1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the Hexagon target.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "HexagonISelDAGToDAG.h"
14 #include "Hexagon.h"
15 #include "HexagonISelLowering.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonTargetMachine.h"
18 #include "llvm/CodeGen/FunctionLoweringInfo.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/SelectionDAGISel.h"
21 #include "llvm/IR/Intrinsics.h"
22 #include "llvm/IR/IntrinsicsHexagon.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "hexagon-isel"
28 
29 static
30 cl::opt<bool>
31 EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true),
32   cl::desc("Rebalance address calculation trees to improve "
33           "instruction selection"));
34 
35 // Rebalance only if this allows e.g. combining a GA with an offset or
36 // factoring out a shift.
37 static
38 cl::opt<bool>
39 RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false),
40   cl::desc("Rebalance address tree only if this allows optimizations"));
41 
42 static
43 cl::opt<bool>
44 RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden,
45   cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced"));
46 
47 static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden,
48   cl::init(true), cl::desc("Enable checking of SDNode's single-use status"));
49 
50 //===----------------------------------------------------------------------===//
51 // Instruction Selector Implementation
52 //===----------------------------------------------------------------------===//
53 
54 #define GET_DAGISEL_BODY HexagonDAGToDAGISel
55 #include "HexagonGenDAGISel.inc"
56 
57 /// createHexagonISelDag - This pass converts a legalized DAG into a
58 /// Hexagon-specific DAG, ready for instruction scheduling.
59 ///
60 namespace llvm {
createHexagonISelDag(HexagonTargetMachine & TM,CodeGenOpt::Level OptLevel)61 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
62                                    CodeGenOpt::Level OptLevel) {
63   return new HexagonDAGToDAGISel(TM, OptLevel);
64 }
65 }
66 
SelectIndexedLoad(LoadSDNode * LD,const SDLoc & dl)67 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) {
68   SDValue Chain = LD->getChain();
69   SDValue Base = LD->getBasePtr();
70   SDValue Offset = LD->getOffset();
71   int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
72   EVT LoadedVT = LD->getMemoryVT();
73   unsigned Opcode = 0;
74 
75   // Check for zero extended loads. Treat any-extend loads as zero extended
76   // loads.
77   ISD::LoadExtType ExtType = LD->getExtensionType();
78   bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
79   bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc);
80 
81   assert(LoadedVT.isSimple());
82   switch (LoadedVT.getSimpleVT().SimpleTy) {
83   case MVT::i8:
84     if (IsZeroExt)
85       Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io;
86     else
87       Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io;
88     break;
89   case MVT::i16:
90     if (IsZeroExt)
91       Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io;
92     else
93       Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io;
94     break;
95   case MVT::i32:
96   case MVT::f32:
97   case MVT::v2i16:
98   case MVT::v4i8:
99     Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io;
100     break;
101   case MVT::i64:
102   case MVT::f64:
103   case MVT::v2i32:
104   case MVT::v4i16:
105   case MVT::v8i8:
106     Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io;
107     break;
108   case MVT::v64i8:
109   case MVT::v32i16:
110   case MVT::v16i32:
111   case MVT::v8i64:
112   case MVT::v128i8:
113   case MVT::v64i16:
114   case MVT::v32i32:
115   case MVT::v16i64:
116     if (isAlignedMemNode(LD)) {
117       if (LD->isNonTemporal())
118         Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai;
119       else
120         Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai;
121     } else {
122       Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai;
123     }
124     break;
125   default:
126     llvm_unreachable("Unexpected memory type in indexed load");
127   }
128 
129   SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
130   MachineMemOperand *MemOp = LD->getMemOperand();
131 
132   auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl)
133         -> MachineSDNode* {
134     if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) {
135       SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
136       return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64,
137                                     Zero, SDValue(N, 0));
138     }
139     if (ExtType == ISD::SEXTLOAD)
140       return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
141                                     SDValue(N, 0));
142     return N;
143   };
144 
145   //                  Loaded value   Next address   Chain
146   SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) };
147   SDValue To[3];
148 
149   EVT ValueVT = LD->getValueType(0);
150   if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) {
151     // A load extending to i64 will actually produce i32, which will then
152     // need to be extended to i64.
153     assert(LoadedVT.getSizeInBits() <= 32);
154     ValueVT = MVT::i32;
155   }
156 
157   if (IsValidInc) {
158     MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT,
159                                               MVT::i32, MVT::Other, Base,
160                                               IncV, Chain);
161     CurDAG->setNodeMemRefs(L, {MemOp});
162     To[1] = SDValue(L, 1); // Next address.
163     To[2] = SDValue(L, 2); // Chain.
164     // Handle special case for extension to i64.
165     if (LD->getValueType(0) == MVT::i64)
166       L = getExt64(L, dl);
167     To[0] = SDValue(L, 0); // Loaded (extended) value.
168   } else {
169     SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
170     MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other,
171                                               Base, Zero, Chain);
172     CurDAG->setNodeMemRefs(L, {MemOp});
173     To[2] = SDValue(L, 1); // Chain.
174     MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
175                                               Base, IncV);
176     To[1] = SDValue(A, 0); // Next address.
177     // Handle special case for extension to i64.
178     if (LD->getValueType(0) == MVT::i64)
179       L = getExt64(L, dl);
180     To[0] = SDValue(L, 0); // Loaded (extended) value.
181   }
182   ReplaceUses(From, To, 3);
183   CurDAG->RemoveDeadNode(LD);
184 }
185 
LoadInstrForLoadIntrinsic(SDNode * IntN)186 MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) {
187   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
188     return nullptr;
189 
190   SDLoc dl(IntN);
191   unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
192 
193   static std::map<unsigned,unsigned> LoadPciMap = {
194     { Intrinsic::hexagon_circ_ldb,  Hexagon::L2_loadrb_pci  },
195     { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
196     { Intrinsic::hexagon_circ_ldh,  Hexagon::L2_loadrh_pci  },
197     { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
198     { Intrinsic::hexagon_circ_ldw,  Hexagon::L2_loadri_pci  },
199     { Intrinsic::hexagon_circ_ldd,  Hexagon::L2_loadrd_pci  },
200   };
201   auto FLC = LoadPciMap.find(IntNo);
202   if (FLC != LoadPciMap.end()) {
203     EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
204     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
205     // Operands: { Base, Increment, Modifier, Chain }
206     auto Inc = cast<ConstantSDNode>(IntN->getOperand(5));
207     SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
208     MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys,
209           { IntN->getOperand(2), I, IntN->getOperand(4),
210             IntN->getOperand(0) });
211     return Res;
212   }
213 
214   return nullptr;
215 }
216 
StoreInstrForLoadIntrinsic(MachineSDNode * LoadN,SDNode * IntN)217 SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN,
218       SDNode *IntN) {
219   // The "LoadN" is just a machine load instruction. The intrinsic also
220   // involves storing it. Generate an appropriate store to the location
221   // given in the intrinsic's operand(3).
222   uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags;
223   unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) &
224                       HexagonII::MemAccesSizeMask;
225   unsigned Size = 1U << (SizeBits-1);
226 
227   SDLoc dl(IntN);
228   MachinePointerInfo PI;
229   SDValue TS;
230   SDValue Loc = IntN->getOperand(3);
231 
232   if (Size >= 4)
233     TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI,
234                           Align(Size));
235   else
236     TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc,
237                                PI, MVT::getIntegerVT(Size * 8), Align(Size));
238 
239   SDNode *StoreN;
240   {
241     HandleSDNode Handle(TS);
242     SelectStore(TS.getNode());
243     StoreN = Handle.getValue().getNode();
244   }
245 
246   // Load's results are { Loaded value, Updated pointer, Chain }
247   ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1));
248   ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0));
249   return StoreN;
250 }
251 
tryLoadOfLoadIntrinsic(LoadSDNode * N)252 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) {
253   // The intrinsics for load circ/brev perform two operations:
254   // 1. Load a value V from the specified location, using the addressing
255   //    mode corresponding to the intrinsic.
256   // 2. Store V into a specified location. This location is typically a
257   //    local, temporary object.
258   // In many cases, the program using these intrinsics will immediately
259   // load V again from the local object. In those cases, when certain
260   // conditions are met, the last load can be removed.
261   // This function identifies and optimizes this pattern. If the pattern
262   // cannot be optimized, it returns nullptr, which will cause the load
263   // to be selected separately from the intrinsic (which will be handled
264   // in SelectIntrinsicWChain).
265 
266   SDValue Ch = N->getOperand(0);
267   SDValue Loc = N->getOperand(1);
268 
269   // Assume that the load and the intrinsic are connected directly with a
270   // chain:
271   //   t1: i32,ch = int.load ..., ..., ..., Loc, ...    // <-- C
272   //   t2: i32,ch = load t1:1, Loc, ...
273   SDNode *C = Ch.getNode();
274 
275   if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN)
276     return false;
277 
278   // The second load can only be eliminated if its extension type matches
279   // that of the load instruction corresponding to the intrinsic. The user
280   // can provide an address of an unsigned variable to store the result of
281   // a sign-extending intrinsic into (or the other way around).
282   ISD::LoadExtType IntExt;
283   switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) {
284     case Intrinsic::hexagon_circ_ldub:
285     case Intrinsic::hexagon_circ_lduh:
286       IntExt = ISD::ZEXTLOAD;
287       break;
288     case Intrinsic::hexagon_circ_ldw:
289     case Intrinsic::hexagon_circ_ldd:
290       IntExt = ISD::NON_EXTLOAD;
291       break;
292     default:
293       IntExt = ISD::SEXTLOAD;
294       break;
295   }
296   if (N->getExtensionType() != IntExt)
297     return false;
298 
299   // Make sure the target location for the loaded value in the load intrinsic
300   // is the location from which LD (or N) is loading.
301   if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode())
302     return false;
303 
304   if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) {
305     SDNode *S = StoreInstrForLoadIntrinsic(L, C);
306     SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) };
307     SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) };
308     ReplaceUses(F, T, array_lengthof(T));
309     // This transformation will leave the intrinsic dead. If it remains in
310     // the DAG, the selection code will see it again, but without the load,
311     // and it will generate a store that is normally required for it.
