1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h" 19 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 20 #include "mlir/IR/Attributes.h" 21 #include "mlir/IR/BuiltinOps.h" 22 #include "mlir/IR/BuiltinTypes.h" 23 #include "mlir/IR/RegionGraphTraits.h" 24 #include "mlir/Support/LLVM.h" 25 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h" 26 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 27 #include "llvm/ADT/TypeSwitch.h" 28 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicsNVPTX.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Verifier.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 46 using namespace mlir; 47 using namespace mlir::LLVM; 48 using namespace mlir::LLVM::detail; 49 50 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 51 52 /// Builds a constant of a sequential LLVM type `type`, potentially containing 53 /// other sequential types recursively, from the individual constant values 54 /// provided in `constants`. `shape` contains the number of elements in nested 55 /// sequential types. Reports errors at `loc` and returns nullptr on error. 56 static llvm::Constant * 57 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 58 ArrayRef<int64_t> shape, llvm::Type *type, 59 Location loc) { 60 if (shape.empty()) { 61 llvm::Constant *result = constants.front(); 62 constants = constants.drop_front(); 63 return result; 64 } 65 66 llvm::Type *elementType; 67 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 68 elementType = arrayTy->getElementType(); 69 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 70 elementType = vectorTy->getElementType(); 71 } else { 72 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 73 return nullptr; 74 } 75 76 SmallVector<llvm::Constant *, 8> nested; 77 nested.reserve(shape.front()); 78 for (int64_t i = 0; i < shape.front(); ++i) { 79 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 80 elementType, loc)); 81 if (!nested.back()) 82 return nullptr; 83 } 84 85 if (shape.size() == 1 && type->isVectorTy()) 86 return llvm::ConstantVector::get(nested); 87 return llvm::ConstantArray::get( 88 llvm::ArrayType::get(elementType, shape.front()), nested); 89 } 90 91 /// Returns the first non-sequential type nested in sequential types. 92 static llvm::Type *getInnermostElementType(llvm::Type *type) { 93 do { 94 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 95 type = arrayTy->getElementType(); 96 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 97 type = vectorTy->getElementType(); 98 } else { 99 return type; 100 } 101 } while (true); 102 } 103 104 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 105 /// This currently supports integer, floating point, splat and dense element 106 /// attributes and combinations thereof. Also, an array attribute with two 107 /// elements is supported to represent a complex constant. In case of error, 108 /// report it to `loc` and return nullptr. 109 llvm::Constant *mlir::LLVM::detail::getLLVMConstant( 110 llvm::Type *llvmType, Attribute attr, Location loc, 111 const ModuleTranslation &moduleTranslation, bool isTopLevel) { 112 if (!attr) 113 return llvm::UndefValue::get(llvmType); 114 if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) { 115 if (!isTopLevel) { 116 emitError(loc, "nested struct types are not supported in constants"); 117 return nullptr; 118 } 119 auto arrayAttr = attr.cast<ArrayAttr>(); 120 llvm::Type *elementType = structType->getElementType(0); 121 llvm::Constant *real = getLLVMConstant(elementType, arrayAttr[0], loc, 122 moduleTranslation, false); 123 if (!real) 124 return nullptr; 125 llvm::Constant *imag = getLLVMConstant(elementType, arrayAttr[1], loc, 126 moduleTranslation, false); 127 if (!imag) 128 return nullptr; 129 return llvm::ConstantStruct::get(structType, {real, imag}); 130 } 131 // For integer types, we allow a mismatch in sizes as the index type in 132 // MLIR might have a different size than the index type in the LLVM module. 