1 //===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the RegisterBankInfo class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
13 #include "llvm/ADT/SmallString.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetOpcodes.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 #include <algorithm> // For std::max.
30 
31 #define DEBUG_TYPE "registerbankinfo"
32 
33 using namespace llvm;
34 
35 STATISTIC(NumPartialMappingsCreated,
36           "Number of partial mappings dynamically created");
37 STATISTIC(NumPartialMappingsAccessed,
38           "Number of partial mappings dynamically accessed");
39 STATISTIC(NumValueMappingsCreated,
40           "Number of value mappings dynamically created");
41 STATISTIC(NumValueMappingsAccessed,
42           "Number of value mappings dynamically accessed");
43 STATISTIC(NumOperandsMappingsCreated,
44           "Number of operands mappings dynamically created");
45 STATISTIC(NumOperandsMappingsAccessed,
46           "Number of operands mappings dynamically accessed");
47 STATISTIC(NumInstructionMappingsCreated,
48           "Number of instruction mappings dynamically created");
49 STATISTIC(NumInstructionMappingsAccessed,
50           "Number of instruction mappings dynamically accessed");
51 
52 const unsigned RegisterBankInfo::DefaultMappingID = UINT_MAX;
53 const unsigned RegisterBankInfo::InvalidMappingID = UINT_MAX - 1;
54 
55 //------------------------------------------------------------------------------
56 // RegisterBankInfo implementation.
57 //------------------------------------------------------------------------------
RegisterBankInfo(RegisterBank ** RegBanks,unsigned NumRegBanks)58 RegisterBankInfo::RegisterBankInfo(RegisterBank **RegBanks,
59                                    unsigned NumRegBanks)
60     : RegBanks(RegBanks), NumRegBanks(NumRegBanks) {
61 #ifndef NDEBUG
62   for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
63     assert(RegBanks[Idx] != nullptr && "Invalid RegisterBank");
64     assert(RegBanks[Idx]->isValid() && "RegisterBank should be valid");
65   }
66 #endif // NDEBUG
67 }
68 
verify(const TargetRegisterInfo & TRI) const69 bool RegisterBankInfo::verify(const TargetRegisterInfo &TRI) const {
70 #ifndef NDEBUG
71   for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
72     const RegisterBank &RegBank = getRegBank(Idx);
73     assert(Idx == RegBank.getID() &&
74            "ID does not match the index in the array");
75     LLVM_DEBUG(dbgs() << "Verify " << RegBank << '\n');
76     assert(RegBank.verify(TRI) && "RegBank is invalid");
77   }
78 #endif // NDEBUG
79   return true;
80 }
81 
82 const RegisterBank *
getRegBank(Register Reg,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI) const83 RegisterBankInfo::getRegBank(Register Reg, const MachineRegisterInfo &MRI,
84                              const TargetRegisterInfo &TRI) const {
85   if (Register::isPhysicalRegister(Reg)) {
86     // FIXME: This was probably a copy to a virtual register that does have a
87     // type we could use.
88     return &getRegBankFromRegClass(getMinimalPhysRegClass(Reg, TRI), LLT());
89   }
90 
91   assert(Reg && "NoRegister does not have a register bank");
92   const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
93   if (auto *RB = RegClassOrBank.dyn_cast<const RegisterBank *>())
94     return RB;
95   if (auto *RC = RegClassOrBank.dyn_cast<const TargetRegisterClass *>())
96     return &getRegBankFromRegClass(*RC, MRI.getType(Reg));
97   return nullptr;
98 }
99 
100 const TargetRegisterClass &
getMinimalPhysRegClass(Register Reg,const TargetRegisterInfo & TRI) const101 RegisterBankInfo::getMinimalPhysRegClass(Register Reg,
102                                          const TargetRegisterInfo &TRI) const {
103   assert(Register::isPhysicalRegister(Reg) && "Reg must be a physreg");
104   const auto &RegRCIt = PhysRegMinimalRCs.find(Reg);
105   if (RegRCIt != PhysRegMinimalRCs.end())
106     return *RegRCIt->second;
107   const TargetRegisterClass *PhysRC = TRI.getMinimalPhysRegClass(Reg);
108   PhysRegMinimalRCs[Reg] = PhysRC;
109   return *PhysRC;
110 }
111 
getRegBankFromConstraints(const MachineInstr & MI,unsigned OpIdx,const TargetInstrInfo & TII,const MachineRegisterInfo & MRI) const112 const RegisterBank *RegisterBankInfo::getRegBankFromConstraints(
113     const MachineInstr &MI, unsigned OpIdx, const TargetInstrInfo &TII,
114     const MachineRegisterInfo &MRI) const {
115   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
116 
117   // The mapping of the registers may be available via the
118   // register class constraints.
