1 /*
2 * z_Windows_NT_util.cpp -- platform specific routines.
3 */
4
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_wait_release.h"
19
20 /* This code is related to NtQuerySystemInformation() function. This function
21 is used in the Load balance algorithm for OMP_DYNAMIC=true to find the
22 number of running threads in the system. */
23
24 #include <ntsecapi.h> // UNICODE_STRING
25 #include <ntstatus.h>
26 #include <psapi.h>
27 #ifdef _MSC_VER
28 #pragma comment(lib, "psapi.lib")
29 #endif
30
31 enum SYSTEM_INFORMATION_CLASS {
32 SystemProcessInformation = 5
33 }; // SYSTEM_INFORMATION_CLASS
34
35 struct CLIENT_ID {
36 HANDLE UniqueProcess;
37 HANDLE UniqueThread;
38 }; // struct CLIENT_ID
39
40 enum THREAD_STATE {
41 StateInitialized,
42 StateReady,
43 StateRunning,
44 StateStandby,
45 StateTerminated,
46 StateWait,
47 StateTransition,
48 StateUnknown
49 }; // enum THREAD_STATE
50
51 struct VM_COUNTERS {
52 SIZE_T PeakVirtualSize;
53 SIZE_T VirtualSize;
54 ULONG PageFaultCount;
55 SIZE_T PeakWorkingSetSize;
56 SIZE_T WorkingSetSize;
57 SIZE_T QuotaPeakPagedPoolUsage;
58 SIZE_T QuotaPagedPoolUsage;
59 SIZE_T QuotaPeakNonPagedPoolUsage;
60 SIZE_T QuotaNonPagedPoolUsage;
61 SIZE_T PagefileUsage;
62 SIZE_T PeakPagefileUsage;
63 SIZE_T PrivatePageCount;
64 }; // struct VM_COUNTERS
65
66 struct SYSTEM_THREAD {
67 LARGE_INTEGER KernelTime;
68 LARGE_INTEGER UserTime;
69 LARGE_INTEGER CreateTime;
70 ULONG WaitTime;
71 LPVOID StartAddress;
72 CLIENT_ID ClientId;
73 DWORD Priority;
74 LONG BasePriority;
75 ULONG ContextSwitchCount;
76 THREAD_STATE State;
77 ULONG WaitReason;
78 }; // SYSTEM_THREAD
79
80 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0);
81 #if KMP_ARCH_X86
82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28);
83 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52);
84 #else
85 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32);
86 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68);
87 #endif
88
89 struct SYSTEM_PROCESS_INFORMATION {
90 ULONG NextEntryOffset;
91 ULONG NumberOfThreads;
92 LARGE_INTEGER Reserved[3];
93 LARGE_INTEGER CreateTime;
94 LARGE_INTEGER UserTime;
95 LARGE_INTEGER KernelTime;
96 UNICODE_STRING ImageName;
97 DWORD BasePriority;
98 HANDLE ProcessId;
99 HANDLE ParentProcessId;
100 ULONG HandleCount;
101 ULONG Reserved2[2];
102 VM_COUNTERS VMCounters;
103 IO_COUNTERS IOCounters;
104 SYSTEM_THREAD Threads[1];
105 }; // SYSTEM_PROCESS_INFORMATION
106 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION;
107
108 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0);
109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32);
110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56);
111 #if KMP_ARCH_X86
112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68);
113 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76);
114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88);
115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136);
116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184);
117 #else
118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80);
119 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96);
120 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112);
121 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208);
122 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256);
123 #endif
124
125 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS,
126 PVOID, ULONG, PULONG);
127 NtQuerySystemInformation_t NtQuerySystemInformation = NULL;
128
129 HMODULE ntdll = NULL;
130
131 /* End of NtQuerySystemInformation()-related code */
132
133 static HMODULE kernel32 = NULL;
134
135 #if KMP_HANDLE_SIGNALS
136 typedef void (*sig_func_t)(int);
137 static sig_func_t __kmp_sighldrs[NSIG];
138 static int __kmp_siginstalled[NSIG];
139 #endif
140
141 #if KMP_USE_MONITOR
142 static HANDLE __kmp_monitor_ev;
143 #endif
144 static kmp_int64 __kmp_win32_time;
145 double __kmp_win32_tick;
146
147 int __kmp_init_runtime = FALSE;
148 CRITICAL_SECTION __kmp_win32_section;
149
__kmp_win32_mutex_init(kmp_win32_mutex_t * mx)150 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) {
151 InitializeCriticalSection(&mx->cs);
152 #if USE_ITT_BUILD
153 __kmp_itt_system_object_created(&mx->cs, "Critical Section");
154 #endif /* USE_ITT_BUILD */
155 }
156
__kmp_win32_mutex_destroy(kmp_win32_mutex_t * mx)157 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) {
158 DeleteCriticalSection(&mx->cs);
159 }
160
__kmp_win32_mutex_lock(kmp_win32_mutex_t * mx)161 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) {
162 EnterCriticalSection(&mx->cs);
163 }
164
__kmp_win32_mutex_trylock(kmp_win32_mutex_t * mx)165 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) {
166 return TryEnterCriticalSection(&mx->cs);
167 }
168
__kmp_win32_mutex_unlock(kmp_win32_mutex_t * mx)169 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) {
170 LeaveCriticalSection(&mx->cs);
171 }
172
__kmp_win32_cond_init(kmp_win32_cond_t * cv)173 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) {
174 cv->waiters_count_ = 0;
175 cv->wait_generation_count_ = 0;
176 cv->release_count_ = 0;
177
178 /* Initialize the critical section */
179 __kmp_win32_mutex_init(&cv->waiters_count_lock_);
180
181 /* Create a manual-reset event. */
182 cv->event_ = CreateEvent(NULL, // no security
183 TRUE, // manual-reset
184 FALSE, // non-signaled initially
185 NULL); // unnamed
186 #if USE_ITT_BUILD
187 __kmp_itt_system_object_created(cv->event_, "Event");
188 #endif /* USE_ITT_BUILD */
189 }
190
__kmp_win32_cond_destroy(kmp_win32_cond_t * cv)191 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) {
192 __kmp_win32_mutex_destroy(&cv->waiters_count_lock_);
193 __kmp_free_handle(cv->event_);
194 memset(cv, '\0', sizeof(*cv));
195 }
196
197 /* TODO associate cv with a team instead of a thread so as to optimize
198 the case where we wake up a whole team */
199
200 template <class C>
__kmp_win32_cond_wait(kmp_win32_cond_t * cv,kmp_win32_mutex_t * mx,kmp_info_t * th,C * flag)201 static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx,
202 kmp_info_t *th, C *flag) {
203 int my_generation;
204 int last_waiter;
205
206 /* Avoid race conditions */
207 __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
208
209 /* Increment count of waiters */
210 cv->waiters_count_++;
211
212 /* Store current generation in our activation record. */
213 my_generation = cv->wait_generation_count_;
214
215 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
216 __kmp_win32_mutex_unlock(mx);
217
218 for (;;) {
219 int wait_done = 0;
220 DWORD res, timeout = 5000; // just tried to quess an appropriate number
221 /* Wait until the event is signaled */
222 res = WaitForSingleObject(cv->event_, timeout);
