1 //===- HexagonSplitDouble.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #define DEBUG_TYPE "hsdr"
10 
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/Config/llvm-config.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstdint>
39 #include <limits>
40 #include <map>
41 #include <set>
42 #include <utility>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 namespace llvm {
48 
49   FunctionPass *createHexagonSplitDoubleRegs();
50   void initializeHexagonSplitDoubleRegsPass(PassRegistry&);
51 
52 } // end namespace llvm
53 
54 static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1),
55     cl::desc("Maximum number of split partitions"));
56 static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true),
57     cl::desc("Do not split loads or stores"));
58   static cl::opt<bool> SplitAll("hsdr-split-all", cl::Hidden, cl::init(false),
59       cl::desc("Split all partitions"));
60 
61 namespace {
62 
63   class HexagonSplitDoubleRegs : public MachineFunctionPass {
64   public:
65     static char ID;
66 
HexagonSplitDoubleRegs()67     HexagonSplitDoubleRegs() : MachineFunctionPass(ID) {}
68 
getPassName() const69     StringRef getPassName() const override {
70       return "Hexagon Split Double Registers";
71     }
72 
getAnalysisUsage(AnalysisUsage & AU) const73     void getAnalysisUsage(AnalysisUsage &AU) const override {
74       AU.addRequired<MachineLoopInfo>();
75       AU.addPreserved<MachineLoopInfo>();
76       MachineFunctionPass::getAnalysisUsage(AU);
77     }
78 
79     bool runOnMachineFunction(MachineFunction &MF) override;
80 
81   private:
82     static const TargetRegisterClass *const DoubleRC;
83 
84     const HexagonRegisterInfo *TRI = nullptr;
85     const HexagonInstrInfo *TII = nullptr;
86     const MachineLoopInfo *MLI;
87     MachineRegisterInfo *MRI;
88 
89     using USet = std::set<unsigned>;
90     using UUSetMap = std::map<unsigned, USet>;
91     using UUPair = std::pair<unsigned, unsigned>;
92     using UUPairMap = std::map<unsigned, UUPair>;
93     using LoopRegMap = std::map<const MachineLoop *, USet>;
94 
95     bool isInduction(unsigned Reg, LoopRegMap &IRM) const;
96     bool isVolatileInstr(const MachineInstr *MI) const;
97     bool isFixedInstr(const MachineInstr *MI) const;
98     void partitionRegisters(UUSetMap &P2Rs);
99     int32_t profit(const MachineInstr *MI) const;
100     int32_t profit(Register Reg) const;
101     bool isProfitable(const USet &Part, LoopRegMap &IRM) const;
102 
103     void collectIndRegsForLoop(const MachineLoop *L, USet &Rs);
104     void collectIndRegs(LoopRegMap &IRM);
105 
106     void createHalfInstr(unsigned Opc, MachineInstr *MI,
107         const UUPairMap &PairMap, unsigned SubR);
108     void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap);
109     void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap);
110     void splitCombine(MachineInstr *MI, const UUPairMap &PairMap);
111     void splitExt(MachineInstr *MI, const UUPairMap &PairMap);
112     void splitShift(MachineInstr *MI, const UUPairMap &PairMap);
113     void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap);
114     bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap);
115     void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap);
116     void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap);
117     bool splitPartition(const USet &Part);
118 
119     static int Counter;
120 
121     static void dump_partition(raw_ostream&, const USet&,
122        const TargetRegisterInfo&);
123   };
124 
125 } // end anonymous namespace
126 
127 char HexagonSplitDoubleRegs::ID;
128 int HexagonSplitDoubleRegs::Counter = 0;
129 const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC =
130     &Hexagon::DoubleRegsRegClass;
131 
132 INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double",
133   "Hexagon Split Double Registers", false, false)
134 
135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump_partition(raw_ostream & os,const USet & Part,const TargetRegisterInfo & TRI)136 LLVM_DUMP_METHOD void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os,
137       const USet &Part, const TargetRegisterInfo &TRI) {
138   dbgs() << '{';
139   for (auto I : Part)
140     dbgs() << ' ' << printReg(I, &TRI);
141   dbgs() << " }";
142 }
143 #endif
144 
isInduction(unsigned Reg,LoopRegMap & IRM) const145 bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const {
146   for (auto I : IRM) {
147     const USet &Rs = I.second;
148     if (Rs.find(Reg) != Rs.end())
149       return true;
150   }
151   return false;
152 }
153 
isVolatileInstr(const MachineInstr * MI) const154 bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const {
155   for (auto &MO : MI->memoperands())
156     if (MO->isVolatile() || MO->isAtomic())
157       return true;
158   return false;
159 }
160 
isFixedInstr(const MachineInstr * MI) const161 bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const {
162   if (MI->mayLoadOrStore())
163     if (MemRefsFixed || isVolatileInstr(MI))
164       return true;
165   if (MI->isDebugInstr())
166     return false;
167 
168   unsigned Opc = MI->getOpcode();
169   switch (Opc) {
170     default:
171       return true;
172 
173     case TargetOpcode::PHI:
174     case TargetOpcode::COPY:
175       break;
176 
177     case Hexagon::L2_loadrd_io:
178       // Not handling stack stores (only reg-based addresses).
179       if (MI->getOperand(1).isReg())
180         break;
181       return true;
182     case Hexagon::S2_storerd_io:
183       // Not handling stack stores (only reg-based addresses).
