1 //===-- lib/Parser/expr-parsers.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 // Per-type parsers for expressions.
10 
11 #include "expr-parsers.h"
12 #include "basic-parsers.h"
13 #include "debug-parser.h"
14 #include "misc-parsers.h"
15 #include "stmt-parser.h"
16 #include "token-parsers.h"
17 #include "type-parser-implementation.h"
18 #include "flang/Parser/characters.h"
19 #include "flang/Parser/parse-tree.h"
20 
21 namespace Fortran::parser {
22 
23 // R764 boz-literal-constant -> binary-constant | octal-constant | hex-constant
24 // R765 binary-constant -> B ' digit [digit]... ' | B " digit [digit]... "
25 // R766 octal-constant -> O ' digit [digit]... ' | O " digit [digit]... "
26 // R767 hex-constant ->
27 //        Z ' hex-digit [hex-digit]... ' | Z " hex-digit [hex-digit]... "
28 // extension: X accepted for Z
29 // extension: BOZX suffix accepted
30 TYPE_PARSER(construct<BOZLiteralConstant>(BOZLiteral{}))
31 
32 // R769 array-constructor -> (/ ac-spec /) | lbracket ac-spec rbracket
33 TYPE_CONTEXT_PARSER("array constructor"_en_US,
34     construct<ArrayConstructor>(
35         "(/" >> Parser<AcSpec>{} / "/)" || bracketed(Parser<AcSpec>{})))
36 
37 // R770 ac-spec -> type-spec :: | [type-spec ::] ac-value-list
38 TYPE_PARSER(construct<AcSpec>(maybe(typeSpec / "::"),
39                 nonemptyList("expected array constructor values"_err_en_US,
40                     Parser<AcValue>{})) ||
41     construct<AcSpec>(typeSpec / "::"))
42 
43 // R773 ac-value -> expr | ac-implied-do
44 TYPE_PARSER(
45     // PGI/Intel extension: accept triplets in array constructors
46     extension<LanguageFeature::TripletInArrayConstructor>(
47         construct<AcValue>(construct<AcValue::Triplet>(scalarIntExpr,
48             ":" >> scalarIntExpr, maybe(":" >> scalarIntExpr)))) ||
49     construct<AcValue>(indirect(expr)) ||
50     construct<AcValue>(indirect(Parser<AcImpliedDo>{})))
51 
52 // R774 ac-implied-do -> ( ac-value-list , ac-implied-do-control )
53 TYPE_PARSER(parenthesized(
54     construct<AcImpliedDo>(nonemptyList(Parser<AcValue>{} / lookAhead(","_tok)),
55         "," >> Parser<AcImpliedDoControl>{})))
56 
57 // R775 ac-implied-do-control ->
58 //        [integer-type-spec ::] ac-do-variable = scalar-int-expr ,
59 //        scalar-int-expr [, scalar-int-expr]
60 // R776 ac-do-variable -> do-variable
61 TYPE_PARSER(construct<AcImpliedDoControl>(
62     maybe(integerTypeSpec / "::"), loopBounds(scalarIntExpr)))
63 
64 // R1001 primary ->
65 //         literal-constant | designator | array-constructor |
66 //         structure-constructor | function-reference | type-param-inquiry |
67 //         type-param-name | ( expr )
68 // N.B. type-param-inquiry is parsed as a structure component
69 constexpr auto primary{instrumented("primary"_en_US,
70     first(construct<Expr>(indirect(Parser<CharLiteralConstantSubstring>{})),
71         construct<Expr>(literalConstant),
72         construct<Expr>(construct<Expr::Parentheses>(parenthesized(expr))),
73         construct<Expr>(indirect(functionReference) / !"("_tok),
74         construct<Expr>(designator / !"("_tok),
75         construct<Expr>(Parser<StructureConstructor>{}),
76         construct<Expr>(Parser<ArrayConstructor>{}),
77         // PGI/XLF extension: COMPLEX constructor (x,y)
78         extension<LanguageFeature::ComplexConstructor>(
79             construct<Expr>(parenthesized(
80                 construct<Expr::ComplexConstructor>(expr, "," >> expr)))),