133 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 134 return llvm::ConstantInt::get( 135 llvmType, 136 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 137 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) { 138 if (llvmType != 139 llvm::Type::getFloatingPointTy(llvmType->getContext(), 140 floatAttr.getValue().getSemantics())) { 141 emitError(loc, "FloatAttr does not match expected type of the constant"); 142 return nullptr; 143 } 144 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 145 } 146 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 147 return llvm::ConstantExpr::getBitCast( 148 moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType); 149 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 150 llvm::Type *elementType; 151 uint64_t numElements; 152 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 153 elementType = arrayTy->getElementType(); 154 numElements = arrayTy->getNumElements(); 155 } else { 156 auto *vectorTy = cast<llvm::FixedVectorType>(llvmType); 157 elementType = vectorTy->getElementType(); 158 numElements = vectorTy->getNumElements(); 159 } 160 // Splat value is a scalar. Extract it only if the element type is not 161 // another sequence type. The recursion terminates because each step removes 162 // one outer sequential type. 163 bool elementTypeSequential = 164 isa<llvm::ArrayType, llvm::VectorType>(elementType); 165 llvm::Constant *child = getLLVMConstant( 166 elementType, 167 elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc, 168 moduleTranslation, false); 169 if (!child) 170 return nullptr; 171 if (llvmType->isVectorTy()) 172 return llvm::ConstantVector::getSplat( 173 llvm::ElementCount::get(numElements, /*Scalable=*/false), child); 174 if (llvmType->isArrayTy()) { 175 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 176 SmallVector<llvm::Constant *, 8> constants(numElements, child); 177 return llvm::ConstantArray::get(arrayType, constants); 178 } 179 } 180 181 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 182 assert(elementsAttr.getType().hasStaticShape()); 183 assert(!elementsAttr.getType().getShape().empty() && 184 "unexpected empty elements attribute shape"); 185 186 SmallVector<llvm::Constant *, 8> constants; 187 constants.reserve(elementsAttr.getNumElements()); 188 llvm::Type *innermostType = getInnermostElementType(llvmType); 189 for (auto n : elementsAttr.getValues<Attribute>()) { 190 constants.push_back( 191 getLLVMConstant(innermostType, n, loc, moduleTranslation, false)); 192 if (!constants.back()) 193 return nullptr; 194 } 195 ArrayRef<llvm::Constant *> constantsRef = constants; 196 llvm::Constant *result = buildSequentialConstant( 197 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 198 assert(constantsRef.empty() && "did not consume all elemental constants"); 199 return result; 200 } 201 202 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 203 return llvm::ConstantDataArray::get( 204 moduleTranslation.getLLVMContext(), 205 ArrayRef<char>{stringAttr.getValue().data(), 206 stringAttr.getValue().size()}); 207 } 208 emitError(loc, "unsupported constant value"); 209 return nullptr; 210 } 211 212 ModuleTranslation::ModuleTranslation(Operation *module, 213 std::unique_ptr<llvm::Module> llvmModule) 214 : mlirModule(module), llvmModule(std::move(llvmModule)), 215 debugTranslation( 216 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 217 typeTranslator(this->llvmModule->getContext()), 218 iface(module->getContext()) { 219 assert(satisfiesLLVMModule(mlirModule) && 220 "mlirModule should honor LLVM's module semantics."); 221 } 222 ModuleTranslation::~ModuleTranslation() { 223 if (ompBuilder) 224 ompBuilder->finalize(); 225 } 226 227 /// Get the SSA value passed to the current block from the terminator operation 228 /// of its predecessor. 229 static Value getPHISourceValue(Block *current, Block *pred, 230 unsigned numArguments, unsigned index) { 231 Operation &terminator = *pred->getTerminator(); 232 if (isa<LLVM::BrOp>(terminator)) 233 return terminator.getOperand(index); 234 235 SuccessorRange successors = terminator.getSuccessors(); 236 assert(std::adjacent_find(successors.begin(), successors.end()) == 237 successors.end() && 238 "successors with arguments in LLVM branches must be different blocks"); 239 (void)successors; 240 241 // For instructions that branch based on a condition value, we need to take 242 // the operands for the branch that was taken. 243 if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) { 244 // For conditional branches, we take the operands from either the "true" or 245 // the "false" branch. 246 return condBranchOp.getSuccessor(0) == current 247 ? condBranchOp.trueDestOperands()[index] 248 : condBranchOp.falseDestOperands()[index]; 249 } 250 251 if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) { 252 // For switches, we take the operands from either the default case, or from 253 // the case branch that was taken. 254 if (switchOp.defaultDestination() == current) 255 return switchOp.defaultOperands()[index]; 256 for (auto i : llvm::enumerate(switchOp.caseDestinations())) 257 if (i.value() == current) 258 return switchOp.getCaseOperands(i.index())[index]; 259 } 260 261 llvm_unreachable("only branch or switch operations can be terminators of a " 262 "block that has successors"); 263 } 264 265 /// Connect the PHI nodes to the results of preceding blocks. 