119   const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, &TII, TRI);
120 
121   if (!RC)
122     return nullptr;
123 
124   Register Reg = MI.getOperand(OpIdx).getReg();
125   const RegisterBank &RegBank = getRegBankFromRegClass(*RC, MRI.getType(Reg));
126   // Sanity check that the target properly implemented getRegBankFromRegClass.
127   assert(RegBank.covers(*RC) &&
128          "The mapping of the register bank does not make sense");
129   return &RegBank;
130 }
131 
constrainGenericRegister(Register Reg,const TargetRegisterClass & RC,MachineRegisterInfo & MRI)132 const TargetRegisterClass *RegisterBankInfo::constrainGenericRegister(
133     Register Reg, const TargetRegisterClass &RC, MachineRegisterInfo &MRI) {
134 
135   // If the register already has a class, fallback to MRI::constrainRegClass.
136   auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
137   if (RegClassOrBank.is<const TargetRegisterClass *>())
138     return MRI.constrainRegClass(Reg, &RC);
139 
140   const RegisterBank *RB = RegClassOrBank.get<const RegisterBank *>();
141   // Otherwise, all we can do is ensure the bank covers the class, and set it.
142   if (RB && !RB->covers(RC))
143     return nullptr;
144 
145   // If nothing was set or the class is simply compatible, set it.
146   MRI.setRegClass(Reg, &RC);
147   return &RC;
148 }
149 
150 /// Check whether or not \p MI should be treated like a copy
151 /// for the mappings.
152 /// Copy like instruction are special for mapping because
153 /// they don't have actual register constraints. Moreover,
154 /// they sometimes have register classes assigned and we can
155 /// just use that instead of failing to provide a generic mapping.
isCopyLike(const MachineInstr & MI)156 static bool isCopyLike(const MachineInstr &MI) {
157   return MI.isCopy() || MI.isPHI() ||
158          MI.getOpcode() == TargetOpcode::REG_SEQUENCE;
159 }
160 
161 const RegisterBankInfo::InstructionMapping &
getInstrMappingImpl(const MachineInstr & MI) const162 RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const {
163   // For copies we want to walk over the operands and try to find one
164   // that has a register bank since the instruction itself will not get
165   // us any constraint.
166   bool IsCopyLike = isCopyLike(MI);
167   // For copy like instruction, only the mapping of the definition
168   // is important. The rest is not constrained.
169   unsigned NumOperandsForMapping = IsCopyLike ? 1 : MI.getNumOperands();
170 
171   const MachineFunction &MF = *MI.getMF();
172   const TargetSubtargetInfo &STI = MF.getSubtarget();
173   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
174   const MachineRegisterInfo &MRI = MF.getRegInfo();
175   // We may need to query the instruction encoding to guess the mapping.
176   const TargetInstrInfo &TII = *STI.getInstrInfo();
177 
178   // Before doing anything complicated check if the mapping is not
179   // directly available.
180   bool CompleteMapping = true;
181 
182   SmallVector<const ValueMapping *, 8> OperandsMapping(NumOperandsForMapping);
183   for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx;
184        ++OpIdx) {
185     const MachineOperand &MO = MI.getOperand(OpIdx);
186     if (!MO.isReg())
187       continue;
188     Register Reg = MO.getReg();
189     if (!Reg)
190       continue;
191     // The register bank of Reg is just a side effect of the current
192     // excution and in particular, there is no reason to believe this
193     // is the best default mapping for the current instruction.  Keep
194     // it as an alternative register bank if we cannot figure out
195     // something.
196     const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
197     // For copy-like instruction, we want to reuse the register bank
198     // that is already set on Reg, if any, since those instructions do
199     // not have any constraints.
200     const RegisterBank *CurRegBank = IsCopyLike ? AltRegBank : nullptr;
201     if (!CurRegBank) {
202       // If this is a target specific instruction, we can deduce
203       // the register bank from the encoding constraints.
204       CurRegBank = getRegBankFromConstraints(MI, OpIdx, TII, MRI);
205       if (!CurRegBank) {
206         // All our attempts failed, give up.
207         CompleteMapping = false;
208 
209         if (!IsCopyLike)
210           // MI does not carry enough information to guess the mapping.
