1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/ValueHandle.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/KnownBits.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
73 #include "llvm/Transforms/Utils/Local.h"
74 #include "llvm/Transforms/Utils/SSAUpdater.h"
75 #include "llvm/Transforms/Utils/ValueMapper.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <climits>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <set>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 using namespace PatternMatch;
90 
91 #define DEBUG_TYPE "simplifycfg"
92 
93 cl::opt<bool> llvm::RequireAndPreserveDomTree(
94     "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
95     cl::init(false),
96     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
97              "into preserving DomTree,"));
98 
99 // Chosen as 2 so as to be cheap, but still to have enough power to fold
100 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
101 // To catch this, we need to fold a compare and a select, hence '2' being the
102 // minimum reasonable default.
103 static cl::opt<unsigned> PHINodeFoldingThreshold(
104     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
105     cl::desc(
106         "Control the amount of phi node folding to perform (default = 2)"));
107 
108 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
109     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
110     cl::desc("Control the maximal total instruction cost that we are willing "
111              "to speculatively execute to fold a 2-entry PHI node into a "
112              "select (default = 4)"));
113 
114 static cl::opt<bool> DupRet(
115     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
116     cl::desc("Duplicate return instructions into unconditional branches"));
117 
118 static cl::opt<bool>
119     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
120                 cl::desc("Hoist common instructions up to the parent block"));
121 
122 static cl::opt<bool>
123     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
124                cl::desc("Sink common instructions down to the end block"));
125 
126 static cl::opt<bool> HoistCondStores(
127     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
128     cl::desc("Hoist conditional stores if an unconditional store precedes"));
129 
130 static cl::opt<bool> MergeCondStores(
131     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
132     cl::desc("Hoist conditional stores even if an unconditional store does not "
133              "precede - hoist multiple conditional stores into a single "
134              "predicated store"));
135 
136 static cl::opt<bool> MergeCondStoresAggressively(
137     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
138     cl::desc("When merging conditional stores, do so even if the resultant "
139              "basic blocks are unlikely to be if-converted as a result"));
140 
141 static cl::opt<bool> SpeculateOneExpensiveInst(
142     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
143     cl::desc("Allow exactly one expensive instruction to be speculatively "
144              "executed"));
145 
146 static cl::opt<unsigned> MaxSpeculationDepth(
147     "max-speculation-depth", cl::Hidden, cl::init(10),
148     cl::desc("Limit maximum recursion depth when calculating costs of "
149              "speculatively executed instructions"));
150 
151 static cl::opt<int>
152 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, cl::init(10),
153                   cl::desc("Max size of a block which is still considered "
154                            "small enough to thread through"));
155 
156 // Two is chosen to allow one negation and a logical combine.
157 static cl::opt<unsigned>
158     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
159                         cl::init(2),
160                         cl::desc("Maximum cost of combining conditions when "
161                                  "folding branches"));
162 
163 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
164 STATISTIC(NumLinearMaps,
165           "Number of switch instructions turned into linear mapping");
166 STATISTIC(NumLookupTables,
167           "Number of switch instructions turned into lookup tables");
168 STATISTIC(
169     NumLookupTablesHoles,
170     "Number of switch instructions turned into lookup tables (holes checked)");
171 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
172 STATISTIC(NumFoldValueComparisonIntoPredecessors,
173           "Number of value comparisons folded into predecessor basic blocks");
174 STATISTIC(NumFoldBranchToCommonDest,
175           "Number of branches folded into predecessor basic block");
176 STATISTIC(
177     NumHoistCommonCode,
178     "Number of common instruction 'blocks' hoisted up to the begin block");
179 STATISTIC(NumHoistCommonInstrs,
180           "Number of common instructions hoisted up to the begin block");
181 STATISTIC(NumSinkCommonCode,
182           "Number of common instruction 'blocks' sunk down to the end block");
183 STATISTIC(NumSinkCommonInstrs,
184           "Number of common instructions sunk down to the end block");
185 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
186 STATISTIC(NumInvokes,
187           "Number of invokes with empty resume blocks simplified into calls");
188 
189 namespace {
190 
191 // The first field contains the value that the switch produces when a certain
192 // case group is selected, and the second field is a vector containing the
193 // cases composing the case group.
194 using SwitchCaseResultVectorTy =
195     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
196 
197 // The first field contains the phi node that generates a result of the switch
198 // and the second field contains the value generated for a certain case in the
199 // switch for that PHI.
200 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
201 
202 /// ValueEqualityComparisonCase - Represents a case of a switch.
203 struct ValueEqualityComparisonCase {
204   ConstantInt *Value;
205   BasicBlock *Dest;
206 
ValueEqualityComparisonCase__anon5fcf8e030111::ValueEqualityComparisonCase207   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
208       : Value(Value), Dest(Dest) {}
209 
operator <__anon5fcf8e030111::ValueEqualityComparisonCase210   bool operator<(ValueEqualityComparisonCase RHS) const {
211     // Comparing pointers is ok as we only rely on the order for uniquing.
212     return Value < RHS.Value;
213   }
214 
operator ==__anon5fcf8e030111::ValueEqualityComparisonCase215   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
216 };
217 
218 class SimplifyCFGOpt {
219   const TargetTransformInfo &TTI;
220   DomTreeUpdater *DTU;
221   const DataLayout &DL;
222   ArrayRef<WeakVH> LoopHeaders;
223   const SimplifyCFGOptions &Options;
224   bool Resimplify;
225 
226   Value *isValueEqualityComparison(Instruction *TI);
227   BasicBlock *GetValueEqualityComparisonCases(
228       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
229   bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
230                                                      BasicBlock *Pred,
231                                                      IRBuilder<> &Builder);
232   bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
233                                                     Instruction *PTI,
234                                                     IRBuilder<> &Builder);
235   bool FoldValueComparisonIntoPredecessors(Instruction *TI,
236                                            IRBuilder<> &Builder);
237 
238   bool simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
239   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
240   bool simplifySingleResume(ResumeInst *RI);
241   bool simplifyCommonResume(ResumeInst *RI);
242   bool simplifyCleanupReturn(CleanupReturnInst *RI);
243   bool simplifyUnreachable(UnreachableInst *UI);
244   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
245   bool simplifyIndirectBr(IndirectBrInst *IBI);
246   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
247   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
248   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
249   bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder);
250 
251   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
252                                              IRBuilder<> &Builder);
253 
254   bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI);
255   bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
256                               const TargetTransformInfo &TTI);
257   bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
258                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
259                                   uint32_t TrueWeight, uint32_t FalseWeight);
260   bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
261                                  const DataLayout &DL);
262   bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
263   bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
264   bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
265 
266 public:
SimplifyCFGOpt(const TargetTransformInfo & TTI,DomTreeUpdater * DTU,const DataLayout & DL,ArrayRef<WeakVH> LoopHeaders,const SimplifyCFGOptions & Opts)267   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
268                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
269                  const SimplifyCFGOptions &Opts)
270       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
271     assert((!DTU || !DTU->hasPostDomTree()) &&
272            "SimplifyCFG is not yet capable of maintaining validity of a "
273            "PostDomTree, so don't ask for it.");
274   }
275 
276   bool simplifyOnce(BasicBlock *BB);
277   bool simplifyOnceImpl(BasicBlock *BB);
278   bool run(BasicBlock *BB);
279 
280   // Helper to set Resimplify and return change indication.
requestResimplify()281   bool requestResimplify() {
282     Resimplify = true;
283     return true;
284   }
285 };
286 
287 } // end anonymous namespace
288 
289 /// Return true if it is safe to merge these two
290 /// terminator instructions together.
291 static bool
SafeToMergeTerminators(Instruction * SI1,Instruction * SI2,SmallSetVector<BasicBlock *,4> * FailBlocks=nullptr)292 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
293                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
294   if (SI1 == SI2)
295     return false; // Can't merge with self!
296 
297   // It is not safe to merge these two switch instructions if they have a common
298   // successor, and if that successor has a PHI node, and if *that* PHI node has
299   // conflicting incoming values from the two switch blocks.
300   BasicBlock *SI1BB = SI1->getParent();
301   BasicBlock *SI2BB = SI2->getParent();
302 
303   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
304   bool Fail = false;
305   for (BasicBlock *Succ : successors(SI2BB))
306     if (SI1Succs.count(Succ))
307       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
308         PHINode *PN = cast<PHINode>(BBI);
309         if (PN->getIncomingValueForBlock(SI1BB) !=
310             PN->getIncomingValueForBlock(SI2BB)) {
311           if (FailBlocks)
312             FailBlocks->insert(Succ);
313           Fail = true;
314         }
315       }
316 
317   return !Fail;
318 }
319 
320 /// Update PHI nodes in Succ to indicate that there will now be entries in it
321 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
322 /// will be the same as those coming in from ExistPred, an existing predecessor
323 /// of Succ.
AddPredecessorToBlock(BasicBlock * Succ,BasicBlock * NewPred,BasicBlock * ExistPred,MemorySSAUpdater * MSSAU=nullptr)324 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
325                                   BasicBlock *ExistPred,
326                                   MemorySSAUpdater *MSSAU = nullptr) {
327   for (PHINode &PN : Succ->phis())
328     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
329   if (MSSAU)
330     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
331       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
332 }
333 
334 /// Compute an abstract "cost" of speculating the given instruction,
335 /// which is assumed to be safe to speculate. TCC_Free means cheap,
336 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
337 /// expensive.
ComputeSpeculationCost(const User * I,const TargetTransformInfo & TTI)338 static unsigned ComputeSpeculationCost(const User *I,
339                                        const TargetTransformInfo &TTI) {
340   assert(isSafeToSpeculativelyExecute(I) &&
341          "Instruction is not safe to speculatively execute!");
342   return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
343 }
344 
345 /// If we have a merge point of an "if condition" as accepted above,
346 /// return true if the specified value dominates the block.  We
347 /// don't handle the true generality of domination here, just a special case
348 /// which works well enough for us.
349 ///
350 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
351 /// see if V (which must be an instruction) and its recursive operands
352 /// that do not dominate BB have a combined cost lower than CostRemaining and
353 /// are non-trapping.  If both are true, the instruction is inserted into the
354 /// set and true is returned.
355 ///
356 /// The cost for most non-trapping instructions is defined as 1 except for
357 /// Select whose cost is 2.
358 ///
359 /// After this function returns, CostRemaining is decreased by the cost of
360 /// V plus its non-dominating operands.  If that cost is greater than
361 /// CostRemaining, false is returned and CostRemaining is undefined.
DominatesMergePoint(Value * V,BasicBlock * BB,SmallPtrSetImpl<Instruction * > & AggressiveInsts,int & BudgetRemaining,const TargetTransformInfo & TTI,unsigned Depth=0)362 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
363                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
364                                 int &BudgetRemaining,
365                                 const TargetTransformInfo &TTI,
366                                 unsigned Depth = 0) {
367   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
368   // so limit the recursion depth.
369   // TODO: While this recursion limit does prevent pathological behavior, it
370   // would be better to track visited instructions to avoid cycles.
371   if (Depth == MaxSpeculationDepth)
372     return false;
373 
374   Instruction *I = dyn_cast<Instruction>(V);
375   if (!I) {
376     // Non-instructions all dominate instructions, but not all constantexprs
377     // can be executed unconditionally.
378     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
379       if (C->canTrap())
380         return false;
381     return true;
382   }
383   BasicBlock *PBB = I->getParent();
384 
385   // We don't want to allow weird loops that might have the "if condition" in
386   // the bottom of this block.
387   if (PBB == BB)
388     return false;
389 
390   // If this instruction is defined in a block that contains an unconditional
391   // branch to BB, then it must be in the 'conditional' part of the "if
392   // statement".  If not, it definitely dominates the region.
393   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
394   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
395     return true;
396 
397   // If we have seen this instruction before, don't count it again.
398   if (AggressiveInsts.count(I))
399     return true;
400 
401   // Okay, it looks like the instruction IS in the "condition".  Check to
402   // see if it's a cheap instruction to unconditionally compute, and if it
403   // only uses stuff defined outside of the condition.  If so, hoist it out.
404   if (!isSafeToSpeculativelyExecute(I))
405     return false;
406 
407   BudgetRemaining -= ComputeSpeculationCost(I, TTI);
408 
409   // Allow exactly one instruction to be speculated regardless of its cost
410   // (as long as it is safe to do so).
411   // This is intended to flatten the CFG even if the instruction is a division
412   // or other expensive operation. The speculation of an expensive instruction
413   // is expected to be undone in CodeGenPrepare if the speculation has not
414   // enabled further IR optimizations.
415   if (BudgetRemaining < 0 &&
416       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
417     return false;
418 
419   // Okay, we can only really hoist these out if their operands do
420   // not take us over the cost threshold.
421   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
422     if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
423                              Depth + 1))
424       return false;
425   // Okay, it's safe to do this!  Remember this instruction.
426   AggressiveInsts.insert(I);
427   return true;
428 }
429 
430 /// Extract ConstantInt from value, looking through IntToPtr
431 /// and PointerNullValue. Return NULL if value is not a constant int.
GetConstantInt(Value * V,const DataLayout & DL)432 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
433   // Normal constant int.
434   ConstantInt *CI = dyn_cast<ConstantInt>(V);
435   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
436     return CI;
437 
438   // This is some kind of pointer constant. Turn it into a pointer-sized
439   // ConstantInt if possible.
440   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
441 
442   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
443   if (isa<ConstantPointerNull>(V))
444     return ConstantInt::get(PtrTy, 0);
445 
446   // IntToPtr const int.
447   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
448     if (CE->getOpcode() == Instruction::IntToPtr)
449       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
450         // The constant is very likely to have the right type already.
451         if (CI->getType() == PtrTy)
452           return CI;
453         else
454           return cast<ConstantInt>(
455               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
456       }
457   return nullptr;
458 }
459 
460 namespace {
461 
462 /// Given a chain of or (||) or and (&&) comparison of a value against a
463 /// constant, this will try to recover the information required for a switch
464 /// structure.
465 /// It will depth-first traverse the chain of comparison, seeking for patterns
466 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
467 /// representing the different cases for the switch.
468 /// Note that if the chain is composed of '||' it will build the set of elements
469 /// that matches the comparisons (i.e. any of this value validate the chain)
470 /// while for a chain of '&&' it will build the set elements that make the test
471 /// fail.
472 struct ConstantComparesGatherer {
473   const DataLayout &DL;
474 
475   /// Value found for the switch comparison
476   Value *CompValue = nullptr;
477 
478   /// Extra clause to be checked before the switch
479   Value *Extra = nullptr;
480 
481   /// Set of integers to match in switch
482   SmallVector<ConstantInt *, 8> Vals;
483 
484   /// Number of comparisons matched in the and/or chain
485   unsigned UsedICmps = 0;
486 
487   /// Construct and compute the result for the comparison instruction Cond
ConstantComparesGatherer__anon5fcf8e030211::ConstantComparesGatherer488   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
489     gather(Cond);
490   }
491 
492   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
493   ConstantComparesGatherer &
494   operator=(const ConstantComparesGatherer &) = delete;
495 
496 private:
497   /// Try to set the current value used for the comparison, it succeeds only if
498   /// it wasn't set before or if the new value is the same as the old one
setValueOnce__anon5fcf8e030211::ConstantComparesGatherer499   bool setValueOnce(Value *NewVal) {
500     if (CompValue && CompValue != NewVal)
501       return false;
502     CompValue = NewVal;
503     return (CompValue != nullptr);
504   }
505 
506   /// Try to match Instruction "I" as a comparison against a constant and
507   /// populates the array Vals with the set of values that match (or do not
508   /// match depending on isEQ).
509   /// Return false on failure. On success, the Value the comparison matched
510   /// against is placed in CompValue.
511   /// If CompValue is already set, the function is expected to fail if a match
512   /// is found but the value compared to is different.
matchInstruction__anon5fcf8e030211::ConstantComparesGatherer513   bool matchInstruction(Instruction *I, bool isEQ) {
514     // If this is an icmp against a constant, handle this as one of the cases.
515     ICmpInst *ICI;
516     ConstantInt *C;
517     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
518           (C = GetConstantInt(I->getOperand(1), DL)))) {
519       return false;
520     }
521 
522     Value *RHSVal;
523     const APInt *RHSC;
524 
525     // Pattern match a special case
526     // (x & ~2^z) == y --> x == y || x == y|2^z
527     // This undoes a transformation done by instcombine to fuse 2 compares.
528     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
529       // It's a little bit hard to see why the following transformations are
530       // correct. Here is a CVC3 program to verify them for 64-bit values:
531 
532       /*
533          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
534          x    : BITVECTOR(64);
535          y    : BITVECTOR(64);
536          z    : BITVECTOR(64);
537          mask : BITVECTOR(64) = BVSHL(ONE, z);
538          QUERY( (y & ~mask = y) =>
539                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
540          );
541          QUERY( (y |  mask = y) =>
542                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
543          );
544       */
545 
546       // Please note that each pattern must be a dual implication (<--> or
547       // iff). One directional implication can create spurious matches. If the
548       // implication is only one-way, an unsatisfiable condition on the left
549       // side can imply a satisfiable condition on the right side. Dual
550       // implication ensures that satisfiable conditions are transformed to
551       // other satisfiable conditions and unsatisfiable conditions are
552       // transformed to other unsatisfiable conditions.
553 
554       // Here is a concrete example of a unsatisfiable condition on the left
555       // implying a satisfiable condition on the right:
556       //
557       // mask = (1 << z)
558       // (x & ~mask) == y  --> (x == y || x == (y | mask))
559       //
560       // Substituting y = 3, z = 0 yields:
561       // (x & -2) == 3 --> (x == 3 || x == 2)
562 
563       // Pattern match a special case:
564       /*
565         QUERY( (y & ~mask = y) =>
566                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
567         );
568       */
569       if (match(ICI->getOperand(0),
570                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
571         APInt Mask = ~*RHSC;
572         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
573           // If we already have a value for the switch, it has to match!
574           if (!setValueOnce(RHSVal))
575             return false;
576 
577           Vals.push_back(C);
578           Vals.push_back(
579               ConstantInt::get(C->getContext(),
580                                C->getValue() | Mask));
581           UsedICmps++;
582           return true;
583         }
584       }
585 
586       // Pattern match a special case:
587       /*
588         QUERY( (y |  mask = y) =>
589                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
590         );
591       */
592       if (match(ICI->getOperand(0),
593                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
594         APInt Mask = *RHSC;
595         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
596           // If we already have a value for the switch, it has to match!
597           if (!setValueOnce(RHSVal))
598             return false;
599 
600           Vals.push_back(C);
601           Vals.push_back(ConstantInt::get(C->getContext(),
602                                           C->getValue() & ~Mask));
603           UsedICmps++;
604           return true;
605         }
606       }
607 
608       // If we already have a value for the switch, it has to match!
609       if (!setValueOnce(ICI->getOperand(0)))
610         return false;
611 
612       UsedICmps++;
613       Vals.push_back(C);
614       return ICI->getOperand(0);
615     }
616 
617     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
618     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
619         ICI->getPredicate(), C->getValue());
620 
621     // Shift the range if the compare is fed by an add. This is the range
622     // compare idiom as emitted by instcombine.
623     Value *CandidateVal = I->getOperand(0);
624     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
625       Span = Span.subtract(*RHSC);
626       CandidateVal = RHSVal;
627     }
628 
629     // If this is an and/!= check, then we are looking to build the set of
630     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
631     // x != 0 && x != 1.
632     if (!isEQ)
633       Span = Span.inverse();
634 
635     // If there are a ton of values, we don't want to make a ginormous switch.
636     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
637       return false;
638     }
639 
640     // If we already have a value for the switch, it has to match!
641     if (!setValueOnce(CandidateVal))
642       return false;
643 
644     // Add all values from the range to the set
645     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
646       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
647 
648     UsedICmps++;
649     return true;
650   }
651 
652   /// Given a potentially 'or'd or 'and'd together collection of icmp
653   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
654   /// the value being compared, and stick the list constants into the Vals
655   /// vector.
656   /// One "Extra" case is allowed to differ from the other.
gather__anon5fcf8e030211::ConstantComparesGatherer657   void gather(Value *V) {
658     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
659 
660     // Keep a stack (SmallVector for efficiency) for depth-first traversal
661     SmallVector<Value *, 8> DFT;
662     SmallPtrSet<Value *, 8> Visited;
663 
664     // Initialize
665     Visited.insert(V);
666     DFT.push_back(V);
667 
668     while (!DFT.empty()) {
669       V = DFT.pop_back_val();
670 
671       if (Instruction *I = dyn_cast<Instruction>(V)) {
672         // If it is a || (or && depending on isEQ), process the operands.
673         Value *Op0, *Op1;
674         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
675                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
676           if (Visited.insert(Op1).second)
677             DFT.push_back(Op1);
678           if (Visited.insert(Op0).second)
679             DFT.push_back(Op0);
680 
681           continue;
682         }
683 
684         // Try to match the current instruction
685         if (matchInstruction(I, isEQ))
686           // Match succeed, continue the loop
687           continue;
688       }
689 
690       // One element of the sequence of || (or &&) could not be match as a
691       // comparison against the same value as the others.
692       // We allow only one "Extra" case to be checked before the switch
693       if (!Extra) {
694         Extra = V;
695         continue;
696       }
697       // Failed to parse a proper sequence, abort now
698       CompValue = nullptr;
699       break;
700     }
701   }
702 };
703 
704 } // end anonymous namespace
705 
EraseTerminatorAndDCECond(Instruction * TI,MemorySSAUpdater * MSSAU=nullptr)706 static void EraseTerminatorAndDCECond(Instruction *TI,
707                                       MemorySSAUpdater *MSSAU = nullptr) {
708   Instruction *Cond = nullptr;
709   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
710     Cond = dyn_cast<Instruction>(SI->getCondition());
711   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
712     if (BI->isConditional())
713       Cond = dyn_cast<Instruction>(BI->getCondition());
714   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
715     Cond = dyn_cast<Instruction>(IBI->getAddress());
716   }
717 
718   TI->eraseFromParent();
719   if (Cond)
720     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
721 }
722 
723 /// Return true if the specified terminator checks
724 /// to see if a value is equal to constant integer value.
isValueEqualityComparison(Instruction * TI)725 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
726   Value *CV = nullptr;
727   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
728     // Do not permit merging of large switch instructions into their
729     // predecessors unless there is only one predecessor.
730     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
731       CV = SI->getCondition();
732   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
733     if (BI->isConditional() && BI->getCondition()->hasOneUse())
734       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
735         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
736           CV = ICI->getOperand(0);
737       }
738 
739   // Unwrap any lossless ptrtoint cast.
740   if (CV) {
741     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
742       Value *Ptr = PTII->getPointerOperand();
743       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
744         CV = Ptr;
745     }
746   }
747   return CV;
748 }
749 
750 /// Given a value comparison instruction,
751 /// decode all of the 'cases' that it represents and return the 'default' block.
GetValueEqualityComparisonCases(Instruction * TI,std::vector<ValueEqualityComparisonCase> & Cases)752 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
753     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
754   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
755     Cases.reserve(SI->getNumCases());
756     for (auto Case : SI->cases())
757       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
758                                                   Case.getCaseSuccessor()));
759     return SI->getDefaultDest();
760   }
761 
762   BranchInst *BI = cast<BranchInst>(TI);
763   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
764   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
765   Cases.push_back(ValueEqualityComparisonCase(
766       GetConstantInt(ICI->getOperand(1), DL), Succ));
767   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
768 }
769 
770 /// Given a vector of bb/value pairs, remove any entries
771 /// in the list that match the specified block.
772 static void
EliminateBlockCases(BasicBlock * BB,std::vector<ValueEqualityComparisonCase> & Cases)773 EliminateBlockCases(BasicBlock *BB,
774                     std::vector<ValueEqualityComparisonCase> &Cases) {
775   llvm::erase_value(Cases, BB);
776 }
777 
778 /// Return true if there are any keys in C1 that exist in C2 as well.
ValuesOverlap(std::vector<ValueEqualityComparisonCase> & C1,std::vector<ValueEqualityComparisonCase> & C2)779 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
780                           std::vector<ValueEqualityComparisonCase> &C2) {
781   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
782 
783   // Make V1 be smaller than V2.
784   if (V1->size() > V2->size())
785     std::swap(V1, V2);
786 
787   if (V1->empty())
788     return false;
789   if (V1->size() == 1) {
790     // Just scan V2.
791     ConstantInt *TheVal = (*V1)[0].Value;
792     for (unsigned i = 0, e = V2->size(); i != e; ++i)
793       if (TheVal == (*V2)[i].Value)
794         return true;
795   }
796 
797   // Otherwise, just sort both lists and compare element by element.
798   array_pod_sort(V1->begin(), V1->end());
799   array_pod_sort(V2->begin(), V2->end());
800   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
801   while (i1 != e1 && i2 != e2) {
802     if ((*V1)[i1].Value == (*V2)[i2].Value)
803       return true;
804     if ((*V1)[i1].Value < (*V2)[i2].Value)
805       ++i1;
806     else
807       ++i2;
808   }
809   return false;
810 }
811 
812 // Set branch weights on SwitchInst. This sets the metadata if there is at
813 // least one non-zero weight.
setBranchWeights(SwitchInst * SI,ArrayRef<uint32_t> Weights)814 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
815   // Check that there is at least one non-zero weight. Otherwise, pass
816   // nullptr to setMetadata which will erase the existing metadata.
817   MDNode *N = nullptr;
818   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
819     N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
820   SI->setMetadata(LLVMContext::MD_prof, N);
821 }
822 
823 // Similar to the above, but for branch and select instructions that take
824 // exactly 2 weights.
setBranchWeights(Instruction * I,uint32_t TrueWeight,uint32_t FalseWeight)825 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
826                              uint32_t FalseWeight) {
827   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
828   // Check that there is at least one non-zero weight. Otherwise, pass
829   // nullptr to setMetadata which will erase the existing metadata.
830   MDNode *N = nullptr;
831   if (TrueWeight || FalseWeight)
832     N = MDBuilder(I->getParent()->getContext())
833             .createBranchWeights(TrueWeight, FalseWeight);
834   I->setMetadata(LLVMContext::MD_prof, N);
835 }
836 
837 /// If TI is known to be a terminator instruction and its block is known to
838 /// only have a single predecessor block, check to see if that predecessor is
839 /// also a value comparison with the same value, and if that comparison
840 /// determines the outcome of this comparison. If so, simplify TI. This does a
841 /// very limited form of jump threading.
SimplifyEqualityComparisonWithOnlyPredecessor(Instruction * TI,BasicBlock * Pred,IRBuilder<> & Builder)842 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
843     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
844   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
845   if (!PredVal)
846     return false; // Not a value comparison in predecessor.
847 
848   Value *ThisVal = isValueEqualityComparison(TI);
849   assert(ThisVal && "This isn't a value comparison!!");
850   if (ThisVal != PredVal)
851     return false; // Different predicates.
852 
853   // TODO: Preserve branch weight metadata, similarly to how
854   // FoldValueComparisonIntoPredecessors preserves it.
855 
856   // Find out information about when control will move from Pred to TI's block.
857   std::vector<ValueEqualityComparisonCase> PredCases;
858   BasicBlock *PredDef =
859       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
860   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
861 
862   // Find information about how control leaves this block.
863   std::vector<ValueEqualityComparisonCase> ThisCases;
864   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
865   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
866 
867   // If TI's block is the default block from Pred's comparison, potentially
868   // simplify TI based on this knowledge.
869   if (PredDef == TI->getParent()) {
870     // If we are here, we know that the value is none of those cases listed in
871     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
872     // can simplify TI.
873     if (!ValuesOverlap(PredCases, ThisCases))
874       return false;
875 
876     if (isa<BranchInst>(TI)) {
877       // Okay, one of the successors of this condbr is dead.  Convert it to a
878       // uncond br.
879       assert(ThisCases.size() == 1 && "Branch can only have one case!");
880       // Insert the new branch.
881       Instruction *NI = Builder.CreateBr(ThisDef);
882       (void)NI;
883 
884       // Remove PHI node entries for the dead edge.
885       ThisCases[0].Dest->removePredecessor(PredDef);
886 
887       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
888                         << "Through successor TI: " << *TI << "Leaving: " << *NI
889                         << "\n");
890 
891       EraseTerminatorAndDCECond(TI);
892 
893       if (DTU)
894         DTU->applyUpdates(
895             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
896 
897       return true;
898     }
899 
900     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
901     // Okay, TI has cases that are statically dead, prune them away.
