1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 // 1. The exit condition for the loop is canonicalized to compare the
16 // induction value against the exit value. This turns loops like:
17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 // 2. Any use outside of the loop of an expression derived from the indvar
19 // is changed to compute the derived value outside of the loop, eliminating
20 // the dependence on the exit value of the induction variable. If the only
21 // purpose of the loop is to compute the exit value of some derived
22 // expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/MemorySSA.h"
42 #include "llvm/Analysis/MemorySSAUpdater.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/ConstantRange.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/IR/PassManager.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Compiler.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Scalar/LoopPassManager.h"
82 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/LoopUtils.h"
85 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
86 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
87 #include <cassert>
88 #include <cstdint>
89 #include <utility>
90
91 using namespace llvm;
92
93 #define DEBUG_TYPE "indvars"
94
95 STATISTIC(NumWidened , "Number of indvars widened");
96 STATISTIC(NumReplaced , "Number of exit values replaced");
97 STATISTIC(NumLFTR , "Number of loop exit tests replaced");
98 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
99 STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
100
101 // Trip count verification can be enabled by default under NDEBUG if we
102 // implement a strong expression equivalence checker in SCEV. Until then, we
103 // use the verify-indvars flag, which may assert in some cases.
104 static cl::opt<bool> VerifyIndvars(
105 "verify-indvars", cl::Hidden,
106 cl::desc("Verify the ScalarEvolution result after running indvars. Has no "
107 "effect in release builds. (Note: this adds additional SCEV "
108 "queries potentially changing the analysis result)"));
109
110 static cl::opt<ReplaceExitVal> ReplaceExitValue(
111 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
112 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
113 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
114 clEnumValN(OnlyCheapRepl, "cheap",
115 "only replace exit value when the cost is cheap"),
116 clEnumValN(NoHardUse, "noharduse",
117 "only replace exit values when loop def likely dead"),
118 clEnumValN(AlwaysRepl, "always",
119 "always replace exit value whenever possible")));
120
121 static cl::opt<bool> UsePostIncrementRanges(
122 "indvars-post-increment-ranges", cl::Hidden,
123 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
124 cl::init(true));
125
126 static cl::opt<bool>
127 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
128 cl::desc("Disable Linear Function Test Replace optimization"));
129
130 static cl::opt<bool>
131 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
132 cl::desc("Predicate conditions in read only loops"));
133
134 static cl::opt<bool>
135 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true),
136 cl::desc("Allow widening of indvars to eliminate s/zext"));
137
138 namespace {
139
140 struct RewritePhi;
141
142 class IndVarSimplify {
143 LoopInfo *LI;
144 ScalarEvolution *SE;
145 DominatorTree *DT;
146 const DataLayout &DL;
147 TargetLibraryInfo *TLI;
148 const TargetTransformInfo *TTI;
149 std::unique_ptr<MemorySSAUpdater> MSSAU;
150
151 SmallVector<WeakTrackingVH, 16> DeadInsts;
152 bool WidenIndVars;
153
154 bool handleFloatingPointIV(Loop *L, PHINode *PH);
155 bool rewriteNonIntegerIVs(Loop *L);
156
157 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
158 /// Try to eliminate loop exits based on analyzeable exit counts
159 bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
160 /// Try to form loop invariant tests for loop exits by changing how many
161 /// iterations of the loop run when that is unobservable.
162 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
163
164 bool rewriteFirstIterationLoopExitValues(Loop *L);
165
166 bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
167 const SCEV *ExitCount,
168 PHINode *IndVar, SCEVExpander &Rewriter);
169
170 bool sinkUnusedInvariants(Loop *L);
171
172 public:
IndVarSimplify(LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,const DataLayout & DL,TargetLibraryInfo * TLI,TargetTransformInfo * TTI,MemorySSA * MSSA,bool WidenIndVars)173 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
174 const DataLayout &DL, TargetLibraryInfo *TLI,
175 TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars)
176 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI),
177 WidenIndVars(WidenIndVars) {
178 if (MSSA)
179 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
180 }
181
182 bool run(Loop *L);
183 };
184
185 } // end anonymous namespace
186
187 //===----------------------------------------------------------------------===//
188 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
189 //===----------------------------------------------------------------------===//
190
191 /// Convert APF to an integer, if possible.
ConvertToSInt(const APFloat & APF,int64_t & IntVal)192 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
193 bool isExact = false;
194 // See if we can convert this to an int64_t
195 uint64_t UIntVal;
196 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
197 APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
198 !isExact)
199 return false;
200 IntVal = UIntVal;
201 return true;
202 }
203
204 /// If the loop has floating induction variable then insert corresponding
205 /// integer induction variable if possible.
206 /// For example,
207 /// for(double i = 0; i < 10000; ++i)
208 /// bar(i)
209 /// is converted into
210 /// for(int i = 0; i < 10000; ++i)
211 /// bar((double)i);
handleFloatingPointIV(Loop * L,PHINode * PN)212 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
213 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
214 unsigned BackEdge = IncomingEdge^1;
215
216 // Check incoming value.
217 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
218
219 int64_t InitValue;
220 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
221 return false;
222
223 // Check IV increment. Reject this PN if increment operation is not
224 // an add or increment value can not be represented by an integer.
225 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
226 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
227
228 // If this is not an add of the PHI with a constantfp, or if the constant fp
229 // is not an integer, bail out.
230 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
231 int64_t IncValue;
232 if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
233 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
234 return false;
235
236 // Check Incr uses. One user is PN and the other user is an exit condition
237 // used by the conditional terminator.
238 Value::user_iterator IncrUse = Incr->user_begin();
239 Instruction *U1 = cast<Instruction>(*IncrUse++);
240 if (IncrUse == Incr->user_end()) return false;
241 Instruction *U2 = cast<Instruction>(*IncrUse++);
242 if (IncrUse != Incr->user_end()) return false;
243
244 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
245 // only used by a branch, we can't transform it.
246 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
247 if (!Compare)
248 Compare = dyn_cast<FCmpInst>(U2);
249 if (!Compare || !Compare->hasOneUse() ||
250 !isa<BranchInst>(Compare->user_back()))
251 return false;
252
253 BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
254
255 // We need to verify that the branch actually controls the iteration count
256 // of the loop. If not, the new IV can overflow and no one will notice.
257 // The branch block must be in the loop and one of the successors must be out
258 // of the loop.
259 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
260 if (!L->contains(TheBr->getParent()) ||
261 (L->contains(TheBr->getSuccessor(0)) &&
262 L->contains(TheBr->getSuccessor(1))))
263 return false;
264
265 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
266 // transform it.
267 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
268 int64_t ExitValue;
269 if (ExitValueVal == nullptr ||
270 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
271 return false;
272
273 // Find new predicate for integer comparison.
274 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
275 switch (Compare->getPredicate()) {
276 default: return false; // Unknown comparison.
277 case CmpInst::FCMP_OEQ:
278 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
279 case CmpInst::FCMP_ONE:
280 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
281 case CmpInst::FCMP_OGT:
282 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
283 case CmpInst::FCMP_OGE:
284 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
285 case CmpInst::FCMP_OLT:
286 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
287 case CmpInst::FCMP_OLE:
288 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
289 }
290
291 // We convert the floating point induction variable to a signed i32 value if
292 // we can. This is only safe if the comparison will not overflow in a way
293 // that won't be trapped by the integer equivalent operations. Check for this
294 // now.
295 // TODO: We could use i64 if it is native and the range requires it.
296
297 // The start/stride/exit values must all fit in signed i32.
298 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
299 return false;
300
301 // If not actually striding (add x, 0.0), avoid touching the code.
302 if (IncValue == 0)
303 return false;
304
305 // Positive and negative strides have different safety conditions.
306 if (IncValue > 0) {
307 // If we have a positive stride, we require the init to be less than the
308 // exit value.
309 if (InitValue >= ExitValue)
310 return false;
311
312 uint32_t Range = uint32_t(ExitValue-InitValue);
313 // Check for infinite loop, either:
314 // while (i <= Exit) or until (i > Exit)
315 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
316 if (++Range == 0) return false; // Range overflows.
317 }
318
319 unsigned Leftover = Range % uint32_t(IncValue);
320
321 // If this is an equality comparison, we require that the strided value
322 // exactly land on the exit value, otherwise the IV condition will wrap
323 // around and do things the fp IV wouldn't.
324 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
325 Leftover != 0)
326 return false;
327
328 // If the stride would wrap around the i32 before exiting, we can't
329 // transform the IV.
330 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
331 return false;
332 } else {
333 // If we have a negative stride, we require the init to be greater than the
334 // exit value.
335 if (InitValue <= ExitValue)
336 return false;
337
338 uint32_t Range = uint32_t(InitValue-ExitValue);
339 // Check for infinite loop, either:
340 // while (i >= Exit) or until (i < Exit)
341 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
342 if (++Range == 0) return false; // Range overflows.