211           return getInvalidInstructionMapping();
212         continue;
213       }
214     }
215 
216     unsigned Size = getSizeInBits(Reg, MRI, TRI);
217     const ValueMapping *ValMapping = &getValueMapping(0, Size, *CurRegBank);
218     if (IsCopyLike) {
219       if (!OperandsMapping[0]) {
220         if (MI.isRegSequence()) {
221           // For reg_sequence, the result size does not match the input.
222           unsigned ResultSize = getSizeInBits(MI.getOperand(0).getReg(),
223                                               MRI, TRI);
224           OperandsMapping[0] = &getValueMapping(0, ResultSize, *CurRegBank);
225         } else {
226           OperandsMapping[0] = ValMapping;
227         }
228       }
229 
230       // The default handling assumes any register bank can be copied to any
231       // other. If this isn't the case, the target should specially deal with
232       // reg_sequence/phi. There may also be unsatisfiable copies.
233       for (; OpIdx != EndIdx; ++OpIdx) {
234         const MachineOperand &MO = MI.getOperand(OpIdx);
235         if (!MO.isReg())
236           continue;
237         Register Reg = MO.getReg();
238         if (!Reg)
239           continue;
240 
241         const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
242         if (AltRegBank &&
243             cannotCopy(*CurRegBank, *AltRegBank, getSizeInBits(Reg, MRI, TRI)))
244           return getInvalidInstructionMapping();
245       }
246 
247       CompleteMapping = true;
248       break;
249     }
250 
251     OperandsMapping[OpIdx] = ValMapping;
252   }
253 
254   if (IsCopyLike && !CompleteMapping) {
255     // No way to deduce the type from what we have.
256     return getInvalidInstructionMapping();
257   }
258 
259   assert(CompleteMapping && "Setting an uncomplete mapping");
260   return getInstructionMapping(
261       DefaultMappingID, /*Cost*/ 1,
262       /*OperandsMapping*/ getOperandsMapping(OperandsMapping),
263       NumOperandsForMapping);
264 }
265 
266 /// Hashing function for PartialMapping.
hashPartialMapping(unsigned StartIdx,unsigned Length,const RegisterBank * RegBank)267 static hash_code hashPartialMapping(unsigned StartIdx, unsigned Length,
268                                     const RegisterBank *RegBank) {
269   return hash_combine(StartIdx, Length, RegBank ? RegBank->getID() : 0);
270 }
271 
272 /// Overloaded version of hash_value for a PartialMapping.
273 hash_code
hash_value(const RegisterBankInfo::PartialMapping & PartMapping)274 llvm::hash_value(const RegisterBankInfo::PartialMapping &PartMapping) {
275   return hashPartialMapping(PartMapping.StartIdx, PartMapping.Length,
276                             PartMapping.RegBank);
277 }
278 
279 const RegisterBankInfo::PartialMapping &
getPartialMapping(unsigned StartIdx,unsigned Length,const RegisterBank & RegBank) const280 RegisterBankInfo::getPartialMapping(unsigned StartIdx, unsigned Length,
281                                     const RegisterBank &RegBank) const {
282   ++NumPartialMappingsAccessed;
283 
284   hash_code Hash = hashPartialMapping(StartIdx, Length, &RegBank);
285   const auto &It = MapOfPartialMappings.find(Hash);
286   if (It != MapOfPartialMappings.end())
287     return *It->second;
288 
289   ++NumPartialMappingsCreated;
290 
291   auto &PartMapping = MapOfPartialMappings[Hash];
292   PartMapping = std::make_unique<PartialMapping>(StartIdx, Length, RegBank);
293   return *PartMapping;
294 }
295 
296 const RegisterBankInfo::ValueMapping &
getValueMapping(unsigned StartIdx,unsigned Length,const RegisterBank & RegBank) const297 RegisterBankInfo::getValueMapping(unsigned StartIdx, unsigned Length,
298                                   const RegisterBank &RegBank) const {
299   return getValueMapping(&getPartialMapping(StartIdx, Length, RegBank), 1);
300 }
301 
302 static hash_code
hashValueMapping(const RegisterBankInfo::PartialMapping * BreakDown,unsigned NumBreakDowns)303 hashValueMapping(const RegisterBankInfo::PartialMapping *BreakDown,
304                  unsigned NumBreakDowns) {
305   if (LLVM_LIKELY(NumBreakDowns == 1))
306     return hash_value(*BreakDown);
307   SmallVector<size_t, 8> Hashes(NumBreakDowns);
308   for (unsigned Idx = 0; Idx != NumBreakDowns; ++Idx)
309     Hashes.push_back(hash_value(BreakDown[Idx]));
310   return hash_combine_range(Hashes.begin(), Hashes.end());
311 }
312 
313 const RegisterBankInfo::ValueMapping &
getValueMapping(const PartialMapping * BreakDown,unsigned NumBreakDowns) const314 RegisterBankInfo::getValueMapping(const PartialMapping *BreakDown,
315                                   unsigned NumBreakDowns) const {
316   ++NumValueMappingsAccessed;
317 
318   hash_code Hash = hashValueMapping(BreakDown, NumBreakDowns);
319   const auto &It = MapOfValueMappings.find(Hash);
320   if (It != MapOfValueMappings.end())
321     return *It->second;
322 
323   ++NumValueMappingsCreated;
324 
325   auto &ValMapping = MapOfValueMappings[Hash];
326   ValMapping = std::make_unique<ValueMapping>(BreakDown, NumBreakDowns);
327   return *ValMapping;
328 }
329 
330 template <typename Iterator>
331 const RegisterBankInfo::ValueMapping *
getOperandsMapping(Iterator Begin,Iterator End) const332 RegisterBankInfo::getOperandsMapping(Iterator Begin, Iterator End) const {
333 
334   ++NumOperandsMappingsAccessed;
335 
336   // The addresses of the value mapping are unique.