81         extension<LanguageFeature::PercentLOC>(construct<Expr>("%LOC" >>
82             parenthesized(construct<Expr::PercentLoc>(indirect(variable)))))))};
83 
84 // R1002 level-1-expr -> [defined-unary-op] primary
85 // TODO: Reasonable extension: permit multiple defined-unary-ops
86 constexpr auto level1Expr{sourced(
87     first(primary, // must come before define op to resolve .TRUE._8 ambiguity
88         construct<Expr>(construct<Expr::DefinedUnary>(definedOpName, primary)),
89         extension<LanguageFeature::SignedPrimary>(
90             construct<Expr>(construct<Expr::UnaryPlus>("+" >> primary))),
91         extension<LanguageFeature::SignedPrimary>(
92             construct<Expr>(construct<Expr::Negate>("-" >> primary)))))};
93 
94 // R1004 mult-operand -> level-1-expr [power-op mult-operand]
95 // R1007 power-op -> **
96 // Exponentiation (**) is Fortran's only right-associative binary operation.
97 struct MultOperand {
98   using resultType = Expr;
MultOperandFortran::parser::MultOperand99   constexpr MultOperand() {}
100   static inline std::optional<Expr> Parse(ParseState &);
101 };
102 
103 static constexpr auto multOperand{sourced(MultOperand{})};
104 
Parse(ParseState & state)105 inline std::optional<Expr> MultOperand::Parse(ParseState &state) {
106   std::optional<Expr> result{level1Expr.Parse(state)};
107   if (result) {
108     static constexpr auto op{attempt("**"_tok)};
109     if (op.Parse(state)) {
110       std::function<Expr(Expr &&)> power{[&result](Expr &&right) {
111         return Expr{Expr::Power(std::move(result).value(), std::move(right))};
112       }};
113       return applyLambda(power, multOperand).Parse(state); // right-recursive
114     }
115   }
116   return result;
117 }
118 
119 // R1005 add-operand -> [add-operand mult-op] mult-operand
120 // R1008 mult-op -> * | /
121 // The left recursion in the grammar is implemented iteratively.
122 struct AddOperand {
123   using resultType = Expr;
AddOperandFortran::parser::AddOperand124   constexpr AddOperand() {}
ParseFortran::parser::AddOperand125   static inline std::optional<Expr> Parse(ParseState &state) {
126     std::optional<Expr> result{multOperand.Parse(state)};
127     if (result) {
128       auto source{result->source};
129       std::function<Expr(Expr &&)> multiply{[&result](Expr &&right) {
130         return Expr{
131             Expr::Multiply(std::move(result).value(), std::move(right))};
132       }};
133       std::function<Expr(Expr &&)> divide{[&result](Expr &&right) {
134         return Expr{Expr::Divide(std::move(result).value(), std::move(right))};
135       }};
136       auto more{attempt(sourced("*" >> applyLambda(multiply, multOperand) ||
137           "/" >> applyLambda(divide, multOperand)))};
138       while (std::optional<Expr> next{more.Parse(state)}) {
139         result = std::move(next);
140         result->source.ExtendToCover(source);
141       }
142     }
143     return result;
144   }
145 };
146 constexpr AddOperand addOperand;
147 
148 // R1006 level-2-expr -> [[level-2-expr] add-op] add-operand
149 // R1009 add-op -> + | -
150 // These are left-recursive productions, implemented iteratively.
151 // Note that standard Fortran admits a unary + or - to appear only here,
152 // by means of a missing first operand; e.g., 2*-3 is valid in C but not
153 // standard Fortran.  We accept unary + and - to appear before any primary
154 // as an extension.