312     CurDAG->RemoveDeadNode(C);
313     return true;
314   }
315   return false;
316 }
317 
318 // Convert the bit-reverse load intrinsic to appropriate target instruction.
SelectBrevLdIntrinsic(SDNode * IntN)319 bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) {
320   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
321     return false;
322 
323   const SDLoc &dl(IntN);
324   unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
325 
326   static const std::map<unsigned, unsigned> LoadBrevMap = {
327     { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr },
328     { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr },
329     { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr },
330     { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr },
331     { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr },
332     { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr }
333   };
334   auto FLI = LoadBrevMap.find(IntNo);
335   if (FLI != LoadBrevMap.end()) {
336     EVT ValTy =
337         (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32;
338     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
339     // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr,
340     // modifier}.
341     // Operands of target instruction: { Base, Modifier, Chain }.
342     MachineSDNode *Res = CurDAG->getMachineNode(
343         FLI->second, dl, RTys,
344         {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)});
345 
346     MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(IntN)->getMemOperand();
347     CurDAG->setNodeMemRefs(Res, {MemOp});
348 
349     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
350     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
351     ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
352     CurDAG->RemoveDeadNode(IntN);
353     return true;
354   }
355   return false;
356 }
357 
358 /// Generate a machine instruction node for the new circlar buffer intrinsics.
359 /// The new versions use a CSx register instead of the K field.
SelectNewCircIntrinsic(SDNode * IntN)360 bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) {
361   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
362     return false;
363 
364   SDLoc DL(IntN);
365   unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
366   SmallVector<SDValue, 7> Ops;
367 
368   static std::map<unsigned,unsigned> LoadNPcMap = {
369     { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci },
370     { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci },
371     { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci },
372     { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci },
373     { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci },
374     { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci },
375     { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr },
376     { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr },
377     { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr },
378     { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr },
379     { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr },
380     { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr }
381   };
382   auto FLI = LoadNPcMap.find (IntNo);
383   if (FLI != LoadNPcMap.end()) {
384     EVT ValTy = MVT::i32;
385     if (IntNo == Intrinsic::hexagon_L2_loadrd_pci ||
386         IntNo == Intrinsic::hexagon_L2_loadrd_pcr)
387       ValTy = MVT::i64;
388     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
389     // Handle load.*_pci case which has 6 operands.
390     if (IntN->getNumOperands() == 6) {
391       auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
392       SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
393       // Operands: { Base, Increment, Modifier, Start, Chain }.
394       Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
395               IntN->getOperand(0) };
396     } else
397       // Handle load.*_pcr case which has 5 operands.
398       // Operands: { Base, Modifier, Start, Chain }.
399       Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
400               IntN->getOperand(0) };
401     MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops);
402     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
403     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
404     ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
405     CurDAG->RemoveDeadNode(IntN);
406     return true;
407   }
408 
409   static std::map<unsigned,unsigned> StoreNPcMap = {
410     { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci },
411     { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci },
412     { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci },
413     { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci },
414     { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci },
415     { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr },
416     { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr },
417     { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr },
418     { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr },
419     { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr }
420   };
421   auto FSI = StoreNPcMap.find (IntNo);
422   if (FSI != StoreNPcMap.end()) {
423     EVT RTys[] = { MVT::i32, MVT::Other };
424     // Handle store.*_pci case which has 7 operands.
425     if (IntN->getNumOperands() == 7) {
426       auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
427       SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
428       // Operands: { Base, Increment, Modifier, Value, Start, Chain }.
429       Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
430               IntN->getOperand(6), IntN->getOperand(0) };
431     } else
432       // Handle store.*_pcr case which has 6 operands.
433       // Operands: { Base, Modifier, Value, Start, Chain }.
434       Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
435               IntN->getOperand(5), IntN->getOperand(0) };
436     MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops);
437     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
438     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
439     CurDAG->RemoveDeadNode(IntN);
440     return true;
441   }
442 
443   return false;
444 }
445 
SelectLoad(SDNode * N)446 void HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
447   SDLoc dl(N);
448   LoadSDNode *LD = cast<LoadSDNode>(N);
449 
450   // Handle indexed loads.
451   ISD::MemIndexedMode AM = LD->getAddressingMode();
452   if (AM != ISD::UNINDEXED) {
453     SelectIndexedLoad(LD, dl);
454     return;
455   }
456 
457   // Handle patterns using circ/brev load intrinsics.
458   if (tryLoadOfLoadIntrinsic(LD))
459     return;
460 
461   SelectCode(LD);
462 }
463 
SelectIndexedStore(StoreSDNode * ST,const SDLoc & dl)464 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) {
465   SDValue Chain = ST->getChain();
466   SDValue Base = ST->getBasePtr();
467   SDValue Offset = ST->getOffset();
468   SDValue Value = ST->getValue();
469   // Get the constant value.
470   int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
471   EVT StoredVT = ST->getMemoryVT();
472   EVT ValueVT = Value.getValueType();
473 
474   bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc);
475   unsigned Opcode = 0;
476 
477   assert(StoredVT.isSimple());
478   switch (StoredVT.getSimpleVT().SimpleTy) {
479   case MVT::i8:
480     Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io;
481     break;
482   case MVT::i16:
483     Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io;
484     break;
485   case MVT::i32:
486   case MVT::f32:
487   case MVT::v2i16:
488   case MVT::v4i8:
489     Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io;
490     break;
491   case MVT::i64:
492   case MVT::f64:
493   case MVT::v2i32:
494   case MVT::v4i16:
495   case MVT::v8i8:
496     Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io;
497     break;
498   case MVT::v64i8:
499   case MVT::v32i16:
500   case MVT::v16i32:
501   case MVT::v8i64:
502   case MVT::v128i8:
503   case MVT::v64i16:
504   case MVT::v32i32:
505   case MVT::v16i64:
506     if (isAlignedMemNode(ST)) {
507       if (ST->isNonTemporal())
508         Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai;
509       else
510         Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai;
511     } else {
512       Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai;
513     }
514     break;
515   default:
516     llvm_unreachable("Unexpected memory type in indexed store");
517   }
518 
519   if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
520     assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
521     Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo,
522                                            dl, MVT::i32, Value);
523   }
524 
525   SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
526   MachineMemOperand *MemOp = ST->getMemOperand();
527 
528   //                  Next address   Chain
529   SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) };
530   SDValue To[2];
531 
532   if (IsValidInc) {
533     // Build post increment store.
534     SDValue Ops[] = { Base, IncV, Value, Chain };
535     MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
536                                               Ops);
537     CurDAG->setNodeMemRefs(S, {MemOp});
538     To[0] = SDValue(S, 0);
539     To[1] = SDValue(S, 1);
540   } else {
541     SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
542     SDValue Ops[] = { Base, Zero, Value, Chain };
543     MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
544     CurDAG->setNodeMemRefs(S, {MemOp});
545     To[1] = SDValue(S, 0);
546     MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
547                                               Base, IncV);
548     To[0] = SDValue(A, 0);
549   }
550 
551   ReplaceUses(From, To, 2);
552   CurDAG->RemoveDeadNode(ST);
553 }
554 
SelectStore(SDNode * N)555 void HexagonDAGToDAGISel::SelectStore(SDNode *N) {
556   SDLoc dl(N);
557   StoreSDNode *ST = cast<StoreSDNode>(N);
558 
559   // Handle indexed stores.
560   ISD::MemIndexedMode AM = ST->getAddressingMode();
561   if (AM != ISD::UNINDEXED) {
562     SelectIndexedStore(ST, dl);
563     return;
564   }
565 
566   SelectCode(ST);
567 }
568 
SelectSHL(SDNode * N)569 void HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
570   SDLoc dl(N);
571   SDValue Shl_0 = N->getOperand(0);
572   SDValue Shl_1 = N->getOperand(1);
573 
574   auto Default = [this,N] () -> void { SelectCode(N); };
575 
576   if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant)
577     return Default();
578 
579   // RHS is const.
580   int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue();
581 
582   if (Shl_0.getOpcode() == ISD::MUL) {
583     SDValue Mul_0 = Shl_0.getOperand(0); // Val
584     SDValue Mul_1 = Shl_0.getOperand(1); // Const
585     // RHS of mul is const.
586     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) {
587       int32_t ValConst = C->getSExtValue() << ShlConst;
588       if (isInt<9>(ValConst)) {
589         SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32);
590         SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
591                                                 MVT::i32, Mul_0, Val);
592         ReplaceNode(N, Result);
593         return;
594       }
595     }
596     return Default();
597   }
598 
599   if (Shl_0.getOpcode() == ISD::SUB) {
600     SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
601     SDValue Sub_1 = Shl_0.getOperand(1); // Val
602     if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) {
603       if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL)
604         return Default();
605       SDValue Shl2_0 = Sub_1.getOperand(0); // Val
606       SDValue Shl2_1 = Sub_1.getOperand(1); // Const
607       if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) {
608         int32_t ValConst = 1 << (ShlConst + C2->getSExtValue());
609         if (isInt<9>(-ValConst)) {
610           SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32);
611           SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
612                                                   MVT::i32, Shl2_0, Val);
613           ReplaceNode(N, Result);
614           return;
615         }
616       }
617     }
618   }
619 
620   return Default();
621 }
622 
623 //
624 // Handling intrinsics for circular load and bitreverse load.
625 //
SelectIntrinsicWChain(SDNode * N)626 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
627   if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) {
628     StoreInstrForLoadIntrinsic(L, N);
629     CurDAG->RemoveDeadNode(N);
630     return;
631   }
632 
633   // Handle bit-reverse load intrinsics.
