1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass deletes dead arguments from internal functions. Dead argument
10 // elimination removes arguments which are directly dead, as well as arguments
11 // only passed into function calls as dead arguments of other functions. This
12 // pass also deletes dead return values in a similar way.
13 //
14 // This pass is often useful as a cleanup pass to run after aggressive
15 // interprocedural passes, which add possibly-dead arguments or return values.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/NoFolder.h"
36 #include "llvm/IR/PassManager.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Use.h"
39 #include "llvm/IR/User.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/IPO.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include <cassert>
49 #include <cstdint>
50 #include <utility>
51 #include <vector>
52
53 using namespace llvm;
54
55 #define DEBUG_TYPE "deadargelim"
56
57 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
58 STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
59 STATISTIC(NumArgumentsReplacedWithUndef,
60 "Number of unread args replaced with undef");
61
62 namespace {
63
64 /// DAE - The dead argument elimination pass.
65 class DAE : public ModulePass {
66 protected:
67 // DAH uses this to specify a different ID.
DAE(char & ID)68 explicit DAE(char &ID) : ModulePass(ID) {}
69
70 public:
71 static char ID; // Pass identification, replacement for typeid
72
DAE()73 DAE() : ModulePass(ID) {
74 initializeDAEPass(*PassRegistry::getPassRegistry());
75 }
76
runOnModule(Module & M)77 bool runOnModule(Module &M) override {
78 if (skipModule(M))
79 return false;
80 DeadArgumentEliminationPass DAEP(ShouldHackArguments());
81 ModuleAnalysisManager DummyMAM;
82 PreservedAnalyses PA = DAEP.run(M, DummyMAM);
83 return !PA.areAllPreserved();
84 }
85
ShouldHackArguments() const86 virtual bool ShouldHackArguments() const { return false; }
87 };
88
89 } // end anonymous namespace
90
91 char DAE::ID = 0;
92
93 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
94
95 namespace {
96
97 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
98 /// deletes arguments to functions which are external. This is only for use
99 /// by bugpoint.
100 struct DAH : public DAE {
101 static char ID;
102
DAH__anon2a25e5670211::DAH103 DAH() : DAE(ID) {}
104
ShouldHackArguments__anon2a25e5670211::DAH105 bool ShouldHackArguments() const override { return true; }
106 };
107
108 } // end anonymous namespace
109
110 char DAH::ID = 0;
111
112 INITIALIZE_PASS(DAH, "deadarghaX0r",
113 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
114 false, false)
115
116 /// createDeadArgEliminationPass - This pass removes arguments from functions
117 /// which are not used by the body of the function.
createDeadArgEliminationPass()118 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
119
createDeadArgHackingPass()120 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
121
122 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
123 /// llvm.vastart is never called, the varargs list is dead for the function.
DeleteDeadVarargs(Function & Fn)124 bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) {
125 assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
126 if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
127
128 // Ensure that the function is only directly called.
129 if (Fn.hasAddressTaken())
130 return false;
131
132 // Don't touch naked functions. The assembly might be using an argument, or
133 // otherwise rely on the frame layout in a way that this analysis will not
134 // see.
135 if (Fn.hasFnAttribute(Attribute::Naked)) {
136 return false;
137 }
138
139 // Okay, we know we can transform this function if safe. Scan its body
140 // looking for calls marked musttail or calls to llvm.vastart.
141 for (BasicBlock &BB : Fn) {
142 for (Instruction &I : BB) {
143 CallInst *CI = dyn_cast<CallInst>(&I);
144 if (!CI)
145 continue;
146 if (CI->isMustTailCall())
147 return false;
148 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
149 if (II->getIntrinsicID() == Intrinsic::vastart)
150 return false;
151 }
152 }
153 }
154
155 // If we get here, there are no calls to llvm.vastart in the function body,
156 // remove the "..." and adjust all the calls.
157
158 // Start by computing a new prototype for the function, which is the same as
159 // the old function, but doesn't have isVarArg set.
160 FunctionType *FTy = Fn.getFunctionType();
161
162 std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
163 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
164 Params, false);
165 unsigned NumArgs = Params.size();
166
167 // Create the new function body and insert it into the module...
168 Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace());
169 NF->copyAttributesFrom(&Fn);
170 NF->setComdat(Fn.getComdat());
171 Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
172 NF->takeName(&Fn);
173
174 // Loop over all of the callers of the function, transforming the call sites
175 // to pass in a smaller number of arguments into the new function.
176 //
177 std::vector<Value *> Args;
178 for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
179 CallBase *CB = dyn_cast<CallBase>(*I++);
180 if (!CB)
181 continue;
182
183 // Pass all the same arguments.
184 Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs);
185
186 // Drop any attributes that were on the vararg arguments.
