1//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8 9//===----------------------------------------------------------------------===// 10// Class definitions 11//===----------------------------------------------------------------------===// 12 13class ImmediateAsmOperand<string name> 14 : AsmOperandClass { 15 let Name = name; 16 let RenderMethod = "addImmOperands"; 17} 18class ImmediateTLSAsmOperand<string name> 19 : AsmOperandClass { 20 let Name = name; 21 let RenderMethod = "addImmTLSOperands"; 22} 23 24class ImmediateOp<ValueType vt, string asmop> : Operand<vt> { 25 let PrintMethod = "print"#asmop#"Operand"; 26 let DecoderMethod = "decode"#asmop#"Operand"; 27 let ParserMatchClass = !cast<AsmOperandClass>(asmop); 28 let OperandType = "OPERAND_IMMEDIATE"; 29} 30 31class ImmOpWithPattern<ValueType vt, string asmop, code pred, SDNodeXForm xform, 32 SDNode ImmNode = imm> : 33 ImmediateOp<vt, asmop>, PatLeaf<(vt ImmNode), pred, xform>; 34 35// class ImmediatePatLeaf<ValueType vt, code pred, 36// SDNodeXForm xform, SDNode ImmNode> 37// : PatLeaf<(vt ImmNode), pred, xform>; 38 39 40// Constructs both a DAG pattern and instruction operand for an immediate 41// of type VT. PRED returns true if a node is acceptable and XFORM returns 42// the operand value associated with the node. ASMOP is the name of the 43// associated asm operand, and also forms the basis of the asm print method. 44multiclass Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop> { 45 // def "" : ImmediateOp<vt, asmop>, 46 // PatLeaf<(vt imm), pred, xform>; 47 def "" : ImmOpWithPattern<vt, asmop, pred, xform>; 48 49// def _timm : PatLeaf<(vt timm), pred, xform>; 50 def _timm : ImmOpWithPattern<vt, asmop, pred, xform, timm>; 51} 52 53// Constructs an asm operand for a PC-relative address. SIZE says how 54// many bits there are. 55class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"#size> { 56 let PredicateMethod = "isImm"; 57 let ParserMethod = "parsePCRel"#size; 58} 59class PCRelTLSAsmOperand<string size> 60 : ImmediateTLSAsmOperand<"PCRelTLS"#size> { 61 let PredicateMethod = "isImmTLS"; 62 let ParserMethod = "parsePCRelTLS"#size; 63} 64 65// Constructs an operand for a PC-relative address with address type VT. 66// ASMOP is the associated asm operand. 67let OperandType = "OPERAND_PCREL" in { 68 class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> { 69 let PrintMethod = "printPCRelOperand"; 70 let ParserMatchClass = asmop; 71 } 72 class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> { 73 let PrintMethod = "printPCRelTLSOperand"; 74 let ParserMatchClass = asmop; 75 } 76} 77 78// Constructs both a DAG pattern and instruction operand for a PC-relative 79// address with address size VT. SELF is the name of the operand and 80// ASMOP is the associated asm operand. 81class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop> 82 : ComplexPattern<vt, 1, "selectPCRelAddress", 83 [z_pcrel_wrapper, z_pcrel_offset]>, 84 PCRelOperand<vt, asmop> { 85 let MIOperandInfo = (ops !cast<Operand>(self)); 86} 87 88// Constructs an AsmOperandClass for addressing mode FORMAT, treating the 89// registers as having BITSIZE bits and displacements as having DISPSIZE bits. 90// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it 91// is "". 92class AddressAsmOperand<string format, string bitsize, string dispsize, 93 string length = ""> 94 : AsmOperandClass { 95 let Name = format#bitsize#"Disp"#dispsize#length; 96 let ParserMethod = "parse"#format#bitsize; 97 let RenderMethod = "add"#format#"Operands"; 98} 99 100// Constructs an instruction operand for an addressing mode. FORMAT, 101// BITSIZE, DISPSIZE and LENGTH are the parameters to an associated 102// AddressAsmOperand. OPERANDS is a list of individual operands 103// (base register, displacement, etc.). 