902     SmallPtrSet<Constant *, 16> DeadCases;
903     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
904       DeadCases.insert(PredCases[i].Value);
905 
906     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
907                       << "Through successor TI: " << *TI);
908 
909     SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
910     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
911       --i;
912       auto *Successor = i->getCaseSuccessor();
913       ++NumPerSuccessorCases[Successor];
914       if (DeadCases.count(i->getCaseValue())) {
915         Successor->removePredecessor(PredDef);
916         SI.removeCase(i);
917         --NumPerSuccessorCases[Successor];
918       }
919     }
920 
921     std::vector<DominatorTree::UpdateType> Updates;
922     for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
923       if (I.second == 0)
924         Updates.push_back({DominatorTree::Delete, PredDef, I.first});
925     if (DTU)
926       DTU->applyUpdates(Updates);
927 
928     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
929     return true;
930   }
931 
932   // Otherwise, TI's block must correspond to some matched value.  Find out
933   // which value (or set of values) this is.
934   ConstantInt *TIV = nullptr;
935   BasicBlock *TIBB = TI->getParent();
936   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
937     if (PredCases[i].Dest == TIBB) {
938       if (TIV)
939         return false; // Cannot handle multiple values coming to this block.
940       TIV = PredCases[i].Value;
941     }
942   assert(TIV && "No edge from pred to succ?");
943 
944   // Okay, we found the one constant that our value can be if we get into TI's
945   // BB.  Find out which successor will unconditionally be branched to.
946   BasicBlock *TheRealDest = nullptr;
947   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
948     if (ThisCases[i].Value == TIV) {
949       TheRealDest = ThisCases[i].Dest;
950       break;
951     }
952 
953   // If not handled by any explicit cases, it is handled by the default case.
954   if (!TheRealDest)
955     TheRealDest = ThisDef;
956 
957   SmallSetVector<BasicBlock *, 2> RemovedSuccs;
958 
959   // Remove PHI node entries for dead edges.
960   BasicBlock *CheckEdge = TheRealDest;
961   for (BasicBlock *Succ : successors(TIBB))
962     if (Succ != CheckEdge) {
963       if (Succ != TheRealDest)
964         RemovedSuccs.insert(Succ);
965       Succ->removePredecessor(TIBB);
966     } else
967       CheckEdge = nullptr;
968 
969   // Insert the new branch.
970   Instruction *NI = Builder.CreateBr(TheRealDest);
971   (void)NI;
972 
973   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
974                     << "Through successor TI: " << *TI << "Leaving: " << *NI
975                     << "\n");
976 
977   EraseTerminatorAndDCECond(TI);
978   if (DTU) {
979     SmallVector<DominatorTree::UpdateType, 2> Updates;
980     Updates.reserve(RemovedSuccs.size());
981     for (auto *RemovedSucc : RemovedSuccs)
982       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
983     DTU->applyUpdates(Updates);
984   }
985   return true;
986 }
987 
988 namespace {
989 
990 /// This class implements a stable ordering of constant
991 /// integers that does not depend on their address.  This is important for
992 /// applications that sort ConstantInt's to ensure uniqueness.
993 struct ConstantIntOrdering {
operator ()__anon5fcf8e030411::ConstantIntOrdering994   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
995     return LHS->getValue().ult(RHS->getValue());
996   }
997 };
998 
999 } // end anonymous namespace
1000 
ConstantIntSortPredicate(ConstantInt * const * P1,ConstantInt * const * P2)1001 static int ConstantIntSortPredicate(ConstantInt *const *P1,
1002                                     ConstantInt *const *P2) {
1003   const ConstantInt *LHS = *P1;
1004   const ConstantInt *RHS = *P2;
1005   if (LHS == RHS)
1006     return 0;
1007   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1008 }
1009 
HasBranchWeights(const Instruction * I)1010 static inline bool HasBranchWeights(const Instruction *I) {
1011   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
1012   if (ProfMD && ProfMD->getOperand(0))
1013     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
1014       return MDS->getString().equals("branch_weights");
1015 
1016   return false;
1017 }
1018 
1019 /// Get Weights of a given terminator, the default weight is at the front
1020 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1021 /// metadata.
GetBranchWeights(Instruction * TI,SmallVectorImpl<uint64_t> & Weights)1022 static void GetBranchWeights(Instruction *TI,
1023                              SmallVectorImpl<uint64_t> &Weights) {
1024   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1025   assert(MD);
1026   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
1027     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
1028     Weights.push_back(CI->getValue().getZExtValue());
1029   }
1030 
1031   // If TI is a conditional eq, the default case is the false case,
1032   // and the corresponding branch-weight data is at index 2. We swap the
1033   // default weight to be the first entry.
1034   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1035     assert(Weights.size() == 2);
1036     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1037     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1038       std::swap(Weights.front(), Weights.back());
1039   }
1040 }
1041 
1042 /// Keep halving the weights until all can fit in uint32_t.
FitWeights(MutableArrayRef<uint64_t> Weights)1043 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
1044   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
1045   if (Max > UINT_MAX) {
1046     unsigned Offset = 32 - countLeadingZeros(Max);
1047     for (uint64_t &I : Weights)
1048       I >>= Offset;
1049   }
1050 }
1051 
CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BasicBlock * BB,BasicBlock * PredBlock,ValueToValueMapTy & VMap)1052 static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1053     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1054   Instruction *PTI = PredBlock->getTerminator();
1055 
1056   // If we have bonus instructions, clone them into the predecessor block.
1057   // Note that there may be multiple predecessor blocks, so we cannot move
1058   // bonus instructions to a predecessor block.
1059   for (Instruction &BonusInst : *BB) {
1060     if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
1061       continue;
1062 
1063     Instruction *NewBonusInst = BonusInst.clone();
1064 
1065     if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1066       // Unless the instruction has the same !dbg location as the original
1067       // branch, drop it. When we fold the bonus instructions we want to make
1068       // sure we reset their debug locations in order to avoid stepping on
1069       // dead code caused by folding dead branches.
1070       NewBonusInst->setDebugLoc(DebugLoc());
1071     }
1072 
1073     RemapInstruction(NewBonusInst, VMap,
1074                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1075     VMap[&BonusInst] = NewBonusInst;
1076 
1077     // If we moved a load, we cannot any longer claim any knowledge about
1078     // its potential value. The previous information might have been valid
1079     // only given the branch precondition.
1080     // For an analogous reason, we must also drop all the metadata whose
1081     // semantics we don't understand. We *can* preserve !annotation, because
1082     // it is tied to the instruction itself, not the value or position.
1083     NewBonusInst->dropUnknownNonDebugMetadata(LLVMContext::MD_annotation);
1084 
1085     PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
1086     NewBonusInst->takeName(&BonusInst);
1087     BonusInst.setName(NewBonusInst->getName() + ".old");
1088 
1089     // Update (liveout) uses of bonus instructions,
1090     // now that the bonus instruction has been cloned into predecessor.
1091     SSAUpdater SSAUpdate;
1092     SSAUpdate.Initialize(BonusInst.getType(),
1093                          (NewBonusInst->getName() + ".merge").str());
1094     SSAUpdate.AddAvailableValue(BB, &BonusInst);
1095     SSAUpdate.AddAvailableValue(PredBlock, NewBonusInst);
1096     for (Use &U : make_early_inc_range(BonusInst.uses()))
1097       SSAUpdate.RewriteUseAfterInsertions(U);
1098   }
1099 }
1100 
PerformValueComparisonIntoPredecessorFolding(Instruction * TI,Value * & CV,Instruction * PTI,IRBuilder<> & Builder)1101 bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
1102     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1103   BasicBlock *BB = TI->getParent();
1104   BasicBlock *Pred = PTI->getParent();
1105 
1106   std::vector<DominatorTree::UpdateType> Updates;
1107 
1108   // Figure out which 'cases' to copy from SI to PSI.
1109   std::vector<ValueEqualityComparisonCase> BBCases;
1110   BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1111 
1112   std::vector<ValueEqualityComparisonCase> PredCases;
1113   BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1114 
1115   // Based on whether the default edge from PTI goes to BB or not, fill in
1116   // PredCases and PredDefault with the new switch cases we would like to
1117   // build.
1118   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1119 
1120   // Update the branch weight metadata along the way
1121   SmallVector<uint64_t, 8> Weights;
1122   bool PredHasWeights = HasBranchWeights(PTI);
1123   bool SuccHasWeights = HasBranchWeights(TI);
1124 
1125   if (PredHasWeights) {
1126     GetBranchWeights(PTI, Weights);
1127     // branch-weight metadata is inconsistent here.
1128     if (Weights.size() != 1 + PredCases.size())
1129       PredHasWeights = SuccHasWeights = false;
1130   } else if (SuccHasWeights)
1131     // If there are no predecessor weights but there are successor weights,
1132     // populate Weights with 1, which will later be scaled to the sum of
1133     // successor's weights
1134     Weights.assign(1 + PredCases.size(), 1);
1135 
1136   SmallVector<uint64_t, 8> SuccWeights;
1137   if (SuccHasWeights) {
1138     GetBranchWeights(TI, SuccWeights);
1139     // branch-weight metadata is inconsistent here.
1140     if (SuccWeights.size() != 1 + BBCases.size())
1141       PredHasWeights = SuccHasWeights = false;
1142   } else if (PredHasWeights)
1143     SuccWeights.assign(1 + BBCases.size(), 1);
1144 
1145   if (PredDefault == BB) {
1146     // If this is the default destination from PTI, only the edges in TI
1147     // that don't occur in PTI, or that branch to BB will be activated.
1148     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1149     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1150       if (PredCases[i].Dest != BB)
1151         PTIHandled.insert(PredCases[i].Value);
1152       else {
1153         // The default destination is BB, we don't need explicit targets.
1154         std::swap(PredCases[i], PredCases.back());
1155 
1156         if (PredHasWeights || SuccHasWeights) {
1157           // Increase weight for the default case.
1158           Weights[0] += Weights[i + 1];
1159           std::swap(Weights[i + 1], Weights.back());
1160           Weights.pop_back();
1161         }
1162 
1163         PredCases.pop_back();
1164         --i;
1165         --e;
1166       }
1167 
1168     // Reconstruct the new switch statement we will be building.
1169     if (PredDefault != BBDefault) {
1170       PredDefault->removePredecessor(Pred);
1171       if (PredDefault != BB)
1172         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1173       PredDefault = BBDefault;
1174       ++NewSuccessors[BBDefault];
1175     }
1176 
1177     unsigned CasesFromPred = Weights.size();
1178     uint64_t ValidTotalSuccWeight = 0;
1179     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1180       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1181         PredCases.push_back(BBCases[i]);
1182         ++NewSuccessors[BBCases[i].Dest];
1183         if (SuccHasWeights || PredHasWeights) {
1184           // The default weight is at index 0, so weight for the ith case
1185           // should be at index i+1. Scale the cases from successor by
1186           // PredDefaultWeight (Weights[0]).
1187           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1188           ValidTotalSuccWeight += SuccWeights[i + 1];
1189         }
1190       }
1191 
1192     if (SuccHasWeights || PredHasWeights) {
1193       ValidTotalSuccWeight += SuccWeights[0];
1194       // Scale the cases from predecessor by ValidTotalSuccWeight.
1195       for (unsigned i = 1; i < CasesFromPred; ++i)
1196         Weights[i] *= ValidTotalSuccWeight;
1197       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1198       Weights[0] *= SuccWeights[0];
1199     }
1200   } else {
1201     // If this is not the default destination from PSI, only the edges
1202     // in SI that occur in PSI with a destination of BB will be
1203     // activated.
1204     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1205     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1206     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1207       if (PredCases[i].Dest == BB) {
1208         PTIHandled.insert(PredCases[i].Value);
1209 
1210         if (PredHasWeights || SuccHasWeights) {
1211           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1212           std::swap(Weights[i + 1], Weights.back());
1213           Weights.pop_back();
1214         }
1215 
1216         std::swap(PredCases[i], PredCases.back());
1217         PredCases.pop_back();
1218         --i;
1219         --e;
1220       }
1221 
1222     // Okay, now we know which constants were sent to BB from the
1223     // predecessor.  Figure out where they will all go now.
1224     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1225       if (PTIHandled.count(BBCases[i].Value)) {
1226         // If this is one we are capable of getting...
1227         if (PredHasWeights || SuccHasWeights)
1228           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1229         PredCases.push_back(BBCases[i]);
1230         ++NewSuccessors[BBCases[i].Dest];
1231         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1232       }
1233 
1234     // If there are any constants vectored to BB that TI doesn't handle,
1235     // they must go to the default destination of TI.
1236     for (ConstantInt *I : PTIHandled) {
1237       if (PredHasWeights || SuccHasWeights)
1238         Weights.push_back(WeightsForHandled[I]);
1239       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1240       ++NewSuccessors[BBDefault];
1241     }
1242   }
1243 
1244   // Okay, at this point, we know which new successor Pred will get.  Make
1245   // sure we update the number of entries in the PHI nodes for these
1246   // successors.
1247   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1248        NewSuccessors) {
1249     for (auto I : seq(0, NewSuccessor.second)) {
1250       (void)I;
1251       AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
1252     }
1253     if (!is_contained(successors(Pred), NewSuccessor.first))
1254       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1255   }
1256 
1257   Builder.SetInsertPoint(PTI);
1258   // Convert pointer to int before we switch.
1259   if (CV->getType()->isPointerTy()) {
1260     CV =
1261         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1262   }
1263 
1264   // Now that the successors are updated, create the new Switch instruction.
1265   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1266   NewSI->setDebugLoc(PTI->getDebugLoc());
1267   for (ValueEqualityComparisonCase &V : PredCases)
1268     NewSI->addCase(V.Value, V.Dest);
1269 
1270   if (PredHasWeights || SuccHasWeights) {
1271     // Halve the weights if any of them cannot fit in an uint32_t
1272     FitWeights(Weights);
1273 
1274     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1275 
1276     setBranchWeights(NewSI, MDWeights);
1277   }
1278 
1279   EraseTerminatorAndDCECond(PTI);
1280 
1281   // Okay, last check.  If BB is still a successor of PSI, then we must
1282   // have an infinite loop case.  If so, add an infinitely looping block
1283   // to handle the case to preserve the behavior of the code.
1284   BasicBlock *InfLoopBlock = nullptr;
1285   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1286     if (NewSI->getSuccessor(i) == BB) {
1287       if (!InfLoopBlock) {
1288         // Insert it at the end of the function, because it's either code,
1289         // or it won't matter if it's hot. :)
1290         InfLoopBlock =
1291             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1292         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1293         Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1294       }
1295       NewSI->setSuccessor(i, InfLoopBlock);
1296     }
1297 
1298   if (InfLoopBlock)
1299     Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1300 
1301   Updates.push_back({DominatorTree::Delete, Pred, BB});
1302 
1303   if (DTU)
1304     DTU->applyUpdates(Updates);
1305 
1306   ++NumFoldValueComparisonIntoPredecessors;
1307   return true;
1308 }
1309 
1310 /// The specified terminator is a value equality comparison instruction
1311 /// (either a switch or a branch on "X == c").
1312 /// See if any of the predecessors of the terminator block are value comparisons
1313 /// on the same value.  If so, and if safe to do so, fold them together.
FoldValueComparisonIntoPredecessors(Instruction * TI,IRBuilder<> & Builder)1314 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1315                                                          IRBuilder<> &Builder) {
1316   BasicBlock *BB = TI->getParent();
1317   Value *CV = isValueEqualityComparison(TI); // CondVal
1318   assert(CV && "Not a comparison?");
1319 
1320   bool Changed = false;
1321 
1322   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1323   while (!Preds.empty()) {
1324     BasicBlock *Pred = Preds.pop_back_val();
1325     Instruction *PTI = Pred->getTerminator();
1326 
1327     // Don't try to fold into itself.
1328     if (Pred == BB)
1329       continue;
1330 
1331     // See if the predecessor is a comparison with the same value.
1332     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1333     if (PCV != CV)
1334       continue;
1335 
1336     SmallSetVector<BasicBlock *, 4> FailBlocks;
1337     if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1338       for (auto *Succ : FailBlocks) {
1339         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1340           return false;
1341       }
1342     }
1343 
1344     PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1345     Changed = true;
1346   }
1347   return Changed;
1348 }
1349 
1350 // If we would need to insert a select that uses the value of this invoke
1351 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1352 // can't hoist the invoke, as there is nowhere to put the select in this case.
isSafeToHoistInvoke(BasicBlock * BB1,BasicBlock * BB2,Instruction * I1,Instruction * I2)1353 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1354                                 Instruction *I1, Instruction *I2) {
1355   for (BasicBlock *Succ : successors(BB1)) {
1356     for (const PHINode &PN : Succ->phis()) {
1357       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1358       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1359       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1360         return false;
1361       }
1362     }
1363   }
1364   return true;
1365 }
1366 
1367 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1368 
1369 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1370 /// in the two blocks up into the branch block. The caller of this function
1371 /// guarantees that BI's block dominates BB1 and BB2.
HoistThenElseCodeToIf(BranchInst * BI,const TargetTransformInfo & TTI)1372 bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
1373                                            const TargetTransformInfo &TTI) {
1374   // This does very trivial matching, with limited scanning, to find identical
1375   // instructions in the two blocks.  In particular, we don't want to get into
1376   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1377   // such, we currently just scan for obviously identical instructions in an
1378   // identical order.
1379   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1380   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1381 
1382   BasicBlock::iterator BB1_Itr = BB1->begin();
1383   BasicBlock::iterator BB2_Itr = BB2->begin();
1384 
1385   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1386   // Skip debug info if it is not identical.
1387   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1388   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1389   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1390     while (isa<DbgInfoIntrinsic>(I1))
1391       I1 = &*BB1_Itr++;
1392     while (isa<DbgInfoIntrinsic>(I2))
1393       I2 = &*BB2_Itr++;
1394   }
1395   // FIXME: Can we define a safety predicate for CallBr?
1396   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1397       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1398       isa<CallBrInst>(I1))
1399     return false;
1400 
1401   BasicBlock *BIParent = BI->getParent();
1402 
1403   bool Changed = false;
1404 
1405   auto _ = make_scope_exit([&]() {
1406     if (Changed)
1407       ++NumHoistCommonCode;
1408   });
1409 
1410   do {
1411     // If we are hoisting the terminator instruction, don't move one (making a
1412     // broken BB), instead clone it, and remove BI.
1413     if (I1->isTerminator())
1414       goto HoistTerminator;
1415 
1416     // If we're going to hoist a call, make sure that the two instructions we're
1417     // commoning/hoisting are both marked with musttail, or neither of them is
1418     // marked as such. Otherwise, we might end up in a situation where we hoist
1419     // from a block where the terminator is a `ret` to a block where the terminator
1420     // is a `br`, and `musttail` calls expect to be followed by a return.
1421     auto *C1 = dyn_cast<CallInst>(I1);
1422     auto *C2 = dyn_cast<CallInst>(I2);
1423     if (C1 && C2)
1424       if (C1->isMustTailCall() != C2->isMustTailCall())
1425         return Changed;
1426 
1427     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1428       return Changed;
1429 
1430     // If any of the two call sites has nomerge attribute, stop hoisting.
1431     if (const auto *CB1 = dyn_cast<CallBase>(I1))
1432       if (CB1->cannotMerge())
1433         return Changed;
1434     if (const auto *CB2 = dyn_cast<CallBase>(I2))
1435       if (CB2->cannotMerge())
1436         return Changed;
1437 
1438     if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1439       assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1440       // The debug location is an integral part of a debug info intrinsic
1441       // and can't be separated from it or replaced.  Instead of attempting
1442       // to merge locations, simply hoist both copies of the intrinsic.
1443       BIParent->getInstList().splice(BI->getIterator(),
1444                                      BB1->getInstList(), I1);
1445       BIParent->getInstList().splice(BI->getIterator(),
1446                                      BB2->getInstList(), I2);
1447       Changed = true;
1448     } else {
1449       // For a normal instruction, we just move one to right before the branch,
1450       // then replace all uses of the other with the first.  Finally, we remove
1451       // the now redundant second instruction.
1452       BIParent->getInstList().splice(BI->getIterator(),
1453                                      BB1->getInstList(), I1);
1454       if (!I2->use_empty())
1455         I2->replaceAllUsesWith(I1);
1456       I1->andIRFlags(I2);
1457       unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1458                              LLVMContext::MD_range,
1459                              LLVMContext::MD_fpmath,
1460                              LLVMContext::MD_invariant_load,
1461                              LLVMContext::MD_nonnull,
1462                              LLVMContext::MD_invariant_group,
1463                              LLVMContext::MD_align,
1464                              LLVMContext::MD_dereferenceable,
1465                              LLVMContext::MD_dereferenceable_or_null,
1466                              LLVMContext::MD_mem_parallel_loop_access,
1467                              LLVMContext::MD_access_group,
1468                              LLVMContext::MD_preserve_access_index};
1469       combineMetadata(I1, I2, KnownIDs, true);
1470 
1471       // I1 and I2 are being combined into a single instruction.  Its debug
1472       // location is the merged locations of the original instructions.
1473       I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1474 
1475       I2->eraseFromParent();
1476       Changed = true;
1477     }
1478     ++NumHoistCommonInstrs;
1479 
1480     I1 = &*BB1_Itr++;
1481     I2 = &*BB2_Itr++;
1482     // Skip debug info if it is not identical.
1483     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1484     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1485     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1486       while (isa<DbgInfoIntrinsic>(I1))
1487         I1 = &*BB1_Itr++;
1488       while (isa<DbgInfoIntrinsic>(I2))
1489         I2 = &*BB2_Itr++;
1490     }
1491   } while (I1->isIdenticalToWhenDefined(I2));
1492 
1493   return true;
1494 
1495 HoistTerminator:
1496   // It may not be possible to hoist an invoke.
1497   // FIXME: Can we define a safety predicate for CallBr?
1498   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1499     return Changed;
1500 
1501   // TODO: callbr hoisting currently disabled pending further study.
1502   if (isa<CallBrInst>(I1))
1503     return Changed;
1504 
1505   for (BasicBlock *Succ : successors(BB1)) {
1506     for (PHINode &PN : Succ->phis()) {
1507       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1508       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1509       if (BB1V == BB2V)
1510         continue;
1511 
1512       // Check for passingValueIsAlwaysUndefined here because we would rather
1513       // eliminate undefined control flow then converting it to a select.
1514       if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1515           passingValueIsAlwaysUndefined(BB2V, &PN))
1516         return Changed;
1517 
1518       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1519         return Changed;
1520       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1521         return Changed;
1522     }
1523   }
1524 
1525   // Okay, it is safe to hoist the terminator.
1526   Instruction *NT = I1->clone();
1527   BIParent->getInstList().insert(BI->getIterator(), NT);
1528   if (!NT->getType()->isVoidTy()) {
1529     I1->replaceAllUsesWith(NT);
1530     I2->replaceAllUsesWith(NT);
1531     NT->takeName(I1);
1532   }
1533   Changed = true;
1534   ++NumHoistCommonInstrs;
1535 
1536   // Ensure terminator gets a debug location, even an unknown one, in case
1537   // it involves inlinable calls.
1538   NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1539 
1540   // PHIs created below will adopt NT's merged DebugLoc.
1541   IRBuilder<NoFolder> Builder(NT);
1542 
1543   // Hoisting one of the terminators from our successor is a great thing.
1544   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1545   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1546   // nodes, so we insert select instruction to compute the final result.
1547   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1548   for (BasicBlock *Succ : successors(BB1)) {
1549     for (PHINode &PN : Succ->phis()) {
1550       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1551       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1552       if (BB1V == BB2V)
1553         continue;
1554 
1555       // These values do not agree.  Insert a select instruction before NT
1556       // that determines the right value.
1557       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1558       if (!SI) {
1559         // Propagate fast-math-flags from phi node to its replacement select.
1560         IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1561         if (isa<FPMathOperator>(PN))
1562           Builder.setFastMathFlags(PN.getFastMathFlags());
1563 
1564         SI = cast<SelectInst>(
1565             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1566                                  BB1V->getName() + "." + BB2V->getName(), BI));
1567       }
1568 
1569       // Make the PHI node use the select for all incoming values for BB1/BB2
1570       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1571         if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1572           PN.setIncomingValue(i, SI);
1573     }
1574   }
1575 
1576   SmallVector<DominatorTree::UpdateType, 4> Updates;
1577 
1578   // Update any PHI nodes in our new successors.
1579   for (BasicBlock *Succ : successors(BB1)) {
1580     AddPredecessorToBlock(Succ, BIParent, BB1);
1581     Updates.push_back({DominatorTree::Insert, BIParent, Succ});
1582   }
1583   for (BasicBlock *Succ : successors(BI))
1584     Updates.push_back({DominatorTree::Delete, BIParent, Succ});
1585 
1586   EraseTerminatorAndDCECond(BI);
1587   if (DTU)
1588     DTU->applyUpdates(Updates);
1589   return Changed;
1590 }
1591 
1592 // Check lifetime markers.
isLifeTimeMarker(const Instruction * I)1593 static bool isLifeTimeMarker(const Instruction *I) {
1594   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1595     switch (II->getIntrinsicID()) {
1596     default:
1597       break;
1598     case Intrinsic::lifetime_start:
1599     case Intrinsic::lifetime_end:
1600       return true;
1601     }
1602   }
1603   return false;
1604 }
1605 
1606 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1607 // into variables.
replacingOperandWithVariableIsCheap(const Instruction * I,int OpIdx)1608 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1609                                                 int OpIdx) {
1610   return !isa<IntrinsicInst>(I);
1611 }
1612 
1613 // All instructions in Insts belong to different blocks that all unconditionally
1614 // branch to a common successor. Analyze each instruction and return true if it
1615 // would be possible to sink them into their successor, creating one common
1616 // instruction instead. For every value that would be required to be provided by
1617 // PHI node (because an operand varies in each input block), add to PHIOperands.
canSinkInstructions(ArrayRef<Instruction * > Insts,DenseMap<Instruction *,SmallVector<Value *,4>> & PHIOperands)1618 static bool canSinkInstructions(
1619     ArrayRef<Instruction *> Insts,
1620     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1621   // Prune out obviously bad instructions to move. Any non-store instruction
1622   // must have exactly one use, and we check later that use is by a single,
1623   // common PHI instruction in the successor.
1624   for (auto *I : Insts) {
1625     // These instructions may change or break semantics if moved.
1626     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1627         I->getType()->isTokenTy())
1628       return false;
1629 
1630     // Do not try to sink an instruction in an infinite loop - it can cause
1631     // this algorithm to infinite loop.
1632     if (I->getParent()->getSingleSuccessor() == I->getParent())
1633       return false;
1634 
1635     // Conservatively return false if I is an inline-asm instruction. Sinking
1636     // and merging inline-asm instructions can potentially create arguments
1637     // that cannot satisfy the inline-asm constraints.
1638     // If the instruction has nomerge attribute, return false.
1639     if (const auto *C = dyn_cast<CallBase>(I))
1640       if (C->isInlineAsm() || C->cannotMerge())
1641         return false;
1642 
1643     // Everything must have only one use too, apart from stores which
1644     // have no uses.
1645     if (!isa<StoreInst>(I) && !I->hasOneUse())
1646       return false;
1647   }
1648 
1649   const Instruction *I0 = Insts.front();
1650   for (auto *I : Insts)
1651     if (!I->isSameOperationAs(I0))
1652       return false;
1653 
1654   // All instructions in Insts are known to be the same opcode. If they aren't
1655   // stores, check the only user of each is a PHI or in the same block as the
1656   // instruction, because if a user is in the same block as an instruction
1657   // we're contemplating sinking, it must already be determined to be sinkable.
1658   if (!isa<StoreInst>(I0)) {
1659     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1660     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1661     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1662           auto *U = cast<Instruction>(*I->user_begin());
1663           return (PNUse &&
1664                   PNUse->getParent() == Succ &&
1665                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1666                  U->getParent() == I->getParent();
1667         }))
1668       return false;
1669   }
1670 
1671   // Because SROA can't handle speculating stores of selects, try not to sink
1672   // loads, stores or lifetime markers of allocas when we'd have to create a
1673   // PHI for the address operand. Also, because it is likely that loads or
1674   // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1675   // them.
1676   // This can cause code churn which can have unintended consequences down
1677   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1678   // FIXME: This is a workaround for a deficiency in SROA - see
1679   // https://llvm.org/bugs/show_bug.cgi?id=30188
1680   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1681         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1682       }))
1683     return false;
1684   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1685         return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1686       }))
1687     return false;
1688   if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1689         return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1690       }))
1691     return false;
1692 
1693   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1694     Value *Op = I0->getOperand(OI);
1695     if (Op->getType()->isTokenTy())
1696       // Don't touch any operand of token type.
