return false;
3202 }
3203 I.setDesc(TII.get(Opc));
3204 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3205 }
3206
3207 if (I.getOpcode() == TargetOpcode::G_VECREDUCE_FADD) {
3208 unsigned Opc = 0;
3209 if (VecTy == LLT::vector(2, 32))
3210 Opc = AArch64::FADDPv2i32p;
3211 else if (VecTy == LLT::vector(2, 64))
3212 Opc = AArch64::FADDPv2i64p;
3213 else {
3214 LLVM_DEBUG(dbgs() << "Unhandled type for fadd reduction");
3215 return false;
3216 }
3217 I.setDesc(TII.get(Opc));
3218 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3219 }
3220 return false;
3221 }
3222
selectBrJT(MachineInstr & I,MachineRegisterInfo & MRI) const3223 bool AArch64InstructionSelector::selectBrJT(MachineInstr &I,
3224 MachineRegisterInfo &MRI) const {
3225 assert(I.getOpcode() == TargetOpcode::G_BRJT && "Expected G_BRJT");
3226 Register JTAddr = I.getOperand(0).getReg();
3227 unsigned JTI = I.getOperand(1).getIndex();
3228 Register Index = I.getOperand(2).getReg();
3229 MachineIRBuilder MIB(I);
3230
3231 Register TargetReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
3232 Register ScratchReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
3233
3234 MF->getInfo<AArch64FunctionInfo>()->setJumpTableEntryInfo(JTI, 4, nullptr);
3235 auto JumpTableInst = MIB.buildInstr(AArch64::JumpTableDest32,
3236 {TargetReg, ScratchReg}, {JTAddr, Index})
3237 .addJumpTableIndex(JTI);
3238 // Build the indirect branch.
3239 MIB.buildInstr(AArch64::BR, {}, {TargetReg});
3240 I.eraseFromParent();
3241 return constrainSelectedInstRegOperands(*JumpTableInst, TII, TRI, RBI);
3242 }
3243
selectJumpTable(MachineInstr & I,MachineRegisterInfo & MRI) const3244 bool AArch64InstructionSelector::selectJumpTable(
3245 MachineInstr &I, MachineRegisterInfo &MRI) const {
3246 assert(I.getOpcode() == TargetOpcode::G_JUMP_TABLE && "Expected jump table");
3247 assert(I.getOperand(1).isJTI() && "Jump table op should have a JTI!");
3248
3249 Register DstReg = I.getOperand(0).getReg();
3250 unsigned JTI = I.getOperand(1).getIndex();
3251 // We generate a MOVaddrJT which will get expanded to an ADRP + ADD later.
3252 MachineIRBuilder MIB(I);
3253 auto MovMI =
3254 MIB.buildInstr(AArch64::MOVaddrJT, {DstReg}, {})
3255 .addJumpTableIndex(JTI, AArch64II::MO_PAGE)
3256 .addJumpTableIndex(JTI, AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
3257 I.eraseFromParent();
3258 return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
3259 }
3260
selectTLSGlobalValue(MachineInstr & I,MachineRegisterInfo & MRI) const3261 bool AArch64InstructionSelector::selectTLSGlobalValue(
3262 MachineInstr &I, MachineRegisterInfo &MRI) const {
3263 if (!STI.isTargetMachO())
3264 return false;
3265 MachineFunction &MF = *I.getParent()->getParent();
3266 MF.getFrameInfo().setAdjustsStack(true);
3267
3268 const GlobalValue &GV = *I.getOperand(1).getGlobal();
3269 MachineIRBuilder MIB(I);
3270
3271 auto LoadGOT =
3272 MIB.buildInstr(AArch64::LOADgot, {&AArch64::GPR64commonRegClass}, {})
3273 .addGlobalAddress(&GV, 0, AArch64II::MO_TLS);
3274
3275 auto Load = MIB.buildInstr(AArch64::LDRXui, {&AArch64::GPR64commonRegClass},
3276 {LoadGOT.getReg(0)})
3277 .addImm(0);
3278
3279 MIB.buildCopy(Register(AArch64::X0), LoadGOT.getReg(0));
3280 // TLS calls preserve all registers except those that absolutely must be
3281 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3282 // silly).
3283 MIB.buildInstr(getBLRCallOpcode(MF), {}, {Load})
3284 .addUse(AArch64::X0, RegState::Implicit)
3285 .addDef(AArch64::X0, RegState::Implicit)
3286 .addRegMask(TRI.getTLSCallPreservedMask());
3287
3288 MIB.buildCopy(I.getOperand(0).getReg(), Register(AArch64::X0));
3289 RBI.constrainGenericRegister(I.getOperand(0).getReg(), AArch64::GPR64RegClass,
3290 MRI);
3291 I.eraseFromParent();
3292 return true;
3293 }
3294
selectIntrinsicTrunc(MachineInstr & I,MachineRegisterInfo & MRI) const3295 bool AArch64InstructionSelector::selectIntrinsicTrunc(
3296 MachineInstr &I, MachineRegisterInfo &MRI) const {
3297 const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
3298
3299 // Select the correct opcode.
3300 unsigned Opc = 0;
3301 if (!SrcTy.isVector()) {
3302 switch (SrcTy.getSizeInBits()) {
3303 default:
3304 case 16:
3305 Opc = AArch64::FRINTZHr;
3306 break;
3307 case 32:
3308 Opc = AArch64::FRINTZSr;
3309 break;
3310 case 64:
3311 Opc = AArch64::FRINTZDr;
3312 break;
3313 }
3314 } else {
3315 unsigned NumElts = SrcTy.getNumElements();
3316 switch (SrcTy.getElementType().getSizeInBits()) {
3317 default:
3318 break;
3319 case 16:
3320 if (NumElts == 4)
3321 Opc = AArch64::FRINTZv4f16;
3322 else if (NumElts == 8)
3323 Opc = AArch64::FRINTZv8f16;
3324 break;
3325 case 32:
3326 if (NumElts == 2)
3327 Opc = AArch64::FRINTZv2f32;
3328 else if (NumElts == 4)
3329 Opc = AArch64::FRINTZv4f32;
3330 break;
3331 case 64:
3332 if (NumElts == 2)
3333 Opc = AArch64::FRINTZv2f64;
3334 break;
3335 }
3336 }
3337
3338 if (!Opc) {
3339 // Didn't get an opcode above, bail.
3340 LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_TRUNC!\n");
3341 return false;
3342 }
3343
3344 // Legalization would have set us up perfectly for this; we just need to
3345 // set the opcode and move on.
3346 I.setDesc(TII.get(Opc));
3347 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3348 }
3349
selectIntrinsicRound(MachineInstr & I,MachineRegisterInfo & MRI) const3350 bool AArch64InstructionSelector::selectIntrinsicRound(
3351 MachineInstr &I, MachineRegisterInfo &MRI) const {
3352 const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
3353
3354 // Select the correct opcode.
3355 unsigned Opc = 0;
3356 if (!SrcTy.isVector()) {
3357 switch (SrcTy.getSizeInBits()) {
3358 default:
3359 case 16:
3360 Opc = AArch64::FRINTAHr;
3361 break;
3362 case 32:
3363 Opc = AArch64::FRINTASr;
3364 break;
3365 case 64:
3366 Opc = AArch64::FRINTADr;
3367 break;
3368 }
3369 } else {
3370 unsigned NumElts = SrcTy.getNumElements();
3371 switch (SrcTy.getElementType().getSizeInBits()) {
3372 default:
3373 break;
3374 case 16:
3375 if (NumElts == 4)
3376 Opc = AArch64::FRINTAv4f16;
3377 else if (NumElts == 8)
3378 Opc = AArch64::FRINTAv8f16;
3379 break;
3380 case 32:
3381 if (NumElts == 2)
3382 Opc = AArch64::FRINTAv2f32;
3383 else if (NumElts == 4)
3384 Opc = AArch64::FRINTAv4f32;
3385 break;
3386 case 64:
3387 if (NumElts == 2)
3388 Opc = AArch64::FRINTAv2f64;
3389 break;
3390 }
3391 }
3392
3393 if (!Opc) {
3394 // Didn't get an opcode above, bail.
3395 LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_ROUND!\n");
3396 return false;
3397 }
3398
3399 // Legalization would have set us up perfectly for this; we just need to
3400 // set the opcode and move on.
3401 I.setDesc(TII.get(Opc));
3402 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3403 }
3404
selectVectorICmp(MachineInstr & I,MachineRegisterInfo & MRI) const3405 bool AArch64InstructionSelector::selectVectorICmp(
3406 MachineInstr &I, MachineRegisterInfo &MRI) const {
3407 Register DstReg = I.getOperand(0).getReg();
3408 LLT DstTy = MRI.getType(DstReg);
3409 Register SrcReg = I.getOperand(2).getReg();
3410 Register Src2Reg = I.getOperand(3).getReg();
3411 LLT SrcTy = MRI.getType(SrcReg);
3412
3413 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
3414 unsigned NumElts = DstTy.getNumElements();
3415
3416 // First index is element size, 0 == 8b, 1 == 16b, 2 == 32b, 3 == 64b
3417 // Second index is num elts, 0 == v2, 1 == v4, 2 == v8, 3 == v16
3418 // Third index is cc opcode:
3419 // 0 == eq
3420 // 1 == ugt
3421 // 2 == uge
3422 // 3 == ult
3423 // 4 == ule
3424 // 5 == sgt
3425 // 6 == sge
3426 // 7 == slt
3427 // 8 == sle
3428 // ne is done by negating 'eq' result.
3429
3430 // This table below assumes that for some comparisons the operands will be
3431 // commuted.
3432 // ult op == commute + ugt op
3433 // ule op == commute + uge op
3434 // slt op == commute + sgt op
3435 // sle op == commute + sge op
3436 unsigned PredIdx = 0;
3437 bool SwapOperands = false;
3438 CmpInst::Predicate Pred = (CmpInst::Predicate)I.getOperand(1).getPredicate();
3439 switch (Pred) {
3440 case CmpInst::ICMP_NE:
3441 case CmpInst::ICMP_EQ:
3442 PredIdx = 0;
3443 break;
3444 case CmpInst::ICMP_UGT:
3445 PredIdx = 1;
3446 break;
3447 case CmpInst::ICMP_UGE:
3448 PredIdx = 2;
3449 break;
3450 case CmpInst::ICMP_ULT:
3451 PredIdx = 3;
3452 SwapOperands = true;
3453 break;
3454 case CmpInst::ICMP_ULE:
3455 PredIdx = 4;
3456 SwapOperands = true;
3457 break;
3458 case CmpInst::ICMP_SGT:
3459 PredIdx = 5;
3460 break;
3461 case CmpInst::ICMP_SGE:
3462 PredIdx = 6;
3463 break;
3464 case CmpInst::ICMP_SLT:
3465 PredIdx = 7;
3466 SwapOperands = true;
3467 break;
3468 case CmpInst::ICMP_SLE:
3469 PredIdx = 8;
3470 SwapOperands = true;
3471 break;
3472 default:
3473 llvm_unreachable("Unhandled icmp predicate");
3474 return false;
3475 }
3476
3477 // This table obviously should be tablegen'd when we have our GISel native
3478 // tablegen selector.
3479
3480 static const unsigned OpcTable[4][4][9] = {
3481 {
3482 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3483 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3484 0 /* invalid */},
3485 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3486 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3487 0 /* invalid */},
3488 {AArch64::CMEQv8i8, AArch64::CMHIv8i8, AArch64::CMHSv8i8,
3489 AArch64::CMHIv8i8, AArch64::CMHSv8i8, AArch64::CMGTv8i8,
3490 AArch64::CMGEv8i8, AArch64::CMGTv8i8, AArch64::CMGEv8i8},
3491 {AArch64::CMEQv16i8, AArch64::CMHIv16i8, AArch64::CMHSv16i8,
3492 AArch64::CMHIv16i8, AArch64::CMHSv16i8, AArch64::CMGTv16i8,
3493 AArch64::CMGEv16i8, AArch64::CMGTv16i8, AArch64::CMGEv16i8}
3494 },
3495 {
3496 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3497 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3498 0 /* invalid */},
3499 {AArch64::CMEQv4i16, AArch64::CMHIv4i16, AArch64::CMHSv4i16,
3500 AArch64::CMHIv4i16, AArch64::CMHSv4i16, AArch64::CMGTv4i16,
3501 AArch64::CMGEv4i16, AArch64::CMGTv4i16, AArch64::CMGEv4i16},
3502 {AArch64::CMEQv8i16, AArch64::CMHIv8i16, AArch64::CMHSv8i16,
3503 AArch64::CMHIv8i16, AArch64::CMHSv8i16, AArch64::CMGTv8i16,
3504 AArch64::CMGEv8i16, AArch64::CMGTv8i16, AArch64::CMGEv8i16},
3505 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3506 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3507 0 /* invalid */}
3508 },
3509 {
3510 {AArch64::CMEQv2i32, AArch64::CMHIv2i32, AArch64::CMHSv2i32,
3511 AArch64::CMHIv2i32, AArch64::CMHSv2i32, AArch64::CMGTv2i32,
3512 AArch64::CMGEv2i32, AArch64::CMGTv2i32, AArch64::CMGEv2i32},
3513 {AArch64::CMEQv4i32, AArch64::CMHIv4i32, AArch64::CMHSv4i32,
3514 AArch64::CMHIv4i32, AArch64::CMHSv4i32, AArch64::CMGTv4i32,
3515 AArch64::CMGEv4i32, AArch64::CMGTv4i32, AArch64::CMGEv4i32},
3516 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3517 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3518 0 /* invalid */},
3519 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3520 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3521 0 /* invalid */}
3522 },
3523 {
3524 {AArch64::CMEQv2i64, AArch64::CMHIv2i64, AArch64::CMHSv2i64,
3525 AArch64::CMHIv2i64, AArch64::CMHSv2i64, AArch64::CMGTv2i64,
3526 AArch64::CMGEv2i64, AArch64::CMGTv2i64, AArch64::CMGEv2i64},
3527 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3528 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3529 0 /* invalid */},
3530 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3531 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3532 0 /* invalid */},
3533 {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3534 0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3535 0 /* invalid */}
3536 },
3537 };
3538 unsigned EltIdx = Log2_32(SrcEltSize / 8);
3539 unsigned NumEltsIdx = Log2_32(NumElts / 2);
3540 unsigned Opc = OpcTable[EltIdx][NumEltsIdx][PredIdx];
3541 if (!Opc) {
3542 LLVM_DEBUG(dbgs() << "Could not map G_ICMP to cmp opcode");
3543 return false;
3544 }
3545
3546 const RegisterBank &VecRB = *RBI.getRegBank(SrcReg, MRI, TRI);
3547 const TargetRegisterClass *SrcRC =
3548 getRegClassForTypeOnBank(SrcTy, VecRB, RBI, true);
3549 if (!SrcRC) {
3550 LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
3551 return false;
3552 }
3553
3554 unsigned NotOpc = Pred == ICmpInst::ICMP_NE ? AArch64::NOTv8i8 : 0;
3555 if (SrcTy.getSizeInBits() == 128)
3556 NotOpc = NotOpc ? AArch64::NOTv16i8 : 0;
3557
3558 if (SwapOperands)
3559 std::swap(SrcReg, Src2Reg);
3560
3561 MachineIRBuilder MIB(I);
3562 auto Cmp = MIB.buildInstr(Opc, {SrcRC}, {SrcReg, Src2Reg});
3563 constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
3564
3565 // Invert if we had a 'ne' cc.