343 }
344
345 unsigned Leftover = Range % uint32_t(-IncValue);
346
347 // If this is an equality comparison, we require that the strided value
348 // exactly land on the exit value, otherwise the IV condition will wrap
349 // around and do things the fp IV wouldn't.
350 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
351 Leftover != 0)
352 return false;
353
354 // If the stride would wrap around the i32 before exiting, we can't
355 // transform the IV.
356 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
357 return false;
358 }
359
360 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
361
362 // Insert new integer induction variable.
363 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
364 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
365 PN->getIncomingBlock(IncomingEdge));
366
367 Value *NewAdd =
368 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
369 Incr->getName()+".int", Incr);
370 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
371
372 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
373 ConstantInt::get(Int32Ty, ExitValue),
374 Compare->getName());
375
376 // In the following deletions, PN may become dead and may be deleted.
377 // Use a WeakTrackingVH to observe whether this happens.
378 WeakTrackingVH WeakPH = PN;
379
380 // Delete the old floating point exit comparison. The branch starts using the
381 // new comparison.
382 NewCompare->takeName(Compare);
383 Compare->replaceAllUsesWith(NewCompare);
384 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
385
386 // Delete the old floating point increment.
387 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
388 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
389
390 // If the FP induction variable still has uses, this is because something else
391 // in the loop uses its value. In order to canonicalize the induction
392 // variable, we chose to eliminate the IV and rewrite it in terms of an
393 // int->fp cast.
394 //
395 // We give preference to sitofp over uitofp because it is faster on most
396 // platforms.
397 if (WeakPH) {
398 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
399 &*PN->getParent()->getFirstInsertionPt());
400 PN->replaceAllUsesWith(Conv);
401 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
402 }
403 return true;
404 }
405
rewriteNonIntegerIVs(Loop * L)406 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
407 // First step. Check to see if there are any floating-point recurrences.
408 // If there are, change them into integer recurrences, permitting analysis by
409 // the SCEV routines.
410 BasicBlock *Header = L->getHeader();
411
412 SmallVector<WeakTrackingVH, 8> PHIs;
413 for (PHINode &PN : Header->phis())
414 PHIs.push_back(&PN);
415
416 bool Changed = false;
417 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
418 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
419 Changed |= handleFloatingPointIV(L, PN);
420
421 // If the loop previously had floating-point IV, ScalarEvolution
422 // may not have been able to compute a trip count. Now that we've done some
423 // re-writing, the trip count may be computable.
424 if (Changed)
425 SE->forgetLoop(L);
426 return Changed;
427 }
428
429 //===---------------------------------------------------------------------===//
430 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
431 // they will exit at the first iteration.
432 //===---------------------------------------------------------------------===//
433
434 /// Check to see if this loop has loop invariant conditions which lead to loop
435 /// exits. If so, we know that if the exit path is taken, it is at the first
436 /// loop iteration. This lets us predict exit values of PHI nodes that live in
437 /// loop header.
rewriteFirstIterationLoopExitValues(Loop * L)438 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
439 // Verify the input to the pass is already in LCSSA form.
440 assert(L->isLCSSAForm(*DT));
441
442 SmallVector<BasicBlock *, 8> ExitBlocks;
443 L->getUniqueExitBlocks(ExitBlocks);
444
445 bool MadeAnyChanges = false;
446 for (auto *ExitBB : ExitBlocks) {
447 // If there are no more PHI nodes in this exit block, then no more
448 // values defined inside the loop are used on this path.
449 for (PHINode &PN : ExitBB->phis()) {
450 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
451 IncomingValIdx != E; ++IncomingValIdx) {
452 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
453
454 // Can we prove that the exit must run on the first iteration if it
455 // runs at all? (i.e. early exits are fine for our purposes, but
456 // traces which lead to this exit being taken on the 2nd iteration
457 // aren't.) Note that this is about whether the exit branch is
458 // executed, not about whether it is taken.
459 if (!L->getLoopLatch() ||
460 !DT->dominates(IncomingBB, L->getLoopLatch()))
461 continue;
462
463 // Get condition that leads to the exit path.
464 auto *TermInst = IncomingBB->getTerminator();
465
466 Value *Cond = nullptr;
467 if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
468 // Must be a conditional branch, otherwise the block
469 // should not be in the loop.
470 Cond = BI->getCondition();
471 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
472 Cond = SI->getCondition();
473 else
474 continue;
475
476 if (!L->isLoopInvariant(Cond))
477 continue;
478
479 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
480
481 // Only deal with PHIs in the loop header.
482 if (!ExitVal || ExitVal->getParent() != L->getHeader())
483 continue;
484
485 // If ExitVal is a PHI on the loop header, then we know its
486 // value along this exit because the exit can only be taken
487 // on the first iteration.
488 auto *LoopPreheader = L->getLoopPreheader();
489 assert(LoopPreheader && "Invalid loop");
490 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
491 if (PreheaderIdx != -1) {
492 assert(ExitVal->getParent() == L->getHeader() &&
493 "ExitVal must be in loop header");
494 MadeAnyChanges = true;
495 PN.setIncomingValue(IncomingValIdx,
496 ExitVal->getIncomingValue(PreheaderIdx));
497 }
498 }
499 }
500 }
501 return MadeAnyChanges;
502 }
503
504 //===----------------------------------------------------------------------===//
505 // IV Widening - Extend the width of an IV to cover its widest uses.
506 //===----------------------------------------------------------------------===//
507
508 /// Update information about the induction variable that is extended by this
509 /// sign or zero extend operation. This is used to determine the final width of
510 /// the IV before actually widening it.
visitIVCast(CastInst * Cast,WideIVInfo & WI,ScalarEvolution * SE,const TargetTransformInfo * TTI)511 static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
512 ScalarEvolution *SE,
513 const TargetTransformInfo *TTI) {
514 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
515 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
516 return;
517
518 Type *Ty = Cast->getType();
519 uint64_t Width = SE->getTypeSizeInBits(Ty);
520 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
521 return;
522
523 // Check that `Cast` actually extends the induction variable (we rely on this
524 // later). This takes care of cases where `Cast` is extending a truncation of
525 // the narrow induction variable, and thus can end up being narrower than the
526 // "narrow" induction variable.
527 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
528 if (NarrowIVWidth >= Width)
529 return;
530
531 // Cast is either an sext or zext up to this point.
532 // We should not widen an indvar if arithmetics on the wider indvar are more
533 // expensive than those on the narrower indvar. We check only the cost of ADD
534 // because at least an ADD is required to increment the induction variable. We
535 // could compute more comprehensively the cost of all instructions on the
536 // induction variable when necessary.
537 if (TTI &&
538 TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
539 TTI->getArithmeticInstrCost(Instruction::Add,
540 Cast->getOperand(0)->getType())) {
541 return;
542 }
543
544 if (!WI.WidestNativeType) {
545 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
546 WI.IsSigned = IsSigned;
547 return;
548 }
549
550 // We extend the IV to satisfy the sign of its first user, arbitrarily.
551 if (WI.IsSigned != IsSigned)
552 return;
553
554 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
555 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
556 }
557
558 //===----------------------------------------------------------------------===//
559 // Live IV Reduction - Minimize IVs live across the loop.
560 //===----------------------------------------------------------------------===//
561
562 //===----------------------------------------------------------------------===//
563 // Simplification of IV users based on SCEV evaluation.
564 //===----------------------------------------------------------------------===//
565
566 namespace {
567
568 class IndVarSimplifyVisitor : public IVVisitor {
569 ScalarEvolution *SE;
570 const TargetTransformInfo *TTI;
571 PHINode *IVPhi;
572
573 public:
574 WideIVInfo WI;
575
IndVarSimplifyVisitor(PHINode * IV,ScalarEvolution * SCEV,const TargetTransformInfo * TTI,const DominatorTree * DTree)576 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
577 const TargetTransformInfo *TTI,
578 const DominatorTree *DTree)
579 : SE(SCEV), TTI(TTI), IVPhi(IV) {
580 DT = DTree;
581 WI.NarrowIV = IVPhi;
582 }
583
584 // Implement the interface used by simplifyUsersOfIV.
visitCast(CastInst * Cast)585 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
586 };
587
588 } // end anonymous namespace
589
590 /// Iteratively perform simplification on a worklist of IV users. Each
591 /// successive simplification may push more users which may themselves be
592 /// candidates for simplification.
593 ///
594 /// Sign/Zero extend elimination is interleaved with IV simplification.
simplifyAndExtend(Loop * L,SCEVExpander & Rewriter,LoopInfo * LI)595 bool IndVarSimplify::simplifyAndExtend(Loop *L,
596 SCEVExpander &Rewriter,
597 LoopInfo *LI) {
598 SmallVector<WideIVInfo, 8> WideIVs;
599
600 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
601 Intrinsic::getName(Intrinsic::experimental_guard));
602 bool HasGuards = GuardDecl && !GuardDecl->use_empty();
603
604 SmallVector<PHINode*, 8> LoopPhis;
605 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
606 LoopPhis.push_back(cast<PHINode>(I));
607 }
608 // Each round of simplification iterates through the SimplifyIVUsers worklist
609 // for all current phis, then determines whether any IVs can be
610 // widened. Widening adds new phis to LoopPhis, inducing another round of
611 // simplification on the wide IVs.