187 AttributeList PAL = CB->getAttributes();
188 if (!PAL.isEmpty()) {
189 SmallVector<AttributeSet, 8> ArgAttrs;
190 for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
191 ArgAttrs.push_back(PAL.getParamAttributes(ArgNo));
192 PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttributes(),
193 PAL.getRetAttributes(), ArgAttrs);
194 }
195
196 SmallVector<OperandBundleDef, 1> OpBundles;
197 CB->getOperandBundlesAsDefs(OpBundles);
198
199 CallBase *NewCB = nullptr;
200 if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
201 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
202 Args, OpBundles, "", CB);
203 } else {
204 NewCB = CallInst::Create(NF, Args, OpBundles, "", CB);
205 cast<CallInst>(NewCB)->setTailCallKind(
206 cast<CallInst>(CB)->getTailCallKind());
207 }
208 NewCB->setCallingConv(CB->getCallingConv());
209 NewCB->setAttributes(PAL);
210 NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
211
212 Args.clear();
213
214 if (!CB->use_empty())
215 CB->replaceAllUsesWith(NewCB);
216
217 NewCB->takeName(CB);
218
219 // Finally, remove the old call from the program, reducing the use-count of
220 // F.
221 CB->eraseFromParent();
222 }
223
224 // Since we have now created the new function, splice the body of the old
225 // function right into the new function, leaving the old rotting hulk of the
226 // function empty.
227 NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
228
229 // Loop over the argument list, transferring uses of the old arguments over to
230 // the new arguments, also transferring over the names as well. While we're at
231 // it, remove the dead arguments from the DeadArguments list.
232 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
233 I2 = NF->arg_begin(); I != E; ++I, ++I2) {
234 // Move the name and users over to the new version.
235 I->replaceAllUsesWith(&*I2);
236 I2->takeName(&*I);
237 }
238
239 // Clone metadatas from the old function, including debug info descriptor.
240 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
241 Fn.getAllMetadata(MDs);
242 for (auto MD : MDs)
243 NF->addMetadata(MD.first, *MD.second);
244
245 // Fix up any BlockAddresses that refer to the function.
246 Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
247 // Delete the bitcast that we just created, so that NF does not
248 // appear to be address-taken.
249 NF->removeDeadConstantUsers();
250 // Finally, nuke the old function.
251 Fn.eraseFromParent();
252 return true;
253 }
254
255 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
256 /// arguments that are unused, and changes the caller parameters to be undefined
257 /// instead.
RemoveDeadArgumentsFromCallers(Function & Fn)258 bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) {
259 // We cannot change the arguments if this TU does not define the function or
260 // if the linker may choose a function body from another TU, even if the
261 // nominal linkage indicates that other copies of the function have the same
262 // semantics. In the below example, the dead load from %p may not have been
263 // eliminated from the linker-chosen copy of f, so replacing %p with undef
264 // in callers may introduce undefined behavior.
265 //
266 // define linkonce_odr void @f(i32* %p) {
267 // %v = load i32 %p
268 // ret void
269 // }
270 if (!Fn.hasExactDefinition())
271 return false;
272
273 // Functions with local linkage should already have been handled, except the
274 // fragile (variadic) ones which we can improve here.
275 if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
276 return false;
277
278 // Don't touch naked functions. The assembly might be using an argument, or
279 // otherwise rely on the frame layout in a way that this analysis will not
280 // see.
281 if (Fn.hasFnAttribute(Attribute::Naked))
282 return false;
283
284 if (Fn.use_empty())
285 return false;
286
287 SmallVector<unsigned, 8> UnusedArgs;
288 bool Changed = false;
289
290 for (Argument &Arg : Fn.args()) {
291 if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() &&
292 !Arg.hasPassPointeeByValueCopyAttr()) {
293 if (Arg.isUsedByMetadata()) {
294 Arg.replaceAllUsesWith(UndefValue::get(Arg.getType()));
295 Changed = true;
296 }
297 UnusedArgs.push_back(Arg.getArgNo());
298 }
299 }
300
301 if (UnusedArgs.empty())
302 return false;
303
304 for (Use &U : Fn.uses()) {
305 CallBase *CB = dyn_cast<CallBase>(U.getUser());
306 if (!CB || !CB->isCallee(&U))
307 continue;
308
309 // Now go through all unused args and replace them with "undef".
310 for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
311 unsigned ArgNo = UnusedArgs[I];
312
313 Value *Arg = CB->getArgOperand(ArgNo);
314 CB->setArgOperand(ArgNo, UndefValue::get(Arg->getType()));
315 ++NumArgumentsReplacedWithUndef;
316 Changed = true;
317 }
318 }
319
320 return Changed;
321 }
322
323 /// Convenience function that returns the number of return values. It returns 0
324 /// for void functions and 1 for functions not returning a struct. It returns
325 /// the number of struct elements for functions returning a struct.