223
224 if (res == WAIT_OBJECT_0) {
225 // event signaled
226 __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
227 /* Exit the loop when the <cv->event_> is signaled and there are still
228 waiting threads from this <wait_generation> that haven't been released
229 from this wait yet. */
230 wait_done = (cv->release_count_ > 0) &&
231 (cv->wait_generation_count_ != my_generation);
232 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
233 } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) {
234 // check if the flag and cv counters are in consistent state
235 // as MS sent us debug dump whith inconsistent state of data
236 __kmp_win32_mutex_lock(mx);
237 typename C::flag_t old_f = flag->set_sleeping();
238 if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) {
239 __kmp_win32_mutex_unlock(mx);
240 continue;
241 }
242 // condition fulfilled, exiting
243 old_f = flag->unset_sleeping();
244 KMP_DEBUG_ASSERT(old_f & KMP_BARRIER_SLEEP_STATE);
245 TCW_PTR(th->th.th_sleep_loc, NULL);
246 KF_TRACE(50,
247 ("__kmp_win32_cond_wait: exiting, condition "
248 "fulfilled: flag's loc(%p): %u => %u\n",
249 flag->get(), (unsigned int)old_f, (unsigned int)flag->load()));
250
251 __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
252 KMP_DEBUG_ASSERT(cv->waiters_count_ > 0);
253 cv->release_count_ = cv->waiters_count_;
254 cv->wait_generation_count_++;
255 wait_done = 1;
256 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
257
258 __kmp_win32_mutex_unlock(mx);
259 }
260 /* there used to be a semicolon after the if statement, it looked like a
261 bug, so i removed it */
262 if (wait_done)
263 break;
264 }
265
266 __kmp_win32_mutex_lock(mx);
267 __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
268
269 cv->waiters_count_--;
270 cv->release_count_--;
271
272 last_waiter = (cv->release_count_ == 0);
273
274 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
275
276 if (last_waiter) {
277 /* We're the last waiter to be notified, so reset the manual event. */
278 ResetEvent(cv->event_);
279 }
280 }
281
__kmp_win32_cond_broadcast(kmp_win32_cond_t * cv)282 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) {
283 __kmp_win32_mutex_lock(&cv->waiters_count_lock_);
284
285 if (cv->waiters_count_ > 0) {
286 SetEvent(cv->event_);
287 /* Release all the threads in this generation. */
288
289 cv->release_count_ = cv->waiters_count_;
290
291 /* Start a new generation. */
292 cv->wait_generation_count_++;
293 }
294
295 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
296 }
297
__kmp_win32_cond_signal(kmp_win32_cond_t * cv)298 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) {
299 __kmp_win32_cond_broadcast(cv);
300 }
301
__kmp_enable(int new_state)302 void __kmp_enable(int new_state) {
303 if (__kmp_init_runtime)
304 LeaveCriticalSection(&__kmp_win32_section);
305 }
306
__kmp_disable(int * old_state)307 void __kmp_disable(int *old_state) {
308 *old_state = 0;
309
310 if (__kmp_init_runtime)
311 EnterCriticalSection(&__kmp_win32_section);
312 }
313
__kmp_suspend_initialize(void)314 void __kmp_suspend_initialize(void) { /* do nothing */
315 }
316
__kmp_suspend_initialize_thread(kmp_info_t * th)317 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
318 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init);
319 int new_value = TRUE;
320 // Return if already initialized
321 if (old_value == new_value)
322 return;
323 // Wait, then return if being initialized
324 if (old_value == -1 ||
325 !__kmp_atomic_compare_store(&th->th.th_suspend_init, old_value, -1)) {
326 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init) != new_value) {
327 KMP_CPU_PAUSE();
328 }
329 } else {
330 // Claim to be the initializer and do initializations
331 __kmp_win32_cond_init(&th->th.th_suspend_cv);
332 __kmp_win32_mutex_init(&th->th.th_suspend_mx);
333 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, new_value);
334 }
335 }
336
__kmp_suspend_uninitialize_thread(kmp_info_t * th)337 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
338 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init)) {
339 /* this means we have initialize the suspension pthread objects for this
340 thread in this instance of the process */
341 __kmp_win32_cond_destroy(&th->th.th_suspend_cv);
342 __kmp_win32_mutex_destroy(&th->th.th_suspend_mx);
343 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, FALSE);
344 }
345 }
346
__kmp_try_suspend_mx(kmp_info_t * th)347 int __kmp_try_suspend_mx(kmp_info_t *th) {
348 return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx);
349 }
350
__kmp_lock_suspend_mx(kmp_info_t * th)351 void __kmp_lock_suspend_mx(kmp_info_t *th) {
352 __kmp_win32_mutex_lock(&th->th.th_suspend_mx);
353 }
354
__kmp_unlock_suspend_mx(kmp_info_t * th)355 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
356 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
357 }
358
359 /* This routine puts the calling thread to sleep after setting the
360 sleep bit for the indicated flag variable to true. */
361 template <class C>
__kmp_suspend_template(int th_gtid,C * flag)362 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
363 kmp_info_t *th = __kmp_threads[th_gtid];
364 typename C::flag_t old_spin;
365
366 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n",
367 th_gtid, flag->get()));
368
369 __kmp_suspend_initialize_thread(th);
370 __kmp_lock_suspend_mx(th);
371
372 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's"
373 " loc(%p)\n",
374 th_gtid, flag->get()));
375
376 /* TODO: shouldn't this use release semantics to ensure that
377 __kmp_suspend_initialize_thread gets called first? */
378 old_spin = flag->set_sleeping();
379 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
380 __kmp_pause_status != kmp_soft_paused) {
381 flag->unset_sleeping();
382 __kmp_unlock_suspend_mx(th);
383 return;
384 }
385
386 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's"
387 " loc(%p)==%u\n",
388 th_gtid, flag->get(), (unsigned int)flag->load()));
389
390 if (flag->done_check_val(old_spin)) {
391 old_spin = flag->unset_sleeping();
392 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
393 "for flag's loc(%p)\n",
394 th_gtid, flag->get()));
395 } else {
396 #ifdef DEBUG_SUSPEND
397 __kmp_suspend_count++;
398 #endif
399 /* Encapsulate in a loop as the documentation states that this may "with
400 low probability" return when the condition variable has not been signaled
401 or broadcast */
402 int deactivated = FALSE;
403 TCW_PTR(th->th.th_sleep_loc, (void *)flag);
404 while (flag->is_sleeping()) {
405 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
406 "kmp_win32_cond_wait()\n",
407 th_gtid));
408 // Mark the thread as no longer active (only in the first iteration of the
409 // loop).