612 bool Changed = false;
613 while (!LoopPhis.empty()) {
614 // Evaluate as many IV expressions as possible before widening any IVs. This
615 // forces SCEV to set no-wrap flags before evaluating sign/zero
616 // extension. The first time SCEV attempts to normalize sign/zero extension,
617 // the result becomes final. So for the most predictable results, we delay
618 // evaluation of sign/zero extend evaluation until needed, and avoid running
619 // other SCEV based analysis prior to simplifyAndExtend.
620 do {
621 PHINode *CurrIV = LoopPhis.pop_back_val();
622
623 // Information about sign/zero extensions of CurrIV.
624 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
625
626 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter,
627 &Visitor);
628
629 if (Visitor.WI.WidestNativeType) {
630 WideIVs.push_back(Visitor.WI);
631 }
632 } while(!LoopPhis.empty());
633
634 // Continue if we disallowed widening.
635 if (!WidenIndVars)
636 continue;
637
638 for (; !WideIVs.empty(); WideIVs.pop_back()) {
639 unsigned ElimExt;
640 unsigned Widened;
641 if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
642 DT, DeadInsts, ElimExt, Widened,
643 HasGuards, UsePostIncrementRanges)) {
644 NumElimExt += ElimExt;
645 NumWidened += Widened;
646 Changed = true;
647 LoopPhis.push_back(WidePhi);
648 }
649 }
650 }
651 return Changed;
652 }
653
654 //===----------------------------------------------------------------------===//
655 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
656 //===----------------------------------------------------------------------===//
657
658 /// Given an Value which is hoped to be part of an add recurance in the given
659 /// loop, return the associated Phi node if so. Otherwise, return null. Note
660 /// that this is less general than SCEVs AddRec checking.
getLoopPhiForCounter(Value * IncV,Loop * L)661 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
662 Instruction *IncI = dyn_cast<Instruction>(IncV);
663 if (!IncI)
664 return nullptr;
665
666 switch (IncI->getOpcode()) {
667 case Instruction::Add:
668 case Instruction::Sub:
669 break;
670 case Instruction::GetElementPtr:
671 // An IV counter must preserve its type.
672 if (IncI->getNumOperands() == 2)
673 break;
674 LLVM_FALLTHROUGH;
675 default:
676 return nullptr;
677 }
678
679 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
680 if (Phi && Phi->getParent() == L->getHeader()) {
681 if (L->isLoopInvariant(IncI->getOperand(1)))
682 return Phi;
683 return nullptr;
684 }
685 if (IncI->getOpcode() == Instruction::GetElementPtr)
686 return nullptr;
687
688 // Allow add/sub to be commuted.
689 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
690 if (Phi && Phi->getParent() == L->getHeader()) {
691 if (L->isLoopInvariant(IncI->getOperand(0)))
692 return Phi;
693 }
694 return nullptr;
695 }
696
697 /// Whether the current loop exit test is based on this value. Currently this
698 /// is limited to a direct use in the loop condition.
isLoopExitTestBasedOn(Value * V,BasicBlock * ExitingBB)699 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
700 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
701 ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
702 // TODO: Allow non-icmp loop test.
703 if (!ICmp)
704 return false;
705
706 // TODO: Allow indirect use.
707 return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
708 }
709
710 /// linearFunctionTestReplace policy. Return true unless we can show that the
711 /// current exit test is already sufficiently canonical.
needsLFTR(Loop * L,BasicBlock * ExitingBB)712 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
713 assert(L->getLoopLatch() && "Must be in simplified form");
714
715 // Avoid converting a constant or loop invariant test back to a runtime
716 // test. This is critical for when SCEV's cached ExitCount is less precise
717 // than the current IR (such as after we've proven a particular exit is
718 // actually dead and thus the BE count never reaches our ExitCount.)
719 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
720 if (L->isLoopInvariant(BI->getCondition()))
721 return false;
722
723 // Do LFTR to simplify the exit condition to an ICMP.
724 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
725 if (!Cond)
726 return true;
727
728 // Do LFTR to simplify the exit ICMP to EQ/NE
729 ICmpInst::Predicate Pred = Cond->getPredicate();
730 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
731 return true;
732
733 // Look for a loop invariant RHS
734 Value *LHS = Cond->getOperand(0);
735 Value *RHS = Cond->getOperand(1);
736 if (!L->isLoopInvariant(RHS)) {
737 if (!L->isLoopInvariant(LHS))
738 return true;
739 std::swap(LHS, RHS);
740 }
741 // Look for a simple IV counter LHS
742 PHINode *Phi = dyn_cast<PHINode>(LHS);
743 if (!Phi)
744 Phi = getLoopPhiForCounter(LHS, L);
745
746 if (!Phi)
747 return true;
748
749 // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
750 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
751 if (Idx < 0)
752 return true;
753
754 // Do LFTR if the exit condition's IV is *not* a simple counter.
755 Value *IncV = Phi->getIncomingValue(Idx);
756 return Phi != getLoopPhiForCounter(IncV, L);
757 }
758
759 /// Return true if undefined behavior would provable be executed on the path to
760 /// OnPathTo if Root produced a posion result. Note that this doesn't say
761 /// anything about whether OnPathTo is actually executed or whether Root is
762 /// actually poison. This can be used to assess whether a new use of Root can
763 /// be added at a location which is control equivalent with OnPathTo (such as
764 /// immediately before it) without introducing UB which didn't previously
765 /// exist. Note that a false result conveys no information.
mustExecuteUBIfPoisonOnPathTo(Instruction * Root,Instruction * OnPathTo,DominatorTree * DT)766 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
767 Instruction *OnPathTo,
768 DominatorTree *DT) {
769 // Basic approach is to assume Root is poison, propagate poison forward
770 // through all users we can easily track, and then check whether any of those
771 // users are provable UB and must execute before out exiting block might
772 // exit.
773
774 // The set of all recursive users we've visited (which are assumed to all be
775 // poison because of said visit)
776 SmallSet<const Value *, 16> KnownPoison;
777 SmallVector<const Instruction*, 16> Worklist;
778 Worklist.push_back(Root);
779 while (!Worklist.empty()) {
780 const Instruction *I = Worklist.pop_back_val();
781
782 // If we know this must trigger UB on a path leading our target.
783 if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
784 return true;
785
786 // If we can't analyze propagation through this instruction, just skip it
787 // and transitive users. Safe as false is a conservative result.
788 if (!propagatesPoison(cast<Operator>(I)) && I != Root)
789 continue;
790
791 if (KnownPoison.insert(I).second)
792 for (const User *User : I->users())
793 Worklist.push_back(cast<Instruction>(User));
794 }
795
796 // Might be non-UB, or might have a path we couldn't prove must execute on
797 // way to exiting bb.
798 return false;
799 }
800
801 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
802 /// down to checking that all operands are constant and listing instructions
803 /// that may hide undef.
hasConcreteDefImpl(Value * V,SmallPtrSetImpl<Value * > & Visited,unsigned Depth)804 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
805 unsigned Depth) {
806 if (isa<Constant>(V))
807 return !isa<UndefValue>(V);
808
809 if (Depth >= 6)
810 return false;
811
812 // Conservatively handle non-constant non-instructions. For example, Arguments
813 // may be undef.
814 Instruction *I = dyn_cast<Instruction>(V);
815 if (!I)
816 return false;
817
818 // Load and return values may be undef.
819 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
820 return false;
821
822 // Optimistically handle other instructions.
823 for (Value *Op : I->operands()) {
824 if (!Visited.insert(Op).second)
825 continue;
826 if (!hasConcreteDefImpl(Op, Visited, Depth+1))
827 return false;
828 }
829 return true;
830 }
831
832 /// Return true if the given value is concrete. We must prove that undef can
833 /// never reach it.
834 ///
835 /// TODO: If we decide that this is a good approach to checking for undef, we
836 /// may factor it into a common location.
hasConcreteDef(Value * V)837 static bool hasConcreteDef(Value *V) {
838 SmallPtrSet<Value*, 8> Visited;
839 Visited.insert(V);
840 return hasConcreteDefImpl(V, Visited, 0);
841 }
842
843 /// Return true if this IV has any uses other than the (soon to be rewritten)
844 /// loop exit test.