184       if (MI->getOperand(0).isReg())
185         break;
186       return true;
187     case Hexagon::L2_loadrd_pi:
188     case Hexagon::S2_storerd_pi:
189 
190     case Hexagon::A2_tfrpi:
191     case Hexagon::A2_combineii:
192     case Hexagon::A4_combineir:
193     case Hexagon::A4_combineii:
194     case Hexagon::A4_combineri:
195     case Hexagon::A2_combinew:
196     case Hexagon::CONST64:
197 
198     case Hexagon::A2_sxtw:
199 
200     case Hexagon::A2_andp:
201     case Hexagon::A2_orp:
202     case Hexagon::A2_xorp:
203     case Hexagon::S2_asl_i_p_or:
204     case Hexagon::S2_asl_i_p:
205     case Hexagon::S2_asr_i_p:
206     case Hexagon::S2_lsr_i_p:
207       break;
208   }
209 
210   for (auto &Op : MI->operands()) {
211     if (!Op.isReg())
212       continue;
213     Register R = Op.getReg();
214     if (!R.isVirtual())
215       return true;
216   }
217   return false;
218 }
219 
partitionRegisters(UUSetMap & P2Rs)220 void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) {
221   using UUMap = std::map<unsigned, unsigned>;
222   using UVect = std::vector<unsigned>;
223 
224   unsigned NumRegs = MRI->getNumVirtRegs();
225   BitVector DoubleRegs(NumRegs);
226   for (unsigned i = 0; i < NumRegs; ++i) {
227     unsigned R = Register::index2VirtReg(i);
228     if (MRI->getRegClass(R) == DoubleRC)
229       DoubleRegs.set(i);
230   }
231 
232   BitVector FixedRegs(NumRegs);
233   for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
234     unsigned R = Register::index2VirtReg(x);
235     MachineInstr *DefI = MRI->getVRegDef(R);
236     // In some cases a register may exist, but never be defined or used.
237     // It should never appear anywhere, but mark it as "fixed", just to be
238     // safe.
239     if (!DefI || isFixedInstr(DefI))
240       FixedRegs.set(x);
241   }
242 
243   UUSetMap AssocMap;
244   for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
245     if (FixedRegs[x])
246       continue;
247     unsigned R = Register::index2VirtReg(x);
248     LLVM_DEBUG(dbgs() << printReg(R, TRI) << " ~~");
249     USet &Asc = AssocMap[R];
250     for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end();
251          U != Z; ++U) {
252       MachineOperand &Op = *U;
253       MachineInstr *UseI = Op.getParent();
254       if (isFixedInstr(UseI))
255         continue;
256       for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) {
257         MachineOperand &MO = UseI->getOperand(i);
258         // Skip non-registers or registers with subregisters.
259         if (&MO == &Op || !MO.isReg() || MO.getSubReg())
260           continue;
261         Register T = MO.getReg();
262         if (!T.isVirtual()) {
263           FixedRegs.set(x);
264           continue;
265         }
266         if (MRI->getRegClass(T) != DoubleRC)
267           continue;
268         unsigned u = Register::virtReg2Index(T);
269         if (FixedRegs[u])
270           continue;
271         LLVM_DEBUG(dbgs() << ' ' << printReg(T, TRI));
272         Asc.insert(T);
273         // Make it symmetric.
274         AssocMap[T].insert(R);
275       }
276     }
277     LLVM_DEBUG(dbgs() << '\n');
278   }
279 
280   UUMap R2P;
281   unsigned NextP = 1;
282   USet Visited;
283   for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
284     unsigned R = Register::index2VirtReg(x);
285     if (Visited.count(R))
286       continue;
287     // Create a new partition for R.
288     unsigned ThisP = FixedRegs[x] ? 0 : NextP++;
289     UVect WorkQ;
290     WorkQ.push_back(R);
291     for (unsigned i = 0; i < WorkQ.size(); ++i) {
292       unsigned T = WorkQ[i];
293       if (Visited.count(T))
294         continue;
295       R2P[T] = ThisP;
296       Visited.insert(T);
297       // Add all registers associated with T.
298       USet &Asc = AssocMap[T];
299       for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J)
300         WorkQ.push_back(*J);
301     }
302   }
303 
304   for (auto I : R2P)
305     P2Rs[I.second].insert(I.first);
306 }
307 
profitImm(unsigned Imm)308 static inline int32_t profitImm(unsigned Imm) {
309   int32_t P = 0;
310   if (Imm == 0 || Imm == 0xFFFFFFFF)
311     P += 10;
312   return P;
313 }
314 
profit(const MachineInstr * MI) const315 int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const {
316   unsigned ImmX = 0;
317   unsigned Opc = MI->getOpcode();
318   switch (Opc) {
319     case TargetOpcode::PHI:
320       for (const auto &Op : MI->operands())
321         if (!Op.getSubReg())
322           return 0;
323       return 10;
324     case TargetOpcode::COPY:
325       if (MI->getOperand(1).getSubReg() != 0)
326         return 10;
327       return 0;
328 
329     case Hexagon::L2_loadrd_io:
330     case Hexagon::S2_storerd_io:
331       return -1;
332     case Hexagon::L2_loadrd_pi:
333     case Hexagon::S2_storerd_pi:
334       return 2;
335 
336     case Hexagon::A2_tfrpi:
337     case Hexagon::CONST64: {
338       uint64_t D = MI->getOperand(1).getImm();
339       unsigned Lo = D & 0xFFFFFFFFULL;
340       unsigned Hi = D >> 32;
341       return profitImm(Lo) + profitImm(Hi);
342     }
343     case Hexagon::A2_combineii:
344     case Hexagon::A4_combineii: {
345       const MachineOperand &Op1 = MI->getOperand(1);
346       const MachineOperand &Op2 = MI->getOperand(2);
347       int32_t Prof1 = Op1.isImm() ? profitImm(Op1.getImm()) : 0;
348       int32_t Prof2 = Op2.isImm() ? profitImm(Op2.getImm()) : 0;
349       return Prof1 + Prof2;
350     }
351     case Hexagon::A4_combineri:
352       ImmX++;
353       // Fall through into A4_combineir.