1697       return false;
1698 
1699     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1700       assert(I->getNumOperands() == I0->getNumOperands());
1701       return I->getOperand(OI) == I0->getOperand(OI);
1702     };
1703     if (!all_of(Insts, SameAsI0)) {
1704       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
1705           !canReplaceOperandWithVariable(I0, OI))
1706         // We can't create a PHI from this GEP.
1707         return false;
1708       // Don't create indirect calls! The called value is the final operand.
1709       if (isa<CallBase>(I0) && OI == OE - 1) {
1710         // FIXME: if the call was *already* indirect, we should do this.
1711         return false;
1712       }
1713       for (auto *I : Insts)
1714         PHIOperands[I].push_back(I->getOperand(OI));
1715     }
1716   }
1717   return true;
1718 }
1719 
1720 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
1721 // instruction of every block in Blocks to their common successor, commoning
1722 // into one instruction.
sinkLastInstruction(ArrayRef<BasicBlock * > Blocks)1723 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1724   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1725 
1726   // canSinkInstructions returning true guarantees that every block has at
1727   // least one non-terminator instruction.
1728   SmallVector<Instruction*,4> Insts;
1729   for (auto *BB : Blocks) {
1730     Instruction *I = BB->getTerminator();
1731     do {
1732       I = I->getPrevNode();
1733     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1734     if (!isa<DbgInfoIntrinsic>(I))
1735       Insts.push_back(I);
1736   }
1737 
1738   // The only checking we need to do now is that all users of all instructions
1739   // are the same PHI node. canSinkInstructions should have checked this but
1740   // it is slightly over-aggressive - it gets confused by commutative
1741   // instructions so double-check it here.
1742   Instruction *I0 = Insts.front();
1743   if (!isa<StoreInst>(I0)) {
1744     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1745     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1746           auto *U = cast<Instruction>(*I->user_begin());
1747           return U == PNUse;
1748         }))
1749       return false;
1750   }
1751 
1752   // We don't need to do any more checking here; canSinkInstructions should
1753   // have done it all for us.
1754   SmallVector<Value*, 4> NewOperands;
1755   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1756     // This check is different to that in canSinkInstructions. There, we
1757     // cared about the global view once simplifycfg (and instcombine) have
1758     // completed - it takes into account PHIs that become trivially
1759     // simplifiable.  However here we need a more local view; if an operand
1760     // differs we create a PHI and rely on instcombine to clean up the very
1761     // small mess we may make.
1762     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1763       return I->getOperand(O) != I0->getOperand(O);
1764     });
1765     if (!NeedPHI) {
1766       NewOperands.push_back(I0->getOperand(O));
1767       continue;
1768     }
1769 
1770     // Create a new PHI in the successor block and populate it.
1771     auto *Op = I0->getOperand(O);
1772     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1773     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1774                                Op->getName() + ".sink", &BBEnd->front());
1775     for (auto *I : Insts)
1776       PN->addIncoming(I->getOperand(O), I->getParent());
1777     NewOperands.push_back(PN);
1778   }
1779 
1780   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1781   // and move it to the start of the successor block.
1782   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1783     I0->getOperandUse(O).set(NewOperands[O]);
1784   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1785 
1786   // Update metadata and IR flags, and merge debug locations.
1787   for (auto *I : Insts)
1788     if (I != I0) {
1789       // The debug location for the "common" instruction is the merged locations
1790       // of all the commoned instructions.  We start with the original location
1791       // of the "common" instruction and iteratively merge each location in the
1792       // loop below.
1793       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1794       // However, as N-way merge for CallInst is rare, so we use simplified API
1795       // instead of using complex API for N-way merge.
1796       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1797       combineMetadataForCSE(I0, I, true);
1798       I0->andIRFlags(I);
1799     }
1800 
1801   if (!isa<StoreInst>(I0)) {
1802     // canSinkLastInstruction checked that all instructions were used by
1803     // one and only one PHI node. Find that now, RAUW it to our common
1804     // instruction and nuke it.
1805     assert(I0->hasOneUse());
1806     auto *PN = cast<PHINode>(*I0->user_begin());
1807     PN->replaceAllUsesWith(I0);
1808     PN->eraseFromParent();
1809   }
1810 
1811   // Finally nuke all instructions apart from the common instruction.
1812   for (auto *I : Insts)
1813     if (I != I0)
1814       I->eraseFromParent();
1815 
1816   return true;
1817 }
1818 
1819 namespace {
1820 
1821   // LockstepReverseIterator - Iterates through instructions
1822   // in a set of blocks in reverse order from the first non-terminator.
1823   // For example (assume all blocks have size n):
1824   //   LockstepReverseIterator I([B1, B2, B3]);
1825   //   *I-- = [B1[n], B2[n], B3[n]];
1826   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1827   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1828   //   ...
1829   class LockstepReverseIterator {
1830     ArrayRef<BasicBlock*> Blocks;
1831     SmallVector<Instruction*,4> Insts;
1832     bool Fail;
1833 
1834   public:
LockstepReverseIterator(ArrayRef<BasicBlock * > Blocks)1835     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1836       reset();
1837     }
1838 
reset()1839     void reset() {
1840       Fail = false;
1841       Insts.clear();
1842       for (auto *BB : Blocks) {
1843         Instruction *Inst = BB->getTerminator();
1844         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1845           Inst = Inst->getPrevNode();
1846         if (!Inst) {
1847           // Block wasn't big enough.
1848           Fail = true;
1849           return;
1850         }
1851         Insts.push_back(Inst);
1852       }
1853     }
1854 
isValid() const1855     bool isValid() const {
1856       return !Fail;
1857     }
1858 
operator --()1859     void operator--() {
1860       if (Fail)
1861         return;
1862       for (auto *&Inst : Insts) {
1863         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1864           Inst = Inst->getPrevNode();
1865         // Already at beginning of block.
1866         if (!Inst) {
1867           Fail = true;
1868           return;
1869         }
1870       }
1871     }
1872 
operator *() const1873     ArrayRef<Instruction*> operator * () const {
1874       return Insts;
1875     }
1876   };
1877 
1878 } // end anonymous namespace
1879 
1880 /// Check whether BB's predecessors end with unconditional branches. If it is
1881 /// true, sink any common code from the predecessors to BB.
1882 /// We also allow one predecessor to end with conditional branch (but no more
1883 /// than one).
SinkCommonCodeFromPredecessors(BasicBlock * BB,DomTreeUpdater * DTU)1884 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
1885                                            DomTreeUpdater *DTU) {
1886   // We support two situations:
1887   //   (1) all incoming arcs are unconditional
1888   //   (2) one incoming arc is conditional
1889   //
1890   // (2) is very common in switch defaults and
1891   // else-if patterns;
1892   //
1893   //   if (a) f(1);
1894   //   else if (b) f(2);
1895   //
1896   // produces:
1897   //
1898   //       [if]
1899   //      /    \
1900   //    [f(1)] [if]
1901   //      |     | \
1902   //      |     |  |
1903   //      |  [f(2)]|
1904   //       \    | /
1905   //        [ end ]
1906   //
1907   // [end] has two unconditional predecessor arcs and one conditional. The
1908   // conditional refers to the implicit empty 'else' arc. This conditional
1909   // arc can also be caused by an empty default block in a switch.
1910   //
1911   // In this case, we attempt to sink code from all *unconditional* arcs.
1912   // If we can sink instructions from these arcs (determined during the scan
1913   // phase below) we insert a common successor for all unconditional arcs and
1914   // connect that to [end], to enable sinking:
1915   //
1916   //       [if]
1917   //      /    \
1918   //    [x(1)] [if]
1919   //      |     | \
1920   //      |     |  \
1921   //      |  [x(2)] |
1922   //       \   /    |
1923   //   [sink.split] |
1924   //         \     /
1925   //         [ end ]
1926   //
1927   SmallVector<BasicBlock*,4> UnconditionalPreds;
1928   Instruction *Cond = nullptr;
1929   for (auto *B : predecessors(BB)) {
1930     auto *T = B->getTerminator();
1931     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1932       UnconditionalPreds.push_back(B);
1933     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1934       Cond = T;
1935     else
1936       return false;
1937   }
1938   if (UnconditionalPreds.size() < 2)
1939     return false;
1940 
1941   // We take a two-step approach to tail sinking. First we scan from the end of
1942   // each block upwards in lockstep. If the n'th instruction from the end of each
1943   // block can be sunk, those instructions are added to ValuesToSink and we
1944   // carry on. If we can sink an instruction but need to PHI-merge some operands
1945   // (because they're not identical in each instruction) we add these to
1946   // PHIOperands.
1947   unsigned ScanIdx = 0;
1948   SmallPtrSet<Value*,4> InstructionsToSink;
1949   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1950   LockstepReverseIterator LRI(UnconditionalPreds);
1951   while (LRI.isValid() &&
1952          canSinkInstructions(*LRI, PHIOperands)) {
1953     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1954                       << "\n");
1955     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1956     ++ScanIdx;
1957     --LRI;
1958   }
1959 
1960   // If no instructions can be sunk, early-return.
1961   if (ScanIdx == 0)
1962     return false;
1963 
1964   bool Changed = false;
1965 
1966   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1967     unsigned NumPHIdValues = 0;
1968     for (auto *I : *LRI)
1969       for (auto *V : PHIOperands[I])
1970         if (InstructionsToSink.count(V) == 0)
1971           ++NumPHIdValues;
1972     LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1973     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1974     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1975         NumPHIInsts++;
1976 
1977     return NumPHIInsts <= 1;
1978   };
1979 
1980   if (Cond) {
1981     // Check if we would actually sink anything first! This mutates the CFG and
1982     // adds an extra block. The goal in doing this is to allow instructions that
1983     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1984     // (such as trunc, add) can be sunk and predicated already. So we check that
1985     // we're going to sink at least one non-speculatable instruction.
1986     LRI.reset();
1987     unsigned Idx = 0;
1988     bool Profitable = false;
1989     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1990       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1991         Profitable = true;
1992         break;
1993       }
1994       --LRI;
1995       ++Idx;
1996     }
1997     if (!Profitable)
1998       return false;
1999 
2000     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2001     // We have a conditional edge and we're going to sink some instructions.
2002     // Insert a new block postdominating all blocks we're going to sink from.
2003     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2004       // Edges couldn't be split.
2005       return false;
2006     Changed = true;
2007   }
2008 
2009   // Now that we've analyzed all potential sinking candidates, perform the
2010   // actual sink. We iteratively sink the last non-terminator of the source
2011   // blocks into their common successor unless doing so would require too
2012   // many PHI instructions to be generated (currently only one PHI is allowed
2013   // per sunk instruction).
2014   //
2015   // We can use InstructionsToSink to discount values needing PHI-merging that will
2016   // actually be sunk in a later iteration. This allows us to be more
2017   // aggressive in what we sink. This does allow a false positive where we
2018   // sink presuming a later value will also be sunk, but stop half way through
2019   // and never actually sink it which means we produce more PHIs than intended.
2020   // This is unlikely in practice though.
2021   unsigned SinkIdx = 0;
2022   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2023     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2024                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2025                       << "\n");
2026 
2027     // Because we've sunk every instruction in turn, the current instruction to
2028     // sink is always at index 0.
2029     LRI.reset();
2030     if (!ProfitableToSinkInstruction(LRI)) {
2031       // Too many PHIs would be created.
2032       LLVM_DEBUG(
2033           dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2034       break;
2035     }
2036 
2037     if (!sinkLastInstruction(UnconditionalPreds)) {
2038       LLVM_DEBUG(
2039           dbgs()
2040           << "SINK: stopping here, failed to actually sink instruction!\n");
2041       break;
2042     }
2043 
2044     NumSinkCommonInstrs++;
2045     Changed = true;
2046   }
2047   if (SinkIdx != 0)
2048     ++NumSinkCommonCode;
2049   return Changed;
2050 }
2051 
2052 /// Determine if we can hoist sink a sole store instruction out of a
2053 /// conditional block.
2054 ///
2055 /// We are looking for code like the following:
2056 ///   BrBB:
2057 ///     store i32 %add, i32* %arrayidx2
2058 ///     ... // No other stores or function calls (we could be calling a memory
2059 ///     ... // function).
2060 ///     %cmp = icmp ult %x, %y
2061 ///     br i1 %cmp, label %EndBB, label %ThenBB
2062 ///   ThenBB:
2063 ///     store i32 %add5, i32* %arrayidx2
2064 ///     br label EndBB
2065 ///   EndBB:
2066 ///     ...
2067 ///   We are going to transform this into:
2068 ///   BrBB:
2069 ///     store i32 %add, i32* %arrayidx2
2070 ///     ... //
2071 ///     %cmp = icmp ult %x, %y
2072 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2073 ///     store i32 %add.add5, i32* %arrayidx2
2074 ///     ...
2075 ///
2076 /// \return The pointer to the value of the previous store if the store can be
2077 ///         hoisted into the predecessor block. 0 otherwise.
isSafeToSpeculateStore(Instruction * I,BasicBlock * BrBB,BasicBlock * StoreBB,BasicBlock * EndBB)2078 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2079                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2080   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2081   if (!StoreToHoist)
2082     return nullptr;
2083 
2084   // Volatile or atomic.
2085   if (!StoreToHoist->isSimple())
2086     return nullptr;
2087 
2088   Value *StorePtr = StoreToHoist->getPointerOperand();
2089 
2090   // Look for a store to the same pointer in BrBB.
2091   unsigned MaxNumInstToLookAt = 9;
2092   // Skip pseudo probe intrinsic calls which are not really killing any memory
2093   // accesses.
2094   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2095     if (!MaxNumInstToLookAt)
2096       break;
2097     --MaxNumInstToLookAt;
2098 
2099     // Could be calling an instruction that affects memory like free().
2100     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
2101       return nullptr;
2102 
2103     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2104       // Found the previous store make sure it stores to the same location.
2105       if (SI->getPointerOperand() == StorePtr)
2106         // Found the previous store, return its value operand.
2107         return SI->getValueOperand();
2108       return nullptr; // Unknown store.
2109     }
2110   }
2111 
2112   return nullptr;
2113 }
2114 
2115 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2116 /// converted to selects.
validateAndCostRequiredSelects(BasicBlock * BB,BasicBlock * ThenBB,BasicBlock * EndBB,unsigned & SpeculatedInstructions,int & BudgetRemaining,const TargetTransformInfo & TTI)2117 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2118                                            BasicBlock *EndBB,
2119                                            unsigned &SpeculatedInstructions,
2120                                            int &BudgetRemaining,
2121                                            const TargetTransformInfo &TTI) {
2122   TargetTransformInfo::TargetCostKind CostKind =
2123     BB->getParent()->hasMinSize()
2124     ? TargetTransformInfo::TCK_CodeSize
2125     : TargetTransformInfo::TCK_SizeAndLatency;
2126 
2127   bool HaveRewritablePHIs = false;
2128   for (PHINode &PN : EndBB->phis()) {
2129     Value *OrigV = PN.getIncomingValueForBlock(BB);
2130     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2131 
2132     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2133     // Skip PHIs which are trivial.
2134     if (ThenV == OrigV)
2135       continue;
2136 
2137     BudgetRemaining -=
2138         TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2139                                CmpInst::BAD_ICMP_PREDICATE, CostKind);
2140 
2141     // Don't convert to selects if we could remove undefined behavior instead.
2142     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2143         passingValueIsAlwaysUndefined(ThenV, &PN))
2144       return false;
2145 
2146     HaveRewritablePHIs = true;
2147     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2148     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2149     if (!OrigCE && !ThenCE)
2150       continue; // Known safe and cheap.
2151 
2152     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2153         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2154       return false;
2155     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2156     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2157     unsigned MaxCost =
2158         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2159     if (OrigCost + ThenCost > MaxCost)
2160       return false;
2161 
2162     // Account for the cost of an unfolded ConstantExpr which could end up
2163     // getting expanded into Instructions.
2164     // FIXME: This doesn't account for how many operations are combined in the
2165     // constant expression.
2166     ++SpeculatedInstructions;
2167     if (SpeculatedInstructions > 1)
2168       return false;
2169   }
2170 
2171   return HaveRewritablePHIs;
2172 }
2173 
2174 /// Speculate a conditional basic block flattening the CFG.
2175 ///
2176 /// Note that this is a very risky transform currently. Speculating
2177 /// instructions like this is most often not desirable. Instead, there is an MI
2178 /// pass which can do it with full awareness of the resource constraints.
2179 /// However, some cases are "obvious" and we should do directly. An example of
2180 /// this is speculating a single, reasonably cheap instruction.
2181 ///
2182 /// There is only one distinct advantage to flattening the CFG at the IR level:
2183 /// it makes very common but simplistic optimizations such as are common in
2184 /// instcombine and the DAG combiner more powerful by removing CFG edges and
2185 /// modeling their effects with easier to reason about SSA value graphs.
2186 ///
2187 ///
2188 /// An illustration of this transform is turning this IR:
2189 /// \code
2190 ///   BB:
2191 ///     %cmp = icmp ult %x, %y
2192 ///     br i1 %cmp, label %EndBB, label %ThenBB
2193 ///   ThenBB:
2194 ///     %sub = sub %x, %y
2195 ///     br label BB2
2196 ///   EndBB:
2197 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
2198 ///     ...
2199 /// \endcode
2200 ///
2201 /// Into this IR:
2202 /// \code
2203 ///   BB:
2204 ///     %cmp = icmp ult %x, %y
2205 ///     %sub = sub %x, %y
2206 ///     %cond = select i1 %cmp, 0, %sub
2207 ///     ...
2208 /// \endcode
2209 ///
2210 /// \returns true if the conditional block is removed.
SpeculativelyExecuteBB(BranchInst * BI,BasicBlock * ThenBB,const TargetTransformInfo & TTI)2211 bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
2212                                             const TargetTransformInfo &TTI) {
2213   // Be conservative for now. FP select instruction can often be expensive.
2214   Value *BrCond = BI->getCondition();
2215   if (isa<FCmpInst>(BrCond))
2216     return false;
2217 
2218   BasicBlock *BB = BI->getParent();
2219   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
2220   int BudgetRemaining =
2221     PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2222 
2223   // If ThenBB is actually on the false edge of the conditional branch, remember
2224   // to swap the select operands later.
2225   bool Invert = false;
2226   if (ThenBB != BI->getSuccessor(0)) {
2227     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
2228     Invert = true;
2229   }
2230   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
2231 
2232   // Keep a count of how many times instructions are used within ThenBB when
2233   // they are candidates for sinking into ThenBB. Specifically:
2234   // - They are defined in BB, and
2235   // - They have no side effects, and
2236   // - All of their uses are in ThenBB.
2237   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
2238 
2239   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
2240 
2241   unsigned SpeculatedInstructions = 0;
2242   Value *SpeculatedStoreValue = nullptr;
2243   StoreInst *SpeculatedStore = nullptr;
2244   for (BasicBlock::iterator BBI = ThenBB->begin(),
2245                             BBE = std::prev(ThenBB->end());
2246        BBI != BBE; ++BBI) {
2247     Instruction *I = &*BBI;
2248     // Skip debug info.
2249     if (isa<DbgInfoIntrinsic>(I)) {
2250       SpeculatedDbgIntrinsics.push_back(I);
2251       continue;
2252     }
2253 
2254     // Skip pseudo probes. The consequence is we lose track of the branch
2255     // probability for ThenBB, which is fine since the optimization here takes
2256     // place regardless of the branch probability.
2257     if (isa<PseudoProbeInst>(I)) {
2258       SpeculatedDbgIntrinsics.push_back(I);
2259       continue;
2260     }
2261 
2262     // Only speculatively execute a single instruction (not counting the
2263     // terminator) for now.
2264     ++SpeculatedInstructions;
2265     if (SpeculatedInstructions > 1)
2266       return false;
2267 
2268     // Don't hoist the instruction if it's unsafe or expensive.
2269     if (!isSafeToSpeculativelyExecute(I) &&
2270         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2271                                   I, BB, ThenBB, EndBB))))
2272       return false;
2273     if (!SpeculatedStoreValue &&
2274         ComputeSpeculationCost(I, TTI) >
2275             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2276       return false;
2277 
2278     // Store the store speculation candidate.
2279     if (SpeculatedStoreValue)
2280       SpeculatedStore = cast<StoreInst>(I);
2281 
2282     // Do not hoist the instruction if any of its operands are defined but not
2283     // used in BB. The transformation will prevent the operand from
2284     // being sunk into the use block.
2285     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2286       Instruction *OpI = dyn_cast<Instruction>(*i);
2287       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2288         continue; // Not a candidate for sinking.
2289 
2290       ++SinkCandidateUseCounts[OpI];
2291     }
2292   }
2293 
2294   // Consider any sink candidates which are only used in ThenBB as costs for
2295   // speculation. Note, while we iterate over a DenseMap here, we are summing
2296   // and so iteration order isn't significant.
2297   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2298            I = SinkCandidateUseCounts.begin(),
2299            E = SinkCandidateUseCounts.end();
2300        I != E; ++I)
2301     if (I->first->hasNUses(I->second)) {
2302       ++SpeculatedInstructions;
2303       if (SpeculatedInstructions > 1)
2304         return false;
2305     }
2306 
2307   // Check that we can insert the selects and that it's not too expensive to do
2308   // so.
2309   bool Convert = SpeculatedStore != nullptr;
2310   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
2311                                             SpeculatedInstructions,
2312                                             BudgetRemaining, TTI);
2313   if (!Convert || BudgetRemaining < 0)
2314     return false;
2315 
2316   // If we get here, we can hoist the instruction and if-convert.
2317   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2318 
2319   // Insert a select of the value of the speculated store.
2320   if (SpeculatedStoreValue) {
2321     IRBuilder<NoFolder> Builder(BI);
2322     Value *TrueV = SpeculatedStore->getValueOperand();
2323     Value *FalseV = SpeculatedStoreValue;
2324     if (Invert)
2325       std::swap(TrueV, FalseV);
2326     Value *S = Builder.CreateSelect(
2327         BrCond, TrueV, FalseV, "spec.store.select", BI);
2328     SpeculatedStore->setOperand(0, S);
2329     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2330                                          SpeculatedStore->getDebugLoc());
2331   }
2332 
2333   // Metadata can be dependent on the condition we are hoisting above.
2334   // Conservatively strip all metadata on the instruction. Drop the debug loc
2335   // to avoid making it appear as if the condition is a constant, which would
2336   // be misleading while debugging.
2337   for (auto &I : *ThenBB) {
2338     if (!SpeculatedStoreValue || &I != SpeculatedStore)
2339       I.setDebugLoc(DebugLoc());
2340     I.dropUnknownNonDebugMetadata();
2341   }
2342 
2343   // Hoist the instructions.
2344   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2345                            ThenBB->begin(), std::prev(ThenBB->end()));
2346 
2347   // Insert selects and rewrite the PHI operands.
2348   IRBuilder<NoFolder> Builder(BI);
2349   for (PHINode &PN : EndBB->phis()) {
2350     unsigned OrigI = PN.getBasicBlockIndex(BB);
2351     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2352     Value *OrigV = PN.getIncomingValue(OrigI);
2353     Value *ThenV = PN.getIncomingValue(ThenI);
2354 
2355     // Skip PHIs which are trivial.
2356     if (OrigV == ThenV)
2357       continue;
2358 
2359     // Create a select whose true value is the speculatively executed value and
2360     // false value is the pre-existing value. Swap them if the branch
2361     // destinations were inverted.
2362     Value *TrueV = ThenV, *FalseV = OrigV;
2363     if (Invert)
2364       std::swap(TrueV, FalseV);
2365     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
2366     PN.setIncomingValue(OrigI, V);
2367     PN.setIncomingValue(ThenI, V);
2368   }
2369 
2370   // Remove speculated dbg intrinsics.
2371   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2372   // dbg value for the different flows and inserting it after the select.
2373   for (Instruction *I : SpeculatedDbgIntrinsics)
2374     I->eraseFromParent();
2375 
2376   ++NumSpeculations;
2377   return true;
2378 }
2379 
2380 /// Return true if we can thread a branch across this block.
BlockIsSimpleEnoughToThreadThrough(BasicBlock * BB)2381 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2382   int Size = 0;
2383 
2384   for (Instruction &I : BB->instructionsWithoutDebug()) {
2385     if (Size > MaxSmallBlockSize)
2386       return false; // Don't clone large BB's.
2387 
2388     // Can't fold blocks that contain noduplicate or convergent calls.
2389     if (CallInst *CI = dyn_cast<CallInst>(&I))
2390       if (CI->cannotDuplicate() || CI->isConvergent())
2391         return false;
2392 
2393     // We will delete Phis while threading, so Phis should not be accounted in
2394     // block's size
2395     if (!isa<PHINode>(I))
2396       ++Size;
2397 
2398     // We can only support instructions that do not define values that are
2399     // live outside of the current basic block.
2400     for (User *U : I.users()) {
2401       Instruction *UI = cast<Instruction>(U);
2402       if (UI->getParent() != BB || isa<PHINode>(UI))
2403         return false;
2404     }
2405 
2406     // Looks ok, continue checking.
2407   }
2408 
2409   return true;
2410 }
2411 
2412 /// If we have a conditional branch on a PHI node value that is defined in the
2413 /// same block as the branch and if any PHI entries are constants, thread edges
2414 /// corresponding to that entry to be branches to their ultimate destination.
FoldCondBranchOnPHI(BranchInst * BI,DomTreeUpdater * DTU,const DataLayout & DL,AssumptionCache * AC)2415 static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
2416                                 const DataLayout &DL, AssumptionCache *AC) {
2417   BasicBlock *BB = BI->getParent();
2418   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2419   // NOTE: we currently cannot transform this case if the PHI node is used
2420   // outside of the block.
2421   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2422     return false;
2423 
2424   // Degenerate case of a single entry PHI.
2425   if (PN->getNumIncomingValues() == 1) {
2426     FoldSingleEntryPHINodes(PN->getParent());
2427     return true;
2428   }
2429 
2430   // Now we know that this block has multiple preds and two succs.
2431   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2432     return false;
2433 
2434   // Okay, this is a simple enough basic block.  See if any phi values are
2435   // constants.
2436   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2437     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2438     if (!CB || !CB->getType()->isIntegerTy(1))
2439       continue;
2440 
2441     // Okay, we now know that all edges from PredBB should be revectored to
2442     // branch to RealDest.
2443     BasicBlock *PredBB = PN->getIncomingBlock(i);
2444     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2445 
2446     if (RealDest == BB)
2447       continue; // Skip self loops.
2448     // Skip if the predecessor's terminator is an indirect branch.
2449     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2450       continue;
2451 
2452     SmallVector<DominatorTree::UpdateType, 3> Updates;
2453 
2454     // The dest block might have PHI nodes, other predecessors and other
2455     // difficult cases.  Instead of being smart about this, just insert a new
2456     // block that jumps to the destination block, effectively splitting
2457     // the edge we are about to create.
2458     BasicBlock *EdgeBB =
2459         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2460                            RealDest->getParent(), RealDest);
2461     BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2462     Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
2463     CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2464 
2465     // Update PHI nodes.
2466     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2467 
2468     // BB may have instructions that are being threaded over.  Clone these
2469     // instructions into EdgeBB.  We know that there will be no uses of the
2470     // cloned instructions outside of EdgeBB.
2471     BasicBlock::iterator InsertPt = EdgeBB->begin();
2472     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2473     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2474       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2475         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2476         continue;
2477       }
2478       // Clone the instruction.
2479       Instruction *N = BBI->clone();
2480       if (BBI->hasName())
2481         N->setName(BBI->getName() + ".c");
2482 
2483       // Update operands due to translation.
2484       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2485         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2486         if (PI != TranslateMap.end())
2487           *i = PI->second;
2488       }
2489 
2490       // Check for trivial simplification.
2491       if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2492         if (!BBI->use_empty())
2493           TranslateMap[&*BBI] = V;
2494         if (!N->mayHaveSideEffects()) {
2495           N->deleteValue(); // Instruction folded away, don't need actual inst
2496           N = nullptr;
2497         }
2498       } else {
2499         if (!BBI->use_empty())
2500           TranslateMap[&*BBI] = N;
2501       }
2502       if (N) {
2503         // Insert the new instruction into its new home.
2504         EdgeBB->getInstList().insert(InsertPt, N);
2505 
2506         // Register the new instruction with the assumption cache if necessary.