104class AddressOperand<string bitsize, string dispsize, string length, 105 string format, dag operands> 106 : Operand<!cast<ValueType>("i"#bitsize)> { 107 let PrintMethod = "print"#format#"Operand"; 108 let EncoderMethod = "get"#format#dispsize#length#"Encoding"; 109 let DecoderMethod = 110 "decode"#format#bitsize#"Disp"#dispsize#length#"Operand"; 111 let OperandType = "OPERAND_MEMORY"; 112 let MIOperandInfo = operands; 113 let ParserMatchClass = 114 !cast<AddressAsmOperand>(format#bitsize#"Disp"#dispsize#length); 115} 116 117// Constructs both a DAG pattern and instruction operand for an addressing mode. 118// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated 119// AddressAsmOperand. OPERANDS is a list of NUMOPS individual operands 120// (base register, displacement, etc.). SELTYPE is the type of the memory 121// operand for selection purposes; sometimes we want different selection 122// choices for the same underlying addressing mode. SUFFIX is similarly 123// a suffix appended to the displacement for selection purposes; 124// e.g. we want to reject small 20-bit displacements if a 12-bit form 125// also exists, but we want to accept them otherwise. 126class AddressingMode<string seltype, string bitsize, string dispsize, 127 string suffix, string length, int numops, string format, 128 dag operands> 129 : ComplexPattern<!cast<ValueType>("i"#bitsize), numops, 130 "select"#seltype#dispsize#suffix#length, 131 [add, sub, or, frameindex, z_adjdynalloc]>, 132 AddressOperand<bitsize, dispsize, length, format, operands>; 133 134// An addressing mode with a base and displacement but no index. 135class BDMode<string type, string bitsize, string dispsize, string suffix> 136 : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr", 137 (ops !cast<RegisterOperand>("ADDR"#bitsize), 138 !cast<Operand>("disp"#dispsize#"imm"#bitsize))>; 139 140// An addressing mode with a base, displacement and index. 141class BDXMode<string type, string bitsize, string dispsize, string suffix> 142 : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr", 143 (ops !cast<RegisterOperand>("ADDR"#bitsize), 144 !cast<Operand>("disp"#dispsize#"imm"#bitsize), 145 !cast<RegisterOperand>("ADDR"#bitsize))>; 146 147// A BDMode paired with an immediate length operand of LENSIZE bits. 148class BDLMode<string type, string bitsize, string dispsize, string suffix, 149 string lensize> 150 : AddressingMode<type, bitsize, dispsize, suffix, "Len"#lensize, 3, 151 "BDLAddr", 152 (ops !cast<RegisterOperand>("ADDR"#bitsize), 153 !cast<Operand>("disp"#dispsize#"imm"#bitsize), 154 !cast<Operand>("imm"#bitsize))>; 155 156// A BDMode paired with a register length operand. 157class BDRMode<string type, string bitsize, string dispsize, string suffix> 158 : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDRAddr", 159 (ops !cast<RegisterOperand>("ADDR"#bitsize), 160 !cast<Operand>("disp"#dispsize#"imm"#bitsize), 161 !cast<RegisterOperand>("GR"#bitsize))>; 162 163// An addressing mode with a base, displacement and a vector index. 164class BDVMode<string bitsize, string dispsize> 165 : AddressOperand<bitsize, dispsize, "", "BDVAddr", 166 (ops !cast<RegisterOperand>("ADDR"#bitsize), 167 !cast<Operand>("disp"#dispsize#"imm"#bitsize), 168 !cast<RegisterOperand>("VR128"))>; 169 170//===----------------------------------------------------------------------===// 171// Extracting immediate operands from nodes 172// These all create MVT::i64 nodes to ensure the value is not sign-extended 173// when converted from an SDNode to a MachineOperand later on. 174//===----------------------------------------------------------------------===// 175 176// Bits 0-15 (counting from the lsb). 