410 if (!deactivated) {
411 th->th.th_active = FALSE;
412 if (th->th.th_active_in_pool) {
413 th->th.th_active_in_pool = FALSE;
414 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
415 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
416 }
417 deactivated = TRUE;
418 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
419 flag);
420 } else {
421 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
422 flag);
423 }
424
425 #ifdef KMP_DEBUG
426 if (flag->is_sleeping()) {
427 KF_TRACE(100,
428 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
429 }
430 #endif /* KMP_DEBUG */
431
432 } // while
433
434 // Mark the thread as active again (if it was previous marked as inactive)
435 if (deactivated) {
436 th->th.th_active = TRUE;
437 if (TCR_4(th->th.th_in_pool)) {
438 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
439 th->th.th_active_in_pool = TRUE;
440 }
441 }
442 }
443
444 __kmp_unlock_suspend_mx(th);
445 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
446 }
447
448 template <bool C, bool S>
__kmp_suspend_32(int th_gtid,kmp_flag_32<C,S> * flag)449 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
450 __kmp_suspend_template(th_gtid, flag);
451 }
452 template <bool C, bool S>
__kmp_suspend_64(int th_gtid,kmp_flag_64<C,S> * flag)453 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
454 __kmp_suspend_template(th_gtid, flag);
455 }
__kmp_suspend_oncore(int th_gtid,kmp_flag_oncore * flag)456 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
457 __kmp_suspend_template(th_gtid, flag);
458 }
459
460 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
461 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
462 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
463
464 /* This routine signals the thread specified by target_gtid to wake up
465 after setting the sleep bit indicated by the flag argument to FALSE */
466 template <class C>
__kmp_resume_template(int target_gtid,C * flag)467 static inline void __kmp_resume_template(int target_gtid, C *flag) {
468 kmp_info_t *th = __kmp_threads[target_gtid];
469
470 #ifdef KMP_DEBUG
471 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
472 #endif
473
474 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
475 gtid, target_gtid));
476
477 __kmp_suspend_initialize_thread(th);
478 __kmp_lock_suspend_mx(th);
479
480 if (!flag) { // coming from __kmp_null_resume_wrapper
481 flag = (C *)th->th.th_sleep_loc;
482 }
483
484 // First, check if the flag is null or its type has changed. If so, someone
485 // else woke it up.
486 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
487 // simply shows what
488 // flag was cast to
489 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
490 "awake: flag's loc(%p)\n",
491 gtid, target_gtid, NULL));
492 __kmp_unlock_suspend_mx(th);
493 return;
494 } else {
495 typename C::flag_t old_spin = flag->unset_sleeping();
496 if (!flag->is_sleeping_val(old_spin)) {
497 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
498 "awake: flag's loc(%p): %u => %u\n",
499 gtid, target_gtid, flag->get(), (unsigned int)old_spin,
500 (unsigned int)flag->load()));
501 __kmp_unlock_suspend_mx(th);
502 return;
503 }
504 }
505 TCW_PTR(th->th.th_sleep_loc, NULL);
506 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep "
507 "bit for flag's loc(%p)\n",
508 gtid, target_gtid, flag->get()));
509
510 __kmp_win32_cond_signal(&th->th.th_suspend_cv);
511 __kmp_unlock_suspend_mx(th);
512
513 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
514 " for T#%d\n",
515 gtid, target_gtid));
516 }
517
518 template <bool C, bool S>
__kmp_resume_32(int target_gtid,kmp_flag_32<C,S> * flag)519 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
520 __kmp_resume_template(target_gtid, flag);
521 }
522 template <bool C, bool S>
__kmp_resume_64(int target_gtid,kmp_flag_64<C,S> * flag)523 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
524 __kmp_resume_template(target_gtid, flag);
525 }
__kmp_resume_oncore(int target_gtid,kmp_flag_oncore * flag)526 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
527 __kmp_resume_template(target_gtid, flag);
528 }
529
530 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
531 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
532
__kmp_yield()533 void __kmp_yield() { Sleep(0); }
534
__kmp_gtid_set_specific(int gtid)535 void __kmp_gtid_set_specific(int gtid) {
536 if (__kmp_init_gtid) {
537 KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid,
538 __kmp_gtid_threadprivate_key));
539 if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1)))
540 KMP_FATAL(TLSSetValueFailed);
541 } else {
542 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
543 }
544 }
545
__kmp_gtid_get_specific()546 int __kmp_gtid_get_specific() {
547 int gtid;
548 if (!__kmp_init_gtid) {
549 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
550 "KMP_GTID_SHUTDOWN\n"));
551 return KMP_GTID_SHUTDOWN;
552 }
553 gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key);
554 if (gtid == 0) {
555 gtid = KMP_GTID_DNE;
556 } else {
557 gtid--;
558 }
559 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
560 __kmp_gtid_threadprivate_key, gtid));
561 return gtid;
562 }
563
__kmp_affinity_bind_thread(int proc)564 void __kmp_affinity_bind_thread(int proc) {
565 if (__kmp_num_proc_groups > 1) {
566 // Form the GROUP_AFFINITY struct directly, rather than filling
567 // out a bit vector and calling __kmp_set_system_affinity().
568 GROUP_AFFINITY ga;
569 KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT *
570 sizeof(DWORD_PTR))));
571 ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR));
572 ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR)));
573 ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;
574
575 KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
576 if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
577 DWORD error = GetLastError();
578 if (__kmp_affinity_verbose) { // AC: continue silently if not verbose
579 kmp_msg_t err_code = KMP_ERR(error);
580 __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code,
581 __kmp_msg_null);
582 if (__kmp_generate_warnings == kmp_warnings_off) {
583 __kmp_str_free(&err_code.str);
584 }
585 }
586 }
587 } else {
588 kmp_affin_mask_t *mask;
589 KMP_CPU_ALLOC_ON_STACK(mask);
590 KMP_CPU_ZERO(mask);
591 KMP_CPU_SET(proc, mask);
592 __kmp_set_system_affinity(mask, TRUE);
593 KMP_CPU_FREE_FROM_STACK(mask);
594 }
595 }
596
__kmp_affinity_determine_capable(const char * env_var)597 void __kmp_affinity_determine_capable(const char *env_var) {
598 // All versions of Windows* OS (since Win '95) support
599 // SetThreadAffinityMask().
600
601 #if KMP_GROUP_AFFINITY
602 KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR));
603 #else
604 KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR));
605 #endif
606
607 KA_TRACE(10, ("__kmp_affinity_determine_capable: "
608 "Windows* OS affinity interface functional (mask size = "
609 "%" KMP_SIZE_T_SPEC ").\n",
610 __kmp_affin_mask_size));
611 }
612
__kmp_read_cpu_time(void)613 double __kmp_read_cpu_time(void) {
614 FILETIME CreationTime, ExitTime, KernelTime, UserTime;
615 int status;
616 double cpu_time;
617
618 cpu_time = 0;
619
620 status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime,
621 &KernelTime, &UserTime);
622
623 if (status) {
624 double sec = 0;
625
626 sec += KernelTime.dwHighDateTime;
627 sec += UserTime.dwHighDateTime;
628
629 /* Shift left by 32 bits */
630 sec *= (double)(1 << 16) * (double)(1 << 16);
631
632 sec += KernelTime.dwLowDateTime;
633 sec += UserTime.dwLowDateTime;
634
635 cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC;
636 }
637
638 return cpu_time;
639 }
640
__kmp_read_system_info(struct kmp_sys_info * info)641 int __kmp_read_system_info(struct kmp_sys_info *info) {
642 info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */
643 info->minflt = 0; /* the number of page faults serviced without any I/O */
644 info->majflt = 0; /* the number of page faults serviced that required I/O */
645 info->nswap = 0; // the number of times a process was "swapped" out of memory
646 info->inblock = 0; // the number of times the file system had to perform input
647 info->oublock = 0; // number of times the file system had to perform output
648 info->nvcsw = 0; /* the number of times a context switch was voluntarily */
649 info->nivcsw = 0; /* the number of times a context switch was forced */
650
651 return 1;
652 }
653
__kmp_runtime_initialize(void)654 void __kmp_runtime_initialize(void) {
655 SYSTEM_INFO info;
656 kmp_str_buf_t path;
657 UINT path_size;
658
659 if (__kmp_init_runtime) {
660 return;
661 }
662
663 #if KMP_DYNAMIC_LIB
664 /* Pin dynamic library for the lifetime of application */
665 {
666 // First, turn off error message boxes
667 UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
668 HMODULE h;
669 BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
670 GET_MODULE_HANDLE_EX_FLAG_PIN,
671 (LPCTSTR)&__kmp_serial_initialize, &h);
672 (void)ret;
673 KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded");
674 SetErrorMode(err_mode); // Restore error mode
675 KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n"));
676 }
677 #endif
678
679 InitializeCriticalSection(&__kmp_win32_section);
680 #if USE_ITT_BUILD
681 __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section");
682 #endif /* USE_ITT_BUILD */
683 __kmp_initialize_system_tick();
684
685 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
686 if (!__kmp_cpuinfo.initialized) {
687 __kmp_query_cpuid(&__kmp_cpuinfo);
688 }
689 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
690
691 /* Set up minimum number of threads to switch to TLS gtid */
692 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
693 // Windows* OS, static library.