3566 if (NotOpc) {
3567 Cmp = MIB.buildInstr(NotOpc, {DstReg}, {Cmp});
3568 constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
3569 } else {
3570 MIB.buildCopy(DstReg, Cmp.getReg(0));
3571 }
3572 RBI.constrainGenericRegister(DstReg, *SrcRC, MRI);
3573 I.eraseFromParent();
3574 return true;
3575 }
3576
emitScalarToVector(unsigned EltSize,const TargetRegisterClass * DstRC,Register Scalar,MachineIRBuilder & MIRBuilder) const3577 MachineInstr *AArch64InstructionSelector::emitScalarToVector(
3578 unsigned EltSize, const TargetRegisterClass *DstRC, Register Scalar,
3579 MachineIRBuilder &MIRBuilder) const {
3580 auto Undef = MIRBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstRC}, {});
3581
3582 auto BuildFn = [&](unsigned SubregIndex) {
3583 auto Ins =
3584 MIRBuilder
3585 .buildInstr(TargetOpcode::INSERT_SUBREG, {DstRC}, {Undef, Scalar})
3586 .addImm(SubregIndex);
3587 constrainSelectedInstRegOperands(*Undef, TII, TRI, RBI);
3588 constrainSelectedInstRegOperands(*Ins, TII, TRI, RBI);
3589 return &*Ins;
3590 };
3591
3592 switch (EltSize) {
3593 case 16:
3594 return BuildFn(AArch64::hsub);
3595 case 32:
3596 return BuildFn(AArch64::ssub);
3597 case 64:
3598 return BuildFn(AArch64::dsub);
3599 default:
3600 return nullptr;
3601 }
3602 }
3603
selectMergeValues(MachineInstr & I,MachineRegisterInfo & MRI) const3604 bool AArch64InstructionSelector::selectMergeValues(
3605 MachineInstr &I, MachineRegisterInfo &MRI) const {
3606 assert(I.getOpcode() == TargetOpcode::G_MERGE_VALUES && "unexpected opcode");
3607 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3608 const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
3609 assert(!DstTy.isVector() && !SrcTy.isVector() && "invalid merge operation");
3610 const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
3611
3612 if (I.getNumOperands() != 3)
3613 return false;
3614
3615 // Merging 2 s64s into an s128.
3616 if (DstTy == LLT::scalar(128)) {
3617 if (SrcTy.getSizeInBits() != 64)
3618 return false;
3619 MachineIRBuilder MIB(I);
3620 Register DstReg = I.getOperand(0).getReg();
3621 Register Src1Reg = I.getOperand(1).getReg();
3622 Register Src2Reg = I.getOperand(2).getReg();
3623 auto Tmp = MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstTy}, {});
3624 MachineInstr *InsMI =
3625 emitLaneInsert(None, Tmp.getReg(0), Src1Reg, /* LaneIdx */ 0, RB, MIB);
3626 if (!InsMI)
3627 return false;
3628 MachineInstr *Ins2MI = emitLaneInsert(DstReg, InsMI->getOperand(0).getReg(),
3629 Src2Reg, /* LaneIdx */ 1, RB, MIB);
3630 if (!Ins2MI)
3631 return false;
3632 constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
3633 constrainSelectedInstRegOperands(*Ins2MI, TII, TRI, RBI);
3634 I.eraseFromParent();
3635 return true;
3636 }
3637
3638 if (RB.getID() != AArch64::GPRRegBankID)
3639 return false;
3640
3641 if (DstTy.getSizeInBits() != 64 || SrcTy.getSizeInBits() != 32)
3642 return false;
3643
3644 auto *DstRC = &AArch64::GPR64RegClass;
3645 Register SubToRegDef = MRI.createVirtualRegister(DstRC);
3646 MachineInstr &SubRegMI = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
3647 TII.get(TargetOpcode::SUBREG_TO_REG))
3648 .addDef(SubToRegDef)
3649 .addImm(0)
3650 .addUse(I.getOperand(1).getReg())
3651 .addImm(AArch64::sub_32);
3652 Register SubToRegDef2 = MRI.createVirtualRegister(DstRC);
3653 // Need to anyext the second scalar before we can use bfm
3654 MachineInstr &SubRegMI2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
3655 TII.get(TargetOpcode::SUBREG_TO_REG))
3656 .addDef(SubToRegDef2)
3657 .addImm(0)
3658 .addUse(I.getOperand(2).getReg())
3659 .addImm(AArch64::sub_32);
3660 MachineInstr &BFM =
3661 *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::BFMXri))
3662 .addDef(I.getOperand(0).getReg())
3663 .addUse(SubToRegDef)
3664 .addUse(SubToRegDef2)
3665 .addImm(32)
3666 .addImm(31);
3667 constrainSelectedInstRegOperands(SubRegMI, TII, TRI, RBI);
3668 constrainSelectedInstRegOperands(SubRegMI2, TII, TRI, RBI);
3669 constrainSelectedInstRegOperands(BFM, TII, TRI, RBI);
3670 I.eraseFromParent();
3671 return true;
3672 }
3673
getLaneCopyOpcode(unsigned & CopyOpc,unsigned & ExtractSubReg,const unsigned EltSize)3674 static bool getLaneCopyOpcode(unsigned &CopyOpc, unsigned &ExtractSubReg,
3675 const unsigned EltSize) {
3676 // Choose a lane copy opcode and subregister based off of the size of the
3677 // vector's elements.
3678 switch (EltSize) {
3679 case 16:
3680 CopyOpc = AArch64::CPYi16;
3681 ExtractSubReg = AArch64::hsub;
3682 break;
3683 case 32:
3684 CopyOpc = AArch64::CPYi32;
3685 ExtractSubReg = AArch64::ssub;
3686 break;
3687 case 64:
3688 CopyOpc = AArch64::CPYi64;
3689 ExtractSubReg = AArch64::dsub;
3690 break;
3691 default:
3692 // Unknown size, bail out.
3693 LLVM_DEBUG(dbgs() << "Elt size '" << EltSize << "' unsupported.\n");
3694 return false;
3695 }
3696 return true;
3697 }
3698
emitExtractVectorElt(Optional<Register> DstReg,const RegisterBank & DstRB,LLT ScalarTy,Register VecReg,unsigned LaneIdx,MachineIRBuilder & MIRBuilder) const3699 MachineInstr *AArch64InstructionSelector::emitExtractVectorElt(
3700 Optional<Register> DstReg, const RegisterBank &DstRB, LLT ScalarTy,
3701 Register VecReg, unsigned LaneIdx, MachineIRBuilder &MIRBuilder) const {
3702 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
3703 unsigned CopyOpc = 0;
3704 unsigned ExtractSubReg = 0;
3705 if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, ScalarTy.getSizeInBits())) {
3706 LLVM_DEBUG(
3707 dbgs() << "Couldn't determine lane copy opcode for instruction.\n");
3708 return nullptr;
3709 }
3710
3711 const TargetRegisterClass *DstRC =
3712 getRegClassForTypeOnBank(ScalarTy, DstRB, RBI, true);
3713 if (!DstRC) {
3714 LLVM_DEBUG(dbgs() << "Could not determine destination register class.\n");
3715 return nullptr;
3716 }
3717
3718 const RegisterBank &VecRB = *RBI.getRegBank(VecReg, MRI, TRI);
3719 const LLT &VecTy = MRI.getType(VecReg);
3720 const TargetRegisterClass *VecRC =
3721 getRegClassForTypeOnBank(VecTy, VecRB, RBI, true);
3722 if (!VecRC) {
3723 LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
3724 return nullptr;
3725 }
3726
3727 // The register that we're going to copy into.
3728 Register InsertReg = VecReg;
3729 if (!DstReg)
3730 DstReg = MRI.createVirtualRegister(DstRC);
3731 // If the lane index is 0, we just use a subregister COPY.
3732 if (LaneIdx == 0) {
3733 auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {*DstReg}, {})
3734 .addReg(VecReg, 0, ExtractSubReg);
3735 RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
3736 return &*Copy;
3737 }
3738
3739 // Lane copies require 128-bit wide registers. If we're dealing with an
3740 // unpacked vector, then we need to move up to that width. Insert an implicit
3741 // def and a subregister insert to get us there.
3742 if (VecTy.getSizeInBits() != 128) {
3743 MachineInstr *ScalarToVector = emitScalarToVector(
3744 VecTy.getSizeInBits(), &AArch64::FPR128RegClass, VecReg, MIRBuilder);
3745 if (!ScalarToVector)
3746 return nullptr;
3747 InsertReg = ScalarToVector->getOperand(0).getReg();
3748 }
3749
3750 MachineInstr *LaneCopyMI =
3751 MIRBuilder.buildInstr(CopyOpc, {*DstReg}, {InsertReg}).addImm(LaneIdx);
3752 constrainSelectedInstRegOperands(*LaneCopyMI, TII, TRI, RBI);
3753
3754 // Make sure that we actually constrain the initial copy.
3755 RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
3756 return LaneCopyMI;
3757 }
3758
selectExtractElt(MachineInstr & I,MachineRegisterInfo & MRI) const3759 bool AArch64InstructionSelector::selectExtractElt(
3760 MachineInstr &I, MachineRegisterInfo &MRI) const {
3761 assert(I.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT &&
3762 "unexpected opcode!");
3763 Register DstReg = I.getOperand(0).getReg();
3764 const LLT NarrowTy = MRI.getType(DstReg);
3765 const Register SrcReg = I.getOperand(1).getReg();
3766 const LLT WideTy = MRI.getType(SrcReg);
3767 (void)WideTy;
3768 assert(WideTy.getSizeInBits() >= NarrowTy.getSizeInBits() &&
3769 "source register size too small!");
3770 assert(!NarrowTy.isVector() && "cannot extract vector into vector!");
3771
3772 // Need the lane index to determine the correct copy opcode.
3773 MachineOperand &LaneIdxOp = I.getOperand(2);
3774 assert(LaneIdxOp.isReg() && "Lane index operand was not a register?");
3775
3776 if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
3777 LLVM_DEBUG(dbgs() << "Cannot extract into GPR.\n");
3778 return false;
3779 }
3780
3781 // Find the index to extract from.
3782 auto VRegAndVal = getConstantVRegValWithLookThrough(LaneIdxOp.getReg(), MRI);
3783 if (!VRegAndVal)
3784 return false;
3785 unsigned LaneIdx = VRegAndVal->Value.getSExtValue();
3786
3787 MachineIRBuilder MIRBuilder(I);
3788
3789 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
3790 MachineInstr *Extract = emitExtractVectorElt(DstReg, DstRB, NarrowTy, SrcReg,
3791 LaneIdx, MIRBuilder);
3792 if (!Extract)
3793 return false;
3794
3795 I.eraseFromParent();
3796 return true;
3797 }
3798
selectSplitVectorUnmerge(MachineInstr & I,MachineRegisterInfo & MRI) const3799 bool AArch64InstructionSelector::selectSplitVectorUnmerge(
3800 MachineInstr &I, MachineRegisterInfo &MRI) const {
3801 unsigned NumElts = I.getNumOperands() - 1;
3802 Register SrcReg = I.getOperand(NumElts).getReg();
3803 const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
3804 const LLT SrcTy = MRI.getType(SrcReg);
3805
3806 assert(NarrowTy.isVector() && "Expected an unmerge into vectors");
3807 if (SrcTy.getSizeInBits() > 128) {
3808 LLVM_DEBUG(dbgs() << "Unexpected vector type for vec split unmerge");
3809 return false;
3810 }
3811
3812 MachineIRBuilder MIB(I);
3813
3814 // We implement a split vector operation by treating the sub-vectors as
3815 // scalars and extracting them.
3816 const RegisterBank &DstRB =
3817 *RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI);
3818 for (unsigned OpIdx = 0; OpIdx < NumElts; ++OpIdx) {
3819 Register Dst = I.getOperand(OpIdx).getReg();
3820 MachineInstr *Extract =
3821 emitExtractVectorElt(Dst, DstRB, NarrowTy, SrcReg, OpIdx, MIB);
3822 if (!Extract)
3823 return false;
3824 }
3825 I.eraseFromParent();
3826 return true;
3827 }
3828
selectUnmergeValues(MachineInstr & I,MachineRegisterInfo & MRI) const3829 bool AArch64InstructionSelector::selectUnmergeValues(
3830 MachineInstr &I, MachineRegisterInfo &MRI) const {
3831 assert(I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
3832 "unexpected opcode");
3833
3834 // TODO: Handle unmerging into GPRs and from scalars to scalars.
3835 if (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() !=
3836 AArch64::FPRRegBankID ||
3837 RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
3838 AArch64::FPRRegBankID) {
3839 LLVM_DEBUG(dbgs() << "Unmerging vector-to-gpr and scalar-to-scalar "
3840 "currently unsupported.\n");
3841 return false;
3842 }
3843
3844 // The last operand is the vector source register, and every other operand is
3845 // a register to unpack into.
3846 unsigned NumElts = I.getNumOperands() - 1;
3847 Register SrcReg = I.getOperand(NumElts).getReg();
3848 const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
3849 const LLT WideTy = MRI.getType(SrcReg);
3850 (void)WideTy;
3851 assert((WideTy.isVector() || WideTy.getSizeInBits() == 128) &&
3852 "can only unmerge from vector or s128 types!");
3853 assert(WideTy.getSizeInBits() > NarrowTy.getSizeInBits() &&
3854 "source register size too small!");
3855
3856 if (!NarrowTy.isScalar())
3857 return selectSplitVectorUnmerge(I, MRI);
3858
3859 MachineIRBuilder MIB(I);
3860
3861 // Choose a lane copy opcode and subregister based off of the size of the
3862 // vector's elements.
3863 unsigned CopyOpc = 0;
3864 unsigned ExtractSubReg = 0;
3865 if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, NarrowTy.getSizeInBits()))
3866 return false;
3867
3868 // Set up for the lane copies.
3869 MachineBasicBlock &MBB = *I.getParent();
3870
3871 // Stores the registers we'll be copying from.
3872 SmallVector<Register, 4> InsertRegs;
3873
3874 // We'll use the first register twice, so we only need NumElts-1 registers.
3875 unsigned NumInsertRegs = NumElts - 1;
3876
3877 // If our elements fit into exactly 128 bits, then we can copy from the source
3878 // directly. Otherwise, we need to do a bit of setup with some subregister
3879 // inserts.
3880 if (NarrowTy.getSizeInBits() * NumElts == 128) {
3881 InsertRegs = SmallVector<Register, 4>(NumInsertRegs, SrcReg);
3882 } else {
3883 // No. We have to perform subregister inserts. For each insert, create an
3884 // implicit def and a subregister insert, and save the register we create.
3885 for (unsigned Idx = 0; Idx < NumInsertRegs; ++Idx) {
3886 Register ImpDefReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
3887 MachineInstr &ImpDefMI =
3888 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::IMPLICIT_DEF),
3889 ImpDefReg);
3890
3891 // Now, create the subregister insert from SrcReg.
3892 Register InsertReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
3893 MachineInstr &InsMI =
3894 *BuildMI(MBB, I, I.getDebugLoc(),
3895 TII.get(TargetOpcode::INSERT_SUBREG), InsertReg)
3896 .addUse(ImpDefReg)
3897 .addUse(SrcReg)
3898 .addImm(AArch64::dsub);
3899
3900 constrainSelectedInstRegOperands(ImpDefMI, TII, TRI, RBI);
3901 constrainSelectedInstRegOperands(InsMI, TII, TRI, RBI);
3902
3903 // Save the register so that we can copy from it after.
3904 InsertRegs.push_back(InsertReg);
3905 }
3906 }
3907
3908 // Now that we've created any necessary subregister inserts, we can
3909 // create the copies.
3910 //
3911 // Perform the first copy separately as a subregister copy.
3912 Register CopyTo = I.getOperand(0).getReg();
3913 auto FirstCopy = MIB.buildInstr(TargetOpcode::COPY, {CopyTo}, {})
3914 .addReg(InsertRegs[0], 0, ExtractSubReg);
3915 constrainSelectedInstRegOperands(*FirstCopy, TII, TRI, RBI);
3916
3917 // Now, perform the remaining copies as vector lane copies.
3918 unsigned LaneIdx = 1;
3919 for (Register InsReg : InsertRegs) {
3920 Register CopyTo = I.getOperand(LaneIdx).getReg();
3921 MachineInstr &CopyInst =
3922 *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CopyOpc), CopyTo)
3923 .addUse(InsReg)
3924 .addImm(LaneIdx);
3925 constrainSelectedInstRegOperands(CopyInst, TII, TRI, RBI);
3926 ++LaneIdx;
3927 }
3928
3929 // Separately constrain the first copy's destination. Because of the
3930 // limitation in constrainOperandRegClass, we can't guarantee that this will
3931 // actually be constrained. So, do it ourselves using the second operand.