634   if (SelectBrevLdIntrinsic(N))
635     return;
636 
637   if (SelectNewCircIntrinsic(N))
638     return;
639 
640   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
641   if (IntNo == Intrinsic::hexagon_V6_vgathermw ||
642       IntNo == Intrinsic::hexagon_V6_vgathermw_128B ||
643       IntNo == Intrinsic::hexagon_V6_vgathermh ||
644       IntNo == Intrinsic::hexagon_V6_vgathermh_128B ||
645       IntNo == Intrinsic::hexagon_V6_vgathermhw ||
646       IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) {
647     SelectV65Gather(N);
648     return;
649   }
650   if (IntNo == Intrinsic::hexagon_V6_vgathermwq ||
651       IntNo == Intrinsic::hexagon_V6_vgathermwq_128B ||
652       IntNo == Intrinsic::hexagon_V6_vgathermhq ||
653       IntNo == Intrinsic::hexagon_V6_vgathermhq_128B ||
654       IntNo == Intrinsic::hexagon_V6_vgathermhwq ||
655       IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) {
656     SelectV65GatherPred(N);
657     return;
658   }
659 
660   SelectCode(N);
661 }
662 
SelectIntrinsicWOChain(SDNode * N)663 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
664   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
665   unsigned Bits;
666   switch (IID) {
667   case Intrinsic::hexagon_S2_vsplatrb:
668     Bits = 8;
669     break;
670   case Intrinsic::hexagon_S2_vsplatrh:
671     Bits = 16;
672     break;
673   case Intrinsic::hexagon_V6_vaddcarry:
674   case Intrinsic::hexagon_V6_vaddcarry_128B:
675   case Intrinsic::hexagon_V6_vsubcarry:
676   case Intrinsic::hexagon_V6_vsubcarry_128B:
677     SelectHVXDualOutput(N);
678     return;
679   default:
680     SelectCode(N);
681     return;
682   }
683 
684   SDValue V = N->getOperand(1);
685   SDValue U;
686   if (keepsLowBits(V, Bits, U)) {
687     SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
688                                 N->getOperand(0), U);
689     ReplaceNode(N, R.getNode());
690     SelectCode(R.getNode());
691     return;
692   }
693   SelectCode(N);
694 }
695 
696 //
697 // Map floating point constant values.
698 //
SelectConstantFP(SDNode * N)699 void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
700   SDLoc dl(N);
701   auto *CN = cast<ConstantFPSDNode>(N);
702   APInt A = CN->getValueAPF().bitcastToAPInt();
703   if (N->getValueType(0) == MVT::f32) {
704     SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32);
705     ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V));
706     return;
707   }
708   if (N->getValueType(0) == MVT::f64) {
709     SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64);
710     ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V));
711     return;
712   }
713 
714   SelectCode(N);
715 }
716 
717 //
718 // Map boolean values.
719 //
SelectConstant(SDNode * N)720 void HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
721   if (N->getValueType(0) == MVT::i1) {
722     assert(!(cast<ConstantSDNode>(N)->getZExtValue() >> 1));
723     unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0)
724                       ? Hexagon::PS_true
725                       : Hexagon::PS_false;
726     ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1));
727     return;
728   }
729 
730   SelectCode(N);
731 }
732 
SelectFrameIndex(SDNode * N)733 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
734   MachineFrameInfo &MFI = MF->getFrameInfo();
735   const HexagonFrameLowering *HFI = HST->getFrameLowering();
736   int FX = cast<FrameIndexSDNode>(N)->getIndex();
737   Align StkA = HFI->getStackAlign();
738   Align MaxA = MFI.getMaxAlign();
739   SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
740   SDLoc DL(N);
741   SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
742   SDNode *R = nullptr;
743 
744   // Use PS_fi when:
745   // - the object is fixed, or
746   // - there are no objects with higher-than-default alignment, or
747   // - there are no dynamically allocated objects.
748   // Otherwise, use PS_fia.
749   if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) {
750     R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero);
751   } else {
752     auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
753     unsigned AR = HMFI.getStackAlignBaseVReg();
754     SDValue CH = CurDAG->getEntryNode();
755     SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
756     R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops);
757   }
758 
759   ReplaceNode(N, R);
760 }
761 
SelectAddSubCarry(SDNode * N)762 void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) {
763   unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c
764                                                          : Hexagon::A4_subp_c;
765   SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(),
766                                      { N->getOperand(0), N->getOperand(1),
767                                        N->getOperand(2) });
768   ReplaceNode(N, C);
769 }
770 
SelectVAlign(SDNode * N)771 void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) {
772   MVT ResTy = N->getValueType(0).getSimpleVT();
773   if (HST->isHVXVectorType(ResTy, true))
774     return SelectHvxVAlign(N);
775 
776   const SDLoc &dl(N);
777   unsigned VecLen = ResTy.getSizeInBits();
778   if (VecLen == 32) {
779     SDValue Ops[] = {
780       CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
781       N->getOperand(0),
782       CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
783       N->getOperand(1),
784       CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
785     };
786     SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
787                                        MVT::i64, Ops);
788 
789     // Shift right by "(Addr & 0x3) * 8" bytes.
790     SDNode *C;
791     SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32);
792     SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32);
793     if (HST->useCompound()) {
794       C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32,
795                                  M0, N->getOperand(2), M1);
796     } else {
797       SDNode *T = CurDAG->getMachineNode(Hexagon::S2_asl_i_r, dl, MVT::i32,
798                                          N->getOperand(2), M1);
799       C = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
800                                  SDValue(T, 0), M0);
801     }
802     SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64,
803                                        SDValue(R, 0), SDValue(C, 0));
804     SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy,
805                                                SDValue(S, 0));
806     ReplaceNode(N, E.getNode());
807   } else {
808     assert(VecLen == 64);
809     SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1,
810                                         N->getOperand(2));
811     SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy,
812                                         N->getOperand(0), N->getOperand(1),
813                                         SDValue(Pu,0));
814     ReplaceNode(N, VA);
815   }
816 }
817 
SelectVAlignAddr(SDNode * N)818 void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) {
819   const SDLoc &dl(N);
820   SDValue A = N->getOperand(1);
821   int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue();
822   assert(isPowerOf2_32(-Mask));
823 
824   SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32);
825   SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
826                                       N->getOperand(0), M);
827   ReplaceNode(N, AA);
828 }
829 
830 // Handle these nodes here to avoid having to write patterns for all
831 // combinations of input/output types. In all cases, the resulting
832 // instruction is the same.
SelectTypecast(SDNode * N)833 void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) {
834   SDValue Op = N->getOperand(0);
835   MVT OpTy = Op.getValueType().getSimpleVT();
836   SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(),
837                                   CurDAG->getVTList(OpTy), {Op});
838   ReplaceNode(T, Op.getNode());
839 }
840 
SelectP2D(SDNode * N)841 void HexagonDAGToDAGISel::SelectP2D(SDNode *N) {
842   MVT ResTy = N->getValueType(0).getSimpleVT();
843   SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy,
844                                      N->getOperand(0));
845   ReplaceNode(N, T);
846 }
847 
SelectD2P(SDNode * N)848 void HexagonDAGToDAGISel::SelectD2P(SDNode *N) {
849   const SDLoc &dl(N);
850   MVT ResTy = N->getValueType(0).getSimpleVT();
851   SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
852   SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy,
853                                      N->getOperand(0), Zero);
854   ReplaceNode(N, T);
855 }
856 
SelectV2Q(SDNode * N)857 void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) {
858   const SDLoc &dl(N);
859   MVT ResTy = N->getValueType(0).getSimpleVT();
860   // The argument to V2Q should be a single vector.
861   MVT OpTy = N->getOperand(0).getValueType().getSimpleVT(); (void)OpTy;
862   assert(HST->getVectorLength() * 8 == OpTy.getSizeInBits());
863 
864   SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
865   SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
866   SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy,
867                                      N->getOperand(0), SDValue(R,0));
868   ReplaceNode(N, T);
869 }
870 
SelectQ2V(SDNode * N)871 void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) {
872   const SDLoc &dl(N);
873   MVT ResTy = N->getValueType(0).getSimpleVT();
874   // The result of V2Q should be a single vector.
875   assert(HST->getVectorLength() * 8 == ResTy.getSizeInBits());
876 
877   SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
878   SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
879   SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy,
880                                      N->getOperand(0), SDValue(R,0));
881   ReplaceNode(N, T);
882 }
883 
Select(SDNode * N)884 void HexagonDAGToDAGISel::Select(SDNode *N) {
885   if (N->isMachineOpcode())
886     return N->setNodeId(-1);  // Already selected.
887 
888   switch (N->getOpcode()) {
889   case ISD::Constant:             return SelectConstant(N);
890   case ISD::ConstantFP:           return SelectConstantFP(N);
891   case ISD::FrameIndex:           return SelectFrameIndex(N);
892   case ISD::SHL:                  return SelectSHL(N);
893   case ISD::LOAD:                 return SelectLoad(N);
894   case ISD::STORE:                return SelectStore(N);
895   case ISD::INTRINSIC_W_CHAIN:    return SelectIntrinsicWChain(N);
896   case ISD::INTRINSIC_WO_CHAIN:   return SelectIntrinsicWOChain(N);
897 
898   case HexagonISD::ADDC:
899   case HexagonISD::SUBC:          return SelectAddSubCarry(N);
900   case HexagonISD::VALIGN:        return SelectVAlign(N);
901   case HexagonISD::VALIGNADDR:    return SelectVAlignAddr(N);
902   case HexagonISD::TYPECAST:      return SelectTypecast(N);
903   case HexagonISD::P2D:           return SelectP2D(N);
904   case HexagonISD::D2P:           return SelectD2P(N);
905   case HexagonISD::Q2V:           return SelectQ2V(N);
906   case HexagonISD::V2Q:           return SelectV2Q(N);
907   }
908 
909   if (HST->useHVXOps()) {
910     switch (N->getOpcode()) {
911     case ISD::VECTOR_SHUFFLE:     return SelectHvxShuffle(N);
912     case HexagonISD::VROR:        return SelectHvxRor(N);
913     }
914   }
915 
916   SelectCode(N);
917 }
918 
919 bool HexagonDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)920 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
921                              std::vector<SDValue> &OutOps) {
922   SDValue Inp = Op, Res;
923 
924   switch (ConstraintID) {
925   default:
926     return true;
927   case InlineAsm::Constraint_o: // Offsetable.
928   case InlineAsm::Constraint_v: // Not offsetable.
929   case InlineAsm::Constraint_m: // Memory.