354       LLVM_FALLTHROUGH;
355     case Hexagon::A4_combineir: {
356       ImmX++;
357       const MachineOperand &OpX = MI->getOperand(ImmX);
358       if (OpX.isImm()) {
359         int64_t V = OpX.getImm();
360         if (V == 0 || V == -1)
361           return 10;
362       }
363       // Fall through into A2_combinew.
364       LLVM_FALLTHROUGH;
365     }
366     case Hexagon::A2_combinew:
367       return 2;
368 
369     case Hexagon::A2_sxtw:
370       return 3;
371 
372     case Hexagon::A2_andp:
373     case Hexagon::A2_orp:
374     case Hexagon::A2_xorp: {
375       Register Rs = MI->getOperand(1).getReg();
376       Register Rt = MI->getOperand(2).getReg();
377       return profit(Rs) + profit(Rt);
378     }
379 
380     case Hexagon::S2_asl_i_p_or: {
381       unsigned S = MI->getOperand(3).getImm();
382       if (S == 0 || S == 32)
383         return 10;
384       return -1;
385     }
386     case Hexagon::S2_asl_i_p:
387     case Hexagon::S2_asr_i_p:
388     case Hexagon::S2_lsr_i_p:
389       unsigned S = MI->getOperand(2).getImm();
390       if (S == 0 || S == 32)
391         return 10;
392       if (S == 16)
393         return 5;
394       if (S == 48)
395         return 7;
396       return -10;
397   }
398 
399   return 0;
400 }
401 
profit(Register Reg) const402 int32_t HexagonSplitDoubleRegs::profit(Register Reg) const {
403   assert(Reg.isVirtual());
404 
405   const MachineInstr *DefI = MRI->getVRegDef(Reg);
406   switch (DefI->getOpcode()) {
407     case Hexagon::A2_tfrpi:
408     case Hexagon::CONST64:
409     case Hexagon::A2_combineii:
410     case Hexagon::A4_combineii:
411     case Hexagon::A4_combineri:
412     case Hexagon::A4_combineir:
413     case Hexagon::A2_combinew:
414       return profit(DefI);
415     default:
416       break;
417   }
418   return 0;
419 }
420 
isProfitable(const USet & Part,LoopRegMap & IRM) const421 bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM)
422       const {
423   unsigned FixedNum = 0, LoopPhiNum = 0;
424   int32_t TotalP = 0;
425 
426   for (unsigned DR : Part) {
427     MachineInstr *DefI = MRI->getVRegDef(DR);
428     int32_t P = profit(DefI);
429     if (P == std::numeric_limits<int>::min())
430       return false;
431     TotalP += P;
432     // Reduce the profitability of splitting induction registers.
433     if (isInduction(DR, IRM))
434       TotalP -= 30;
435 
436     for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
437          U != W; ++U) {
438       MachineInstr *UseI = U->getParent();
439       if (isFixedInstr(UseI)) {
440         FixedNum++;
441         // Calculate the cost of generating REG_SEQUENCE instructions.
442         for (auto &Op : UseI->operands()) {
443           if (Op.isReg() && Part.count(Op.getReg()))
444             if (Op.getSubReg())
445               TotalP -= 2;
446         }
447         continue;
448       }
449       // If a register from this partition is used in a fixed instruction,
450       // and there is also a register in this partition that is used in
451       // a loop phi node, then decrease the splitting profit as this can
452       // confuse the modulo scheduler.
453       if (UseI->isPHI()) {
454         const MachineBasicBlock *PB = UseI->getParent();
455         const MachineLoop *L = MLI->getLoopFor(PB);
456         if (L && L->getHeader() == PB)
457           LoopPhiNum++;
458       }
459       // Splittable instruction.
460       int32_t P = profit(UseI);
461       if (P == std::numeric_limits<int>::min())
462         return false;
463       TotalP += P;
464     }
465   }
466 
467   if (FixedNum > 0 && LoopPhiNum > 0)
468     TotalP -= 20*LoopPhiNum;
469 
470   LLVM_DEBUG(dbgs() << "Partition profit: " << TotalP << '\n');
471   if (SplitAll)
472     return true;
473   return TotalP > 0;
474 }
475 
collectIndRegsForLoop(const MachineLoop * L,USet & Rs)476 void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L,
477       USet &Rs) {
478   const MachineBasicBlock *HB = L->getHeader();
479   const MachineBasicBlock *LB = L->getLoopLatch();
480   if (!HB || !LB)
481     return;
482 
483   // Examine the latch branch. Expect it to be a conditional branch to
484   // the header (either "br-cond header" or "br-cond exit; br header").
485   MachineBasicBlock *TB = nullptr, *FB = nullptr;
486   MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB);
487   SmallVector<MachineOperand,2> Cond;
488   bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false);
489   // Only analyzable conditional branches. HII::analyzeBranch will put
490   // the branch opcode as the first element of Cond, and the predicate
491   // operand as the second.