NumRetVals(const Function * F)326 static unsigned NumRetVals(const Function *F) {
327 Type *RetTy = F->getReturnType();
328 if (RetTy->isVoidTy())
329 return 0;
330 else if (StructType *STy = dyn_cast<StructType>(RetTy))
331 return STy->getNumElements();
332 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
333 return ATy->getNumElements();
334 else
335 return 1;
336 }
337
338 /// Returns the sub-type a function will return at a given Idx. Should
339 /// correspond to the result type of an ExtractValue instruction executed with
340 /// just that one Idx (i.e. only top-level structure is considered).
getRetComponentType(const Function * F,unsigned Idx)341 static Type *getRetComponentType(const Function *F, unsigned Idx) {
342 Type *RetTy = F->getReturnType();
343 assert(!RetTy->isVoidTy() && "void type has no subtype");
344
345 if (StructType *STy = dyn_cast<StructType>(RetTy))
346 return STy->getElementType(Idx);
347 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
348 return ATy->getElementType();
349 else
350 return RetTy;
351 }
352
353 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
354 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
355 /// liveness of Use.
356 DeadArgumentEliminationPass::Liveness
MarkIfNotLive(RetOrArg Use,UseVector & MaybeLiveUses)357 DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use,
358 UseVector &MaybeLiveUses) {
359 // We're live if our use or its Function is already marked as live.
360 if (IsLive(Use))
361 return Live;
362
363 // We're maybe live otherwise, but remember that we must become live if
364 // Use becomes live.
365 MaybeLiveUses.push_back(Use);
366 return MaybeLive;
367 }
368
369 /// SurveyUse - This looks at a single use of an argument or return value
370 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
371 /// if it causes the used value to become MaybeLive.
372 ///
373 /// RetValNum is the return value number to use when this use is used in a
374 /// return instruction. This is used in the recursion, you should always leave
375 /// it at 0.
376 DeadArgumentEliminationPass::Liveness
SurveyUse(const Use * U,UseVector & MaybeLiveUses,unsigned RetValNum)377 DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses,
378 unsigned RetValNum) {
379 const User *V = U->getUser();
380 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
381 // The value is returned from a function. It's only live when the
382 // function's return value is live. We use RetValNum here, for the case
383 // that U is really a use of an insertvalue instruction that uses the
384 // original Use.
385 const Function *F = RI->getParent()->getParent();
386 if (RetValNum != -1U) {
387 RetOrArg Use = CreateRet(F, RetValNum);
388 // We might be live, depending on the liveness of Use.
389 return MarkIfNotLive(Use, MaybeLiveUses);
390 } else {
391 DeadArgumentEliminationPass::Liveness Result = MaybeLive;
392 for (unsigned Ri = 0; Ri < NumRetVals(F); ++Ri) {
393 RetOrArg Use = CreateRet(F, Ri);
394 // We might be live, depending on the liveness of Use. If any
395 // sub-value is live, then the entire value is considered live. This
396 // is a conservative choice, and better tracking is possible.
397 DeadArgumentEliminationPass::Liveness SubResult =
398 MarkIfNotLive(Use, MaybeLiveUses);
399 if (Result != Live)
400 Result = SubResult;
401 }
402 return Result;
403 }
404 }
405 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
406 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
407 && IV->hasIndices())
408 // The use we are examining is inserted into an aggregate. Our liveness
409 // depends on all uses of that aggregate, but if it is used as a return
410 // value, only index at which we were inserted counts.
411 RetValNum = *IV->idx_begin();
412
413 // Note that if we are used as the aggregate operand to the insertvalue,
414 // we don't change RetValNum, but do survey all our uses.
415
416 Liveness Result = MaybeLive;
417 for (const Use &UU : IV->uses()) {
418 Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
419 if (Result == Live)
420 break;
421 }
422 return Result;
423 }
424
425 if (const auto *CB = dyn_cast<CallBase>(V)) {
426 const Function *F = CB->getCalledFunction();
427 if (F) {
428 // Used in a direct call.
429
430 // The function argument is live if it is used as a bundle operand.
431 if (CB->isBundleOperand(U))
432 return Live;
433
434 // Find the argument number. We know for sure that this use is an
435 // argument, since if it was the function argument this would be an
436 // indirect call and the we know can't be looking at a value of the
437 // label type (for the invoke instruction).
438 unsigned ArgNo = CB->getArgOperandNo(U);
439
440 if (ArgNo >= F->getFunctionType()->getNumParams())
441 // The value is passed in through a vararg! Must be live.
442 return Live;
443
444 assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) &&
445 "Argument is not where we expected it");
446
447 // Value passed to a normal call. It's only live when the corresponding
448 // argument to the called function turns out live.
449 RetOrArg Use = CreateArg(F, ArgNo);
450 return MarkIfNotLive(Use, MaybeLiveUses);
451 }
452 }
453 // Used in any other way? Value must be live.
454 return Live;
455 }
456
457 /// SurveyUses - This looks at all the uses of the given value
458 /// Returns the Liveness deduced from the uses of this value.