266 void mlir::LLVM::detail::connectPHINodes(Region ®ion, 267 const ModuleTranslation &state) { 268 // Skip the first block, it cannot be branched to and its arguments correspond 269 // to the arguments of the LLVM function. 270 for (auto it = std::next(region.begin()), eit = region.end(); it != eit; 271 ++it) { 272 Block *bb = &*it; 273 llvm::BasicBlock *llvmBB = state.lookupBlock(bb); 274 auto phis = llvmBB->phis(); 275 auto numArguments = bb->getNumArguments(); 276 assert(numArguments == std::distance(phis.begin(), phis.end())); 277 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 278 auto &phiNode = numberedPhiNode.value(); 279 unsigned index = numberedPhiNode.index(); 280 for (auto *pred : bb->getPredecessors()) { 281 // Find the LLVM IR block that contains the converted terminator 282 // instruction and use it in the PHI node. Note that this block is not 283 // necessarily the same as state.lookupBlock(pred), some operations 284 // (in particular, OpenMP operations using OpenMPIRBuilder) may have 285 // split the blocks. 286 llvm::Instruction *terminator = 287 state.lookupBranch(pred->getTerminator()); 288 assert(terminator && "missing the mapping for a terminator"); 289 phiNode.addIncoming( 290 state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)), 291 terminator->getParent()); 292 } 293 } 294 } 295 } 296 297 /// Sort function blocks topologically. 298 SetVector<Block *> 299 mlir::LLVM::detail::getTopologicallySortedBlocks(Region ®ion) { 300 // For each block that has not been visited yet (i.e. that has no 301 // predecessors), add it to the list as well as its successors. 302 SetVector<Block *> blocks; 303 for (Block &b : region) { 304 if (blocks.count(&b) == 0) { 305 llvm::ReversePostOrderTraversal<Block *> traversal(&b); 306 blocks.insert(traversal.begin(), traversal.end()); 307 } 308 } 309 assert(blocks.size() == region.getBlocks().size() && 310 "some blocks are not sorted"); 311 312 return blocks; 313 } 314 315 llvm::Value *mlir::LLVM::detail::createIntrinsicCall( 316 llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic, 317 ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) { 318 llvm::Module *module = builder.GetInsertBlock()->getModule(); 319 llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys); 320 return builder.CreateCall(fn, args); 321 } 322 323 llvm::Value * 324 mlir::LLVM::detail::createNvvmIntrinsicCall(llvm::IRBuilderBase &builder, 325 llvm::Intrinsic::ID intrinsic, 326 ArrayRef<llvm::Value *> args) { 327 llvm::Module *module = builder.GetInsertBlock()->getModule(); 328 llvm::Function *fn; 329 if (llvm::Intrinsic::isOverloaded(intrinsic)) { 330 if (intrinsic != llvm::Intrinsic::nvvm_wmma_m16n16k16_mma_row_row_f16_f16 && 331 intrinsic != llvm::Intrinsic::nvvm_wmma_m16n16k16_mma_row_row_f32_f32) { 332 // NVVM load and store instrinsic names are overloaded on the 333 // source/destination pointer type. Pointer is the first argument in the 334 // corresponding NVVM Op. 335 fn = llvm::Intrinsic::getDeclaration(module, intrinsic, 336 {args[0]->getType()}); 337 } else { 338 fn = llvm::Intrinsic::getDeclaration(module, intrinsic, {}); 339 } 340 } else { 341 fn = llvm::Intrinsic::getDeclaration(module, intrinsic); 342 } 343 return builder.CreateCall(fn, args); 344 } 345 346 /// Given a single MLIR operation, create the corresponding LLVM IR operation 347 /// using the `builder`. 348 LogicalResult 349 ModuleTranslation::convertOperation(Operation &op, 350 llvm::IRBuilderBase &builder) { 351 const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op); 352 if (!opIface) 353 return op.emitError("cannot be converted to LLVM IR: missing " 354 "`LLVMTranslationDialectInterface` registration for " 355 "dialect for op: ") 356 << op.getName(); 357 358 if (failed(opIface->convertOperation(&op, builder, *this))) 359 return op.emitError("LLVM Translation failed for operation: ") 360 << op.getName(); 361 362 return convertDialectAttributes(&op); 363 } 364 365 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 366 /// to define values corresponding to the MLIR block arguments. These nodes 367 /// are not connected to the source basic blocks, which may not exist yet. Uses 368 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have 369 /// been created for `bb` and included in the block mapping. Inserts new 370 /// instructions at the end of the block and leaves `builder` in a state 371 /// suitable for further insertion into the end of the block. 