1 //===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ScheduleDAGSDNodes.h"
16 #include "InstrEmitter.h"
17 #include "SDNodeDbgValue.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/MC/MCInstrItineraries.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "pre-RA-sched"
38 
39 STATISTIC(LoadsClustered, "Number of loads clustered together");
40 
41 // This allows the latency-based scheduler to notice high latency instructions
42 // without a target itinerary. The choice of number here has more to do with
43 // balancing scheduler heuristics than with the actual machine latency.
44 static cl::opt<int> HighLatencyCycles(
45   "sched-high-latency-cycles", cl::Hidden, cl::init(10),
46   cl::desc("Roughly estimate the number of cycles that 'long latency'"
47            "instructions take for targets with no itinerary"));
pgrename(const char * from,const char * to)48 
49 ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf)
50     : ScheduleDAG(mf), BB(nullptr), DAG(nullptr),
51       InstrItins(mf.getSubtarget().getInstrItineraryData()) {}
52 
53 /// Run - perform scheduling.
54 ///
55 void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) {
56   BB = bb;
57   DAG = dag;
58 
59   // Clear the scheduler's SUnit DAG.
60   ScheduleDAG::clearDAG();
61   Sequence.clear();
62 
63   // Invoke the target's selection of scheduler.
64   Schedule();
65 }
66 
67 /// NewSUnit - Creates a new SUnit and return a ptr to it.
68 ///
69 SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) {
70 #ifndef NDEBUG
71   const SUnit *Addr = nullptr;
72   if (!SUnits.empty())
73     Addr = &SUnits[0];
74 #endif
75   SUnits.emplace_back(N, (unsigned)SUnits.size());
76   assert((Addr == nullptr || Addr == &SUnits[0]) &&
77          "SUnits std::vector reallocated on the fly!");
78   SUnits.back().OrigNode = &SUnits.back();
79   SUnit *SU = &SUnits.back();
80   const TargetLowering &TLI = DAG->getTargetLoweringInfo();
81   if (!N ||
82       (N->isMachineOpcode() &&
83        N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF))
84     SU->SchedulingPref = Sched::None;
85   else
86     SU->SchedulingPref = TLI.getSchedulingPreference(N);
87   return SU;
88 }
89 
90 SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) {
91   SUnit *SU = newSUnit(Old->getNode());
92   SU->OrigNode = Old->OrigNode;
93   SU->Latency = Old->Latency;
94   SU->isVRegCycle = Old->isVRegCycle;
95   SU->isCall = Old->isCall;
96   SU->isCallOp = Old->isCallOp;
97   SU->isTwoAddress = Old->isTwoAddress;
98   SU->isCommutable = Old->isCommutable;
pgunlink(const char * path)99   SU->hasPhysRegDefs = Old->hasPhysRegDefs;
100   SU->hasPhysRegClobbers = Old->hasPhysRegClobbers;
101   SU->isScheduleHigh = Old->isScheduleHigh;
102   SU->isScheduleLow = Old->isScheduleLow;
103   SU->SchedulingPref = Old->SchedulingPref;
104   Old->isCloned = true;
105   return SU;
106 }
107 
108 /// CheckForPhysRegDependency - Check if the dependency between def and use of
109 /// a specified operand is a physical register dependency. If so, returns the
110 /// register and the cost of copying the register.
111 static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
112                                       const TargetRegisterInfo *TRI,
113                                       const TargetInstrInfo *TII,
114                                       unsigned &PhysReg, int &Cost) {
115   if (Op != 2 || User->getOpcode() != ISD::CopyToReg)
116     return;
117 
118   unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
119   if (TargetRegisterInfo::isVirtualRegister(Reg))
120     return;
121 
122   unsigned ResNo = User->getOperand(2).getResNo();
123   if (Def->getOpcode() == ISD::CopyFromReg &&
124       cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) {
125     PhysReg = Reg;
126   } else if (Def->isMachineOpcode()) {
127     const MCInstrDesc &II = TII->get(Def->getMachineOpcode());
128     if (ResNo >= II.getNumDefs() &&
129         II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg)
130       PhysReg = Reg;
131   }
132 
133   if (PhysReg != 0) {
134     const TargetRegisterClass *RC =
135         TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo));
136     Cost = RC->getCopyCost();
137   }
138 }
139 
140 // Helper for AddGlue to clone node operands.