459 ///
460 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
461 /// the result is Live, MaybeLiveUses might be modified but its content should
462 /// be ignored (since it might not be complete).
463 DeadArgumentEliminationPass::Liveness
SurveyUses(const Value * V,UseVector & MaybeLiveUses)464 DeadArgumentEliminationPass::SurveyUses(const Value *V,
465 UseVector &MaybeLiveUses) {
466 // Assume it's dead (which will only hold if there are no uses at all..).
467 Liveness Result = MaybeLive;
468 // Check each use.
469 for (const Use &U : V->uses()) {
470 Result = SurveyUse(&U, MaybeLiveUses);
471 if (Result == Live)
472 break;
473 }
474 return Result;
475 }
476
477 // SurveyFunction - This performs the initial survey of the specified function,
478 // checking out whether or not it uses any of its incoming arguments or whether
479 // any callers use the return value. This fills in the LiveValues set and Uses
480 // map.
481 //
482 // We consider arguments of non-internal functions to be intrinsically alive as
483 // well as arguments to functions which have their "address taken".
SurveyFunction(const Function & F)484 void DeadArgumentEliminationPass::SurveyFunction(const Function &F) {
485 // Functions with inalloca/preallocated parameters are expecting args in a
486 // particular register and memory layout.
487 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
488 F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
489 MarkLive(F);
490 return;
491 }
492
493 // Don't touch naked functions. The assembly might be using an argument, or
494 // otherwise rely on the frame layout in a way that this analysis will not
495 // see.
496 if (F.hasFnAttribute(Attribute::Naked)) {
497 MarkLive(F);
498 return;
499 }
500
501 unsigned RetCount = NumRetVals(&F);
502
503 // Assume all return values are dead
504 using RetVals = SmallVector<Liveness, 5>;
505
506 RetVals RetValLiveness(RetCount, MaybeLive);
507
508 using RetUses = SmallVector<UseVector, 5>;
509
510 // These vectors map each return value to the uses that make it MaybeLive, so
511 // we can add those to the Uses map if the return value really turns out to be
512 // MaybeLive. Initialized to a list of RetCount empty lists.
513 RetUses MaybeLiveRetUses(RetCount);
514
515 bool HasMustTailCalls = false;
516
517 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
518 if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
519 if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
520 != F.getFunctionType()->getReturnType()) {
521 // We don't support old style multiple return values.
522 MarkLive(F);
523 return;
524 }
525 }
526
527 // If we have any returns of `musttail` results - the signature can't
528 // change
529 if (BB->getTerminatingMustTailCall() != nullptr)
530 HasMustTailCalls = true;
531 }
532
533 if (HasMustTailCalls) {
534 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
535 << " has musttail calls\n");
536 }
537
538 if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
539 MarkLive(F);
540 return;
541 }
542
543 LLVM_DEBUG(
544 dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
545 << F.getName() << "\n");
546 // Keep track of the number of live retvals, so we can skip checks once all
547 // of them turn out to be live.
548 unsigned NumLiveRetVals = 0;
549
550 bool HasMustTailCallers = false;
551
552 // Loop all uses of the function.
553 for (const Use &U : F.uses()) {
554 // If the function is PASSED IN as an argument, its address has been
555 // taken.
556 const auto *CB = dyn_cast<CallBase>(U.getUser());
557 if (!CB || !CB->isCallee(&U)) {
558 MarkLive(F);
559 return;
560 }
561
562 // The number of arguments for `musttail` call must match the number of
563 // arguments of the caller
564 if (CB->isMustTailCall())
565 HasMustTailCallers = true;
566
567 // If we end up here, we are looking at a direct call to our function.
568
569 // Now, check how our return value(s) is/are used in this caller. Don't
570 // bother checking return values if all of them are live already.
571 if (NumLiveRetVals == RetCount)
572 continue;
573
574 // Check all uses of the return value.
575 for (const Use &U : CB->uses()) {
576 if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
577 // This use uses a part of our return value, survey the uses of
578 // that part and store the results for this index only.
579 unsigned Idx = *Ext->idx_begin();
580 if (RetValLiveness[Idx] != Live) {
581 RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
582 if (RetValLiveness[Idx] == Live)
583 NumLiveRetVals++;
584 }
585 } else {
586 // Used by something else than extractvalue. Survey, but assume that the
587 // result applies to all sub-values.
588 UseVector MaybeLiveAggregateUses;
589 if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
590 NumLiveRetVals = RetCount;
591 RetValLiveness.assign(RetCount, Live);
592 break;
593 } else {
594 for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
595 if (RetValLiveness[Ri] != Live)
596 MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(),
597 MaybeLiveAggregateUses.end());
598 }
599 }
600 }
601 }
602 }
603
604 if (HasMustTailCallers) {
605 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
606 << " has musttail callers\n");
607 }
608
609 // Now we've inspected all callers, record the liveness of our return values.