177def LL16 : SDNodeXForm<imm, [{ 178 uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL; 179 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); 180}]>; 181 182// Bits 16-31 (counting from the lsb). 183def LH16 : SDNodeXForm<imm, [{ 184 uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16; 185 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); 186}]>; 187 188// Bits 32-47 (counting from the lsb). 189def HL16 : SDNodeXForm<imm, [{ 190 uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32; 191 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); 192}]>; 193 194// Bits 48-63 (counting from the lsb). 195def HH16 : SDNodeXForm<imm, [{ 196 uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48; 197 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); 198}]>; 199 200// Low 32 bits. 201def LF32 : SDNodeXForm<imm, [{ 202 uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL; 203 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); 204}]>; 205 206// High 32 bits. 207def HF32 : SDNodeXForm<imm, [{ 208 uint64_t Value = N->getZExtValue() >> 32; 209 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); 210}]>; 211 212// Negated variants. 213def NEGLH16 : SDNodeXForm<imm, [{ 214 uint64_t Value = (-N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16; 215 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); 216}]>; 217 218def NEGLF32 : SDNodeXForm<imm, [{ 219 uint64_t Value = -N->getZExtValue() & 0x00000000FFFFFFFFULL; 220 return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64); 221}]>; 222 223// Truncate an immediate to a 8-bit signed quantity. 224def SIMM8 : SDNodeXForm<imm, [{ 225 return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N), 226 MVT::i64); 227}]>; 228 229// Truncate an immediate to a 8-bit unsigned quantity. 230def UIMM8 : SDNodeXForm<imm, [{ 231 return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N), 232 MVT::i64); 233}]>; 234 235// Truncate an immediate to a 8-bit unsigned quantity and mask off low bit. 236def UIMM8EVEN : SDNodeXForm<imm, [{ 237 return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N), 238 MVT::i64); 239}]>; 240 241// Truncate an immediate to a 12-bit unsigned quantity. 242def UIMM12 : SDNodeXForm<imm, [{ 243 return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N), 244 MVT::i64); 245}]>; 246 247// Truncate an immediate to a 16-bit signed quantity. 248def SIMM16 : SDNodeXForm<imm, [{ 249 return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N), 250 MVT::i64); 251}]>; 252 253// Negate and then truncate an immediate to a 16-bit signed quantity. 254def NEGSIMM16 : SDNodeXForm<imm, [{ 255 return CurDAG->getTargetConstant(int16_t(-N->getZExtValue()), SDLoc(N), 256 MVT::i64); 257}]>; 258 259// Truncate an immediate to a 16-bit unsigned quantity. 260def UIMM16 : SDNodeXForm<imm, [{ 261 return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N), 262 MVT::i64); 263}]>; 264 265// Truncate an immediate to a 32-bit signed quantity. 266def SIMM32 : SDNodeXForm<imm, [{ 267 return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N), 268 MVT::i64); 269}]>; 270 271// Negate and then truncate an immediate to a 32-bit unsigned quantity. 272def NEGSIMM32 : SDNodeXForm<imm, [{ 273 return CurDAG->getTargetConstant(int32_t(-N->getZExtValue()), SDLoc(N), 274 MVT::i64); 275}]>; 276 277// Truncate an immediate to a 32-bit unsigned quantity. 