155 struct Level2Expr {
156   using resultType = Expr;
Level2ExprFortran::parser::Level2Expr157   constexpr Level2Expr() {}
ParseFortran::parser::Level2Expr158   static inline std::optional<Expr> Parse(ParseState &state) {
159     static constexpr auto unary{
160         sourced(
161             construct<Expr>(construct<Expr::UnaryPlus>("+" >> addOperand)) ||
162             construct<Expr>(construct<Expr::Negate>("-" >> addOperand))) ||
163         addOperand};
164     std::optional<Expr> result{unary.Parse(state)};
165     if (result) {
166       auto source{result->source};
167       std::function<Expr(Expr &&)> add{[&result](Expr &&right) {
168         return Expr{Expr::Add(std::move(result).value(), std::move(right))};
169       }};
170       std::function<Expr(Expr &&)> subtract{[&result](Expr &&right) {
171         return Expr{
172             Expr::Subtract(std::move(result).value(), std::move(right))};
173       }};
174       auto more{attempt(sourced("+" >> applyLambda(add, addOperand) ||
175           "-" >> applyLambda(subtract, addOperand)))};
176       while (std::optional<Expr> next{more.Parse(state)}) {
177         result = std::move(next);
178         result->source.ExtendToCover(source);
179       }
180     }
181     return result;
182   }
183 };
184 constexpr Level2Expr level2Expr;
185 
186 // R1010 level-3-expr -> [level-3-expr concat-op] level-2-expr
187 // R1011 concat-op -> //
188 // Concatenation (//) is left-associative for parsing performance, although
189 // one would never notice if it were right-associated.
190 struct Level3Expr {
191   using resultType = Expr;
Level3ExprFortran::parser::Level3Expr192   constexpr Level3Expr() {}
ParseFortran::parser::Level3Expr193   static inline std::optional<Expr> Parse(ParseState &state) {
194     std::optional<Expr> result{level2Expr.Parse(state)};
195     if (result) {
196       auto source{result->source};
197       std::function<Expr(Expr &&)> concat{[&result](Expr &&right) {
198         return Expr{Expr::Concat(std::move(result).value(), std::move(right))};
199       }};
200       auto more{attempt(sourced("//" >> applyLambda(concat, level2Expr)))};
201       while (std::optional<Expr> next{more.Parse(state)}) {
202         result = std::move(next);
203         result->source.ExtendToCover(source);
204       }
205     }
206     return result;
207   }
208 };
209 constexpr Level3Expr level3Expr;
210 
211 // R1012 level-4-expr -> [level-3-expr rel-op] level-3-expr
212 // R1013 rel-op ->
213 //         .EQ. | .NE. | .LT. | .LE. | .GT. | .GE. |
214 //          == | /= | < | <= | > | >=  @ | <>
215 // N.B. relations are not recursive (i.e., LOGICAL is not ordered)
216 struct Level4Expr {
217   using resultType = Expr;
Level4ExprFortran::parser::Level4Expr218   constexpr Level4Expr() {}
ParseFortran::parser::Level4Expr219   static inline std::optional<Expr> Parse(ParseState &state) {
220     std::optional<Expr> result{level3Expr.Parse(state)};
221     if (result) {
222       auto source{result->source};
223       std::function<Expr(Expr &&)> lt{[&result](Expr &&right) {
224         return Expr{Expr::LT(std::move(result).value(), std::move(right))};
225       }};
226       std::function<Expr(Expr &&)> le{[&result](Expr &&right) {
227         return Expr{Expr::LE(std::move(result).value(), std::move(right))};
228       }};
229       std::function<Expr(Expr &&)> eq{[&result](Expr &&right) {
230         return Expr{Expr::EQ(std::move(result).value(), std::move(right))};
231       }};
232       std::function<Expr(Expr &&)> ne{[&result](Expr &&right) {