337   // Therefore, we can use them directly to hash the operand mapping.
338   hash_code Hash = hash_combine_range(Begin, End);
339   auto &Res = MapOfOperandsMappings[Hash];
340   if (Res)
341     return Res.get();
342 
343   ++NumOperandsMappingsCreated;
344 
345   // Create the array of ValueMapping.
346   // Note: this array will not hash to this instance of operands
347   // mapping, because we use the pointer of the ValueMapping
348   // to hash and we expect them to uniquely identify an instance
349   // of value mapping.
350   Res = std::make_unique<ValueMapping[]>(std::distance(Begin, End));
351   unsigned Idx = 0;
352   for (Iterator It = Begin; It != End; ++It, ++Idx) {
353     const ValueMapping *ValMap = *It;
354     if (!ValMap)
355       continue;
356     Res[Idx] = *ValMap;
357   }
358   return Res.get();
359 }
360 
getOperandsMapping(const SmallVectorImpl<const RegisterBankInfo::ValueMapping * > & OpdsMapping) const361 const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
362     const SmallVectorImpl<const RegisterBankInfo::ValueMapping *> &OpdsMapping)
363     const {
364   return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
365 }
366 
getOperandsMapping(std::initializer_list<const RegisterBankInfo::ValueMapping * > OpdsMapping) const367 const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
368     std::initializer_list<const RegisterBankInfo::ValueMapping *> OpdsMapping)
369     const {
370   return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
371 }
372 
373 static hash_code
hashInstructionMapping(unsigned ID,unsigned Cost,const RegisterBankInfo::ValueMapping * OperandsMapping,unsigned NumOperands)374 hashInstructionMapping(unsigned ID, unsigned Cost,
375                        const RegisterBankInfo::ValueMapping *OperandsMapping,
376                        unsigned NumOperands) {
377   return hash_combine(ID, Cost, OperandsMapping, NumOperands);
378 }
379 
380 const RegisterBankInfo::InstructionMapping &
getInstructionMappingImpl(bool IsInvalid,unsigned ID,unsigned Cost,const RegisterBankInfo::ValueMapping * OperandsMapping,unsigned NumOperands) const381 RegisterBankInfo::getInstructionMappingImpl(
382     bool IsInvalid, unsigned ID, unsigned Cost,
383     const RegisterBankInfo::ValueMapping *OperandsMapping,
384     unsigned NumOperands) const {
385   assert(((IsInvalid && ID == InvalidMappingID && Cost == 0 &&
386            OperandsMapping == nullptr && NumOperands == 0) ||
387           !IsInvalid) &&
388          "Mismatch argument for invalid input");
389   ++NumInstructionMappingsAccessed;
390 
391   hash_code Hash =
392       hashInstructionMapping(ID, Cost, OperandsMapping, NumOperands);
393   const auto &It = MapOfInstructionMappings.find(Hash);
394   if (It != MapOfInstructionMappings.end())
395     return *It->second;
396 
397   ++NumInstructionMappingsCreated;
398 
399   auto &InstrMapping = MapOfInstructionMappings[Hash];
400   InstrMapping = std::make_unique<InstructionMapping>(
401       ID, Cost, OperandsMapping, NumOperands);
402   return *InstrMapping;
403 }
404 
405 const RegisterBankInfo::InstructionMapping &
getInstrMapping(const MachineInstr & MI) const406 RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
407   const RegisterBankInfo::InstructionMapping &Mapping = getInstrMappingImpl(MI);
408   if (Mapping.isValid())
409     return Mapping;
410   llvm_unreachable("The target must implement this");
411 }
412 
413 RegisterBankInfo::InstructionMappings
getInstrPossibleMappings(const MachineInstr & MI) const414 RegisterBankInfo::getInstrPossibleMappings(const MachineInstr &MI) const {
415   InstructionMappings PossibleMappings;
416   const auto &Mapping = getInstrMapping(MI);
417   if (Mapping.isValid()) {
418     // Put the default mapping first.
