1 //===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86SelectionDAGInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "X86SelectionDAGInfo.h"
14 #include "X86ISelLowering.h"
15 #include "X86InstrInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DerivedTypes.h"
22
23 using namespace llvm;
24
25 #define DEBUG_TYPE "x86-selectiondag-info"
26
27 static cl::opt<bool>
28 UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false),
29 cl::desc("Use fast short rep mov in memcpy lowering"));
30
isBaseRegConflictPossible(SelectionDAG & DAG,ArrayRef<MCPhysReg> ClobberSet) const31 bool X86SelectionDAGInfo::isBaseRegConflictPossible(
32 SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
33 // We cannot use TRI->hasBasePointer() until *after* we select all basic
34 // blocks. Legalization may introduce new stack temporaries with large
35 // alignment requirements. Fall back to generic code if there are any
36 // dynamic stack adjustments (hopefully rare) and the base pointer would
37 // conflict if we had to use it.
38 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
39 if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
40 return false;
41
42 const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
43 DAG.getSubtarget().getRegisterInfo());
44 return llvm::is_contained(ClobberSet, TRI->getBaseRegister());
45 }
46
EmitTargetCodeForMemset(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Val,SDValue Size,Align Alignment,bool isVolatile,MachinePointerInfo DstPtrInfo) const47 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
48 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
49 SDValue Size, Align Alignment, bool isVolatile,
50 MachinePointerInfo DstPtrInfo) const {
51 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
52 const X86Subtarget &Subtarget =
53 DAG.getMachineFunction().getSubtarget<X86Subtarget>();
54
55 #ifndef NDEBUG
56 // If the base register might conflict with our physical registers, bail out.
57 const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
58 X86::ECX, X86::EAX, X86::EDI};
59 assert(!isBaseRegConflictPossible(DAG, ClobberSet));
60 #endif
61
62 // If to a segment-relative address space, use the default lowering.
63 if (DstPtrInfo.getAddrSpace() >= 256)
64 return SDValue();
65
66 // If not DWORD aligned or size is more than the threshold, call the library.
67 // The libc version is likely to be faster for these cases. It can use the
68 // address value and run time information about the CPU.
69 if (Alignment < Align(4) || !ConstantSize ||
70 ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) {
71 // Check to see if there is a specialized entry-point for memory zeroing.
72 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
73
74 if (const char *bzeroName = (ValC && ValC->isNullValue())
75 ? DAG.getTargetLoweringInfo().getLibcallName(RTLIB::BZERO)
76 : nullptr) {
77 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
78 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
79 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
80 TargetLowering::ArgListTy Args;
81 TargetLowering::ArgListEntry Entry;
82 Entry.Node = Dst;
83 Entry.Ty = IntPtrTy;
84 Args.push_back(Entry);
85 Entry.Node = Size;
86 Args.push_back(Entry);
87
88 TargetLowering::CallLoweringInfo CLI(DAG);
89 CLI.setDebugLoc(dl)
90 .setChain(Chain)
91 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
92 DAG.getExternalSymbol(bzeroName, IntPtr),
93 std::move(Args))
94 .setDiscardResult();
95
96 std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
97 return CallResult.second;
98 }
99
100 // Otherwise have the target-independent code call memset.
101 return SDValue();
102 }
103
104 uint64_t SizeVal = ConstantSize->getZExtValue();
105 SDValue InFlag;
106 EVT AVT;
107 SDValue Count;
108 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
109 unsigned BytesLeft = 0;
110 if (ValC) {
111 unsigned ValReg;
112 uint64_t Val = ValC->getZExtValue() & 255;
113
114 // If the value is a constant, then we can potentially use larger sets.
115 if (Alignment > Align(2)) {
116 // DWORD aligned
117 AVT = MVT::i32;
118 ValReg = X86::EAX;
119 Val = (Val << 8) | Val;
120 Val = (Val << 16) | Val;
121 if (Subtarget.is64Bit() && Alignment > Align(8)) { // QWORD aligned
122 AVT = MVT::i64;
123 ValReg = X86::RAX;
124 Val = (Val << 32) | Val;
125 }
126 } else if (Alignment == Align(2)) {
127 // WORD aligned
128 AVT = MVT::i16;
129 ValReg = X86::AX;
130 Val = (Val << 8) | Val;
131 } else {
132 // Byte aligned
133 AVT = MVT::i8;
134 ValReg = X86::AL;
135 Count = DAG.getIntPtrConstant(SizeVal, dl);
136 }
137
138 if (AVT.bitsGT(MVT::i8)) {
139 unsigned UBytes = AVT.getSizeInBits() / 8;
140 Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl);
141 BytesLeft = SizeVal % UBytes;
142 }
143
144 Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT),
145 InFlag);
146 InFlag = Chain.getValue(1);
147 } else {
148 AVT = MVT::i8;
149 Count = DAG.getIntPtrConstant(SizeVal, dl);
150 Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag);
151 InFlag = Chain.getValue(1);
152 }
153
154 bool Use64BitRegs = Subtarget.isTarget64BitLP64();
155 Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
156 Count, InFlag);
157 InFlag = Chain.getValue(1);
158 Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
159 Dst, InFlag);
160 InFlag = Chain.getValue(1);
161
162 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
163 SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
164 Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
165
166 if (BytesLeft) {
167 // Handle the last 1 - 7 bytes.