233         return Expr{Expr::NE(std::move(result).value(), std::move(right))};
234       }};
235       std::function<Expr(Expr &&)> ge{[&result](Expr &&right) {
236         return Expr{Expr::GE(std::move(result).value(), std::move(right))};
237       }};
238       std::function<Expr(Expr &&)> gt{[&result](Expr &&right) {
239         return Expr{Expr::GT(std::move(result).value(), std::move(right))};
240       }};
241       auto more{attempt(
242           sourced((".LT."_tok || "<"_tok) >> applyLambda(lt, level3Expr) ||
243               (".LE."_tok || "<="_tok) >> applyLambda(le, level3Expr) ||
244               (".EQ."_tok || "=="_tok) >> applyLambda(eq, level3Expr) ||
245               (".NE."_tok || "/="_tok ||
246                   extension<LanguageFeature::AlternativeNE>(
247                       "<>"_tok /* PGI/Cray extension; Cray also has .LG. */)) >>
248                   applyLambda(ne, level3Expr) ||
249               (".GE."_tok || ">="_tok) >> applyLambda(ge, level3Expr) ||
250               (".GT."_tok || ">"_tok) >> applyLambda(gt, level3Expr)))};
251       if (std::optional<Expr> next{more.Parse(state)}) {
252         next->source.ExtendToCover(source);
253         return next;
254       }
255     }
256     return result;
257   }
258 };
259 constexpr Level4Expr level4Expr;
260 
261 // R1014 and-operand -> [not-op] level-4-expr
262 // R1018 not-op -> .NOT.
263 // N.B. Fortran's .NOT. binds less tightly than its comparison operators do.
264 // PGI/Intel extension: accept multiple .NOT. operators
265 struct AndOperand {
266   using resultType = Expr;
AndOperandFortran::parser::AndOperand267   constexpr AndOperand() {}
268   static inline std::optional<Expr> Parse(ParseState &);
269 };
270 constexpr AndOperand andOperand;
271 
272 // Match a logical operator or, optionally, its abbreviation.
logicalOp(const char * op,const char * abbrev)273 inline constexpr auto logicalOp(const char *op, const char *abbrev) {
274   return TokenStringMatch{op} ||
275       extension<LanguageFeature::LogicalAbbreviations>(
276           TokenStringMatch{abbrev});
277 }
278 
Parse(ParseState & state)279 inline std::optional<Expr> AndOperand::Parse(ParseState &state) {
280   static constexpr auto notOp{attempt(logicalOp(".NOT.", ".N.") >> andOperand)};
281   if (std::optional<Expr> negation{notOp.Parse(state)}) {
282     return Expr{Expr::NOT{std::move(*negation)}};
283   } else {
284     return level4Expr.Parse(state);
285   }
286 }
287 
288 // R1015 or-operand -> [or-operand and-op] and-operand
289 // R1019 and-op -> .AND.
290 // .AND. is left-associative
291 struct OrOperand {
292   using resultType = Expr;
OrOperandFortran::parser::OrOperand293   constexpr OrOperand() {}
ParseFortran::parser::OrOperand294   static inline std::optional<Expr> Parse(ParseState &state) {
295     static constexpr auto operand{sourced(andOperand)};
296     std::optional<Expr> result{operand.Parse(state)};
297     if (result) {
298       auto source{result->source};
299       std::function<Expr(Expr &&)> logicalAnd{[&result](Expr &&right) {
300         return Expr{Expr::AND(std::move(result).value(), std::move(right))};
301       }};
302       auto more{attempt(sourced(
303           logicalOp(".AND.", ".A.") >> applyLambda(logicalAnd, andOperand)))};
304       while (std::optional<Expr> next{more.Parse(state)}) {
305         result = std::move(next);
306         result->source.ExtendToCover(source);
307       }
308     }
309     return result;
310   }
311 };
312 constexpr OrOperand orOperand;
313 
314 // R1016 equiv-operand -> [equiv-operand or-op] or-operand
315 // R1020 or-op -> .OR.