3932 const TargetRegisterClass *RC =
3933 MRI.getRegClassOrNull(I.getOperand(1).getReg());
3934 if (!RC) {
3935 LLVM_DEBUG(dbgs() << "Couldn't constrain copy destination.\n");
3936 return false;
3937 }
3938
3939 RBI.constrainGenericRegister(CopyTo, *RC, MRI);
3940 I.eraseFromParent();
3941 return true;
3942 }
3943
selectConcatVectors(MachineInstr & I,MachineRegisterInfo & MRI) const3944 bool AArch64InstructionSelector::selectConcatVectors(
3945 MachineInstr &I, MachineRegisterInfo &MRI) const {
3946 assert(I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
3947 "Unexpected opcode");
3948 Register Dst = I.getOperand(0).getReg();
3949 Register Op1 = I.getOperand(1).getReg();
3950 Register Op2 = I.getOperand(2).getReg();
3951 MachineIRBuilder MIRBuilder(I);
3952 MachineInstr *ConcatMI = emitVectorConcat(Dst, Op1, Op2, MIRBuilder);
3953 if (!ConcatMI)
3954 return false;
3955 I.eraseFromParent();
3956 return true;
3957 }
3958
3959 unsigned
emitConstantPoolEntry(const Constant * CPVal,MachineFunction & MF) const3960 AArch64InstructionSelector::emitConstantPoolEntry(const Constant *CPVal,
3961 MachineFunction &MF) const {
3962 Type *CPTy = CPVal->getType();
3963 Align Alignment = MF.getDataLayout().getPrefTypeAlign(CPTy);
3964
3965 MachineConstantPool *MCP = MF.getConstantPool();
3966 return MCP->getConstantPoolIndex(CPVal, Alignment);
3967 }
3968
emitLoadFromConstantPool(const Constant * CPVal,MachineIRBuilder & MIRBuilder) const3969 MachineInstr *AArch64InstructionSelector::emitLoadFromConstantPool(
3970 const Constant *CPVal, MachineIRBuilder &MIRBuilder) const {
3971 unsigned CPIdx = emitConstantPoolEntry(CPVal, MIRBuilder.getMF());
3972
3973 auto Adrp =
3974 MIRBuilder.buildInstr(AArch64::ADRP, {&AArch64::GPR64RegClass}, {})
3975 .addConstantPoolIndex(CPIdx, 0, AArch64II::MO_PAGE);
3976
3977 MachineInstr *LoadMI = nullptr;
3978 switch (MIRBuilder.getDataLayout().getTypeStoreSize(CPVal->getType())) {
3979 case 16:
3980 LoadMI =
3981 &*MIRBuilder
3982 .buildInstr(AArch64::LDRQui, {&AArch64::FPR128RegClass}, {Adrp})
3983 .addConstantPoolIndex(CPIdx, 0,
3984 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3985 break;
3986 case 8:
3987 LoadMI = &*MIRBuilder
3988 .buildInstr(AArch64::LDRDui, {&AArch64::FPR64RegClass}, {Adrp})
3989 .addConstantPoolIndex(
3990 CPIdx, 0, AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3991 break;
3992 default:
3993 LLVM_DEBUG(dbgs() << "Could not load from constant pool of type "
3994 << *CPVal->getType());
3995 return nullptr;
3996 }
3997 constrainSelectedInstRegOperands(*Adrp, TII, TRI, RBI);
3998 constrainSelectedInstRegOperands(*LoadMI, TII, TRI, RBI);
3999 return LoadMI;
4000 }
4001
4002 /// Return an <Opcode, SubregIndex> pair to do an vector elt insert of a given
4003 /// size and RB.
4004 static std::pair<unsigned, unsigned>
getInsertVecEltOpInfo(const RegisterBank & RB,unsigned EltSize)4005 getInsertVecEltOpInfo(const RegisterBank &RB, unsigned EltSize) {
4006 unsigned Opc, SubregIdx;
4007 if (RB.getID() == AArch64::GPRRegBankID) {
4008 if (EltSize == 16) {
4009 Opc = AArch64::INSvi16gpr;
4010 SubregIdx = AArch64::ssub;
4011 } else if (EltSize == 32) {
4012 Opc = AArch64::INSvi32gpr;
4013 SubregIdx = AArch64::ssub;
4014 } else if (EltSize == 64) {
4015 Opc = AArch64::INSvi64gpr;
4016 SubregIdx = AArch64::dsub;
4017 } else {
4018 llvm_unreachable("invalid elt size!");
4019 }
4020 } else {
4021 if (EltSize == 8) {
4022 Opc = AArch64::INSvi8lane;
4023 SubregIdx = AArch64::bsub;
4024 } else if (EltSize == 16) {
4025 Opc = AArch64::INSvi16lane;
4026 SubregIdx = AArch64::hsub;
4027 } else if (EltSize == 32) {
4028 Opc = AArch64::INSvi32lane;
4029 SubregIdx = AArch64::ssub;
4030 } else if (EltSize == 64) {
4031 Opc = AArch64::INSvi64lane;
4032 SubregIdx = AArch64::dsub;
4033 } else {
4034 llvm_unreachable("invalid elt size!");
4035 }
4036 }
4037 return std::make_pair(Opc, SubregIdx);
4038 }
4039
emitInstr(unsigned Opcode,std::initializer_list<llvm::DstOp> DstOps,std::initializer_list<llvm::SrcOp> SrcOps,MachineIRBuilder & MIRBuilder,const ComplexRendererFns & RenderFns) const4040 MachineInstr *AArch64InstructionSelector::emitInstr(
4041 unsigned Opcode, std::initializer_list<llvm::DstOp> DstOps,
4042 std::initializer_list<llvm::SrcOp> SrcOps, MachineIRBuilder &MIRBuilder,
4043 const ComplexRendererFns &RenderFns) const {
4044 assert(Opcode && "Expected an opcode?");
4045 assert(!isPreISelGenericOpcode(Opcode) &&
4046 "Function should only be used to produce selected instructions!");
4047 auto MI = MIRBuilder.buildInstr(Opcode, DstOps, SrcOps);
4048 if (RenderFns)
4049 for (auto &Fn : *RenderFns)
4050 Fn(MI);
4051 constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
4052 return &*MI;
4053 }
4054
emitAddSub(const std::array<std::array<unsigned,2>,5> & AddrModeAndSizeToOpcode,Register Dst,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4055 MachineInstr *AArch64InstructionSelector::emitAddSub(
4056 const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode,
4057 Register Dst, MachineOperand &LHS, MachineOperand &RHS,
4058 MachineIRBuilder &MIRBuilder) const {
4059 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4060 assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
4061 auto Ty = MRI.getType(LHS.getReg());
4062 assert(!Ty.isVector() && "Expected a scalar or pointer?");
4063 unsigned Size = Ty.getSizeInBits();
4064 assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit type only");
4065 bool Is32Bit = Size == 32;
4066
4067 // INSTRri form with positive arithmetic immediate.
4068 if (auto Fns = selectArithImmed(RHS))
4069 return emitInstr(AddrModeAndSizeToOpcode[0][Is32Bit], {Dst}, {LHS},
4070 MIRBuilder, Fns);
4071
4072 // INSTRri form with negative arithmetic immediate.
4073 if (auto Fns = selectNegArithImmed(RHS))
4074 return emitInstr(AddrModeAndSizeToOpcode[3][Is32Bit], {Dst}, {LHS},
4075 MIRBuilder, Fns);
4076
4077 // INSTRrx form.
4078 if (auto Fns = selectArithExtendedRegister(RHS))
4079 return emitInstr(AddrModeAndSizeToOpcode[4][Is32Bit], {Dst}, {LHS},
4080 MIRBuilder, Fns);
4081
4082 // INSTRrs form.
4083 if (auto Fns = selectShiftedRegister(RHS))
4084 return emitInstr(AddrModeAndSizeToOpcode[1][Is32Bit], {Dst}, {LHS},
4085 MIRBuilder, Fns);
4086 return emitInstr(AddrModeAndSizeToOpcode[2][Is32Bit], {Dst}, {LHS, RHS},
4087 MIRBuilder);
4088 }
4089
4090 MachineInstr *
emitADD(Register DefReg,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4091 AArch64InstructionSelector::emitADD(Register DefReg, MachineOperand &LHS,
4092 MachineOperand &RHS,
4093 MachineIRBuilder &MIRBuilder) const {
4094 const std::array<std::array<unsigned, 2>, 5> OpcTable{
4095 {{AArch64::ADDXri, AArch64::ADDWri},
4096 {AArch64::ADDXrs, AArch64::ADDWrs},
4097 {AArch64::ADDXrr, AArch64::ADDWrr},
4098 {AArch64::SUBXri, AArch64::SUBWri},
4099 {AArch64::ADDXrx, AArch64::ADDWrx}}};
4100 return emitAddSub(OpcTable, DefReg, LHS, RHS, MIRBuilder);
4101 }
4102
4103 MachineInstr *
emitADDS(Register Dst,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4104 AArch64InstructionSelector::emitADDS(Register Dst, MachineOperand &LHS,
4105 MachineOperand &RHS,
4106 MachineIRBuilder &MIRBuilder) const {
4107 const std::array<std::array<unsigned, 2>, 5> OpcTable{
4108 {{AArch64::ADDSXri, AArch64::ADDSWri},
4109 {AArch64::ADDSXrs, AArch64::ADDSWrs},
4110 {AArch64::ADDSXrr, AArch64::ADDSWrr},
4111 {AArch64::SUBSXri, AArch64::SUBSWri},
4112 {AArch64::ADDSXrx, AArch64::ADDSWrx}}};
4113 return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder);
4114 }
4115
4116 MachineInstr *
emitSUBS(Register Dst,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4117 AArch64InstructionSelector::emitSUBS(Register Dst, MachineOperand &LHS,
4118 MachineOperand &RHS,
4119 MachineIRBuilder &MIRBuilder) const {
4120 const std::array<std::array<unsigned, 2>, 5> OpcTable{
4121 {{AArch64::SUBSXri, AArch64::SUBSWri},
4122 {AArch64::SUBSXrs, AArch64::SUBSWrs},
4123 {AArch64::SUBSXrr, AArch64::SUBSWrr},
4124 {AArch64::ADDSXri, AArch64::ADDSWri},
4125 {AArch64::SUBSXrx, AArch64::SUBSWrx}}};
4126 return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder);
4127 }
4128
4129 MachineInstr *
emitCMN(MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4130 AArch64InstructionSelector::emitCMN(MachineOperand &LHS, MachineOperand &RHS,
4131 MachineIRBuilder &MIRBuilder) const {
4132 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4133 bool Is32Bit = (MRI.getType(LHS.getReg()).getSizeInBits() == 32);
4134 auto RC = Is32Bit ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass;
4135 return emitADDS(MRI.createVirtualRegister(RC), LHS, RHS, MIRBuilder);
4136 }
4137
4138 MachineInstr *
emitTST(MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4139 AArch64InstructionSelector::emitTST(MachineOperand &LHS, MachineOperand &RHS,
4140 MachineIRBuilder &MIRBuilder) const {
4141 assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
4142 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4143 LLT Ty = MRI.getType(LHS.getReg());
4144 unsigned RegSize = Ty.getSizeInBits();
4145 bool Is32Bit = (RegSize == 32);
4146 const unsigned OpcTable[3][2] = {{AArch64::ANDSXri, AArch64::ANDSWri},
4147 {AArch64::ANDSXrs, AArch64::ANDSWrs},
4148 {AArch64::ANDSXrr, AArch64::ANDSWrr}};
4149 // ANDS needs a logical immediate for its immediate form. Check if we can
4150 // fold one in.
4151 if (auto ValAndVReg = getConstantVRegValWithLookThrough(RHS.getReg(), MRI)) {
4152 int64_t Imm = ValAndVReg->Value.getSExtValue();
4153
4154 if (AArch64_AM::isLogicalImmediate(Imm, RegSize)) {
4155 auto TstMI = MIRBuilder.buildInstr(OpcTable[0][Is32Bit], {Ty}, {LHS});
4156 TstMI.addImm(AArch64_AM::encodeLogicalImmediate(Imm, RegSize));
4157 constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
4158 return &*TstMI;
4159 }
4160 }
4161
4162 if (auto Fns = selectLogicalShiftedRegister(RHS))
4163 return emitInstr(OpcTable[1][Is32Bit], {Ty}, {LHS}, MIRBuilder, Fns);
4164 return emitInstr(OpcTable[2][Is32Bit], {Ty}, {LHS, RHS}, MIRBuilder);
4165 }
4166
emitIntegerCompare(MachineOperand & LHS,MachineOperand & RHS,MachineOperand & Predicate,MachineIRBuilder & MIRBuilder) const4167 MachineInstr *AArch64InstructionSelector::emitIntegerCompare(
4168 MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
4169 MachineIRBuilder &MIRBuilder) const {
4170 assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
4171 assert(Predicate.isPredicate() && "Expected predicate?");
4172 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4173 LLT CmpTy = MRI.getType(LHS.getReg());
4174 assert(!CmpTy.isVector() && "Expected scalar or pointer");
4175 unsigned Size = CmpTy.getSizeInBits();
4176 (void)Size;
4177 assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit LHS/RHS?");
4178 // Fold the compare into a cmn or tst if possible.
4179 if (auto FoldCmp = tryFoldIntegerCompare(LHS, RHS, Predicate, MIRBuilder))
4180 return FoldCmp;
4181 auto Dst = MRI.cloneVirtualRegister(LHS.getReg());
4182 return emitSUBS(Dst, LHS, RHS, MIRBuilder);
4183 }
4184
emitCSetForFCmp(Register Dst,CmpInst::Predicate Pred,MachineIRBuilder & MIRBuilder) const4185 MachineInstr *AArch64InstructionSelector::emitCSetForFCmp(
4186 Register Dst, CmpInst::Predicate Pred, MachineIRBuilder &MIRBuilder) const {
4187 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4188 #ifndef NDEBUG
4189 LLT Ty = MRI.getType(Dst);
4190 assert(!Ty.isVector() && Ty.getSizeInBits() == 32 &&
4191 "Expected a 32-bit scalar register?");
4192 #endif
4193 const Register ZeroReg = AArch64::WZR;
4194 auto EmitCSet = [&](Register CsetDst, AArch64CC::CondCode CC) {
4195 auto CSet =
4196 MIRBuilder.buildInstr(AArch64::CSINCWr, {CsetDst}, {ZeroReg, ZeroReg})
4197 .addImm(getInvertedCondCode(CC));
4198 constrainSelectedInstRegOperands(*CSet, TII, TRI, RBI);
4199 return &*CSet;
4200 };
4201
4202 AArch64CC::CondCode CC1, CC2;
4203 changeFCMPPredToAArch64CC(Pred, CC1, CC2);
4204 if (CC2 == AArch64CC::AL)
4205 return EmitCSet(Dst, CC1);
4206
4207 const TargetRegisterClass *RC = &AArch64::GPR32RegClass;
4208 Register Def1Reg = MRI.createVirtualRegister(RC);
4209 Register Def2Reg = MRI.createVirtualRegister(RC);
4210 EmitCSet(Def1Reg, CC1);
4211 EmitCSet(Def2Reg, CC2);
4212 auto OrMI = MIRBuilder.buildInstr(AArch64::ORRWrr, {Dst}, {Def1Reg, Def2Reg});
4213 constrainSelectedInstRegOperands(*OrMI, TII, TRI, RBI);
4214 return &*OrMI;
4215 }
4216
4217 MachineInstr *
emitFPCompare(Register LHS,Register RHS,MachineIRBuilder & MIRBuilder,Optional<CmpInst::Predicate> Pred) const4218 AArch64InstructionSelector::emitFPCompare(Register LHS, Register RHS,
4219 MachineIRBuilder &MIRBuilder,
4220 Optional<CmpInst::Predicate> Pred) const {
4221 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4222 LLT Ty = MRI.getType(LHS);
4223 if (Ty.isVector())
4224 return nullptr;
4225 unsigned OpSize = Ty.getSizeInBits();
4226 if (OpSize != 32 && OpSize != 64)
4227 return nullptr;
4228
4229 // If this is a compare against +0.0, then we don't have
4230 // to explicitly materialize a constant.