419     PossibleMappings.push_back(&Mapping);
420   }
421 
422   // Then the alternative mapping, if any.
423   InstructionMappings AltMappings = getInstrAlternativeMappings(MI);
424   append_range(PossibleMappings, AltMappings);
425 #ifndef NDEBUG
426   for (const InstructionMapping *Mapping : PossibleMappings)
427     assert(Mapping->verify(MI) && "Mapping is invalid");
428 #endif
429   return PossibleMappings;
430 }
431 
432 RegisterBankInfo::InstructionMappings
getInstrAlternativeMappings(const MachineInstr & MI) const433 RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const {
434   // No alternative for MI.
435   return InstructionMappings();
436 }
437 
applyDefaultMapping(const OperandsMapper & OpdMapper)438 void RegisterBankInfo::applyDefaultMapping(const OperandsMapper &OpdMapper) {
439   MachineInstr &MI = OpdMapper.getMI();
440   MachineRegisterInfo &MRI = OpdMapper.getMRI();
441   LLVM_DEBUG(dbgs() << "Applying default-like mapping\n");
442   for (unsigned OpIdx = 0,
443                 EndIdx = OpdMapper.getInstrMapping().getNumOperands();
444        OpIdx != EndIdx; ++OpIdx) {
445     LLVM_DEBUG(dbgs() << "OpIdx " << OpIdx);
446     MachineOperand &MO = MI.getOperand(OpIdx);
447     if (!MO.isReg()) {
448       LLVM_DEBUG(dbgs() << " is not a register, nothing to be done\n");
449       continue;
450     }
451     if (!MO.getReg()) {
452       LLVM_DEBUG(dbgs() << " is $noreg, nothing to be done\n");
453       continue;
454     }
455     assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns !=
456                0 &&
457            "Invalid mapping");
458     assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns ==
459                1 &&
460            "This mapping is too complex for this function");
461     iterator_range<SmallVectorImpl<Register>::const_iterator> NewRegs =
462         OpdMapper.getVRegs(OpIdx);
463     if (NewRegs.empty()) {
464       LLVM_DEBUG(dbgs() << " has not been repaired, nothing to be done\n");
465       continue;
466     }
467     Register OrigReg = MO.getReg();
468     Register NewReg = *NewRegs.begin();
469     LLVM_DEBUG(dbgs() << " changed, replace " << printReg(OrigReg, nullptr));
470     MO.setReg(NewReg);
471     LLVM_DEBUG(dbgs() << " with " << printReg(NewReg, nullptr));
472 
473     // The OperandsMapper creates plain scalar, we may have to fix that.
474     // Check if the types match and if not, fix that.
475     LLT OrigTy = MRI.getType(OrigReg);
476     LLT NewTy = MRI.getType(NewReg);
477     if (OrigTy != NewTy) {
478       // The default mapping is not supposed to change the size of
479       // the storage. However, right now we don't necessarily bump all
480       // the types to storage size. For instance, we can consider
481       // s16 G_AND legal whereas the storage size is going to be 32.
482       assert(OrigTy.getSizeInBits() <= NewTy.getSizeInBits() &&
483              "Types with difference size cannot be handled by the default "
484              "mapping");
485       LLVM_DEBUG(dbgs() << "\nChange type of new opd from " << NewTy << " to "
486                         << OrigTy);
487       MRI.setType(NewReg, OrigTy);
488     }
489     LLVM_DEBUG(dbgs() << '\n');
490   }
491 }
492 
getSizeInBits(Register Reg,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI) const493 unsigned RegisterBankInfo::getSizeInBits(Register Reg,
494                                          const MachineRegisterInfo &MRI,
495                                          const TargetRegisterInfo &TRI) const {
496   if (Register::isPhysicalRegister(Reg)) {
497     // The size is not directly available for physical registers.