278def UIMM32 : SDNodeXForm<imm, [{ 279 return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N), 280 MVT::i64); 281}]>; 282 283// Negate and then truncate an immediate to a 32-bit unsigned quantity. 284def NEGUIMM32 : SDNodeXForm<imm, [{ 285 return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N), 286 MVT::i64); 287}]>; 288 289// Truncate an immediate to a 48-bit unsigned quantity. 290def UIMM48 : SDNodeXForm<imm, [{ 291 return CurDAG->getTargetConstant(uint64_t(N->getZExtValue()) & 0xffffffffffff, 292 SDLoc(N), MVT::i64); 293}]>; 294 295//===----------------------------------------------------------------------===// 296// Immediate asm operands. 297//===----------------------------------------------------------------------===// 298 299def U1Imm : ImmediateAsmOperand<"U1Imm">; 300def U2Imm : ImmediateAsmOperand<"U2Imm">; 301def U3Imm : ImmediateAsmOperand<"U3Imm">; 302def U4Imm : ImmediateAsmOperand<"U4Imm">; 303def U6Imm : ImmediateAsmOperand<"U6Imm">; 304def S8Imm : ImmediateAsmOperand<"S8Imm">; 305def U8Imm : ImmediateAsmOperand<"U8Imm">; 306def U12Imm : ImmediateAsmOperand<"U12Imm">; 307def S16Imm : ImmediateAsmOperand<"S16Imm">; 308def U16Imm : ImmediateAsmOperand<"U16Imm">; 309def S32Imm : ImmediateAsmOperand<"S32Imm">; 310def U32Imm : ImmediateAsmOperand<"U32Imm">; 311def U48Imm : ImmediateAsmOperand<"U48Imm">; 312 313//===----------------------------------------------------------------------===// 314// i32 immediates 315//===----------------------------------------------------------------------===// 316 317// Immediates for the lower and upper 16 bits of an i32, with the other 318// bits of the i32 being zero. 319defm imm32ll16 : Immediate<i32, [{ 320 return SystemZ::isImmLL(N->getZExtValue()); 321}], LL16, "U16Imm">; 322 323defm imm32lh16 : Immediate<i32, [{ 324 return SystemZ::isImmLH(N->getZExtValue()); 325}], LH16, "U16Imm">; 326 327// Immediates for the lower and upper 16 bits of an i32, with the other 328// bits of the i32 being one. 329defm imm32ll16c : Immediate<i32, [{ 330 return SystemZ::isImmLL(uint32_t(~N->getZExtValue())); 331}], LL16, "U16Imm">; 332 333defm imm32lh16c : Immediate<i32, [{ 334 return SystemZ::isImmLH(uint32_t(~N->getZExtValue())); 335}], LH16, "U16Imm">; 336 337// Short immediates 338defm imm32zx1 : Immediate<i32, [{ 339 return isUInt<1>(N->getZExtValue()); 340}], NOOP_SDNodeXForm, "U1Imm">; 341 342defm imm32zx2 : Immediate<i32, [{ 343 return isUInt<2>(N->getZExtValue()); 344}], NOOP_SDNodeXForm, "U2Imm">; 345 346defm imm32zx3 : Immediate<i32, [{ 347 return isUInt<3>(N->getZExtValue()); 348}], NOOP_SDNodeXForm, "U3Imm">; 349 350defm imm32zx4 : Immediate<i32, [{ 351 return isUInt<4>(N->getZExtValue()); 352}], NOOP_SDNodeXForm, "U4Imm">; 353 354// Note: this enforces an even value during code generation only. 355// When used from the assembler, any 4-bit value is allowed. 356defm imm32zx4even : Immediate<i32, [{ 357 return isUInt<4>(N->getZExtValue()); 358}], UIMM8EVEN, "U4Imm">; 359 360defm imm32zx6 : Immediate<i32, [{ 361 return isUInt<6>(N->getZExtValue()); 362}], NOOP_SDNodeXForm, "U6Imm">; 363 364defm imm32sx8 : Immediate<i32, [{ 365 return isInt<8>(N->getSExtValue()); 366}], SIMM8, "S8Imm">; 367 368defm imm32zx8 : Immediate<i32, [{ 369 return isUInt<8>(N->getZExtValue()); 370}], UIMM8, "U8Imm">; 371 372defm imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">; 373 374defm imm32zx12 : Immediate<i32, [{ 375 return isUInt<12>(N->getZExtValue()); 376}], UIMM12, "U12Imm">; 377 378defm imm32sx16 : Immediate<i32, [{ 379 return isInt<16>(N->getSExtValue()); 380}], SIMM16, "S16Imm">; 381 382defm imm32sx16n : Immediate<i32, [{ 383 return isInt<16>(-N->getSExtValue()); 384}], NEGSIMM16, "S16Imm">; 385 386defm