4231 const ConstantFP *FPImm = getConstantFPVRegVal(RHS, MRI);
4232 bool ShouldUseImm = FPImm && (FPImm->isZero() && !FPImm->isNegative());
4233
4234 auto IsEqualityPred = [](CmpInst::Predicate P) {
4235 return P == CmpInst::FCMP_OEQ || P == CmpInst::FCMP_ONE ||
4236 P == CmpInst::FCMP_UEQ || P == CmpInst::FCMP_UNE;
4237 };
4238 if (!ShouldUseImm && Pred && IsEqualityPred(*Pred)) {
4239 // Try commutating the operands.
4240 const ConstantFP *LHSImm = getConstantFPVRegVal(LHS, MRI);
4241 if (LHSImm && (LHSImm->isZero() && !LHSImm->isNegative())) {
4242 ShouldUseImm = true;
4243 std::swap(LHS, RHS);
4244 }
4245 }
4246 unsigned CmpOpcTbl[2][2] = {{AArch64::FCMPSrr, AArch64::FCMPDrr},
4247 {AArch64::FCMPSri, AArch64::FCMPDri}};
4248 unsigned CmpOpc = CmpOpcTbl[ShouldUseImm][OpSize == 64];
4249
4250 // Partially build the compare. Decide if we need to add a use for the
4251 // third operand based off whether or not we're comparing against 0.0.
4252 auto CmpMI = MIRBuilder.buildInstr(CmpOpc).addUse(LHS);
4253 if (!ShouldUseImm)
4254 CmpMI.addUse(RHS);
4255 constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
4256 return &*CmpMI;
4257 }
4258
emitVectorConcat(Optional<Register> Dst,Register Op1,Register Op2,MachineIRBuilder & MIRBuilder) const4259 MachineInstr *AArch64InstructionSelector::emitVectorConcat(
4260 Optional<Register> Dst, Register Op1, Register Op2,
4261 MachineIRBuilder &MIRBuilder) const {
4262 // We implement a vector concat by:
4263 // 1. Use scalar_to_vector to insert the lower vector into the larger dest
4264 // 2. Insert the upper vector into the destination's upper element
4265 // TODO: some of this code is common with G_BUILD_VECTOR handling.
4266 MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4267
4268 const LLT Op1Ty = MRI.getType(Op1);
4269 const LLT Op2Ty = MRI.getType(Op2);
4270
4271 if (Op1Ty != Op2Ty) {
4272 LLVM_DEBUG(dbgs() << "Could not do vector concat of differing vector tys");
4273 return nullptr;
4274 }
4275 assert(Op1Ty.isVector() && "Expected a vector for vector concat");
4276
4277 if (Op1Ty.getSizeInBits() >= 128) {
4278 LLVM_DEBUG(dbgs() << "Vector concat not supported for full size vectors");
4279 return nullptr;
4280 }
4281
4282 // At the moment we just support 64 bit vector concats.
4283 if (Op1Ty.getSizeInBits() != 64) {
4284 LLVM_DEBUG(dbgs() << "Vector concat supported for 64b vectors");
4285 return nullptr;
4286 }
4287
4288 const LLT ScalarTy = LLT::scalar(Op1Ty.getSizeInBits());
4289 const RegisterBank &FPRBank = *RBI.getRegBank(Op1, MRI, TRI);
4290 const TargetRegisterClass *DstRC =
4291 getMinClassForRegBank(FPRBank, Op1Ty.getSizeInBits() * 2);
4292
4293 MachineInstr *WidenedOp1 =
4294 emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op1, MIRBuilder);
4295 MachineInstr *WidenedOp2 =
4296 emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op2, MIRBuilder);
4297 if (!WidenedOp1 || !WidenedOp2) {
4298 LLVM_DEBUG(dbgs() << "Could not emit a vector from scalar value");
4299 return nullptr;
4300 }
4301
4302 // Now do the insert of the upper element.
4303 unsigned InsertOpc, InsSubRegIdx;
4304 std::tie(InsertOpc, InsSubRegIdx) =
4305 getInsertVecEltOpInfo(FPRBank, ScalarTy.getSizeInBits());
4306
4307 if (!Dst)
4308 Dst = MRI.createVirtualRegister(DstRC);
4309 auto InsElt =
4310 MIRBuilder
4311 .buildInstr(InsertOpc, {*Dst}, {WidenedOp1->getOperand(0).getReg()})
4312 .addImm(1) /* Lane index */
4313 .addUse(WidenedOp2->getOperand(0).getReg())
4314 .addImm(0);
4315 constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
4316 return &*InsElt;
4317 }
4318
emitFMovForFConstant(MachineInstr & I,MachineRegisterInfo & MRI) const4319 MachineInstr *AArch64InstructionSelector::emitFMovForFConstant(
4320 MachineInstr &I, MachineRegisterInfo &MRI) const {
4321 assert(I.getOpcode() == TargetOpcode::G_FCONSTANT &&
4322 "Expected a G_FCONSTANT!");
4323 MachineOperand &ImmOp = I.getOperand(1);
4324 unsigned DefSize = MRI.getType(I.getOperand(0).getReg()).getSizeInBits();
4325
4326 // Only handle 32 and 64 bit defs for now.
4327 if (DefSize != 32 && DefSize != 64)
4328 return nullptr;
4329
4330 // Don't handle null values using FMOV.
4331 if (ImmOp.getFPImm()->isNullValue())
4332 return nullptr;
4333
4334 // Get the immediate representation for the FMOV.
4335 const APFloat &ImmValAPF = ImmOp.getFPImm()->getValueAPF();
4336 int Imm = DefSize == 32 ? AArch64_AM::getFP32Imm(ImmValAPF)
4337 : AArch64_AM::getFP64Imm(ImmValAPF);
4338
4339 // If this is -1, it means the immediate can't be represented as the requested
4340 // floating point value. Bail.
4341 if (Imm == -1)
4342 return nullptr;
4343
4344 // Update MI to represent the new FMOV instruction, constrain it, and return.
4345 ImmOp.ChangeToImmediate(Imm);
4346 unsigned MovOpc = DefSize == 32 ? AArch64::FMOVSi : AArch64::FMOVDi;
4347 I.setDesc(TII.get(MovOpc));
4348 constrainSelectedInstRegOperands(I, TII, TRI, RBI);
4349 return &I;
4350 }
4351
4352 MachineInstr *
emitCSetForICMP(Register DefReg,unsigned Pred,MachineIRBuilder & MIRBuilder) const4353 AArch64InstructionSelector::emitCSetForICMP(Register DefReg, unsigned Pred,
4354 MachineIRBuilder &MIRBuilder) const {
4355 // CSINC increments the result when the predicate is false. Invert it.
4356 const AArch64CC::CondCode InvCC = changeICMPPredToAArch64CC(
4357 CmpInst::getInversePredicate((CmpInst::Predicate)Pred));
4358 auto I =
4359 MIRBuilder
4360 .buildInstr(AArch64::CSINCWr, {DefReg}, {Register(AArch64::WZR), Register(AArch64::WZR)})
4361 .addImm(InvCC);
4362 constrainSelectedInstRegOperands(*I, TII, TRI, RBI);
4363 return &*I;
4364 }
4365
4366 std::pair<MachineInstr *, AArch64CC::CondCode>
emitOverflowOp(unsigned Opcode,Register Dst,MachineOperand & LHS,MachineOperand & RHS,MachineIRBuilder & MIRBuilder) const4367 AArch64InstructionSelector::emitOverflowOp(unsigned Opcode, Register Dst,
4368 MachineOperand &LHS,
4369 MachineOperand &RHS,
4370 MachineIRBuilder &MIRBuilder) const {
4371 switch (Opcode) {
4372 default:
4373 llvm_unreachable("Unexpected opcode!");
4374 case TargetOpcode::G_SADDO:
4375 return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
4376 case TargetOpcode::G_UADDO:
4377 return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::HS);
4378 case TargetOpcode::G_SSUBO:
4379 return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
4380 case TargetOpcode::G_USUBO:
4381 return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::LO);
4382 }
4383 }
4384
tryOptSelect(MachineInstr & I) const4385 bool AArch64InstructionSelector::tryOptSelect(MachineInstr &I) const {
4386 MachineIRBuilder MIB(I);
4387 MachineRegisterInfo &MRI = *MIB.getMRI();
4388 // We want to recognize this pattern:
4389 //
4390 // $z = G_FCMP pred, $x, $y
4391 // ...
4392 // $w = G_SELECT $z, $a, $b
4393 //
4394 // Where the value of $z is *only* ever used by the G_SELECT (possibly with
4395 // some copies/truncs in between.)
4396 //
4397 // If we see this, then we can emit something like this:
4398 //
4399 // fcmp $x, $y
4400 // fcsel $w, $a, $b, pred
4401 //
4402 // Rather than emitting both of the rather long sequences in the standard
4403 // G_FCMP/G_SELECT select methods.
4404
4405 // First, check if the condition is defined by a compare.
4406 MachineInstr *CondDef = MRI.getVRegDef(I.getOperand(1).getReg());
4407 while (CondDef) {
4408 // We can only fold if all of the defs have one use.
4409 Register CondDefReg = CondDef->getOperand(0).getReg();
4410 if (!MRI.hasOneNonDBGUse(CondDefReg)) {
4411 // Unless it's another select.
4412 for (const MachineInstr &UI : MRI.use_nodbg_instructions(CondDefReg)) {
4413 if (CondDef == &UI)
4414 continue;
4415 if (UI.getOpcode() != TargetOpcode::G_SELECT)
4416 return false;
4417 }
4418 }
4419
4420 // We can skip over G_TRUNC since the condition is 1-bit.
4421 // Truncating/extending can have no impact on the value.
4422 unsigned Opc = CondDef->getOpcode();
4423 if (Opc != TargetOpcode::COPY && Opc != TargetOpcode::G_TRUNC)
4424 break;
4425
4426 // Can't see past copies from physregs.
4427 if (Opc == TargetOpcode::COPY &&
4428 Register::isPhysicalRegister(CondDef->getOperand(1).getReg()))
4429 return false;
4430
4431 CondDef = MRI.getVRegDef(CondDef->getOperand(1).getReg());
4432 }
4433
4434 // Is the condition defined by a compare?
4435 if (!CondDef)
4436 return false;
4437
4438 unsigned CondOpc = CondDef->getOpcode();
4439 if (CondOpc != TargetOpcode::G_ICMP && CondOpc != TargetOpcode::G_FCMP)
4440 return false;
4441
4442 AArch64CC::CondCode CondCode;
4443 if (CondOpc == TargetOpcode::G_ICMP) {
4444 auto Pred =
4445 static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate());
4446 CondCode = changeICMPPredToAArch64CC(Pred);
4447 emitIntegerCompare(CondDef->getOperand(2), CondDef->getOperand(3),
4448 CondDef->getOperand(1), MIB);
4449 } else {
4450 // Get the condition code for the select.
4451 auto Pred =
4452 static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate());
4453 AArch64CC::CondCode CondCode2;
4454 changeFCMPPredToAArch64CC(Pred, CondCode, CondCode2);
4455
4456 // changeFCMPPredToAArch64CC sets CondCode2 to AL when we require two
4457 // instructions to emit the comparison.
4458 // TODO: Handle FCMP_UEQ and FCMP_ONE. After that, this check will be
4459 // unnecessary.
4460 if (CondCode2 != AArch64CC::AL)
4461 return false;
4462
4463 if (!emitFPCompare(CondDef->getOperand(2).getReg(),
4464 CondDef->getOperand(3).getReg(), MIB)) {
4465 LLVM_DEBUG(dbgs() << "Couldn't emit compare for select!\n");
4466 return false;
4467 }
4468 }
4469
4470 // Emit the select.
4471 emitSelect(I.getOperand(0).getReg(), I.getOperand(2).getReg(),
4472 I.getOperand(3).getReg(), CondCode, MIB);
4473 I.eraseFromParent();
4474 return true;
4475 }
4476
tryFoldIntegerCompare(MachineOperand & LHS,MachineOperand & RHS,MachineOperand & Predicate,MachineIRBuilder & MIRBuilder) const4477 MachineInstr *AArch64InstructionSelector::tryFoldIntegerCompare(
4478 MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
4479 MachineIRBuilder &MIRBuilder) const {
4480 assert(LHS.isReg() && RHS.isReg() && Predicate.isPredicate() &&
4481 "Unexpected MachineOperand");
4482 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4483 // We want to find this sort of thing:
4484 // x = G_SUB 0, y
4485 // G_ICMP z, x
4486 //
4487 // In this case, we can fold the G_SUB into the G_ICMP using a CMN instead.
4488 // e.g:
4489 //
4490 // cmn z, y
4491
4492 // Helper lambda to detect the subtract followed by the compare.
4493 // Takes in the def of the LHS or RHS, and checks if it's a subtract from 0.
4494 auto IsCMN = [&](MachineInstr *DefMI, const AArch64CC::CondCode &CC) {
4495 if (!DefMI || DefMI->getOpcode() != TargetOpcode::G_SUB)
4496 return false;
4497
4498 // Need to make sure NZCV is the same at the end of the transformation.
4499 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
4500 return false;
4501
4502 // We want to match against SUBs.
4503 if (DefMI->getOpcode() != TargetOpcode::G_SUB)
4504 return false;
4505
4506 // Make sure that we're getting
4507 // x = G_SUB 0, y
4508 auto ValAndVReg =
4509 getConstantVRegValWithLookThrough(DefMI->getOperand(1).getReg(), MRI);
4510 if (!ValAndVReg || ValAndVReg->Value != 0)
4511 return false;
4512
4513 // This can safely be represented as a CMN.
4514 return true;
4515 };
4516
4517 // Check if the RHS or LHS of the G_ICMP is defined by a SUB
4518 MachineInstr *LHSDef = getDefIgnoringCopies(LHS.getReg(), MRI);
4519 MachineInstr *RHSDef = getDefIgnoringCopies(RHS.getReg(), MRI);
4520 CmpInst::Predicate P = (CmpInst::Predicate)Predicate.getPredicate();
4521 const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(P);
4522
4523 // Given this:
4524 //
4525 // x = G_SUB 0, y
4526 // G_ICMP x, z
4527 //
4528 // Produce this:
4529 //
4530 // cmn y, z
4531 if (IsCMN(LHSDef, CC))
4532 return emitCMN(LHSDef->getOperand(2), RHS, MIRBuilder);
4533
4534 // Same idea here, but with the RHS of the compare instead:
4535 //
4536 // Given this:
4537 //
4538 // x = G_SUB 0, y
4539 // G_ICMP z, x
4540 //
4541 // Produce this:
4542 //
4543 // cmn z, y
4544 if (IsCMN(RHSDef, CC))
4545 return emitCMN(LHS, RHSDef->getOperand(2), MIRBuilder);
4546
4547 // Given this:
4548 //
4549 // z = G_AND x, y
4550 // G_ICMP z, 0
4551 //
4552 // Produce this if the compare is signed:
4553 //
4554 // tst x, y
4555 if (!CmpInst::isUnsigned(P) && LHSDef &&
4556 LHSDef->getOpcode() == TargetOpcode::G_AND) {
4557 // Make sure that the RHS is 0.
4558 auto ValAndVReg = getConstantVRegValWithLookThrough(RHS.getReg(), MRI);
4559 if (!ValAndVReg || ValAndVReg->Value != 0)
4560 return nullptr;
4561
4562 return emitTST(LHSDef->getOperand(1),
4563 LHSDef->getOperand(2), MIRBuilder);
4564 }
4565
4566 return nullptr;
4567 }
4568
selectShuffleVector(MachineInstr & I,MachineRegisterInfo & MRI) const4569 bool AArch64InstructionSelector::selectShuffleVector(
4570 MachineInstr &I, MachineRegisterInfo &MRI) const {
4571 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
4572 Register Src1Reg = I.getOperand(1).getReg();
4573 const LLT Src1Ty = MRI.getType(Src1Reg);
4574 Register Src2Reg = I.getOperand(2).getReg();
4575 const LLT Src2Ty = MRI.getType(Src2Reg);
4576 ArrayRef<int> Mask = I.getOperand(3).getShuffleMask();
4577
4578 MachineBasicBlock &MBB = *I.getParent();
4579 MachineFunction &MF = *MBB.getParent();
4580 LLVMContext &Ctx = MF.getFunction().getContext();
4581
4582 // G_SHUFFLE_VECTOR is weird in that the source operands can be scalars, if
4583 // it's originated from a <1 x T> type. Those should have been lowered into
4584 // G_BUILD_VECTOR earlier.