372 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments, 373 llvm::IRBuilderBase &builder) { 374 builder.SetInsertPoint(lookupBlock(&bb)); 375 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 376 377 // Before traversing operations, make block arguments available through 378 // value remapping and PHI nodes, but do not add incoming edges for the PHI 379 // nodes just yet: those values may be defined by this or following blocks. 380 // This step is omitted if "ignoreArguments" is set. The arguments of the 381 // first block have been already made available through the remapping of 382 // LLVM function arguments. 383 if (!ignoreArguments) { 384 auto predecessors = bb.getPredecessors(); 385 unsigned numPredecessors = 386 std::distance(predecessors.begin(), predecessors.end()); 387 for (auto arg : bb.getArguments()) { 388 auto wrappedType = arg.getType(); 389 if (!isCompatibleType(wrappedType)) 390 return emitError(bb.front().getLoc(), 391 "block argument does not have an LLVM type"); 392 llvm::Type *type = convertType(wrappedType); 393 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 394 mapValue(arg, phi); 395 } 396 } 397 398 // Traverse operations. 399 for (auto &op : bb) { 400 // Set the current debug location within the builder. 401 builder.SetCurrentDebugLocation( 402 debugTranslation->translateLoc(op.getLoc(), subprogram)); 403 404 if (failed(convertOperation(op, builder))) 405 return failure(); 406 } 407 408 return success(); 409 } 410 411 /// A helper method to get the single Block in an operation honoring LLVM's 412 /// module requirements. 413 static Block &getModuleBody(Operation *module) { 414 return module->getRegion(0).front(); 415 } 416 417 /// A helper method to decide if a constant must not be set as a global variable 418 /// initializer. For an external linkage variable, the variable with an 419 /// initializer is considered externally visible and defined in this module, the 420 /// variable without an initializer is externally available and is defined 421 /// elsewhere. 422 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage, 423 llvm::Constant *cst) { 424 return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) || 425 linkage == llvm::GlobalVariable::ExternalWeakLinkage; 426 } 427 428 /// Sets the runtime preemption specifier of `gv` to dso_local if 429 /// `dsoLocalRequested` is true, otherwise it is left unchanged. 430 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested, 431 llvm::GlobalValue *gv) { 432 if (dsoLocalRequested) 433 gv->setDSOLocal(true); 434 } 435 436 /// Create named global variables that correspond to llvm.mlir.global 437 /// definitions. 438 LogicalResult ModuleTranslation::convertGlobals() { 439 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 440 llvm::Type *type = convertType(op.getType()); 441 llvm::Constant *cst = nullptr; 442 if (op.getValueOrNull()) { 443 // String attributes are treated separately because they cannot appear as 444 // in-function constants and are thus not supported by getLLVMConstant. 445 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 446 cst = llvm::ConstantDataArray::getString( 447 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 448 type = cst->getType(); 449 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(), 450 *this))) { 451 return failure(); 452 } 453 } 454 455 auto linkage = convertLinkageToLLVM(op.linkage()); 456 auto addrSpace = op.addr_space(); 457 458 // LLVM IR requires constant with linkage other than external or weak 459 // external to have initializers. If MLIR does not provide an initializer, 460 // default to undef. 461 bool dropInitializer = shouldDropGlobalInitializer(linkage, cst); 462 if (!dropInitializer && !cst) 463 cst = llvm::UndefValue::get(type); 464 else if (dropInitializer && cst) 465 cst = nullptr; 466 467 auto *var = new llvm::GlobalVariable( 468 *llvmModule, type, op.constant(), linkage, cst, op.sym_name(), 469 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 470 471 if (op.unnamed_addr().hasValue()) 472 var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.unnamed_addr())); 473 474 if (op.section().hasValue()) 475 var->setSection(*op.section()); 476 477 addRuntimePreemptionSpecifier(op.dso_local(), var); 478 479 Optional<uint64_t> alignment = op.alignment(); 480 if (alignment.hasValue()) 481 var->setAlignment(llvm::MaybeAlign(alignment.getValue())); 482 483 globalsMapping.try_emplace(op, var); 484 } 485 486 // Convert global variable bodies. This is done after all global variables 487 // have been created in LLVM IR because a global body may refer to another 488 // global or itself. So all global variables need to be mapped first. 