492   if (BadLB || Cond.size() != 2)
493     return;
494   // Only simple jump-conditional (with or without negation).
495   if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm()))
496     return;
497   // Must go to the header.
498   if (TB != HB && FB != HB)
499     return;
500   assert(Cond[1].isReg() && "Unexpected Cond vector from analyzeBranch");
501   // Expect a predicate register.
502   Register PR = Cond[1].getReg();
503   assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass);
504 
505   // Get the registers on which the loop controlling compare instruction
506   // depends.
507   Register CmpR1, CmpR2;
508   const MachineInstr *CmpI = MRI->getVRegDef(PR);
509   while (CmpI->getOpcode() == Hexagon::C2_not)
510     CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg());
511 
512   int Mask = 0, Val = 0;
513   bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val);
514   if (!OkCI)
515     return;
516   // Eliminate non-double input registers.
517   if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC)
518     CmpR1 = 0;
519   if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC)
520     CmpR2 = 0;
521   if (!CmpR1 && !CmpR2)
522     return;
523 
524   // Now examine the top of the loop: the phi nodes that could poten-
525   // tially define loop induction registers. The registers defined by
526   // such a phi node would be used in a 64-bit add, which then would
527   // be used in the loop compare instruction.
528 
529   // Get the set of all double registers defined by phi nodes in the
530   // loop header.
531   using UVect = std::vector<unsigned>;
532 
533   UVect DP;
534   for (auto &MI : *HB) {
535     if (!MI.isPHI())
536       break;
537     const MachineOperand &MD = MI.getOperand(0);
538     Register R = MD.getReg();
539     if (MRI->getRegClass(R) == DoubleRC)
540       DP.push_back(R);
541   }
542   if (DP.empty())
543     return;
544 
545   auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool {
546     for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end();
547          I != E; ++I) {
548       const MachineInstr *UseI = I->getParent();
549       if (UseI->getOpcode() != Hexagon::A2_addp)
550         continue;
551       // Get the output from the add. If it is one of the inputs to the
552       // loop-controlling compare instruction, then R is likely an induc-
553       // tion register.
554       Register T = UseI->getOperand(0).getReg();
555       if (T == CmpR1 || T == CmpR2)
556         return false;
557     }
558     return true;
559   };
560   UVect::iterator End = llvm::remove_if(DP, NoIndOp);
561   Rs.insert(DP.begin(), End);
562   Rs.insert(CmpR1);
563   Rs.insert(CmpR2);
564 
565   LLVM_DEBUG({
566     dbgs() << "For loop at " << printMBBReference(*HB) << " ind regs: ";
567     dump_partition(dbgs(), Rs, *TRI);
568     dbgs() << '\n';
569   });
570 }
571 
collectIndRegs(LoopRegMap & IRM)572 void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) {
573   using LoopVector = std::vector<MachineLoop *>;
574 
575   LoopVector WorkQ;
576 
577   append_range(WorkQ, *MLI);
578   for (unsigned i = 0; i < WorkQ.size(); ++i)
579     append_range(WorkQ, *WorkQ[i]);
580 
581   USet Rs;
582   for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) {
583     MachineLoop *L = WorkQ[i];
584     Rs.clear();
585     collectIndRegsForLoop(L, Rs);
586     if (!Rs.empty())
587       IRM.insert(std::make_pair(L, Rs));
588   }
589 }
590 
createHalfInstr(unsigned Opc,MachineInstr * MI,const UUPairMap & PairMap,unsigned SubR)591 void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI,
592       const UUPairMap &PairMap, unsigned SubR) {
593   MachineBasicBlock &B = *MI->getParent();
594   DebugLoc DL = MI->getDebugLoc();
595   MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc));
596 
597   for (auto &Op : MI->operands()) {
598     if (!Op.isReg()) {
599       NewI->addOperand(Op);
600       continue;
601     }
602     // For register operands, set the subregister.
603     Register R = Op.getReg();
604     unsigned SR = Op.getSubReg();
605     bool isVirtReg = R.isVirtual();
606     bool isKill = Op.isKill();
607     if (isVirtReg && MRI->getRegClass(R) == DoubleRC) {
608       isKill = false;
609       UUPairMap::const_iterator F = PairMap.find(R);
610       if (F == PairMap.end()) {
611         SR = SubR;
612       } else {
613         const UUPair &P = F->second;
614         R = (SubR == Hexagon::isub_lo) ? P.first : P.second;
615         SR = 0;
616       }
617     }
618     auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill,
619           Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(),
620           Op.isInternalRead());
621     NewI->addOperand(CO);
622   }
623 }
624 
splitMemRef(MachineInstr * MI,const UUPairMap & PairMap)625 void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI,
626       const UUPairMap &PairMap) {
627   bool Load = MI->mayLoad();
628   unsigned OrigOpc = MI->getOpcode();
629   bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi ||
630                   OrigOpc == Hexagon::S2_storerd_pi);
631   MachineInstr *LowI, *HighI;
632   MachineBasicBlock &B = *MI->getParent();
633   DebugLoc DL = MI->getDebugLoc();
634 
635   // Index of the base-address-register operand.