2507         if (AC && match(N, m_Intrinsic<Intrinsic::assume>()))
2508           AC->registerAssumption(cast<IntrinsicInst>(N));
2509       }
2510     }
2511 
2512     // Loop over all of the edges from PredBB to BB, changing them to branch
2513     // to EdgeBB instead.
2514     Instruction *PredBBTI = PredBB->getTerminator();
2515     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2516       if (PredBBTI->getSuccessor(i) == BB) {
2517         BB->removePredecessor(PredBB);
2518         PredBBTI->setSuccessor(i, EdgeBB);
2519       }
2520 
2521     Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
2522     Updates.push_back({DominatorTree::Delete, PredBB, BB});
2523 
2524     if (DTU)
2525       DTU->applyUpdates(Updates);
2526 
2527     // Recurse, simplifying any other constants.
2528     return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
2529   }
2530 
2531   return false;
2532 }
2533 
2534 /// Given a BB that starts with the specified two-entry PHI node,
2535 /// see if we can eliminate it.
FoldTwoEntryPHINode(PHINode * PN,const TargetTransformInfo & TTI,DomTreeUpdater * DTU,const DataLayout & DL)2536 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2537                                 DomTreeUpdater *DTU, const DataLayout &DL) {
2538   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2539   // statement", which has a very simple dominance structure.  Basically, we
2540   // are trying to find the condition that is being branched on, which
2541   // subsequently causes this merge to happen.  We really want control
2542   // dependence information for this check, but simplifycfg can't keep it up
2543   // to date, and this catches most of the cases we care about anyway.
2544   BasicBlock *BB = PN->getParent();
2545 
2546   BasicBlock *IfTrue, *IfFalse;
2547   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2548   if (!IfCond ||
2549       // Don't bother if the branch will be constant folded trivially.
2550       isa<ConstantInt>(IfCond))
2551     return false;
2552 
2553   // Okay, we found that we can merge this two-entry phi node into a select.
2554   // Doing so would require us to fold *all* two entry phi nodes in this block.
2555   // At some point this becomes non-profitable (particularly if the target
2556   // doesn't support cmov's).  Only do this transformation if there are two or
2557   // fewer PHI nodes in this block.
2558   unsigned NumPhis = 0;
2559   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2560     if (NumPhis > 2)
2561       return false;
2562 
2563   // Loop over the PHI's seeing if we can promote them all to select
2564   // instructions.  While we are at it, keep track of the instructions
2565   // that need to be moved to the dominating block.
2566   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2567   int BudgetRemaining =
2568       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2569 
2570   bool Changed = false;
2571   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2572     PHINode *PN = cast<PHINode>(II++);
2573     if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2574       PN->replaceAllUsesWith(V);
2575       PN->eraseFromParent();
2576       Changed = true;
2577       continue;
2578     }
2579 
2580     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2581                              BudgetRemaining, TTI) ||
2582         !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2583                              BudgetRemaining, TTI))
2584       return Changed;
2585   }
2586 
2587   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2588   // we ran out of PHIs then we simplified them all.
2589   PN = dyn_cast<PHINode>(BB->begin());
2590   if (!PN)
2591     return true;
2592 
2593   // Return true if at least one of these is a 'not', and another is either
2594   // a 'not' too, or a constant.
2595   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2596     if (!match(V0, m_Not(m_Value())))
2597       std::swap(V0, V1);
2598     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2599     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2600   };
2601 
2602   // Don't fold i1 branches on PHIs which contain binary operators, unless one
2603   // of the incoming values is an 'not' and another one is freely invertible.
2604   // These can often be turned into switches and other things.
2605   if (PN->getType()->isIntegerTy(1) &&
2606       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2607        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2608        isa<BinaryOperator>(IfCond)) &&
2609       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2610                                  PN->getIncomingValue(1)))
2611     return Changed;
2612 
2613   // If all PHI nodes are promotable, check to make sure that all instructions
2614   // in the predecessor blocks can be promoted as well. If not, we won't be able
2615   // to get rid of the control flow, so it's not worth promoting to select
2616   // instructions.
2617   BasicBlock *DomBlock = nullptr;
2618   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2619   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2620   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2621     IfBlock1 = nullptr;
2622   } else {
2623     DomBlock = *pred_begin(IfBlock1);
2624     for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2625       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2626           !isa<PseudoProbeInst>(I)) {
2627         // This is not an aggressive instruction that we can promote.
2628         // Because of this, we won't be able to get rid of the control flow, so
2629         // the xform is not worth it.
2630         return Changed;
2631       }
2632   }
2633 
2634   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2635     IfBlock2 = nullptr;
2636   } else {
2637     DomBlock = *pred_begin(IfBlock2);
2638     for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2639       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
2640           !isa<PseudoProbeInst>(I)) {
2641         // This is not an aggressive instruction that we can promote.
2642         // Because of this, we won't be able to get rid of the control flow, so
2643         // the xform is not worth it.
2644         return Changed;
2645       }
2646   }
2647   assert(DomBlock && "Failed to find root DomBlock");
2648 
2649   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond
2650                     << "  T: " << IfTrue->getName()
2651                     << "  F: " << IfFalse->getName() << "\n");
2652 
2653   // If we can still promote the PHI nodes after this gauntlet of tests,
2654   // do all of the PHI's now.
2655   Instruction *InsertPt = DomBlock->getTerminator();
2656   IRBuilder<NoFolder> Builder(InsertPt);
2657 
2658   // Move all 'aggressive' instructions, which are defined in the
2659   // conditional parts of the if's up to the dominating block.
2660   if (IfBlock1)
2661     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2662   if (IfBlock2)
2663     hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2664 
2665   // Propagate fast-math-flags from phi nodes to replacement selects.
2666   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2667   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2668     if (isa<FPMathOperator>(PN))
2669       Builder.setFastMathFlags(PN->getFastMathFlags());
2670 
2671     // Change the PHI node into a select instruction.
2672     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2673     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2674 
2675     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2676     PN->replaceAllUsesWith(Sel);
2677     Sel->takeName(PN);
2678     PN->eraseFromParent();
2679   }
2680 
2681   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2682   // has been flattened.  Change DomBlock to jump directly to our new block to
2683   // avoid other simplifycfg's kicking in on the diamond.
2684   Instruction *OldTI = DomBlock->getTerminator();
2685   Builder.SetInsertPoint(OldTI);
2686   Builder.CreateBr(BB);
2687 
2688   SmallVector<DominatorTree::UpdateType, 3> Updates;
2689   if (DTU) {
2690     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
2691     for (auto *Successor : successors(DomBlock))
2692       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
2693   }
2694 
2695   OldTI->eraseFromParent();
2696   if (DTU)
2697     DTU->applyUpdates(Updates);
2698 
2699   return true;
2700 }
2701 
2702 /// If we found a conditional branch that goes to two returning blocks,
2703 /// try to merge them together into one return,
2704 /// introducing a select if the return values disagree.
SimplifyCondBranchToTwoReturns(BranchInst * BI,IRBuilder<> & Builder)2705 bool SimplifyCFGOpt::SimplifyCondBranchToTwoReturns(BranchInst *BI,
2706                                                     IRBuilder<> &Builder) {
2707   auto *BB = BI->getParent();
2708   assert(BI->isConditional() && "Must be a conditional branch");
2709   BasicBlock *TrueSucc = BI->getSuccessor(0);
2710   BasicBlock *FalseSucc = BI->getSuccessor(1);
2711   // NOTE: destinations may match, this could be degenerate uncond branch.
2712   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2713   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2714 
2715   // Check to ensure both blocks are empty (just a return) or optionally empty
2716   // with PHI nodes.  If there are other instructions, merging would cause extra
2717   // computation on one path or the other.
2718   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2719     return false;
2720   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2721     return false;
2722 
2723   Builder.SetInsertPoint(BI);
2724   // Okay, we found a branch that is going to two return nodes.  If
2725   // there is no return value for this function, just change the
2726   // branch into a return.
2727   if (FalseRet->getNumOperands() == 0) {
2728     TrueSucc->removePredecessor(BB);
2729     FalseSucc->removePredecessor(BB);
2730     Builder.CreateRetVoid();
2731     EraseTerminatorAndDCECond(BI);
2732     if (DTU) {
2733       SmallVector<DominatorTree::UpdateType, 2> Updates;
2734       Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2735       if (TrueSucc != FalseSucc)
2736         Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2737       DTU->applyUpdates(Updates);
2738     }
2739     return true;
2740   }
2741 
2742   // Otherwise, figure out what the true and false return values are
2743   // so we can insert a new select instruction.
2744   Value *TrueValue = TrueRet->getReturnValue();
2745   Value *FalseValue = FalseRet->getReturnValue();
2746 
2747   // Unwrap any PHI nodes in the return blocks.
2748   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2749     if (TVPN->getParent() == TrueSucc)
2750       TrueValue = TVPN->getIncomingValueForBlock(BB);
2751   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2752     if (FVPN->getParent() == FalseSucc)
2753       FalseValue = FVPN->getIncomingValueForBlock(BB);
2754 
2755   // In order for this transformation to be safe, we must be able to
2756   // unconditionally execute both operands to the return.  This is
2757   // normally the case, but we could have a potentially-trapping
2758   // constant expression that prevents this transformation from being
2759   // safe.
2760   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2761     if (TCV->canTrap())
2762       return false;
2763   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2764     if (FCV->canTrap())
2765       return false;
2766 
2767   // Okay, we collected all the mapped values and checked them for sanity, and
2768   // defined to really do this transformation.  First, update the CFG.
2769   TrueSucc->removePredecessor(BB);
2770   FalseSucc->removePredecessor(BB);
2771 
2772   // Insert select instructions where needed.
2773   Value *BrCond = BI->getCondition();
2774   if (TrueValue) {
2775     // Insert a select if the results differ.
2776     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2777     } else if (isa<UndefValue>(TrueValue)) {
2778       TrueValue = FalseValue;
2779     } else {
2780       TrueValue =
2781           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2782     }
2783   }
2784 
2785   Value *RI =
2786       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2787 
2788   (void)RI;
2789 
2790   LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2791                     << "\n  " << *BI << "\nNewRet = " << *RI << "\nTRUEBLOCK: "
2792                     << *TrueSucc << "\nFALSEBLOCK: " << *FalseSucc);
2793 
2794   EraseTerminatorAndDCECond(BI);
2795   if (DTU) {
2796     SmallVector<DominatorTree::UpdateType, 2> Updates;
2797     Updates.push_back({DominatorTree::Delete, BB, TrueSucc});
2798     if (TrueSucc != FalseSucc)
2799       Updates.push_back({DominatorTree::Delete, BB, FalseSucc});
2800     DTU->applyUpdates(Updates);
2801   }
2802 
2803   return true;
2804 }
2805 
2806 /// Return true if either PBI or BI has branch weight available, and store
2807 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2808 /// not have branch weight, use 1:1 as its weight.
extractPredSuccWeights(BranchInst * PBI,BranchInst * BI,uint64_t & PredTrueWeight,uint64_t & PredFalseWeight,uint64_t & SuccTrueWeight,uint64_t & SuccFalseWeight)2809 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2810                                    uint64_t &PredTrueWeight,
2811                                    uint64_t &PredFalseWeight,
2812                                    uint64_t &SuccTrueWeight,
2813                                    uint64_t &SuccFalseWeight) {
2814   bool PredHasWeights =
2815       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2816   bool SuccHasWeights =
2817       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2818   if (PredHasWeights || SuccHasWeights) {
2819     if (!PredHasWeights)
2820       PredTrueWeight = PredFalseWeight = 1;
2821     if (!SuccHasWeights)
2822       SuccTrueWeight = SuccFalseWeight = 1;
2823     return true;
2824   } else {
2825     return false;
2826   }
2827 }
2828 
2829 // Determine if the two branches share a common destination,
2830 // and deduce a glue that we need to use to join branch's conditions
2831 // to arrive at the common destination.
2832 static Optional<std::pair<Instruction::BinaryOps, bool>>
CheckIfCondBranchesShareCommonDestination(BranchInst * BI,BranchInst * PBI)2833 CheckIfCondBranchesShareCommonDestination(BranchInst *BI, BranchInst *PBI) {
2834   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
2835          "Both blocks must end with a conditional branches.");
2836   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
2837          "PredBB must be a predecessor of BB.");
2838 
2839   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2840     return {{Instruction::Or, false}};
2841   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2842     return {{Instruction::And, false}};
2843   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2844     return {{Instruction::And, true}};
2845   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2846     return {{Instruction::Or, true}};
2847   return None;
2848 }
2849 
PerformBranchToCommonDestFolding(BranchInst * BI,BranchInst * PBI,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU)2850 static bool PerformBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
2851                                              DomTreeUpdater *DTU,
2852                                              MemorySSAUpdater *MSSAU) {
2853   BasicBlock *BB = BI->getParent();
2854   BasicBlock *PredBlock = PBI->getParent();
2855 
2856   // Determine if the two branches share a common destination.
2857   Instruction::BinaryOps Opc;
2858   bool InvertPredCond;
2859   std::tie(Opc, InvertPredCond) =
2860       *CheckIfCondBranchesShareCommonDestination(BI, PBI);
2861 
2862   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2863 
2864   IRBuilder<> Builder(PBI);
2865   // The builder is used to create instructions to eliminate the branch in BB.
2866   // If BB's terminator has !annotation metadata, add it to the new
2867   // instructions.
2868   Builder.CollectMetadataToCopy(BB->getTerminator(),
2869                                 {LLVMContext::MD_annotation});
2870 
2871   // If we need to invert the condition in the pred block to match, do so now.
2872   if (InvertPredCond) {
2873     Value *NewCond = PBI->getCondition();
2874     if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2875       CmpInst *CI = cast<CmpInst>(NewCond);
2876       CI->setPredicate(CI->getInversePredicate());
2877     } else {
2878       NewCond =
2879           Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2880     }
2881 
2882     PBI->setCondition(NewCond);
2883     PBI->swapSuccessors();
2884   }
2885 
2886   BasicBlock *UniqueSucc =
2887       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
2888 
2889   // Before cloning instructions, notify the successor basic block that it
2890   // is about to have a new predecessor. This will update PHI nodes,
2891   // which will allow us to update live-out uses of bonus instructions.
2892   AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
2893 
2894   // Try to update branch weights.
2895   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2896   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2897                              SuccTrueWeight, SuccFalseWeight)) {
2898     SmallVector<uint64_t, 8> NewWeights;
2899 
2900     if (PBI->getSuccessor(0) == BB) {
2901       // PBI: br i1 %x, BB, FalseDest
2902       // BI:  br i1 %y, UniqueSucc, FalseDest
2903       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2904       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2905       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2906       //               TrueWeight for PBI * FalseWeight for BI.
2907       // We assume that total weights of a BranchInst can fit into 32 bits.
2908       // Therefore, we will not have overflow using 64-bit arithmetic.
2909       NewWeights.push_back(PredFalseWeight *
2910                                (SuccFalseWeight + SuccTrueWeight) +
2911                            PredTrueWeight * SuccFalseWeight);
2912     } else {
2913       // PBI: br i1 %x, TrueDest, BB
2914       // BI:  br i1 %y, TrueDest, UniqueSucc
2915       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2916       //              FalseWeight for PBI * TrueWeight for BI.
2917       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
2918                            PredFalseWeight * SuccTrueWeight);
2919       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2920       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2921     }
2922 
2923     // Halve the weights if any of them cannot fit in an uint32_t
2924     FitWeights(NewWeights);
2925 
2926     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
2927     setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2928 
2929     // TODO: If BB is reachable from all paths through PredBlock, then we
2930     // could replace PBI's branch probabilities with BI's.
2931   } else
2932     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2933 
2934   // Now, update the CFG.
2935   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
2936 
2937   if (DTU)
2938     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
2939                        {DominatorTree::Delete, PredBlock, BB}});
2940 
2941   // If BI was a loop latch, it may have had associated loop metadata.
2942   // We need to copy it to the new latch, that is, PBI.
2943   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2944     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2945 
2946   ValueToValueMapTy VMap; // maps original values to cloned values
2947   CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
2948 
2949   // Now that the Cond was cloned into the predecessor basic block,
2950   // or/and the two conditions together.
2951   Instruction *NewCond = cast<Instruction>(Builder.CreateBinOp(
2952       Opc, PBI->getCondition(), VMap[BI->getCondition()], "or.cond"));
2953   PBI->setCondition(NewCond);
2954 
2955   // Copy any debug value intrinsics into the end of PredBlock.
2956   for (Instruction &I : *BB) {
2957     if (isa<DbgInfoIntrinsic>(I)) {
2958       Instruction *NewI = I.clone();
2959       RemapInstruction(NewI, VMap,
2960                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2961       NewI->insertBefore(PBI);
2962     }
2963   }
2964 
2965   ++NumFoldBranchToCommonDest;
2966   return true;
2967 }
2968 
2969 /// If this basic block is simple enough, and if a predecessor branches to us
2970 /// and one of our successors, fold the block into the predecessor and use
2971 /// logical operations to pick the right destination.
FoldBranchToCommonDest(BranchInst * BI,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU,const TargetTransformInfo * TTI,unsigned BonusInstThreshold)2972 bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
2973                                   MemorySSAUpdater *MSSAU,
2974                                   const TargetTransformInfo *TTI,
2975                                   unsigned BonusInstThreshold) {
2976   // If this block ends with an unconditional branch,
2977   // let SpeculativelyExecuteBB() deal with it.
2978   if (!BI->isConditional())
2979     return false;
2980 
2981   BasicBlock *BB = BI->getParent();
2982 
2983   const unsigned PredCount = pred_size(BB);
2984 
2985   bool Changed = false;
2986 
2987   TargetTransformInfo::TargetCostKind CostKind =
2988     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
2989                                   : TargetTransformInfo::TCK_SizeAndLatency;
2990 
2991   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2992 
2993   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2994       Cond->getParent() != BB || !Cond->hasOneUse())
2995     return Changed;
2996 
2997   // Only allow this transformation if computing the condition doesn't involve
2998   // too many instructions and these involved instructions can be executed
2999   // unconditionally. We denote all involved instructions except the condition
3000   // as "bonus instructions", and only allow this transformation when the
3001   // number of the bonus instructions we'll need to create when cloning into
3002   // each predecessor does not exceed a certain threshold.
3003   unsigned NumBonusInsts = 0;
3004   for (Instruction &I : *BB) {
3005     // Don't check the branch condition comparison itself.
3006     if (&I == Cond)
3007       continue;
3008     // Ignore dbg intrinsics, and the terminator.
3009     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
3010       continue;
3011     // I must be safe to execute unconditionally.
3012     if (!isSafeToSpeculativelyExecute(&I))
3013       return Changed;
3014 
3015     // Account for the cost of duplicating this instruction into each
3016     // predecessor.
3017     NumBonusInsts += PredCount;
3018     // Early exits once we reach the limit.
3019     if (NumBonusInsts > BonusInstThreshold)
3020       return Changed;
3021   }
3022 
3023   // Cond is known to be a compare or binary operator.  Check to make sure that
3024   // neither operand is a potentially-trapping constant expression.
3025   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
3026     if (CE->canTrap())
3027       return Changed;
3028   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
3029     if (CE->canTrap())
3030       return Changed;
3031 
3032   // Finally, don't infinitely unroll conditional loops.
3033   if (is_contained(successors(BB), BB))
3034     return Changed;
3035 
3036   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
3037     BasicBlock *PredBlock = *PI;
3038     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
3039 
3040     // Check that we have two conditional branches.  If there is a PHI node in
3041     // the common successor, verify that the same value flows in from both
3042     // blocks.
3043     if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
3044       continue;
3045 
3046     // Determine if the two branches share a common destination.
3047     Instruction::BinaryOps Opc;
3048     bool InvertPredCond;
3049     if (auto Recepie = CheckIfCondBranchesShareCommonDestination(BI, PBI))
3050       std::tie(Opc, InvertPredCond) = *Recepie;
3051     else
3052       continue;
3053 
3054     // Check the cost of inserting the necessary logic before performing the
3055     // transformation.
3056     if (TTI) {
3057       Type *Ty = BI->getCondition()->getType();
3058       unsigned Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
3059       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
3060           !isa<CmpInst>(PBI->getCondition())))
3061         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
3062 
3063       if (Cost > BranchFoldThreshold)
3064         continue;
3065     }
3066 
3067     return PerformBranchToCommonDestFolding(BI, PBI, DTU, MSSAU);
3068   }
3069   return Changed;
3070 }
3071 
3072 // If there is only one store in BB1 and BB2, return it, otherwise return
3073 // nullptr.
findUniqueStoreInBlocks(BasicBlock * BB1,BasicBlock * BB2)3074 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
3075   StoreInst *S = nullptr;
3076   for (auto *BB : {BB1, BB2}) {
3077     if (!BB)
3078       continue;
3079     for (auto &I : *BB)
3080       if (auto *SI = dyn_cast<StoreInst>(&I)) {
3081         if (S)
3082           // Multiple stores seen.
3083           return nullptr;
3084         else
3085           S = SI;
3086       }
3087   }
3088   return S;
3089 }
3090 
ensureValueAvailableInSuccessor(Value * V,BasicBlock * BB,Value * AlternativeV=nullptr)3091 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
3092                                               Value *AlternativeV = nullptr) {
3093   // PHI is going to be a PHI node that allows the value V that is defined in
3094   // BB to be referenced in BB's only successor.
3095   //
3096   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
3097   // doesn't matter to us what the other operand is (it'll never get used). We
3098   // could just create a new PHI with an undef incoming value, but that could
3099   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
3100   // other PHI. So here we directly look for some PHI in BB's successor with V
3101   // as an incoming operand. If we find one, we use it, else we create a new
3102   // one.
3103   //
3104   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
3105   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
3106   // where OtherBB is the single other predecessor of BB's only successor.
3107   PHINode *PHI = nullptr;
3108   BasicBlock *Succ = BB->getSingleSuccessor();
3109 
3110   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
3111     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
3112       PHI = cast<PHINode>(I);
3113       if (!AlternativeV)
3114         break;
3115 
3116       assert(Succ->hasNPredecessors(2));
3117       auto PredI = pred_begin(Succ);
3118       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
3119       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
3120         break;
3121       PHI = nullptr;
3122     }
3123   if (PHI)
3124     return PHI;
3125 
3126   // If V is not an instruction defined in BB, just return it.
3127   if (!AlternativeV &&
3128       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
3129     return V;
3130 
3131   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
3132   PHI->addIncoming(V, BB);
3133   for (BasicBlock *PredBB : predecessors(Succ))
3134     if (PredBB != BB)
3135       PHI->addIncoming(
3136           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
3137   return PHI;
3138 }
3139 
mergeConditionalStoreToAddress(BasicBlock * PTB,BasicBlock * PFB,BasicBlock * QTB,BasicBlock * QFB,BasicBlock * PostBB,Value * Address,bool InvertPCond,bool InvertQCond,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)3140 static bool mergeConditionalStoreToAddress(
3141     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
3142     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
3143     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
3144   // For every pointer, there must be exactly two stores, one coming from
3145   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
3146   // store (to any address) in PTB,PFB or QTB,QFB.
3147   // FIXME: We could relax this restriction with a bit more work and performance
3148   // testing.
3149   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
3150   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
3151   if (!PStore || !QStore)
3152     return false;
3153 
3154   // Now check the stores are compatible.
3155   if (!QStore->isUnordered() || !PStore->isUnordered())
3156     return false;
3157 
3158   // Check that sinking the store won't cause program behavior changes. Sinking
3159   // the store out of the Q blocks won't change any behavior as we're sinking
3160   // from a block to its unconditional successor. But we're moving a store from
3161   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
3162   // So we need to check that there are no aliasing loads or stores in
3163   // QBI, QTB and QFB. We also need to check there are no conflicting memory
3164   // operations between PStore and the end of its parent block.
3165   //
3166   // The ideal way to do this is to query AliasAnalysis, but we don't
3167   // preserve AA currently so that is dangerous. Be super safe and just
3168   // check there are no other memory operations at all.
3169   for (auto &I : *QFB->getSinglePredecessor())
3170     if (I.mayReadOrWriteMemory())
3171       return false;
3172   for (auto &I : *QFB)
3173     if (&I != QStore && I.mayReadOrWriteMemory())
3174       return false;
3175   if (QTB)
3176     for (auto &I : *QTB)
3177       if (&I != QStore && I.mayReadOrWriteMemory())
3178         return false;
3179   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
3180        I != E; ++I)
3181     if (&*I != PStore && I->mayReadOrWriteMemory())
3182       return false;
3183 
3184   // If we're not in aggressive mode, we only optimize if we have some
3185   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
3186   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
3187     if (!BB)
3188       return true;
3189     // Heuristic: if the block can be if-converted/phi-folded and the
3190     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
3191     // thread this store.
3192     int BudgetRemaining =
3193         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3194     for (auto &I : BB->instructionsWithoutDebug()) {
3195       // Consider terminator instruction to be free.
3196       if (I.isTerminator())
3197         continue;
3198       // If this is one the stores that we want to speculate out of this BB,
3199       // then don't count it's cost, consider it to be free.
3200       if (auto *S = dyn_cast<StoreInst>(&I))
3201         if (llvm::find(FreeStores, S))
3202           continue;
3203       // Else, we have a white-list of instructions that we are ak speculating.
3204       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3205         return false; // Not in white-list - not worthwhile folding.
3206       // And finally, if this is a non-free instruction that we are okay
3207       // speculating, ensure that we consider the speculation budget.
3208       BudgetRemaining -= TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
3209       if (BudgetRemaining < 0)
3210         return false; // Eagerly refuse to fold as soon as we're out of budget.
3211     }
3212     assert(BudgetRemaining >= 0 &&
3213            "When we run out of budget we will eagerly return from within the "
3214            "per-instruction loop.");
3215     return true;
3216   };
3217 
3218   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
3219   if (!MergeCondStoresAggressively &&
3220       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3221        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3222     return false;
3223 
3224   // If PostBB has more than two predecessors, we need to split it so we can
3225   // sink the store.
3226   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3227     // We know that QFB's only successor is PostBB. And QFB has a single
3228     // predecessor. If QTB exists, then its only successor is also PostBB.
3229     // If QTB does not exist, then QFB's only predecessor has a conditional
3230     // branch to QFB and PostBB.
3231     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3232     BasicBlock *NewBB =
3233         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
3234     if (!NewBB)
3235       return false;
3236     PostBB = NewBB;
3237   }
3238 
3239   // OK, we're going to sink the stores to PostBB. The store has to be
3240   // conditional though, so first create the predicate.
3241   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3242                      ->getCondition();
3243   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3244                      ->getCondition();
3245 
3246   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3247                                                 PStore->getParent());
3248   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3249                                                 QStore->getParent(), PPHI);
3250 
3251   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3252 
3253   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3254   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3255 
3256   if (InvertPCond)
3257     PPred = QB.CreateNot(PPred);
3258   if (InvertQCond)
3259     QPred = QB.CreateNot(QPred);
3260   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3261 
3262   auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
3263                                       /*Unreachable=*/false,
3264                                       /*BranchWeights=*/nullptr, DTU);
3265   QB.SetInsertPoint(T);
3266   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3267   AAMDNodes AAMD;
3268   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3269   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3270   SI->setAAMetadata(AAMD);
3271   // Choose the minimum alignment. If we could prove both stores execute, we
3272   // could use biggest one.  In this case, though, we only know that one of the
3273   // stores executes.  And we don't know it's safe to take the alignment from a
3274   // store that doesn't execute.
3275   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
3276 
3277   QStore->eraseFromParent();
3278   PStore->eraseFromParent();
3279 
3280   return true;
3281 }
3282 
mergeConditionalStores(BranchInst * PBI,BranchInst * QBI,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)3283 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3284                                    DomTreeUpdater *DTU, const DataLayout &DL,
3285                                    const TargetTransformInfo &TTI) {
3286   // The intention here is to find diamonds or triangles (see below) where each
3287   // conditional block contains a store to the same address. Both of these
3288   // stores are conditional, so they can't be unconditionally sunk. But it may
3289   // be profitable to speculatively sink the stores into one merged store at the
3290   // end, and predicate the merged store on the union of the two conditions of
3291   // PBI and QBI.
3292   //
3293   // This can reduce the number of stores executed if both of the conditions are
3294   // true, and can allow the blocks to become small enough to be if-converted.
3295   // This optimization will also chain, so that ladders of test-and-set
3296   // sequences can be if-converted away.