141 static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs,
142                                 SDValue ExtraOper = SDValue()) {
143   SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end());
144   if (ExtraOper.getNode())
145     Ops.push_back(ExtraOper);
146 
147   SDVTList VTList = DAG->getVTList(VTs);
148   MachineSDNode::mmo_iterator Begin = nullptr, End = nullptr;
149   MachineSDNode *MN = dyn_cast<MachineSDNode>(N);
150 
151   // Store memory references.
152   if (MN) {
153     Begin = MN->memoperands_begin();
154     End = MN->memoperands_end();
155   }
156 
157   DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops);
158 
pgsymlink(const char * oldpath,const char * newpath)159   // Reset the memory references
160   if (MN)
161     MN->setMemRefs(Begin, End);
162 }
163 
164 static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) {
165   SDNode *GlueDestNode = Glue.getNode();
166 
167   // Don't add glue from a node to itself.
168   if (GlueDestNode == N) return false;
169 
170   // Don't add a glue operand to something that already uses glue.
171   if (GlueDestNode &&
172       N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
173     return false;
174   }
175   // Don't add glue to something that already has a glue value.
176   if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false;
177 
178   SmallVector<EVT, 4> VTs(N->value_begin(), N->value_end());
179   if (AddGlue)
180     VTs.push_back(MVT::Glue);
181 
182   CloneNodeWithValues(N, DAG, VTs, Glue);
183 
184   return true;
185 }
186 
187 // Cleanup after unsuccessful AddGlue. Use the standard method of morphing the
188 // node even though simply shrinking the value list is sufficient.
189 static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) {
190   assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue &&
191           !N->hasAnyUseOfValue(N->getNumValues() - 1)) &&
192          "expected an unused glue value");
193 
194   CloneNodeWithValues(N, DAG,
195                       makeArrayRef(N->value_begin(), N->getNumValues() - 1));
196 }
197 
198 /// ClusterNeighboringLoads - Force nearby loads together by "gluing" them.
199 /// This function finds loads of the same base and different offsets. If the
200 /// offsets are not far apart (target specific), it add MVT::Glue inputs and
201 /// outputs to ensure they are scheduled together and in order. This
202 /// optimization may benefit some targets by improving cache locality.
203 void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) {
204   SDNode *Chain = nullptr;
205   unsigned NumOps = Node->getNumOperands();
206   if (Node->getOperand(NumOps-1).getValueType() == MVT::Other)
207     Chain = Node->getOperand(NumOps-1).getNode();
208   if (!Chain)
209     return;
210 
211   // Look for other loads of the same chain. Find loads that are loading from
212   // the same base pointer and different offsets.
213   SmallPtrSet<SDNode*, 16> Visited;
214   SmallVector<int64_t, 4> Offsets;
215   DenseMap<long long, SDNode*> O2SMap;  // Map from offset to SDNode.
216   bool Cluster = false;
217   SDNode *Base = Node;
218   // This algorithm requires a reasonably low use count before finding a match
219   // to avoid uselessly blowing up compile time in large blocks.
220   unsigned UseCount = 0;
221   for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end();
222        I != E && UseCount < 100; ++I, ++UseCount) {
223     SDNode *User = *I;
224     if (User == Node || !Visited.insert(User).second)
225       continue;
226     int64_t Offset1, Offset2;
227     if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) ||
228         Offset1 == Offset2)
229       // FIXME: Should be ok if they addresses are identical. But earlier
230       // optimizations really should have eliminated one of the loads.
231       continue;
232     if (O2SMap.insert(std::make_pair(Offset1, Base)).second)
233       Offsets.push_back(Offset1);
234     O2SMap.insert(std::make_pair(Offset2, User));
235     Offsets.push_back(Offset2);
236     if (Offset2 < Offset1)
237       Base = User;
238     Cluster = true;
239     // Reset UseCount to allow more matches.
pgreadlink(const char * path,char * buf,size_t size)240     UseCount = 0;
241   }
242 
243   if (!Cluster)
244     return;
245 
246   // Sort them in increasing order.
247   llvm::sort(Offsets.begin(), Offsets.end());
248 
249   // Check if the loads are close enough.
250   SmallVector<SDNode*, 4> Loads;
251   unsigned NumLoads = 0;
252   int64_t BaseOff = Offsets[0];
253   SDNode *BaseLoad = O2SMap[BaseOff];
254   Loads.push_back(BaseLoad);
255   for (unsigned i = 1, e = Offsets.size(); i != e; ++i) {
256     int64_t Offset = Offsets[i];
257     SDNode *Load = O2SMap[Offset];
258     if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads))
259       break; // Stop right here. Ignore loads that are further away.