636   unsigned AdrX = PostInc ? (Load ? 2 : 1)
637                           : (Load ? 1 : 0);
638   MachineOperand &AdrOp = MI->getOperand(AdrX);
639   unsigned RSA = getRegState(AdrOp);
640   MachineOperand &ValOp = Load ? MI->getOperand(0)
641                                : (PostInc ? MI->getOperand(3)
642                                           : MI->getOperand(2));
643   UUPairMap::const_iterator F = PairMap.find(ValOp.getReg());
644   assert(F != PairMap.end());
645 
646   if (Load) {
647     const UUPair &P = F->second;
648     int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm();
649     LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first)
650              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
651              .addImm(Off);
652     HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second)
653               .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
654               .addImm(Off+4);
655   } else {
656     const UUPair &P = F->second;
657     int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm();
658     LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
659              .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
660              .addImm(Off)
661              .addReg(P.first);
662     HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
663               .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
664               .addImm(Off+4)
665               .addReg(P.second);
666   }
667 
668   if (PostInc) {
669     // Create the increment of the address register.
670     int64_t Inc = Load ? MI->getOperand(3).getImm()
671                        : MI->getOperand(2).getImm();
672     MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0);
673     const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg());
674     Register NewR = MRI->createVirtualRegister(RC);
675     assert(!UpdOp.getSubReg() && "Def operand with subreg");
676     BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR)
677       .addReg(AdrOp.getReg(), RSA)
678       .addImm(Inc);
679     MRI->replaceRegWith(UpdOp.getReg(), NewR);
680     // The original instruction will be deleted later.
681   }
682 
683   // Generate a new pair of memory-operands.
684   MachineFunction &MF = *B.getParent();
685   for (auto &MO : MI->memoperands()) {
686     const MachinePointerInfo &Ptr = MO->getPointerInfo();
687     MachineMemOperand::Flags F = MO->getFlags();
688     Align A = MO->getAlign();
689 
690     auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4 /*size*/, A);
691     LowI->addMemOperand(MF, Tmp1);
692     auto *Tmp2 =
693         MF.getMachineMemOperand(Ptr, F, 4 /*size*/, std::min(A, Align(4)));
694     HighI->addMemOperand(MF, Tmp2);
695   }
696 }
697 
splitImmediate(MachineInstr * MI,const UUPairMap & PairMap)698 void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI,
699       const UUPairMap &PairMap) {
700   MachineOperand &Op0 = MI->getOperand(0);
701   MachineOperand &Op1 = MI->getOperand(1);
702   assert(Op0.isReg() && Op1.isImm());
703   uint64_t V = Op1.getImm();
704 
705   MachineBasicBlock &B = *MI->getParent();
706   DebugLoc DL = MI->getDebugLoc();
707   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
708   assert(F != PairMap.end());
709   const UUPair &P = F->second;
710 
711   // The operand to A2_tfrsi can only have 32 significant bits. Immediate
712   // values in MachineOperand are stored as 64-bit integers, and so the
713   // value -1 may be represented either as 64-bit -1, or 4294967295. Both
714   // will have the 32 higher bits truncated in the end, but -1 will remain
715   // as -1, while the latter may appear to be a large unsigned value
716   // requiring a constant extender. The casting to int32_t will select the
717   // former representation. (The same reasoning applies to all 32-bit
718   // values.)
719   BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
720     .addImm(int32_t(V & 0xFFFFFFFFULL));
721   BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
722     .addImm(int32_t(V >> 32));
723 }
724 
splitCombine(MachineInstr * MI,const UUPairMap & PairMap)725 void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI,
726       const UUPairMap &PairMap) {
727   MachineOperand &Op0 = MI->getOperand(0);
728   MachineOperand &Op1 = MI->getOperand(1);
729   MachineOperand &Op2 = MI->getOperand(2);
730   assert(Op0.isReg());
731 
732   MachineBasicBlock &B = *MI->getParent();
733   DebugLoc DL = MI->getDebugLoc();
734   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
735   assert(F != PairMap.end());
736   const UUPair &P = F->second;
737 
738   if (!Op1.isReg()) {
739     BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
740       .add(Op1);
741   } else {
742     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second)
743       .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg());
744   }
745 
746   if (!Op2.isReg()) {
747     BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
748       .add(Op2);
749   } else {
750     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
751       .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg());
752   }
753 }
754 
splitExt(MachineInstr * MI,const UUPairMap & PairMap)755 void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI,
756       const UUPairMap &PairMap) {
757   MachineOperand &Op0 = MI->getOperand(0);
758   MachineOperand &Op1 = MI->getOperand(1);
759   assert(Op0.isReg() && Op1.isReg());
760 
761   MachineBasicBlock &B = *MI->getParent();
762   DebugLoc DL = MI->getDebugLoc();
763   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
764   assert(F != PairMap.end());
765   const UUPair &P = F->second;
766   unsigned RS = getRegState(Op1);
767 
768   BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
769     .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg());
770   BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second)
771     .addReg(Op1.getReg(), RS, Op1.getSubReg())
772     .addImm(31);
773 }
774 
splitShift(MachineInstr * MI,const UUPairMap & PairMap)775 void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI,
776       const UUPairMap &PairMap) {
777   using namespace Hexagon;
778 
779   MachineOperand &Op0 = MI->getOperand(0);
780   MachineOperand &Op1 = MI->getOperand(1);
781   MachineOperand &Op2 = MI->getOperand(2);
782   assert(Op0.isReg() && Op1.isReg() && Op2.isImm());
783   int64_t Sh64 = Op2.getImm();
784   assert(Sh64 >= 0 && Sh64 < 64);
785   unsigned S = Sh64;
786 
787   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
788   assert(F != PairMap.end());
789   const UUPair &P = F->second;
790   Register LoR = P.first;
791   Register HiR = P.second;
792 
793   unsigned Opc = MI->getOpcode();
794   bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p);
795   bool Left = !Right;
796   bool Signed = (Opc == S2_asr_i_p);
797 
798   MachineBasicBlock &B = *MI->getParent();
799   DebugLoc DL = MI->getDebugLoc();
800   unsigned RS = getRegState(Op1);
801   unsigned ShiftOpc = Left ? S2_asl_i_r
802                            : (Signed ? S2_asr_i_r : S2_lsr_i_r);
803   unsigned LoSR = isub_lo;
804   unsigned HiSR = isub_hi;
805 
806   if (S == 0) {
807     // No shift, subregister copy.