3297   //
3298   // We only deal with simple diamonds or triangles:
3299   //
3300   //     PBI       or      PBI        or a combination of the two
3301   //    /   \               | \
3302   //   PTB  PFB             |  PFB
3303   //    \   /               | /
3304   //     QBI                QBI
3305   //    /  \                | \
3306   //   QTB  QFB             |  QFB
3307   //    \  /                | /
3308   //    PostBB            PostBB
3309   //
3310   // We model triangles as a type of diamond with a nullptr "true" block.
3311   // Triangles are canonicalized so that the fallthrough edge is represented by
3312   // a true condition, as in the diagram above.
3313   BasicBlock *PTB = PBI->getSuccessor(0);
3314   BasicBlock *PFB = PBI->getSuccessor(1);
3315   BasicBlock *QTB = QBI->getSuccessor(0);
3316   BasicBlock *QFB = QBI->getSuccessor(1);
3317   BasicBlock *PostBB = QFB->getSingleSuccessor();
3318 
3319   // Make sure we have a good guess for PostBB. If QTB's only successor is
3320   // QFB, then QFB is a better PostBB.
3321   if (QTB->getSingleSuccessor() == QFB)
3322     PostBB = QFB;
3323 
3324   // If we couldn't find a good PostBB, stop.
3325   if (!PostBB)
3326     return false;
3327 
3328   bool InvertPCond = false, InvertQCond = false;
3329   // Canonicalize fallthroughs to the true branches.
3330   if (PFB == QBI->getParent()) {
3331     std::swap(PFB, PTB);
3332     InvertPCond = true;
3333   }
3334   if (QFB == PostBB) {
3335     std::swap(QFB, QTB);
3336     InvertQCond = true;
3337   }
3338 
3339   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3340   // and QFB may not. Model fallthroughs as a nullptr block.
3341   if (PTB == QBI->getParent())
3342     PTB = nullptr;
3343   if (QTB == PostBB)
3344     QTB = nullptr;
3345 
3346   // Legality bailouts. We must have at least the non-fallthrough blocks and
3347   // the post-dominating block, and the non-fallthroughs must only have one
3348   // predecessor.
3349   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3350     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3351   };
3352   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3353       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3354     return false;
3355   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3356       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3357     return false;
3358   if (!QBI->getParent()->hasNUses(2))
3359     return false;
3360 
3361   // OK, this is a sequence of two diamonds or triangles.
3362   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3363   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3364   for (auto *BB : {PTB, PFB}) {
3365     if (!BB)
3366       continue;
3367     for (auto &I : *BB)
3368       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3369         PStoreAddresses.insert(SI->getPointerOperand());
3370   }
3371   for (auto *BB : {QTB, QFB}) {
3372     if (!BB)
3373       continue;
3374     for (auto &I : *BB)
3375       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3376         QStoreAddresses.insert(SI->getPointerOperand());
3377   }
3378 
3379   set_intersect(PStoreAddresses, QStoreAddresses);
3380   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3381   // clear what it contains.
3382   auto &CommonAddresses = PStoreAddresses;
3383 
3384   bool Changed = false;
3385   for (auto *Address : CommonAddresses)
3386     Changed |=
3387         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
3388                                        InvertPCond, InvertQCond, DTU, DL, TTI);
3389   return Changed;
3390 }
3391 
3392 /// If the previous block ended with a widenable branch, determine if reusing
3393 /// the target block is profitable and legal.  This will have the effect of
3394 /// "widening" PBI, but doesn't require us to reason about hosting safety.
tryWidenCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI,DomTreeUpdater * DTU)3395 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3396                                            DomTreeUpdater *DTU) {
3397   // TODO: This can be generalized in two important ways:
3398   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
3399   //    values from the PBI edge.
3400   // 2) We can sink side effecting instructions into BI's fallthrough
3401   //    successor provided they doesn't contribute to computation of
3402   //    BI's condition.
3403   Value *CondWB, *WC;
3404   BasicBlock *IfTrueBB, *IfFalseBB;
3405   if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
3406       IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
3407     return false;
3408   if (!IfFalseBB->phis().empty())
3409     return false; // TODO
3410   // Use lambda to lazily compute expensive condition after cheap ones.
3411   auto NoSideEffects = [](BasicBlock &BB) {
3412     return !llvm::any_of(BB, [](const Instruction &I) {
3413         return I.mayWriteToMemory() || I.mayHaveSideEffects();
3414       });
3415   };
3416   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
3417       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
3418       NoSideEffects(*BI->getParent())) {
3419     auto *OldSuccessor = BI->getSuccessor(1);
3420     OldSuccessor->removePredecessor(BI->getParent());
3421     BI->setSuccessor(1, IfFalseBB);
3422     if (DTU)
3423       DTU->applyUpdates(
3424           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3425            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3426     return true;
3427   }
3428   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
3429       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
3430       NoSideEffects(*BI->getParent())) {
3431     auto *OldSuccessor = BI->getSuccessor(0);
3432     OldSuccessor->removePredecessor(BI->getParent());
3433     BI->setSuccessor(0, IfFalseBB);
3434     if (DTU)
3435       DTU->applyUpdates(
3436           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
3437            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
3438     return true;
3439   }
3440   return false;
3441 }
3442 
3443 /// If we have a conditional branch as a predecessor of another block,
3444 /// this function tries to simplify it.  We know
3445 /// that PBI and BI are both conditional branches, and BI is in one of the
3446 /// successor blocks of PBI - PBI branches to BI.
SimplifyCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)3447 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3448                                            DomTreeUpdater *DTU,
3449                                            const DataLayout &DL,
3450                                            const TargetTransformInfo &TTI) {
3451   assert(PBI->isConditional() && BI->isConditional());
3452   BasicBlock *BB = BI->getParent();
3453 
3454   // If this block ends with a branch instruction, and if there is a
3455   // predecessor that ends on a branch of the same condition, make
3456   // this conditional branch redundant.
3457   if (PBI->getCondition() == BI->getCondition() &&
3458       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3459     // Okay, the outcome of this conditional branch is statically
3460     // knowable.  If this block had a single pred, handle specially.
3461     if (BB->getSinglePredecessor()) {
3462       // Turn this into a branch on constant.
3463       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3464       BI->setCondition(
3465           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3466       return true; // Nuke the branch on constant.
3467     }
3468 
3469     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3470     // in the constant and simplify the block result.  Subsequent passes of
3471     // simplifycfg will thread the block.
3472     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3473       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3474       PHINode *NewPN = PHINode::Create(
3475           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3476           BI->getCondition()->getName() + ".pr", &BB->front());
3477       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3478       // predecessor, compute the PHI'd conditional value for all of the preds.
3479       // Any predecessor where the condition is not computable we keep symbolic.
3480       for (pred_iterator PI = PB; PI != PE; ++PI) {
3481         BasicBlock *P = *PI;
3482         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3483             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3484             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3485           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3486           NewPN->addIncoming(
3487               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3488               P);
3489         } else {
3490           NewPN->addIncoming(BI->getCondition(), P);
3491         }
3492       }
3493 
3494       BI->setCondition(NewPN);
3495       return true;
3496     }
3497   }
3498 
3499   // If the previous block ended with a widenable branch, determine if reusing
3500   // the target block is profitable and legal.  This will have the effect of
3501   // "widening" PBI, but doesn't require us to reason about hosting safety.
3502   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
3503     return true;
3504 
3505   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3506     if (CE->canTrap())
3507       return false;
3508 
3509   // If both branches are conditional and both contain stores to the same
3510   // address, remove the stores from the conditionals and create a conditional
3511   // merged store at the end.
3512   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
3513     return true;
3514 
3515   // If this is a conditional branch in an empty block, and if any
3516   // predecessors are a conditional branch to one of our destinations,
3517   // fold the conditions into logical ops and one cond br.
3518 
3519   // Ignore dbg intrinsics.
3520   if (&*BB->instructionsWithoutDebug().begin() != BI)
3521     return false;
3522 
3523   int PBIOp, BIOp;
3524   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3525     PBIOp = 0;
3526     BIOp = 0;
3527   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3528     PBIOp = 0;
3529     BIOp = 1;
3530   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3531     PBIOp = 1;
3532     BIOp = 0;
3533   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3534     PBIOp = 1;
3535     BIOp = 1;
3536   } else {
3537     return false;
3538   }
3539 
3540   // Check to make sure that the other destination of this branch
3541   // isn't BB itself.  If so, this is an infinite loop that will
3542   // keep getting unwound.
3543   if (PBI->getSuccessor(PBIOp) == BB)
3544     return false;
3545 
3546   // Do not perform this transformation if it would require
3547   // insertion of a large number of select instructions. For targets
3548   // without predication/cmovs, this is a big pessimization.
3549 
3550   // Also do not perform this transformation if any phi node in the common
3551   // destination block can trap when reached by BB or PBB (PR17073). In that
3552   // case, it would be unsafe to hoist the operation into a select instruction.
3553 
3554   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3555   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
3556   unsigned NumPhis = 0;
3557   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3558        ++II, ++NumPhis) {
3559     if (NumPhis > 2) // Disable this xform.
3560       return false;
3561 
3562     PHINode *PN = cast<PHINode>(II);
3563     Value *BIV = PN->getIncomingValueForBlock(BB);
3564     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3565       if (CE->canTrap())
3566         return false;
3567 
3568     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3569     Value *PBIV = PN->getIncomingValue(PBBIdx);
3570     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3571       if (CE->canTrap())
3572         return false;
3573   }
3574 
3575   // Finally, if everything is ok, fold the branches to logical ops.
3576   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3577 
3578   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3579                     << "AND: " << *BI->getParent());
3580 
3581   SmallVector<DominatorTree::UpdateType, 5> Updates;
3582 
3583   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3584   // branch in it, where one edge (OtherDest) goes back to itself but the other
3585   // exits.  We don't *know* that the program avoids the infinite loop
3586   // (even though that seems likely).  If we do this xform naively, we'll end up
3587   // recursively unpeeling the loop.  Since we know that (after the xform is
3588   // done) that the block *is* infinite if reached, we just make it an obviously
3589   // infinite loop with no cond branch.
3590   if (OtherDest == BB) {
3591     // Insert it at the end of the function, because it's either code,
3592     // or it won't matter if it's hot. :)
3593     BasicBlock *InfLoopBlock =
3594         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3595     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3596     Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
3597     OtherDest = InfLoopBlock;
3598   }
3599 
3600   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3601 
3602   // BI may have other predecessors.  Because of this, we leave
3603   // it alone, but modify PBI.
3604 
3605   // Make sure we get to CommonDest on True&True directions.
3606   Value *PBICond = PBI->getCondition();
3607   IRBuilder<NoFolder> Builder(PBI);
3608   if (PBIOp)
3609     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3610 
3611   Value *BICond = BI->getCondition();
3612   if (BIOp)
3613     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3614 
3615   // Merge the conditions.
3616   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3617 
3618   // Modify PBI to branch on the new condition to the new dests.
3619   PBI->setCondition(Cond);
3620   PBI->setSuccessor(0, CommonDest);
3621   PBI->setSuccessor(1, OtherDest);
3622 
3623   Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
3624   Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
3625 
3626   if (DTU)
3627     DTU->applyUpdates(Updates);
3628 
3629   // Update branch weight for PBI.
3630   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3631   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3632   bool HasWeights =
3633       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3634                              SuccTrueWeight, SuccFalseWeight);
3635   if (HasWeights) {
3636     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3637     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3638     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3639     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3640     // The weight to CommonDest should be PredCommon * SuccTotal +
3641     //                                    PredOther * SuccCommon.
3642     // The weight to OtherDest should be PredOther * SuccOther.
3643     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3644                                   PredOther * SuccCommon,
3645                               PredOther * SuccOther};
3646     // Halve the weights if any of them cannot fit in an uint32_t
3647     FitWeights(NewWeights);
3648 
3649     setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3650   }
3651 
3652   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3653   // block that are identical to the entries for BI's block.
3654   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3655 
3656   // We know that the CommonDest already had an edge from PBI to
3657   // it.  If it has PHIs though, the PHIs may have different
3658   // entries for BB and PBI's BB.  If so, insert a select to make
3659   // them agree.
3660   for (PHINode &PN : CommonDest->phis()) {
3661     Value *BIV = PN.getIncomingValueForBlock(BB);
3662     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3663     Value *PBIV = PN.getIncomingValue(PBBIdx);
3664     if (BIV != PBIV) {
3665       // Insert a select in PBI to pick the right value.
3666       SelectInst *NV = cast<SelectInst>(
3667           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3668       PN.setIncomingValue(PBBIdx, NV);
3669       // Although the select has the same condition as PBI, the original branch
3670       // weights for PBI do not apply to the new select because the select's
3671       // 'logical' edges are incoming edges of the phi that is eliminated, not
3672       // the outgoing edges of PBI.
3673       if (HasWeights) {
3674         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3675         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3676         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3677         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3678         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3679         // The weight to PredOtherDest should be PredOther * SuccCommon.
3680         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3681                                   PredOther * SuccCommon};
3682 
3683         FitWeights(NewWeights);
3684 
3685         setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3686       }
3687     }
3688   }
3689 
3690   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3691   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3692 
3693   // This basic block is probably dead.  We know it has at least
3694   // one fewer predecessor.
3695   return true;
3696 }
3697 
3698 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3699 // true or to FalseBB if Cond is false.
3700 // Takes care of updating the successors and removing the old terminator.
3701 // Also makes sure not to introduce new successors by assuming that edges to
3702 // non-successor TrueBBs and FalseBBs aren't reachable.
SimplifyTerminatorOnSelect(Instruction * OldTerm,Value * Cond,BasicBlock * TrueBB,BasicBlock * FalseBB,uint32_t TrueWeight,uint32_t FalseWeight)3703 bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
3704                                                 Value *Cond, BasicBlock *TrueBB,
3705                                                 BasicBlock *FalseBB,
3706                                                 uint32_t TrueWeight,
3707                                                 uint32_t FalseWeight) {
3708   auto *BB = OldTerm->getParent();
3709   // Remove any superfluous successor edges from the CFG.
3710   // First, figure out which successors to preserve.
3711   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3712   // successor.
3713   BasicBlock *KeepEdge1 = TrueBB;
3714   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3715 
3716   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
3717 
3718   // Then remove the rest.
3719   for (BasicBlock *Succ : successors(OldTerm)) {
3720     // Make sure only to keep exactly one copy of each edge.
3721     if (Succ == KeepEdge1)
3722       KeepEdge1 = nullptr;
3723     else if (Succ == KeepEdge2)
3724       KeepEdge2 = nullptr;
3725     else {
3726       Succ->removePredecessor(BB,
3727                               /*KeepOneInputPHIs=*/true);
3728 
3729       if (Succ != TrueBB && Succ != FalseBB)
3730         RemovedSuccessors.insert(Succ);
3731     }
3732   }
3733 
3734   IRBuilder<> Builder(OldTerm);
3735   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3736 
3737   // Insert an appropriate new terminator.
3738   if (!KeepEdge1 && !KeepEdge2) {
3739     if (TrueBB == FalseBB) {
3740       // We were only looking for one successor, and it was present.
3741       // Create an unconditional branch to it.
3742       Builder.CreateBr(TrueBB);
3743     } else {
3744       // We found both of the successors we were looking for.
3745       // Create a conditional branch sharing the condition of the select.
3746       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3747       if (TrueWeight != FalseWeight)
3748         setBranchWeights(NewBI, TrueWeight, FalseWeight);
3749     }
3750   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3751     // Neither of the selected blocks were successors, so this
3752     // terminator must be unreachable.
3753     new UnreachableInst(OldTerm->getContext(), OldTerm);
3754   } else {
3755     // One of the selected values was a successor, but the other wasn't.
3756     // Insert an unconditional branch to the one that was found;
3757     // the edge to the one that wasn't must be unreachable.
3758     if (!KeepEdge1) {
3759       // Only TrueBB was found.
3760       Builder.CreateBr(TrueBB);
3761     } else {
3762       // Only FalseBB was found.
3763       Builder.CreateBr(FalseBB);
3764     }
3765   }
3766 
3767   EraseTerminatorAndDCECond(OldTerm);
3768 
3769   if (DTU) {
3770     SmallVector<DominatorTree::UpdateType, 2> Updates;
3771     Updates.reserve(RemovedSuccessors.size());
3772     for (auto *RemovedSuccessor : RemovedSuccessors)
3773       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
3774     DTU->applyUpdates(Updates);
3775   }
3776 
3777   return true;
3778 }
3779 
3780 // Replaces
3781 //   (switch (select cond, X, Y)) on constant X, Y
3782 // with a branch - conditional if X and Y lead to distinct BBs,
3783 // unconditional otherwise.
SimplifySwitchOnSelect(SwitchInst * SI,SelectInst * Select)3784 bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
3785                                             SelectInst *Select) {
3786   // Check for constant integer values in the select.
3787   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3788   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3789   if (!TrueVal || !FalseVal)
3790     return false;
3791 
3792   // Find the relevant condition and destinations.
3793   Value *Condition = Select->getCondition();
3794   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3795   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3796 
3797   // Get weight for TrueBB and FalseBB.
3798   uint32_t TrueWeight = 0, FalseWeight = 0;
3799   SmallVector<uint64_t, 8> Weights;
3800   bool HasWeights = HasBranchWeights(SI);
3801   if (HasWeights) {
3802     GetBranchWeights(SI, Weights);
3803     if (Weights.size() == 1 + SI->getNumCases()) {
3804       TrueWeight =
3805           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3806       FalseWeight =
3807           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3808     }
3809   }
3810 
3811   // Perform the actual simplification.
3812   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3813                                     FalseWeight);
3814 }
3815 
3816 // Replaces
3817 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3818 //                             blockaddress(@fn, BlockB)))
3819 // with
3820 //   (br cond, BlockA, BlockB).
SimplifyIndirectBrOnSelect(IndirectBrInst * IBI,SelectInst * SI)3821 bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
3822                                                 SelectInst *SI) {
3823   // Check that both operands of the select are block addresses.
3824   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3825   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3826   if (!TBA || !FBA)
3827     return false;
3828 
3829   // Extract the actual blocks.
3830   BasicBlock *TrueBB = TBA->getBasicBlock();
3831   BasicBlock *FalseBB = FBA->getBasicBlock();
3832 
3833   // Perform the actual simplification.
3834   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3835                                     0);
3836 }
3837 
3838 /// This is called when we find an icmp instruction
3839 /// (a seteq/setne with a constant) as the only instruction in a
3840 /// block that ends with an uncond branch.  We are looking for a very specific
3841 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3842 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3843 /// default value goes to an uncond block with a seteq in it, we get something
3844 /// like:
3845 ///
3846 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3847 /// DEFAULT:
3848 ///   %tmp = icmp eq i8 %A, 92
3849 ///   br label %end
3850 /// end:
3851 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3852 ///
3853 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3854 /// the PHI, merging the third icmp into the switch.
tryToSimplifyUncondBranchWithICmpInIt(ICmpInst * ICI,IRBuilder<> & Builder)3855 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3856     ICmpInst *ICI, IRBuilder<> &Builder) {
3857   BasicBlock *BB = ICI->getParent();
3858 
3859   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3860   // complex.
3861   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3862     return false;
3863 
3864   Value *V = ICI->getOperand(0);
3865   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3866 
3867   // The pattern we're looking for is where our only predecessor is a switch on
3868   // 'V' and this block is the default case for the switch.  In this case we can
3869   // fold the compared value into the switch to simplify things.
3870   BasicBlock *Pred = BB->getSinglePredecessor();
3871   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3872     return false;
3873 
3874   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3875   if (SI->getCondition() != V)
3876     return false;
3877 
3878   // If BB is reachable on a non-default case, then we simply know the value of
3879   // V in this block.  Substitute it and constant fold the icmp instruction
3880   // away.
3881   if (SI->getDefaultDest() != BB) {
3882     ConstantInt *VVal = SI->findCaseDest(BB);
3883     assert(VVal && "Should have a unique destination value");
3884     ICI->setOperand(0, VVal);
3885 
3886     if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3887       ICI->replaceAllUsesWith(V);
3888       ICI->eraseFromParent();
3889     }
3890     // BB is now empty, so it is likely to simplify away.
3891     return requestResimplify();
3892   }
3893 
3894   // Ok, the block is reachable from the default dest.  If the constant we're
3895   // comparing exists in one of the other edges, then we can constant fold ICI
3896   // and zap it.
3897   if (SI->findCaseValue(Cst) != SI->case_default()) {
3898     Value *V;
3899     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3900       V = ConstantInt::getFalse(BB->getContext());
3901     else
3902       V = ConstantInt::getTrue(BB->getContext());
3903 
3904     ICI->replaceAllUsesWith(V);
3905     ICI->eraseFromParent();
3906     // BB is now empty, so it is likely to simplify away.
3907     return requestResimplify();
3908   }
3909 
3910   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3911   // the block.
3912   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3913   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3914   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3915       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3916     return false;
3917 
3918   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3919   // true in the PHI.
3920   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3921   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3922 
3923   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3924     std::swap(DefaultCst, NewCst);
3925 
3926   // Replace ICI (which is used by the PHI for the default value) with true or
3927   // false depending on if it is EQ or NE.
3928   ICI->replaceAllUsesWith(DefaultCst);
3929   ICI->eraseFromParent();
3930 
3931   SmallVector<DominatorTree::UpdateType, 2> Updates;
3932 
3933   // Okay, the switch goes to this block on a default value.  Add an edge from
3934   // the switch to the merge point on the compared value.
3935   BasicBlock *NewBB =
3936       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3937   {
3938     SwitchInstProfUpdateWrapper SIW(*SI);
3939     auto W0 = SIW.getSuccessorWeight(0);
3940     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3941     if (W0) {
3942       NewW = ((uint64_t(*W0) + 1) >> 1);
3943       SIW.setSuccessorWeight(0, *NewW);
3944     }
3945     SIW.addCase(Cst, NewBB, NewW);
3946     Updates.push_back({DominatorTree::Insert, Pred, NewBB});
3947   }
3948 
3949   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3950   Builder.SetInsertPoint(NewBB);
3951   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3952   Builder.CreateBr(SuccBlock);
3953   Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
3954   PHIUse->addIncoming(NewCst, NewBB);
3955   if (DTU)
3956     DTU->applyUpdates(Updates);
3957   return true;
3958 }
3959 
3960 /// The specified branch is a conditional branch.
3961 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3962 /// fold it into a switch instruction if so.
SimplifyBranchOnICmpChain(BranchInst * BI,IRBuilder<> & Builder,const DataLayout & DL)3963 bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
3964                                                IRBuilder<> &Builder,
3965                                                const DataLayout &DL) {
3966   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3967   if (!Cond)
3968     return false;
3969 
3970   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3971   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3972   // 'setne's and'ed together, collect them.
3973 
3974   // Try to gather values from a chain of and/or to be turned into a switch
3975   ConstantComparesGatherer ConstantCompare(Cond, DL);
3976   // Unpack the result
3977   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3978   Value *CompVal = ConstantCompare.CompValue;
3979   unsigned UsedICmps = ConstantCompare.UsedICmps;
3980   Value *ExtraCase = ConstantCompare.Extra;
3981 
3982   // If we didn't have a multiply compared value, fail.
3983   if (!CompVal)
3984     return false;
3985 
3986   // Avoid turning single icmps into a switch.
3987   if (UsedICmps <= 1)
3988     return false;
3989 
3990   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
3991 
3992   // There might be duplicate constants in the list, which the switch
3993   // instruction can't handle, remove them now.
3994   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3995   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3996 
3997   // If Extra was used, we require at least two switch values to do the
3998   // transformation.  A switch with one value is just a conditional branch.
3999   if (ExtraCase && Values.size() < 2)
4000     return false;
4001 
4002   // TODO: Preserve branch weight metadata, similarly to how
4003   // FoldValueComparisonIntoPredecessors preserves it.
4004 
4005   // Figure out which block is which destination.
4006   BasicBlock *DefaultBB = BI->getSuccessor(1);
4007   BasicBlock *EdgeBB = BI->getSuccessor(0);
4008   if (!TrueWhenEqual)
4009     std::swap(DefaultBB, EdgeBB);
4010 
4011   BasicBlock *BB = BI->getParent();
4012 
4013   // MSAN does not like undefs as branch condition which can be introduced
4014   // with "explicit branch".
4015   if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
4016     return false;
4017 
4018   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
4019                     << " cases into SWITCH.  BB is:\n"
4020                     << *BB);
4021 
4022   SmallVector<DominatorTree::UpdateType, 2> Updates;
4023 
4024   // If there are any extra values that couldn't be folded into the switch
4025   // then we evaluate them with an explicit branch first. Split the block
4026   // right before the condbr to handle it.
4027   if (ExtraCase) {
4028     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
4029                                    /*MSSAU=*/nullptr, "switch.early.test");
4030 
4031     // Remove the uncond branch added to the old block.
4032     Instruction *OldTI = BB->getTerminator();
4033     Builder.SetInsertPoint(OldTI);
4034 
4035     if (TrueWhenEqual)
4036       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
4037     else
4038       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
4039 
4040     OldTI->eraseFromParent();
4041 
4042     Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
4043 
4044     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
4045     // for the edge we just added.
4046     AddPredecessorToBlock(EdgeBB, BB, NewBB);
4047 
4048     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
4049                       << "\nEXTRABB = " << *BB);
4050     BB = NewBB;
4051   }
4052 
4053   Builder.SetInsertPoint(BI);
4054   // Convert pointer to int before we switch.
4055   if (CompVal->getType()->isPointerTy()) {
4056     CompVal = Builder.CreatePtrToInt(
4057         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
4058   }
4059 
4060   // Create the new switch instruction now.
4061   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
4062 
4063   // Add all of the 'cases' to the switch instruction.
4064   for (unsigned i = 0, e = Values.size(); i != e; ++i)
4065     New->addCase(Values[i], EdgeBB);
4066 
4067   // We added edges from PI to the EdgeBB.  As such, if there were any
4068   // PHI nodes in EdgeBB, they need entries to be added corresponding to
4069   // the number of edges added.
4070   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
4071     PHINode *PN = cast<PHINode>(BBI);
4072     Value *InVal = PN->getIncomingValueForBlock(BB);
4073     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
4074       PN->addIncoming(InVal, BB);
4075   }
4076 
4077   // Erase the old branch instruction.
4078   EraseTerminatorAndDCECond(BI);
4079   if (DTU)
4080     DTU->applyUpdates(Updates);
4081 
4082   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
4083   return true;
4084 }
4085 
simplifyResume(ResumeInst * RI,IRBuilder<> & Builder)4086 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
4087   if (isa<PHINode>(RI->getValue()))
4088     return simplifyCommonResume(RI);
4089   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
4090            RI->getValue() == RI->getParent()->getFirstNonPHI())
4091     // The resume must unwind the exception that caused control to branch here.
4092     return simplifySingleResume(RI);
4093 
4094   return false;
4095 }
4096 
4097 // Check if cleanup block is empty
isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R)4098 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
4099   for (Instruction &I : R) {
4100     auto *II = dyn_cast<IntrinsicInst>(&I);
4101     if (!II)
4102       return false;
4103 
4104     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
4105     switch (IntrinsicID) {
4106     case Intrinsic::dbg_declare:
4107     case Intrinsic::dbg_value:
4108     case Intrinsic::dbg_label:
4109     case Intrinsic::lifetime_end:
4110       break;
4111     default:
4112       return false;
4113     }
4114   }
4115   return true;
4116 }
4117 
4118 // Simplify resume that is shared by several landing pads (phi of landing pad).
simplifyCommonResume(ResumeInst * RI)4119 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
4120   BasicBlock *BB = RI->getParent();
4121 
4122   // Check that there are no other instructions except for debug and lifetime
4123   // intrinsics between the phi's and resume instruction.
4124   if (!isCleanupBlockEmpty(
4125           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
4126     return false;
4127 
4128   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
4129   auto *PhiLPInst = cast<PHINode>(RI->getValue());
4130 
4131   // Check incoming blocks to see if any of them are trivial.
4132   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
4133        Idx++) {
4134     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
4135     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
4136 
4137     // If the block has other successors, we can not delete it because
4138     // it has other dependents.
4139     if (IncomingBB->getUniqueSuccessor() != BB)
4140       continue;
4141 
4142     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
4143     // Not the landing pad that caused the control to branch here.
4144     if (IncomingValue != LandingPad)
4145       continue;
4146 
4147     if (isCleanupBlockEmpty(
4148             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
4149       TrivialUnwindBlocks.insert(IncomingBB);
4150   }
4151 
4152   // If no trivial unwind blocks, don't do any simplifications.
4153   if (TrivialUnwindBlocks.empty())
4154     return false;
4155 
4156   // Turn all invokes that unwind here into calls.