498     // Instead, we need to access a register class that contains Reg and
499     // get the size of that register class.
500     // Because this is expensive, we'll cache the register class by calling
501     auto *RC = &getMinimalPhysRegClass(Reg, TRI);
502     assert(RC && "Expecting Register class");
503     return TRI.getRegSizeInBits(*RC);
504   }
505   return TRI.getRegSizeInBits(Reg, MRI);
506 }
507 
508 //------------------------------------------------------------------------------
509 // Helper classes implementation.
510 //------------------------------------------------------------------------------
511 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const512 LLVM_DUMP_METHOD void RegisterBankInfo::PartialMapping::dump() const {
513   print(dbgs());
514   dbgs() << '\n';
515 }
516 #endif
517 
verify() const518 bool RegisterBankInfo::PartialMapping::verify() const {
519   assert(RegBank && "Register bank not set");
520   assert(Length && "Empty mapping");
521   assert((StartIdx <= getHighBitIdx()) && "Overflow, switch to APInt?");
522   // Check if the minimum width fits into RegBank.
523   assert(RegBank->getSize() >= Length && "Register bank too small for Mask");
524   return true;
525 }
526 
print(raw_ostream & OS) const527 void RegisterBankInfo::PartialMapping::print(raw_ostream &OS) const {
528   OS << "[" << StartIdx << ", " << getHighBitIdx() << "], RegBank = ";
529   if (RegBank)
530     OS << *RegBank;
531   else
532     OS << "nullptr";
533 }
534 
partsAllUniform() const535 bool RegisterBankInfo::ValueMapping::partsAllUniform() const {
536   if (NumBreakDowns < 2)
537     return true;
538 
539   const PartialMapping *First = begin();
540   for (const PartialMapping *Part = First + 1; Part != end(); ++Part) {
541     if (Part->Length != First->Length || Part->RegBank != First->RegBank)
542       return false;
543   }
544 
545   return true;
546 }
547 
verify(unsigned MeaningfulBitWidth) const548 bool RegisterBankInfo::ValueMapping::verify(unsigned MeaningfulBitWidth) const {
549   assert(NumBreakDowns && "Value mapped nowhere?!");
550   unsigned OrigValueBitWidth = 0;
551   for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
552     // Check that each register bank is big enough to hold the partial value:
553     // this check is done by PartialMapping::verify
554     assert(PartMap.verify() && "Partial mapping is invalid");
555     // The original value should completely be mapped.
556     // Thus the maximum accessed index + 1 is the size of the original value.
557     OrigValueBitWidth =
558         std::max(OrigValueBitWidth, PartMap.getHighBitIdx() + 1);
559   }
560   assert(OrigValueBitWidth >= MeaningfulBitWidth &&
561          "Meaningful bits not covered by the mapping");
562   APInt ValueMask(OrigValueBitWidth, 0);
563   for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
564     // Check that the union of the partial mappings covers the whole value,
565     // without overlaps.
566     // The high bit is exclusive in the APInt API, thus getHighBitIdx + 1.
567     APInt PartMapMask = APInt::getBitsSet(OrigValueBitWidth, PartMap.StartIdx,
568                                           PartMap.getHighBitIdx() + 1);
569     ValueMask ^= PartMapMask;
570     assert((ValueMask & PartMapMask) == PartMapMask &&
571            "Some partial mappings overlap");
572   }
573   assert(ValueMask.isAllOnesValue() && "Value is not fully mapped");
574   return true;
575 }
576 
577 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const578 LLVM_DUMP_METHOD void RegisterBankInfo::ValueMapping::dump() const {
579   print(dbgs());
580   dbgs() << '\n';
581 }
582 #endif
583 
print(raw_ostream & OS) const584 void RegisterBankInfo::ValueMapping::print(raw_ostream &OS) const {
585   OS << "#BreakDown: " << NumBreakDowns << " ";
586   bool IsFirst = true;
587   for (const PartialMapping &PartMap : *this) {
588     if (!IsFirst)
589       OS << ", ";
590     OS << '[' << PartMap << ']';
591     IsFirst = false;
592   }
593 }
594 
verify(const MachineInstr & MI) const595 bool RegisterBankInfo::InstructionMapping::verify(
596     const MachineInstr &MI) const {
597   // Check that all the register operands are properly mapped.
598   // Check the constructor invariant.
599   // For PHI, we only care about mapping the definition.