808     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
809       .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
810     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR)
811       .addReg(Op1.getReg(), RS, HiSR);
812   } else if (S < 32) {
813     const TargetRegisterClass *IntRC = &IntRegsRegClass;
814     Register TmpR = MRI->createVirtualRegister(IntRC);
815     // Expansion:
816     // Shift left:    DR = shl R, #s
817     //   LoR  = shl R.lo, #s
818     //   TmpR = extractu R.lo, #s, #32-s
819     //   HiR  = or (TmpR, asl(R.hi, #s))
820     // Shift right:   DR = shr R, #s
821     //   HiR  = shr R.hi, #s
822     //   TmpR = shr R.lo, #s
823     //   LoR  = insert TmpR, R.hi, #s, #32-s
824 
825     // Shift left:
826     //   LoR  = shl R.lo, #s
827     // Shift right:
828     //   TmpR = shr R.lo, #s
829 
830     // Make a special case for A2_aslh and A2_asrh (they are predicable as
831     // opposed to S2_asl_i_r/S2_asr_i_r).
832     if (S == 16 && Left)
833       BuildMI(B, MI, DL, TII->get(A2_aslh), LoR)
834         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
835     else if (S == 16 && Signed)
836       BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR)
837         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
838     else
839       BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR))
840         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
841         .addImm(S);
842 
843     if (Left) {
844       // TmpR = extractu R.lo, #s, #32-s
845       BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR)
846         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
847         .addImm(S)
848         .addImm(32-S);
849       // HiR  = or (TmpR, asl(R.hi, #s))
850       BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
851         .addReg(TmpR)
852         .addReg(Op1.getReg(), RS, HiSR)
853         .addImm(S);
854     } else {
855       // HiR  = shr R.hi, #s
856       BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR)
857         .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR)
858         .addImm(S);
859       // LoR  = insert TmpR, R.hi, #s, #32-s
860       BuildMI(B, MI, DL, TII->get(S2_insert), LoR)
861         .addReg(TmpR)
862         .addReg(Op1.getReg(), RS, HiSR)
863         .addImm(S)
864         .addImm(32-S);
865     }
866   } else if (S == 32) {
867     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR))
868       .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR));
869     if (!Signed)
870       BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
871         .addImm(0);
872     else  // Must be right shift.
873       BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
874         .addReg(Op1.getReg(), RS, HiSR)
875         .addImm(31);
876   } else if (S < 64) {
877     S -= 32;
878     if (S == 16 && Left)
879       BuildMI(B, MI, DL, TII->get(A2_aslh), HiR)
880         .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
881     else if (S == 16 && Signed)
882       BuildMI(B, MI, DL, TII->get(A2_asrh), LoR)
883         .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR);
884     else
885       BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR))
886         .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR))
887         .addImm(S);
888 
889     if (Signed)
890       BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
891         .addReg(Op1.getReg(), RS, HiSR)
892         .addImm(31);
893     else
894       BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
895         .addImm(0);
896   }
897 }
898 
splitAslOr(MachineInstr * MI,const UUPairMap & PairMap)899 void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI,
900       const UUPairMap &PairMap) {
901   using namespace Hexagon;
902 
903   MachineOperand &Op0 = MI->getOperand(0);
904   MachineOperand &Op1 = MI->getOperand(1);
905   MachineOperand &Op2 = MI->getOperand(2);
906   MachineOperand &Op3 = MI->getOperand(3);
907   assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm());
908   int64_t Sh64 = Op3.getImm();
909   assert(Sh64 >= 0 && Sh64 < 64);
910   unsigned S = Sh64;
911 
912   UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
913   assert(F != PairMap.end());
914   const UUPair &P = F->second;
915   unsigned LoR = P.first;
916   unsigned HiR = P.second;
917 
918   MachineBasicBlock &B = *MI->getParent();
919   DebugLoc DL = MI->getDebugLoc();
920   unsigned RS1 = getRegState(Op1);
921   unsigned RS2 = getRegState(Op2);
922   const TargetRegisterClass *IntRC = &IntRegsRegClass;
923 
924   unsigned LoSR = isub_lo;
925   unsigned HiSR = isub_hi;
926 
927   // Op0 = S2_asl_i_p_or Op1, Op2, Op3
928   // means:  Op0 = or (Op1, asl(Op2, Op3))
929 
930   // Expansion of
931   //   DR = or (R1, asl(R2, #s))
932   //
933   //   LoR  = or (R1.lo, asl(R2.lo, #s))
934   //   Tmp1 = extractu R2.lo, #s, #32-s
935   //   Tmp2 = or R1.hi, Tmp1
936   //   HiR  = or (Tmp2, asl(R2.hi, #s))
937 
938   if (S == 0) {
939     // DR  = or (R1, asl(R2, #0))
