1 //===- DFAEmitter.cpp - Finite state automaton emitter --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This class can produce a generic deterministic finite state automaton (DFA), 10 // given a set of possible states and transitions. 11 // 12 // The input transitions can be nondeterministic - this class will produce the 13 // deterministic equivalent state machine. 14 // 15 // The generated code can run the DFA and produce an accepted / not accepted 16 // state and also produce, given a sequence of transitions that results in an 17 // accepted state, the sequence of intermediate states. This is useful if the 18 // initial automaton was nondeterministic - it allows mapping back from the DFA 19 // to the NFA. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "DFAEmitter.h" 24 #include "CodeGenTarget.h" 25 #include "SequenceToOffsetTable.h" 26 #include "TableGenBackends.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/UniqueVector.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/TableGen/Record.h" 33 #include "llvm/TableGen/TableGenBackend.h" 34 #include <cassert> 35 #include <cstdint> 36 #include <map> 37 #include <set> 38 #include <string> 39 #include <vector> 40 41 #define DEBUG_TYPE "dfa-emitter" 42 43 using namespace llvm; 44 45 //===----------------------------------------------------------------------===// 46 // DfaEmitter implementation. This is independent of the GenAutomaton backend. 47 //===----------------------------------------------------------------------===// 48 49 void DfaEmitter::addTransition(state_type From, state_type To, action_type A) { 50 Actions.insert(A); 51 NfaStates.insert(From); 52 NfaStates.insert(To); 53 NfaTransitions[{From, A}].push_back(To); 54 ++NumNfaTransitions; 55 } 56 57 void DfaEmitter::visitDfaState(const DfaState &DS) { 58 // For every possible action... 59 auto FromId = DfaStates.idFor(DS); 60 for (action_type A : Actions) { 61 DfaState NewStates; 62 DfaTransitionInfo TI; 63 // For every represented state, word pair in the original NFA... 64 for (state_type FromState : DS) { 65 // If this action is possible from this state add the transitioned-to 66 // states to NewStates. 67 auto I = NfaTransitions.find({FromState, A}); 68 if (I == NfaTransitions.end()) 69 continue; 70 for (state_type &ToState : I->second) { 71 NewStates.push_back(ToState); 72 TI.emplace_back(FromState, ToState); 73 } 74 } 75 if (NewStates.empty()) 76 continue; 77 // Sort and unique. 78 sort(NewStates); 79 NewStates.erase(std::unique(NewStates.begin(), NewStates.end()), 80 NewStates.end()); 81 sort(TI); 82 TI.erase(std::unique(TI.begin(), TI.end()), TI.end()); 83 unsigned ToId = DfaStates.insert(NewStates); 84 DfaTransitions.emplace(std::make_pair(FromId, A), std::make_pair(ToId, TI)); 85 } 86 } 87 88 void DfaEmitter::constructDfa() { 89 DfaState Initial(1, /*NFA initial state=*/0); 90 DfaStates.insert(Initial); 91 92 // Note that UniqueVector starts indices at 1, not zero. 93 unsigned DfaStateId = 1; 94 while (DfaStateId <= DfaStates.size()) { 95 DfaState S = DfaStates[DfaStateId]; 96 visitDfaState(S); 97 DfaStateId++; 98 } 99 } 100 101 void DfaEmitter::emit(StringRef Name, raw_ostream &OS) { 102 constructDfa(); 103 104 OS << "// Input NFA has " << NfaStates.size() << " states with " 105 << NumNfaTransitions << " transitions.