694 /* New thread may use stack space previously used by another thread,
695 currently terminated. On Windows* OS, in case of static linking, we do not
696 know the moment of thread termination, and our structures (__kmp_threads
697 and __kmp_root arrays) are still keep info about dead threads. This leads
698 to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid
699 (by searching through stack addresses of all known threads) for
700 unregistered foreign tread.
701
702 Setting __kmp_tls_gtid_min to 0 workarounds this problem:
703 __kmp_get_global_thread_id() does not search through stacks, but get gtid
704 from TLS immediately.
705 --ln
706 */
707 __kmp_tls_gtid_min = 0;
708 #else
709 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
710 #endif
711
712 /* for the static library */
713 if (!__kmp_gtid_threadprivate_key) {
714 __kmp_gtid_threadprivate_key = TlsAlloc();
715 if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) {
716 KMP_FATAL(TLSOutOfIndexes);
717 }
718 }
719
720 // Load ntdll.dll.
721 /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue
722 (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We
723 have to specify full path to the library. */
724 __kmp_str_buf_init(&path);
725 path_size = GetSystemDirectory(path.str, path.size);
726 KMP_DEBUG_ASSERT(path_size > 0);
727 if (path_size >= path.size) {
728 // Buffer is too short. Expand the buffer and try again.
729 __kmp_str_buf_reserve(&path, path_size);
730 path_size = GetSystemDirectory(path.str, path.size);
731 KMP_DEBUG_ASSERT(path_size > 0);
732 }
733 if (path_size > 0 && path_size < path.size) {
734 // Now we have system directory name in the buffer.
735 // Append backslash and name of dll to form full path,
736 path.used = path_size;
737 __kmp_str_buf_print(&path, "\\%s", "ntdll.dll");
738
739 // Now load ntdll using full path.
740 ntdll = GetModuleHandle(path.str);
741 }
742
743 KMP_DEBUG_ASSERT(ntdll != NULL);
744 if (ntdll != NULL) {
745 NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress(
746 ntdll, "NtQuerySystemInformation");
747 }
748 KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL);
749
750 #if KMP_GROUP_AFFINITY
751 // Load kernel32.dll.
752 // Same caveat - must use full system path name.
753 if (path_size > 0 && path_size < path.size) {
754 // Truncate the buffer back to just the system path length,
755 // discarding "\\ntdll.dll", and replacing it with "kernel32.dll".
756 path.used = path_size;
757 __kmp_str_buf_print(&path, "\\%s", "kernel32.dll");
758
759 // Load kernel32.dll using full path.
760 kernel32 = GetModuleHandle(path.str);
761 KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str));
762
763 // Load the function pointers to kernel32.dll routines
764 // that may or may not exist on this system.
765 if (kernel32 != NULL) {
766 __kmp_GetActiveProcessorCount =
767 (kmp_GetActiveProcessorCount_t)GetProcAddress(
768 kernel32, "GetActiveProcessorCount");
769 __kmp_GetActiveProcessorGroupCount =
770 (kmp_GetActiveProcessorGroupCount_t)GetProcAddress(
771 kernel32, "GetActiveProcessorGroupCount");
772 __kmp_GetThreadGroupAffinity =
773 (kmp_GetThreadGroupAffinity_t)GetProcAddress(
774 kernel32, "GetThreadGroupAffinity");
775 __kmp_SetThreadGroupAffinity =
776 (kmp_SetThreadGroupAffinity_t)GetProcAddress(
777 kernel32, "SetThreadGroupAffinity");
778
779 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount"
780 " = %p\n",
781 __kmp_GetActiveProcessorCount));
782 KA_TRACE(10, ("__kmp_runtime_initialize: "
783 "__kmp_GetActiveProcessorGroupCount = %p\n",
784 __kmp_GetActiveProcessorGroupCount));
785 KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity"
786 " = %p\n",
787 __kmp_GetThreadGroupAffinity));
788 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity"
789 " = %p\n",
790 __kmp_SetThreadGroupAffinity));
791 KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n",
792 sizeof(kmp_affin_mask_t)));
793
794 // See if group affinity is supported on this system.
795 // If so, calculate the #groups and #procs.
796 //
797 // Group affinity was introduced with Windows* 7 OS and
798 // Windows* Server 2008 R2 OS.
799 if ((__kmp_GetActiveProcessorCount != NULL) &&
800 (__kmp_GetActiveProcessorGroupCount != NULL) &&
801 (__kmp_GetThreadGroupAffinity != NULL) &&
802 (__kmp_SetThreadGroupAffinity != NULL) &&
803 ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) >
804 1)) {
805 // Calculate the total number of active OS procs.
806 int i;
807
808 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
809 " detected\n",
810 __kmp_num_proc_groups));
811
812 __kmp_xproc = 0;
813
814 for (i = 0; i < __kmp_num_proc_groups; i++) {
815 DWORD size = __kmp_GetActiveProcessorCount(i);
816 __kmp_xproc += size;
817 KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n",
818 i, size));
819 }
820 } else {
821 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
822 " detected\n",
823 __kmp_num_proc_groups));
824 }
825 }
826 }
827 if (__kmp_num_proc_groups <= 1) {
828 GetSystemInfo(&info);
829 __kmp_xproc = info.dwNumberOfProcessors;
830 }
831 #else
832 (void)kernel32;
833 GetSystemInfo(&info);
834 __kmp_xproc = info.dwNumberOfProcessors;
835 #endif /* KMP_GROUP_AFFINITY */
836
837 // If the OS said there were 0 procs, take a guess and use a value of 2.
838 // This is done for Linux* OS, also. Do we need error / warning?