AlmostDeadIV(PHINode * Phi,BasicBlock * LatchBlock,Value * Cond)845 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
846 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
847 Value *IncV = Phi->getIncomingValue(LatchIdx);
848
849 for (User *U : Phi->users())
850 if (U != Cond && U != IncV) return false;
851
852 for (User *U : IncV->users())
853 if (U != Cond && U != Phi) return false;
854 return true;
855 }
856
857 /// Return true if the given phi is a "counter" in L. A counter is an
858 /// add recurance (of integer or pointer type) with an arbitrary start, and a
859 /// step of 1. Note that L must have exactly one latch.
isLoopCounter(PHINode * Phi,Loop * L,ScalarEvolution * SE)860 static bool isLoopCounter(PHINode* Phi, Loop *L,
861 ScalarEvolution *SE) {
862 assert(Phi->getParent() == L->getHeader());
863 assert(L->getLoopLatch());
864
865 if (!SE->isSCEVable(Phi->getType()))
866 return false;
867
868 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
869 if (!AR || AR->getLoop() != L || !AR->isAffine())
870 return false;
871
872 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
873 if (!Step || !Step->isOne())
874 return false;
875
876 int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
877 Value *IncV = Phi->getIncomingValue(LatchIdx);
878 return (getLoopPhiForCounter(IncV, L) == Phi);
879 }
880
881 /// Search the loop header for a loop counter (anadd rec w/step of one)
882 /// suitable for use by LFTR. If multiple counters are available, select the
883 /// "best" one based profitable heuristics.
884 ///
885 /// BECount may be an i8* pointer type. The pointer difference is already
886 /// valid count without scaling the address stride, so it remains a pointer
887 /// expression as far as SCEV is concerned.
FindLoopCounter(Loop * L,BasicBlock * ExitingBB,const SCEV * BECount,ScalarEvolution * SE,DominatorTree * DT)888 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
889 const SCEV *BECount,
890 ScalarEvolution *SE, DominatorTree *DT) {
891 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
892
893 Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
894
895 // Loop over all of the PHI nodes, looking for a simple counter.
896 PHINode *BestPhi = nullptr;
897 const SCEV *BestInit = nullptr;
898 BasicBlock *LatchBlock = L->getLoopLatch();
899 assert(LatchBlock && "Must be in simplified form");
900 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
901
902 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
903 PHINode *Phi = cast<PHINode>(I);
904 if (!isLoopCounter(Phi, L, SE))
905 continue;
906
907 // Avoid comparing an integer IV against a pointer Limit.
908 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
909 continue;
910
911 const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
912
913 // AR may be a pointer type, while BECount is an integer type.
914 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
915 // AR may not be a narrower type, or we may never exit.
916 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
917 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
918 continue;
919
920 // Avoid reusing a potentially undef value to compute other values that may
921 // have originally had a concrete definition.
922 if (!hasConcreteDef(Phi)) {
923 // We explicitly allow unknown phis as long as they are already used by
924 // the loop exit test. This is legal since performing LFTR could not
925 // increase the number of undef users.
926 Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
927 if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
928 !isLoopExitTestBasedOn(IncPhi, ExitingBB))
929 continue;
930 }
931
932 // Avoid introducing undefined behavior due to poison which didn't exist in
933 // the original program. (Annoyingly, the rules for poison and undef
934 // propagation are distinct, so this does NOT cover the undef case above.)
935 // We have to ensure that we don't introduce UB by introducing a use on an
936 // iteration where said IV produces poison. Our strategy here differs for
937 // pointers and integer IVs. For integers, we strip and reinfer as needed,
938 // see code in linearFunctionTestReplace. For pointers, we restrict
939 // transforms as there is no good way to reinfer inbounds once lost.
940 if (!Phi->getType()->isIntegerTy() &&
941 !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
942 continue;
943
944 const SCEV *Init = AR->getStart();
945
946 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
947 // Don't force a live loop counter if another IV can be used.
948 if (AlmostDeadIV(Phi, LatchBlock, Cond))
949 continue;
950
951 // Prefer to count-from-zero. This is a more "canonical" counter form. It
952 // also prefers integer to pointer IVs.
953 if (BestInit->isZero() != Init->isZero()) {
954 if (BestInit->isZero())
955 continue;
956 }
957 // If two IVs both count from zero or both count from nonzero then the
958 // narrower is likely a dead phi that has been widened. Use the wider phi
959 // to allow the other to be eliminated.
960 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
961 continue;
962 }
963 BestPhi = Phi;
964 BestInit = Init;
965 }
966 return BestPhi;
967 }
968
969 /// Insert an IR expression which computes the value held by the IV IndVar
970 /// (which must be an loop counter w/unit stride) after the backedge of loop L
971 /// is taken ExitCount times.
genLoopLimit(PHINode * IndVar,BasicBlock * ExitingBB,const SCEV * ExitCount,bool UsePostInc,Loop * L,SCEVExpander & Rewriter,ScalarEvolution * SE)972 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
973 const SCEV *ExitCount, bool UsePostInc, Loop *L,
974 SCEVExpander &Rewriter, ScalarEvolution *SE) {
975 assert(isLoopCounter(IndVar, L, SE));
976 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
977 const SCEV *IVInit = AR->getStart();
978
979 // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
980 // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
981 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
982 // the existing GEPs whenever possible.
983 if (IndVar->getType()->isPointerTy() &&
984 !ExitCount->getType()->isPointerTy()) {
985 // IVOffset will be the new GEP offset that is interpreted by GEP as a
986 // signed value. ExitCount on the other hand represents the loop trip count,
987 // which is an unsigned value. FindLoopCounter only allows induction
988 // variables that have a positive unit stride of one. This means we don't
989 // have to handle the case of negative offsets (yet) and just need to zero
990 // extend ExitCount.
991 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
992 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
993 if (UsePostInc)
994 IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
995
996 // Expand the code for the iteration count.
997 assert(SE->isLoopInvariant(IVOffset, L) &&
998 "Computed iteration count is not loop invariant!");
999
1000 // We could handle pointer IVs other than i8*, but we need to compensate for
1001 // gep index scaling.
1002 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1003 cast<PointerType>(IndVar->getType())
1004 ->getElementType())->isOne() &&
1005 "unit stride pointer IV must be i8*");
1006
1007 const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
1008 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1009 return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
1010 } else {
1011 // In any other case, convert both IVInit and ExitCount to integers before
1012 // comparing. This may result in SCEV expansion of pointers, but in practice
1013 // SCEV will fold the pointer arithmetic away as such:
1014 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1015 //
1016 // Valid Cases: (1) both integers is most common; (2) both may be pointers
1017 // for simple memset-style loops.
1018 //
1019 // IVInit integer and ExitCount pointer would only occur if a canonical IV
1020 // were generated on top of case #2, which is not expected.
1021
1022 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1023 // For unit stride, IVCount = Start + ExitCount with 2's complement
1024 // overflow.
1025
1026 // For integer IVs, truncate the IV before computing IVInit + BECount,
1027 // unless we know apriori that the limit must be a constant when evaluated
1028 // in the bitwidth of the IV. We prefer (potentially) keeping a truncate
1029 // of the IV in the loop over a (potentially) expensive expansion of the
1030 // widened exit count add(zext(add)) expression.
1031 if (SE->getTypeSizeInBits(IVInit->getType())
1032 > SE->getTypeSizeInBits(ExitCount->getType())) {
1033 if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
1034 ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
1035 else
1036 IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
1037 }
1038
1039 const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
1040
1041 if (UsePostInc)
1042 IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
1043
1044 // Expand the code for the iteration count.
1045 assert(SE->isLoopInvariant(IVLimit, L) &&
1046 "Computed iteration count is not loop invariant!");
1047 // Ensure that we generate the same type as IndVar, or a smaller integer
1048 // type. In the presence of null pointer values, we have an integer type
1049 // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1050 Type *LimitTy = ExitCount->getType()->isPointerTy() ?
1051 IndVar->getType() : ExitCount->getType();
1052 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1053 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1054 }
1055 }
1056
1057 /// This method rewrites the exit condition of the loop to be a canonical !=
1058 /// comparison against the incremented loop induction variable. This pass is
1059 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1060 /// determine a loop-invariant trip count of the loop, which is actually a much
1061 /// broader range than just linear tests.
1062 bool IndVarSimplify::
linearFunctionTestReplace(Loop * L,BasicBlock * ExitingBB,const SCEV * ExitCount,PHINode * IndVar,SCEVExpander & Rewriter)1063 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
1064 const SCEV *ExitCount,
1065 PHINode *IndVar, SCEVExpander &Rewriter) {
1066 assert(L->getLoopLatch() && "Loop no longer in simplified form?");
1067 assert(isLoopCounter(IndVar, L, SE));
1068 Instruction * const IncVar =
1069 cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
1070
1071 // Initialize CmpIndVar to the preincremented IV.
1072 Value *CmpIndVar = IndVar;
1073 bool UsePostInc = false;
1074
1075 // If the exiting block is the same as the backedge block, we prefer to
1076 // compare against the post-incremented value, otherwise we must compare
1077 // against the preincremented value.