\n"; 106 OS << "// Generated DFA has " << DfaStates.size() << " states with " 107 << DfaTransitions.size() << " transitions.\n\n"; 108 109 // Implementation note: We don't bake a simple std::pair<> here as it requires 110 // significantly more effort to parse. A simple test with a large array of 111 // struct-pairs (N=100000) took clang-10 6s to parse. The same array of 112 // std::pair<uint64_t, uint64_t> took 242s. Instead we allow the user to 113 // define the pair type. 114 // 115 // FIXME: It may make sense to emit these as ULEB sequences instead of 116 // pairs of uint64_t. 117 OS << "// A zero-terminated sequence of NFA state transitions. Every DFA\n"; 118 OS << "// transition implies a set of NFA transitions. These are referred\n"; 119 OS << "// to by index in " << Name << "Transitions[].\n"; 120 121 SequenceToOffsetTable<DfaTransitionInfo> Table; 122 std::map<DfaTransitionInfo, unsigned> EmittedIndices; 123 for (auto &T : DfaTransitions) 124 Table.add(T.second.second); 125 Table.layout(); 126 OS << "const std::array<NfaStatePair, " << Table.size() << "> " << Name 127 << "TransitionInfo = {{\n"; 128 Table.emit( 129 OS, 130 [](raw_ostream &OS, std::pair<uint64_t, uint64_t> P) { 131 OS << "{" << P.first << ", " << P.second << "}"; 132 }, 133 "{0ULL, 0ULL}"); 134 135 OS << "}};\n\n"; 136 137 OS << "// A transition in the generated " << Name << " DFA.\n"; 138 OS << "struct " << Name << "Transition {\n"; 139 OS << " unsigned FromDfaState; // The transitioned-from DFA state.\n"; 140 OS << " "; 141 printActionType(OS); 142 OS << " Action; // The input symbol that causes this transition.\n"; 143 OS << " unsigned ToDfaState; // The transitioned-to DFA state.\n"; 144 OS << " unsigned InfoIdx; // Start index into " << Name 145 << "TransitionInfo.\n"; 146 OS << "};\n\n"; 147 148 OS << "// A table of DFA transitions, ordered by {FromDfaState, Action}.\n"; 149 OS << "// The initial state is 1, not zero.\n"; 150 OS << "const std::array<" << Name << "Transition, " 151 << DfaTransitions.size() << "> " << Name << "Transitions = {{\n"; 152 for (auto &KV : DfaTransitions) { 153 dfa_state_type From = KV.first.first; 154 dfa_state_type To = KV.second.first; 155 action_type A = KV.first.second; 156 unsigned InfoIdx = Table.get(KV.second.second); 157 OS << " {" << From << ", "; 158 printActionValue(A, OS); 159 OS << ", " << To << ", " << InfoIdx << "},\n"; 160 } 161 OS << "\n}};\n\n"; 162 } 163 164 void DfaEmitter::printActionType(raw_ostream &OS) { OS << "uint64_t"; } 165 166 void DfaEmitter::printActionValue(action_type A, raw_ostream &OS) { OS << A; } 167 168 //===----------------------------------------------------------------------===// 169 // AutomatonEmitter implementation 170 //===----------------------------------------------------------------------===// 171 172 namespace { 173 // FIXME: This entire discriminated union could be removed with c++17: 174 // using Action = std::variant<Record *, unsigned, std::string>; 175 struct Action { 176 Record *R = nullptr; 177 unsigned I = 0; 178 std::string S; 179 180 Action() = default; 181 Action(Record *R, unsigned I, std::string S) : R(R), I(I), S(S) {} 182 183 void print(raw_ostream &OS) const { 184 if (R) 185 OS << R->getName(); 186 else if (!S.empty()) 187 OS << '"' << S << '"'; 188 else 189 OS << I; 190 } 191 bool operator<(const Action &Other) const { 192 return std::make_tuple(R, I, S) < 193 std::make_tuple(Other.R, Other.I, Other.S); 194 } 195 }; 196 197 using ActionTuple = std::vector<Action>; 198 class Automaton; 199 200 class Transition { 201 uint64_t NewState; 202 // The tuple of actions that causes this transition. 