imm32zx16 : Immediate<i32, [{ 387 return isUInt<16>(N->getZExtValue()); 388}], UIMM16, "U16Imm">; 389 390defm imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">; 391defm imm32zx16trunc : Immediate<i32, [{}], UIMM16, "U16Imm">; 392 393// Full 32-bit immediates. we need both signed and unsigned versions 394// because the assembler is picky. E.g. AFI requires signed operands 395// while NILF requires unsigned ones. 396defm simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">; 397defm uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">; 398 399defm simm32n : Immediate<i32, [{ 400 return isInt<32>(-N->getSExtValue()); 401}], NEGSIMM32, "S32Imm">; 402 403def imm32 : ImmLeaf<i32, [{}]>; 404 405//===----------------------------------------------------------------------===// 406// 64-bit immediates 407//===----------------------------------------------------------------------===// 408 409// Immediates for 16-bit chunks of an i64, with the other bits of the 410// i32 being zero. 411defm imm64ll16 : Immediate<i64, [{ 412 return SystemZ::isImmLL(N->getZExtValue()); 413}], LL16, "U16Imm">; 414 415defm imm64lh16 : Immediate<i64, [{ 416 return SystemZ::isImmLH(N->getZExtValue()); 417}], LH16, "U16Imm">; 418 419defm imm64hl16 : Immediate<i64, [{ 420 return SystemZ::isImmHL(N->getZExtValue()); 421}], HL16, "U16Imm">; 422 423defm imm64hh16 : Immediate<i64, [{ 424 return SystemZ::isImmHH(N->getZExtValue()); 425}], HH16, "U16Imm">; 426 427// Immediates for 16-bit chunks of an i64, with the other bits of the 428// i32 being one. 429defm imm64ll16c : Immediate<i64, [{ 430 return SystemZ::isImmLL(uint64_t(~N->getZExtValue())); 431}], LL16, "U16Imm">; 432 433defm imm64lh16c : Immediate<i64, [{ 434 return SystemZ::isImmLH(uint64_t(~N->getZExtValue())); 435}], LH16, "U16Imm">; 436 437defm imm64hl16c : Immediate<i64, [{ 438 return SystemZ::isImmHL(uint64_t(~N->getZExtValue())); 439}], HL16, "U16Imm">; 440 441defm imm64hh16c : Immediate<i64, [{ 442 return SystemZ::isImmHH(uint64_t(~N->getZExtValue())); 443}], HH16, "U16Imm">; 444 445// Immediates for the lower and upper 32 bits of an i64, with the other 446// bits of the i32 being zero. 447defm imm64lf32 : Immediate<i64, [{ 448 return SystemZ::isImmLF(N->getZExtValue()); 449}], LF32, "U32Imm">; 450 451defm imm64hf32 : Immediate<i64, [{ 452 return SystemZ::isImmHF(N->getZExtValue()); 453}], HF32, "U32Imm">; 454 455// Immediates for the lower and upper 32 bits of an i64, with the other 456// bits of the i32 being one. 457defm imm64lf32c : Immediate<i64, [{ 458 return SystemZ::isImmLF(uint64_t(~N->getZExtValue())); 459}], LF32, "U32Imm">; 460 461defm imm64hf32c : Immediate<i64, [{ 462 return SystemZ::isImmHF(uint64_t(~N->getZExtValue())); 463}], HF32, "U32Imm">; 464 465// Negated immediates that fit LF32 or LH16. 466defm imm64lh16n : Immediate<i64, [{ 467 return SystemZ::isImmLH(uint64_t(-N->getZExtValue())); 468}], NEGLH16, "U16Imm">; 469 470defm imm64lf32n : Immediate<i64, [{ 471 return SystemZ::isImmLF(uint64_t(-N->getZExtValue())); 472}], NEGLF32, "U32Imm">; 473 474// Short immediates. 475defm imm64sx8 : Immediate<i64, [{ 476 return isInt<8>(N->getSExtValue()); 477}], SIMM8, "S8Imm">; 478 479defm imm64zx8 : Immediate<i64, [{ 480 return isUInt<8>(N->getSExtValue()); 481}], UIMM8, "U8Imm">; 482 483defm imm64sx16 : Immediate<i64, [{ 484 return isInt<16>(N->getSExtValue()); 485}], SIMM16, "S16Imm">; 486 487defm imm64sx16n : Immediate<i64, [{ 488 return isInt<16>(-N->getSExtValue()); 489}], NEGSIMM16, "S16Imm">; 490 491defm imm64zx16 : Immediate<i64, [{ 492 return isUInt<16>(N->getZExtValue()); 493}], UIMM16, "U16Imm">; 494 495defm imm64sx32 : Immediate<i64, [{ 496 return isInt<32>(N->getSExtValue()); 497}], SIMM32, "S32Imm">; 498 499defm imm64sx32n : Immediate<i64, [{ 500 return isInt<32>(-N->getSExtValue()); 501}], NEGSIMM32, "S32Imm">; 502 503defm imm64zx32 : Immediate<i64, [{ 504 return isUInt<32>(N->getZExtValue()); 505}], UIMM32, "U32Imm">; 506 507defm imm64zx32n : Immediate<i64, [{ 508 return isUInt<32>(-N->getSExtValue()); 509}], NEGUIMM32, "U32Imm">; 510 511defm imm64zx48 : Immediate<i64, [{ 512 return isUInt<64>(N->getZExtValue()); 513}], UIMM48, "U48Imm">; 514 515let OperandType = "OPERAND_IMMEDIATE" in 516 def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>; 517 518//===----------------------------------------------------------------------===// 519// Floating-point immediates 520//===----------------------------------------------------------------------===// 521 522// Floating-point zero. 523def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; 524 525// Floating point negative zero. 526def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>; 527 528//===----------------------------------------------------------------------===// 529// Symbolic address operands 530//===----------------------------------------------------------------------===// 531 532// PC-relative asm operands. 533def PCRel12 : PCRelAsmOperand<"12">; 534def PCRel16 : PCRelAsmOperand<"16">; 535def PCRel24 : PCRelAsmOperand<"24">; 536def PCRel32 : PCRelAsmOperand<"32">; 537def PCRelTLS16 : PCRelTLSAsmOperand<"16">; 538def PCRelTLS32 : PCRelTLSAsmOperand<"32">; 539 540// PC-relative offsets of a basic block. The offset is sign-extended 541// and multiplied by 2. 542def brtarget16 : PCRelOperand<OtherVT, PCRel16> { 543 let EncoderMethod = "getPC16DBLEncoding"; 544 let DecoderMethod = "decodePC16DBLBranchOperand"; 545} 546def brtarget32 : PCRelOperand<OtherVT, PCRel32> { 547 let EncoderMethod = "getPC32DBLEncoding"; 548 let DecoderMethod = "decodePC32DBLBranchOperand"; 549} 550 551// Variants of brtarget for use with branch prediction preload. 552def brtarget12bpp : PCRelOperand<OtherVT, PCRel12> { 553 let EncoderMethod = "getPC12DBLBPPEncoding"; 554 let DecoderMethod = "decodePC12DBLBranchOperand"; 555} 556def brtarget16bpp : PCRelOperand<OtherVT, PCRel16> { 557 let EncoderMethod = "getPC16DBLBPPEncoding"; 558 let DecoderMethod = "decodePC16DBLBranchOperand"; 559} 560def brtarget24bpp : PCRelOperand<OtherVT, PCRel24> { 561 let EncoderMethod = "getPC24DBLBPPEncoding"; 562 let DecoderMethod = "decodePC24DBLBranchOperand"; 563} 564 565// Variants of brtarget16/32 with an optional additional TLS symbol. 566// These are used to annotate calls to __tls_get_offset. 567def tlssym : Operand<i64> { } 568def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> { 569 let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym); 570 let EncoderMethod = "getPC16DBLTLSEncoding"; 571 let DecoderMethod = "decodePC16DBLBranchOperand"; 572} 573def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> { 574 let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym); 575 let EncoderMethod = "getPC32DBLTLSEncoding"; 576 let DecoderMethod = "decodePC32DBLBranchOperand"; 577} 578 579// A PC-relative offset of a global value. The offset is sign-extended 580// and multiplied by 2. 581def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> { 582 let EncoderMethod = "getPC32DBLEncoding"; 583 let DecoderMethod = "decodePC32DBLOperand"; 584} 585 586//===----------------------------------------------------------------------===// 587// Addressing modes 588//===----------------------------------------------------------------------===// 589 590// 12-bit displacement operands. 