600   assert(NumOperands == (isCopyLike(MI) ? 1 : MI.getNumOperands()) &&
601          "NumOperands must match, see constructor");
602   assert(MI.getParent() && MI.getMF() &&
603          "MI must be connected to a MachineFunction");
604   const MachineFunction &MF = *MI.getMF();
605   const RegisterBankInfo *RBI = MF.getSubtarget().getRegBankInfo();
606   (void)RBI;
607 
608   for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
609     const MachineOperand &MO = MI.getOperand(Idx);
610     if (!MO.isReg()) {
611       assert(!getOperandMapping(Idx).isValid() &&
612              "We should not care about non-reg mapping");
613       continue;
614     }
615     Register Reg = MO.getReg();
616     if (!Reg)
617       continue;
618     assert(getOperandMapping(Idx).isValid() &&
619            "We must have a mapping for reg operands");
620     const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx);
621     (void)MOMapping;
622     // Register size in bits.
623     // This size must match what the mapping expects.
624     assert(MOMapping.verify(RBI->getSizeInBits(
625                Reg, MF.getRegInfo(), *MF.getSubtarget().getRegisterInfo())) &&
626            "Value mapping is invalid");
627   }
628   return true;
629 }
630 
631 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const632 LLVM_DUMP_METHOD void RegisterBankInfo::InstructionMapping::dump() const {
633   print(dbgs());
634   dbgs() << '\n';
635 }
636 #endif
637 
print(raw_ostream & OS) const638 void RegisterBankInfo::InstructionMapping::print(raw_ostream &OS) const {
639   OS << "ID: " << getID() << " Cost: " << getCost() << " Mapping: ";
640 
641   for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
642     const ValueMapping &ValMapping = getOperandMapping(OpIdx);
643     if (OpIdx)
644       OS << ", ";
645     OS << "{ Idx: " << OpIdx << " Map: " << ValMapping << '}';
646   }
647 }
648 
649 const int RegisterBankInfo::OperandsMapper::DontKnowIdx = -1;
650 
OperandsMapper(MachineInstr & MI,const InstructionMapping & InstrMapping,MachineRegisterInfo & MRI)651 RegisterBankInfo::OperandsMapper::OperandsMapper(
652     MachineInstr &MI, const InstructionMapping &InstrMapping,
653     MachineRegisterInfo &MRI)
654     : MRI(MRI), MI(MI), InstrMapping(InstrMapping) {
655   unsigned NumOpds = InstrMapping.getNumOperands();
656   OpToNewVRegIdx.resize(NumOpds, OperandsMapper::DontKnowIdx);
657   assert(InstrMapping.verify(MI) && "Invalid mapping for MI");
658 }
659 
660 iterator_range<SmallVectorImpl<Register>::iterator>
getVRegsMem(unsigned OpIdx)661 RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx) {
662   assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
663   unsigned NumPartialVal =
664       getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
665   int StartIdx = OpToNewVRegIdx[OpIdx];
666 
667   if (StartIdx == OperandsMapper::DontKnowIdx) {
668     // This is the first time we try to access OpIdx.
669     // Create the cells that will hold all the partial values at the
670     // end of the list of NewVReg.
671     StartIdx = NewVRegs.size();
672     OpToNewVRegIdx[OpIdx] = StartIdx;
673     for (unsigned i = 0; i < NumPartialVal; ++i)
674       NewVRegs.push_back(0);
675   }
676   SmallVectorImpl<Register>::iterator End =
677       getNewVRegsEnd(StartIdx, NumPartialVal);
678 
679   return make_range(&NewVRegs[StartIdx], End);
680 }
681 
682 SmallVectorImpl<Register>::const_iterator
getNewVRegsEnd(unsigned StartIdx,unsigned NumVal) const683 RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
684                                                  unsigned NumVal) const {
685   return const_cast<OperandsMapper *>(this)->getNewVRegsEnd(StartIdx, NumVal);
686 }
687 SmallVectorImpl<Register>::iterator
getNewVRegsEnd(unsigned StartIdx,unsigned NumVal)688 RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
689                                                  unsigned NumVal) {
690   assert((NewVRegs.size() == StartIdx + NumVal ||
691           NewVRegs.size() > StartIdx + NumVal) &&
692          "NewVRegs too small to contain all the partial mapping");
693   return NewVRegs.size() <= StartIdx + NumVal ? NewVRegs.end()
694                                               : &NewVRegs[StartIdx + NumVal];
695 }
696 
createVRegs(unsigned OpIdx)697 void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx) {
698   assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
699   iterator_range<SmallVectorImpl<Register>::iterator> NewVRegsForOpIdx =
700       getVRegsMem(OpIdx);
701   const ValueMapping &ValMapping = getInstrMapping().getOperandMapping(OpIdx);
702   const PartialMapping *PartMap = ValMapping.begin();
703   for (Register &NewVReg : NewVRegsForOpIdx) {
704     assert(PartMap != ValMapping.end() && "Out-of-bound access");
705     assert(NewVReg == 0 && "Register has already been created");
706     // The new registers are always bound to scalar with the right size.