839 if (__kmp_xproc <= 0) {
840 __kmp_xproc = 2;
841 }
842
843 KA_TRACE(5,
844 ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc));
845
846 __kmp_str_buf_free(&path);
847
848 #if USE_ITT_BUILD
849 __kmp_itt_initialize();
850 #endif /* USE_ITT_BUILD */
851
852 __kmp_init_runtime = TRUE;
853 } // __kmp_runtime_initialize
854
__kmp_runtime_destroy(void)855 void __kmp_runtime_destroy(void) {
856 if (!__kmp_init_runtime) {
857 return;
858 }
859
860 #if USE_ITT_BUILD
861 __kmp_itt_destroy();
862 #endif /* USE_ITT_BUILD */
863
864 /* we can't DeleteCriticalsection( & __kmp_win32_section ); */
865 /* due to the KX_TRACE() commands */
866 KA_TRACE(40, ("__kmp_runtime_destroy\n"));
867
868 if (__kmp_gtid_threadprivate_key) {
869 TlsFree(__kmp_gtid_threadprivate_key);
870 __kmp_gtid_threadprivate_key = 0;
871 }
872
873 __kmp_affinity_uninitialize();
874 DeleteCriticalSection(&__kmp_win32_section);
875
876 ntdll = NULL;
877 NtQuerySystemInformation = NULL;
878
879 #if KMP_ARCH_X86_64
880 kernel32 = NULL;
881 __kmp_GetActiveProcessorCount = NULL;
882 __kmp_GetActiveProcessorGroupCount = NULL;
883 __kmp_GetThreadGroupAffinity = NULL;
884 __kmp_SetThreadGroupAffinity = NULL;
885 #endif // KMP_ARCH_X86_64
886
887 __kmp_init_runtime = FALSE;
888 }
889
__kmp_terminate_thread(int gtid)890 void __kmp_terminate_thread(int gtid) {
891 kmp_info_t *th = __kmp_threads[gtid];
892
893 if (!th)
894 return;
895
896 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
897
898 if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) {
899 /* It's OK, the thread may have exited already */
900 }
901 __kmp_free_handle(th->th.th_info.ds.ds_thread);
902 }
903
__kmp_clear_system_time(void)904 void __kmp_clear_system_time(void) {
905 BOOL status;
906 LARGE_INTEGER time;
907 status = QueryPerformanceCounter(&time);
908 __kmp_win32_time = (kmp_int64)time.QuadPart;
909 }
910
__kmp_initialize_system_tick(void)911 void __kmp_initialize_system_tick(void) {
912 {
913 BOOL status;
914 LARGE_INTEGER freq;
915
916 status = QueryPerformanceFrequency(&freq);
917 if (!status) {
918 DWORD error = GetLastError();
919 __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"),
920 KMP_ERR(error), __kmp_msg_null);
921
922 } else {
923 __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart;
924 }
925 }
926 }
927
928 /* Calculate the elapsed wall clock time for the user */
929
__kmp_elapsed(double * t)930 void __kmp_elapsed(double *t) {
931 BOOL status;
932 LARGE_INTEGER now;
933 status = QueryPerformanceCounter(&now);
934 *t = ((double)now.QuadPart) * __kmp_win32_tick;
935 }
936
937 /* Calculate the elapsed wall clock tick for the user */
938
__kmp_elapsed_tick(double * t)939 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; }
940
__kmp_read_system_time(double * delta)941 void __kmp_read_system_time(double *delta) {
942 if (delta != NULL) {
943 BOOL status;
944 LARGE_INTEGER now;
945
946 status = QueryPerformanceCounter(&now);
947
948 *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) *
949 __kmp_win32_tick;
950 }
951 }
952
953 /* Return the current time stamp in nsec */
__kmp_now_nsec()954 kmp_uint64 __kmp_now_nsec() {
955 LARGE_INTEGER now;
956 QueryPerformanceCounter(&now);
957 return 1e9 * __kmp_win32_tick * now.QuadPart;
958 }
959
__kmp_launch_worker(void * arg)960 extern "C" void *__stdcall __kmp_launch_worker(void *arg) {
961 volatile void *stack_data;
962 void *exit_val;
963 void *padding = 0;
964 kmp_info_t *this_thr = (kmp_info_t *)arg;
965 int gtid;
966
967 gtid = this_thr->th.th_info.ds.ds_gtid;
968 __kmp_gtid_set_specific(gtid);
969 #ifdef KMP_TDATA_GTID
970 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
971 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
972 "reference: http://support.microsoft.com/kb/118816"
973 //__kmp_gtid = gtid;
974 #endif
975
976 #if USE_ITT_BUILD
977 __kmp_itt_thread_name(gtid);
978 #endif /* USE_ITT_BUILD */
979
980 __kmp_affinity_set_init_mask(gtid, FALSE);
981
982 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
983 // Set FP control regs to be a copy of the parallel initialization thread's.
984 __kmp_clear_x87_fpu_status_word();
985 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
986 __kmp_load_mxcsr(&__kmp_init_mxcsr);
987 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
988
989 if (__kmp_stkoffset > 0 && gtid > 0) {
990 padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
991 }
992
993 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
994 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
995 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
996
997 if (TCR_4(__kmp_gtid_mode) <
998 2) { // check stack only if it is used to get gtid
999 TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data);
1000 KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE);
1001 __kmp_check_stack_overlap(this_thr);
1002 }
1003 KMP_MB();
1004 exit_val = __kmp_launch_thread(this_thr);
1005 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
1006 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1007 KMP_MB();
1008 return exit_val;
1009 }
1010
1011 #if KMP_USE_MONITOR
1012 /* The monitor thread controls all of the threads in the complex */
1013
__kmp_launch_monitor(void * arg)1014 void *__stdcall __kmp_launch_monitor(void *arg) {
1015 DWORD wait_status;
1016 kmp_thread_t monitor;
1017 int status;
1018 int interval;
1019 kmp_info_t *this_thr = (kmp_info_t *)arg;
1020
1021 KMP_DEBUG_ASSERT(__kmp_init_monitor);
1022 TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started
1023 // TODO: hide "2" in enum (like {true,false,started})
1024 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1025 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
1026
1027 KMP_MB(); /* Flush all pending memory write invalidates. */
1028 KA_TRACE(10, ("__kmp_launch_monitor: launched\n"));
1029
1030 monitor = GetCurrentThread();
1031
1032 /* set thread priority */
1033 status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST);
1034 if (!status) {
1035 DWORD error = GetLastError();
1036 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1037 }
1038
1039 /* register us as monitor */
1040 __kmp_gtid_set_specific(KMP_GTID_MONITOR);
1041 #ifdef KMP_TDATA_GTID
1042 #error "This define causes problems with LoadLibrary() + declspec(thread) " \
1043 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
1044 "reference: http://support.microsoft.com/kb/118816"
1045 //__kmp_gtid = KMP_GTID_MONITOR;
1046 #endif
1047
1048 #if USE_ITT_BUILD
1049 __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore
1050 // monitor thread.