591def disp12imm32 : Operand<i32>; 592def disp12imm64 : Operand<i64>; 593 594// 20-bit displacement operands. 595def disp20imm32 : Operand<i32>; 596def disp20imm64 : Operand<i64>; 597 598def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">; 599def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">; 600def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">; 601def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">; 602def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">; 603def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">; 604def BDLAddr64Disp12Len4 : AddressAsmOperand<"BDLAddr", "64", "12", "Len4">; 605def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr", "64", "12", "Len8">; 606def BDRAddr64Disp12 : AddressAsmOperand<"BDRAddr", "64", "12">; 607def BDVAddr64Disp12 : AddressAsmOperand<"BDVAddr", "64", "12">; 608 609// DAG patterns and operands for addressing modes. Each mode has 610// the form <type><range><group>[<len>] where: 611// 612// <type> is one of: 613// shift : base + displacement (32-bit) 614// bdaddr : base + displacement 615// mviaddr : like bdaddr, but reject cases with a natural index 616// bdxaddr : base + displacement + index 617// laaddr : like bdxaddr, but used for Load Address operations 618// dynalloc : base + displacement + index + ADJDYNALLOC 619// bdladdr : base + displacement with a length field 620// bdvaddr : base + displacement with a vector index 621// 622// <range> is one of: 623// 12 : the displacement is an unsigned 12-bit value 624// 20 : the displacement is a signed 20-bit value 625// 626// <group> is one of: 627// pair : used when there is an equivalent instruction with the opposite 628// range value (12 or 20) 629// only : used when there is no equivalent instruction with the opposite 630// range value 631// 632// <len> is one of: 633// 634// <empty> : there is no length field 635// len8 : the length field is 8 bits, with a range of [1, 0x100]. 636def shift12only : BDMode <"BDAddr", "32", "12", "Only">; 637def shift20only : BDMode <"BDAddr", "32", "20", "Only">; 638def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">; 639def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">; 640def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">; 641def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">; 642def mviaddr12pair : BDMode <"MVIAddr", "64", "12", "Pair">; 643def mviaddr20pair : BDMode <"MVIAddr", "64", "20", "Pair">; 644def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">; 645def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">; 646def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">; 647def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">; 648def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">; 649def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">; 650def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">; 651def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">; 652def bdladdr12onlylen4 : BDLMode<"BDLAddr", "64", "12", "Only", "4">; 653def bdladdr12onlylen8 : BDLMode<"BDLAddr", "64", "12", "Only", "8">; 654def bdraddr12only : BDRMode<"BDRAddr", "64", "12", "Only">; 655def bdvaddr12only : BDVMode< "64", "12">; 656 657//===----------------------------------------------------------------------===// 658// Miscellaneous 659//===----------------------------------------------------------------------===// 660 661// A 4-bit condition-code mask. 662def cond4 : PatLeaf<(i32 timm), [{ return (N->getZExtValue() < 16); }]>, 663 Operand<i32> { 664 let PrintMethod = "printCond4Operand"; 665 let OperandType = "OPERAND_IMMEDIATE"; 666} 667