316 // .OR. is left-associative
317 struct EquivOperand {
318   using resultType = Expr;
EquivOperandFortran::parser::EquivOperand319   constexpr EquivOperand() {}
ParseFortran::parser::EquivOperand320   static inline std::optional<Expr> Parse(ParseState &state) {
321     std::optional<Expr> result{orOperand.Parse(state)};
322     if (result) {
323       auto source{result->source};
324       std::function<Expr(Expr &&)> logicalOr{[&result](Expr &&right) {
325         return Expr{Expr::OR(std::move(result).value(), std::move(right))};
326       }};
327       auto more{attempt(sourced(
328           logicalOp(".OR.", ".O.") >> applyLambda(logicalOr, orOperand)))};
329       while (std::optional<Expr> next{more.Parse(state)}) {
330         result = std::move(next);
331         result->source.ExtendToCover(source);
332       }
333     }
334     return result;
335   }
336 };
337 constexpr EquivOperand equivOperand;
338 
339 // R1017 level-5-expr -> [level-5-expr equiv-op] equiv-operand
340 // R1021 equiv-op -> .EQV. | .NEQV.
341 // Logical equivalence is left-associative.
342 // Extension: .XOR. as synonym for .NEQV.
343 struct Level5Expr {
344   using resultType = Expr;
Level5ExprFortran::parser::Level5Expr345   constexpr Level5Expr() {}
ParseFortran::parser::Level5Expr346   static inline std::optional<Expr> Parse(ParseState &state) {
347     std::optional<Expr> result{equivOperand.Parse(state)};
348     if (result) {
349       auto source{result->source};
350       std::function<Expr(Expr &&)> eqv{[&result](Expr &&right) {
351         return Expr{Expr::EQV(std::move(result).value(), std::move(right))};
352       }};
353       std::function<Expr(Expr &&)> neqv{[&result](Expr &&right) {
354         return Expr{Expr::NEQV(std::move(result).value(), std::move(right))};
355       }};
356       auto more{attempt(sourced(".EQV." >> applyLambda(eqv, equivOperand) ||
357           (".NEQV."_tok ||
358               extension<LanguageFeature::XOROperator>(
359                   logicalOp(".XOR.", ".X."))) >>
360               applyLambda(neqv, equivOperand)))};
361       while (std::optional<Expr> next{more.Parse(state)}) {
362         result = std::move(next);
363         result->source.ExtendToCover(source);
364       }
365     }
366     return result;
367   }
368 };
369 constexpr Level5Expr level5Expr;
370 
371 // R1022 expr -> [expr defined-binary-op] level-5-expr
372 // Defined binary operators associate leftwards.
Parse(ParseState & state)373 template <> std::optional<Expr> Parser<Expr>::Parse(ParseState &state) {
374   std::optional<Expr> result{level5Expr.Parse(state)};
375   if (result) {
376     auto source{result->source};
377     std::function<Expr(DefinedOpName &&, Expr &&)> defBinOp{
378         [&result](DefinedOpName &&op, Expr &&right) {
379           return Expr{Expr::DefinedBinary(
380               std::move(op), std::move(result).value(), std::move(right))};
381         }};
382     auto more{attempt(
383         sourced(applyLambda<Expr>(defBinOp, definedOpName, level5Expr)))};
384     while (std::optional<Expr> next{more.Parse(state)}) {
385       result = std::move(next);
386       result->source.ExtendToCover(source);
387     }
388   }
389   return result;
390 }
391 
392 // R1003 defined-unary-op -> . letter [letter]... .
393 // R1023 defined-binary-op -> . letter [letter]... .
394 // R1414 local-defined-operator -> defined-unary-op | defined-binary-op
395 // R1415 use-defined-operator -> defined-unary-op | defined-binary-op
396 // C1003 A defined operator must be distinct from logical literal constants
397 // and intrinsic operator names; this is handled by attempting their parses
398 // first, and by name resolution on their definitions, for best errors.