610 for (unsigned Ri = 0; Ri != RetCount; ++Ri)
611 MarkValue(CreateRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]);
612
613 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
614 << F.getName() << "\n");
615
616 // Now, check all of our arguments.
617 unsigned ArgI = 0;
618 UseVector MaybeLiveArgUses;
619 for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end();
620 AI != E; ++AI, ++ArgI) {
621 Liveness Result;
622 if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
623 HasMustTailCalls) {
624 // Variadic functions will already have a va_arg function expanded inside
625 // them, making them potentially very sensitive to ABI changes resulting
626 // from removing arguments entirely, so don't. For example AArch64 handles
627 // register and stack HFAs very differently, and this is reflected in the
628 // IR which has already been generated.
629 //
630 // `musttail` calls to this function restrict argument removal attempts.
631 // The signature of the caller must match the signature of the function.
632 //
633 // `musttail` calls in this function prevents us from changing its
634 // signature
635 Result = Live;
636 } else {
637 // See what the effect of this use is (recording any uses that cause
638 // MaybeLive in MaybeLiveArgUses).
639 Result = SurveyUses(&*AI, MaybeLiveArgUses);
640 }
641
642 // Mark the result.
643 MarkValue(CreateArg(&F, ArgI), Result, MaybeLiveArgUses);
644 // Clear the vector again for the next iteration.
645 MaybeLiveArgUses.clear();
646 }
647 }
648
649 /// MarkValue - This function marks the liveness of RA depending on L. If L is
650 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
651 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
652 /// live later on.
MarkValue(const RetOrArg & RA,Liveness L,const UseVector & MaybeLiveUses)653 void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L,
654 const UseVector &MaybeLiveUses) {
655 switch (L) {
656 case Live:
657 MarkLive(RA);
658 break;
659 case MaybeLive:
660 assert(!IsLive(RA) && "Use is already live!");
661 for (const auto &MaybeLiveUse : MaybeLiveUses) {
662 if (IsLive(MaybeLiveUse)) {
663 // A use is live, so this value is live.
664 MarkLive(RA);
665 break;
666 } else {
667 // Note any uses of this value, so this value can be
668 // marked live whenever one of the uses becomes live.
669 Uses.insert(std::make_pair(MaybeLiveUse, RA));
670 }
671 }
672 break;
673 }
674 }
675
676 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
677 /// changed in any way. Additionally,
678 /// mark any values that are used as this function's parameters or by its return
679 /// values (according to Uses) live as well.
MarkLive(const Function & F)680 void DeadArgumentEliminationPass::MarkLive(const Function &F) {
681 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
682 << F.getName() << "\n");
683 // Mark the function as live.
684 LiveFunctions.insert(&F);
685 // Mark all arguments as live.
686 for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI)
687 PropagateLiveness(CreateArg(&F, ArgI));
688 // Mark all return values as live.
689 for (unsigned Ri = 0, E = NumRetVals(&F); Ri != E; ++Ri)
690 PropagateLiveness(CreateRet(&F, Ri));
691 }
692
693 /// MarkLive - Mark the given return value or argument as live. Additionally,
694 /// mark any values that are used by this value (according to Uses) live as
695 /// well.
MarkLive(const RetOrArg & RA)696 void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) {
697 if (IsLive(RA))
698 return; // Already marked Live.
699
700 LiveValues.insert(RA);
701
702 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
703 << RA.getDescription() << " live\n");
704 PropagateLiveness(RA);
705 }
706
IsLive(const RetOrArg & RA)707 bool DeadArgumentEliminationPass::IsLive(const RetOrArg &RA) {
708 return LiveFunctions.count(RA.F) || LiveValues.count(RA);
709 }
710
711 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
712 /// to any other values it uses (according to Uses).
PropagateLiveness(const RetOrArg & RA)713 void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) {
714 // We don't use upper_bound (or equal_range) here, because our recursive call
715 // to ourselves is likely to cause the upper_bound (which is the first value
716 // not belonging to RA) to become erased and the iterator invalidated.
717 UseMap::iterator Begin = Uses.lower_bound(RA);
718 UseMap::iterator E = Uses.end();
719 UseMap::iterator I;
720 for (I = Begin; I != E && I->first == RA; ++I)
721 MarkLive(I->second);
722
723 // Erase RA from the Uses map (from the lower bound to wherever we ended up
724 // after the loop).
725 Uses.erase(Begin, I);
726 }
727
728 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
729 // that are not in LiveValues. Transform the function and all of the callees of
730 // the function to not have these arguments and return values.
731 //
RemoveDeadStuffFromFunction(Function * F)732 bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) {
733 // Don't modify fully live functions
734 if (LiveFunctions.count(F))
735 return false;
736
737 // Start by computing a new prototype for the function, which is the same as
738 // the old function, but has fewer arguments and a different return type.