930     if (SelectAddrFI(Inp, Res))
931       OutOps.push_back(Res);
932     else
933       OutOps.push_back(Inp);
934     break;
935   }
936 
937   OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
938   return false;
939 }
940 
941 
isMemOPCandidate(SDNode * I,SDNode * U)942 static bool isMemOPCandidate(SDNode *I, SDNode *U) {
943   // I is an operand of U. Check if U is an arithmetic (binary) operation
944   // usable in a memop, where the other operand is a loaded value, and the
945   // result of U is stored in the same location.
946 
947   if (!U->hasOneUse())
948     return false;
949   unsigned Opc = U->getOpcode();
950   switch (Opc) {
951     case ISD::ADD:
952     case ISD::SUB:
953     case ISD::AND:
954     case ISD::OR:
955       break;
956     default:
957       return false;
958   }
959 
960   SDValue S0 = U->getOperand(0);
961   SDValue S1 = U->getOperand(1);
962   SDValue SY = (S0.getNode() == I) ? S1 : S0;
963 
964   SDNode *UUse = *U->use_begin();
965   if (UUse->getNumValues() != 1)
966     return false;
967 
968   // Check if one of the inputs to U is a load instruction and the output
969   // is used by a store instruction. If so and they also have the same
970   // base pointer, then don't preoprocess this node sequence as it
971   // can be matched to a memop.
972   SDNode *SYNode = SY.getNode();
973   if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) {
974     SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr();
975     SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr();
976     if (LDBasePtr == STBasePtr)
977       return true;
978   }
979   return false;
980 }
981 
982 
983 // Transform: (or (select c x 0) z)  ->  (select c (or x z) z)
984 //            (or (select c 0 y) z)  ->  (select c z (or y z))
ppSimplifyOrSelect0(std::vector<SDNode * > && Nodes)985 void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) {
986   SelectionDAG &DAG = *CurDAG;
987 
988   for (auto I : Nodes) {
989     if (I->getOpcode() != ISD::OR)
990       continue;
991 
992     auto IsZero = [] (const SDValue &V) -> bool {
993       if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
994         return SC->isNullValue();
995       return false;
996     };
997     auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
998       if (Op.getOpcode() != ISD::SELECT)
999         return false;
1000       return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2));
1001     };
1002 
1003     SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
1004     EVT VT = I->getValueType(0);
1005     bool SelN0 = IsSelect0(N0);
1006     SDValue SOp = SelN0 ? N0 : N1;
1007     SDValue VOp = SelN0 ? N1 : N0;
1008 
1009     if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
1010       SDValue SC = SOp.getOperand(0);
1011       SDValue SX = SOp.getOperand(1);
1012       SDValue SY = SOp.getOperand(2);
1013       SDLoc DLS = SOp;
1014       if (IsZero(SY)) {
1015         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
1016         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
1017         DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1018       } else if (IsZero(SX)) {
1019         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
1020         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
1021         DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1022       }
1023     }
1024   }
1025 }
1026 
1027 // Transform: (store ch val (add x (add (shl y c) e)))
1028 //        to: (store ch val (add x (shl (add y d) c))),
1029 // where e = (shl d c) for some integer d.
1030 // The purpose of this is to enable generation of loads/stores with
1031 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1032 // value c must be 0, 1 or 2.
ppAddrReorderAddShl(std::vector<SDNode * > && Nodes)1033 void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) {
1034   SelectionDAG &DAG = *CurDAG;
1035 
1036   for (auto I : Nodes) {
1037     if (I->getOpcode() != ISD::STORE)
1038       continue;
1039 
1040     // I matched: (store ch val Off)
1041     SDValue Off = I->getOperand(2);
1042     // Off needs to match: (add x (add (shl y c) (shl d c))))
1043     if (Off.getOpcode() != ISD::ADD)
1044       continue;
1045     // Off matched: (add x T0)
1046     SDValue T0 = Off.getOperand(1);
1047     // T0 needs to match: (add T1 T2):
1048     if (T0.getOpcode() != ISD::ADD)
1049       continue;
1050     // T0 matched: (add T1 T2)
1051     SDValue T1 = T0.getOperand(0);
1052     SDValue T2 = T0.getOperand(1);
1053     // T1 needs to match: (shl y c)
1054     if (T1.getOpcode() != ISD::SHL)
1055       continue;
1056     SDValue C = T1.getOperand(1);
1057     ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode());
1058     if (CN == nullptr)
1059       continue;
1060     unsigned CV = CN->getZExtValue();
1061     if (CV > 2)
1062       continue;
1063     // T2 needs to match e, where e = (shl d c) for some d.
1064     ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode());
1065     if (EN == nullptr)
1066       continue;
1067     unsigned EV = EN->getZExtValue();
1068     if (EV % (1 << CV) != 0)
1069       continue;
1070     unsigned DV = EV / (1 << CV);
1071 
1072     // Replace T0 with: (shl (add y d) c)
1073     SDLoc DL = SDLoc(I);
1074     EVT VT = T0.getValueType();
1075     SDValue D = DAG.getConstant(DV, DL, VT);
1076     // NewAdd = (add y d)
1077     SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D);
1078     // NewShl = (shl NewAdd c)
1079     SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C);
1080     ReplaceNode(T0.getNode(), NewShl.getNode());
1081   }
1082 }
1083 
1084 // Transform: (load ch (add x (and (srl y c) Mask)))
1085 //        to: (load ch (add x (shl (srl y d) d-c)))
1086 // where
1087 // Mask = 00..0 111..1 0.0
1088 //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2.
1089 //          |     +-------- 1s
1090 //          +-------------- at most c 0s
1091 // Motivating example:
1092 // DAG combiner optimizes (add x (shl (srl y 5) 2))
1093 //                     to (add x (and (srl y 3) 1FFFFFFC))
1094 // which results in a constant-extended and(##...,lsr). This transformation
1095 // undoes this simplification for cases where the shl can be folded into
1096 // an addressing mode.
ppAddrRewriteAndSrl(std::vector<SDNode * > && Nodes)1097 void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) {
1098   SelectionDAG &DAG = *CurDAG;
1099 
1100   for (SDNode *N : Nodes) {
1101     unsigned Opc = N->getOpcode();
1102     if (Opc != ISD::LOAD && Opc != ISD::STORE)
1103       continue;
1104     SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2);
1105     // Addr must match: (add x T0)
1106     if (Addr.getOpcode() != ISD::ADD)
1107       continue;
1108     SDValue T0 = Addr.getOperand(1);
1109     // T0 must match: (and T1 Mask)
1110     if (T0.getOpcode() != ISD::AND)
1111       continue;
1112 
1113     // We have an AND.
1114     //
1115     // Check the first operand. It must be: (srl y c).
1116     SDValue S = T0.getOperand(0);
1117     if (S.getOpcode() != ISD::SRL)
1118       continue;
1119     ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode());
1120     if (SN == nullptr)
1121       continue;
1122     if (SN->getAPIntValue().getBitWidth() != 32)
1123       continue;
1124     uint32_t CV = SN->getZExtValue();
1125 
1126     // Check the second operand: the supposed mask.
1127     ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode());
1128     if (MN == nullptr)
1129       continue;
1130     if (MN->getAPIntValue().getBitWidth() != 32)
1131       continue;
1132     uint32_t Mask = MN->getZExtValue();
1133     // Examine the mask.
1134     uint32_t TZ = countTrailingZeros(Mask);
1135     uint32_t M1 = countTrailingOnes(Mask >> TZ);
1136     uint32_t LZ = countLeadingZeros(Mask);
1137     // Trailing zeros + middle ones + leading zeros must equal the width.
1138     if (TZ + M1 + LZ != 32)
1139       continue;
1140     // The number of trailing zeros will be encoded in the addressing mode.
1141     if (TZ > 2)
1142       continue;
1143     // The number of leading zeros must be at most c.
1144     if (LZ > CV)
1145       continue;
1146 
1147     // All looks good.
1148     SDValue Y = S.getOperand(0);
1149     EVT VT = Addr.getValueType();
1150     SDLoc dl(S);
1151     // TZ = D-C, so D = TZ+C.
1152     SDValue D = DAG.getConstant(TZ+CV, dl, VT);
1153     SDValue DC = DAG.getConstant(TZ, dl, VT);
1154     SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D);
1155     SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC);
1156     ReplaceNode(T0.getNode(), NewShl.getNode());
1157   }
1158 }
1159 
1160 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1161 //                                                  (op ... 1 ...))
ppHoistZextI1(std::vector<SDNode * > && Nodes)1162 void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) {
1163   SelectionDAG &DAG = *CurDAG;
1164 
1165   for (SDNode *N : Nodes) {
1166     unsigned Opc = N->getOpcode();
1167     if (Opc != ISD::ZERO_EXTEND)
1168       continue;
1169     SDValue OpI1 = N->getOperand(0);
1170     EVT OpVT = OpI1.getValueType();
1171     if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1)
1172       continue;
1173     for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1174       SDNode *U = *I;
1175       if (U->getNumValues() != 1)
1176         continue;
1177       EVT UVT = U->getValueType(0);
1178       if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1)
1179         continue;
1180       if (isMemOPCandidate(N, U))
1181         continue;
1182 
1183       // Potentially simplifiable operation.
1184       unsigned I1N = I.getOperandNo();
1185       SmallVector<SDValue,2> Ops(U->getNumOperands());
1186       for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i)
1187         Ops[i] = U->getOperand(i);
1188       EVT BVT = Ops[I1N].getValueType();
1189 
1190       const SDLoc &dl(U);
1191       SDValue C0 = DAG.getConstant(0, dl, BVT);
1192       SDValue C1 = DAG.getConstant(1, dl, BVT);
1193       SDValue If0, If1;
1194 
1195       if (isa<MachineSDNode>(U)) {
1196         unsigned UseOpc = U->getMachineOpcode();
1197         Ops[I1N] = C0;
1198         If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1199         Ops[I1N] = C1;
1200         If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1201       } else {
1202         unsigned UseOpc = U->getOpcode();
1203         Ops[I1N] = C0;
1204         If0 = DAG.getNode(UseOpc, dl, UVT, Ops);
1205         Ops[I1N] = C1;
1206         If1 = DAG.getNode(UseOpc, dl, UVT, Ops);
1207       }
1208       // We're generating a SELECT way after legalization, so keep the types
1209       // simple.