489 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 490 if (Block *initializer = op.getInitializerBlock()) { 491 llvm::IRBuilder<> builder(llvmModule->getContext()); 492 for (auto &op : initializer->without_terminator()) { 493 if (failed(convertOperation(op, builder)) || 494 !isa<llvm::Constant>(lookupValue(op.getResult(0)))) 495 return emitError(op.getLoc(), "unemittable constant value"); 496 } 497 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 498 llvm::Constant *cst = 499 cast<llvm::Constant>(lookupValue(ret.getOperand(0))); 500 auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op)); 501 if (!shouldDropGlobalInitializer(global->getLinkage(), cst)) 502 global->setInitializer(cst); 503 } 504 } 505 506 return success(); 507 } 508 509 /// Attempts to add an attribute identified by `key`, optionally with the given 510 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 511 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 512 /// otherwise keep it as a string attribute. Performs additional checks for 513 /// attributes known to have or not have a value in order to avoid assertions 514 /// inside LLVM upon construction. 515 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 516 llvm::Function *llvmFunc, 517 StringRef key, 518 StringRef value = StringRef()) { 519 auto kind = llvm::Attribute::getAttrKindFromName(key); 520 if (kind == llvm::Attribute::None) { 521 llvmFunc->addFnAttr(key, value); 522 return success(); 523 } 524 525 if (llvm::Attribute::isIntAttrKind(kind)) { 526 if (value.empty()) 527 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 528 529 int result; 530 if (!value.getAsInteger(/*Radix=*/0, result)) 531 llvmFunc->addFnAttr( 532 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 533 else 534 llvmFunc->addFnAttr(key, value); 535 return success(); 536 } 537 538 if (!value.empty()) 539 return emitError(loc) << "LLVM attribute '" << key 540 << "' does not expect a value, found '" << value 541 << "'"; 542 543 llvmFunc->addFnAttr(kind); 544 return success(); 545 } 546 547 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 548 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 549 /// to be an array attribute containing either string attributes, treated as 550 /// value-less LLVM attributes, or array attributes containing two string 551 /// attributes, with the first string being the name of the corresponding LLVM 552 /// attribute and the second string beings its value. Note that even integer 553 /// attributes are expected to have their values expressed as strings. 554 static LogicalResult 555 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 556 llvm::Function *llvmFunc) { 557 if (!attributes) 558 return success(); 559 560 for (Attribute attr : *attributes) { 561 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 562 if (failed( 563 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 564 return failure(); 565 continue; 566 } 567 568 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 569 if (!arrayAttr || arrayAttr.size() != 2) 570 return emitError(loc) 571 << "expected 'passthrough' to contain string or array attributes"; 572 573 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 574 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 575 if (!keyAttr || !valueAttr) 576 return emitError(loc) 577 << "expected arrays within 'passthrough' to contain two strings"; 578 579 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 580 valueAttr.getValue()))) 581 return failure(); 582 } 583 return success(); 584 } 585 586 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 587 // Clear the block, branch value mappings, they are only relevant within one 588 // function. 589 blockMapping.clear(); 590 valueMapping.clear(); 591 branchMapping.clear(); 592 llvm::Function *llvmFunc = lookupFunction(func.getName()); 593 594 // Translate the debug information for this function. 595 debugTranslation->translate(func, *llvmFunc); 596 597 // Add function arguments to the value remapping table. 598 // If there was noalias info then we decorate each argument accordingly. 