940     //    -> or (R1, R2)
941     // i.e. LoR = or R1.lo, R2.lo
942     //      HiR = or R1.hi, R2.hi
943     BuildMI(B, MI, DL, TII->get(A2_or), LoR)
944       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
945       .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR);
946     BuildMI(B, MI, DL, TII->get(A2_or), HiR)
947       .addReg(Op1.getReg(), RS1, HiSR)
948       .addReg(Op2.getReg(), RS2, HiSR);
949   } else if (S < 32) {
950     BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR)
951       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
952       .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
953       .addImm(S);
954     Register TmpR1 = MRI->createVirtualRegister(IntRC);
955     BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1)
956       .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
957       .addImm(S)
958       .addImm(32-S);
959     Register TmpR2 = MRI->createVirtualRegister(IntRC);
960     BuildMI(B, MI, DL, TII->get(A2_or), TmpR2)
961       .addReg(Op1.getReg(), RS1, HiSR)
962       .addReg(TmpR1);
963     BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
964       .addReg(TmpR2)
965       .addReg(Op2.getReg(), RS2, HiSR)
966       .addImm(S);
967   } else if (S == 32) {
968     // DR  = or (R1, asl(R2, #32))
969     //    -> or R1, R2.lo
970     // LoR = R1.lo
971     // HiR = or R1.hi, R2.lo
972     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
973       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
974     BuildMI(B, MI, DL, TII->get(A2_or), HiR)
975       .addReg(Op1.getReg(), RS1, HiSR)
976       .addReg(Op2.getReg(), RS2, LoSR);
977   } else if (S < 64) {
978     // DR  = or (R1, asl(R2, #s))
979     //
980     // LoR = R1:lo
981     // HiR = or (R1:hi, asl(R2:lo, #s-32))
982     S -= 32;
983     BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
984       .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
985     BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
986       .addReg(Op1.getReg(), RS1, HiSR)
987       .addReg(Op2.getReg(), RS2, LoSR)
988       .addImm(S);
989   }
990 }
991 
splitInstr(MachineInstr * MI,const UUPairMap & PairMap)992 bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI,
993       const UUPairMap &PairMap) {
994   using namespace Hexagon;
995 
996   LLVM_DEBUG(dbgs() << "Splitting: " << *MI);
997   bool Split = false;
998   unsigned Opc = MI->getOpcode();
999 
1000   switch (Opc) {
1001     case TargetOpcode::PHI:
1002     case TargetOpcode::COPY: {
1003       Register DstR = MI->getOperand(0).getReg();
1004       if (MRI->getRegClass(DstR) == DoubleRC) {
1005         createHalfInstr(Opc, MI, PairMap, isub_lo);
1006         createHalfInstr(Opc, MI, PairMap, isub_hi);
1007         Split = true;
1008       }
1009       break;
1010     }
1011     case A2_andp:
1012       createHalfInstr(A2_and, MI, PairMap, isub_lo);
1013       createHalfInstr(A2_and, MI, PairMap, isub_hi);
1014       Split = true;
1015       break;
1016     case A2_orp:
1017       createHalfInstr(A2_or, MI, PairMap, isub_lo);
1018       createHalfInstr(A2_or, MI, PairMap, isub_hi);
1019       Split = true;
1020       break;
1021     case A2_xorp:
1022       createHalfInstr(A2_xor, MI, PairMap, isub_lo);
1023       createHalfInstr(A2_xor, MI, PairMap, isub_hi);
1024       Split = true;
1025       break;
1026 
1027     case L2_loadrd_io:
1028     case L2_loadrd_pi:
1029     case S2_storerd_io:
1030     case S2_storerd_pi:
1031       splitMemRef(MI, PairMap);
1032       Split = true;
1033       break;
1034 
1035     case A2_tfrpi:
1036     case CONST64:
1037       splitImmediate(MI, PairMap);
1038       Split = true;
1039       break;
1040 
1041     case A2_combineii:
1042     case A4_combineir:
1043     case A4_combineii:
1044     case A4_combineri:
1045     case A2_combinew:
1046       splitCombine(MI, PairMap);
1047       Split = true;
1048       break;
1049 
1050     case A2_sxtw:
1051       splitExt(MI, PairMap);
1052       Split = true;
1053       break;
1054 
1055     case S2_asl_i_p:
1056     case S2_asr_i_p:
1057     case S2_lsr_i_p:
1058       splitShift(MI, PairMap);
1059       Split = true;
1060       break;
1061 
1062     case S2_asl_i_p_or:
1063       splitAslOr(MI, PairMap);
1064       Split = true;
1065       break;
1066 
1067     default:
1068       llvm_unreachable("Instruction not splitable");
1069       return false;
1070   }
1071 
1072   return Split;
1073 }
1074 
replaceSubregUses(MachineInstr * MI,const UUPairMap & PairMap)1075 void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI,
1076       const UUPairMap &PairMap) {
1077   for (auto &Op : MI->operands()) {
1078     if (!Op.isReg() || !Op.isUse() || !Op.getSubReg())
1079       continue;
1080     Register R = Op.getReg();
1081     UUPairMap::const_iterator F = PairMap.find(R);
1082     if (F == PairMap.end())
1083       continue;
1084     const UUPair &P = F->second;
1085     switch (Op.getSubReg()) {
1086       case Hexagon::isub_lo:
1087         Op.setReg(P.first);