4585 if (!Src1Ty.isVector() || !Src2Ty.isVector()) {
4586 LLVM_DEBUG(dbgs() << "Could not select a \"scalar\" G_SHUFFLE_VECTOR\n");
4587 return false;
4588 }
4589
4590 unsigned BytesPerElt = DstTy.getElementType().getSizeInBits() / 8;
4591
4592 SmallVector<Constant *, 64> CstIdxs;
4593 for (int Val : Mask) {
4594 // For now, any undef indexes we'll just assume to be 0. This should be
4595 // optimized in future, e.g. to select DUP etc.
4596 Val = Val < 0 ? 0 : Val;
4597 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
4598 unsigned Offset = Byte + Val * BytesPerElt;
4599 CstIdxs.emplace_back(ConstantInt::get(Type::getInt8Ty(Ctx), Offset));
4600 }
4601 }
4602
4603 MachineIRBuilder MIRBuilder(I);
4604
4605 // Use a constant pool to load the index vector for TBL.
4606 Constant *CPVal = ConstantVector::get(CstIdxs);
4607 MachineInstr *IndexLoad = emitLoadFromConstantPool(CPVal, MIRBuilder);
4608 if (!IndexLoad) {
4609 LLVM_DEBUG(dbgs() << "Could not load from a constant pool");
4610 return false;
4611 }
4612
4613 if (DstTy.getSizeInBits() != 128) {
4614 assert(DstTy.getSizeInBits() == 64 && "Unexpected shuffle result ty");
4615 // This case can be done with TBL1.
4616 MachineInstr *Concat = emitVectorConcat(None, Src1Reg, Src2Reg, MIRBuilder);
4617 if (!Concat) {
4618 LLVM_DEBUG(dbgs() << "Could not do vector concat for tbl1");
4619 return false;
4620 }
4621
4622 // The constant pool load will be 64 bits, so need to convert to FPR128 reg.
4623 IndexLoad =
4624 emitScalarToVector(64, &AArch64::FPR128RegClass,
4625 IndexLoad->getOperand(0).getReg(), MIRBuilder);
4626
4627 auto TBL1 = MIRBuilder.buildInstr(
4628 AArch64::TBLv16i8One, {&AArch64::FPR128RegClass},
4629 {Concat->getOperand(0).getReg(), IndexLoad->getOperand(0).getReg()});
4630 constrainSelectedInstRegOperands(*TBL1, TII, TRI, RBI);
4631
4632 auto Copy =
4633 MIRBuilder
4634 .buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
4635 .addReg(TBL1.getReg(0), 0, AArch64::dsub);
4636 RBI.constrainGenericRegister(Copy.getReg(0), AArch64::FPR64RegClass, MRI);
4637 I.eraseFromParent();
4638 return true;
4639 }
4640
4641 // For TBL2 we need to emit a REG_SEQUENCE to tie together two consecutive
4642 // Q registers for regalloc.
4643 auto RegSeq = MIRBuilder
4644 .buildInstr(TargetOpcode::REG_SEQUENCE,
4645 {&AArch64::QQRegClass}, {Src1Reg})
4646 .addImm(AArch64::qsub0)
4647 .addUse(Src2Reg)
4648 .addImm(AArch64::qsub1);
4649
4650 auto TBL2 = MIRBuilder.buildInstr(AArch64::TBLv16i8Two, {I.getOperand(0)},
4651 {RegSeq, IndexLoad->getOperand(0)});
4652 constrainSelectedInstRegOperands(*RegSeq, TII, TRI, RBI);
4653 constrainSelectedInstRegOperands(*TBL2, TII, TRI, RBI);
4654 I.eraseFromParent();
4655 return true;
4656 }
4657
emitLaneInsert(Optional<Register> DstReg,Register SrcReg,Register EltReg,unsigned LaneIdx,const RegisterBank & RB,MachineIRBuilder & MIRBuilder) const4658 MachineInstr *AArch64InstructionSelector::emitLaneInsert(
4659 Optional<Register> DstReg, Register SrcReg, Register EltReg,
4660 unsigned LaneIdx, const RegisterBank &RB,
4661 MachineIRBuilder &MIRBuilder) const {
4662 MachineInstr *InsElt = nullptr;
4663 const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
4664 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4665
4666 // Create a register to define with the insert if one wasn't passed in.
4667 if (!DstReg)
4668 DstReg = MRI.createVirtualRegister(DstRC);
4669
4670 unsigned EltSize = MRI.getType(EltReg).getSizeInBits();
4671 unsigned Opc = getInsertVecEltOpInfo(RB, EltSize).first;
4672
4673 if (RB.getID() == AArch64::FPRRegBankID) {
4674 auto InsSub = emitScalarToVector(EltSize, DstRC, EltReg, MIRBuilder);
4675 InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
4676 .addImm(LaneIdx)
4677 .addUse(InsSub->getOperand(0).getReg())
4678 .addImm(0);
4679 } else {
4680 InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
4681 .addImm(LaneIdx)
4682 .addUse(EltReg);
4683 }
4684
4685 constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
4686 return InsElt;
4687 }
4688
selectInsertElt(MachineInstr & I,MachineRegisterInfo & MRI) const4689 bool AArch64InstructionSelector::selectInsertElt(
4690 MachineInstr &I, MachineRegisterInfo &MRI) const {
4691 assert(I.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT);
4692
4693 // Get information on the destination.
4694 Register DstReg = I.getOperand(0).getReg();
4695 const LLT DstTy = MRI.getType(DstReg);
4696 unsigned VecSize = DstTy.getSizeInBits();
4697
4698 // Get information on the element we want to insert into the destination.
4699 Register EltReg = I.getOperand(2).getReg();
4700 const LLT EltTy = MRI.getType(EltReg);
4701 unsigned EltSize = EltTy.getSizeInBits();
4702 if (EltSize < 16 || EltSize > 64)
4703 return false; // Don't support all element types yet.
4704
4705 // Find the definition of the index. Bail out if it's not defined by a
4706 // G_CONSTANT.
4707 Register IdxReg = I.getOperand(3).getReg();
4708 auto VRegAndVal = getConstantVRegValWithLookThrough(IdxReg, MRI);
4709 if (!VRegAndVal)
4710 return false;
4711 unsigned LaneIdx = VRegAndVal->Value.getSExtValue();
4712
4713 // Perform the lane insert.
4714 Register SrcReg = I.getOperand(1).getReg();
4715 const RegisterBank &EltRB = *RBI.getRegBank(EltReg, MRI, TRI);
4716 MachineIRBuilder MIRBuilder(I);
4717
4718 if (VecSize < 128) {
4719 // If the vector we're inserting into is smaller than 128 bits, widen it
4720 // to 128 to do the insert.
4721 MachineInstr *ScalarToVec = emitScalarToVector(
4722 VecSize, &AArch64::FPR128RegClass, SrcReg, MIRBuilder);
4723 if (!ScalarToVec)
4724 return false;
4725 SrcReg = ScalarToVec->getOperand(0).getReg();
4726 }
4727
4728 // Create an insert into a new FPR128 register.
4729 // Note that if our vector is already 128 bits, we end up emitting an extra
4730 // register.
4731 MachineInstr *InsMI =
4732 emitLaneInsert(None, SrcReg, EltReg, LaneIdx, EltRB, MIRBuilder);
4733
4734 if (VecSize < 128) {
4735 // If we had to widen to perform the insert, then we have to demote back to
4736 // the original size to get the result we want.
4737 Register DemoteVec = InsMI->getOperand(0).getReg();
4738 const TargetRegisterClass *RC =
4739 getMinClassForRegBank(*RBI.getRegBank(DemoteVec, MRI, TRI), VecSize);
4740 if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
4741 LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
4742 return false;
4743 }
4744 unsigned SubReg = 0;
4745 if (!getSubRegForClass(RC, TRI, SubReg))
4746 return false;
4747 if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
4748 LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << VecSize
4749 << "\n");
4750 return false;
4751 }
4752 MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {})
4753 .addReg(DemoteVec, 0, SubReg);
4754 RBI.constrainGenericRegister(DstReg, *RC, MRI);
4755 } else {
4756 // No widening needed.
4757 InsMI->getOperand(0).setReg(DstReg);
4758 constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
4759 }
4760
4761 I.eraseFromParent();
4762 return true;
4763 }
4764
tryOptConstantBuildVec(MachineInstr & I,LLT DstTy,MachineRegisterInfo & MRI) const4765 bool AArch64InstructionSelector::tryOptConstantBuildVec(
4766 MachineInstr &I, LLT DstTy, MachineRegisterInfo &MRI) const {
4767 assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
4768 unsigned DstSize = DstTy.getSizeInBits();
4769 assert(DstSize <= 128 && "Unexpected build_vec type!");
4770 if (DstSize < 32)
4771 return false;
4772 // Check if we're building a constant vector, in which case we want to
4773 // generate a constant pool load instead of a vector insert sequence.
4774 SmallVector<Constant *, 16> Csts;
4775 for (unsigned Idx = 1; Idx < I.getNumOperands(); ++Idx) {
4776 // Try to find G_CONSTANT or G_FCONSTANT
4777 auto *OpMI =
4778 getOpcodeDef(TargetOpcode::G_CONSTANT, I.getOperand(Idx).getReg(), MRI);
4779 if (OpMI)
4780 Csts.emplace_back(
4781 const_cast<ConstantInt *>(OpMI->getOperand(1).getCImm()));
4782 else if ((OpMI = getOpcodeDef(TargetOpcode::G_FCONSTANT,
4783 I.getOperand(Idx).getReg(), MRI)))
4784 Csts.emplace_back(
4785 const_cast<ConstantFP *>(OpMI->getOperand(1).getFPImm()));
4786 else
4787 return false;
4788 }
4789 Constant *CV = ConstantVector::get(Csts);
4790 MachineIRBuilder MIB(I);
4791 if (CV->isNullValue()) {
4792 // Until the importer can support immAllZerosV in pattern leaf nodes,
4793 // select a zero move manually here.
4794 Register DstReg = I.getOperand(0).getReg();
4795 if (DstSize == 128) {
4796 auto Mov = MIB.buildInstr(AArch64::MOVIv2d_ns, {DstReg}, {}).addImm(0);
4797 I.eraseFromParent();
4798 return constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
4799 } else if (DstSize == 64) {
4800 auto Mov =
4801 MIB.buildInstr(AArch64::MOVIv2d_ns, {&AArch64::FPR128RegClass}, {})
4802 .addImm(0);
4803 MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {})
4804 .addReg(Mov.getReg(0), 0, AArch64::dsub);
4805 I.eraseFromParent();
4806 return RBI.constrainGenericRegister(DstReg, AArch64::FPR64RegClass, MRI);
4807 }
4808 }
4809 auto *CPLoad = emitLoadFromConstantPool(CV, MIB);
4810 if (!CPLoad) {
4811 LLVM_DEBUG(dbgs() << "Could not generate cp load for build_vector");
4812 return false;
4813 }
4814 MIB.buildCopy(I.getOperand(0), CPLoad->getOperand(0));
4815 RBI.constrainGenericRegister(I.getOperand(0).getReg(),
4816 *MRI.getRegClass(CPLoad->getOperand(0).getReg()),
4817 MRI);
4818 I.eraseFromParent();
4819 return true;
4820 }
4821
selectBuildVector(MachineInstr & I,MachineRegisterInfo & MRI) const4822 bool AArch64InstructionSelector::selectBuildVector(
4823 MachineInstr &I, MachineRegisterInfo &MRI) const {
4824 assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
4825 // Until we port more of the optimized selections, for now just use a vector
4826 // insert sequence.
4827 const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
4828 const LLT EltTy = MRI.getType(I.getOperand(1).getReg());
4829 unsigned EltSize = EltTy.getSizeInBits();
4830
4831 if (tryOptConstantBuildVec(I, DstTy, MRI))
4832 return true;
4833 if (EltSize < 16 || EltSize > 64)
4834 return false; // Don't support all element types yet.
4835 const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
4836 MachineIRBuilder MIRBuilder(I);
4837
4838 const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
4839 MachineInstr *ScalarToVec =
4840 emitScalarToVector(DstTy.getElementType().getSizeInBits(), DstRC,
4841 I.getOperand(1).getReg(), MIRBuilder);
4842 if (!ScalarToVec)
4843 return false;
4844
4845 Register DstVec = ScalarToVec->getOperand(0).getReg();
4846 unsigned DstSize = DstTy.getSizeInBits();
4847
4848 // Keep track of the last MI we inserted. Later on, we might be able to save
4849 // a copy using it.
4850 MachineInstr *PrevMI = nullptr;
4851 for (unsigned i = 2, e = DstSize / EltSize + 1; i < e; ++i) {
4852 // Note that if we don't do a subregister copy, we can end up making an
4853 // extra register.
4854 PrevMI = &*emitLaneInsert(None, DstVec, I.getOperand(i).getReg(), i - 1, RB,
4855 MIRBuilder);
4856 DstVec = PrevMI->getOperand(0).getReg();
4857 }
4858
4859 // If DstTy's size in bits is less than 128, then emit a subregister copy
4860 // from DstVec to the last register we've defined.
4861 if (DstSize < 128) {
4862 // Force this to be FPR using the destination vector.
4863 const TargetRegisterClass *RC =
4864 getMinClassForRegBank(*RBI.getRegBank(DstVec, MRI, TRI), DstSize);
4865 if (!RC)
4866 return false;
4867 if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
4868 LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
4869 return false;
4870 }
4871
4872 unsigned SubReg = 0;
4873 if (!getSubRegForClass(RC, TRI, SubReg))
4874 return false;
4875 if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
4876 LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << DstSize
4877 << "\n");
4878 return false;
4879 }
4880
4881 Register Reg = MRI.createVirtualRegister(RC);
4882 Register DstReg = I.getOperand(0).getReg();
4883
4884 MIRBuilder.buildInstr(TargetOpcode::COPY, {DstReg}, {})
4885 .addReg(DstVec, 0, SubReg);
4886 MachineOperand &RegOp = I.getOperand(1);
4887 RegOp.setReg(Reg);
4888 RBI.constrainGenericRegister(DstReg, *RC, MRI);
4889 } else {
4890 // We don't need a subregister copy. Save a copy by re-using the
4891 // destination register on the final insert.
4892 assert(PrevMI && "PrevMI was null?");
4893 PrevMI->getOperand(0).setReg(I.getOperand(0).getReg());
4894 constrainSelectedInstRegOperands(*PrevMI, TII, TRI, RBI);
4895 }
4896
4897 I.eraseFromParent();
4898 return true;
4899 }
4900
4901 /// Helper function to find an intrinsic ID on an a MachineInstr. Returns the
4902 /// ID if it exists, and 0 otherwise.
findIntrinsicID(MachineInstr & I)4903 static unsigned findIntrinsicID(MachineInstr &I) {
4904 auto IntrinOp = find_if(I.operands(), [&](const MachineOperand &Op) {
4905 return Op.isIntrinsicID();
4906 });
4907 if (IntrinOp == I.operands_end())
4908 return 0;
4909 return IntrinOp->getIntrinsicID();
4910 }
4911
selectIntrinsicWithSideEffects(MachineInstr & I,MachineRegisterInfo & MRI) const4912 bool AArch64InstructionSelector::selectIntrinsicWithSideEffects(
4913 MachineInstr &I, MachineRegisterInfo &MRI) const {
4914 // Find the intrinsic ID.
4915 unsigned IntrinID = findIntrinsicID(I);
4916 if (!IntrinID)
4917 return false;
4918 MachineIRBuilder MIRBuilder(I);
4919
4920 // Select the instruction.