1051 #endif /* USE_ITT_BUILD */
1052
1053 KMP_MB(); /* Flush all pending memory write invalidates. */
1054
1055 interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */
1056
1057 while (!TCR_4(__kmp_global.g.g_done)) {
1058 /* This thread monitors the state of the system */
1059
1060 KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
1061
1062 wait_status = WaitForSingleObject(__kmp_monitor_ev, interval);
1063
1064 if (wait_status == WAIT_TIMEOUT) {
1065 TCW_4(__kmp_global.g.g_time.dt.t_value,
1066 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
1067 }
1068
1069 KMP_MB(); /* Flush all pending memory write invalidates. */
1070 }
1071
1072 KA_TRACE(10, ("__kmp_launch_monitor: finished\n"));
1073
1074 status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL);
1075 if (!status) {
1076 DWORD error = GetLastError();
1077 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
1078 }
1079
1080 if (__kmp_global.g.g_abort != 0) {
1081 /* now we need to terminate the worker threads */
1082 /* the value of t_abort is the signal we caught */
1083 int gtid;
1084
1085 KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n",
1086 (__kmp_global.g.g_abort)));
1087
1088 /* terminate the OpenMP worker threads */
1089 /* TODO this is not valid for sibling threads!!
1090 * the uber master might not be 0 anymore.. */
1091 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
1092 __kmp_terminate_thread(gtid);
1093
1094 __kmp_cleanup();
1095
1096 Sleep(0);
1097
1098 KA_TRACE(10,
1099 ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort));
1100
1101 if (__kmp_global.g.g_abort > 0) {
1102 raise(__kmp_global.g.g_abort);
1103 }
1104 }
1105
1106 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
1107
1108 KMP_MB();
1109 return arg;
1110 }
1111 #endif
1112
__kmp_create_worker(int gtid,kmp_info_t * th,size_t stack_size)1113 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
1114 kmp_thread_t handle;
1115 DWORD idThread;
1116
1117 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
1118
1119 th->th.th_info.ds.ds_gtid = gtid;
1120
1121 if (KMP_UBER_GTID(gtid)) {
1122 int stack_data;
1123
1124 /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for
1125 other threads to use. Is it appropriate to just use GetCurrentThread?
1126 When should we close this handle? When unregistering the root? */
1127 {
1128 BOOL rc;
1129 rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
1130 GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0,
1131 FALSE, DUPLICATE_SAME_ACCESS);
1132 KMP_ASSERT(rc);
1133 KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, "
1134 "handle = %" KMP_UINTPTR_SPEC "\n",
1135 (LPVOID)th, th->th.th_info.ds.ds_thread));
1136 th->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
1137 }
1138 if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid
1139 /* we will dynamically update the stack range if gtid_mode == 1 */
1140 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
1141 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
1142 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
1143 __kmp_check_stack_overlap(th);
1144 }
1145 } else {
1146 KMP_MB(); /* Flush all pending memory write invalidates. */
1147
1148 /* Set stack size for this thread now. */
1149 KA_TRACE(10,
1150 ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n",
1151 stack_size));
1152
1153 stack_size += gtid * __kmp_stkoffset;
1154
1155 TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size);
1156 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
1157
1158 KA_TRACE(10,
1159 ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC
1160 " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n",
1161 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1162 (LPVOID)th, &idThread));
1163
1164 handle = CreateThread(
1165 NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker,
1166 (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1167
1168 KA_TRACE(10,
1169 ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC
1170 " bytes, &__kmp_launch_worker = %p, th = %p, "
1171 "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n",
1172 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
1173 (LPVOID)th, idThread, handle));
1174
1175 if (handle == 0) {
1176 DWORD error = GetLastError();
1177 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1178 } else {
1179 th->th.th_info.ds.ds_thread = handle;
1180 }
1181
1182 KMP_MB(); /* Flush all pending memory write invalidates. */
1183 }
1184
1185 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
1186 }
1187
__kmp_still_running(kmp_info_t * th)1188 int __kmp_still_running(kmp_info_t *th) {
1189 return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0));
1190 }
1191
1192 #if KMP_USE_MONITOR
__kmp_create_monitor(kmp_info_t * th)1193 void __kmp_create_monitor(kmp_info_t *th) {
1194 kmp_thread_t handle;
1195 DWORD idThread;
1196 int ideal, new_ideal;
1197
1198 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
1199 // We don't need monitor thread in case of MAX_BLOCKTIME
1200 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
1201 "MAX blocktime\n"));
1202 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
1203 th->th.th_info.ds.ds_gtid = 0;
1204 TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation
1205 return;
1206 }
1207 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
1208
1209 KMP_MB(); /* Flush all pending memory write invalidates. */
1210
1211 __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL);
1212 if (__kmp_monitor_ev == NULL) {
1213 DWORD error = GetLastError();
1214 __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null);
1215 }
1216 #if USE_ITT_BUILD
1217 __kmp_itt_system_object_created(__kmp_monitor_ev, "Event");
1218 #endif /* USE_ITT_BUILD */
1219
1220 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
1221 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
1222
1223 // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how
1224 // to automatically expand stacksize based on CreateThread error code.
1225 if (__kmp_monitor_stksize == 0) {
1226 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
1227 }
1228 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
1229 __kmp_monitor_stksize = __kmp_sys_min_stksize;
1230 }
1231
1232 KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n",
1233 (int)__kmp_monitor_stksize));
1234
1235 TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
1236
1237 handle =
1238 CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize,
1239 (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th,
1240 STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
1241 if (handle == 0) {
1242 DWORD error = GetLastError();
1243 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
1244 } else
1245 th->th.th_info.ds.ds_thread = handle;
1246
1247 KMP_MB(); /* Flush all pending memory write invalidates. */
1248
1249 KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n",
1250 (void *)th->th.th_info.ds.ds_thread));
1251 }
1252 #endif
1253
1254 /* Check to see if thread is still alive.
1255 NOTE: The ExitProcess(code) system call causes all threads to Terminate
1256 with a exit_val = code. Because of this we can not rely on exit_val having
1257 any particular value. So this routine may return STILL_ALIVE in exit_val
1258 even after the thread is dead. */
1259
__kmp_is_thread_alive(kmp_info_t * th,DWORD * exit_val)1260 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) {
1261 DWORD rc;
1262 rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val);
1263 if (rc == 0) {
1264 DWORD error = GetLastError();
1265 __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error),
1266 __kmp_msg_null);
1267 }
1268 return (*exit_val == STILL_ACTIVE);
1269 }
1270
__kmp_exit_thread(int exit_status)1271 void __kmp_exit_thread(int exit_status) {
1272 ExitThread(exit_status);
1273 } // __kmp_exit_thread
1274
1275 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor().
__kmp_reap_common(kmp_info_t * th)1276 static void __kmp_reap_common(kmp_info_t *th) {
1277 DWORD exit_val;
1278
1279 KMP_MB(); /* Flush all pending memory write invalidates. */
1280
1281 KA_TRACE(
1282 10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid));
1283
1284 /* 2006-10-19:
1285 There are two opposite situations:
1286 1. Windows* OS keep thread alive after it resets ds_alive flag and
1287 exits from thread function. (For example, see C70770/Q394281 "unloading of
1288 dll based on OMP is very slow".)
1289 2. Windows* OS may kill thread before it resets ds_alive flag.
1290
1291 Right solution seems to be waiting for *either* thread termination *or*
1292 ds_alive resetting. */
1293 {
1294 // TODO: This code is very similar to KMP_WAIT. Need to generalize
1295 // KMP_WAIT to cover this usage also.