399 // N.B. The name of the operator is captured with the dots around it.
400 constexpr auto definedOpNameChar{
401     letter || extension<LanguageFeature::PunctuationInNames>("$@"_ch)};
402 TYPE_PARSER(
403     space >> construct<DefinedOpName>(sourced("."_ch >>
404                  some(definedOpNameChar) >> construct<Name>() / "."_ch)))
405 
406 // R1028 specification-expr -> scalar-int-expr
407 TYPE_PARSER(construct<SpecificationExpr>(scalarIntExpr))
408 
409 // R1032 assignment-stmt -> variable = expr
410 TYPE_CONTEXT_PARSER("assignment statement"_en_US,
411     construct<AssignmentStmt>(variable / "=", expr))
412 
413 // R1033 pointer-assignment-stmt ->
414 //         data-pointer-object [( bounds-spec-list )] => data-target |
415 //         data-pointer-object ( bounds-remapping-list ) => data-target |
416 //         proc-pointer-object => proc-target
417 // R1034 data-pointer-object ->
418 //         variable-name | scalar-variable % data-pointer-component-name
419 //   C1022 a scalar-variable shall be a data-ref
420 //   C1024 a data-pointer-object shall not be a coindexed object
421 // R1038 proc-pointer-object -> proc-pointer-name | proc-component-ref
422 //
423 // A distinction can't be made at the time of the initial parse between
424 // data-pointer-object and proc-pointer-object, or between data-target
425 // and proc-target.
426 TYPE_CONTEXT_PARSER("pointer assignment statement"_en_US,
427     construct<PointerAssignmentStmt>(dataRef,
428         parenthesized(nonemptyList(Parser<BoundsRemapping>{})), "=>" >> expr) ||
429         construct<PointerAssignmentStmt>(dataRef,
430             defaulted(parenthesized(nonemptyList(Parser<BoundsSpec>{}))),
431             "=>" >> expr))
432 
433 // R1035 bounds-spec -> lower-bound-expr :
434 TYPE_PARSER(construct<BoundsSpec>(boundExpr / ":"))
435 
436 // R1036 bounds-remapping -> lower-bound-expr : upper-bound-expr
437 TYPE_PARSER(construct<BoundsRemapping>(boundExpr / ":", boundExpr))
438 
439 // R1039 proc-component-ref -> scalar-variable % procedure-component-name
440 //   C1027 the scalar-variable must be a data-ref without coindices.
441 TYPE_PARSER(construct<ProcComponentRef>(structureComponent))
442 
443 // R1041 where-stmt -> WHERE ( mask-expr ) where-assignment-stmt
444 // R1045 where-assignment-stmt -> assignment-stmt
445 // R1046 mask-expr -> logical-expr
446 TYPE_CONTEXT_PARSER("WHERE statement"_en_US,
447     construct<WhereStmt>("WHERE" >> parenthesized(logicalExpr), assignmentStmt))
448 
449 // R1042 where-construct ->
450 //         where-construct-stmt [where-body-construct]...
451 //         [masked-elsewhere-stmt [where-body-construct]...]...