4921 switch (IntrinID) {
4922 default:
4923 return false;
4924 case Intrinsic::trap:
4925 MIRBuilder.buildInstr(AArch64::BRK, {}, {}).addImm(1);
4926 break;
4927 case Intrinsic::debugtrap:
4928 MIRBuilder.buildInstr(AArch64::BRK, {}, {}).addImm(0xF000);
4929 break;
4930 case Intrinsic::ubsantrap:
4931 MIRBuilder.buildInstr(AArch64::BRK, {}, {})
4932 .addImm(I.getOperand(1).getImm() | ('U' << 8));
4933 break;
4934 }
4935
4936 I.eraseFromParent();
4937 return true;
4938 }
4939
selectIntrinsic(MachineInstr & I,MachineRegisterInfo & MRI)4940 bool AArch64InstructionSelector::selectIntrinsic(MachineInstr &I,
4941 MachineRegisterInfo &MRI) {
4942 unsigned IntrinID = findIntrinsicID(I);
4943 if (!IntrinID)
4944 return false;
4945 MachineIRBuilder MIRBuilder(I);
4946
4947 switch (IntrinID) {
4948 default:
4949 break;
4950 case Intrinsic::aarch64_crypto_sha1h: {
4951 Register DstReg = I.getOperand(0).getReg();
4952 Register SrcReg = I.getOperand(2).getReg();
4953
4954 // FIXME: Should this be an assert?
4955 if (MRI.getType(DstReg).getSizeInBits() != 32 ||
4956 MRI.getType(SrcReg).getSizeInBits() != 32)
4957 return false;
4958
4959 // The operation has to happen on FPRs. Set up some new FPR registers for
4960 // the source and destination if they are on GPRs.
4961 if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
4962 SrcReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
4963 MIRBuilder.buildCopy({SrcReg}, {I.getOperand(2)});
4964
4965 // Make sure the copy ends up getting constrained properly.
4966 RBI.constrainGenericRegister(I.getOperand(2).getReg(),
4967 AArch64::GPR32RegClass, MRI);
4968 }
4969
4970 if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID)
4971 DstReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
4972
4973 // Actually insert the instruction.
4974 auto SHA1Inst = MIRBuilder.buildInstr(AArch64::SHA1Hrr, {DstReg}, {SrcReg});
4975 constrainSelectedInstRegOperands(*SHA1Inst, TII, TRI, RBI);
4976
4977 // Did we create a new register for the destination?
4978 if (DstReg != I.getOperand(0).getReg()) {
4979 // Yep. Copy the result of the instruction back into the original
4980 // destination.
4981 MIRBuilder.buildCopy({I.getOperand(0)}, {DstReg});
4982 RBI.constrainGenericRegister(I.getOperand(0).getReg(),
4983 AArch64::GPR32RegClass, MRI);
4984 }
4985
4986 I.eraseFromParent();
4987 return true;
4988 }
4989 case Intrinsic::frameaddress:
4990 case Intrinsic::returnaddress: {
4991 MachineFunction &MF = *I.getParent()->getParent();
4992 MachineFrameInfo &MFI = MF.getFrameInfo();
4993
4994 unsigned Depth = I.getOperand(2).getImm();
4995 Register DstReg = I.getOperand(0).getReg();
4996 RBI.constrainGenericRegister(DstReg, AArch64::GPR64RegClass, MRI);
4997
4998 if (Depth == 0 && IntrinID == Intrinsic::returnaddress) {
4999 if (!MFReturnAddr) {
5000 // Insert the copy from LR/X30 into the entry block, before it can be
5001 // clobbered by anything.
5002 MFI.setReturnAddressIsTaken(true);
5003 MFReturnAddr = getFunctionLiveInPhysReg(MF, TII, AArch64::LR,
5004 AArch64::GPR64RegClass);
5005 }
5006
5007 if (STI.hasPAuth()) {
5008 MIRBuilder.buildInstr(AArch64::XPACI, {DstReg}, {MFReturnAddr});
5009 } else {
5010 MIRBuilder.buildCopy({Register(AArch64::LR)}, {MFReturnAddr});
5011 MIRBuilder.buildInstr(AArch64::XPACLRI);
5012 MIRBuilder.buildCopy({DstReg}, {Register(AArch64::LR)});
5013 }
5014
5015 I.eraseFromParent();
5016 return true;
5017 }
5018
5019 MFI.setFrameAddressIsTaken(true);
5020 Register FrameAddr(AArch64::FP);
5021 while (Depth--) {
5022 Register NextFrame = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
5023 auto Ldr =
5024 MIRBuilder.buildInstr(AArch64::LDRXui, {NextFrame}, {FrameAddr})
5025 .addImm(0);
5026 constrainSelectedInstRegOperands(*Ldr, TII, TRI, RBI);
5027 FrameAddr = NextFrame;
5028 }
5029
5030 if (IntrinID == Intrinsic::frameaddress)
5031 MIRBuilder.buildCopy({DstReg}, {FrameAddr});
5032 else {
5033 MFI.setReturnAddressIsTaken(true);
5034
5035 if (STI.hasPAuth()) {
5036 Register TmpReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
5037 MIRBuilder.buildInstr(AArch64::LDRXui, {TmpReg}, {FrameAddr}).addImm(1);
5038 MIRBuilder.buildInstr(AArch64::XPACI, {DstReg}, {TmpReg});
5039 } else {
5040 MIRBuilder.buildInstr(AArch64::LDRXui, {Register(AArch64::LR)}, {FrameAddr}).addImm(1);
5041 MIRBuilder.buildInstr(AArch64::XPACLRI);
5042 MIRBuilder.buildCopy({DstReg}, {Register(AArch64::LR)});
5043 }
5044 }
5045
5046 I.eraseFromParent();
5047 return true;
5048 }
5049 }
5050 return false;
5051 }
5052
5053 InstructionSelector::ComplexRendererFns
selectShiftA_32(const MachineOperand & Root) const5054 AArch64InstructionSelector::selectShiftA_32(const MachineOperand &Root) const {
5055 auto MaybeImmed = getImmedFromMO(Root);
5056 if (MaybeImmed == None || *MaybeImmed > 31)
5057 return None;
5058 uint64_t Enc = (32 - *MaybeImmed) & 0x1f;
5059 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
5060 }
5061
5062 InstructionSelector::ComplexRendererFns
selectShiftB_32(const MachineOperand & Root) const5063 AArch64InstructionSelector::selectShiftB_32(const MachineOperand &Root) const {
5064 auto MaybeImmed = getImmedFromMO(Root);
5065 if (MaybeImmed == None || *MaybeImmed > 31)
5066 return None;
5067 uint64_t Enc = 31 - *MaybeImmed;
5068 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
5069 }
5070
5071 InstructionSelector::ComplexRendererFns
selectShiftA_64(const MachineOperand & Root) const5072 AArch64InstructionSelector::selectShiftA_64(const MachineOperand &Root) const {
5073 auto MaybeImmed = getImmedFromMO(Root);
5074 if (MaybeImmed == None || *MaybeImmed > 63)
5075 return None;
5076 uint64_t Enc = (64 - *MaybeImmed) & 0x3f;
5077 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
5078 }
5079
5080 InstructionSelector::ComplexRendererFns
selectShiftB_64(const MachineOperand & Root) const5081 AArch64InstructionSelector::selectShiftB_64(const MachineOperand &Root) const {
5082 auto MaybeImmed = getImmedFromMO(Root);
5083 if (MaybeImmed == None || *MaybeImmed > 63)
5084 return None;
5085 uint64_t Enc = 63 - *MaybeImmed;
5086 return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
5087 }
5088
5089 /// Helper to select an immediate value that can be represented as a 12-bit
5090 /// value shifted left by either 0 or 12. If it is possible to do so, return
5091 /// the immediate and shift value. If not, return None.
5092 ///
5093 /// Used by selectArithImmed and selectNegArithImmed.
5094 InstructionSelector::ComplexRendererFns
select12BitValueWithLeftShift(uint64_t Immed) const5095 AArch64InstructionSelector::select12BitValueWithLeftShift(
5096 uint64_t Immed) const {
5097 unsigned ShiftAmt;
5098 if (Immed >> 12 == 0) {
5099 ShiftAmt = 0;
5100 } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
5101 ShiftAmt = 12;
5102 Immed = Immed >> 12;
5103 } else
5104 return None;
5105
5106 unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
5107 return {{
5108 [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed); },
5109 [=](MachineInstrBuilder &MIB) { MIB.addImm(ShVal); },
5110 }};
5111 }
5112
5113 /// SelectArithImmed - Select an immediate value that can be represented as
5114 /// a 12-bit value shifted left by either 0 or 12. If so, return true with
5115 /// Val set to the 12-bit value and Shift set to the shifter operand.
5116 InstructionSelector::ComplexRendererFns
selectArithImmed(MachineOperand & Root) const5117 AArch64InstructionSelector::selectArithImmed(MachineOperand &Root) const {
5118 // This function is called from the addsub_shifted_imm ComplexPattern,
5119 // which lists [imm] as the list of opcode it's interested in, however
5120 // we still need to check whether the operand is actually an immediate
5121 // here because the ComplexPattern opcode list is only used in
5122 // root-level opcode matching.
5123 auto MaybeImmed = getImmedFromMO(Root);
5124 if (MaybeImmed == None)
5125 return None;
5126 return select12BitValueWithLeftShift(*MaybeImmed);
5127 }
5128
5129 /// SelectNegArithImmed - As above, but negates the value before trying to
5130 /// select it.
5131 InstructionSelector::ComplexRendererFns
selectNegArithImmed(MachineOperand & Root) const5132 AArch64InstructionSelector::selectNegArithImmed(MachineOperand &Root) const {
5133 // We need a register here, because we need to know if we have a 64 or 32
5134 // bit immediate.
5135 if (!Root.isReg())
5136 return None;
5137 auto MaybeImmed = getImmedFromMO(Root);
5138 if (MaybeImmed == None)
5139 return None;
5140 uint64_t Immed = *MaybeImmed;
5141
5142 // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
5143 // have the opposite effect on the C flag, so this pattern mustn't match under
5144 // those circumstances.
5145 if (Immed == 0)
5146 return None;
5147
5148 // Check if we're dealing with a 32-bit type on the root or a 64-bit type on
5149 // the root.
5150 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
5151 if (MRI.getType(Root.getReg()).getSizeInBits() == 32)
5152 Immed = ~((uint32_t)Immed) + 1;
5153 else
5154 Immed = ~Immed + 1ULL;
5155
5156 if (Immed & 0xFFFFFFFFFF000000ULL)
5157 return None;
5158
5159 Immed &= 0xFFFFFFULL;
5160 return select12BitValueWithLeftShift(Immed);
5161 }
5162
5163 /// Return true if it is worth folding MI into an extended register. That is,
5164 /// if it's safe to pull it into the addressing mode of a load or store as a
5165 /// shift.
isWorthFoldingIntoExtendedReg(MachineInstr & MI,const MachineRegisterInfo & MRI) const5166 bool AArch64InstructionSelector::isWorthFoldingIntoExtendedReg(
5167 MachineInstr &MI, const MachineRegisterInfo &MRI) const {
5168 // Always fold if there is one use, or if we're optimizing for size.
5169 Register DefReg = MI.getOperand(0).getReg();
5170 if (MRI.hasOneNonDBGUse(DefReg) ||
5171 MI.getParent()->getParent()->getFunction().hasMinSize())
5172 return true;
5173
5174 // It's better to avoid folding and recomputing shifts when we don't have a
5175 // fastpath.
5176 if (!STI.hasLSLFast())
5177 return false;
5178
5179 // We have a fastpath, so folding a shift in and potentially computing it
5180 // many times may be beneficial. Check if this is only used in memory ops.
5181 // If it is, then we should fold.
5182 return all_of(MRI.use_nodbg_instructions(DefReg),
5183 [](MachineInstr &Use) { return Use.mayLoadOrStore(); });
5184 }
5185
isSignExtendShiftType(AArch64_AM::ShiftExtendType Type)5186 static bool isSignExtendShiftType(AArch64_AM::ShiftExtendType Type) {
5187 switch (Type) {
5188 case AArch64_AM::SXTB:
5189 case AArch64_AM::SXTH:
5190 case AArch64_AM::SXTW:
5191 return true;
5192 default:
5193 return false;
5194 }
5195 }
5196
5197 InstructionSelector::ComplexRendererFns
selectExtendedSHL(MachineOperand & Root,MachineOperand & Base,MachineOperand & Offset,unsigned SizeInBytes,bool WantsExt) const5198 AArch64InstructionSelector::selectExtendedSHL(
5199 MachineOperand &Root, MachineOperand &Base, MachineOperand &Offset,
5200 unsigned SizeInBytes, bool WantsExt) const {
5201 assert(Base.isReg() && "Expected base to be a register operand");
5202 assert(Offset.isReg() && "Expected offset to be a register operand");
5203
5204 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
5205 MachineInstr *OffsetInst = MRI.getVRegDef(Offset.getReg());
5206 if (!OffsetInst)
5207 return None;
5208
5209 unsigned OffsetOpc = OffsetInst->getOpcode();
5210 bool LookedThroughZExt = false;
5211 if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL) {
5212 // Try to look through a ZEXT.
5213 if (OffsetOpc != TargetOpcode::G_ZEXT || !WantsExt)
5214 return None;
5215
5216 OffsetInst = MRI.getVRegDef(OffsetInst->getOperand(1).getReg());
5217 OffsetOpc = OffsetInst->getOpcode();
5218 LookedThroughZExt = true;
5219
5220 if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL)
5221 return None;
5222 }
5223 // Make sure that the memory op is a valid size.
5224 int64_t LegalShiftVal = Log2_32(SizeInBytes);
5225 if (LegalShiftVal == 0)
5226 return None;
5227 if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
5228 return None;
5229
5230 // Now, try to find the specific G_CONSTANT. Start by assuming that the
5231 // register we will offset is the LHS, and the register containing the
5232 // constant is the RHS.
5233 Register OffsetReg = OffsetInst->getOperand(1).getReg();
5234 Register ConstantReg = OffsetInst->getOperand(2).getReg();
5235 auto ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
5236 if (!ValAndVReg) {
5237 // We didn't get a constant on the RHS. If the opcode is a shift, then
5238 // we're done.
5239 if (OffsetOpc == TargetOpcode::G_SHL)
5240 return None;
5241
5242 // If we have a G_MUL, we can use either register. Try looking at the RHS.
5243 std::swap(OffsetReg, ConstantReg);
5244 ValAndVReg = getConstantVRegValWithLookThrough(ConstantReg, MRI);
5245 if (!ValAndVReg)
5246 return None;
5247 }
5248
5249 // The value must fit into 3 bits, and must be positive. Make sure that is
5250 // true.
5251 int64_t ImmVal = ValAndVReg->Value.getSExtValue();
5252
5253 // Since we're going to pull this into a shift, the constant value must be
5254 // a power of 2. If we got a multiply, then we need to check this.
5255 if (OffsetOpc == TargetOpcode::G_MUL) {
5256 if (!isPowerOf2_32(ImmVal))
5257 return None;
5258
5259 // Got a power of 2. So, the amount we'll shift is the log base-2 of that.
5260 ImmVal = Log2_32(ImmVal);
5261 }
5262
5263 if ((ImmVal & 0x7) != ImmVal)
5264 return None;
5265
5266 // We are only allowed to shift by LegalShiftVal. This shift value is built
5267 // into the instruction, so we can't just use whatever we want.
5268 if (ImmVal != LegalShiftVal)
5269 return None;
5270
5271 unsigned SignExtend = 0;
5272 if (WantsExt) {
5273 // Check if the offset is defined by an extend, unless we looked through a
5274 // G_ZEXT earlier.
5275 if (!LookedThroughZExt) {
5276 MachineInstr *ExtInst = getDefIgnoringCopies(OffsetReg, MRI);
5277 auto Ext = getExtendTypeForInst(*ExtInst, MRI, true);
5278 if (Ext == AArch64_AM::InvalidShiftExtend)
5279 return None;
5280
5281 SignExtend = isSignExtendShiftType(Ext) ? 1 : 0;
5282 // We only support SXTW for signed extension here.
5283 if (SignExtend && Ext != AArch64_AM::SXTW)
5284 return None;
5285 OffsetReg = ExtInst->getOperand(1).getReg();
5286 }
5287
5288 // Need a 32-bit wide register here.
5289 MachineIRBuilder MIB(*MRI.getVRegDef(Root.getReg()));
5290 OffsetReg = moveScalarRegClass(OffsetReg, AArch64::GPR32RegClass, MIB);
5291 }
5292
5293 // We can use the LHS of the GEP as the base, and the LHS of the shift as an
5294 // offset. Signify that we are shifting by setting the shift flag to 1.