739 FunctionType *FTy = F->getFunctionType();
740 std::vector<Type*> Params;
741
742 // Keep track of if we have a live 'returned' argument
743 bool HasLiveReturnedArg = false;
744
745 // Set up to build a new list of parameter attributes.
746 SmallVector<AttributeSet, 8> ArgAttrVec;
747 const AttributeList &PAL = F->getAttributes();
748
749 // Remember which arguments are still alive.
750 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
751 // Construct the new parameter list from non-dead arguments. Also construct
752 // a new set of parameter attributes to correspond. Skip the first parameter
753 // attribute, since that belongs to the return value.
754 unsigned ArgI = 0;
755 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
756 ++I, ++ArgI) {
757 RetOrArg Arg = CreateArg(F, ArgI);
758 if (LiveValues.erase(Arg)) {
759 Params.push_back(I->getType());
760 ArgAlive[ArgI] = true;
761 ArgAttrVec.push_back(PAL.getParamAttributes(ArgI));
762 HasLiveReturnedArg |= PAL.hasParamAttribute(ArgI, Attribute::Returned);
763 } else {
764 ++NumArgumentsEliminated;
765 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
766 << ArgI << " (" << I->getName() << ") from "
767 << F->getName() << "\n");
768 }
769 }
770
771 // Find out the new return value.
772 Type *RetTy = FTy->getReturnType();
773 Type *NRetTy = nullptr;
774 unsigned RetCount = NumRetVals(F);
775
776 // -1 means unused, other numbers are the new index
777 SmallVector<int, 5> NewRetIdxs(RetCount, -1);
778 std::vector<Type*> RetTypes;
779
780 // If there is a function with a live 'returned' argument but a dead return
781 // value, then there are two possible actions:
782 // 1) Eliminate the return value and take off the 'returned' attribute on the
783 // argument.
784 // 2) Retain the 'returned' attribute and treat the return value (but not the
785 // entire function) as live so that it is not eliminated.
786 //
787 // It's not clear in the general case which option is more profitable because,
788 // even in the absence of explicit uses of the return value, code generation
789 // is free to use the 'returned' attribute to do things like eliding
790 // save/restores of registers across calls. Whether or not this happens is
791 // target and ABI-specific as well as depending on the amount of register
792 // pressure, so there's no good way for an IR-level pass to figure this out.
793 //
794 // Fortunately, the only places where 'returned' is currently generated by
795 // the FE are places where 'returned' is basically free and almost always a
796 // performance win, so the second option can just be used always for now.
797 //
798 // This should be revisited if 'returned' is ever applied more liberally.
799 if (RetTy->isVoidTy() || HasLiveReturnedArg) {
800 NRetTy = RetTy;
801 } else {
802 // Look at each of the original return values individually.
803 for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
804 RetOrArg Ret = CreateRet(F, Ri);
805 if (LiveValues.erase(Ret)) {
806 RetTypes.push_back(getRetComponentType(F, Ri));
807 NewRetIdxs[Ri] = RetTypes.size() - 1;
808 } else {
809 ++NumRetValsEliminated;
810 LLVM_DEBUG(
811 dbgs() << "DeadArgumentEliminationPass - Removing return value "
812 << Ri << " from " << F->getName() << "\n");
813 }
814 }
815 if (RetTypes.size() > 1) {
816 // More than one return type? Reduce it down to size.
817 if (StructType *STy = dyn_cast<StructType>(RetTy)) {
818 // Make the new struct packed if we used to return a packed struct
819 // already.
820 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
821 } else {
822 assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
823 NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
824 }
825 } else if (RetTypes.size() == 1)
826 // One return type? Just a simple value then, but only if we didn't use to
827 // return a struct with that simple value before.
828 NRetTy = RetTypes.front();
829 else if (RetTypes.empty())
830 // No return types? Make it void, but only if we didn't use to return {}.
831 NRetTy = Type::getVoidTy(F->getContext());
832 }
833
834 assert(NRetTy && "No new return type found?");
835
836 // The existing function return attributes.
837 AttrBuilder RAttrs(PAL.getRetAttributes());
838
839 // Remove any incompatible attributes, but only if we removed all return
840 // values. Otherwise, ensure that we don't have any conflicting attributes
841 // here. Currently, this should not be possible, but special handling might be
842 // required when new return value attributes are added.
843 if (NRetTy->isVoidTy())
844 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
845 else
846 assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
847 "Return attributes no longer compatible?");
848
849 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
850
851 // Strip allocsize attributes. They might refer to the deleted arguments.
852 AttributeSet FnAttrs = PAL.getFnAttributes().removeAttribute(
853 F->getContext(), Attribute::AllocSize);
854
855 // Reconstruct the AttributesList based on the vector we constructed.
856 assert(ArgAttrVec.size() == Params.size());
857 AttributeList NewPAL =
858 AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
859
860 // Create the new function type based on the recomputed parameters.
861 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
862
863 // No change?