599 unsigned int argIdx = 0; 600 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 601 llvm::Argument &llvmArg = std::get<1>(kvp); 602 BlockArgument mlirArg = std::get<0>(kvp); 603 604 if (auto attr = func.getArgAttrOfType<UnitAttr>( 605 argIdx, LLVMDialect::getNoAliasAttrName())) { 606 // NB: Attribute already verified to be boolean, so check if we can indeed 607 // attach the attribute to this argument, based on its type. 608 auto argTy = mlirArg.getType(); 609 if (!argTy.isa<LLVM::LLVMPointerType>()) 610 return func.emitError( 611 "llvm.noalias attribute attached to LLVM non-pointer argument"); 612 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 613 } 614 615 if (auto attr = func.getArgAttrOfType<IntegerAttr>( 616 argIdx, LLVMDialect::getAlignAttrName())) { 617 // NB: Attribute already verified to be int, so check if we can indeed 618 // attach the attribute to this argument, based on its type. 619 auto argTy = mlirArg.getType(); 620 if (!argTy.isa<LLVM::LLVMPointerType>()) 621 return func.emitError( 622 "llvm.align attribute attached to LLVM non-pointer argument"); 623 llvmArg.addAttrs( 624 llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt()))); 625 } 626 627 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) { 628 auto argTy = mlirArg.getType(); 629 if (!argTy.isa<LLVM::LLVMPointerType>()) 630 return func.emitError( 631 "llvm.sret attribute attached to LLVM non-pointer argument"); 632 llvmArg.addAttrs(llvm::AttrBuilder().addStructRetAttr( 633 llvmArg.getType()->getPointerElementType())); 634 } 635 636 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) { 637 auto argTy = mlirArg.getType(); 638 if (!argTy.isa<LLVM::LLVMPointerType>()) 639 return func.emitError( 640 "llvm.byval attribute attached to LLVM non-pointer argument"); 641 llvmArg.addAttrs(llvm::AttrBuilder().addByValAttr( 642 llvmArg.getType()->getPointerElementType())); 643 } 644 645 mapValue(mlirArg, &llvmArg); 646 argIdx++; 647 } 648 649 // Check the personality and set it. 650 if (func.personality().hasValue()) { 651 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 652 if (llvm::Constant *pfunc = 653 getLLVMConstant(ty, func.personalityAttr(), func.getLoc(), *this)) 654 llvmFunc->setPersonalityFn(pfunc); 655 } 656 657 // First, create all blocks so we can jump to them. 658 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 659 for (auto &bb : func) { 660 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 661 llvmBB->insertInto(llvmFunc); 662 mapBlock(&bb, llvmBB); 663 } 664 665 // Then, convert blocks one by one in topological order to ensure defs are 666 // converted before uses. 667 auto blocks = detail::getTopologicallySortedBlocks(func.getBody()); 668 for (Block *bb : blocks) { 669 llvm::IRBuilder<> builder(llvmContext); 670 if (failed(convertBlock(*bb, bb->isEntryBlock(), builder))) 671 return failure(); 672 } 673 674 // After all blocks have been traversed and values mapped, connect the PHI 675 // nodes to the results of preceding blocks. 676 detail::connectPHINodes(func.getBody(), *this); 677 678 // Finally, convert dialect attributes attached to the function. 679 return convertDialectAttributes(func); 680 } 681 682 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) { 683 for (NamedAttribute attribute : op->getDialectAttrs()) 684 if (failed(iface.amendOperation(op, attribute, *this))) 685 return failure(); 686 return success(); 687 } 688 689 /// Check whether the module contains only supported ops directly in its body. 690 static LogicalResult checkSupportedModuleOps(Operation *m) { 691 for (Operation &o : getModuleBody(m).getOperations()) 692 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::MetadataOp>(&o) && 693 !o.hasTrait<OpTrait::IsTerminator>()) 694 return o.emitOpError("unsupported module-level operation"); 695 return success(); 696 } 697 698 LogicalResult ModuleTranslation::convertFunctionSignatures() { 699 // Declare all functions first because there may be function calls that form a 700 // call graph with cycles, or global initializers that reference functions. 701 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 702 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 703 function.getName(), 704 cast<llvm::FunctionType>(convertType(function.getType()))); 705 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 706 llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage())); 707 mapFunction(function.getName(), llvmFunc); 708 addRuntimePreemptionSpecifier(function.dso_local(), llvmFunc); 709 710 // Forward the pass-through attributes to LLVM. 711 if (failed(forwardPassthroughAttributes(function.getLoc(), 712 function.passthrough(), llvmFunc))) 713 return failure(); 714 } 715 716 return success(); 717 } 718 719 LogicalResult ModuleTranslation::convertFunctions() { 720 // Convert functions. 721 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 722 // Ignore external functions. 