5295 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(Base.getReg()); },
5296 [=](MachineInstrBuilder &MIB) { MIB.addUse(OffsetReg); },
5297 [=](MachineInstrBuilder &MIB) {
5298 // Need to add both immediates here to make sure that they are both
5299 // added to the instruction.
5300 MIB.addImm(SignExtend);
5301 MIB.addImm(1);
5302 }}};
5303 }
5304
5305 /// This is used for computing addresses like this:
5306 ///
5307 /// ldr x1, [x2, x3, lsl #3]
5308 ///
5309 /// Where x2 is the base register, and x3 is an offset register. The shift-left
5310 /// is a constant value specific to this load instruction. That is, we'll never
5311 /// see anything other than a 3 here (which corresponds to the size of the
5312 /// element being loaded.)
5313 InstructionSelector::ComplexRendererFns
selectAddrModeShiftedExtendXReg(MachineOperand & Root,unsigned SizeInBytes) const5314 AArch64InstructionSelector::selectAddrModeShiftedExtendXReg(
5315 MachineOperand &Root, unsigned SizeInBytes) const {
5316 if (!Root.isReg())
5317 return None;
5318 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
5319
5320 // We want to find something like this:
5321 //
5322 // val = G_CONSTANT LegalShiftVal
5323 // shift = G_SHL off_reg val
5324 // ptr = G_PTR_ADD base_reg shift
5325 // x = G_LOAD ptr
5326 //
5327 // And fold it into this addressing mode:
5328 //
5329 // ldr x, [base_reg, off_reg, lsl #LegalShiftVal]
5330
5331 // Check if we can find the G_PTR_ADD.
5332 MachineInstr *PtrAdd =
5333 getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
5334 if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI))
5335 return None;
5336
5337 // Now, try to match an opcode which will match our specific offset.
5338 // We want a G_SHL or a G_MUL.
5339 MachineInstr *OffsetInst =
5340 getDefIgnoringCopies(PtrAdd->getOperand(2).getReg(), MRI);
5341 return selectExtendedSHL(Root, PtrAdd->getOperand(1),
5342 OffsetInst->getOperand(0), SizeInBytes,
5343 /*WantsExt=*/false);
5344 }
5345
5346 /// This is used for computing addresses like this:
5347 ///
5348 /// ldr x1, [x2, x3]
5349 ///
5350 /// Where x2 is the base register, and x3 is an offset register.
5351 ///
5352 /// When possible (or profitable) to fold a G_PTR_ADD into the address calculation,
5353 /// this will do so. Otherwise, it will return None.
5354 InstructionSelector::ComplexRendererFns
selectAddrModeRegisterOffset(MachineOperand & Root) const5355 AArch64InstructionSelector::selectAddrModeRegisterOffset(
5356 MachineOperand &Root) const {
5357 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
5358
5359 // We need a GEP.
5360 MachineInstr *Gep = MRI.getVRegDef(Root.getReg());
5361 if (!Gep || Gep->getOpcode() != TargetOpcode::G_PTR_ADD)
5362 return None;
5363
5364 // If this is used more than once, let's not bother folding.
5365 // TODO: Check if they are memory ops. If they are, then we can still fold
5366 // without having to recompute anything.
5367 if (!MRI.hasOneNonDBGUse(Gep->getOperand(0).getReg()))
5368 return None;
5369
5370 // Base is the GEP's LHS, offset is its RHS.
5371 return {{[=](MachineInstrBuilder &MIB) {
5372 MIB.addUse(Gep->getOperand(1).getReg());
5373 },
5374 [=](MachineInstrBuilder &MIB) {
5375 MIB.addUse(Gep->getOperand(2).getReg());
5376 },
5377 [=](MachineInstrBuilder &MIB) {
5378 // Need to add both immediates here to make sure that they are both
5379 // added to the instruction.
5380 MIB.addImm(0);
5381 MIB.addImm(0);
5382 }}};
5383 }
5384
5385 /// This is intended to be equivalent to selectAddrModeXRO in
5386 /// AArch64ISelDAGtoDAG. It's used for selecting X register offset loads.
5387 InstructionSelector::ComplexRendererFns
selectAddrModeXRO(MachineOperand & Root,unsigned SizeInBytes) const5388 AArch64InstructionSelector::selectAddrModeXRO(MachineOperand &Root,
5389 unsigned SizeInBytes) const {
5390 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
5391 if (!Root.isReg())
5392 return None;
5393 MachineInstr *PtrAdd =
5394 getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
5395 if (!PtrAdd)
5396 return None;
5397
5398 // Check for an immediates which cannot be encoded in the [base + imm]
5399 // addressing mode, and can't be encoded in an add/sub. If this happens, we'll
5400 // end up with code like:
5401 //
5402 // mov x0, wide
5403 // add x1 base, x0
5404 // ldr x2, [x1, x0]
5405 //
5406 // In this situation, we can use the [base, xreg] addressing mode to save an
5407 // add/sub:
5408 //
5409 // mov x0, wide
5410 // ldr x2, [base, x0]
5411 auto ValAndVReg =
5412 getConstantVRegValWithLookThrough(PtrAdd->getOperand(2).getReg(), MRI);
5413 if (ValAndVReg) {
5414 unsigned Scale = Log2_32(SizeInBytes);
5415 int64_t ImmOff = ValAndVReg->Value.getSExtValue();
5416
5417 // Skip immediates that can be selected in the load/store addresing
5418 // mode.
5419 if (ImmOff % SizeInBytes == 0 && ImmOff >= 0 &&
5420 ImmOff < (0x1000 << Scale))
5421 return None;
5422
5423 // Helper lambda to decide whether or not it is preferable to emit an add.
5424 auto isPreferredADD = [](int64_t ImmOff) {
5425 // Constants in [0x0, 0xfff] can be encoded in an add.
5426 if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
5427 return true;
5428
5429 // Can it be encoded in an add lsl #12?
5430 if ((ImmOff & 0xffffffffff000fffLL) != 0x0LL)
5431 return false;
5432
5433 // It can be encoded in an add lsl #12, but we may not want to. If it is
5434 // possible to select this as a single movz, then prefer that. A single
5435 // movz is faster than an add with a shift.
5436 return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
5437 (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
5438 };
5439
5440 // If the immediate can be encoded in a single add/sub, then bail out.
5441 if (isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
5442 return None;
5443 }
5444
5445 // Try to fold shifts into the addressing mode.
5446 auto AddrModeFns = selectAddrModeShiftedExtendXReg(Root, SizeInBytes);
5447 if (AddrModeFns)
5448 return AddrModeFns;
5449
5450 // If that doesn't work, see if it's possible to fold in registers from
5451 // a GEP.
5452 return selectAddrModeRegisterOffset(Root);
5453 }
5454
5455 /// This is used for computing addresses like this:
5456 ///
5457 /// ldr x0, [xBase, wOffset, sxtw #LegalShiftVal]
5458 ///
5459 /// Where we have a 64-bit base register, a 32-bit offset register, and an
5460 /// extend (which may or may not be signed).
5461 InstructionSelector::ComplexRendererFns
selectAddrModeWRO(MachineOperand & Root,unsigned SizeInBytes) const5462 AArch64InstructionSelector::selectAddrModeWRO(MachineOperand &Root,
5463 unsigned SizeInBytes) const {
5464 MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
5465
5466 MachineInstr *PtrAdd =
5467 getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
5468 if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI))
5469 return None;
5470
5471 MachineOperand &LHS = PtrAdd->getOperand(1);
5472 MachineOperand &RHS = PtrAdd->getOperand(2);
5473 MachineInstr *OffsetInst = getDefIgnoringCopies(RHS.getReg(), MRI);
5474
5475 // The first case is the same as selectAddrModeXRO, except we need an extend.
5476 // In this case, we try to find a shift and extend, and fold them into the
5477 // addressing mode.
5478 //
5479 // E.g.
5480 //
5481 // off_reg = G_Z/S/ANYEXT ext_reg
5482 // val = G_CONSTANT LegalShiftVal
5483 // shift = G_SHL off_reg val
5484 // ptr = G_PTR_ADD base_reg shift
5485 // x = G_LOAD ptr
5486 //
5487 // In this case we can get a load like this:
5488 //
5489 // ldr x0, [base_reg, ext_reg, sxtw #LegalShiftVal]
5490 auto ExtendedShl = selectExtendedSHL(Root, LHS, OffsetInst->getOperand(0),
5491 SizeInBytes, /*WantsExt=*/true);
5492 if (ExtendedShl)
5493 return ExtendedShl;
5494
5495 // There was no shift. We can try and fold a G_Z/S/ANYEXT in alone though.
5496 //
5497 // e.g.
5498 // ldr something, [base_reg, ext_reg, sxtw]
5499 if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
5500 return None;
5501
5502 // Check if this is an extend. We'll get an extend type if it is.
5503 AArch64_AM::ShiftExtendType Ext =
5504 getExtendTypeForInst(*OffsetInst, MRI, /*IsLoadStore=*/true);
5505 if (Ext == AArch64_AM::InvalidShiftExtend)
5506 return None;
5507
5508 // Need a 32-bit wide register.
5509 MachineIRBuilder MIB(*PtrAdd);
5510 Register ExtReg = moveScalarRegClass(OffsetInst->getOperand(1).getReg(),
5511 AArch64::GPR32RegClass, MIB);
5512 unsigned SignExtend = Ext == AArch64_AM::SXTW;
5513
5514 // Base is LHS, offset is ExtReg.
5515 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(LHS.getReg()); },
5516 [=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
5517 [=](MachineInstrBuilder &MIB) {
5518 MIB.addImm(SignExtend);
5519 MIB.addImm(0);
5520 }}};
5521 }
5522
5523 /// Select a "register plus unscaled signed 9-bit immediate" address. This
5524 /// should only match when there is an offset that is not valid for a scaled
5525 /// immediate addressing mode. The "Size" argument is the size in bytes of the
5526 /// memory reference, which is needed here to know what is valid for a scaled
5527 /// immediate.
5528 InstructionSelector::ComplexRendererFns
selectAddrModeUnscaled(MachineOperand & Root,unsigned Size) const5529 AArch64InstructionSelector::selectAddrModeUnscaled(MachineOperand &Root,
5530 unsigned Size) const {
5531 MachineRegisterInfo &MRI =
5532 Root.getParent()->getParent()->getParent()->getRegInfo();
5533
5534 if (!Root.isReg())
5535 return None;
5536
5537 if (!isBaseWithConstantOffset(Root, MRI))
5538 return None;
5539
5540 MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
5541 if (!RootDef)
5542 return None;
5543
5544 MachineOperand &OffImm = RootDef->getOperand(2);
5545 if (!OffImm.isReg())
5546 return None;
5547 MachineInstr *RHS = MRI.getVRegDef(OffImm.getReg());
5548 if (!RHS || RHS->getOpcode() != TargetOpcode::G_CONSTANT)
5549 return None;
5550 int64_t RHSC;
5551 MachineOperand &RHSOp1 = RHS->getOperand(1);
5552 if (!RHSOp1.isCImm() || RHSOp1.getCImm()->getBitWidth() > 64)
5553 return None;
5554 RHSC = RHSOp1.getCImm()->getSExtValue();
5555
5556 // If the offset is valid as a scaled immediate, don't match here.
5557 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Log2_32(Size)))
5558 return None;
5559 if (RHSC >= -256 && RHSC < 256) {
5560 MachineOperand &Base = RootDef->getOperand(1);
5561 return {{
5562 [=](MachineInstrBuilder &MIB) { MIB.add(Base); },
5563 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC); },
5564 }};
5565 }
5566 return None;
5567 }
5568
5569 InstructionSelector::ComplexRendererFns
tryFoldAddLowIntoImm(MachineInstr & RootDef,unsigned Size,MachineRegisterInfo & MRI) const5570 AArch64InstructionSelector::tryFoldAddLowIntoImm(MachineInstr &RootDef,
5571 unsigned Size,
5572 MachineRegisterInfo &MRI) const {
5573 if (RootDef.getOpcode() != AArch64::G_ADD_LOW)
5574 return None;
5575 MachineInstr &Adrp = *MRI.getVRegDef(RootDef.getOperand(1).getReg());
5576 if (Adrp.getOpcode() != AArch64::ADRP)
5577 return None;
5578
5579 // TODO: add heuristics like isWorthFoldingADDlow() from SelectionDAG.
5580 // TODO: Need to check GV's offset % size if doing offset folding into globals.
5581 assert(Adrp.getOperand(1).getOffset() == 0 && "Unexpected offset in global");
5582 auto GV = Adrp.getOperand(1).getGlobal();
5583 if (GV->isThreadLocal())
5584 return None;
5585
5586 auto &MF = *RootDef.getParent()->getParent();
5587 if (GV->getPointerAlignment(MF.getDataLayout()) < Size)
5588 return None;
5589
5590 unsigned OpFlags = STI.ClassifyGlobalReference(GV, MF.getTarget());
5591 MachineIRBuilder MIRBuilder(RootDef);
5592 Register AdrpReg = Adrp.getOperand(0).getReg();
5593 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(AdrpReg); },
5594 [=](MachineInstrBuilder &MIB) {
5595 MIB.addGlobalAddress(GV, /* Offset */ 0,
5596 OpFlags | AArch64II::MO_PAGEOFF |
5597 AArch64II::MO_NC);
5598 }}};
5599 }
5600
5601 /// Select a "register plus scaled unsigned 12-bit immediate" address. The
5602 /// "Size" argument is the size in bytes of the memory reference, which
5603 /// determines the scale.
5604 InstructionSelector::ComplexRendererFns
selectAddrModeIndexed(MachineOperand & Root,unsigned Size) const5605 AArch64InstructionSelector::selectAddrModeIndexed(MachineOperand &Root,
5606 unsigned Size) const {
5607 MachineFunction &MF = *Root.getParent()->getParent()->getParent();
5608 MachineRegisterInfo &MRI = MF.getRegInfo();
5609
5610 if (!Root.isReg())
5611 return None;
5612
5613 MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
5614 if (!RootDef)
5615 return None;
5616
5617 if (RootDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
5618 return {{
5619 [=](MachineInstrBuilder &MIB) { MIB.add(RootDef->getOperand(1)); },
5620 [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
5621 }};
5622 }
5623
5624 CodeModel::Model CM = MF.getTarget().getCodeModel();
5625 // Check if we can fold in the ADD of small code model ADRP + ADD address.
5626 if (CM == CodeModel::Small) {
5627 auto OpFns = tryFoldAddLowIntoImm(*RootDef, Size, MRI);
5628 if (OpFns)
5629 return OpFns;
5630 }
5631
5632 if (isBaseWithConstantOffset(Root, MRI)) {
5633 MachineOperand &LHS = RootDef->getOperand(1);
5634 MachineOperand &RHS = RootDef->getOperand(2);
5635 MachineInstr *LHSDef = MRI.getVRegDef(LHS.getReg());
5636 MachineInstr *RHSDef = MRI.getVRegDef(RHS.getReg());
5637 if (LHSDef && RHSDef) {
5638 int64_t RHSC = (int64_t)RHSDef->getOperand(1).getCImm()->getZExtValue();
5639 unsigned Scale = Log2_32(Size);
5640 if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
5641 if (LHSDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
5642 return {{
5643 [=](MachineInstrBuilder &MIB) { MIB.add(LHSDef->getOperand(1)); },
5644 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
5645 }};
5646
5647 return {{
5648 [=](MachineInstrBuilder &MIB) { MIB.add(LHS); },
5649 [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
5650 }};
5651 }
5652 }
5653 }
5654
5655 // Before falling back to our general case, check if the unscaled
5656 // instructions can handle this. If so, that's preferable.
5657 if (selectAddrModeUnscaled(Root, Size).hasValue())
5658 return None;
5659
5660 return {{
5661 [=](MachineInstrBuilder &MIB) { MIB.add(Root); },
5662 [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
5663 }};
5664 }
5665
5666 /// Given a shift instruction, return the correct shift type for that
5667 /// instruction.
getShiftTypeForInst(MachineInstr & MI)5668 static AArch64_AM::ShiftExtendType getShiftTypeForInst(MachineInstr &MI) {
5669 // TODO: Handle AArch64_AM::ROR
5670 switch (MI.getOpcode()) {
5671 default:
5672 return AArch64_AM::InvalidShiftExtend;
5673 case TargetOpcode::G_SHL:
5674 return AArch64_AM::LSL;
5675 case TargetOpcode::G_LSHR:
5676 return AArch64_AM::LSR;
5677 case TargetOpcode::G_ASHR:
5678 return AArch64_AM::ASR;
5679 }
5680 }
5681
5682 /// Select a "shifted register" operand. If the value is not shifted, set the
5683 /// shift operand to a default value of "lsl 0".