1078 if (ExitingBB == L->getLoopLatch()) {
1079 // For pointer IVs, we chose to not strip inbounds which requires us not
1080 // to add a potentially UB introducing use. We need to either a) show
1081 // the loop test we're modifying is already in post-inc form, or b) show
1082 // that adding a use must not introduce UB.
1083 bool SafeToPostInc =
1084 IndVar->getType()->isIntegerTy() ||
1085 isLoopExitTestBasedOn(IncVar, ExitingBB) ||
1086 mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
1087 if (SafeToPostInc) {
1088 UsePostInc = true;
1089 CmpIndVar = IncVar;
1090 }
1091 }
1092
1093 // It may be necessary to drop nowrap flags on the incrementing instruction
1094 // if either LFTR moves from a pre-inc check to a post-inc check (in which
1095 // case the increment might have previously been poison on the last iteration
1096 // only) or if LFTR switches to a different IV that was previously dynamically
1097 // dead (and as such may be arbitrarily poison). We remove any nowrap flags
1098 // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
1099 // check), because the pre-inc addrec flags may be adopted from the original
1100 // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
1101 // TODO: This handling is inaccurate for one case: If we switch to a
1102 // dynamically dead IV that wraps on the first loop iteration only, which is
1103 // not covered by the post-inc addrec. (If the new IV was not dynamically
1104 // dead, it could not be poison on the first iteration in the first place.)
1105 if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
1106 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
1107 if (BO->hasNoUnsignedWrap())
1108 BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
1109 if (BO->hasNoSignedWrap())
1110 BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
1111 }
1112
1113 Value *ExitCnt = genLoopLimit(
1114 IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
1115 assert(ExitCnt->getType()->isPointerTy() ==
1116 IndVar->getType()->isPointerTy() &&
1117 "genLoopLimit missed a cast");
1118
1119 // Insert a new icmp_ne or icmp_eq instruction before the branch.
1120 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1121 ICmpInst::Predicate P;
1122 if (L->contains(BI->getSuccessor(0)))
1123 P = ICmpInst::ICMP_NE;
1124 else
1125 P = ICmpInst::ICMP_EQ;
1126
1127 IRBuilder<> Builder(BI);
1128
1129 // The new loop exit condition should reuse the debug location of the
1130 // original loop exit condition.
1131 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
1132 Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
1133
1134 // For integer IVs, if we evaluated the limit in the narrower bitwidth to
1135 // avoid the expensive expansion of the limit expression in the wider type,
1136 // emit a truncate to narrow the IV to the ExitCount type. This is safe
1137 // since we know (from the exit count bitwidth), that we can't self-wrap in
1138 // the narrower type.
1139 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1140 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1141 if (CmpIndVarSize > ExitCntSize) {
1142 assert(!CmpIndVar->getType()->isPointerTy() &&
1143 !ExitCnt->getType()->isPointerTy());
1144
1145 // Before resorting to actually inserting the truncate, use the same
1146 // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
1147 // the other side of the comparison instead. We still evaluate the limit
1148 // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
1149 // a truncate within in.
1150 bool Extended = false;
1151 const SCEV *IV = SE->getSCEV(CmpIndVar);
1152 const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
1153 ExitCnt->getType());
1154 const SCEV *ZExtTrunc =
1155 SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
1156
1157 if (ZExtTrunc == IV) {
1158 Extended = true;
1159 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
1160 "wide.trip.count");
1161 } else {
1162 const SCEV *SExtTrunc =
1163 SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
1164 if (SExtTrunc == IV) {
1165 Extended = true;
1166 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
1167 "wide.trip.count");
1168 }
1169 }
1170
1171 if (Extended) {
1172 bool Discard;
1173 L->makeLoopInvariant(ExitCnt, Discard);
1174 } else
1175 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1176 "lftr.wideiv");
1177 }
1178 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1179 << " LHS:" << *CmpIndVar << '\n'
1180 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
1181 << "\n"
1182 << " RHS:\t" << *ExitCnt << "\n"
1183 << "ExitCount:\t" << *ExitCount << "\n"
1184 << " was: " << *BI->getCondition() << "\n");
1185
1186 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1187 Value *OrigCond = BI->getCondition();
1188 // It's tempting to use replaceAllUsesWith here to fully replace the old
1189 // comparison, but that's not immediately safe, since users of the old
1190 // comparison may not be dominated by the new comparison. Instead, just
1191 // update the branch to use the new comparison; in the common case this
1192 // will make old comparison dead.
1193 BI->setCondition(Cond);
1194 DeadInsts.emplace_back(OrigCond);
1195
1196 ++NumLFTR;
1197 return true;
1198 }
1199
1200 //===----------------------------------------------------------------------===//
1201 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1202 //===----------------------------------------------------------------------===//
1203
1204 /// If there's a single exit block, sink any loop-invariant values that
1205 /// were defined in the preheader but not used inside the loop into the
1206 /// exit block to reduce register pressure in the loop.
sinkUnusedInvariants(Loop * L)1207 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1208 BasicBlock *ExitBlock = L->getExitBlock();
1209 if (!ExitBlock) return false;
1210
1211 BasicBlock *Preheader = L->getLoopPreheader();
1212 if (!Preheader) return false;
1213
1214 bool MadeAnyChanges = false;
1215 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
1216 BasicBlock::iterator I(Preheader->getTerminator());
1217 while (I != Preheader->begin()) {
1218 --I;
1219 // New instructions were inserted at the end of the preheader.
1220 if (isa<PHINode>(I))
1221 break;
1222
1223 // Don't move instructions which might have side effects, since the side
1224 // effects need to complete before instructions inside the loop. Also don't
1225 // move instructions which might read memory, since the loop may modify
1226 // memory. Note that it's okay if the instruction might have undefined
1227 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1228 // block.
1229 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1230 continue;
1231
1232 // Skip debug info intrinsics.
1233 if (isa<DbgInfoIntrinsic>(I))
1234 continue;
1235
1236 // Skip eh pad instructions.
1237 if (I->isEHPad())
1238 continue;
1239
1240 // Don't sink alloca: we never want to sink static alloca's out of the
1241 // entry block, and correctly sinking dynamic alloca's requires
1242 // checks for stacksave/stackrestore intrinsics.
1243 // FIXME: Refactor this check somehow?
1244 if (isa<AllocaInst>(I))
1245 continue;
1246
1247 // Determine if there is a use in or before the loop (direct or
1248 // otherwise).
1249 bool UsedInLoop = false;
1250 for (Use &U : I->uses()) {
1251 Instruction *User = cast<Instruction>(U.getUser());
1252 BasicBlock *UseBB = User->getParent();
1253 if (PHINode *P = dyn_cast<PHINode>(User)) {
1254 unsigned i =
1255 PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1256 UseBB = P->getIncomingBlock(i);
1257 }
1258 if (UseBB == Preheader || L->contains(UseBB)) {
1259 UsedInLoop = true;
1260 break;
1261 }
1262 }
1263
1264 // If there is, the def must remain in the preheader.
1265 if (UsedInLoop)
1266 continue;
1267
1268 // Otherwise, sink it to the exit block.
1269 Instruction *ToMove = &*I;
1270 bool Done = false;
1271
1272 if (I != Preheader->begin()) {
1273 // Skip debug info intrinsics.