203 ActionTuple Actions; 204 // The types of the actions; this is the same across all transitions. 205 SmallVector<std::string, 4> Types; 206 207 public: 208 Transition(Record *R, Automaton *Parent); 209 const ActionTuple &getActions() { return Actions; } 210 SmallVector<std::string, 4> getTypes() { return Types; } 211 212 bool canTransitionFrom(uint64_t State); 213 uint64_t transitionFrom(uint64_t State); 214 }; 215 216 class Automaton { 217 RecordKeeper &Records; 218 Record *R; 219 std::vector<Transition> Transitions; 220 /// All possible action tuples, uniqued. 221 UniqueVector<ActionTuple> Actions; 222 /// The fields within each Transition object to find the action symbols. 223 std::vector<StringRef> ActionSymbolFields; 224 225 public: 226 Automaton(RecordKeeper &Records, Record *R); 227 void emit(raw_ostream &OS); 228 229 ArrayRef<StringRef> getActionSymbolFields() { return ActionSymbolFields; } 230 /// If the type of action A has been overridden (there exists a field 231 /// "TypeOf_A") return that, otherwise return the empty string. 232 StringRef getActionSymbolType(StringRef A); 233 }; 234 235 class AutomatonEmitter { 236 RecordKeeper &Records; 237 238 public: 239 AutomatonEmitter(RecordKeeper &R) : Records(R) {} 240 void run(raw_ostream &OS); 241 }; 242 243 /// A DfaEmitter implementation that can print our variant action type. 244 class CustomDfaEmitter : public DfaEmitter { 245 const UniqueVector<ActionTuple> &Actions; 246 std::string TypeName; 247 248 public: 249 CustomDfaEmitter(const UniqueVector<ActionTuple> &Actions, StringRef TypeName) 250 : Actions(Actions), TypeName(TypeName) {} 251 252 void printActionType(raw_ostream &OS) override; 253 void printActionValue(action_type A, raw_ostream &OS) override; 254 }; 255 } // namespace 256 257 void AutomatonEmitter::run(raw_ostream &OS) { 258 for (Record *R : Records.getAllDerivedDefinitions("GenericAutomaton")) { 259 Automaton A(Records, R); 260 OS << "#ifdef GET_" << R->getName() << "_DECL\n"; 261 A.emit(OS); 262 OS << "#endif // GET_" << R->getName() << "_DECL\n"; 263 } 264 } 265 266 Automaton::Automaton(RecordKeeper &Records, Record *R) 267 : Records(Records), R(R) { 268 LLVM_DEBUG(dbgs() << "Emitting automaton for " << R->getName() << "\n"); 269 ActionSymbolFields = R->getValueAsListOfStrings("SymbolFields"); 270 } 271 272 void Automaton::emit(raw_ostream &OS) { 273 StringRef TransitionClass = R->getValueAsString("TransitionClass"); 274 for (Record *T : Records.getAllDerivedDefinitions(TransitionClass)) { 275 assert(T->isSubClassOf("Transition")); 276 Transitions.emplace_back(T, this); 277 Actions.insert(Transitions.back().getActions()); 278 } 279 280 LLVM_DEBUG(dbgs() << " Action alphabet cardinality: " << Actions.size() 281 << "\n"); 282 LLVM_DEBUG(dbgs() << " Each state has " << Transitions.size() 283 << " potential transitions.\n"); 284 285 StringRef Name = R->getName(); 286 287 CustomDfaEmitter Emitter(Actions, std::string(Name) + "Action"); 288 // Starting from the initial state, build up a list of possible states and 289 // transitions. 