1296 void *obj = NULL;
1297 kmp_uint32 spins;
1298 #if USE_ITT_BUILD
1299 KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive);
1300 #endif /* USE_ITT_BUILD */
1301 KMP_INIT_YIELD(spins);
1302 do {
1303 #if USE_ITT_BUILD
1304 KMP_FSYNC_SPIN_PREPARE(obj);
1305 #endif /* USE_ITT_BUILD */
1306 __kmp_is_thread_alive(th, &exit_val);
1307 KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
1308 } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive));
1309 #if USE_ITT_BUILD
1310 if (exit_val == STILL_ACTIVE) {
1311 KMP_FSYNC_CANCEL(obj);
1312 } else {
1313 KMP_FSYNC_SPIN_ACQUIRED(obj);
1314 }
1315 #endif /* USE_ITT_BUILD */
1316 }
1317
1318 __kmp_free_handle(th->th.th_info.ds.ds_thread);
1319
1320 /* NOTE: The ExitProcess(code) system call causes all threads to Terminate
1321 with a exit_val = code. Because of this we can not rely on exit_val having
1322 any particular value. */
1323 if (exit_val == STILL_ACTIVE) {
1324 KA_TRACE(1, ("__kmp_reap_common: thread still active.\n"));
1325 } else if ((void *)exit_val != (void *)th) {
1326 KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n"));
1327 }
1328
1329 KA_TRACE(10,
1330 ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC
1331 "\n",
1332 th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread));
1333
1334 th->th.th_info.ds.ds_thread = 0;
1335 th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1336 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1337 th->th.th_info.ds.ds_thread_id = 0;
1338
1339 KMP_MB(); /* Flush all pending memory write invalidates. */
1340 }
1341
1342 #if KMP_USE_MONITOR
__kmp_reap_monitor(kmp_info_t * th)1343 void __kmp_reap_monitor(kmp_info_t *th) {
1344 int status;
1345
1346 KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n",
1347 (void *)th->th.th_info.ds.ds_thread));
1348
1349 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1350 // If both tid and gtid are 0, it means the monitor did not ever start.
1351 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1352 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1353 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1354 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1355 return;
1356 }
1357
1358 KMP_MB(); /* Flush all pending memory write invalidates. */
1359
1360 status = SetEvent(__kmp_monitor_ev);
1361 if (status == FALSE) {
1362 DWORD error = GetLastError();
1363 __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null);
1364 }
1365 KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n",
1366 th->th.th_info.ds.ds_gtid));
1367 __kmp_reap_common(th);
1368
1369 __kmp_free_handle(__kmp_monitor_ev);
1370
1371 KMP_MB(); /* Flush all pending memory write invalidates. */
1372 }
1373 #endif
1374
__kmp_reap_worker(kmp_info_t * th)1375 void __kmp_reap_worker(kmp_info_t *th) {
1376 KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n",
1377 th->th.th_info.ds.ds_gtid));
1378 __kmp_reap_common(th);
1379 }
1380
1381 #if KMP_HANDLE_SIGNALS
1382
__kmp_team_handler(int signo)1383 static void __kmp_team_handler(int signo) {
1384 if (__kmp_global.g.g_abort == 0) {
1385 // Stage 1 signal handler, let's shut down all of the threads.
1386 if (__kmp_debug_buf) {
1387 __kmp_dump_debug_buffer();
1388 }
1389 KMP_MB(); // Flush all pending memory write invalidates.
1390 TCW_4(__kmp_global.g.g_abort, signo);
1391 KMP_MB(); // Flush all pending memory write invalidates.
1392 TCW_4(__kmp_global.g.g_done, TRUE);
1393 KMP_MB(); // Flush all pending memory write invalidates.
1394 }
1395 } // __kmp_team_handler
1396
__kmp_signal(int signum,sig_func_t handler)1397 static sig_func_t __kmp_signal(int signum, sig_func_t handler) {
1398 sig_func_t old = signal(signum, handler);
1399 if (old == SIG_ERR) {
1400 int error = errno;
1401 __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error),
1402 __kmp_msg_null);
1403 }
1404 return old;
1405 }
1406
__kmp_install_one_handler(int sig,sig_func_t handler,int parallel_init)1407 static void __kmp_install_one_handler(int sig, sig_func_t handler,
1408 int parallel_init) {
1409 sig_func_t old;
1410 KMP_MB(); /* Flush all pending memory write invalidates. */
1411 KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig));
1412 if (parallel_init) {
1413 old = __kmp_signal(sig, handler);
1414 // SIG_DFL on Windows* OS in NULL or 0.
1415 if (old == __kmp_sighldrs[sig]) {
1416 __kmp_siginstalled[sig] = 1;
1417 } else { // Restore/keep user's handler if one previously installed.
1418 old = __kmp_signal(sig, old);
1419 }
1420 } else {
1421 // Save initial/system signal handlers to see if user handlers installed.
1422 // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals
1423 // called once with parallel_init == TRUE.
1424 old = __kmp_signal(sig, SIG_DFL);
1425 __kmp_sighldrs[sig] = old;
1426 __kmp_signal(sig, old);
1427 }
1428 KMP_MB(); /* Flush all pending memory write invalidates. */
1429 } // __kmp_install_one_handler
1430
__kmp_remove_one_handler(int sig)1431 static void __kmp_remove_one_handler(int sig) {
1432 if (__kmp_siginstalled[sig]) {
1433 sig_func_t old;
1434 KMP_MB(); // Flush all pending memory write invalidates.
1435 KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig));
1436 old = __kmp_signal(sig, __kmp_sighldrs[sig]);
1437 if (old != __kmp_team_handler) {
1438 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1439 "restoring: sig=%d\n",
1440 sig));
1441 old = __kmp_signal(sig, old);
1442 }
1443 __kmp_sighldrs[sig] = NULL;
1444 __kmp_siginstalled[sig] = 0;
1445 KMP_MB(); // Flush all pending memory write invalidates.
1446 }
1447 } // __kmp_remove_one_handler
1448
__kmp_install_signals(int parallel_init)1449 void __kmp_install_signals(int parallel_init) {
1450 KB_TRACE(10, ("__kmp_install_signals: called\n"));
1451 if (!__kmp_handle_signals) {
1452 KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - "
1453 "handlers not installed\n"));
1454 return;
1455 }
1456 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1457 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1458 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1459 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1460 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1461 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1462 } // __kmp_install_signals
1463
__kmp_remove_signals(void)1464 void __kmp_remove_signals(void) {
1465 int sig;
1466 KB_TRACE(10, ("__kmp_remove_signals: called\n"));
1467 for (sig = 1; sig < NSIG; ++sig) {
1468 __kmp_remove_one_handler(sig);
1469 }
1470 } // __kmp_remove_signals
1471
1472 #endif // KMP_HANDLE_SIGNALS
1473
1474 /* Put the thread to sleep for a time period */
__kmp_thread_sleep(int millis)1475 void __kmp_thread_sleep(int millis) {
1476 DWORD status;
1477
1478 status = SleepEx((DWORD)millis, FALSE);
1479 if (status) {
1480 DWORD error = GetLastError();
1481 __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error),
1482 __kmp_msg_null);
1483 }
1484 }
1485
1486 // Determine whether the given address is mapped into the current address space.