864 if (NFTy == FTy)
865 return false;
866
867 // Create the new function body and insert it into the module...
868 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
869 NF->copyAttributesFrom(F);
870 NF->setComdat(F->getComdat());
871 NF->setAttributes(NewPAL);
872 // Insert the new function before the old function, so we won't be processing
873 // it again.
874 F->getParent()->getFunctionList().insert(F->getIterator(), NF);
875 NF->takeName(F);
876
877 // Loop over all of the callers of the function, transforming the call sites
878 // to pass in a smaller number of arguments into the new function.
879 std::vector<Value*> Args;
880 while (!F->use_empty()) {
881 CallBase &CB = cast<CallBase>(*F->user_back());
882
883 ArgAttrVec.clear();
884 const AttributeList &CallPAL = CB.getAttributes();
885
886 // Adjust the call return attributes in case the function was changed to
887 // return void.
888 AttrBuilder RAttrs(CallPAL.getRetAttributes());
889 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
890 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
891
892 // Declare these outside of the loops, so we can reuse them for the second
893 // loop, which loops the varargs.
894 auto I = CB.arg_begin();
895 unsigned Pi = 0;
896 // Loop over those operands, corresponding to the normal arguments to the
897 // original function, and add those that are still alive.
898 for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi)
899 if (ArgAlive[Pi]) {
900 Args.push_back(*I);
901 // Get original parameter attributes, but skip return attributes.
902 AttributeSet Attrs = CallPAL.getParamAttributes(Pi);
903 if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
904 // If the return type has changed, then get rid of 'returned' on the
905 // call site. The alternative is to make all 'returned' attributes on
906 // call sites keep the return value alive just like 'returned'
907 // attributes on function declaration but it's less clearly a win and
908 // this is not an expected case anyway
909 ArgAttrVec.push_back(AttributeSet::get(
910 F->getContext(),
911 AttrBuilder(Attrs).removeAttribute(Attribute::Returned)));
912 } else {
913 // Otherwise, use the original attributes.
914 ArgAttrVec.push_back(Attrs);
915 }
916 }
917
918 // Push any varargs arguments on the list. Don't forget their attributes.
919 for (auto E = CB.arg_end(); I != E; ++I, ++Pi) {
920 Args.push_back(*I);
921 ArgAttrVec.push_back(CallPAL.getParamAttributes(Pi));
922 }
923
924 // Reconstruct the AttributesList based on the vector we constructed.
925 assert(ArgAttrVec.size() == Args.size());
926
927 // Again, be sure to remove any allocsize attributes, since their indices
928 // may now be incorrect.
929 AttributeSet FnAttrs = CallPAL.getFnAttributes().removeAttribute(
930 F->getContext(), Attribute::AllocSize);
931
932 AttributeList NewCallPAL = AttributeList::get(
933 F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
934
935 SmallVector<OperandBundleDef, 1> OpBundles;
936 CB.getOperandBundlesAsDefs(OpBundles);
937
938 CallBase *NewCB = nullptr;
939 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
940 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
941 Args, OpBundles, "", CB.getParent());
942 } else {
943 NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB);
944 cast<CallInst>(NewCB)->setTailCallKind(
945 cast<CallInst>(&CB)->getTailCallKind());
946 }
947 NewCB->setCallingConv(CB.getCallingConv());
948 NewCB->setAttributes(NewCallPAL);
949 NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
950 Args.clear();
951 ArgAttrVec.clear();
952
953 if (!CB.use_empty() || CB.isUsedByMetadata()) {
954 if (NewCB->getType() == CB.getType()) {
955 // Return type not changed? Just replace users then.
956 CB.replaceAllUsesWith(NewCB);
957 NewCB->takeName(&CB);
958 } else if (NewCB->getType()->isVoidTy()) {
959 // If the return value is dead, replace any uses of it with undef
960 // (any non-debug value uses will get removed later on).
961 if (!CB.getType()->isX86_MMXTy())
962 CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
963 } else {
964 assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
965 "Return type changed, but not into a void. The old return type"
966 " must have been a struct or an array!");
967 Instruction *InsertPt = &CB;
968 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
969 BasicBlock *NewEdge =
970 SplitEdge(NewCB->getParent(), II->getNormalDest());
971 InsertPt = &*NewEdge->getFirstInsertionPt();
972 }
973
974 // We used to return a struct or array. Instead of doing smart stuff
975 // with all the uses, we will just rebuild it using extract/insertvalue
976 // chaining and let instcombine clean that up.