1210       unsigned UW = UVT.getSizeInBits();
1211       EVT SVT = (UW == 32 || UW == 64) ? MVT::getIntegerVT(UW) : UVT;
1212       SDValue Sel = DAG.getNode(ISD::SELECT, dl, SVT, OpI1,
1213                                 DAG.getBitcast(SVT, If1),
1214                                 DAG.getBitcast(SVT, If0));
1215       SDValue Ret = DAG.getBitcast(UVT, Sel);
1216       DAG.ReplaceAllUsesWith(U, Ret.getNode());
1217     }
1218   }
1219 }
1220 
PreprocessISelDAG()1221 void HexagonDAGToDAGISel::PreprocessISelDAG() {
1222   // Repack all nodes before calling each preprocessing function,
1223   // because each of them can modify the set of nodes.
1224   auto getNodes = [this] () -> std::vector<SDNode*> {
1225     std::vector<SDNode*> T;
1226     T.reserve(CurDAG->allnodes_size());
1227     for (SDNode &N : CurDAG->allnodes())
1228       T.push_back(&N);
1229     return T;
1230   };
1231 
1232   // Transform: (or (select c x 0) z)  ->  (select c (or x z) z)
1233   //            (or (select c 0 y) z)  ->  (select c z (or y z))
1234   ppSimplifyOrSelect0(getNodes());
1235 
1236   // Transform: (store ch val (add x (add (shl y c) e)))
1237   //        to: (store ch val (add x (shl (add y d) c))),
1238   // where e = (shl d c) for some integer d.
1239   // The purpose of this is to enable generation of loads/stores with
1240   // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1241   // value c must be 0, 1 or 2.
1242   ppAddrReorderAddShl(getNodes());
1243 
1244   // Transform: (load ch (add x (and (srl y c) Mask)))
1245   //        to: (load ch (add x (shl (srl y d) d-c)))
1246   // where
1247   // Mask = 00..0 111..1 0.0
1248   //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2.
1249   //          |     +-------- 1s
1250   //          +-------------- at most c 0s
1251   // Motivating example:
1252   // DAG combiner optimizes (add x (shl (srl y 5) 2))
1253   //                     to (add x (and (srl y 3) 1FFFFFFC))
1254   // which results in a constant-extended and(##...,lsr). This transformation
1255   // undoes this simplification for cases where the shl can be folded into
1256   // an addressing mode.
1257   ppAddrRewriteAndSrl(getNodes());
1258 
1259   // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1260   //                                                  (op ... 1 ...))
1261   ppHoistZextI1(getNodes());
1262 
1263   DEBUG_WITH_TYPE("isel", {
1264     dbgs() << "Preprocessed (Hexagon) selection DAG:";
1265     CurDAG->dump();
1266   });
1267 
1268   if (EnableAddressRebalancing) {
1269     rebalanceAddressTrees();
1270 
1271     DEBUG_WITH_TYPE("isel", {
1272       dbgs() << "Address tree balanced selection DAG:";
1273       CurDAG->dump();
1274     });
1275   }
1276 }
1277 
emitFunctionEntryCode()1278 void HexagonDAGToDAGISel::emitFunctionEntryCode() {
1279   auto &HST = MF->getSubtarget<HexagonSubtarget>();
1280   auto &HFI = *HST.getFrameLowering();
1281   if (!HFI.needsAligna(*MF))
1282     return;
1283 
1284   MachineFrameInfo &MFI = MF->getFrameInfo();
1285   MachineBasicBlock *EntryBB = &MF->front();
1286   unsigned AR = FuncInfo->CreateReg(MVT::i32);
1287   Align EntryMaxA = MFI.getMaxAlign();
1288   BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AR)
1289       .addImm(EntryMaxA.value());
1290   MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR);
1291 }
1292 
updateAligna()1293 void HexagonDAGToDAGISel::updateAligna() {
1294   auto &HFI = *MF->getSubtarget<HexagonSubtarget>().getFrameLowering();
1295   if (!HFI.needsAligna(*MF))
1296     return;
1297   auto *AlignaI = const_cast<MachineInstr*>(HFI.getAlignaInstr(*MF));
1298   assert(AlignaI != nullptr);
1299   unsigned MaxA = MF->getFrameInfo().getMaxAlign().value();
1300   if (AlignaI->getOperand(1).getImm() < MaxA)
1301     AlignaI->getOperand(1).setImm(MaxA);
1302 }
1303 
1304 // Match a frame index that can be used in an addressing mode.
SelectAddrFI(SDValue & N,SDValue & R)1305 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) {
1306   if (N.getOpcode() != ISD::FrameIndex)
1307     return false;
1308   auto &HFI = *HST->getFrameLowering();
1309   MachineFrameInfo &MFI = MF->getFrameInfo();
1310   int FX = cast<FrameIndexSDNode>(N)->getIndex();
1311   if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
1312     return false;
1313   R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
1314   return true;
1315 }
1316 
SelectAddrGA(SDValue & N,SDValue & R)1317 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
1318   return SelectGlobalAddress(N, R, false, Align(1));
1319 }
1320 
SelectAddrGP(SDValue & N,SDValue & R)1321 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
1322   return SelectGlobalAddress(N, R, true, Align(1));
1323 }
1324 
SelectAnyImm(SDValue & N,SDValue & R)1325 inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) {
1326   return SelectAnyImmediate(N, R, Align(1));
1327 }
1328 
SelectAnyImm0(SDValue & N,SDValue & R)1329 inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) {
1330   return SelectAnyImmediate(N, R, Align(1));
1331 }
SelectAnyImm1(SDValue & N,SDValue & R)1332 inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) {
1333   return SelectAnyImmediate(N, R, Align(2));
1334 }
SelectAnyImm2(SDValue & N,SDValue & R)1335 inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) {
1336   return SelectAnyImmediate(N, R, Align(4));
1337 }
SelectAnyImm3(SDValue & N,SDValue & R)1338 inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) {
1339   return SelectAnyImmediate(N, R, Align(8));
1340 }
1341 
SelectAnyInt(SDValue & N,SDValue & R)1342 inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) {
1343   EVT T = N.getValueType();
1344   if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N))
1345     return false;
1346   R = N;
1347   return true;
1348 }
1349 
SelectAnyImmediate(SDValue & N,SDValue & R,Align Alignment)1350 bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R,
1351                                              Align Alignment) {
1352   switch (N.getOpcode()) {
1353   case ISD::Constant: {
1354     if (N.getValueType() != MVT::i32)
1355       return false;
1356     int32_t V = cast<const ConstantSDNode>(N)->getZExtValue();
1357     if (!isAligned(Alignment, V))
1358       return false;
1359     R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType());
1360     return true;
1361   }
1362   case HexagonISD::JT:
1363   case HexagonISD::CP:
1364     // These are assumed to always be aligned at least 8-byte boundary.
1365     if (Alignment > Align(8))
1366       return false;
1367     R = N.getOperand(0);
1368     return true;
1369   case ISD::ExternalSymbol:
1370     // Symbols may be aligned at any boundary.
1371     if (Alignment > Align(1))
1372       return false;
1373     R = N;
1374     return true;
1375   case ISD::BlockAddress:
1376     // Block address is always aligned at least 4-byte boundary.
1377     if (Alignment > Align(4) ||
1378         !isAligned(Alignment, cast<BlockAddressSDNode>(N)->getOffset()))
1379       return false;
1380     R = N;
1381     return true;
1382   }
1383 
1384   if (SelectGlobalAddress(N, R, false, Alignment) ||
1385       SelectGlobalAddress(N, R, true, Alignment))
1386     return true;
1387 
1388   return false;
1389 }
1390 
SelectGlobalAddress(SDValue & N,SDValue & R,bool UseGP,Align Alignment)1391 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
1392                                               bool UseGP, Align Alignment) {
1393   switch (N.getOpcode()) {
1394   case ISD::ADD: {
1395     SDValue N0 = N.getOperand(0);
1396     SDValue N1 = N.getOperand(1);
1397     unsigned GAOpc = N0.getOpcode();
1398     if (UseGP && GAOpc != HexagonISD::CONST32_GP)
1399       return false;
1400     if (!UseGP && GAOpc != HexagonISD::CONST32)
1401       return false;
1402     if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
1403       if (!isAligned(Alignment, Const->getZExtValue()))
1404         return false;
1405       SDValue Addr = N0.getOperand(0);
1406       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
1407         if (GA->getOpcode() == ISD::TargetGlobalAddress) {
1408           uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
1409           R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
1410                                              N.getValueType(), NewOff);
1411           return true;
1412         }
1413       }
1414     }
1415     break;
1416   }
1417   case HexagonISD::CP:
1418   case HexagonISD::JT:
1419   case HexagonISD::CONST32:
1420     // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
1421     // want in the instruction.
1422     if (!UseGP)
1423       R = N.getOperand(0);
1424     return !UseGP;
1425   case HexagonISD::CONST32_GP:
1426     if (UseGP)
1427       R = N.getOperand(0);
1428     return UseGP;
1429   default:
1430     return false;
1431   }
1432 
1433   return false;
1434 }
1435 
DetectUseSxtw(SDValue & N,SDValue & R)1436 bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) {
1437   // This (complex pattern) function is meant to detect a sign-extension
1438   // i32->i64 on a per-operand basis. This would allow writing single
1439   // patterns that would cover a number of combinations of different ways
1440   // a sign-extensions could be written. For example:
1441   //   (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y)
1442   // could match either one of these:
1443   //   (mul (sext x) (sext_inreg y))
1444   //   (mul (sext-load *p) (sext_inreg y))
1445   //   (mul (sext_inreg x) (sext y))
1446   // etc.
1447   //
1448   // The returned value will have type i64 and its low word will
1449   // contain the value being extended. The high bits are not specified.
1450   // The returned type is i64 because the original type of N was i64,
1451   // but the users of this function should only use the low-word of the
1452   // result, e.g.
1453   //  (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y))
1454 
1455   if (N.getValueType() != MVT::i64)
1456     return false;
1457   unsigned Opc = N.getOpcode();
1458   switch (Opc) {
1459     case ISD::SIGN_EXTEND:
1460     case ISD::SIGN_EXTEND_INREG: {
1461       // sext_inreg has the source type as a separate operand.