__kmp_is_address_mapped(void * addr)1487 int __kmp_is_address_mapped(void *addr) {
1488 DWORD status;
1489 MEMORY_BASIC_INFORMATION lpBuffer;
1490 SIZE_T dwLength;
1491
1492 dwLength = sizeof(MEMORY_BASIC_INFORMATION);
1493
1494 status = VirtualQuery(addr, &lpBuffer, dwLength);
1495
1496 return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) ||
1497 ((lpBuffer.Protect == PAGE_NOACCESS) ||
1498 (lpBuffer.Protect == PAGE_EXECUTE)));
1499 }
1500
__kmp_hardware_timestamp(void)1501 kmp_uint64 __kmp_hardware_timestamp(void) {
1502 kmp_uint64 r = 0;
1503
1504 QueryPerformanceCounter((LARGE_INTEGER *)&r);
1505 return r;
1506 }
1507
1508 /* Free handle and check the error code */
__kmp_free_handle(kmp_thread_t tHandle)1509 void __kmp_free_handle(kmp_thread_t tHandle) {
1510 /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined
1511 * as HANDLE */
1512 BOOL rc;
1513 rc = CloseHandle(tHandle);
1514 if (!rc) {
1515 DWORD error = GetLastError();
1516 __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null);
1517 }
1518 }
1519
__kmp_get_load_balance(int max)1520 int __kmp_get_load_balance(int max) {
1521 static ULONG glb_buff_size = 100 * 1024;
1522
1523 // Saved count of the running threads for the thread balance algorithm
1524 static int glb_running_threads = 0;
1525 static double glb_call_time = 0; /* Thread balance algorithm call time */
1526
1527 int running_threads = 0; // Number of running threads in the system.
1528 NTSTATUS status = 0;
1529 ULONG buff_size = 0;
1530 ULONG info_size = 0;
1531 void *buffer = NULL;
1532 PSYSTEM_PROCESS_INFORMATION spi = NULL;
1533 int first_time = 1;
1534
1535 double call_time = 0.0; // start, finish;
1536
1537 __kmp_elapsed(&call_time);
1538
1539 if (glb_call_time &&
1540 (call_time - glb_call_time < __kmp_load_balance_interval)) {
1541 running_threads = glb_running_threads;
1542 goto finish;
1543 }
1544 glb_call_time = call_time;
1545
1546 // Do not spend time on running algorithm if we have a permanent error.
1547 if (NtQuerySystemInformation == NULL) {
1548 running_threads = -1;
1549 goto finish;
1550 }
1551
1552 if (max <= 0) {
1553 max = INT_MAX;
1554 }
1555
1556 do {
1557
1558 if (first_time) {
1559 buff_size = glb_buff_size;
1560 } else {
1561 buff_size = 2 * buff_size;
1562 }
1563
1564 buffer = KMP_INTERNAL_REALLOC(buffer, buff_size);
1565 if (buffer == NULL) {
1566 running_threads = -1;
1567 goto finish;
1568 }
1569 status = NtQuerySystemInformation(SystemProcessInformation, buffer,
1570 buff_size, &info_size);
1571 first_time = 0;
1572
1573 } while (status == STATUS_INFO_LENGTH_MISMATCH);
1574 glb_buff_size = buff_size;
1575
1576 #define CHECK(cond) \
1577 { \
1578 KMP_DEBUG_ASSERT(cond); \
1579 if (!(cond)) { \
1580 running_threads = -1; \
1581 goto finish; \
1582 } \
1583 }
1584
1585 CHECK(buff_size >= info_size);
1586 spi = PSYSTEM_PROCESS_INFORMATION(buffer);
1587 for (;;) {
1588 ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer);
1589 CHECK(0 <= offset &&
1590 offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size);
1591 HANDLE pid = spi->ProcessId;
1592 ULONG num = spi->NumberOfThreads;
1593 CHECK(num >= 1);
1594 size_t spi_size =
1595 sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1);
1596 CHECK(offset + spi_size <
1597 info_size); // Make sure process info record fits the buffer.
1598 if (spi->NextEntryOffset != 0) {
1599 CHECK(spi_size <=
1600 spi->NextEntryOffset); // And do not overlap with the next record.
1601 }
1602 // pid == 0 corresponds to the System Idle Process. It always has running
1603 // threads on all cores. So, we don't consider the running threads of this
1604 // process.
1605 if (pid != 0) {
1606 for (int i = 0; i < num; ++i) {
1607 THREAD_STATE state = spi->Threads[i].State;
1608 // Count threads that have Ready or Running state.
1609 // !!! TODO: Why comment does not match the code???
1610 if (state == StateRunning) {
1611 ++running_threads;
1612 // Stop counting running threads if the number is already greater than
1613 // the number of available cores
1614 if (running_threads >= max) {
1615 goto finish;
1616 }
1617 }
1618 }
1619 }
1620 if (spi->NextEntryOffset == 0) {
1621 break;
1622 }
1623 spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset);
1624 }
1625
1626 #undef CHECK
1627
1628 finish: // Clean up and exit.
1629
1630 if (buffer != NULL) {
1631 KMP_INTERNAL_FREE(buffer);
1632 }
1633
1634 glb_running_threads = running_threads;
1635
1636 return running_threads;
1637 } //__kmp_get_load_balance()
1638
1639 // Find symbol from the loaded modules
__kmp_lookup_symbol(const char * name)1640 void *__kmp_lookup_symbol(const char *name) {
1641 HANDLE process = GetCurrentProcess();
1642 DWORD needed;
1643 HMODULE *modules = nullptr;
1644 if (!EnumProcessModules(process, modules, 0, &needed))
1645 return nullptr;
1646 DWORD num_modules = needed / sizeof(HMODULE);
1647 modules = (HMODULE *)malloc(num_modules * sizeof(HMODULE));
1648 if (!EnumProcessModules(process, modules, needed, &needed)) {
1649 free(modules);
1650 return nullptr;
1651 }
1652 void *proc = nullptr;
1653 for (uint32_t i = 0; i < num_modules; i++) {
1654 proc = (void *)GetProcAddress(modules[i], name);
1655 if (proc)
1656 break;
1657 }
1658 free(modules);
1659 return proc;
1660 }
1661
1662 // Functions for hidden helper task
__kmp_hidden_helper_worker_thread_wait()1663 void __kmp_hidden_helper_worker_thread_wait() {
1664 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1665 }
1666
__kmp_do_initialize_hidden_helper_threads()1667 void __kmp_do_initialize_hidden_helper_threads() {
1668 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1669 }
1670
__kmp_hidden_helper_threads_initz_wait()1671 void __kmp_hidden_helper_threads_initz_wait() {
1672 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1673 }
1674
__kmp_hidden_helper_initz_release()1675 void __kmp_hidden_helper_initz_release() {
1676 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1677 }
1678
__kmp_hidden_helper_main_thread_wait()1679 void __kmp_hidden_helper_main_thread_wait() {
1680 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1681 }
1682
__kmp_hidden_helper_main_thread_release()1683 void __kmp_hidden_helper_main_thread_release() {
1684 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1685 }
1686
__kmp_hidden_helper_worker_thread_signal()1687 void __kmp_hidden_helper_worker_thread_signal() {
1688 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1689 }
1690
__kmp_hidden_helper_threads_deinitz_wait()1691 void __kmp_hidden_helper_threads_deinitz_wait() {
1692 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1693 }
1694
__kmp_hidden_helper_threads_deinitz_release()1695 void __kmp_hidden_helper_threads_deinitz_release() {
1696 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows");
1697 }
1698