168 unsigned Offset = SizeVal - BytesLeft;
169 EVT AddrVT = Dst.getValueType();
170 EVT SizeVT = Size.getValueType();
171
172 Chain =
173 DAG.getMemset(Chain, dl,
174 DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
175 DAG.getConstant(Offset, dl, AddrVT)),
176 Val, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment,
177 isVolatile, false, DstPtrInfo.getWithOffset(Offset));
178 }
179
180 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
181 return Chain;
182 }
183
184 /// Emit a single REP MOVS{B,W,D,Q} instruction.
emitRepmovs(const X86Subtarget & Subtarget,SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,SDValue Size,MVT AVT)185 static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG,
186 const SDLoc &dl, SDValue Chain, SDValue Dst,
187 SDValue Src, SDValue Size, MVT AVT) {
188 const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
189 const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
190 const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
191 const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI;
192
193 SDValue InFlag;
194 Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InFlag);
195 InFlag = Chain.getValue(1);
196 Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InFlag);
197 InFlag = Chain.getValue(1);
198 Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InFlag);
199 InFlag = Chain.getValue(1);
200
201 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
202 SDValue Ops[] = {Chain, DAG.getValueType(AVT), InFlag};
203 return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
204 }
205
206 /// Emit a single REP MOVSB instruction for a particular constant size.
emitRepmovsB(const X86Subtarget & Subtarget,SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size)207 static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
208 const SDLoc &dl, SDValue Chain, SDValue Dst,
209 SDValue Src, uint64_t Size) {
210 return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
211 DAG.getIntPtrConstant(Size, dl), MVT::i8);
212 }
213
214 /// Returns the best type to use with repmovs depending on alignment.
getOptimalRepmovsType(const X86Subtarget & Subtarget,uint64_t Align)215 static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget,
216 uint64_t Align) {
217 assert((Align != 0) && "Align is normalized");
218 assert(isPowerOf2_64(Align) && "Align is a power of 2");
219 switch (Align) {
220 case 1:
221 return MVT::i8;
222 case 2:
223 return MVT::i16;
224 case 4:
225 return MVT::i32;
226 default:
227 return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
228 }
229 }
230
231 /// Returns a REP MOVS instruction, possibly with a few load/stores to implement
232 /// a constant size memory copy. In some cases where we know REP MOVS is
233 /// inefficient we return an empty SDValue so the calling code can either
234 /// generate a load/store sequence or call the runtime memcpy function.
emitConstantSizeRepmov(SelectionDAG & DAG,const X86Subtarget & Subtarget,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,EVT SizeVT,unsigned Align,bool isVolatile,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)235 static SDValue emitConstantSizeRepmov(
236 SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl,
237 SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT,
238 unsigned Align, bool isVolatile, bool AlwaysInline,
239 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) {
240
241 /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very
242 /// efficient.
243 if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold())
244 return SDValue();
245
246 /// If we have enhanced repmovs we use it.
247 if (Subtarget.hasERMSB())
248 return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
249
250 assert(!Subtarget.hasERMSB() && "No efficient RepMovs");
251 /// We assume runtime memcpy will do a better job for unaligned copies when
252 /// ERMS is not present.
253 if (!AlwaysInline && (Align & 3) != 0)
254 return SDValue();
255
256 const MVT BlockType = getOptimalRepmovsType(Subtarget, Align);
257 const uint64_t BlockBytes = BlockType.getSizeInBits() / 8;
258 const uint64_t BlockCount = Size / BlockBytes;
259 const uint64_t BytesLeft = Size % BlockBytes;
260 SDValue RepMovs =
261 emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
262 DAG.getIntPtrConstant(BlockCount, dl), BlockType);
263
264 /// RepMov can process the whole length.
265 if (BytesLeft == 0)
266 return RepMovs;
267
268 assert(BytesLeft && "We have leftover at this point");
269
270 /// In case we optimize for size we use repmovsb even if it's less efficient
271 /// so we can save the loads/stores of the leftover.
272 if (DAG.getMachineFunction().getFunction().hasMinSize())
273 return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
274
275 // Handle the last 1 - 7 bytes.
276 SmallVector<SDValue, 4> Results;
277 Results.push_back(RepMovs);
278 unsigned Offset = Size - BytesLeft;
279 EVT DstVT = Dst.getValueType();
280 EVT SrcVT = Src.getValueType();
281 Results.push_back(DAG.getMemcpy(
282 Chain, dl,
283 DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)),
284 DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)),
285 DAG.getConstant(BytesLeft, dl, SizeVT), llvm::Align(Align), isVolatile,
286 /*AlwaysInline*/ true, /*isTailCall*/ false,
287 DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset)));
288 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
289 }
290
EmitTargetCodeForMemcpy(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,SDValue Size,Align Alignment,bool isVolatile,bool AlwaysInline,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo) const291 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
292 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
293 SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
294 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
295 // If to a segment-relative address space, use the default lowering.
296 if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256)
297 return SDValue();
298
299 // If the base registers conflict with our physical registers, use the default
300 // lowering.
301 const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
302 X86::ECX, X86::ESI, X86::EDI};
303 if (isBaseRegConflictPossible(DAG, ClobberSet))
304 return SDValue();
305
306 const X86Subtarget &Subtarget =
307 DAG.getMachineFunction().getSubtarget<X86Subtarget>();
308
309 // If enabled and available, use fast short rep mov.
310 if (UseFSRMForMemcpy && Subtarget.hasFSRM())
311 return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8);
312
313 /// Handle constant sizes,
314 if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size))
315 return emitConstantSizeRepmov(
316 DAG, Subtarget, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
317 Size.getValueType(), Alignment.value(), isVolatile, AlwaysInline,
318 DstPtrInfo, SrcPtrInfo);
319
320 return SDValue();
321 }
322