5684 ///
5685 /// TODO: Allow shifted register to be rotated in logical instructions.
5686 InstructionSelector::ComplexRendererFns
selectShiftedRegister(MachineOperand & Root) const5687 AArch64InstructionSelector::selectShiftedRegister(MachineOperand &Root) const {
5688 if (!Root.isReg())
5689 return None;
5690 MachineRegisterInfo &MRI =
5691 Root.getParent()->getParent()->getParent()->getRegInfo();
5692
5693 // Check if the operand is defined by an instruction which corresponds to
5694 // a ShiftExtendType. E.g. a G_SHL, G_LSHR, etc.
5695 //
5696 // TODO: Handle AArch64_AM::ROR for logical instructions.
5697 MachineInstr *ShiftInst = MRI.getVRegDef(Root.getReg());
5698 if (!ShiftInst)
5699 return None;
5700 AArch64_AM::ShiftExtendType ShType = getShiftTypeForInst(*ShiftInst);
5701 if (ShType == AArch64_AM::InvalidShiftExtend)
5702 return None;
5703 if (!isWorthFoldingIntoExtendedReg(*ShiftInst, MRI))
5704 return None;
5705
5706 // Need an immediate on the RHS.
5707 MachineOperand &ShiftRHS = ShiftInst->getOperand(2);
5708 auto Immed = getImmedFromMO(ShiftRHS);
5709 if (!Immed)
5710 return None;
5711
5712 // We have something that we can fold. Fold in the shift's LHS and RHS into
5713 // the instruction.
5714 MachineOperand &ShiftLHS = ShiftInst->getOperand(1);
5715 Register ShiftReg = ShiftLHS.getReg();
5716
5717 unsigned NumBits = MRI.getType(ShiftReg).getSizeInBits();
5718 unsigned Val = *Immed & (NumBits - 1);
5719 unsigned ShiftVal = AArch64_AM::getShifterImm(ShType, Val);
5720
5721 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ShiftReg); },
5722 [=](MachineInstrBuilder &MIB) { MIB.addImm(ShiftVal); }}};
5723 }
5724
getExtendTypeForInst(MachineInstr & MI,MachineRegisterInfo & MRI,bool IsLoadStore) const5725 AArch64_AM::ShiftExtendType AArch64InstructionSelector::getExtendTypeForInst(
5726 MachineInstr &MI, MachineRegisterInfo &MRI, bool IsLoadStore) const {
5727 unsigned Opc = MI.getOpcode();
5728
5729 // Handle explicit extend instructions first.
5730 if (Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG) {
5731 unsigned Size;
5732 if (Opc == TargetOpcode::G_SEXT)
5733 Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5734 else
5735 Size = MI.getOperand(2).getImm();
5736 assert(Size != 64 && "Extend from 64 bits?");
5737 switch (Size) {
5738 case 8:
5739 return AArch64_AM::SXTB;
5740 case 16:
5741 return AArch64_AM::SXTH;
5742 case 32:
5743 return AArch64_AM::SXTW;
5744 default:
5745 return AArch64_AM::InvalidShiftExtend;
5746 }
5747 }
5748
5749 if (Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_ANYEXT) {
5750 unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5751 assert(Size != 64 && "Extend from 64 bits?");
5752 switch (Size) {
5753 case 8:
5754 return AArch64_AM::UXTB;
5755 case 16:
5756 return AArch64_AM::UXTH;
5757 case 32:
5758 return AArch64_AM::UXTW;
5759 default:
5760 return AArch64_AM::InvalidShiftExtend;
5761 }
5762 }
5763
5764 // Don't have an explicit extend. Try to handle a G_AND with a constant mask
5765 // on the RHS.
5766 if (Opc != TargetOpcode::G_AND)
5767 return AArch64_AM::InvalidShiftExtend;
5768
5769 Optional<uint64_t> MaybeAndMask = getImmedFromMO(MI.getOperand(2));
5770 if (!MaybeAndMask)
5771 return AArch64_AM::InvalidShiftExtend;
5772 uint64_t AndMask = *MaybeAndMask;
5773 switch (AndMask) {
5774 default:
5775 return AArch64_AM::InvalidShiftExtend;
5776 case 0xFF:
5777 return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
5778 case 0xFFFF:
5779 return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
5780 case 0xFFFFFFFF:
5781 return AArch64_AM::UXTW;
5782 }
5783 }
5784
moveScalarRegClass(Register Reg,const TargetRegisterClass & RC,MachineIRBuilder & MIB) const5785 Register AArch64InstructionSelector::moveScalarRegClass(
5786 Register Reg, const TargetRegisterClass &RC, MachineIRBuilder &MIB) const {
5787 MachineRegisterInfo &MRI = *MIB.getMRI();
5788 auto Ty = MRI.getType(Reg);
5789 assert(!Ty.isVector() && "Expected scalars only!");
5790 if (Ty.getSizeInBits() == TRI.getRegSizeInBits(RC))
5791 return Reg;
5792
5793 // Create a copy and immediately select it.
5794 // FIXME: We should have an emitCopy function?
5795 auto Copy = MIB.buildCopy({&RC}, {Reg});
5796 selectCopy(*Copy, TII, MRI, TRI, RBI);
5797 return Copy.getReg(0);
5798 }
5799
5800 /// Select an "extended register" operand. This operand folds in an extend
5801 /// followed by an optional left shift.
5802 InstructionSelector::ComplexRendererFns
selectArithExtendedRegister(MachineOperand & Root) const5803 AArch64InstructionSelector::selectArithExtendedRegister(
5804 MachineOperand &Root) const {
5805 if (!Root.isReg())
5806 return None;
5807 MachineRegisterInfo &MRI =
5808 Root.getParent()->getParent()->getParent()->getRegInfo();
5809
5810 uint64_t ShiftVal = 0;
5811 Register ExtReg;
5812 AArch64_AM::ShiftExtendType Ext;
5813 MachineInstr *RootDef = getDefIgnoringCopies(Root.getReg(), MRI);
5814 if (!RootDef)
5815 return None;
5816
5817 if (!isWorthFoldingIntoExtendedReg(*RootDef, MRI))
5818 return None;
5819
5820 // Check if we can fold a shift and an extend.
5821 if (RootDef->getOpcode() == TargetOpcode::G_SHL) {
5822 // Look for a constant on the RHS of the shift.
5823 MachineOperand &RHS = RootDef->getOperand(2);
5824 Optional<uint64_t> MaybeShiftVal = getImmedFromMO(RHS);
5825 if (!MaybeShiftVal)
5826 return None;
5827 ShiftVal = *MaybeShiftVal;
5828 if (ShiftVal > 4)
5829 return None;
5830 // Look for a valid extend instruction on the LHS of the shift.
5831 MachineOperand &LHS = RootDef->getOperand(1);
5832 MachineInstr *ExtDef = getDefIgnoringCopies(LHS.getReg(), MRI);
5833 if (!ExtDef)
5834 return None;
5835 Ext = getExtendTypeForInst(*ExtDef, MRI);
5836 if (Ext == AArch64_AM::InvalidShiftExtend)
5837 return None;
5838 ExtReg = ExtDef->getOperand(1).getReg();
5839 } else {
5840 // Didn't get a shift. Try just folding an extend.
5841 Ext = getExtendTypeForInst(*RootDef, MRI);
5842 if (Ext == AArch64_AM::InvalidShiftExtend)
5843 return None;
5844 ExtReg = RootDef->getOperand(1).getReg();
5845
5846 // If we have a 32 bit instruction which zeroes out the high half of a
5847 // register, we get an implicit zero extend for free. Check if we have one.
5848 // FIXME: We actually emit the extend right now even though we don't have
5849 // to.
5850 if (Ext == AArch64_AM::UXTW && MRI.getType(ExtReg).getSizeInBits() == 32) {
5851 MachineInstr *ExtInst = MRI.getVRegDef(ExtReg);
5852 if (ExtInst && isDef32(*ExtInst))
5853 return None;
5854 }
5855 }
5856
5857 // We require a GPR32 here. Narrow the ExtReg if needed using a subregister
5858 // copy.
5859 MachineIRBuilder MIB(*RootDef);
5860 ExtReg = moveScalarRegClass(ExtReg, AArch64::GPR32RegClass, MIB);
5861
5862 return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
5863 [=](MachineInstrBuilder &MIB) {
5864 MIB.addImm(getArithExtendImm(Ext, ShiftVal));
5865 }}};
5866 }
5867
renderTruncImm(MachineInstrBuilder & MIB,const MachineInstr & MI,int OpIdx) const5868 void AArch64InstructionSelector::renderTruncImm(MachineInstrBuilder &MIB,
5869 const MachineInstr &MI,
5870 int OpIdx) const {
5871 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
5872 assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
5873 "Expected G_CONSTANT");
5874 Optional<int64_t> CstVal =
5875 getConstantVRegSExtVal(MI.getOperand(0).getReg(), MRI);
5876 assert(CstVal && "Expected constant value");
5877 MIB.addImm(CstVal.getValue());
5878 }
5879
renderLogicalImm32(MachineInstrBuilder & MIB,const MachineInstr & I,int OpIdx) const5880 void AArch64InstructionSelector::renderLogicalImm32(
5881 MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
5882 assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
5883 "Expected G_CONSTANT");
5884 uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
5885 uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 32);
5886 MIB.addImm(Enc);
5887 }
5888
renderLogicalImm64(MachineInstrBuilder & MIB,const MachineInstr & I,int OpIdx) const5889 void AArch64InstructionSelector::renderLogicalImm64(
5890 MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
5891 assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
5892 "Expected G_CONSTANT");
5893 uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
5894 uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 64);
5895 MIB.addImm(Enc);
5896 }
5897
isLoadStoreOfNumBytes(const MachineInstr & MI,unsigned NumBytes) const5898 bool AArch64InstructionSelector::isLoadStoreOfNumBytes(
5899 const MachineInstr &MI, unsigned NumBytes) const {
5900 if (!MI.mayLoadOrStore())
5901 return false;
5902 assert(MI.hasOneMemOperand() &&
5903 "Expected load/store to have only one mem op!");
5904 return (*MI.memoperands_begin())->getSize() == NumBytes;
5905 }
5906
isDef32(const MachineInstr & MI) const5907 bool AArch64InstructionSelector::isDef32(const MachineInstr &MI) const {
5908 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
5909 if (MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() != 32)
5910 return false;
5911
5912 // Only return true if we know the operation will zero-out the high half of
5913 // the 64-bit register. Truncates can be subregister copies, which don't
5914 // zero out the high bits. Copies and other copy-like instructions can be
5915 // fed by truncates, or could be lowered as subregister copies.
5916 switch (MI.getOpcode()) {
5917 default:
5918 return true;
5919 case TargetOpcode::COPY:
5920 case TargetOpcode::G_BITCAST:
5921 case TargetOpcode::G_TRUNC:
5922 case TargetOpcode::G_PHI:
5923 return false;
5924 }
5925 }
5926
5927
5928 // Perform fixups on the given PHI instruction's operands to force them all
5929 // to be the same as the destination regbank.
fixupPHIOpBanks(MachineInstr & MI,MachineRegisterInfo & MRI,const AArch64RegisterBankInfo & RBI)5930 static void fixupPHIOpBanks(MachineInstr &MI, MachineRegisterInfo &MRI,
5931 const AArch64RegisterBankInfo &RBI) {
5932 assert(MI.getOpcode() == TargetOpcode::G_PHI && "Expected a G_PHI");
5933 Register DstReg = MI.getOperand(0).getReg();
5934 const RegisterBank *DstRB = MRI.getRegBankOrNull(DstReg);
5935 assert(DstRB && "Expected PHI dst to have regbank assigned");
5936 MachineIRBuilder MIB(MI);
5937
5938 // Go through each operand and ensure it has the same regbank.
5939 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) {
5940 MachineOperand &MO = MI.getOperand(OpIdx);
5941 if (!MO.isReg())
5942 continue;
5943 Register OpReg = MO.getReg();
5944 const RegisterBank *RB = MRI.getRegBankOrNull(OpReg);
5945 if (RB != DstRB) {
5946 // Insert a cross-bank copy.
5947 auto *OpDef = MRI.getVRegDef(OpReg);
5948 const LLT &Ty = MRI.getType(OpReg);
5949 MIB.setInsertPt(*OpDef->getParent(), std::next(OpDef->getIterator()));
5950 auto Copy = MIB.buildCopy(Ty, OpReg);
5951 MRI.setRegBank(Copy.getReg(0), *DstRB);
5952 MO.setReg(Copy.getReg(0));
5953 }
5954 }
5955 }
5956
processPHIs(MachineFunction & MF)5957 void AArch64InstructionSelector::processPHIs(MachineFunction &MF) {
5958 // We're looking for PHIs, build a list so we don't invalidate iterators.
5959 MachineRegisterInfo &MRI = MF.getRegInfo();
5960 SmallVector<MachineInstr *, 32> Phis;
5961 for (auto &BB : MF) {
5962 for (auto &MI : BB) {
5963 if (MI.getOpcode() == TargetOpcode::G_PHI)
5964 Phis.emplace_back(&MI);
5965 }
5966 }
5967
5968 for (auto *MI : Phis) {
5969 // We need to do some work here if the operand types are < 16 bit and they
5970 // are split across fpr/gpr banks. Since all types <32b on gpr
5971 // end up being assigned gpr32 regclasses, we can end up with PHIs here
5972 // which try to select between a gpr32 and an fpr16. Ideally RBS shouldn't
5973 // be selecting heterogenous regbanks for operands if possible, but we
5974 // still need to be able to deal with it here.
5975 //
5976 // To fix this, if we have a gpr-bank operand < 32b in size and at least
5977 // one other operand is on the fpr bank, then we add cross-bank copies
5978 // to homogenize the operand banks. For simplicity the bank that we choose
5979 // to settle on is whatever bank the def operand has. For example:
5980 //
5981 // %endbb:
5982 // %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2:fpr(s16), %bb2
5983 // =>
5984 // %bb2:
5985 // ...
5986 // %in2_copy:gpr(s16) = COPY %in2:fpr(s16)
5987 // ...
5988 // %endbb:
5989 // %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2_copy:gpr(s16), %bb2
5990 bool HasGPROp = false, HasFPROp = false;
5991 for (unsigned OpIdx = 1; OpIdx < MI->getNumOperands(); ++OpIdx) {
5992 const auto &MO = MI->getOperand(OpIdx);
5993 if (!MO.isReg())
5994 continue;
5995 const LLT &Ty = MRI.getType(MO.getReg());
5996 if (!Ty.isValid() || !Ty.isScalar())
5997 break;
5998 if (Ty.getSizeInBits() >= 32)
5999 break;
6000 const RegisterBank *RB = MRI.getRegBankOrNull(MO.getReg());
6001 // If for some reason we don't have a regbank yet. Don't try anything.
6002 if (!RB)
6003 break;
6004
6005 if (RB->getID() == AArch64::GPRRegBankID)
6006 HasGPROp = true;
6007 else
6008 HasFPROp = true;
6009 }
6010 // We have heterogenous regbanks, need to fixup.
6011 if (HasGPROp && HasFPROp)
6012 fixupPHIOpBanks(*MI, MRI, RBI);
6013 }
6014 }
6015
6016 namespace llvm {
6017 InstructionSelector *
createAArch64InstructionSelector(const AArch64TargetMachine & TM,AArch64Subtarget & Subtarget,AArch64RegisterBankInfo & RBI)6018 createAArch64InstructionSelector(const AArch64TargetMachine &TM,
6019 AArch64Subtarget &Subtarget,
6020 AArch64RegisterBankInfo &RBI) {
6021 return new AArch64InstructionSelector(TM, Subtarget, RBI);
6022 }
6023 }
6024