977 //
978 // Start out building up our return value from undef
979 Value *RetVal = UndefValue::get(RetTy);
980 for (unsigned Ri = 0; Ri != RetCount; ++Ri)
981 if (NewRetIdxs[Ri] != -1) {
982 Value *V;
983 IRBuilder<NoFolder> IRB(InsertPt);
984 if (RetTypes.size() > 1)
985 // We are still returning a struct, so extract the value from our
986 // return value
987 V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret");
988 else
989 // We are now returning a single element, so just insert that
990 V = NewCB;
991 // Insert the value at the old position
992 RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret");
993 }
994 // Now, replace all uses of the old call instruction with the return
995 // struct we built
996 CB.replaceAllUsesWith(RetVal);
997 NewCB->takeName(&CB);
998 }
999 }
1000
1001 // Finally, remove the old call from the program, reducing the use-count of
1002 // F.
1003 CB.eraseFromParent();
1004 }
1005
1006 // Since we have now created the new function, splice the body of the old
1007 // function right into the new function, leaving the old rotting hulk of the
1008 // function empty.
1009 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1010
1011 // Loop over the argument list, transferring uses of the old arguments over to
1012 // the new arguments, also transferring over the names as well.
1013 ArgI = 0;
1014 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1015 I2 = NF->arg_begin();
1016 I != E; ++I, ++ArgI)
1017 if (ArgAlive[ArgI]) {
1018 // If this is a live argument, move the name and users over to the new
1019 // version.
1020 I->replaceAllUsesWith(&*I2);
1021 I2->takeName(&*I);
1022 ++I2;
1023 } else {
1024 // If this argument is dead, replace any uses of it with undef
1025 // (any non-debug value uses will get removed later on).
1026 if (!I->getType()->isX86_MMXTy())
1027 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1028 }
1029
1030 // If we change the return value of the function we must rewrite any return
1031 // instructions. Check this now.
1032 if (F->getReturnType() != NF->getReturnType())
1033 for (BasicBlock &BB : *NF)
1034 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
1035 IRBuilder<NoFolder> IRB(RI);
1036 Value *RetVal = nullptr;
1037
1038 if (!NFTy->getReturnType()->isVoidTy()) {
1039 assert(RetTy->isStructTy() || RetTy->isArrayTy());
1040 // The original return value was a struct or array, insert
1041 // extractvalue/insertvalue chains to extract only the values we need
1042 // to return and insert them into our new result.
1043 // This does generate messy code, but we'll let it to instcombine to
1044 // clean that up.
1045 Value *OldRet = RI->getOperand(0);
1046 // Start out building up our return value from undef
1047 RetVal = UndefValue::get(NRetTy);
1048 for (unsigned RetI = 0; RetI != RetCount; ++RetI)
1049 if (NewRetIdxs[RetI] != -1) {
1050 Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret");
1051
1052 if (RetTypes.size() > 1) {
1053 // We're still returning a struct, so reinsert the value into
1054 // our new return value at the new index
1055
1056 RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI],
1057 "newret");
1058 } else {
1059 // We are now only returning a simple value, so just return the
1060 // extracted value.
1061 RetVal = EV;
1062 }
1063 }
1064 }
1065 // Replace the return instruction with one returning the new return
1066 // value (possibly 0 if we became void).
1067 auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI);
1068 NewRet->setDebugLoc(RI->getDebugLoc());
1069 BB.getInstList().erase(RI);
1070 }
1071
1072 // Clone metadatas from the old function, including debug info descriptor.
1073 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1074 F->getAllMetadata(MDs);
1075 for (auto MD : MDs)
1076 NF->addMetadata(MD.first, *MD.second);
1077
1078 // Now that the old function is dead, delete it.
1079 F->eraseFromParent();
1080
1081 return true;
1082 }
1083
run(Module & M,ModuleAnalysisManager &)1084 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1085 ModuleAnalysisManager &) {
1086 bool Changed = false;
1087
1088 // First pass: Do a simple check to see if any functions can have their "..."
1089 // removed. We can do this if they never call va_start. This loop cannot be
1090 // fused with the next loop, because deleting a function invalidates
1091 // information computed while surveying other functions.
1092 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1093 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1094 Function &F = *I++;
1095 if (F.getFunctionType()->isVarArg())
1096 Changed |= DeleteDeadVarargs(F);
1097 }
1098
1099 // Second phase:loop through the module, determining which arguments are live.
1100 // We assume all arguments are dead unless proven otherwise (allowing us to
1101 // determine that dead arguments passed into recursive functions are dead).
1102 //
1103 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1104 for (auto &F : M)
1105 SurveyFunction(F);
1106
1107 // Now, remove all dead arguments and return values from each function in
1108 // turn.
1109 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1110 // Increment now, because the function will probably get removed (ie.
1111 // replaced by a new one).
1112 Function *F = &*I++;
1113 Changed |= RemoveDeadStuffFromFunction(F);
1114 }
1115
1116 // Finally, look for any unused parameters in functions with non-local
1117 // linkage and replace the passed in parameters with undef.
1118 for (auto &F : M)
1119 Changed |= RemoveDeadArgumentsFromCallers(F);
1120
1121 if (!Changed)
1122 return PreservedAnalyses::all();
1123 return PreservedAnalyses::none();
1124 }
1125