707     // The actual type has to be set when the target does the mapping
708     // of the instruction.
709     // The rationale is that this generic code cannot guess how the
710     // target plans to split the input type.
711     NewVReg = MRI.createGenericVirtualRegister(LLT::scalar(PartMap->Length));
712     MRI.setRegBank(NewVReg, *PartMap->RegBank);
713     ++PartMap;
714   }
715 }
716 
setVRegs(unsigned OpIdx,unsigned PartialMapIdx,Register NewVReg)717 void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx,
718                                                 unsigned PartialMapIdx,
719                                                 Register NewVReg) {
720   assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
721   assert(getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns >
722              PartialMapIdx &&
723          "Out-of-bound access for partial mapping");
724   // Make sure the memory is initialized for that operand.
725   (void)getVRegsMem(OpIdx);
726   assert(NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] == 0 &&
727          "This value is already set");
728   NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] = NewVReg;
729 }
730 
731 iterator_range<SmallVectorImpl<Register>::const_iterator>
getVRegs(unsigned OpIdx,bool ForDebug) const732 RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx,
733                                            bool ForDebug) const {
734   (void)ForDebug;
735   assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
736   int StartIdx = OpToNewVRegIdx[OpIdx];
737 
738   if (StartIdx == OperandsMapper::DontKnowIdx)
739     return make_range(NewVRegs.end(), NewVRegs.end());
740 
741   unsigned PartMapSize =
742       getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
743   SmallVectorImpl<Register>::const_iterator End =
744       getNewVRegsEnd(StartIdx, PartMapSize);
745   iterator_range<SmallVectorImpl<Register>::const_iterator> Res =
746       make_range(&NewVRegs[StartIdx], End);
747 #ifndef NDEBUG
748   for (Register VReg : Res)
749     assert((VReg || ForDebug) && "Some registers are uninitialized");
750 #endif
751   return Res;
752 }
753 
754 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const755 LLVM_DUMP_METHOD void RegisterBankInfo::OperandsMapper::dump() const {
756   print(dbgs(), true);
757   dbgs() << '\n';
758 }
759 #endif
760 
print(raw_ostream & OS,bool ForDebug) const761 void RegisterBankInfo::OperandsMapper::print(raw_ostream &OS,
762                                              bool ForDebug) const {
763   unsigned NumOpds = getInstrMapping().getNumOperands();
764   if (ForDebug) {
765     OS << "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n';
766     // Print out the internal state of the index table.
767     OS << "Populated indices (CellNumber, IndexInNewVRegs): ";
768     bool IsFirst = true;
769     for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
770       if (OpToNewVRegIdx[Idx] != DontKnowIdx) {
771         if (!IsFirst)
772           OS << ", ";
773         OS << '(' << Idx << ", " << OpToNewVRegIdx[Idx] << ')';
774         IsFirst = false;
775       }
776     }
777     OS << '\n';
778   } else
779     OS << "Mapping ID: " << getInstrMapping().getID() << ' ';
780 
781   OS << "Operand Mapping: ";
782   // If we have a function, we can pretty print the name of the registers.
783   // Otherwise we will print the raw numbers.
784   const TargetRegisterInfo *TRI =
785       getMI().getParent() && getMI().getMF()
786           ? getMI().getMF()->getSubtarget().getRegisterInfo()
787           : nullptr;
788   bool IsFirst = true;
789   for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
790     if (OpToNewVRegIdx[Idx] == DontKnowIdx)
791       continue;
792     if (!IsFirst)
793       OS << ", ";
794     IsFirst = false;
795     OS << '(' << printReg(getMI().getOperand(Idx).getReg(), TRI) << ", [";
796     bool IsFirstNewVReg = true;
797     for (Register VReg : getVRegs(Idx)) {
798       if (!IsFirstNewVReg)
799         OS << ", ";
800       IsFirstNewVReg = false;
801       OS << printReg(VReg, TRI);
802     }
803     OS << "])";
804   }
805 }
806