260     Loads.push_back(Load);
261     ++NumLoads;
262   }
263 
264   if (NumLoads == 0)
265     return;
266 
267   // Cluster loads by adding MVT::Glue outputs and inputs. This also
268   // ensure they are scheduled in order of increasing addresses.
269   SDNode *Lead = Loads[0];
270   SDValue InGlue = SDValue(nullptr, 0);
271   if (AddGlue(Lead, InGlue, true, DAG))
272     InGlue = SDValue(Lead, Lead->getNumValues() - 1);
273   for (unsigned I = 1, E = Loads.size(); I != E; ++I) {
274     bool OutGlue = I < E - 1;
275     SDNode *Load = Loads[I];
276 
277     // If AddGlue fails, we could leave an unsused glue value. This should not
278     // cause any
279     if (AddGlue(Load, InGlue, OutGlue, DAG)) {
280       if (OutGlue)
281         InGlue = SDValue(Load, Load->getNumValues() - 1);
282 
283       ++LoadsClustered;
284     }
285     else if (!OutGlue && InGlue.getNode())
286       RemoveUnusedGlue(InGlue.getNode(), DAG);
287   }
288 }
289 
290 /// ClusterNodes - Cluster certain nodes which should be scheduled together.
291 ///
292 void ScheduleDAGSDNodes::ClusterNodes() {
293   for (SDNode &NI : DAG->allnodes()) {
294     SDNode *Node = &NI;
295     if (!Node || !Node->isMachineOpcode())
296       continue;
297 
298     unsigned Opc = Node->getMachineOpcode();
299     const MCInstrDesc &MCID = TII->get(Opc);
300     if (MCID.mayLoad())
301       // Cluster loads from "near" addresses into combined SUnits.
302       ClusterNeighboringLoads(Node);
303   }
304 }
305 
306 void ScheduleDAGSDNodes::BuildSchedUnits() {
307   // During scheduling, the NodeId field of SDNode is used to map SDNodes
308   // to their associated SUnits by holding SUnits table indices. A value
309   // of -1 means the SDNode does not yet have an associated SUnit.
310   unsigned NumNodes = 0;
311   for (SDNode &NI : DAG->allnodes()) {
312     NI.setNodeId(-1);
313     ++NumNodes;
314   }
315 
316   // Reserve entries in the vector for each of the SUnits we are creating.  This
317   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
318   // invalidated.
319   // FIXME: Multiply by 2 because we may clone nodes during scheduling.
320   // This is a temporary workaround.
321   SUnits.reserve(NumNodes * 2);
322 
323   // Add all nodes in depth first order.
324   SmallVector<SDNode*, 64> Worklist;
325   SmallPtrSet<SDNode*, 32> Visited;
326   Worklist.push_back(DAG->getRoot().getNode());
327   Visited.insert(DAG->getRoot().getNode());
328 
329   SmallVector<SUnit*, 8> CallSUnits;
330   while (!Worklist.empty()) {
331     SDNode *NI = Worklist.pop_back_val();
332 
333     // Add all operands to the worklist unless they've already been added.
334     for (const SDValue &Op : NI->op_values())
335       if (Visited.insert(Op.getNode()).second)
336         Worklist.push_back(Op.getNode());
337 
338     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
339       continue;
340 
341     // If this node has already been processed, stop now.
342     if (NI->getNodeId() != -1) continue;
343 
pgwin32_is_junction(const char * path)344     SUnit *NodeSUnit = newSUnit(NI);
345 
346     // See if anything is glued to this node, if so, add them to glued
347     // nodes.  Nodes can have at most one glue input and one glue output.  Glue
348     // is required to be the last operand and result of a node.
349 
350     // Scan up to find glued preds.
351     SDNode *N = NI;
352     while (N->getNumOperands() &&
353            N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) {
354       N = N->getOperand(N->getNumOperands()-1).getNode();
355       assert(N->getNodeId() == -1 && "Node already inserted!");
356       N->setNodeId(NodeSUnit->NodeNum);
357       if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
358         NodeSUnit->isCall = true;
359     }
360 
361     // Scan down to find any glued succs.
362     N = NI;
363     while (N->getValueType(N->getNumValues()-1) == MVT::Glue) {
364       SDValue GlueVal(N, N->getNumValues()-1);
365 
366       // There are either zero or one users of the Glue result.