4157   for (auto *TrivialBB : TrivialUnwindBlocks) {
4158     // Blocks that will be simplified should be removed from the phi node.
4159     // Note there could be multiple edges to the resume block, and we need
4160     // to remove them all.
4161     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
4162       BB->removePredecessor(TrivialBB, true);
4163 
4164     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
4165          PI != PE;) {
4166       BasicBlock *Pred = *PI++;
4167       removeUnwindEdge(Pred, DTU);
4168       ++NumInvokes;
4169     }
4170 
4171     // In each SimplifyCFG run, only the current processed block can be erased.
4172     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
4173     // of erasing TrivialBB, we only remove the branch to the common resume
4174     // block so that we can later erase the resume block since it has no
4175     // predecessors.
4176     TrivialBB->getTerminator()->eraseFromParent();
4177     new UnreachableInst(RI->getContext(), TrivialBB);
4178     if (DTU)
4179       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
4180   }
4181 
4182   // Delete the resume block if all its predecessors have been removed.
4183   if (pred_empty(BB)) {
4184     if (DTU)
4185       DTU->deleteBB(BB);
4186     else
4187       BB->eraseFromParent();
4188   }
4189 
4190   return !TrivialUnwindBlocks.empty();
4191 }
4192 
4193 // Simplify resume that is only used by a single (non-phi) landing pad.
simplifySingleResume(ResumeInst * RI)4194 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
4195   BasicBlock *BB = RI->getParent();
4196   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
4197   assert(RI->getValue() == LPInst &&
4198          "Resume must unwind the exception that caused control to here");
4199 
4200   // Check that there are no other instructions except for debug intrinsics.
4201   if (!isCleanupBlockEmpty(
4202           make_range<Instruction *>(LPInst->getNextNode(), RI)))
4203     return false;
4204 
4205   // Turn all invokes that unwind here into calls and delete the basic block.
4206   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4207     BasicBlock *Pred = *PI++;
4208     removeUnwindEdge(Pred, DTU);
4209     ++NumInvokes;
4210   }
4211 
4212   // The landingpad is now unreachable.  Zap it.
4213   if (DTU)
4214     DTU->deleteBB(BB);
4215   else
4216     BB->eraseFromParent();
4217   return true;
4218 }
4219 
removeEmptyCleanup(CleanupReturnInst * RI,DomTreeUpdater * DTU)4220 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
4221   // If this is a trivial cleanup pad that executes no instructions, it can be
4222   // eliminated.  If the cleanup pad continues to the caller, any predecessor
4223   // that is an EH pad will be updated to continue to the caller and any
4224   // predecessor that terminates with an invoke instruction will have its invoke
4225   // instruction converted to a call instruction.  If the cleanup pad being
4226   // simplified does not continue to the caller, each predecessor will be
4227   // updated to continue to the unwind destination of the cleanup pad being
4228   // simplified.
4229   BasicBlock *BB = RI->getParent();
4230   CleanupPadInst *CPInst = RI->getCleanupPad();
4231   if (CPInst->getParent() != BB)
4232     // This isn't an empty cleanup.
4233     return false;
4234 
4235   // We cannot kill the pad if it has multiple uses.  This typically arises
4236   // from unreachable basic blocks.
4237   if (!CPInst->hasOneUse())
4238     return false;
4239 
4240   // Check that there are no other instructions except for benign intrinsics.
4241   if (!isCleanupBlockEmpty(
4242           make_range<Instruction *>(CPInst->getNextNode(), RI)))
4243     return false;
4244 
4245   // If the cleanup return we are simplifying unwinds to the caller, this will
4246   // set UnwindDest to nullptr.
4247   BasicBlock *UnwindDest = RI->getUnwindDest();
4248   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
4249 
4250   // We're about to remove BB from the control flow.  Before we do, sink any
4251   // PHINodes into the unwind destination.  Doing this before changing the
4252   // control flow avoids some potentially slow checks, since we can currently
4253   // be certain that UnwindDest and BB have no common predecessors (since they
4254   // are both EH pads).
4255   if (UnwindDest) {
4256     // First, go through the PHI nodes in UnwindDest and update any nodes that
4257     // reference the block we are removing
4258     for (BasicBlock::iterator I = UnwindDest->begin(),
4259                               IE = DestEHPad->getIterator();
4260          I != IE; ++I) {
4261       PHINode *DestPN = cast<PHINode>(I);
4262 
4263       int Idx = DestPN->getBasicBlockIndex(BB);
4264       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
4265       assert(Idx != -1);
4266       // This PHI node has an incoming value that corresponds to a control
4267       // path through the cleanup pad we are removing.  If the incoming
4268       // value is in the cleanup pad, it must be a PHINode (because we
4269       // verified above that the block is otherwise empty).  Otherwise, the
4270       // value is either a constant or a value that dominates the cleanup
4271       // pad being removed.
4272       //
4273       // Because BB and UnwindDest are both EH pads, all of their
4274       // predecessors must unwind to these blocks, and since no instruction
4275       // can have multiple unwind destinations, there will be no overlap in
4276       // incoming blocks between SrcPN and DestPN.
4277       Value *SrcVal = DestPN->getIncomingValue(Idx);
4278       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
4279 
4280       // Remove the entry for the block we are deleting.
4281       DestPN->removeIncomingValue(Idx, false);
4282 
4283       if (SrcPN && SrcPN->getParent() == BB) {
4284         // If the incoming value was a PHI node in the cleanup pad we are
4285         // removing, we need to merge that PHI node's incoming values into
4286         // DestPN.
4287         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4288              SrcIdx != SrcE; ++SrcIdx) {
4289           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4290                               SrcPN->getIncomingBlock(SrcIdx));
4291         }
4292       } else {
4293         // Otherwise, the incoming value came from above BB and
4294         // so we can just reuse it.  We must associate all of BB's
4295         // predecessors with this value.
4296         for (auto *pred : predecessors(BB)) {
4297           DestPN->addIncoming(SrcVal, pred);
4298         }
4299       }
4300     }
4301 
4302     // Sink any remaining PHI nodes directly into UnwindDest.
4303     Instruction *InsertPt = DestEHPad;
4304     for (BasicBlock::iterator I = BB->begin(),
4305                               IE = BB->getFirstNonPHI()->getIterator();
4306          I != IE;) {
4307       // The iterator must be incremented here because the instructions are
4308       // being moved to another block.
4309       PHINode *PN = cast<PHINode>(I++);
4310       if (PN->use_empty() || !PN->isUsedOutsideOfBlock(BB))
4311         // If the PHI node has no uses or all of its uses are in this basic
4312         // block (meaning they are debug or lifetime intrinsics), just leave
4313         // it.  It will be erased when we erase BB below.
4314         continue;
4315 
4316       // Otherwise, sink this PHI node into UnwindDest.
4317       // Any predecessors to UnwindDest which are not already represented
4318       // must be back edges which inherit the value from the path through
4319       // BB.  In this case, the PHI value must reference itself.
4320       for (auto *pred : predecessors(UnwindDest))
4321         if (pred != BB)
4322           PN->addIncoming(PN, pred);
4323       PN->moveBefore(InsertPt);
4324     }
4325   }
4326 
4327   std::vector<DominatorTree::UpdateType> Updates;
4328 
4329   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4330     // The iterator must be updated here because we are removing this pred.
4331     BasicBlock *PredBB = *PI++;
4332     if (UnwindDest == nullptr) {
4333       if (DTU)
4334         DTU->applyUpdates(Updates);
4335       Updates.clear();
4336       removeUnwindEdge(PredBB, DTU);
4337       ++NumInvokes;
4338     } else {
4339       Instruction *TI = PredBB->getTerminator();
4340       TI->replaceUsesOfWith(BB, UnwindDest);
4341       Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
4342       Updates.push_back({DominatorTree::Delete, PredBB, BB});
4343     }
4344   }
4345 
4346   if (DTU) {
4347     DTU->applyUpdates(Updates);
4348     DTU->deleteBB(BB);
4349   } else
4350     // The cleanup pad is now unreachable.  Zap it.
4351     BB->eraseFromParent();
4352 
4353   return true;
4354 }
4355 
4356 // Try to merge two cleanuppads together.
mergeCleanupPad(CleanupReturnInst * RI)4357 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4358   // Skip any cleanuprets which unwind to caller, there is nothing to merge
4359   // with.
4360   BasicBlock *UnwindDest = RI->getUnwindDest();
4361   if (!UnwindDest)
4362     return false;
4363 
4364   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4365   // be safe to merge without code duplication.
4366   if (UnwindDest->getSinglePredecessor() != RI->getParent())
4367     return false;
4368 
4369   // Verify that our cleanuppad's unwind destination is another cleanuppad.
4370   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4371   if (!SuccessorCleanupPad)
4372     return false;
4373 
4374   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4375   // Replace any uses of the successor cleanupad with the predecessor pad
4376   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4377   // funclet bundle operands.
4378   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4379   // Remove the old cleanuppad.
4380   SuccessorCleanupPad->eraseFromParent();
4381   // Now, we simply replace the cleanupret with a branch to the unwind
4382   // destination.
4383   BranchInst::Create(UnwindDest, RI->getParent());
4384   RI->eraseFromParent();
4385 
4386   return true;
4387 }
4388 
simplifyCleanupReturn(CleanupReturnInst * RI)4389 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
4390   // It is possible to transiantly have an undef cleanuppad operand because we
4391   // have deleted some, but not all, dead blocks.
4392   // Eventually, this block will be deleted.
4393   if (isa<UndefValue>(RI->getOperand(0)))
4394     return false;
4395 
4396   if (mergeCleanupPad(RI))
4397     return true;
4398 
4399   if (removeEmptyCleanup(RI, DTU))
4400     return true;
4401 
4402   return false;
4403 }
4404 
simplifyReturn(ReturnInst * RI,IRBuilder<> & Builder)4405 bool SimplifyCFGOpt::simplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4406   BasicBlock *BB = RI->getParent();
4407   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4408     return false;
4409 
4410   // Find predecessors that end with branches.
4411   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4412   SmallVector<BranchInst *, 8> CondBranchPreds;
4413   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4414     BasicBlock *P = *PI;
4415     Instruction *PTI = P->getTerminator();
4416     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4417       if (BI->isUnconditional())
4418         UncondBranchPreds.push_back(P);
4419       else
4420         CondBranchPreds.push_back(BI);
4421     }
4422   }
4423 
4424   // If we found some, do the transformation!
4425   if (!UncondBranchPreds.empty() && DupRet) {
4426     while (!UncondBranchPreds.empty()) {
4427       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4428       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4429                         << "INTO UNCOND BRANCH PRED: " << *Pred);
4430       (void)FoldReturnIntoUncondBranch(RI, BB, Pred, DTU);
4431     }
4432 
4433     // If we eliminated all predecessors of the block, delete the block now.
4434     if (pred_empty(BB)) {
4435       // We know there are no successors, so just nuke the block.
4436       if (DTU)
4437         DTU->deleteBB(BB);
4438       else
4439         BB->eraseFromParent();
4440     }
4441 
4442     return true;
4443   }
4444 
4445   // Check out all of the conditional branches going to this return
4446   // instruction.  If any of them just select between returns, change the
4447   // branch itself into a select/return pair.
4448   while (!CondBranchPreds.empty()) {
4449     BranchInst *BI = CondBranchPreds.pop_back_val();
4450 
4451     // Check to see if the non-BB successor is also a return block.
4452     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4453         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4454         SimplifyCondBranchToTwoReturns(BI, Builder))
4455       return true;
4456   }
4457   return false;
4458 }
4459 
simplifyUnreachable(UnreachableInst * UI)4460 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
4461   BasicBlock *BB = UI->getParent();
4462 
4463   bool Changed = false;
4464 
4465   // If there are any instructions immediately before the unreachable that can
4466   // be removed, do so.
4467   while (UI->getIterator() != BB->begin()) {
4468     BasicBlock::iterator BBI = UI->getIterator();
4469     --BBI;
4470     // Do not delete instructions that can have side effects which might cause
4471     // the unreachable to not be reachable; specifically, calls and volatile
4472     // operations may have this effect.
4473     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4474       break;
4475 
4476     if (BBI->mayHaveSideEffects()) {
4477       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4478         if (SI->isVolatile())
4479           break;
4480       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4481         if (LI->isVolatile())
4482           break;
4483       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4484         if (RMWI->isVolatile())
4485           break;
4486       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4487         if (CXI->isVolatile())
4488           break;
4489       } else if (isa<CatchPadInst>(BBI)) {
4490         // A catchpad may invoke exception object constructors and such, which
4491         // in some languages can be arbitrary code, so be conservative by
4492         // default.
4493         // For CoreCLR, it just involves a type test, so can be removed.
4494         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4495             EHPersonality::CoreCLR)
4496           break;
4497       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4498                  !isa<LandingPadInst>(BBI)) {
4499         break;
4500       }
4501       // Note that deleting LandingPad's here is in fact okay, although it
4502       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4503       // all the predecessors of this block will be the unwind edges of Invokes,
4504       // and we can therefore guarantee this block will be erased.
4505     }
4506 
4507     // Delete this instruction (any uses are guaranteed to be dead)
4508     if (!BBI->use_empty())
4509       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4510     BBI->eraseFromParent();
4511     Changed = true;
4512   }
4513 
4514   // If the unreachable instruction is the first in the block, take a gander
4515   // at all of the predecessors of this instruction, and simplify them.
4516   if (&BB->front() != UI)
4517     return Changed;
4518 
4519   std::vector<DominatorTree::UpdateType> Updates;
4520 
4521   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4522   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4523     auto *Predecessor = Preds[i];
4524     Instruction *TI = Predecessor->getTerminator();
4525     IRBuilder<> Builder(TI);
4526     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4527       // We could either have a proper unconditional branch,
4528       // or a degenerate conditional branch with matching destinations.
4529       if (all_of(BI->successors(),
4530                  [BB](auto *Successor) { return Successor == BB; })) {
4531         new UnreachableInst(TI->getContext(), TI);
4532         TI->eraseFromParent();
4533         Changed = true;
4534       } else {
4535         assert(BI->isConditional() && "Can't get here with an uncond branch.");
4536         Value* Cond = BI->getCondition();
4537         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4538                "The destinations are guaranteed to be different here.");
4539         if (BI->getSuccessor(0) == BB) {
4540           Builder.CreateAssumption(Builder.CreateNot(Cond));
4541           Builder.CreateBr(BI->getSuccessor(1));
4542         } else {
4543           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4544           Builder.CreateAssumption(Cond);
4545           Builder.CreateBr(BI->getSuccessor(0));
4546         }
4547         EraseTerminatorAndDCECond(BI);
4548         Changed = true;
4549       }
4550       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4551     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4552       SwitchInstProfUpdateWrapper SU(*SI);
4553       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4554         if (i->getCaseSuccessor() != BB) {
4555           ++i;
4556           continue;
4557         }
4558         BB->removePredecessor(SU->getParent());
4559         i = SU.removeCase(i);
4560         e = SU->case_end();
4561         Changed = true;
4562       }
4563       // Note that the default destination can't be removed!
4564       if (SI->getDefaultDest() != BB)
4565         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4566     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4567       if (II->getUnwindDest() == BB) {
4568         if (DTU)
4569           DTU->applyUpdates(Updates);
4570         Updates.clear();
4571         removeUnwindEdge(TI->getParent(), DTU);
4572         Changed = true;
4573       }
4574     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4575       if (CSI->getUnwindDest() == BB) {
4576         if (DTU)
4577           DTU->applyUpdates(Updates);
4578         Updates.clear();
4579         removeUnwindEdge(TI->getParent(), DTU);
4580         Changed = true;
4581         continue;
4582       }
4583 
4584       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4585                                              E = CSI->handler_end();
4586            I != E; ++I) {
4587         if (*I == BB) {
4588           CSI->removeHandler(I);
4589           --I;
4590           --E;
4591           Changed = true;
4592         }
4593       }
4594       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4595       if (CSI->getNumHandlers() == 0) {
4596         if (CSI->hasUnwindDest()) {
4597           // Redirect all predecessors of the block containing CatchSwitchInst
4598           // to instead branch to the CatchSwitchInst's unwind destination.
4599           for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
4600             Updates.push_back({DominatorTree::Insert, PredecessorOfPredecessor,
4601                                CSI->getUnwindDest()});
4602             Updates.push_back(
4603                 {DominatorTree::Delete, PredecessorOfPredecessor, Predecessor});
4604           }
4605           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
4606         } else {
4607           // Rewrite all preds to unwind to caller (or from invoke to call).
4608           if (DTU)
4609             DTU->applyUpdates(Updates);
4610           Updates.clear();
4611           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
4612           for (BasicBlock *EHPred : EHPreds)
4613             removeUnwindEdge(EHPred, DTU);
4614         }
4615         // The catchswitch is no longer reachable.
4616         new UnreachableInst(CSI->getContext(), CSI);
4617         CSI->eraseFromParent();
4618         Changed = true;
4619       }
4620     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4621       (void)CRI;
4622       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
4623              "Expected to always have an unwind to BB.");
4624       Updates.push_back({DominatorTree::Delete, Predecessor, BB});
4625       new UnreachableInst(TI->getContext(), TI);
4626       TI->eraseFromParent();
4627       Changed = true;
4628     }
4629   }
4630 
4631   if (DTU)
4632     DTU->applyUpdates(Updates);
4633 
4634   // If this block is now dead, remove it.
4635   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4636     // We know there are no successors, so just nuke the block.
4637     if (DTU)
4638       DTU->deleteBB(BB);
4639     else
4640       BB->eraseFromParent();
4641     return true;
4642   }
4643 
4644   return Changed;
4645 }
4646 
CasesAreContiguous(SmallVectorImpl<ConstantInt * > & Cases)4647 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4648   assert(Cases.size() >= 1);
4649 
4650   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4651   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4652     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4653       return false;
4654   }
4655   return true;
4656 }
4657 
createUnreachableSwitchDefault(SwitchInst * Switch,DomTreeUpdater * DTU)4658 static void createUnreachableSwitchDefault(SwitchInst *Switch,
4659                                            DomTreeUpdater *DTU) {
4660   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4661   auto *BB = Switch->getParent();
4662   BasicBlock *NewDefaultBlock = SplitBlockPredecessors(
4663       Switch->getDefaultDest(), Switch->getParent(), "", DTU);
4664   auto *OrigDefaultBlock = Switch->getDefaultDest();
4665   Switch->setDefaultDest(&*NewDefaultBlock);
4666   if (DTU)
4667     DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock},
4668                        {DominatorTree::Delete, BB, OrigDefaultBlock}});
4669   SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU);
4670   SmallVector<DominatorTree::UpdateType, 2> Updates;
4671   for (auto *Successor : successors(NewDefaultBlock))
4672     Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
4673   auto *NewTerminator = NewDefaultBlock->getTerminator();
4674   new UnreachableInst(Switch->getContext(), NewTerminator);
4675   EraseTerminatorAndDCECond(NewTerminator);
4676   if (DTU)
4677     DTU->applyUpdates(Updates);
4678 }
4679 
4680 /// Turn a switch with two reachable destinations into an integer range
4681 /// comparison and branch.
TurnSwitchRangeIntoICmp(SwitchInst * SI,IRBuilder<> & Builder)4682 bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
4683                                              IRBuilder<> &Builder) {
4684   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4685 
4686   bool HasDefault =
4687       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4688 
4689   auto *BB = SI->getParent();
4690 
4691   // Partition the cases into two sets with different destinations.
4692   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4693   BasicBlock *DestB = nullptr;
4694   SmallVector<ConstantInt *, 16> CasesA;
4695   SmallVector<ConstantInt *, 16> CasesB;
4696 
4697   for (auto Case : SI->cases()) {
4698     BasicBlock *Dest = Case.getCaseSuccessor();
4699     if (!DestA)
4700       DestA = Dest;
4701     if (Dest == DestA) {
4702       CasesA.push_back(Case.getCaseValue());
4703       continue;
4704     }
4705     if (!DestB)
4706       DestB = Dest;
4707     if (Dest == DestB) {
4708       CasesB.push_back(Case.getCaseValue());
4709       continue;
4710     }
4711     return false; // More than two destinations.
4712   }
4713 
4714   assert(DestA && DestB &&
4715          "Single-destination switch should have been folded.");
4716   assert(DestA != DestB);
4717   assert(DestB != SI->getDefaultDest());
4718   assert(!CasesB.empty() && "There must be non-default cases.");
4719   assert(!CasesA.empty() || HasDefault);
4720 
4721   // Figure out if one of the sets of cases form a contiguous range.
4722   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4723   BasicBlock *ContiguousDest = nullptr;
4724   BasicBlock *OtherDest = nullptr;
4725   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4726     ContiguousCases = &CasesA;
4727     ContiguousDest = DestA;
4728     OtherDest = DestB;
4729   } else if (CasesAreContiguous(CasesB)) {
4730     ContiguousCases = &CasesB;
4731     ContiguousDest = DestB;
4732     OtherDest = DestA;
4733   } else
4734     return false;
4735 
4736   // Start building the compare and branch.
4737 
4738   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4739   Constant *NumCases =
4740       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4741 
4742   Value *Sub = SI->getCondition();
4743   if (!Offset->isNullValue())
4744     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4745 
4746   Value *Cmp;
4747   // If NumCases overflowed, then all possible values jump to the successor.
4748   if (NumCases->isNullValue() && !ContiguousCases->empty())
4749     Cmp = ConstantInt::getTrue(SI->getContext());
4750   else
4751     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4752   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4753 
4754   // Update weight for the newly-created conditional branch.
4755   if (HasBranchWeights(SI)) {
4756     SmallVector<uint64_t, 8> Weights;
4757     GetBranchWeights(SI, Weights);
4758     if (Weights.size() == 1 + SI->getNumCases()) {
4759       uint64_t TrueWeight = 0;
4760       uint64_t FalseWeight = 0;
4761       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4762         if (SI->getSuccessor(I) == ContiguousDest)
4763           TrueWeight += Weights[I];
4764         else
4765           FalseWeight += Weights[I];
4766       }
4767       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4768         TrueWeight /= 2;
4769         FalseWeight /= 2;
4770       }
4771       setBranchWeights(NewBI, TrueWeight, FalseWeight);
4772     }
4773   }
4774 
4775   // Prune obsolete incoming values off the successors' PHI nodes.
4776   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4777     unsigned PreviousEdges = ContiguousCases->size();
4778     if (ContiguousDest == SI->getDefaultDest())
4779       ++PreviousEdges;
4780     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4781       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4782   }
4783   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4784     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4785     if (OtherDest == SI->getDefaultDest())
4786       ++PreviousEdges;
4787     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4788       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4789   }
4790 
4791   // Clean up the default block - it may have phis or other instructions before
4792   // the unreachable terminator.
4793   if (!HasDefault)
4794     createUnreachableSwitchDefault(SI, DTU);
4795 
4796   auto *UnreachableDefault = SI->getDefaultDest();
4797 
4798   // Drop the switch.
4799   SI->eraseFromParent();
4800 
4801   if (!HasDefault && DTU)
4802     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
4803 
4804   return true;
4805 }
4806 
4807 /// Compute masked bits for the condition of a switch
4808 /// and use it to remove dead cases.
eliminateDeadSwitchCases(SwitchInst * SI,DomTreeUpdater * DTU,AssumptionCache * AC,const DataLayout & DL)4809 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
4810                                      AssumptionCache *AC,
4811                                      const DataLayout &DL) {
4812   Value *Cond = SI->getCondition();
4813   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4814   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4815 
4816   // We can also eliminate cases by determining that their values are outside of
4817   // the limited range of the condition based on how many significant (non-sign)
4818   // bits are in the condition value.
4819   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4820   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4821 
4822   // Gather dead cases.
4823   SmallVector<ConstantInt *, 8> DeadCases;
4824   SmallMapVector<BasicBlock *, int, 8> NumPerSuccessorCases;
4825   for (auto &Case : SI->cases()) {
4826     auto *Successor = Case.getCaseSuccessor();
4827     ++NumPerSuccessorCases[Successor];
4828     const APInt &CaseVal = Case.getCaseValue()->getValue();
4829     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4830         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4831       DeadCases.push_back(Case.getCaseValue());
4832       --NumPerSuccessorCases[Successor];
4833       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4834                         << " is dead.\n");
4835     }
4836   }
4837 
4838   // If we can prove that the cases must cover all possible values, the
4839   // default destination becomes dead and we can remove it.  If we know some
4840   // of the bits in the value, we can use that to more precisely compute the
4841   // number of possible unique case values.
4842   bool HasDefault =
4843       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4844   const unsigned NumUnknownBits =
4845       Bits - (Known.Zero | Known.One).countPopulation();
4846   assert(NumUnknownBits <= Bits);
4847   if (HasDefault && DeadCases.empty() &&
4848       NumUnknownBits < 64 /* avoid overflow */ &&
4849       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4850     createUnreachableSwitchDefault(SI, DTU);
4851     return true;
4852   }
4853 
4854   if (DeadCases.empty())
4855     return false;
4856 
4857   SwitchInstProfUpdateWrapper SIW(*SI);
4858   for (ConstantInt *DeadCase : DeadCases) {
4859     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4860     assert(CaseI != SI->case_default() &&
4861            "Case was not found. Probably mistake in DeadCases forming.");
4862     // Prune unused values from PHI nodes.
4863     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4864     SIW.removeCase(CaseI);
4865   }
4866 
4867   std::vector<DominatorTree::UpdateType> Updates;
4868   for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
4869     if (I.second == 0)
4870       Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
4871   if (DTU)
4872     DTU->applyUpdates(Updates);
4873 
4874   return true;
4875 }
4876 
4877 /// If BB would be eligible for simplification by
4878 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4879 /// by an unconditional branch), look at the phi node for BB in the successor
4880 /// block and see if the incoming value is equal to CaseValue. If so, return
4881 /// the phi node, and set PhiIndex to BB's index in the phi node.
FindPHIForConditionForwarding(ConstantInt * CaseValue,BasicBlock * BB,int * PhiIndex)4882 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4883                                               BasicBlock *BB, int *PhiIndex) {
4884   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4885     return nullptr; // BB must be empty to be a candidate for simplification.
4886   if (!BB->getSinglePredecessor())
4887     return nullptr; // BB must be dominated by the switch.
4888 
4889   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4890   if (!Branch || !Branch->isUnconditional())
4891     return nullptr; // Terminator must be unconditional branch.
4892 
4893   BasicBlock *Succ = Branch->getSuccessor(0);
4894 
4895   for (PHINode &PHI : Succ->phis()) {
4896     int Idx = PHI.getBasicBlockIndex(BB);
4897     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4898 
4899     Value *InValue = PHI.getIncomingValue(Idx);
4900     if (InValue != CaseValue)
4901       continue;
4902 
4903     *PhiIndex = Idx;
4904     return &PHI;
4905   }
4906 
4907   return nullptr;
4908 }
4909 
4910 /// Try to forward the condition of a switch instruction to a phi node
4911 /// dominated by the switch, if that would mean that some of the destination
4912 /// blocks of the switch can be folded away. Return true if a change is made.
ForwardSwitchConditionToPHI(SwitchInst * SI)4913 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4914   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4915 
4916   ForwardingNodesMap ForwardingNodes;
4917   BasicBlock *SwitchBlock = SI->getParent();
4918   bool Changed = false;
4919   for (auto &Case : SI->cases()) {
4920     ConstantInt *CaseValue = Case.getCaseValue();
4921     BasicBlock *CaseDest = Case.getCaseSuccessor();
4922 
4923     // Replace phi operands in successor blocks that are using the constant case
4924     // value rather than the switch condition variable:
4925     //   switchbb:
4926     //   switch i32 %x, label %default [
4927     //     i32 17, label %succ
4928     //   ...
4929     //   succ:
4930     //     %r = phi i32 ... [ 17, %switchbb ] ...
4931     // -->
4932     //     %r = phi i32 ... [ %x, %switchbb ] ...
4933 
4934     for (PHINode &Phi : CaseDest->phis()) {
4935       // This only works if there is exactly 1 incoming edge from the switch to
4936       // a phi. If there is >1, that means multiple cases of the switch map to 1
4937       // value in the phi, and that phi value is not the switch condition. Thus,
4938       // this transform would not make sense (the phi would be invalid because
4939       // a phi can't have different incoming values from the same block).
4940       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4941       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4942           count(Phi.blocks(), SwitchBlock) == 1) {
4943         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4944         Changed = true;
4945       }
4946     }
4947 
4948     // Collect phi nodes that are indirectly using this switch's case constants.