452 //         [elsewhere-stmt [where-body-construct]...] end-where-stmt
453 TYPE_CONTEXT_PARSER("WHERE construct"_en_US,
454     construct<WhereConstruct>(statement(Parser<WhereConstructStmt>{}),
455         many(whereBodyConstruct),
456         many(construct<WhereConstruct::MaskedElsewhere>(
457             statement(Parser<MaskedElsewhereStmt>{}),
458             many(whereBodyConstruct))),
459         maybe(construct<WhereConstruct::Elsewhere>(
460             statement(Parser<ElsewhereStmt>{}), many(whereBodyConstruct))),
461         statement(Parser<EndWhereStmt>{})))
462 
463 // R1043 where-construct-stmt -> [where-construct-name :] WHERE ( mask-expr )
464 TYPE_CONTEXT_PARSER("WHERE construct statement"_en_US,
465     construct<WhereConstructStmt>(
466         maybe(name / ":"), "WHERE" >> parenthesized(logicalExpr)))
467 
468 // R1044 where-body-construct ->
469 //         where-assignment-stmt | where-stmt | where-construct
470 TYPE_PARSER(construct<WhereBodyConstruct>(statement(assignmentStmt)) ||
471     construct<WhereBodyConstruct>(statement(whereStmt)) ||
472     construct<WhereBodyConstruct>(indirect(whereConstruct)))
473 
474 // R1047 masked-elsewhere-stmt ->
475 //         ELSEWHERE ( mask-expr ) [where-construct-name]
476 TYPE_CONTEXT_PARSER("masked ELSEWHERE statement"_en_US,
477     construct<MaskedElsewhereStmt>(
478         "ELSE WHERE" >> parenthesized(logicalExpr), maybe(name)))
479 
480 // R1048 elsewhere-stmt -> ELSEWHERE [where-construct-name]
481 TYPE_CONTEXT_PARSER("ELSEWHERE statement"_en_US,
482     construct<ElsewhereStmt>("ELSE WHERE" >> maybe(name)))
483 
484 // R1049 end-where-stmt -> ENDWHERE [where-construct-name]
485 TYPE_CONTEXT_PARSER("END WHERE statement"_en_US,
486     construct<EndWhereStmt>(
487         recovery("END WHERE" >> maybe(name), endStmtErrorRecovery)))
488 
489 // R1050 forall-construct ->
490 //         forall-construct-stmt [forall-body-construct]... end-forall-stmt
491 TYPE_CONTEXT_PARSER("FORALL construct"_en_US,
492     construct<ForallConstruct>(statement(Parser<ForallConstructStmt>{}),
493         many(Parser<ForallBodyConstruct>{}),
494         statement(Parser<EndForallStmt>{})))
495 
496 // R1051 forall-construct-stmt ->
497 //         [forall-construct-name :] FORALL concurrent-header
498 TYPE_CONTEXT_PARSER("FORALL construct statement"_en_US,
499     construct<ForallConstructStmt>(
500         maybe(name / ":"), "FORALL" >> indirect(concurrentHeader)))
501 
502 // R1052 forall-body-construct ->
503 //         forall-assignment-stmt | where-stmt | where-construct |
504 //         forall-construct | forall-stmt
505 TYPE_PARSER(construct<ForallBodyConstruct>(statement(forallAssignmentStmt)) ||
506     construct<ForallBodyConstruct>(statement(whereStmt)) ||
507     construct<ForallBodyConstruct>(whereConstruct) ||
508     construct<ForallBodyConstruct>(indirect(forallConstruct)) ||
509     construct<ForallBodyConstruct>(statement(forallStmt)))
510 
511 // R1053 forall-assignment-stmt -> assignment-stmt | pointer-assignment-stmt
512 TYPE_PARSER(construct<ForallAssignmentStmt>(assignmentStmt) ||
513     construct<ForallAssignmentStmt>(pointerAssignmentStmt))
514 
515 // R1054 end-forall-stmt -> END FORALL [forall-construct-name]
516 TYPE_CONTEXT_PARSER("END FORALL statement"_en_US,
517     construct<EndForallStmt>(
518         recovery("END FORALL" >> maybe(name), endStmtErrorRecovery)))
519 
520 // R1055 forall-stmt -> FORALL concurrent-header forall-assignment-stmt
521 TYPE_CONTEXT_PARSER("FORALL statement"_en_US,
522     construct<ForallStmt>("FORALL" >> indirect(concurrentHeader),
523         unlabeledStatement(forallAssignmentStmt)))
524 } // namespace Fortran::parser
525