723 if (function.isExternal()) 724 continue; 725 726 if (failed(convertOneFunction(function))) 727 return failure(); 728 } 729 730 return success(); 731 } 732 733 llvm::MDNode * 734 ModuleTranslation::getAccessGroup(Operation &opInst, 735 SymbolRefAttr accessGroupRef) const { 736 auto metadataName = accessGroupRef.getRootReference(); 737 auto accessGroupName = accessGroupRef.getLeafReference(); 738 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 739 opInst.getParentOp(), metadataName); 740 auto *accessGroupOp = 741 SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName); 742 return accessGroupMetadataMapping.lookup(accessGroupOp); 743 } 744 745 LogicalResult ModuleTranslation::createAccessGroupMetadata() { 746 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 747 metadatas.walk([&](LLVM::AccessGroupMetadataOp op) { 748 llvm::LLVMContext &ctx = llvmModule->getContext(); 749 llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {}); 750 accessGroupMetadataMapping.insert({op, accessGroup}); 751 }); 752 }); 753 return success(); 754 } 755 756 void ModuleTranslation::setAccessGroupsMetadata(Operation *op, 757 llvm::Instruction *inst) { 758 auto accessGroups = 759 op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName()); 760 if (accessGroups && !accessGroups.empty()) { 761 llvm::Module *module = inst->getModule(); 762 SmallVector<llvm::Metadata *> metadatas; 763 for (SymbolRefAttr accessGroupRef : 764 accessGroups.getAsRange<SymbolRefAttr>()) 765 metadatas.push_back(getAccessGroup(*op, accessGroupRef)); 766 767 llvm::MDNode *unionMD = nullptr; 768 if (metadatas.size() == 1) 769 unionMD = llvm::cast<llvm::MDNode>(metadatas.front()); 770 else if (metadatas.size() >= 2) 771 unionMD = llvm::MDNode::get(module->getContext(), metadatas); 772 773 inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD); 774 } 775 } 776 777 llvm::Type *ModuleTranslation::convertType(Type type) { 778 return typeTranslator.translateType(type); 779 } 780 781 /// A helper to look up remapped operands in the value remapping table.` 782 SmallVector<llvm::Value *, 8> 783 ModuleTranslation::lookupValues(ValueRange values) { 784 SmallVector<llvm::Value *, 8> remapped; 785 remapped.reserve(values.size()); 786 for (Value v : values) 787 remapped.push_back(lookupValue(v)); 788 return remapped; 789 } 790 791 const llvm::DILocation * 792 ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) { 793 return debugTranslation->translateLoc(loc, scope); 794 } 795 796 llvm::NamedMDNode * 797 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) { 798 return llvmModule->getOrInsertNamedMetadata(name); 799 } 800 801 void ModuleTranslation::StackFrame::anchor() {} 802 803 static std::unique_ptr<llvm::Module> 804 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext, 805 StringRef name) { 806 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>(); 807 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); 808 if (auto dataLayoutAttr = 809 m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) 810 llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue()); 811 if (auto targetTripleAttr = 812 m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName())) 813 llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue()); 814 815 // Inject declarations for `malloc` and `free` functions that can be used in 816 // memref allocation/deallocation coming from standard ops lowering. 817 llvm::IRBuilder<> builder(llvmContext); 818 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 819 builder.getInt64Ty()); 820 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 821 builder.getInt8PtrTy()); 822 823 return llvmModule; 824 } 825 826 std::unique_ptr<llvm::Module> 827 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext, 828 StringRef name) { 829 if (!satisfiesLLVMModule(module)) 830 return nullptr; 831 if (failed(checkSupportedModuleOps(module))) 832 return nullptr; 833 std::unique_ptr<llvm::Module> llvmModule = 834 prepareLLVMModule(module, llvmContext, name); 835 836 LLVM::ensureDistinctSuccessors(module); 837 838 ModuleTranslation translator(module, std::move(llvmModule)); 839 if (failed(translator.convertFunctionSignatures())) 840 return nullptr; 841 if (failed(translator.convertGlobals())) 842 return nullptr; 843 if (failed(translator.createAccessGroupMetadata())) 844 return nullptr; 845 if (failed(translator.convertFunctions())) 846 return nullptr; 847 if (llvm::verifyModule(*translator.llvmModule, &llvm::errs())) 848 return nullptr; 849 850 return std::move(translator.llvmModule); 851 } 852