4949     int PhiIdx;
4950     if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4951       ForwardingNodes[Phi].push_back(PhiIdx);
4952   }
4953 
4954   for (auto &ForwardingNode : ForwardingNodes) {
4955     PHINode *Phi = ForwardingNode.first;
4956     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4957     if (Indexes.size() < 2)
4958       continue;
4959 
4960     for (int Index : Indexes)
4961       Phi->setIncomingValue(Index, SI->getCondition());
4962     Changed = true;
4963   }
4964 
4965   return Changed;
4966 }
4967 
4968 /// Return true if the backend will be able to handle
4969 /// initializing an array of constants like C.
ValidLookupTableConstant(Constant * C,const TargetTransformInfo & TTI)4970 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4971   if (C->isThreadDependent())
4972     return false;
4973   if (C->isDLLImportDependent())
4974     return false;
4975 
4976   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4977       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4978       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4979     return false;
4980 
4981   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4982     if (!CE->isGEPWithNoNotionalOverIndexing())
4983       return false;
4984     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4985       return false;
4986   }
4987 
4988   if (!TTI.shouldBuildLookupTablesForConstant(C))
4989     return false;
4990 
4991   return true;
4992 }
4993 
4994 /// If V is a Constant, return it. Otherwise, try to look up
4995 /// its constant value in ConstantPool, returning 0 if it's not there.
4996 static Constant *
LookupConstant(Value * V,const SmallDenseMap<Value *,Constant * > & ConstantPool)4997 LookupConstant(Value *V,
4998                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4999   if (Constant *C = dyn_cast<Constant>(V))
5000     return C;
5001   return ConstantPool.lookup(V);
5002 }
5003 
5004 /// Try to fold instruction I into a constant. This works for
5005 /// simple instructions such as binary operations where both operands are
5006 /// constant or can be replaced by constants from the ConstantPool. Returns the
5007 /// resulting constant on success, 0 otherwise.
5008 static Constant *
ConstantFold(Instruction * I,const DataLayout & DL,const SmallDenseMap<Value *,Constant * > & ConstantPool)5009 ConstantFold(Instruction *I, const DataLayout &DL,
5010              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
5011   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
5012     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
5013     if (!A)
5014       return nullptr;
5015     if (A->isAllOnesValue())
5016       return LookupConstant(Select->getTrueValue(), ConstantPool);
5017     if (A->isNullValue())
5018       return LookupConstant(Select->getFalseValue(), ConstantPool);
5019     return nullptr;
5020   }
5021 
5022   SmallVector<Constant *, 4> COps;
5023   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
5024     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
5025       COps.push_back(A);
5026     else
5027       return nullptr;
5028   }
5029 
5030   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
5031     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
5032                                            COps[1], DL);
5033   }
5034 
5035   return ConstantFoldInstOperands(I, COps, DL);
5036 }
5037 
5038 /// Try to determine the resulting constant values in phi nodes
5039 /// at the common destination basic block, *CommonDest, for one of the case
5040 /// destionations CaseDest corresponding to value CaseVal (0 for the default
5041 /// case), of a switch instruction SI.
5042 static bool
GetCaseResults(SwitchInst * SI,ConstantInt * CaseVal,BasicBlock * CaseDest,BasicBlock ** CommonDest,SmallVectorImpl<std::pair<PHINode *,Constant * >> & Res,const DataLayout & DL,const TargetTransformInfo & TTI)5043 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
5044                BasicBlock **CommonDest,
5045                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
5046                const DataLayout &DL, const TargetTransformInfo &TTI) {
5047   // The block from which we enter the common destination.
5048   BasicBlock *Pred = SI->getParent();
5049 
5050   // If CaseDest is empty except for some side-effect free instructions through
5051   // which we can constant-propagate the CaseVal, continue to its successor.
5052   SmallDenseMap<Value *, Constant *> ConstantPool;
5053   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
5054   for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
5055     if (I.isTerminator()) {
5056       // If the terminator is a simple branch, continue to the next block.
5057       if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
5058         return false;
5059       Pred = CaseDest;
5060       CaseDest = I.getSuccessor(0);
5061     } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
5062       // Instruction is side-effect free and constant.
5063 
5064       // If the instruction has uses outside this block or a phi node slot for
5065       // the block, it is not safe to bypass the instruction since it would then
5066       // no longer dominate all its uses.
5067       for (auto &Use : I.uses()) {
5068         User *User = Use.getUser();
5069         if (Instruction *I = dyn_cast<Instruction>(User))
5070           if (I->getParent() == CaseDest)
5071             continue;
5072         if (PHINode *Phi = dyn_cast<PHINode>(User))
5073           if (Phi->getIncomingBlock(Use) == CaseDest)
5074             continue;
5075         return false;
5076       }
5077 
5078       ConstantPool.insert(std::make_pair(&I, C));
5079     } else {
5080       break;
5081     }
5082   }
5083 
5084   // If we did not have a CommonDest before, use the current one.
5085   if (!*CommonDest)
5086     *CommonDest = CaseDest;
5087   // If the destination isn't the common one, abort.
5088   if (CaseDest != *CommonDest)
5089     return false;
5090 
5091   // Get the values for this case from phi nodes in the destination block.
5092   for (PHINode &PHI : (*CommonDest)->phis()) {
5093     int Idx = PHI.getBasicBlockIndex(Pred);
5094     if (Idx == -1)
5095       continue;
5096 
5097     Constant *ConstVal =
5098         LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
5099     if (!ConstVal)
5100       return false;
5101 
5102     // Be conservative about which kinds of constants we support.
5103     if (!ValidLookupTableConstant(ConstVal, TTI))
5104       return false;
5105 
5106     Res.push_back(std::make_pair(&PHI, ConstVal));
5107   }
5108 
5109   return Res.size() > 0;
5110 }
5111 
5112 // Helper function used to add CaseVal to the list of cases that generate
5113 // Result. Returns the updated number of cases that generate this result.
MapCaseToResult(ConstantInt * CaseVal,SwitchCaseResultVectorTy & UniqueResults,Constant * Result)5114 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
5115                                  SwitchCaseResultVectorTy &UniqueResults,
5116                                  Constant *Result) {
5117   for (auto &I : UniqueResults) {
5118     if (I.first == Result) {
5119       I.second.push_back(CaseVal);
5120       return I.second.size();
5121     }
5122   }
5123   UniqueResults.push_back(
5124       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
5125   return 1;
5126 }
5127 
5128 // Helper function that initializes a map containing
5129 // results for the PHI node of the common destination block for a switch
5130 // instruction. Returns false if multiple PHI nodes have been found or if
5131 // there is not a common destination block for the switch.
5132 static bool
InitializeUniqueCases(SwitchInst * SI,PHINode * & PHI,BasicBlock * & CommonDest,SwitchCaseResultVectorTy & UniqueResults,Constant * & DefaultResult,const DataLayout & DL,const TargetTransformInfo & TTI,uintptr_t MaxUniqueResults,uintptr_t MaxCasesPerResult)5133 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
5134                       SwitchCaseResultVectorTy &UniqueResults,
5135                       Constant *&DefaultResult, const DataLayout &DL,
5136                       const TargetTransformInfo &TTI,
5137                       uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
5138   for (auto &I : SI->cases()) {
5139     ConstantInt *CaseVal = I.getCaseValue();
5140 
5141     // Resulting value at phi nodes for this case value.
5142     SwitchCaseResultsTy Results;
5143     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
5144                         DL, TTI))
5145       return false;
5146 
5147     // Only one value per case is permitted.
5148     if (Results.size() > 1)
5149       return false;
5150 
5151     // Add the case->result mapping to UniqueResults.
5152     const uintptr_t NumCasesForResult =
5153         MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
5154 
5155     // Early out if there are too many cases for this result.
5156     if (NumCasesForResult > MaxCasesPerResult)
5157       return false;
5158 
5159     // Early out if there are too many unique results.
5160     if (UniqueResults.size() > MaxUniqueResults)
5161       return false;
5162 
5163     // Check the PHI consistency.
5164     if (!PHI)
5165       PHI = Results[0].first;
5166     else if (PHI != Results[0].first)
5167       return false;
5168   }
5169   // Find the default result value.
5170   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
5171   BasicBlock *DefaultDest = SI->getDefaultDest();
5172   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
5173                  DL, TTI);
5174   // If the default value is not found abort unless the default destination
5175   // is unreachable.
5176   DefaultResult =
5177       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
5178   if ((!DefaultResult &&
5179        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
5180     return false;
5181 
5182   return true;
5183 }
5184 
5185 // Helper function that checks if it is possible to transform a switch with only
5186 // two cases (or two cases + default) that produces a result into a select.
5187 // Example:
5188 // switch (a) {
5189 //   case 10:                %0 = icmp eq i32 %a, 10
5190 //     return 10;            %1 = select i1 %0, i32 10, i32 4
5191 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
5192 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
5193 //   default:
5194 //     return 4;
5195 // }
ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy & ResultVector,Constant * DefaultResult,Value * Condition,IRBuilder<> & Builder)5196 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
5197                                    Constant *DefaultResult, Value *Condition,
5198                                    IRBuilder<> &Builder) {
5199   assert(ResultVector.size() == 2 &&
5200          "We should have exactly two unique results at this point");
5201   // If we are selecting between only two cases transform into a simple
5202   // select or a two-way select if default is possible.
5203   if (ResultVector[0].second.size() == 1 &&
5204       ResultVector[1].second.size() == 1) {
5205     ConstantInt *const FirstCase = ResultVector[0].second[0];
5206     ConstantInt *const SecondCase = ResultVector[1].second[0];
5207 
5208     bool DefaultCanTrigger = DefaultResult;
5209     Value *SelectValue = ResultVector[1].first;
5210     if (DefaultCanTrigger) {
5211       Value *const ValueCompare =
5212           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
5213       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
5214                                          DefaultResult, "switch.select");
5215     }
5216     Value *const ValueCompare =
5217         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
5218     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
5219                                 SelectValue, "switch.select");
5220   }
5221 
5222   return nullptr;
5223 }
5224 
5225 // Helper function to cleanup a switch instruction that has been converted into
5226 // a select, fixing up PHI nodes and basic blocks.
RemoveSwitchAfterSelectConversion(SwitchInst * SI,PHINode * PHI,Value * SelectValue,IRBuilder<> & Builder,DomTreeUpdater * DTU)5227 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
5228                                               Value *SelectValue,
5229                                               IRBuilder<> &Builder,
5230                                               DomTreeUpdater *DTU) {
5231   std::vector<DominatorTree::UpdateType> Updates;
5232 
5233   BasicBlock *SelectBB = SI->getParent();
5234   BasicBlock *DestBB = PHI->getParent();
5235 
5236   if (!is_contained(predecessors(DestBB), SelectBB))
5237     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
5238   Builder.CreateBr(DestBB);
5239 
5240   // Remove the switch.
5241 
5242   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
5243     PHI->removeIncomingValue(SelectBB);
5244   PHI->addIncoming(SelectValue, SelectBB);
5245 
5246   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5247     BasicBlock *Succ = SI->getSuccessor(i);
5248 
5249     if (Succ == DestBB)
5250       continue;
5251     Succ->removePredecessor(SelectBB);
5252     Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
5253   }
5254   SI->eraseFromParent();
5255   if (DTU)
5256     DTU->applyUpdates(Updates);
5257 }
5258 
5259 /// If the switch is only used to initialize one or more
5260 /// phi nodes in a common successor block with only two different
5261 /// constant values, replace the switch with select.
switchToSelect(SwitchInst * SI,IRBuilder<> & Builder,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)5262 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
5263                            DomTreeUpdater *DTU, const DataLayout &DL,
5264                            const TargetTransformInfo &TTI) {
5265   Value *const Cond = SI->getCondition();
5266   PHINode *PHI = nullptr;
5267   BasicBlock *CommonDest = nullptr;
5268   Constant *DefaultResult;
5269   SwitchCaseResultVectorTy UniqueResults;
5270   // Collect all the cases that will deliver the same value from the switch.
5271   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
5272                              DL, TTI, 2, 1))
5273     return false;
5274   // Selects choose between maximum two values.
5275   if (UniqueResults.size() != 2)
5276     return false;
5277   assert(PHI != nullptr && "PHI for value select not found");
5278 
5279   Builder.SetInsertPoint(SI);
5280   Value *SelectValue =
5281       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
5282   if (SelectValue) {
5283     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
5284     return true;
5285   }
5286   // The switch couldn't be converted into a select.
5287   return false;
5288 }
5289 
5290 namespace {
5291 
5292 /// This class represents a lookup table that can be used to replace a switch.
5293 class SwitchLookupTable {
5294 public:
5295   /// Create a lookup table to use as a switch replacement with the contents
5296   /// of Values, using DefaultValue to fill any holes in the table.
5297   SwitchLookupTable(
5298       Module &M, uint64_t TableSize, ConstantInt *Offset,
5299       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5300       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
5301 
5302   /// Build instructions with Builder to retrieve the value at
5303   /// the position given by Index in the lookup table.
5304   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
5305 
5306   /// Return true if a table with TableSize elements of
5307   /// type ElementType would fit in a target-legal register.
5308   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
5309                                  Type *ElementType);
5310 
5311 private:
5312   // Depending on the contents of the table, it can be represented in
5313   // different ways.
5314   enum {
5315     // For tables where each element contains the same value, we just have to
5316     // store that single value and return it for each lookup.
5317     SingleValueKind,
5318 
5319     // For tables where there is a linear relationship between table index
5320     // and values. We calculate the result with a simple multiplication
5321     // and addition instead of a table lookup.
5322     LinearMapKind,
5323 
5324     // For small tables with integer elements, we can pack them into a bitmap
5325     // that fits into a target-legal register. Values are retrieved by
5326     // shift and mask operations.
5327     BitMapKind,
5328 
5329     // The table is stored as an array of values. Values are retrieved by load
5330     // instructions from the table.
5331     ArrayKind
5332   } Kind;
5333 
5334   // For SingleValueKind, this is the single value.
5335   Constant *SingleValue = nullptr;
5336 
5337   // For BitMapKind, this is the bitmap.
5338   ConstantInt *BitMap = nullptr;
5339   IntegerType *BitMapElementTy = nullptr;
5340 
5341   // For LinearMapKind, these are the constants used to derive the value.
5342   ConstantInt *LinearOffset = nullptr;
5343   ConstantInt *LinearMultiplier = nullptr;
5344 
5345   // For ArrayKind, this is the array.
5346   GlobalVariable *Array = nullptr;
5347 };
5348 
5349 } // end anonymous namespace
5350 
SwitchLookupTable(Module & M,uint64_t TableSize,ConstantInt * Offset,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values,Constant * DefaultValue,const DataLayout & DL,const StringRef & FuncName)5351 SwitchLookupTable::SwitchLookupTable(
5352     Module &M, uint64_t TableSize, ConstantInt *Offset,
5353     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
5354     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
5355   assert(Values.size() && "Can't build lookup table without values!");
5356   assert(TableSize >= Values.size() && "Can't fit values in table!");
5357 
5358   // If all values in the table are equal, this is that value.
5359   SingleValue = Values.begin()->second;
5360 
5361   Type *ValueType = Values.begin()->second->getType();
5362 
5363   // Build up the table contents.
5364   SmallVector<Constant *, 64> TableContents(TableSize);
5365   for (size_t I = 0, E = Values.size(); I != E; ++I) {
5366     ConstantInt *CaseVal = Values[I].first;
5367     Constant *CaseRes = Values[I].second;
5368     assert(CaseRes->getType() == ValueType);
5369 
5370     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
5371     TableContents[Idx] = CaseRes;
5372 
5373     if (CaseRes != SingleValue)
5374       SingleValue = nullptr;
5375   }
5376 
5377   // Fill in any holes in the table with the default result.
5378   if (Values.size() < TableSize) {
5379     assert(DefaultValue &&
5380            "Need a default value to fill the lookup table holes.");
5381     assert(DefaultValue->getType() == ValueType);
5382     for (uint64_t I = 0; I < TableSize; ++I) {
5383       if (!TableContents[I])
5384         TableContents[I] = DefaultValue;
5385     }
5386 
5387     if (DefaultValue != SingleValue)
5388       SingleValue = nullptr;
5389   }
5390 
5391   // If each element in the table contains the same value, we only need to store
5392   // that single value.
5393   if (SingleValue) {
5394     Kind = SingleValueKind;
5395     return;
5396   }
5397 
5398   // Check if we can derive the value with a linear transformation from the
5399   // table index.
5400   if (isa<IntegerType>(ValueType)) {
5401     bool LinearMappingPossible = true;
5402     APInt PrevVal;
5403     APInt DistToPrev;
5404     assert(TableSize >= 2 && "Should be a SingleValue table.");
5405     // Check if there is the same distance between two consecutive values.
5406     for (uint64_t I = 0; I < TableSize; ++I) {
5407       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5408       if (!ConstVal) {
5409         // This is an undef. We could deal with it, but undefs in lookup tables
5410         // are very seldom. It's probably not worth the additional complexity.
5411         LinearMappingPossible = false;
5412         break;
5413       }
5414       const APInt &Val = ConstVal->getValue();
5415       if (I != 0) {
5416         APInt Dist = Val - PrevVal;
5417         if (I == 1) {
5418           DistToPrev = Dist;
5419         } else if (Dist != DistToPrev) {
5420           LinearMappingPossible = false;
5421           break;
5422         }
5423       }
5424       PrevVal = Val;
5425     }
5426     if (LinearMappingPossible) {
5427       LinearOffset = cast<ConstantInt>(TableContents[0]);
5428       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5429       Kind = LinearMapKind;
5430       ++NumLinearMaps;
5431       return;
5432     }
5433   }
5434 
5435   // If the type is integer and the table fits in a register, build a bitmap.
5436   if (WouldFitInRegister(DL, TableSize, ValueType)) {
5437     IntegerType *IT = cast<IntegerType>(ValueType);
5438     APInt TableInt(TableSize * IT->getBitWidth(), 0);
5439     for (uint64_t I = TableSize; I > 0; --I) {
5440       TableInt <<= IT->getBitWidth();
5441       // Insert values into the bitmap. Undef values are set to zero.
5442       if (!isa<UndefValue>(TableContents[I - 1])) {
5443         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5444         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5445       }
5446     }
5447     BitMap = ConstantInt::get(M.getContext(), TableInt);
5448     BitMapElementTy = IT;
5449     Kind = BitMapKind;
5450     ++NumBitMaps;
5451     return;
5452   }
5453 
5454   // Store the table in an array.
5455   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5456   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5457 
5458   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5459                              GlobalVariable::PrivateLinkage, Initializer,
5460                              "switch.table." + FuncName);
5461   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5462   // Set the alignment to that of an array items. We will be only loading one
5463   // value out of it.
5464   Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5465   Kind = ArrayKind;
5466 }
5467 
BuildLookup(Value * Index,IRBuilder<> & Builder)5468 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5469   switch (Kind) {
5470   case SingleValueKind:
5471     return SingleValue;
5472   case LinearMapKind: {
5473     // Derive the result value from the input value.
5474     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5475                                           false, "switch.idx.cast");
5476     if (!LinearMultiplier->isOne())
5477       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5478     if (!LinearOffset->isZero())
5479       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5480     return Result;
5481   }
5482   case BitMapKind: {
5483     // Type of the bitmap (e.g. i59).
5484     IntegerType *MapTy = BitMap->getType();
5485 
5486     // Cast Index to the same type as the bitmap.
5487     // Note: The Index is <= the number of elements in the table, so
5488     // truncating it to the width of the bitmask is safe.
5489     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5490 
5491     // Multiply the shift amount by the element width.
5492     ShiftAmt = Builder.CreateMul(
5493         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5494         "switch.shiftamt");
5495 
5496     // Shift down.
5497     Value *DownShifted =
5498         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5499     // Mask off.
5500     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5501   }
5502   case ArrayKind: {
5503     // Make sure the table index will not overflow when treated as signed.
5504     IntegerType *IT = cast<IntegerType>(Index->getType());
5505     uint64_t TableSize =
5506         Array->getInitializer()->getType()->getArrayNumElements();
5507     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5508       Index = Builder.CreateZExt(
5509           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5510           "switch.tableidx.zext");
5511 
5512     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5513     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5514                                            GEPIndices, "switch.gep");
5515     return Builder.CreateLoad(
5516         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5517         "switch.load");
5518   }
5519   }
5520   llvm_unreachable("Unknown lookup table kind!");
5521 }
5522 
WouldFitInRegister(const DataLayout & DL,uint64_t TableSize,Type * ElementType)5523 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5524                                            uint64_t TableSize,
5525                                            Type *ElementType) {
5526   auto *IT = dyn_cast<IntegerType>(ElementType);
5527   if (!IT)
5528     return false;
5529   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5530   // are <= 15, we could try to narrow the type.
5531 
5532   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5533   if (TableSize >= UINT_MAX / IT->getBitWidth())
5534     return false;
5535   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5536 }
5537 
5538 /// Determine whether a lookup table should be built for this switch, based on
5539 /// the number of cases, size of the table, and the types of the results.
5540 static bool
ShouldBuildLookupTable(SwitchInst * SI,uint64_t TableSize,const TargetTransformInfo & TTI,const DataLayout & DL,const SmallDenseMap<PHINode *,Type * > & ResultTypes)5541 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5542                        const TargetTransformInfo &TTI, const DataLayout &DL,
5543                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5544   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5545     return false; // TableSize overflowed, or mul below might overflow.
5546 
5547   bool AllTablesFitInRegister = true;
5548   bool HasIllegalType = false;
5549   for (const auto &I : ResultTypes) {
5550     Type *Ty = I.second;
5551 
5552     // Saturate this flag to true.
5553     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5554 
5555     // Saturate this flag to false.
5556     AllTablesFitInRegister =
5557         AllTablesFitInRegister &&
5558         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5559 
5560     // If both flags saturate, we're done. NOTE: This *only* works with
5561     // saturating flags, and all flags have to saturate first due to the
5562     // non-deterministic behavior of iterating over a dense map.
5563     if (HasIllegalType && !AllTablesFitInRegister)
5564       break;
5565   }
5566 
5567   // If each table would fit in a register, we should build it anyway.
5568   if (AllTablesFitInRegister)
5569     return true;
5570 
5571   // Don't build a table that doesn't fit in-register if it has illegal types.
5572   if (HasIllegalType)
5573     return false;
5574 
5575   // The table density should be at least 40%. This is the same criterion as for
5576   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5577   // FIXME: Find the best cut-off.
5578   return SI->getNumCases() * 10 >= TableSize * 4;
5579 }
5580 
5581 /// Try to reuse the switch table index compare. Following pattern:
5582 /// \code
5583 ///     if (idx < tablesize)
5584 ///        r = table[idx]; // table does not contain default_value
5585 ///     else
5586 ///        r = default_value;
5587 ///     if (r != default_value)
5588 ///        ...
5589 /// \endcode
5590 /// Is optimized to:
5591 /// \code
5592 ///     cond = idx < tablesize;
5593 ///     if (cond)
5594 ///        r = table[idx];
5595 ///     else
5596 ///        r = default_value;
5597 ///     if (cond)
5598 ///        ...
5599 /// \endcode
5600 /// Jump threading will then eliminate the second if(cond).
reuseTableCompare(User * PhiUser,BasicBlock * PhiBlock,BranchInst * RangeCheckBranch,Constant * DefaultValue,const SmallVectorImpl<std::pair<ConstantInt *,Constant * >> & Values)5601 static void reuseTableCompare(
5602     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5603     Constant *DefaultValue,
5604     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5605   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5606   if (!CmpInst)
5607     return;
5608 
5609   // We require that the compare is in the same block as the phi so that jump
5610   // threading can do its work afterwards.
5611   if (CmpInst->getParent() != PhiBlock)
5612     return;
5613 
5614   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5615   if (!CmpOp1)
5616     return;
5617 
5618   Value *RangeCmp = RangeCheckBranch->getCondition();
5619   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5620   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5621 
5622   // Check if the compare with the default value is constant true or false.
5623   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5624                                                  DefaultValue, CmpOp1, true);
5625   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5626     return;
5627 
5628   // Check if the compare with the case values is distinct from the default
5629   // compare result.
5630   for (auto ValuePair : Values) {
5631     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5632                                                 ValuePair.second, CmpOp1, true);
5633     if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5634       return;
5635     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5636            "Expect true or false as compare result.");
5637   }
5638 
5639   // Check if the branch instruction dominates the phi node. It's a simple
5640   // dominance check, but sufficient for our needs.
5641   // Although this check is invariant in the calling loops, it's better to do it
5642   // at this late stage. Practically we do it at most once for a switch.
5643   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5644   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5645     BasicBlock *Pred = *PI;
5646     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5647       return;
5648   }
5649 
5650   if (DefaultConst == FalseConst) {
5651     // The compare yields the same result. We can replace it.
5652     CmpInst->replaceAllUsesWith(RangeCmp);
5653     ++NumTableCmpReuses;
5654   } else {
5655     // The compare yields the same result, just inverted. We can replace it.
5656     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5657         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5658         RangeCheckBranch);
5659     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5660     ++NumTableCmpReuses;
5661   }
5662 }
5663 
5664 /// If the switch is only used to initialize one or more phi nodes in a common
5665 /// successor block with different constant values, replace the switch with
5666 /// lookup tables.
SwitchToLookupTable(SwitchInst * SI,IRBuilder<> & Builder,DomTreeUpdater * DTU,const DataLayout & DL,const TargetTransformInfo & TTI)5667 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5668                                 DomTreeUpdater *DTU, const DataLayout &DL,
5669                                 const TargetTransformInfo &TTI) {
5670   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5671 
5672   BasicBlock *BB = SI->getParent();
5673   Function *Fn = BB->getParent();
5674   // Only build lookup table when we have a target that supports it or the
5675   // attribute is not set.
5676   if (!TTI.shouldBuildLookupTables() ||
5677       (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5678     return false;
5679 
5680   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5681   // split off a dense part and build a lookup table for that.
5682 
5683   // FIXME: This creates arrays of GEPs to constant strings, which means each
5684   // GEP needs a runtime relocation in PIC code. We should just build one big
5685   // string and lookup indices into that.
5686 
5687   // Ignore switches with less than three cases. Lookup tables will not make
5688   // them faster, so we don't analyze them.
5689   if (SI->getNumCases() < 3)
5690     return false;
5691 
5692   // Figure out the corresponding result for each case value and phi node in the
5693   // common destination, as well as the min and max case values.
5694   assert(!SI->cases().empty());
5695   SwitchInst::CaseIt CI = SI->case_begin();
5696   ConstantInt *MinCaseVal = CI->getCaseValue();
5697   ConstantInt *MaxCaseVal = CI->getCaseValue();
5698 
5699   BasicBlock *CommonDest = nullptr;
5700 
5701   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5702   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5703 
5704   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5705   SmallDenseMap<PHINode *, Type *> ResultTypes;
5706   SmallVector<PHINode *, 4> PHIs;
5707 
5708   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5709     ConstantInt *CaseVal = CI->getCaseValue();
5710     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5711       MinCaseVal = CaseVal;
5712     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5713       MaxCaseVal = CaseVal;
5714 
5715     // Resulting value at phi nodes for this case value.
5716     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5717     ResultsTy Results;
5718     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5719                         Results, DL, TTI))
5720       return false;
5721 
5722     // Append the result from this case to the list for each phi.
5723     for (const auto &I : Results) {
5724       PHINode *PHI = I.first;
5725       Constant *Value = I.second;
5726       if (!ResultLists.count(PHI))
5727         PHIs.push_back(PHI);
5728       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5729     }
5730   }
5731 
5732   // Keep track of the result types.
5733   for (PHINode *PHI : PHIs) {
5734     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5735   }
5736 
5737   uint64_t NumResults = ResultLists[PHIs[0]].size();
5738   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5739   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5740   bool TableHasHoles = (NumResults < TableSize);
5741 
5742   // If the table has holes, we need a constant result for the default case
5743   // or a bitmask that fits in a register.
5744   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5745   bool HasDefaultResults =
5746       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5747                      DefaultResultsList, DL, TTI);
5748 
5749   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5750   if (NeedMask) {
5751     // As an extra penalty for the validity test we require more cases.
5752     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5753       return false;
5754     if (!DL.fitsInLegalInteger(TableSize))
5755       return false;
5756   }
5757 
5758   for (const auto &I : DefaultResultsList) {
5759     PHINode *PHI = I.first;
5760     Constant *Result = I.second;
5761     DefaultResults[PHI] = Result;
5762   }
5763 
5764   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5765     return false;
5766 
5767   std::vector<DominatorTree::UpdateType> Updates;
5768 
5769   // Create the BB that does the lookups.