1462       EVT T = Opc == ISD::SIGN_EXTEND
1463                 ? N.getOperand(0).getValueType()
1464                 : cast<VTSDNode>(N.getOperand(1))->getVT();
1465       unsigned SW = T.getSizeInBits();
1466       if (SW == 32)
1467         R = N.getOperand(0);
1468       else if (SW < 32)
1469         R = N;
1470       else
1471         return false;
1472       break;
1473     }
1474     case ISD::LOAD: {
1475       LoadSDNode *L = cast<LoadSDNode>(N);
1476       if (L->getExtensionType() != ISD::SEXTLOAD)
1477         return false;
1478       // All extending loads extend to i32, so even if the value in
1479       // memory is shorter than 32 bits, it will be i32 after the load.
1480       if (L->getMemoryVT().getSizeInBits() > 32)
1481         return false;
1482       R = N;
1483       break;
1484     }
1485     case ISD::SRA: {
1486       auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1));
1487       if (!S || S->getZExtValue() != 32)
1488         return false;
1489       R = N;
1490       break;
1491     }
1492     default:
1493       return false;
1494   }
1495   EVT RT = R.getValueType();
1496   if (RT == MVT::i64)
1497     return true;
1498   assert(RT == MVT::i32);
1499   // This is only to produce a value of type i64. Do not rely on the
1500   // high bits produced by this.
1501   const SDLoc &dl(N);
1502   SDValue Ops[] = {
1503     CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
1504     R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
1505     R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
1506   };
1507   SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
1508                                      MVT::i64, Ops);
1509   R = SDValue(T, 0);
1510   return true;
1511 }
1512 
keepsLowBits(const SDValue & Val,unsigned NumBits,SDValue & Src)1513 bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits,
1514       SDValue &Src) {
1515   unsigned Opc = Val.getOpcode();
1516   switch (Opc) {
1517   case ISD::SIGN_EXTEND:
1518   case ISD::ZERO_EXTEND:
1519   case ISD::ANY_EXTEND: {
1520     const SDValue &Op0 = Val.getOperand(0);
1521     EVT T = Op0.getValueType();
1522     if (T.isInteger() && T.getSizeInBits() == NumBits) {
1523       Src = Op0;
1524       return true;
1525     }
1526     break;
1527   }
1528   case ISD::SIGN_EXTEND_INREG:
1529   case ISD::AssertSext:
1530   case ISD::AssertZext:
1531     if (Val.getOperand(0).getValueType().isInteger()) {
1532       VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
1533       if (T->getVT().getSizeInBits() == NumBits) {
1534         Src = Val.getOperand(0);
1535         return true;
1536       }
1537     }
1538     break;
1539   case ISD::AND: {
1540     // Check if this is an AND with NumBits of lower bits set to 1.
1541     uint64_t Mask = (1 << NumBits) - 1;
1542     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1543       if (C->getZExtValue() == Mask) {
1544         Src = Val.getOperand(1);
1545         return true;
1546       }
1547     }
1548     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1549       if (C->getZExtValue() == Mask) {
1550         Src = Val.getOperand(0);
1551         return true;
1552       }
1553     }
1554     break;
1555   }
1556   case ISD::OR:
1557   case ISD::XOR: {
1558     // OR/XOR with the lower NumBits bits set to 0.
1559     uint64_t Mask = (1 << NumBits) - 1;
1560     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1561       if ((C->getZExtValue() & Mask) == 0) {
1562         Src = Val.getOperand(1);
1563         return true;
1564       }
1565     }
1566     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1567       if ((C->getZExtValue() & Mask) == 0) {
1568         Src = Val.getOperand(0);
1569         return true;
1570       }
1571     }
1572     break;
1573   }
1574   default:
1575     break;
1576   }
1577   return false;
1578 }
1579 
isAlignedMemNode(const MemSDNode * N) const1580 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const {
1581   return N->getAlignment() >= N->getMemoryVT().getStoreSize();
1582 }
1583 
isSmallStackStore(const StoreSDNode * N) const1584 bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const {
1585   unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF);
1586   switch (N->getMemoryVT().getStoreSize()) {
1587     case 1:
1588       return StackSize <= 56;   // 1*2^6 - 8
1589     case 2:
1590       return StackSize <= 120;  // 2*2^6 - 8
1591     case 4:
1592       return StackSize <= 248;  // 4*2^6 - 8
1593     default:
1594       return false;
1595   }
1596 }
1597 
1598 // Return true when the given node fits in a positive half word.
isPositiveHalfWord(const SDNode * N) const1599 bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const {
1600   if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) {
1601     int64_t V = CN->getSExtValue();
1602     return V > 0 && isInt<16>(V);
1603   }
1604   if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
1605     const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1));
1606     return VN->getVT().getSizeInBits() <= 16;
1607   }
1608   return false;
1609 }
1610 
hasOneUse(const SDNode * N) const1611 bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const {
1612   return !CheckSingleUse || N->hasOneUse();
1613 }
1614 
1615 ////////////////////////////////////////////////////////////////////////////////
1616 // Rebalancing of address calculation trees
1617 
isOpcodeHandled(const SDNode * N)1618 static bool isOpcodeHandled(const SDNode *N) {
1619   switch (N->getOpcode()) {
1620     case ISD::ADD:
1621     case ISD::MUL:
1622       return true;
1623     case ISD::SHL:
1624       // We only handle constant shifts because these can be easily flattened
1625       // into multiplications by 2^Op1.
1626       return isa<ConstantSDNode>(N->getOperand(1).getNode());
1627     default:
1628       return false;
1629   }
1630 }
1631 
1632 /// Return the weight of an SDNode
getWeight(SDNode * N)1633 int HexagonDAGToDAGISel::getWeight(SDNode *N) {
1634   if (!isOpcodeHandled(N))
1635     return 1;
1636   assert(RootWeights.count(N) && "Cannot get weight of unseen root!");
1637   assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!");
1638   assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!");
1639   return RootWeights[N];
1640 }
1641 
getHeight(SDNode * N)1642 int HexagonDAGToDAGISel::getHeight(SDNode *N) {
1643   if (!isOpcodeHandled(N))
1644     return 0;
1645   assert(RootWeights.count(N) && RootWeights[N] >= 0 &&
1646       "Cannot query height of unvisited/RAUW'd node!");
1647   return RootHeights[N];
1648 }
1649 
1650 namespace {
1651 struct WeightedLeaf {
1652   SDValue Value;
1653   int Weight;
1654   int InsertionOrder;
1655 
WeightedLeaf__anonb38004890611::WeightedLeaf1656   WeightedLeaf() : Value(SDValue()) { }
1657 
WeightedLeaf__anonb38004890611::WeightedLeaf1658   WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) :
1659     Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) {
1660     assert(Weight >= 0 && "Weight must be >= 0");
1661   }
1662 
Compare__anonb38004890611::WeightedLeaf1663   static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) {
1664     assert(A.Value.getNode() && B.Value.getNode());
1665     return A.Weight == B.Weight ?
1666             (A.InsertionOrder > B.InsertionOrder) :
1667             (A.Weight > B.Weight);
1668   }
1669 };
1670 
1671 /// A specialized priority queue for WeigthedLeaves. It automatically folds
1672 /// constants and allows removal of non-top elements while maintaining the
1673 /// priority order.
1674 class LeafPrioQueue {
1675   SmallVector<WeightedLeaf, 8> Q;
1676   bool HaveConst;
1677   WeightedLeaf ConstElt;
1678   unsigned Opcode;
1679 
1680 public:
empty()1681   bool empty() {
1682     return (!HaveConst && Q.empty());
1683   }
1684 
size()1685   size_t size() {
1686     return Q.size() + HaveConst;
1687   }
1688 
hasConst()1689   bool hasConst() {
1690     return HaveConst;
1691   }
1692 
top()1693   const WeightedLeaf &top() {
1694     if (HaveConst)
1695       return ConstElt;
1696     return Q.front();
1697   }
1698 
pop()1699   WeightedLeaf pop() {
1700     if (HaveConst) {
1701       HaveConst = false;
1702       return ConstElt;
1703     }
1704     std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1705     return Q.pop_back_val();
1706   }
1707 
push(WeightedLeaf L,bool SeparateConst=true)1708   void push(WeightedLeaf L, bool SeparateConst=true) {
1709     if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) {
1710       if (Opcode == ISD::MUL &&
1711           cast<ConstantSDNode>(L.Value)->getSExtValue() == 1)
1712         return;
1713       if (Opcode == ISD::ADD &&
1714           cast<ConstantSDNode>(L.Value)->getSExtValue() == 0)
1715         return;
1716 
1717       HaveConst = true;
1718       ConstElt = L;
1719     } else {
1720       Q.push_back(L);
1721       std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1722     }
1723   }
1724 
1725   /// Push L to the bottom of the queue regardless of its weight. If L is
1726   /// constant, it will not be folded with other constants in the queue.
pushToBottom(WeightedLeaf L)1727   void pushToBottom(WeightedLeaf L) {
1728     L.Weight = 1000;
1729     push(L, false);
1730   }
1731 
1732   /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of
1733   /// lowest weight and remove it from the queue.