1088         break;
1089       case Hexagon::isub_hi:
1090         Op.setReg(P.second);
1091         break;
1092     }
1093     Op.setSubReg(0);
1094   }
1095 }
1096 
collapseRegPairs(MachineInstr * MI,const UUPairMap & PairMap)1097 void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI,
1098       const UUPairMap &PairMap) {
1099   MachineBasicBlock &B = *MI->getParent();
1100   DebugLoc DL = MI->getDebugLoc();
1101 
1102   for (auto &Op : MI->operands()) {
1103     if (!Op.isReg() || !Op.isUse())
1104       continue;
1105     Register R = Op.getReg();
1106     if (!R.isVirtual())
1107       continue;
1108     if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg())
1109       continue;
1110     UUPairMap::const_iterator F = PairMap.find(R);
1111     if (F == PairMap.end())
1112       continue;
1113     const UUPair &Pr = F->second;
1114     Register NewDR = MRI->createVirtualRegister(DoubleRC);
1115     BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR)
1116       .addReg(Pr.first)
1117       .addImm(Hexagon::isub_lo)
1118       .addReg(Pr.second)
1119       .addImm(Hexagon::isub_hi);
1120     Op.setReg(NewDR);
1121   }
1122 }
1123 
splitPartition(const USet & Part)1124 bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) {
1125   using MISet = std::set<MachineInstr *>;
1126 
1127   const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
1128   bool Changed = false;
1129 
1130   LLVM_DEBUG(dbgs() << "Splitting partition: ";
1131              dump_partition(dbgs(), Part, *TRI); dbgs() << '\n');
1132 
1133   UUPairMap PairMap;
1134 
1135   MISet SplitIns;
1136   for (unsigned DR : Part) {
1137     MachineInstr *DefI = MRI->getVRegDef(DR);
1138     SplitIns.insert(DefI);
1139 
1140     // Collect all instructions, including fixed ones.  We won't split them,
1141     // but we need to visit them again to insert the REG_SEQUENCE instructions.
1142     for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1143          U != W; ++U)
1144       SplitIns.insert(U->getParent());
1145 
1146     Register LoR = MRI->createVirtualRegister(IntRC);
1147     Register HiR = MRI->createVirtualRegister(IntRC);
1148     LLVM_DEBUG(dbgs() << "Created mapping: " << printReg(DR, TRI) << " -> "
1149                       << printReg(HiR, TRI) << ':' << printReg(LoR, TRI)
1150                       << '\n');
1151     PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR)));
1152   }
1153 
1154   MISet Erase;
1155   for (auto MI : SplitIns) {
1156     if (isFixedInstr(MI)) {
1157       collapseRegPairs(MI, PairMap);
1158     } else {
1159       bool Done = splitInstr(MI, PairMap);
1160       if (Done)
1161         Erase.insert(MI);
1162       Changed |= Done;
1163     }
1164   }
1165 
1166   for (unsigned DR : Part) {
1167     // Before erasing "double" instructions, revisit all uses of the double
1168     // registers in this partition, and replace all uses of them with subre-
1169     // gisters, with the corresponding single registers.
1170     MISet Uses;
1171     for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1172          U != W; ++U)
1173       Uses.insert(U->getParent());
1174     for (auto M : Uses)
1175       replaceSubregUses(M, PairMap);
1176   }
1177 
1178   for (auto MI : Erase) {
1179     MachineBasicBlock *B = MI->getParent();
1180     B->erase(MI);
1181   }
1182 
1183   return Changed;
1184 }
1185 
runOnMachineFunction(MachineFunction & MF)1186 bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) {
1187   if (skipFunction(MF.getFunction()))
1188     return false;
1189 
1190   LLVM_DEBUG(dbgs() << "Splitting double registers in function: "
1191                     << MF.getName() << '\n');
1192 
1193   auto &ST = MF.getSubtarget<HexagonSubtarget>();
1194   TRI = ST.getRegisterInfo();
1195   TII = ST.getInstrInfo();
1196   MRI = &MF.getRegInfo();
1197   MLI = &getAnalysis<MachineLoopInfo>();
1198 
1199   UUSetMap P2Rs;
1200   LoopRegMap IRM;
1201 
1202   collectIndRegs(IRM);
1203   partitionRegisters(P2Rs);
1204 
1205   LLVM_DEBUG({
1206     dbgs() << "Register partitioning: (partition #0 is fixed)\n";
1207     for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1208       dbgs() << '#' << I->first << " -> ";
1209       dump_partition(dbgs(), I->second, *TRI);
1210       dbgs() << '\n';
1211     }
1212   });
1213 
1214   bool Changed = false;
1215   int Limit = MaxHSDR;
1216 
1217   for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1218     if (I->first == 0)
1219       continue;
1220     if (Limit >= 0 && Counter >= Limit)
1221       break;
1222     USet &Part = I->second;
1223     LLVM_DEBUG(dbgs() << "Calculating profit for partition #" << I->first
1224                       << '\n');
1225     if (!isProfitable(Part, IRM))
1226       continue;
1227     Counter++;
1228     Changed |= splitPartition(Part);
1229   }
1230 
1231   return Changed;
1232 }
1233 
createHexagonSplitDoubleRegs()1234 FunctionPass *llvm::createHexagonSplitDoubleRegs() {
1235   return new HexagonSplitDoubleRegs();
1236 }
1237