5770   Module &Mod = *CommonDest->getParent()->getParent();
5771   BasicBlock *LookupBB = BasicBlock::Create(
5772       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5773 
5774   // Compute the table index value.
5775   Builder.SetInsertPoint(SI);
5776   Value *TableIndex;
5777   if (MinCaseVal->isNullValue())
5778     TableIndex = SI->getCondition();
5779   else
5780     TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5781                                    "switch.tableidx");
5782 
5783   // Compute the maximum table size representable by the integer type we are
5784   // switching upon.
5785   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5786   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5787   assert(MaxTableSize >= TableSize &&
5788          "It is impossible for a switch to have more entries than the max "
5789          "representable value of its input integer type's size.");
5790 
5791   // If the default destination is unreachable, or if the lookup table covers
5792   // all values of the conditional variable, branch directly to the lookup table
5793   // BB. Otherwise, check that the condition is within the case range.
5794   const bool DefaultIsReachable =
5795       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5796   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5797   BranchInst *RangeCheckBranch = nullptr;
5798 
5799   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5800     Builder.CreateBr(LookupBB);
5801     Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5802     // Note: We call removeProdecessor later since we need to be able to get the
5803     // PHI value for the default case in case we're using a bit mask.
5804   } else {
5805     Value *Cmp = Builder.CreateICmpULT(
5806         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5807     RangeCheckBranch =
5808         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5809     Updates.push_back({DominatorTree::Insert, BB, LookupBB});
5810   }
5811 
5812   // Populate the BB that does the lookups.
5813   Builder.SetInsertPoint(LookupBB);
5814 
5815   if (NeedMask) {
5816     // Before doing the lookup, we do the hole check. The LookupBB is therefore
5817     // re-purposed to do the hole check, and we create a new LookupBB.
5818     BasicBlock *MaskBB = LookupBB;
5819     MaskBB->setName("switch.hole_check");
5820     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5821                                   CommonDest->getParent(), CommonDest);
5822 
5823     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5824     // unnecessary illegal types.
5825     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5826     APInt MaskInt(TableSizePowOf2, 0);
5827     APInt One(TableSizePowOf2, 1);
5828     // Build bitmask; fill in a 1 bit for every case.
5829     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5830     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5831       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5832                          .getLimitedValue();
5833       MaskInt |= One << Idx;
5834     }
5835     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5836 
5837     // Get the TableIndex'th bit of the bitmask.
5838     // If this bit is 0 (meaning hole) jump to the default destination,
5839     // else continue with table lookup.
5840     IntegerType *MapTy = TableMask->getType();
5841     Value *MaskIndex =
5842         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5843     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5844     Value *LoBit = Builder.CreateTrunc(
5845         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5846     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5847     Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
5848     Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
5849     Builder.SetInsertPoint(LookupBB);
5850     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
5851   }
5852 
5853   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5854     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5855     // do not delete PHINodes here.
5856     SI->getDefaultDest()->removePredecessor(BB,
5857                                             /*KeepOneInputPHIs=*/true);
5858     Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
5859   }
5860 
5861   bool ReturnedEarly = false;
5862   for (PHINode *PHI : PHIs) {
5863     const ResultListTy &ResultList = ResultLists[PHI];
5864 
5865     // If using a bitmask, use any value to fill the lookup table holes.
5866     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5867     StringRef FuncName = Fn->getName();
5868     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5869                             FuncName);
5870 
5871     Value *Result = Table.BuildLookup(TableIndex, Builder);
5872 
5873     // If the result is used to return immediately from the function, we want to
5874     // do that right here.
5875     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5876         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5877       Builder.CreateRet(Result);
5878       ReturnedEarly = true;
5879       break;
5880     }
5881 
5882     // Do a small peephole optimization: re-use the switch table compare if
5883     // possible.
5884     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5885       BasicBlock *PhiBlock = PHI->getParent();
5886       // Search for compare instructions which use the phi.
5887       for (auto *User : PHI->users()) {
5888         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5889       }
5890     }
5891 
5892     PHI->addIncoming(Result, LookupBB);
5893   }
5894 
5895   if (!ReturnedEarly) {
5896     Builder.CreateBr(CommonDest);
5897     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
5898   }
5899 
5900   // Remove the switch.
5901   SmallSetVector<BasicBlock *, 8> RemovedSuccessors;
5902   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5903     BasicBlock *Succ = SI->getSuccessor(i);
5904 
5905     if (Succ == SI->getDefaultDest())
5906       continue;
5907     Succ->removePredecessor(BB);
5908     RemovedSuccessors.insert(Succ);
5909   }
5910   SI->eraseFromParent();
5911 
5912   if (DTU) {
5913     for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
5914       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
5915     DTU->applyUpdates(Updates);
5916   }
5917 
5918   ++NumLookupTables;
5919   if (NeedMask)
5920     ++NumLookupTablesHoles;
5921   return true;
5922 }
5923 
isSwitchDense(ArrayRef<int64_t> Values)5924 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5925   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5926   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5927   uint64_t Range = Diff + 1;
5928   uint64_t NumCases = Values.size();
5929   // 40% is the default density for building a jump table in optsize/minsize mode.
5930   uint64_t MinDensity = 40;
5931 
5932   return NumCases * 100 >= Range * MinDensity;
5933 }
5934 
5935 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5936 /// of cases.
5937 ///
5938 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5939 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5940 ///
5941 /// This converts a sparse switch into a dense switch which allows better
5942 /// lowering and could also allow transforming into a lookup table.
ReduceSwitchRange(SwitchInst * SI,IRBuilder<> & Builder,const DataLayout & DL,const TargetTransformInfo & TTI)5943 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5944                               const DataLayout &DL,
5945                               const TargetTransformInfo &TTI) {
5946   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5947   if (CondTy->getIntegerBitWidth() > 64 ||
5948       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5949     return false;
5950   // Only bother with this optimization if there are more than 3 switch cases;
5951   // SDAG will only bother creating jump tables for 4 or more cases.
5952   if (SI->getNumCases() < 4)
5953     return false;
5954 
5955   // This transform is agnostic to the signedness of the input or case values. We
5956   // can treat the case values as signed or unsigned. We can optimize more common
5957   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5958   // as signed.
5959   SmallVector<int64_t,4> Values;
5960   for (auto &C : SI->cases())
5961     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5962   llvm::sort(Values);
5963 
5964   // If the switch is already dense, there's nothing useful to do here.
5965   if (isSwitchDense(Values))
5966     return false;
5967 
5968   // First, transform the values such that they start at zero and ascend.
5969   int64_t Base = Values[0];
5970   for (auto &V : Values)
5971     V -= (uint64_t)(Base);
5972 
5973   // Now we have signed numbers that have been shifted so that, given enough
5974   // precision, there are no negative values. Since the rest of the transform
5975   // is bitwise only, we switch now to an unsigned representation.
5976 
5977   // This transform can be done speculatively because it is so cheap - it
5978   // results in a single rotate operation being inserted.
5979   // FIXME: It's possible that optimizing a switch on powers of two might also
5980   // be beneficial - flag values are often powers of two and we could use a CLZ
5981   // as the key function.
5982 
5983   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5984   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5985   // less than 64.
5986   unsigned Shift = 64;
5987   for (auto &V : Values)
5988     Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5989   assert(Shift < 64);
5990   if (Shift > 0)
5991     for (auto &V : Values)
5992       V = (int64_t)((uint64_t)V >> Shift);
5993 
5994   if (!isSwitchDense(Values))
5995     // Transform didn't create a dense switch.
5996     return false;
5997 
5998   // The obvious transform is to shift the switch condition right and emit a
5999   // check that the condition actually cleanly divided by GCD, i.e.
6000   //   C & (1 << Shift - 1) == 0
6001   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
6002   //
6003   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
6004   // shift and puts the shifted-off bits in the uppermost bits. If any of these
6005   // are nonzero then the switch condition will be very large and will hit the
6006   // default case.
6007 
6008   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
6009   Builder.SetInsertPoint(SI);
6010   auto *ShiftC = ConstantInt::get(Ty, Shift);
6011   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
6012   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
6013   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
6014   auto *Rot = Builder.CreateOr(LShr, Shl);
6015   SI->replaceUsesOfWith(SI->getCondition(), Rot);
6016 
6017   for (auto Case : SI->cases()) {
6018     auto *Orig = Case.getCaseValue();
6019     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
6020     Case.setValue(
6021         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
6022   }
6023   return true;
6024 }
6025 
simplifySwitch(SwitchInst * SI,IRBuilder<> & Builder)6026 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
6027   BasicBlock *BB = SI->getParent();
6028 
6029   if (isValueEqualityComparison(SI)) {
6030     // If we only have one predecessor, and if it is a branch on this value,
6031     // see if that predecessor totally determines the outcome of this switch.
6032     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6033       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
6034         return requestResimplify();
6035 
6036     Value *Cond = SI->getCondition();
6037     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
6038       if (SimplifySwitchOnSelect(SI, Select))
6039         return requestResimplify();
6040 
6041     // If the block only contains the switch, see if we can fold the block
6042     // away into any preds.
6043     if (SI == &*BB->instructionsWithoutDebug().begin())
6044       if (FoldValueComparisonIntoPredecessors(SI, Builder))
6045         return requestResimplify();
6046   }
6047 
6048   // Try to transform the switch into an icmp and a branch.
6049   if (TurnSwitchRangeIntoICmp(SI, Builder))
6050     return requestResimplify();
6051 
6052   // Remove unreachable cases.
6053   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
6054     return requestResimplify();
6055 
6056   if (switchToSelect(SI, Builder, DTU, DL, TTI))
6057     return requestResimplify();
6058 
6059   if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
6060     return requestResimplify();
6061 
6062   // The conversion from switch to lookup tables results in difficult-to-analyze
6063   // code and makes pruning branches much harder. This is a problem if the
6064   // switch expression itself can still be restricted as a result of inlining or
6065   // CVP. Therefore, only apply this transformation during late stages of the
6066   // optimisation pipeline.
6067   if (Options.ConvertSwitchToLookupTable &&
6068       SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
6069     return requestResimplify();
6070 
6071   if (ReduceSwitchRange(SI, Builder, DL, TTI))
6072     return requestResimplify();
6073 
6074   return false;
6075 }
6076 
simplifyIndirectBr(IndirectBrInst * IBI)6077 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
6078   BasicBlock *BB = IBI->getParent();
6079   bool Changed = false;
6080 
6081   // Eliminate redundant destinations.
6082   SmallPtrSet<Value *, 8> Succs;
6083   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
6084   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
6085     BasicBlock *Dest = IBI->getDestination(i);
6086     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
6087       if (!Dest->hasAddressTaken())
6088         RemovedSuccs.insert(Dest);
6089       Dest->removePredecessor(BB);
6090       IBI->removeDestination(i);
6091       --i;
6092       --e;
6093       Changed = true;
6094     }
6095   }
6096 
6097   if (DTU) {
6098     std::vector<DominatorTree::UpdateType> Updates;
6099     Updates.reserve(RemovedSuccs.size());
6100     for (auto *RemovedSucc : RemovedSuccs)
6101       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
6102     DTU->applyUpdates(Updates);
6103   }
6104 
6105   if (IBI->getNumDestinations() == 0) {
6106     // If the indirectbr has no successors, change it to unreachable.
6107     new UnreachableInst(IBI->getContext(), IBI);
6108     EraseTerminatorAndDCECond(IBI);
6109     return true;
6110   }
6111 
6112   if (IBI->getNumDestinations() == 1) {
6113     // If the indirectbr has one successor, change it to a direct branch.
6114     BranchInst::Create(IBI->getDestination(0), IBI);
6115     EraseTerminatorAndDCECond(IBI);
6116     return true;
6117   }
6118 
6119   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
6120     if (SimplifyIndirectBrOnSelect(IBI, SI))
6121       return requestResimplify();
6122   }
6123   return Changed;
6124 }
6125 
6126 /// Given an block with only a single landing pad and a unconditional branch
6127 /// try to find another basic block which this one can be merged with.  This
6128 /// handles cases where we have multiple invokes with unique landing pads, but
6129 /// a shared handler.
6130 ///
6131 /// We specifically choose to not worry about merging non-empty blocks
6132 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
6133 /// practice, the optimizer produces empty landing pad blocks quite frequently
6134 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
6135 /// sinking in this file)
6136 ///
6137 /// This is primarily a code size optimization.  We need to avoid performing
6138 /// any transform which might inhibit optimization (such as our ability to
6139 /// specialize a particular handler via tail commoning).  We do this by not
6140 /// merging any blocks which require us to introduce a phi.  Since the same
6141 /// values are flowing through both blocks, we don't lose any ability to
6142 /// specialize.  If anything, we make such specialization more likely.
6143 ///
6144 /// TODO - This transformation could remove entries from a phi in the target
6145 /// block when the inputs in the phi are the same for the two blocks being
6146 /// merged.  In some cases, this could result in removal of the PHI entirely.
TryToMergeLandingPad(LandingPadInst * LPad,BranchInst * BI,BasicBlock * BB,DomTreeUpdater * DTU)6147 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
6148                                  BasicBlock *BB, DomTreeUpdater *DTU) {
6149   auto Succ = BB->getUniqueSuccessor();
6150   assert(Succ);
6151   // If there's a phi in the successor block, we'd likely have to introduce
6152   // a phi into the merged landing pad block.
6153   if (isa<PHINode>(*Succ->begin()))
6154     return false;
6155 
6156   for (BasicBlock *OtherPred : predecessors(Succ)) {
6157     if (BB == OtherPred)
6158       continue;
6159     BasicBlock::iterator I = OtherPred->begin();
6160     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
6161     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
6162       continue;
6163     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6164       ;
6165     BranchInst *BI2 = dyn_cast<BranchInst>(I);
6166     if (!BI2 || !BI2->isIdenticalTo(BI))
6167       continue;
6168 
6169     std::vector<DominatorTree::UpdateType> Updates;
6170 
6171     // We've found an identical block.  Update our predecessors to take that
6172     // path instead and make ourselves dead.
6173     SmallPtrSet<BasicBlock *, 16> Preds;
6174     Preds.insert(pred_begin(BB), pred_end(BB));
6175     for (BasicBlock *Pred : Preds) {
6176       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
6177       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
6178              "unexpected successor");
6179       II->setUnwindDest(OtherPred);
6180       Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
6181       Updates.push_back({DominatorTree::Delete, Pred, BB});
6182     }
6183 
6184     // The debug info in OtherPred doesn't cover the merged control flow that
6185     // used to go through BB.  We need to delete it or update it.
6186     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
6187       Instruction &Inst = *I;
6188       I++;
6189       if (isa<DbgInfoIntrinsic>(Inst))
6190         Inst.eraseFromParent();
6191     }
6192 
6193     SmallPtrSet<BasicBlock *, 16> Succs;
6194     Succs.insert(succ_begin(BB), succ_end(BB));
6195     for (BasicBlock *Succ : Succs) {
6196       Succ->removePredecessor(BB);
6197       Updates.push_back({DominatorTree::Delete, BB, Succ});
6198     }
6199 
6200     IRBuilder<> Builder(BI);
6201     Builder.CreateUnreachable();
6202     BI->eraseFromParent();
6203     if (DTU)
6204       DTU->applyUpdates(Updates);
6205     return true;
6206   }
6207   return false;
6208 }
6209 
simplifyBranch(BranchInst * Branch,IRBuilder<> & Builder)6210 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
6211   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
6212                                    : simplifyCondBranch(Branch, Builder);
6213 }
6214 
simplifyUncondBranch(BranchInst * BI,IRBuilder<> & Builder)6215 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
6216                                           IRBuilder<> &Builder) {
6217   BasicBlock *BB = BI->getParent();
6218   BasicBlock *Succ = BI->getSuccessor(0);
6219 
6220   // If the Terminator is the only non-phi instruction, simplify the block.
6221   // If LoopHeader is provided, check if the block or its successor is a loop
6222   // header. (This is for early invocations before loop simplify and
6223   // vectorization to keep canonical loop forms for nested loops. These blocks
6224   // can be eliminated when the pass is invoked later in the back-end.)
6225   // Note that if BB has only one predecessor then we do not introduce new
6226   // backedge, so we can eliminate BB.
6227   bool NeedCanonicalLoop =
6228       Options.NeedCanonicalLoop &&
6229       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
6230        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
6231   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
6232   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
6233       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
6234     return true;
6235 
6236   // If the only instruction in the block is a seteq/setne comparison against a
6237   // constant, try to simplify the block.
6238   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
6239     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
6240       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6241         ;
6242       if (I->isTerminator() &&
6243           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
6244         return true;
6245     }
6246 
6247   // See if we can merge an empty landing pad block with another which is
6248   // equivalent.
6249   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
6250     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
6251       ;
6252     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
6253       return true;
6254   }
6255 
6256   // If this basic block is ONLY a compare and a branch, and if a predecessor
6257   // branches to us and our successor, fold the comparison into the
6258   // predecessor and use logical operations to update the incoming value
6259   // for PHI nodes in common successor.
6260   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6261                              Options.BonusInstThreshold))
6262     return requestResimplify();
6263   return false;
6264 }
6265 
allPredecessorsComeFromSameSource(BasicBlock * BB)6266 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
6267   BasicBlock *PredPred = nullptr;
6268   for (auto *P : predecessors(BB)) {
6269     BasicBlock *PPred = P->getSinglePredecessor();
6270     if (!PPred || (PredPred && PredPred != PPred))
6271       return nullptr;
6272     PredPred = PPred;
6273   }
6274   return PredPred;
6275 }
6276 
simplifyCondBranch(BranchInst * BI,IRBuilder<> & Builder)6277 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
6278   BasicBlock *BB = BI->getParent();
6279   if (!Options.SimplifyCondBranch)
6280     return false;
6281 
6282   // Conditional branch
6283   if (isValueEqualityComparison(BI)) {
6284     // If we only have one predecessor, and if it is a branch on this value,
6285     // see if that predecessor totally determines the outcome of this
6286     // switch.
6287     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
6288       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
6289         return requestResimplify();
6290 
6291     // This block must be empty, except for the setcond inst, if it exists.
6292     // Ignore dbg intrinsics.
6293     auto I = BB->instructionsWithoutDebug().begin();
6294     if (&*I == BI) {
6295       if (FoldValueComparisonIntoPredecessors(BI, Builder))
6296         return requestResimplify();
6297     } else if (&*I == cast<Instruction>(BI->getCondition())) {
6298       ++I;
6299       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
6300         return requestResimplify();
6301     }
6302   }
6303 
6304   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
6305   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
6306     return true;
6307 
6308   // If this basic block has dominating predecessor blocks and the dominating
6309   // blocks' conditions imply BI's condition, we know the direction of BI.
6310   Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
6311   if (Imp) {
6312     // Turn this into a branch on constant.
6313     auto *OldCond = BI->getCondition();
6314     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
6315                              : ConstantInt::getFalse(BB->getContext());
6316     BI->setCondition(TorF);
6317     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6318     return requestResimplify();
6319   }
6320 
6321   // If this basic block is ONLY a compare and a branch, and if a predecessor
6322   // branches to us and one of our successors, fold the comparison into the
6323   // predecessor and use logical operations to pick the right destination.
6324   if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
6325                              Options.BonusInstThreshold))
6326     return requestResimplify();
6327 
6328   // We have a conditional branch to two blocks that are only reachable
6329   // from BI.  We know that the condbr dominates the two blocks, so see if
6330   // there is any identical code in the "then" and "else" blocks.  If so, we
6331   // can hoist it up to the branching block.
6332   if (BI->getSuccessor(0)->getSinglePredecessor()) {
6333     if (BI->getSuccessor(1)->getSinglePredecessor()) {
6334       if (HoistCommon && Options.HoistCommonInsts)
6335         if (HoistThenElseCodeToIf(BI, TTI))
6336           return requestResimplify();
6337     } else {
6338       // If Successor #1 has multiple preds, we may be able to conditionally
6339       // execute Successor #0 if it branches to Successor #1.
6340       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
6341       if (Succ0TI->getNumSuccessors() == 1 &&
6342           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
6343         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
6344           return requestResimplify();
6345     }
6346   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
6347     // If Successor #0 has multiple preds, we may be able to conditionally
6348     // execute Successor #1 if it branches to Successor #0.
6349     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
6350     if (Succ1TI->getNumSuccessors() == 1 &&
6351         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
6352       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
6353         return requestResimplify();
6354   }
6355 
6356   // If this is a branch on a phi node in the current block, thread control
6357   // through this block if any PHI node entries are constants.
6358   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
6359     if (PN->getParent() == BI->getParent())
6360       if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
6361         return requestResimplify();
6362 
6363   // Scan predecessor blocks for conditional branches.
6364   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
6365     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
6366       if (PBI != BI && PBI->isConditional())
6367         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
6368           return requestResimplify();
6369 
6370   // Look for diamond patterns.
6371   if (MergeCondStores)
6372     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
6373       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
6374         if (PBI != BI && PBI->isConditional())
6375           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
6376             return requestResimplify();
6377 
6378   return false;
6379 }
6380 
6381 /// Check if passing a value to an instruction will cause undefined behavior.
passingValueIsAlwaysUndefined(Value * V,Instruction * I,bool PtrValueMayBeModified)6382 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
6383   Constant *C = dyn_cast<Constant>(V);
6384   if (!C)
6385     return false;
6386 
6387   if (I->use_empty())
6388     return false;
6389 
6390   if (C->isNullValue() || isa<UndefValue>(C)) {
6391     // Only look at the first use, avoid hurting compile time with long uselists
6392     User *Use = *I->user_begin();
6393 
6394     // Now make sure that there are no instructions in between that can alter
6395     // control flow (eg. calls)
6396     for (BasicBlock::iterator
6397              i = ++BasicBlock::iterator(I),
6398              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
6399          i != UI; ++i)
6400       if (i == I->getParent()->end() || i->mayHaveSideEffects())
6401         return false;
6402 
6403     // Look through GEPs. A load from a GEP derived from NULL is still undefined
6404     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
6405       if (GEP->getPointerOperand() == I) {
6406         if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
6407           PtrValueMayBeModified = true;
6408         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
6409       }
6410 
6411     // Look through bitcasts.
6412     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
6413       return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
6414 
6415     // Load from null is undefined.
6416     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
6417       if (!LI->isVolatile())
6418         return !NullPointerIsDefined(LI->getFunction(),
6419                                      LI->getPointerAddressSpace());
6420 
6421     // Store to null is undefined.
6422     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6423       if (!SI->isVolatile())
6424         return (!NullPointerIsDefined(SI->getFunction(),
6425                                       SI->getPointerAddressSpace())) &&
6426                SI->getPointerOperand() == I;
6427 
6428     if (auto *CB = dyn_cast<CallBase>(Use)) {
6429       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
6430         return false;
6431       // A call to null is undefined.
6432       if (CB->getCalledOperand() == I)
6433         return true;
6434 
6435       if (C->isNullValue()) {
6436         for (const llvm::Use &Arg : CB->args())
6437           if (Arg == I) {
6438             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6439             if (CB->paramHasAttr(ArgIdx, Attribute::NonNull) &&
6440                 CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) {
6441               // Passing null to a nonnnull+noundef argument is undefined.
6442               return !PtrValueMayBeModified;
6443             }
6444           }
6445       } else if (isa<UndefValue>(C)) {
6446         // Passing undef to a noundef argument is undefined.
6447         for (const llvm::Use &Arg : CB->args())
6448           if (Arg == I) {
6449             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
6450             if (CB->paramHasAttr(ArgIdx, Attribute::NoUndef)) {
6451               // Passing undef to a noundef argument is undefined.
6452               return true;
6453             }
6454           }
6455       }
6456     }
6457   }
6458   return false;
6459 }
6460 
6461 /// If BB has an incoming value that will always trigger undefined behavior
6462 /// (eg. null pointer dereference), remove the branch leading here.
removeUndefIntroducingPredecessor(BasicBlock * BB,DomTreeUpdater * DTU)6463 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
6464                                               DomTreeUpdater *DTU) {
6465   for (PHINode &PHI : BB->phis())
6466     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6467       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6468         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
6469         Instruction *T = Predecessor->getTerminator();
6470         IRBuilder<> Builder(T);
6471         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6472           BB->removePredecessor(Predecessor);
6473           // Turn uncoditional branches into unreachables and remove the dead
6474           // destination from conditional branches.
6475           if (BI->isUnconditional())
6476             Builder.CreateUnreachable();
6477           else
6478             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6479                                                        : BI->getSuccessor(0));
6480           BI->eraseFromParent();
6481           if (DTU)
6482             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
6483           return true;
6484         }
6485         // TODO: SwitchInst.
6486       }
6487 
6488   return false;
6489 }
6490 
simplifyOnceImpl(BasicBlock * BB)6491 bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
6492   bool Changed = false;
6493 
6494   assert(BB && BB->getParent() && "Block not embedded in function!");
6495   assert(BB->getTerminator() && "Degenerate basic block encountered!");
6496 
6497   // Remove basic blocks that have no predecessors (except the entry block)...
6498   // or that just have themself as a predecessor.  These are unreachable.
6499   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6500       BB->getSinglePredecessor() == BB) {
6501     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6502     DeleteDeadBlock(BB, DTU);
6503     return true;
6504   }
6505 
6506   // Check to see if we can constant propagate this terminator instruction
6507   // away...
6508   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
6509                                     /*TLI=*/nullptr, DTU);
6510 
6511   // Check for and eliminate duplicate PHI nodes in this block.
6512   Changed |= EliminateDuplicatePHINodes(BB);
6513 
6514   // Check for and remove branches that will always cause undefined behavior.
6515   Changed |= removeUndefIntroducingPredecessor(BB, DTU);
6516 
6517   // Merge basic blocks into their predecessor if there is only one distinct
6518   // pred, and if there is only one distinct successor of the predecessor, and
6519   // if there are no PHI nodes.
6520   if (MergeBlockIntoPredecessor(BB, DTU))
6521     return true;
6522 
6523   if (SinkCommon && Options.SinkCommonInsts)
6524     Changed |= SinkCommonCodeFromPredecessors(BB, DTU);
6525 
6526   IRBuilder<> Builder(BB);
6527 
6528   if (Options.FoldTwoEntryPHINode) {
6529     // If there is a trivial two-entry PHI node in this basic block, and we can
6530     // eliminate it, do so now.
6531     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6532       if (PN->getNumIncomingValues() == 2)
6533         Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
6534   }
6535 
6536   Instruction *Terminator = BB->getTerminator();
6537   Builder.SetInsertPoint(Terminator);
6538   switch (Terminator->getOpcode()) {
6539   case Instruction::Br:
6540     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
6541     break;
6542   case Instruction::Ret:
6543     Changed |= simplifyReturn(cast<ReturnInst>(Terminator), Builder);
6544     break;
6545   case Instruction::Resume:
6546     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
6547     break;
6548   case Instruction::CleanupRet:
6549     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
6550     break;
6551   case Instruction::Switch:
6552     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
6553     break;
6554   case Instruction::Unreachable:
6555     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
6556     break;
6557   case Instruction::IndirectBr:
6558     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
6559     break;
6560   }
6561 
6562   return Changed;
6563 }
6564 
simplifyOnce(BasicBlock * BB)6565 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6566   bool Changed = simplifyOnceImpl(BB);
6567 
6568   assert((!RequireAndPreserveDomTree ||
6569           (DTU &&
6570            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6571          "Failed to maintain validity of domtree!");
6572 
6573   return Changed;
6574 }
6575 
run(BasicBlock * BB)6576 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6577   assert((!RequireAndPreserveDomTree ||
6578           (DTU &&
6579            DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full))) &&
6580          "Original domtree is invalid?");
6581 
6582   bool Changed = false;
6583 
6584   // Repeated simplify BB as long as resimplification is requested.
6585   do {
6586     Resimplify = false;
6587 
6588     // Perform one round of simplifcation. Resimplify flag will be set if
6589     // another iteration is requested.
6590     Changed |= simplifyOnce(BB);
6591   } while (Resimplify);
6592 
6593   return Changed;
6594 }
6595 
simplifyCFG(BasicBlock * BB,const TargetTransformInfo & TTI,DomTreeUpdater * DTU,const SimplifyCFGOptions & Options,ArrayRef<WeakVH> LoopHeaders)6596 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6597                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
6598                        ArrayRef<WeakVH> LoopHeaders) {
6599   return SimplifyCFGOpt(TTI, RequireAndPreserveDomTree ? DTU : nullptr,
6600                         BB->getModule()->getDataLayout(), LoopHeaders, Options)
6601       .run(BB);
6602 }
6603