1274 do {
1275 --I;
1276 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1277
1278 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1279 Done = true;
1280 } else {
1281 Done = true;
1282 }
1283
1284 MadeAnyChanges = true;
1285 ToMove->moveBefore(*ExitBlock, InsertPt);
1286 if (Done) break;
1287 InsertPt = ToMove->getIterator();
1288 }
1289
1290 return MadeAnyChanges;
1291 }
1292
replaceExitCond(BranchInst * BI,Value * NewCond,SmallVectorImpl<WeakTrackingVH> & DeadInsts)1293 static void replaceExitCond(BranchInst *BI, Value *NewCond,
1294 SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1295 auto *OldCond = BI->getCondition();
1296 BI->setCondition(NewCond);
1297 if (OldCond->use_empty())
1298 DeadInsts.emplace_back(OldCond);
1299 }
1300
foldExit(const Loop * L,BasicBlock * ExitingBB,bool IsTaken,SmallVectorImpl<WeakTrackingVH> & DeadInsts)1301 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken,
1302 SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1303 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1304 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1305 auto *OldCond = BI->getCondition();
1306 auto *NewCond =
1307 ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue);
1308 replaceExitCond(BI, NewCond, DeadInsts);
1309 }
1310
replaceWithInvariantCond(const Loop * L,BasicBlock * ExitingBB,ICmpInst::Predicate InvariantPred,const SCEV * InvariantLHS,const SCEV * InvariantRHS,SCEVExpander & Rewriter,SmallVectorImpl<WeakTrackingVH> & DeadInsts)1311 static void replaceWithInvariantCond(
1312 const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred,
1313 const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter,
1314 SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1315 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1316 Rewriter.setInsertPoint(BI);
1317 auto *LHSV = Rewriter.expandCodeFor(InvariantLHS);
1318 auto *RHSV = Rewriter.expandCodeFor(InvariantRHS);
1319 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1320 if (ExitIfTrue)
1321 InvariantPred = ICmpInst::getInversePredicate(InvariantPred);
1322 IRBuilder<> Builder(BI);
1323 auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV,
1324 BI->getCondition()->getName());
1325 replaceExitCond(BI, NewCond, DeadInsts);
1326 }
1327
optimizeLoopExitWithUnknownExitCount(const Loop * L,BranchInst * BI,BasicBlock * ExitingBB,const SCEV * MaxIter,bool Inverted,bool SkipLastIter,ScalarEvolution * SE,SCEVExpander & Rewriter,SmallVectorImpl<WeakTrackingVH> & DeadInsts)1328 static bool optimizeLoopExitWithUnknownExitCount(
1329 const Loop *L, BranchInst *BI, BasicBlock *ExitingBB,
1330 const SCEV *MaxIter, bool Inverted, bool SkipLastIter,
1331 ScalarEvolution *SE, SCEVExpander &Rewriter,
1332 SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1333 ICmpInst::Predicate Pred;
1334 Value *LHS, *RHS;
1335 using namespace PatternMatch;
1336 BasicBlock *TrueSucc, *FalseSucc;
1337 if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
1338 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc))))
1339 return false;
1340
1341 assert((L->contains(TrueSucc) != L->contains(FalseSucc)) &&
1342 "Not a loop exit!");
1343
1344 // 'LHS pred RHS' should now mean that we stay in loop.
1345 if (L->contains(FalseSucc))
1346 Pred = CmpInst::getInversePredicate(Pred);
1347
1348 // If we are proving loop exit, invert the predicate.
1349 if (Inverted)
1350 Pred = CmpInst::getInversePredicate(Pred);
1351
1352 const SCEV *LHSS = SE->getSCEVAtScope(LHS, L);
1353 const SCEV *RHSS = SE->getSCEVAtScope(RHS, L);
1354 // Can we prove it to be trivially true?
1355 if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) {
1356 foldExit(L, ExitingBB, Inverted, DeadInsts);
1357 return true;
1358 }
1359 // Further logic works for non-inverted condition only.
1360 if (Inverted)
1361 return false;
1362
1363 auto *ARTy = LHSS->getType();
1364 auto *MaxIterTy = MaxIter->getType();
1365 // If possible, adjust types.
1366 if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy))
1367 MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy);
1368 else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) {
1369 const SCEV *MinusOne = SE->getMinusOne(ARTy);
1370 auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy);
1371 if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI))
1372 MaxIter = SE->getTruncateExpr(MaxIter, ARTy);
1373 }
1374
1375 if (SkipLastIter) {
1376 const SCEV *One = SE->getOne(MaxIter->getType());
1377 MaxIter = SE->getMinusSCEV(MaxIter, One);
1378 }
1379
1380 // Check if there is a loop-invariant predicate equivalent to our check.
1381 auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS,
1382 L, BI, MaxIter);
1383 if (!LIP)
1384 return false;
1385
1386 // Can we prove it to be trivially true?
1387 if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI))
1388 foldExit(L, ExitingBB, Inverted, DeadInsts);
1389 else
1390 replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS,
1391 Rewriter, DeadInsts);
1392
1393 return true;
1394 }
1395
optimizeLoopExits(Loop * L,SCEVExpander & Rewriter)1396 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
1397 SmallVector<BasicBlock*, 16> ExitingBlocks;
1398 L->getExitingBlocks(ExitingBlocks);
1399
1400 // Remove all exits which aren't both rewriteable and execute on every
1401 // iteration.
1402 llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1403 // If our exitting block exits multiple loops, we can only rewrite the
1404 // innermost one. Otherwise, we're changing how many times the innermost
1405 // loop runs before it exits.
1406 if (LI->getLoopFor(ExitingBB) != L)
1407 return true;
1408
1409 // Can't rewrite non-branch yet.
1410 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1411 if (!BI)
1412 return true;
1413
1414 // If already constant, nothing to do.
1415 if (isa<Constant>(BI->getCondition()))
1416 return true;
1417
1418 // Likewise, the loop latch must be dominated by the exiting BB.
1419 if (!DT->dominates(ExitingBB, L->getLoopLatch()))
1420 return true;
1421
1422 return false;
1423 });
1424
1425 if (ExitingBlocks.empty())
1426 return false;
1427
1428 // Get a symbolic upper bound on the loop backedge taken count.
1429 const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L);
1430 if (isa<SCEVCouldNotCompute>(MaxExitCount))
1431 return false;
1432
1433 // Visit our exit blocks in order of dominance. We know from the fact that
1434 // all exits must dominate the latch, so there is a total dominance order
1435 // between them.
1436 llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) {
1437 // std::sort sorts in ascending order, so we want the inverse of
1438 // the normal dominance relation.
1439 if (A == B) return false;
1440 if (DT->properlyDominates(A, B))
1441 return true;
1442 else {
1443 assert(DT->properlyDominates(B, A) &&
1444 "expected total dominance order!");
1445 return false;
1446 }
1447 });
1448 #ifdef ASSERT
1449 for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
1450 assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
1451 }
1452 #endif
1453
1454 bool Changed = false;
1455 bool SkipLastIter = false;
1456 SmallSet<const SCEV*, 8> DominatingExitCounts;
1457 for (BasicBlock *ExitingBB : ExitingBlocks) {
1458 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1459 if (isa<SCEVCouldNotCompute>(ExitCount)) {
1460 // Okay, we do not know the exit count here. Can we at least prove that it
1461 // will remain the same within iteration space?
1462 auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1463 auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) {
1464 return optimizeLoopExitWithUnknownExitCount(
1465 L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE,
1466 Rewriter, DeadInsts);
1467 };
1468
1469 // TODO: We might have proved that we can skip the last iteration for
1470 // this check. In this case, we only want to check the condition on the
1471 // pre-last iteration (MaxExitCount - 1). However, there is a nasty
1472 // corner case:
1473 //
1474 // for (i = len; i != 0; i--) { ... check (i ult X) ... }
1475 //
1476 // If we could not prove that len != 0, then we also could not prove that
1477 // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then
1478 // OptimizeCond will likely not prove anything for it, even if it could
1479 // prove the same fact for len.
1480 //
1481 // As a temporary solution, we query both last and pre-last iterations in
1482 // hope that we will be able to prove triviality for at least one of
1483 // them. We can stop querying MaxExitCount for this case once SCEV
1484 // understands that (MaxExitCount - 1) will not overflow here.
1485 if (OptimizeCond(false, false) || OptimizeCond(true, false))
1486 Changed = true;
1487 else if (SkipLastIter)
1488 if (OptimizeCond(false, true) || OptimizeCond(true, true))
1489 Changed = true;
1490 continue;
1491 }
1492
1493 if (MaxExitCount == ExitCount)
1494 // If the loop has more than 1 iteration, all further checks will be
1495 // executed 1 iteration less.
1496 SkipLastIter = true;
1497
1498 // If we know we'd exit on the first iteration, rewrite the exit to
1499 // reflect this. This does not imply the loop must exit through this
1500 // exit; there may be an earlier one taken on the first iteration.
1501 // TODO: Given we know the backedge can't be taken, we should go ahead
1502 // and break it. Or at least, kill all the header phis and simplify.
1503 if (ExitCount->isZero()) {
1504 foldExit(L, ExitingBB, true, DeadInsts);
1505 Changed = true;
1506 continue;
1507 }
1508
1509 // If we end up with a pointer exit count, bail. Note that we can end up
1510 // with a pointer exit count for one exiting block, and not for another in
1511 // the same loop.
1512 if (!ExitCount->getType()->isIntegerTy() ||
1513 !MaxExitCount->getType()->isIntegerTy())
1514 continue;
1515
1516 Type *WiderType =
1517 SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
1518 ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
1519 MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
1520 assert(MaxExitCount->getType() == ExitCount->getType());
1521
1522 // Can we prove that some other exit must be taken strictly before this
1523 // one?
1524 if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
1525 MaxExitCount, ExitCount)) {
1526 foldExit(L, ExitingBB, false, DeadInsts);
1527 Changed = true;
1528 continue;
1529 }
1530
1531 // As we run, keep track of which exit counts we've encountered. If we
1532 // find a duplicate, we've found an exit which would have exited on the
1533 // exiting iteration, but (from the visit order) strictly follows another
1534 // which does the same and is thus dead.