1734   WeightedLeaf findSHL(uint64_t MaxAmount);
1735 
1736   WeightedLeaf findMULbyConst();
1737 
LeafPrioQueue(unsigned Opcode)1738   LeafPrioQueue(unsigned Opcode) :
1739     HaveConst(false), Opcode(Opcode) { }
1740 };
1741 } // end anonymous namespace
1742 
findSHL(uint64_t MaxAmount)1743 WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) {
1744   int ResultPos;
1745   WeightedLeaf Result;
1746 
1747   for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1748     const WeightedLeaf &L = Q[Pos];
1749     const SDValue &Val = L.Value;
1750     if (Val.getOpcode() != ISD::SHL ||
1751         !isa<ConstantSDNode>(Val.getOperand(1)) ||
1752         Val.getConstantOperandVal(1) > MaxAmount)
1753       continue;
1754     if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1755         (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1756     {
1757       Result = L;
1758       ResultPos = Pos;
1759     }
1760   }
1761 
1762   if (Result.Value.getNode()) {
1763     Q.erase(&Q[ResultPos]);
1764     std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1765   }
1766 
1767   return Result;
1768 }
1769 
findMULbyConst()1770 WeightedLeaf LeafPrioQueue::findMULbyConst() {
1771   int ResultPos;
1772   WeightedLeaf Result;
1773 
1774   for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1775     const WeightedLeaf &L = Q[Pos];
1776     const SDValue &Val = L.Value;
1777     if (Val.getOpcode() != ISD::MUL ||
1778         !isa<ConstantSDNode>(Val.getOperand(1)) ||
1779         Val.getConstantOperandVal(1) > 127)
1780       continue;
1781     if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1782         (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1783     {
1784       Result = L;
1785       ResultPos = Pos;
1786     }
1787   }
1788 
1789   if (Result.Value.getNode()) {
1790     Q.erase(&Q[ResultPos]);
1791     std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1792   }
1793 
1794   return Result;
1795 }
1796 
getMultiplierForSHL(SDNode * N)1797 SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) {
1798   uint64_t MulFactor = 1ull << N->getConstantOperandVal(1);
1799   return CurDAG->getConstant(MulFactor, SDLoc(N),
1800                              N->getOperand(1).getValueType());
1801 }
1802 
1803 /// @returns the value x for which 2^x is a factor of Val
getPowerOf2Factor(SDValue Val)1804 static unsigned getPowerOf2Factor(SDValue Val) {
1805   if (Val.getOpcode() == ISD::MUL) {
1806     unsigned MaxFactor = 0;
1807     for (int i = 0; i < 2; ++i) {
1808       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i));
1809       if (!C)
1810         continue;
1811       const APInt &CInt = C->getAPIntValue();
1812       if (CInt.getBoolValue())
1813         MaxFactor = CInt.countTrailingZeros();
1814     }
1815     return MaxFactor;
1816   }
1817   if (Val.getOpcode() == ISD::SHL) {
1818     if (!isa<ConstantSDNode>(Val.getOperand(1).getNode()))
1819       return 0;
1820     return (unsigned) Val.getConstantOperandVal(1);
1821   }
1822 
1823   return 0;
1824 }
1825 
1826 /// @returns true if V>>Amount will eliminate V's operation on its child
willShiftRightEliminate(SDValue V,unsigned Amount)1827 static bool willShiftRightEliminate(SDValue V, unsigned Amount) {
1828   if (V.getOpcode() == ISD::MUL) {
1829     SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1830     for (int i = 0; i < 2; ++i)
1831       if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1832           V.getConstantOperandVal(i) % (1ULL << Amount) == 0) {
1833         uint64_t NewConst = V.getConstantOperandVal(i) >> Amount;
1834         return (NewConst == 1);
1835       }
1836   } else if (V.getOpcode() == ISD::SHL) {
1837     return (Amount == V.getConstantOperandVal(1));
1838   }
1839 
1840   return false;
1841 }
1842 
factorOutPowerOf2(SDValue V,unsigned Power)1843 SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) {
1844   SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1845   if (V.getOpcode() == ISD::MUL) {
1846     for (int i=0; i < 2; ++i) {
1847       if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1848           V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) {
1849         uint64_t NewConst = V.getConstantOperandVal(i) >> Power;
1850         if (NewConst == 1)
1851           return Ops[!i];
1852         Ops[i] = CurDAG->getConstant(NewConst,
1853                                      SDLoc(V), V.getValueType());
1854         break;
1855       }
1856     }
1857   } else if (V.getOpcode() == ISD::SHL) {
1858     uint64_t ShiftAmount = V.getConstantOperandVal(1);
1859     if (ShiftAmount == Power)
1860       return Ops[0];
1861     Ops[1] = CurDAG->getConstant(ShiftAmount - Power,
1862                                  SDLoc(V), V.getValueType());
1863   }
1864 
1865   return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops);
1866 }
1867 
isTargetConstant(const SDValue & V)1868 static bool isTargetConstant(const SDValue &V) {
1869   return V.getOpcode() == HexagonISD::CONST32 ||
1870          V.getOpcode() == HexagonISD::CONST32_GP;
1871 }
1872 
getUsesInFunction(const Value * V)1873 unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) {
1874   if (GAUsesInFunction.count(V))
1875     return GAUsesInFunction[V];
1876 
1877   unsigned Result = 0;
1878   const Function &CurF = CurDAG->getMachineFunction().getFunction();
1879   for (const User *U : V->users()) {
1880     if (isa<Instruction>(U) &&
1881         cast<Instruction>(U)->getParent()->getParent() == &CurF)
1882       ++Result;
1883   }
1884 
1885   GAUsesInFunction[V] = Result;
1886 
1887   return Result;
1888 }
1889 
1890 /// Note - After calling this, N may be dead. It may have been replaced by a
1891 /// new node, so always use the returned value in place of N.
1892 ///
1893 /// @returns The SDValue taking the place of N (which could be N if it is
1894 /// unchanged)
balanceSubTree(SDNode * N,bool TopLevel)1895 SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) {
1896   assert(RootWeights.count(N) && "Cannot balance non-root node.");
1897   assert(RootWeights[N] != -2 && "This node was RAUW'd!");
1898   assert(!TopLevel || N->getOpcode() == ISD::ADD);
1899 
1900   // Return early if this node was already visited
1901   if (RootWeights[N] != -1)
1902     return SDValue(N, 0);
1903 
1904   assert(isOpcodeHandled(N));
1905 
1906   SDValue Op0 = N->getOperand(0);
1907   SDValue Op1 = N->getOperand(1);
1908 
1909   // Return early if the operands will remain unchanged or are all roots
1910   if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) &&
1911       (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) {
1912     SDNode *Op0N = Op0.getNode();
1913     int Weight;
1914     if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) {
1915       Weight = getWeight(balanceSubTree(Op0N).getNode());
1916       // Weight = calculateWeight(Op0N);
1917     } else
1918       Weight = getWeight(Op0N);
1919 
1920     SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd
1921     if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) {
1922       Weight += getWeight(balanceSubTree(Op1N).getNode());
1923       // Weight += calculateWeight(Op1N);
1924     } else
1925       Weight += getWeight(Op1N);
1926 
1927     RootWeights[N] = Weight;
1928     RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()),
1929                               getHeight(N->getOperand(1).getNode())) + 1;
1930 
1931     LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight
1932                       << " Height=" << RootHeights[N] << "): ");
1933     LLVM_DEBUG(N->dump(CurDAG));
1934 
1935     return SDValue(N, 0);
1936   }
1937 
1938   LLVM_DEBUG(dbgs() << "** Balancing root node: ");
1939   LLVM_DEBUG(N->dump(CurDAG));
1940 
1941   unsigned NOpcode = N->getOpcode();
1942 
1943   LeafPrioQueue Leaves(NOpcode);
1944   SmallVector<SDValue, 4> Worklist;
1945   Worklist.push_back(SDValue(N, 0));
1946 
1947   // SHL nodes will be converted to MUL nodes
1948   if (NOpcode == ISD::SHL)
1949     NOpcode = ISD::MUL;
1950 
1951   bool CanFactorize = false;
1952   WeightedLeaf Mul1, Mul2;
1953   unsigned MaxPowerOf2 = 0;
1954   WeightedLeaf GA;
1955 
1956   // Do not try to factor out a shift if there is already a shift at the tip of
1957   // the tree.
1958   bool HaveTopLevelShift = false;
1959   if (TopLevel &&
1960       ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL &&
1961                         Op0.getConstantOperandVal(1) < 4) ||
1962        (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL &&
1963                         Op1.getConstantOperandVal(1) < 4)))
1964     HaveTopLevelShift = true;
1965 
1966   // Flatten the subtree into an ordered list of leaves; at the same time
1967   // determine whether the tree is already balanced.
1968   int InsertionOrder = 0;
1969   SmallDenseMap<SDValue, int> NodeHeights;
1970   bool Imbalanced = false;
1971   int CurrentWeight = 0;
1972   while (!Worklist.empty()) {
1973     SDValue Child = Worklist.pop_back_val();
1974 
1975     if (Child.getNode() != N && RootWeights.count(Child.getNode())) {
1976       // CASE 1: Child is a root note
1977 
1978       int Weight = RootWeights[Child.getNode()];
1979       if (Weight == -1) {
1980         Child = balanceSubTree(Child.getNode());
1981         // calculateWeight(Child.getNode());
1982         Weight = getWeight(Child.getNode());
1983       } else if (Weight == -2) {
1984         // Whoops, this node was RAUWd by one of the balanceSubTree calls we
1985         // made. Our worklist isn't up to date anymore.
1986         // Restart the whole process.
1987         LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
1988         return balanceSubTree(N, TopLevel);
1989       }
1990 
1991       NodeHeights[Child] = 1;
1992       CurrentWeight += Weight;
1993 
1994       unsigned PowerOf2;
1995       if (TopLevel && !CanFactorize && !HaveTopLevelShift &&
1996           (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) &&
1997           Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) {
1998         // Try to identify two factorizable MUL/SHL children greedily. Leave
1999         // them out of the priority queue for now so we can deal with them
2000         // after.
2001         if (!Mul1.Value.getNode()) {
2002           Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++);
2003           MaxPowerOf2 = PowerOf2;
2004         } else {
2005           Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++);
2006           MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2);
2007 
2008           // Our addressing modes can only shift by a maximum of 3
2009           if (MaxPowerOf2 > 3)
2010             MaxPowerOf2 = 3;
2011 
2012           CanFactorize = true;
2013         }
2014       } else
2015         Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2016     } else if (!isOpcodeHandled(Child.getNode())) {
2017       // CASE 2: Child is an unhandled kind of node (e.g. constant)
2018       int Weight = getWeight(Child.getNode());
2019 
2020       NodeHeights[Child] = getHeight(Child.getNode());
2021       CurrentWeight += Weight;
2022 
2023       if (isTargetConstant(Child) && !GA.Value.getNode())
2024         GA = WeightedLeaf(Child, Weight, InsertionOrder++);
2025       else
2026         Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2027     } else {
2028       // CASE 3: Child is a subtree of same opcode
2029       // Visit children first, then flatten.