367       bool HasGlueUse = false;
pgwin32_safestat(const char * path,struct stat * buf)368       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
369            UI != E; ++UI)
370         if (GlueVal.isOperandOf(*UI)) {
371           HasGlueUse = true;
372           assert(N->getNodeId() == -1 && "Node already inserted!");
373           N->setNodeId(NodeSUnit->NodeNum);
374           N = *UI;
375           if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall())
376             NodeSUnit->isCall = true;
377           break;
378         }
379       if (!HasGlueUse) break;
380     }
381 
382     if (NodeSUnit->isCall)
383       CallSUnits.push_back(NodeSUnit);
384 
385     // Schedule zero-latency TokenFactor below any nodes that may increase the
386     // schedule height. Otherwise, ancestors of the TokenFactor may appear to
387     // have false stalls.
388     if (NI->getOpcode() == ISD::TokenFactor)
389       NodeSUnit->isScheduleLow = true;
390 
391     // If there are glue operands involved, N is now the bottom-most node
392     // of the sequence of nodes that are glued together.
393     // Update the SUnit.
394     NodeSUnit->setNode(N);
395     assert(N->getNodeId() == -1 && "Node already inserted!");
396     N->setNodeId(NodeSUnit->NodeNum);
397 
398     // Compute NumRegDefsLeft. This must be done before AddSchedEdges.
399     InitNumRegDefsLeft(NodeSUnit);
400 
401     // Assign the Latency field of NodeSUnit using target-provided information.
402     computeLatency(NodeSUnit);
403   }
404 
405   // Find all call operands.
406   while (!CallSUnits.empty()) {
407     SUnit *SU = CallSUnits.pop_back_val();
408     for (const SDNode *SUNode = SU->getNode(); SUNode;
409          SUNode = SUNode->getGluedNode()) {
410       if (SUNode->getOpcode() != ISD::CopyToReg)
411         continue;
412       SDNode *SrcN = SUNode->getOperand(2).getNode();
413       if (isPassiveNode(SrcN)) continue;   // Not scheduled.
414       SUnit *SrcSU = &SUnits[SrcN->getNodeId()];
415       SrcSU->isCallOp = true;
416     }
417   }
418 }
419 
420 void ScheduleDAGSDNodes::AddSchedEdges() {
421   const TargetSubtargetInfo &ST = MF.getSubtarget();
422 
423   // Check to see if the scheduler cares about latencies.
424   bool UnitLatencies = forceUnitLatencies();
425 
426   // Pass 2: add the preds, succs, etc.
427   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
428     SUnit *SU = &SUnits[su];
429     SDNode *MainNode = SU->getNode();
430 
431     if (MainNode->isMachineOpcode()) {
432       unsigned Opc = MainNode->getMachineOpcode();
433       const MCInstrDesc &MCID = TII->get(Opc);
434       for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
435         if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
436           SU->isTwoAddress = true;
437           break;
438         }
439       }
440       if (MCID.isCommutable())
441         SU->isCommutable = true;
442     }
443 
444     // Find all predecessors and successors of the group.
445     for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
446       if (N->isMachineOpcode() &&
447           TII->get(N->getMachineOpcode()).getImplicitDefs()) {
448         SU->hasPhysRegClobbers = true;
449         unsigned NumUsed = InstrEmitter::CountResults(N);
450         while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1))
451           --NumUsed;    // Skip over unused values at the end.
452         if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs())
453           SU->hasPhysRegDefs = true;
454       }
455 
456       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
457         SDNode *OpN = N->getOperand(i).getNode();
458         if (isPassiveNode(OpN)) continue;   // Not scheduled.
459         SUnit *OpSU = &SUnits[OpN->getNodeId()];
460         assert(OpSU && "Node has no SUnit!");
461         if (OpSU == SU) continue;           // In the same group.
462 
463         EVT OpVT = N->getOperand(i).getValueType();
464         assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!");
465         bool isChain = OpVT == MVT::Other;
466 
467         unsigned PhysReg = 0;
468         int Cost = 1;
469         // Determine if this is a physical register dependency.
470         CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
471         assert((PhysReg == 0 || !isChain) &&
472                "Chain dependence via physreg data?");
473         // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler
474         // emits a copy from the physical register to a virtual register unless
475         // it requires a cross class copy (cost < 0). That means we are only
476         // treating "expensive to copy" register dependency as physical register
477         // dependency. This may change in the future though.
478         if (Cost >= 0 && !StressSched)
479           PhysReg = 0;
480 
481         // If this is a ctrl dep, latency is 1.