1535 if (!DominatingExitCounts.insert(ExitCount).second) {
1536 foldExit(L, ExitingBB, false, DeadInsts);
1537 Changed = true;
1538 continue;
1539 }
1540
1541 // TODO: There might be another oppurtunity to leverage SCEV's reasoning
1542 // here. If we kept track of the min of dominanting exits so far, we could
1543 // discharge exits with EC >= MDEC. This is less powerful than the existing
1544 // transform (since later exits aren't considered), but potentially more
1545 // powerful for any case where SCEV can prove a >=u b, but neither a == b
1546 // or a >u b. Such a case is not currently known.
1547 }
1548 return Changed;
1549 }
1550
predicateLoopExits(Loop * L,SCEVExpander & Rewriter)1551 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1552 SmallVector<BasicBlock*, 16> ExitingBlocks;
1553 L->getExitingBlocks(ExitingBlocks);
1554
1555 // Finally, see if we can rewrite our exit conditions into a loop invariant
1556 // form. If we have a read-only loop, and we can tell that we must exit down
1557 // a path which does not need any of the values computed within the loop, we
1558 // can rewrite the loop to exit on the first iteration. Note that this
1559 // doesn't either a) tell us the loop exits on the first iteration (unless
1560 // *all* exits are predicateable) or b) tell us *which* exit might be taken.
1561 // This transformation looks a lot like a restricted form of dead loop
1562 // elimination, but restricted to read-only loops and without neccesssarily
1563 // needing to kill the loop entirely.
1564 if (!LoopPredication)
1565 return false;
1566
1567 if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1568 return false;
1569
1570 // Note: ExactBTC is the exact backedge taken count *iff* the loop exits
1571 // through *explicit* control flow. We have to eliminate the possibility of
1572 // implicit exits (see below) before we know it's truly exact.
1573 const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
1574 if (isa<SCEVCouldNotCompute>(ExactBTC) ||
1575 !SE->isLoopInvariant(ExactBTC, L) ||
1576 !isSafeToExpand(ExactBTC, *SE))
1577 return false;
1578
1579 // If we end up with a pointer exit count, bail. It may be unsized.
1580 if (!ExactBTC->getType()->isIntegerTy())
1581 return false;
1582
1583 auto BadExit = [&](BasicBlock *ExitingBB) {
1584 // If our exiting block exits multiple loops, we can only rewrite the
1585 // innermost one. Otherwise, we're changing how many times the innermost
1586 // loop runs before it exits.
1587 if (LI->getLoopFor(ExitingBB) != L)
1588 return true;
1589
1590 // Can't rewrite non-branch yet.
1591 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1592 if (!BI)
1593 return true;
1594
1595 // If already constant, nothing to do.
1596 if (isa<Constant>(BI->getCondition()))
1597 return true;
1598
1599 // If the exit block has phis, we need to be able to compute the values
1600 // within the loop which contains them. This assumes trivially lcssa phis
1601 // have already been removed; TODO: generalize
1602 BasicBlock *ExitBlock =
1603 BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
1604 if (!ExitBlock->phis().empty())
1605 return true;
1606
1607 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1608 assert(!isa<SCEVCouldNotCompute>(ExactBTC) && "implied by having exact trip count");
1609 if (!SE->isLoopInvariant(ExitCount, L) ||
1610 !isSafeToExpand(ExitCount, *SE))
1611 return true;
1612
1613 // If we end up with a pointer exit count, bail. It may be unsized.
1614 if (!ExitCount->getType()->isIntegerTy())
1615 return true;
1616
1617 return false;
1618 };
1619
1620 // If we have any exits which can't be predicated themselves, than we can't
1621 // predicate any exit which isn't guaranteed to execute before it. Consider
1622 // two exits (a) and (b) which would both exit on the same iteration. If we
1623 // can predicate (b), but not (a), and (a) preceeds (b) along some path, then
1624 // we could convert a loop from exiting through (a) to one exiting through
1625 // (b). Note that this problem exists only for exits with the same exit
1626 // count, and we could be more aggressive when exit counts are known inequal.
1627 llvm::sort(ExitingBlocks,
1628 [&](BasicBlock *A, BasicBlock *B) {
1629 // std::sort sorts in ascending order, so we want the inverse of
1630 // the normal dominance relation, plus a tie breaker for blocks
1631 // unordered by dominance.
1632 if (DT->properlyDominates(A, B)) return true;
1633 if (DT->properlyDominates(B, A)) return false;
1634 return A->getName() < B->getName();
1635 });
1636 // Check to see if our exit blocks are a total order (i.e. a linear chain of
1637 // exits before the backedge). If they aren't, reasoning about reachability
1638 // is complicated and we choose not to for now.
1639 for (unsigned i = 1; i < ExitingBlocks.size(); i++)
1640 if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
1641 return false;
1642
1643 // Given our sorted total order, we know that exit[j] must be evaluated
1644 // after all exit[i] such j > i.
1645 for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
1646 if (BadExit(ExitingBlocks[i])) {
1647 ExitingBlocks.resize(i);
1648 break;
1649 }
1650
1651 if (ExitingBlocks.empty())
1652 return false;
1653
1654 // We rely on not being able to reach an exiting block on a later iteration
1655 // then it's statically compute exit count. The implementaton of
1656 // getExitCount currently has this invariant, but assert it here so that
1657 // breakage is obvious if this ever changes..
1658 assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1659 return DT->dominates(ExitingBB, L->getLoopLatch());
1660 }));
1661
1662 // At this point, ExitingBlocks consists of only those blocks which are
1663 // predicatable. Given that, we know we have at least one exit we can
1664 // predicate if the loop is doesn't have side effects and doesn't have any
1665 // implicit exits (because then our exact BTC isn't actually exact).
1666 // @Reviewers - As structured, this is O(I^2) for loop nests. Any
1667 // suggestions on how to improve this? I can obviously bail out for outer
1668 // loops, but that seems less than ideal. MemorySSA can find memory writes,
1669 // is that enough for *all* side effects?
1670 for (BasicBlock *BB : L->blocks())
1671 for (auto &I : *BB)
1672 // TODO:isGuaranteedToTransfer
1673 if (I.mayHaveSideEffects() || I.mayThrow())
1674 return false;
1675
1676 bool Changed = false;
1677 // Finally, do the actual predication for all predicatable blocks. A couple
1678 // of notes here:
1679 // 1) We don't bother to constant fold dominated exits with identical exit
1680 // counts; that's simply a form of CSE/equality propagation and we leave
1681 // it for dedicated passes.
1682 // 2) We insert the comparison at the branch. Hoisting introduces additional
1683 // legality constraints and we leave that to dedicated logic. We want to
1684 // predicate even if we can't insert a loop invariant expression as
1685 // peeling or unrolling will likely reduce the cost of the otherwise loop
1686 // varying check.
1687 Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
1688 IRBuilder<> B(L->getLoopPreheader()->getTerminator());
1689 Value *ExactBTCV = nullptr; // Lazily generated if needed.
1690 for (BasicBlock *ExitingBB : ExitingBlocks) {
1691 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1692
1693 auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1694 Value *NewCond;
1695 if (ExitCount == ExactBTC) {
1696 NewCond = L->contains(BI->getSuccessor(0)) ?
1697 B.getFalse() : B.getTrue();
1698 } else {
1699 Value *ECV = Rewriter.expandCodeFor(ExitCount);
1700 if (!ExactBTCV)
1701 ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
1702 Value *RHS = ExactBTCV;
1703 if (ECV->getType() != RHS->getType()) {
1704 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1705 ECV = B.CreateZExt(ECV, WiderTy);
1706 RHS = B.CreateZExt(RHS, WiderTy);
1707 }
1708 auto Pred = L->contains(BI->getSuccessor(0)) ?
1709 ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
1710 NewCond = B.CreateICmp(Pred, ECV, RHS);
1711 }
1712 Value *OldCond = BI->getCondition();
1713 BI->setCondition(NewCond);
1714 if (OldCond->use_empty())
1715 DeadInsts.emplace_back(OldCond);
1716 Changed = true;
1717 }
1718
1719 return Changed;
1720 }
1721
1722 //===----------------------------------------------------------------------===//
1723 // IndVarSimplify driver. Manage several subpasses of IV simplification.
1724 //===----------------------------------------------------------------------===//
1725
run(Loop * L)1726 bool IndVarSimplify::run(Loop *L) {
1727 // We need (and expect!) the incoming loop to be in LCSSA.
1728 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1729 "LCSSA required to run indvars!");
1730
1731 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1732 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1733 // canonicalization can be a pessimization without LSR to "clean up"
1734 // afterwards.
1735 // - We depend on having a preheader; in particular,
1736 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
1737 // and we're in trouble if we can't find the induction variable even when
1738 // we've manually inserted one.
1739 // - LFTR relies on having a single backedge.
1740 if (!L->isLoopSimplifyForm())
1741 return false;
1742
1743 #ifndef NDEBUG
1744 // Used below for a consistency check only
1745 // Note: Since the result returned by ScalarEvolution may depend on the order
1746 // in which previous results are added to its cache, the call to
1747 // getBackedgeTakenCount() may change following SCEV queries.