2030       unsigned ChildOpcode = Child.getOpcode();
2031       assert(ChildOpcode == NOpcode ||
2032              (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL));
2033 
2034       // Convert SHL to MUL
2035       SDValue Op1;
2036       if (ChildOpcode == ISD::SHL)
2037         Op1 = getMultiplierForSHL(Child.getNode());
2038       else
2039         Op1 = Child->getOperand(1);
2040 
2041       if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) {
2042         assert(!NodeHeights.count(Child) && "Parent visited before children?");
2043         // Visit children first, then re-visit this node
2044         Worklist.push_back(Child);
2045         Worklist.push_back(Op1);
2046         Worklist.push_back(Child->getOperand(0));
2047       } else {
2048         // Back at this node after visiting the children
2049         if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1)
2050           Imbalanced = true;
2051 
2052         NodeHeights[Child] = std::max(NodeHeights[Op1],
2053                                       NodeHeights[Child->getOperand(0)]) + 1;
2054       }
2055     }
2056   }
2057 
2058   LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)]
2059                     << " weight=" << CurrentWeight
2060                     << " imbalanced=" << Imbalanced << "\n");
2061 
2062   // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y)
2063   //  This factors out a shift in order to match memw(a<<Y+b).
2064   if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) ||
2065                        willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) {
2066     LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n");
2067     int Weight = Mul1.Weight + Mul2.Weight;
2068     int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1;
2069     SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2);
2070     SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2);
2071     SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(),
2072                                   Mul1Factored, Mul2Factored);
2073     SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N),
2074                                         Mul1.Value.getValueType());
2075     SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(),
2076                                   Sum, Const);
2077     NodeHeights[New] = Height;
2078     Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder));
2079   } else if (Mul1.Value.getNode()) {
2080     // We failed to factorize two MULs, so now the Muls are left outside the
2081     // queue... add them back.
2082     Leaves.push(Mul1);
2083     if (Mul2.Value.getNode())
2084       Leaves.push(Mul2);
2085     CanFactorize = false;
2086   }
2087 
2088   // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere
2089   // and the root node itself is not used more than twice. This reduces the
2090   // amount of additional constant extenders introduced by this optimization.
2091   bool CombinedGA = false;
2092   if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() &&
2093       GA.Value.hasOneUse() && N->use_size() < 3) {
2094     GlobalAddressSDNode *GANode =
2095       cast<GlobalAddressSDNode>(GA.Value.getOperand(0));
2096     ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value);
2097 
2098     if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() &&
2099         getTargetLowering()->isOffsetFoldingLegal(GANode)) {
2100       LLVM_DEBUG(dbgs() << "--> Combining GA and offset ("
2101                         << Offset->getSExtValue() << "): ");
2102       LLVM_DEBUG(GANode->dump(CurDAG));
2103 
2104       SDValue NewTGA =
2105         CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value),
2106             GANode->getValueType(0),
2107             GANode->getOffset() + (uint64_t)Offset->getSExtValue());
2108       GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value),
2109           GA.Value.getValueType(), NewTGA);
2110       GA.Weight += Leaves.top().Weight;
2111 
2112       NodeHeights[GA.Value] = getHeight(GA.Value.getNode());
2113       CombinedGA = true;
2114 
2115       Leaves.pop(); // Remove the offset constant from the queue
2116     }
2117   }
2118 
2119   if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) ||
2120       (RebalanceOnlyImbalancedTrees && !Imbalanced)) {
2121     RootWeights[N] = CurrentWeight;
2122     RootHeights[N] = NodeHeights[SDValue(N, 0)];
2123 
2124     return SDValue(N, 0);
2125   }
2126 
2127   // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5))
2128   if (NOpcode == ISD::ADD && GA.Value.getNode()) {
2129     WeightedLeaf SHL = Leaves.findSHL(31);
2130     if (SHL.Value.getNode()) {
2131       int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1;
2132       GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value),
2133                                  GA.Value.getValueType(),
2134                                  GA.Value, SHL.Value);
2135       GA.Weight = SHL.Weight; // Specifically ignore the GA weight here
2136       NodeHeights[GA.Value] = Height;
2137     }
2138   }
2139 
2140   if (GA.Value.getNode())
2141     Leaves.push(GA);
2142 
2143   // If this is the top level and we haven't factored out a shift, we should try
2144   // to move a constant to the bottom to match addressing modes like memw(rX+C)
2145   if (TopLevel && !CanFactorize && Leaves.hasConst()) {
2146     LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree.");
2147     Leaves.pushToBottom(Leaves.pop());
2148   }
2149 
2150   const DataLayout &DL = CurDAG->getDataLayout();
2151   const TargetLowering &TLI = *getTargetLowering();
2152 
2153   // Rebuild the tree using Huffman's algorithm
2154   while (Leaves.size() > 1) {
2155     WeightedLeaf L0 = Leaves.pop();
2156 
2157     // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)),
2158     // otherwise just get the next leaf
2159     WeightedLeaf L1 = Leaves.findMULbyConst();
2160     if (!L1.Value.getNode())
2161       L1 = Leaves.pop();
2162 
2163     assert(L0.Weight <= L1.Weight && "Priority queue is broken!");
2164 
2165     SDValue V0 = L0.Value;
2166     int V0Weight = L0.Weight;
2167     SDValue V1 = L1.Value;
2168     int V1Weight = L1.Weight;
2169 
2170     // Make sure that none of these nodes have been RAUW'd
2171     if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) ||
2172         (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) {
2173       LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
2174       return balanceSubTree(N, TopLevel);
2175     }
2176 
2177     ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0);
2178     ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1);
2179     EVT VT = N->getValueType(0);
2180     SDValue NewNode;
2181 
2182     if (V0C && !V1C) {
2183       std::swap(V0, V1);
2184       std::swap(V0C, V1C);
2185     }
2186 
2187     // Calculate height of this node
2188     assert(NodeHeights.count(V0) && NodeHeights.count(V1) &&
2189            "Children must have been visited before re-combining them!");
2190     int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1;
2191 
2192     // Rebuild this node (and restore SHL from MUL if needed)
2193     if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2())
2194       NewNode = CurDAG->getNode(
2195           ISD::SHL, SDLoc(V0), VT, V0,
2196           CurDAG->getConstant(
2197               V1C->getAPIntValue().logBase2(), SDLoc(N),
2198               TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2199     else
2200       NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1);
2201 
2202     NodeHeights[NewNode] = Height;
2203 
2204     int Weight = V0Weight + V1Weight;
2205     Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder));
2206 
2207     LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight
2208                       << ",Height=" << Height << "):\n");
2209     LLVM_DEBUG(NewNode.dump());
2210   }
2211 
2212   assert(Leaves.size() == 1);
2213   SDValue NewRoot = Leaves.top().Value;
2214 
2215   assert(NodeHeights.count(NewRoot));
2216   int Height = NodeHeights[NewRoot];
2217 
2218   // Restore SHL if we earlier converted it to a MUL
2219   if (NewRoot.getOpcode() == ISD::MUL) {
2220     ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1));
2221     if (V1C && V1C->getAPIntValue().isPowerOf2()) {
2222       EVT VT = NewRoot.getValueType();
2223       SDValue V0 = NewRoot.getOperand(0);
2224       NewRoot = CurDAG->getNode(
2225           ISD::SHL, SDLoc(NewRoot), VT, V0,
2226           CurDAG->getConstant(
2227               V1C->getAPIntValue().logBase2(), SDLoc(NewRoot),
2228               TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2229     }
2230   }
2231 
2232   if (N != NewRoot.getNode()) {
2233     LLVM_DEBUG(dbgs() << "--> Root is now: ");
2234     LLVM_DEBUG(NewRoot.dump());
2235 
2236     // Replace all uses of old root by new root
2237     CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode());
2238     // Mark that we have RAUW'd N
2239     RootWeights[N] = -2;
2240   } else {
2241     LLVM_DEBUG(dbgs() << "--> Root unchanged.\n");
2242   }
2243 
2244   RootWeights[NewRoot.getNode()] = Leaves.top().Weight;
2245   RootHeights[NewRoot.getNode()] = Height;
2246 
2247   return NewRoot;
2248 }
2249 
rebalanceAddressTrees()2250 void HexagonDAGToDAGISel::rebalanceAddressTrees() {
2251   for (auto I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E;) {
2252     SDNode *N = &*I++;
2253     if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE)
2254       continue;
2255 
2256     SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr();
2257     if (BasePtr.getOpcode() != ISD::ADD)
2258       continue;
2259 
2260     // We've already processed this node
2261     if (RootWeights.count(BasePtr.getNode()))
2262       continue;
2263 
2264     LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: ");
2265     LLVM_DEBUG(N->dump(CurDAG));
2266 
2267     // FindRoots
2268     SmallVector<SDNode *, 4> Worklist;
2269 
2270     Worklist.push_back(BasePtr.getOperand(0).getNode());
2271     Worklist.push_back(BasePtr.getOperand(1).getNode());
2272 
2273     while (!Worklist.empty()) {
2274       SDNode *N = Worklist.pop_back_val();
2275       unsigned Opcode = N->getOpcode();
2276 
2277       if (!isOpcodeHandled(N))
2278         continue;
2279 
2280       Worklist.push_back(N->getOperand(0).getNode());
2281       Worklist.push_back(N->getOperand(1).getNode());
2282 
2283       // Not a root if it has only one use and same opcode as its parent
2284       if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode())
2285         continue;
2286 
2287       // This root node has already been processed
2288       if (RootWeights.count(N))
2289         continue;
2290 
2291       RootWeights[N] = -1;
2292     }
2293 
2294     // Balance node itself
2295     RootWeights[BasePtr.getNode()] = -1;
2296     SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true);
2297 
2298     if (N->getOpcode() == ISD::LOAD)
2299       N = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
2300             NewBasePtr, N->getOperand(2));
2301     else
2302       N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1),
2303             NewBasePtr, N->getOperand(3));
2304 
2305     LLVM_DEBUG(dbgs() << "--> Final node: ");
2306     LLVM_DEBUG(N->dump(CurDAG));
2307   }
2308 
2309   CurDAG->RemoveDeadNodes();
2310   GAUsesInFunction.clear();
2311   RootHeights.clear();
2312   RootWeights.clear();
2313 }
2314