290 std::deque<uint64_t> Worklist(1, 0); 291 std::set<uint64_t> SeenStates; 292 unsigned NumTransitions = 0; 293 SeenStates.insert(Worklist.front()); 294 while (!Worklist.empty()) { 295 uint64_t State = Worklist.front(); 296 Worklist.pop_front(); 297 for (Transition &T : Transitions) { 298 if (!T.canTransitionFrom(State)) 299 continue; 300 uint64_t NewState = T.transitionFrom(State); 301 if (SeenStates.emplace(NewState).second) 302 Worklist.emplace_back(NewState); 303 ++NumTransitions; 304 Emitter.addTransition(State, NewState, Actions.idFor(T.getActions())); 305 } 306 } 307 LLVM_DEBUG(dbgs() << " NFA automaton has " << SeenStates.size() 308 << " states with " << NumTransitions << " transitions.\n"); 309 310 const auto &ActionTypes = Transitions.back().getTypes(); 311 OS << "// The type of an action in the " << Name << " automaton.\n"; 312 if (ActionTypes.size() == 1) { 313 OS << "using " << Name << "Action = " << ActionTypes[0] << ";\n"; 314 } else { 315 OS << "using " << Name << "Action = std::tuple<" << join(ActionTypes, ", ") 316 << ">;\n"; 317 } 318 OS << "\n"; 319 320 Emitter.emit(Name, OS); 321 } 322 323 StringRef Automaton::getActionSymbolType(StringRef A) { 324 Twine Ty = "TypeOf_" + A; 325 if (!R->getValue(Ty.str())) 326 return ""; 327 return R->getValueAsString(Ty.str()); 328 } 329 330 Transition::Transition(Record *R, Automaton *Parent) { 331 BitsInit *NewStateInit = R->getValueAsBitsInit("NewState"); 332 NewState = 0; 333 assert(NewStateInit->getNumBits() <= sizeof(uint64_t) * 8 && 334 "State cannot be represented in 64 bits!"); 335 for (unsigned I = 0; I < NewStateInit->getNumBits(); ++I) { 336 if (auto *Bit = dyn_cast<BitInit>(NewStateInit->getBit(I))) { 337 if (Bit->getValue()) 338 NewState |= 1ULL << I; 339 } 340 } 341 342 for (StringRef A : Parent->getActionSymbolFields()) { 343 RecordVal *SymbolV = R->getValue(A); 344 if (auto *Ty = dyn_cast<RecordRecTy>(SymbolV->getType())) { 345 Actions.emplace_back(R->getValueAsDef(A), 0, ""); 346 Types.emplace_back(Ty->getAsString()); 347 } else if (isa<IntRecTy>(SymbolV->getType())) { 348 Actions.emplace_back(nullptr, R->getValueAsInt(A), ""); 349 Types.emplace_back("unsigned"); 350 } else if (isa<StringRecTy>(SymbolV->getType())) { 351 Actions.emplace_back(nullptr, 0, std::string(R->getValueAsString(A))); 352 Types.emplace_back("std::string"); 353 } else { 354 report_fatal_error("Unhandled symbol type!"); 355 } 356 357 StringRef TypeOverride = Parent->getActionSymbolType(A); 358 if (!TypeOverride.empty()) 359 Types.back() = std::string(TypeOverride); 360 } 361 } 362 363 bool Transition::canTransitionFrom(uint64_t State) { 364 if ((State & NewState) == 0) 365 // The bits we want to set are not set; 366 return true; 367 return false; 368 } 369 370 uint64_t Transition::transitionFrom(uint64_t State) { 371 return State | NewState; 372 } 373 374 void CustomDfaEmitter::printActionType(raw_ostream &OS) { OS << TypeName; } 375 376 void CustomDfaEmitter::printActionValue(action_type A, raw_ostream &OS) { 377 const ActionTuple &AT = Actions[A]; 378 if (AT.size() > 1) 379 OS << "std::make_tuple("; 380 ListSeparator LS; 381 for (const auto &SingleAction : AT) { 382 OS << LS; 383 SingleAction.print(OS); 384 } 385 if (AT.size() > 1) 386 OS << ")"; 387 } 388 389 namespace llvm { 390 391 void EmitAutomata(RecordKeeper &RK, raw_ostream &OS) { 392 AutomatonEmitter(RK).run(OS); 393 } 394 395 } // namespace llvm 396