1748 const SCEV *BackedgeTakenCount;
1749 if (VerifyIndvars)
1750 BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1751 #endif
1752
1753 bool Changed = false;
1754 // If there are any floating-point recurrences, attempt to
1755 // transform them to use integer recurrences.
1756 Changed |= rewriteNonIntegerIVs(L);
1757
1758 // Create a rewriter object which we'll use to transform the code with.
1759 SCEVExpander Rewriter(*SE, DL, "indvars");
1760 #ifndef NDEBUG
1761 Rewriter.setDebugType(DEBUG_TYPE);
1762 #endif
1763
1764 // Eliminate redundant IV users.
1765 //
1766 // Simplification works best when run before other consumers of SCEV. We
1767 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1768 // other expressions involving loop IVs have been evaluated. This helps SCEV
1769 // set no-wrap flags before normalizing sign/zero extension.
1770 Rewriter.disableCanonicalMode();
1771 Changed |= simplifyAndExtend(L, Rewriter, LI);
1772
1773 // Check to see if we can compute the final value of any expressions
1774 // that are recurrent in the loop, and substitute the exit values from the
1775 // loop into any instructions outside of the loop that use the final values
1776 // of the current expressions.
1777 if (ReplaceExitValue != NeverRepl) {
1778 if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
1779 ReplaceExitValue, DeadInsts)) {
1780 NumReplaced += Rewrites;
1781 Changed = true;
1782 }
1783 }
1784
1785 // Eliminate redundant IV cycles.
1786 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1787
1788 // Try to eliminate loop exits based on analyzeable exit counts
1789 if (optimizeLoopExits(L, Rewriter)) {
1790 Changed = true;
1791 // Given we've changed exit counts, notify SCEV
1792 // Some nested loops may share same folded exit basic block,
1793 // thus we need to notify top most loop.
1794 SE->forgetTopmostLoop(L);
1795 }
1796
1797 // Try to form loop invariant tests for loop exits by changing how many
1798 // iterations of the loop run when that is unobservable.
1799 if (predicateLoopExits(L, Rewriter)) {
1800 Changed = true;
1801 // Given we've changed exit counts, notify SCEV
1802 SE->forgetLoop(L);
1803 }
1804
1805 // If we have a trip count expression, rewrite the loop's exit condition
1806 // using it.
1807 if (!DisableLFTR) {
1808 BasicBlock *PreHeader = L->getLoopPreheader();
1809 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
1810
1811 SmallVector<BasicBlock*, 16> ExitingBlocks;
1812 L->getExitingBlocks(ExitingBlocks);
1813 for (BasicBlock *ExitingBB : ExitingBlocks) {
1814 // Can't rewrite non-branch yet.
1815 if (!isa<BranchInst>(ExitingBB->getTerminator()))
1816 continue;
1817
1818 // If our exitting block exits multiple loops, we can only rewrite the
1819 // innermost one. Otherwise, we're changing how many times the innermost
1820 // loop runs before it exits.
1821 if (LI->getLoopFor(ExitingBB) != L)
1822 continue;
1823
1824 if (!needsLFTR(L, ExitingBB))
1825 continue;
1826
1827 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1828 if (isa<SCEVCouldNotCompute>(ExitCount))
1829 continue;
1830
1831 // This was handled above, but as we form SCEVs, we can sometimes refine
1832 // existing ones; this allows exit counts to be folded to zero which
1833 // weren't when optimizeLoopExits saw them. Arguably, we should iterate
1834 // until stable to handle cases like this better.
1835 if (ExitCount->isZero())
1836 continue;
1837
1838 PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
1839 if (!IndVar)
1840 continue;
1841
1842 // Avoid high cost expansions. Note: This heuristic is questionable in
1843 // that our definition of "high cost" is not exactly principled.
1844 if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
1845 TTI, PreHeaderBR))
1846 continue;
1847
1848 // Check preconditions for proper SCEVExpander operation. SCEV does not
1849 // express SCEVExpander's dependencies, such as LoopSimplify. Instead
1850 // any pass that uses the SCEVExpander must do it. This does not work
1851 // well for loop passes because SCEVExpander makes assumptions about
1852 // all loops, while LoopPassManager only forces the current loop to be
1853 // simplified.
1854 //
1855 // FIXME: SCEV expansion has no way to bail out, so the caller must
1856 // explicitly check any assumptions made by SCEV. Brittle.
1857 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
1858 if (!AR || AR->getLoop()->getLoopPreheader())
1859 Changed |= linearFunctionTestReplace(L, ExitingBB,
1860 ExitCount, IndVar,
1861 Rewriter);
1862 }
1863 }
1864 // Clear the rewriter cache, because values that are in the rewriter's cache
1865 // can be deleted in the loop below, causing the AssertingVH in the cache to
1866 // trigger.
1867 Rewriter.clear();
1868
1869 // Now that we're done iterating through lists, clean up any instructions
1870 // which are now dead.
1871 while (!DeadInsts.empty()) {
1872 Value *V = DeadInsts.pop_back_val();
1873
1874 if (PHINode *PHI = dyn_cast_or_null<PHINode>(V))
1875 Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get());
1876 else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
1877 Changed |=
1878 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
1879 }
1880
1881 // The Rewriter may not be used from this point on.
1882
1883 // Loop-invariant instructions in the preheader that aren't used in the
1884 // loop may be sunk below the loop to reduce register pressure.
1885 Changed |= sinkUnusedInvariants(L);
1886
1887 // rewriteFirstIterationLoopExitValues does not rely on the computation of
1888 // trip count and therefore can further simplify exit values in addition to
1889 // rewriteLoopExitValues.
1890 Changed |= rewriteFirstIterationLoopExitValues(L);
1891
1892 // Clean up dead instructions.
1893 Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
1894
1895 // Check a post-condition.
1896 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1897 "Indvars did not preserve LCSSA!");
1898
1899 // Verify that LFTR, and any other change have not interfered with SCEV's
1900 // ability to compute trip count. We may have *changed* the exit count, but
1901 // only by reducing it.
1902 #ifndef NDEBUG
1903 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1904 SE->forgetLoop(L);
1905 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1906 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1907 SE->getTypeSizeInBits(NewBECount->getType()))
1908 NewBECount = SE->getTruncateOrNoop(NewBECount,
1909 BackedgeTakenCount->getType());
1910 else
1911 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1912 NewBECount->getType());
1913 assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount,
1914 NewBECount) && "indvars must preserve SCEV");
1915 }
1916 if (VerifyMemorySSA && MSSAU)
1917 MSSAU->getMemorySSA()->verifyMemorySSA();
1918 #endif
1919
1920 return Changed;
1921 }
1922
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)1923 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
1924 LoopStandardAnalysisResults &AR,
1925 LPMUpdater &) {
1926 Function *F = L.getHeader()->getParent();
1927 const DataLayout &DL = F->getParent()->getDataLayout();
1928
1929 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA,
1930 WidenIndVars && AllowIVWidening);
1931 if (!IVS.run(&L))
1932 return PreservedAnalyses::all();
1933
1934 auto PA = getLoopPassPreservedAnalyses();
1935 PA.preserveSet<CFGAnalyses>();
1936 if (AR.MSSA)
1937 PA.preserve<MemorySSAAnalysis>();
1938 return PA;
1939 }
1940
1941 namespace {
1942
1943 struct IndVarSimplifyLegacyPass : public LoopPass {
1944 static char ID; // Pass identification, replacement for typeid
1945
IndVarSimplifyLegacyPass__anon0eacf89c0911::IndVarSimplifyLegacyPass1946 IndVarSimplifyLegacyPass() : LoopPass(ID) {
1947 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
1948 }
1949
runOnLoop__anon0eacf89c0911::IndVarSimplifyLegacyPass1950 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1951 if (skipLoop(L))
1952 return false;
1953
1954 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1955 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1956 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1957 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1958 auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
1959 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
1960 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
1961 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1962 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
1963 MemorySSA *MSSA = nullptr;
1964 if (MSSAAnalysis)
1965 MSSA = &MSSAAnalysis->getMSSA();
1966
1967 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening);
1968 return IVS.run(L);
1969 }
1970
getAnalysisUsage__anon0eacf89c0911::IndVarSimplifyLegacyPass1971 void getAnalysisUsage(AnalysisUsage &AU) const override {
1972 AU.setPreservesCFG();
1973 AU.addPreserved<MemorySSAWrapperPass>();
1974 getLoopAnalysisUsage(AU);
1975 }
1976 };
1977
1978 } // end anonymous namespace
1979
1980 char IndVarSimplifyLegacyPass::ID = 0;
1981
1982 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
1983 "Induction Variable Simplification", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)1984 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1985 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
1986 "Induction Variable Simplification", false, false)
1987
1988 Pass *llvm::createIndVarSimplifyPass() {
1989 return new IndVarSimplifyLegacyPass();
1990 }
1991