482         unsigned OpLatency = isChain ? 1 : OpSU->Latency;
483         // Special-case TokenFactor chains as zero-latency.
484         if(isChain && OpN->getOpcode() == ISD::TokenFactor)
485           OpLatency = 0;
486 
487         SDep Dep = isChain ? SDep(OpSU, SDep::Barrier)
488           : SDep(OpSU, SDep::Data, PhysReg);
489         Dep.setLatency(OpLatency);
490         if (!isChain && !UnitLatencies) {
491           computeOperandLatency(OpN, N, i, Dep);
492           ST.adjustSchedDependency(OpSU, SU, Dep);
493         }
494 
495         if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) {
496           // Multiple register uses are combined in the same SUnit. For example,
497           // we could have a set of glued nodes with all their defs consumed by
498           // another set of glued nodes. Register pressure tracking sees this as
499           // a single use, so to keep pressure balanced we reduce the defs.
500           //
501           // We can't tell (without more book-keeping) if this results from
502           // glued nodes or duplicate operands. As long as we don't reduce
503           // NumRegDefsLeft to zero, we handle the common cases well.
504           --OpSU->NumRegDefsLeft;
505         }
506       }
507     }
508   }
509 }
510 
511 /// BuildSchedGraph - Build the SUnit graph from the selection dag that we
512 /// are input.  This SUnit graph is similar to the SelectionDAG, but
513 /// excludes nodes that aren't interesting to scheduling, and represents
514 /// glued together nodes with a single SUnit.
515 void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) {
516   // Cluster certain nodes which should be scheduled together.
517   ClusterNodes();
518   // Populate the SUnits array.
519   BuildSchedUnits();
520   // Compute all the scheduling dependencies between nodes.
521   AddSchedEdges();
522 }
523 
524 // Initialize NumNodeDefs for the current Node's opcode.
525 void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() {
526   // Check for phys reg copy.
527   if (!Node)
528     return;
529 
530   if (!Node->isMachineOpcode()) {
531     if (Node->getOpcode() == ISD::CopyFromReg)
532       NodeNumDefs = 1;
533     else
534       NodeNumDefs = 0;
535     return;
536   }
537   unsigned POpc = Node->getMachineOpcode();
538   if (POpc == TargetOpcode::IMPLICIT_DEF) {
539     // No register need be allocated for this.
540     NodeNumDefs = 0;
541     return;
542   }
543   if (POpc == TargetOpcode::PATCHPOINT &&
544       Node->getValueType(0) == MVT::Other) {
545     // PATCHPOINT is defined to have one result, but it might really have none
546     // if we're not using CallingConv::AnyReg. Don't mistake the chain for a
547     // real definition.
548     NodeNumDefs = 0;
549     return;
550   }
551   unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs();
552   // Some instructions define regs that are not represented in the selection DAG
553   // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues.
554   NodeNumDefs = std::min(Node->getNumValues(), NRegDefs);
555   DefIdx = 0;
556 }
557 
558 // Construct a RegDefIter for this SUnit and find the first valid value.
559 ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU,
560                                            const ScheduleDAGSDNodes *SD)
561   : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) {
562   InitNodeNumDefs();
563   Advance();
564 }
565 
566 // Advance to the next valid value defined by the SUnit.
567 void ScheduleDAGSDNodes::RegDefIter::Advance() {
568   for (;Node;) { // Visit all glued nodes.
569     for (;DefIdx < NodeNumDefs; ++DefIdx) {
570       if (!Node->hasAnyUseOfValue(DefIdx))
571         continue;
572       ValueType = Node->getSimpleValueType(DefIdx);
573       ++DefIdx;
574       return; // Found a normal regdef.
575     }
576     Node = Node->getGluedNode();
577     if (!Node) {
578       return; // No values left to visit.
579     }
580     InitNodeNumDefs();
581   }
582 }
583 
584 void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) {
585   assert(SU->NumRegDefsLeft == 0 && "expect a new node");
586   for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) {
587     assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected");
588     ++SU->NumRegDefsLeft;
589   }
590 }
591 
592 void ScheduleDAGSDNodes::computeLatency(SUnit *SU) {
593   SDNode *N = SU->getNode();
594 
595   // TokenFactor operands are considered zero latency, and some schedulers
596   // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero
597   // whenever node latency is nonzero.
598   if (N && N->getOpcode() == ISD::TokenFactor) {
599     SU->Latency = 0;
600     return;
601   }
602 
603   // Check to see if the scheduler cares about latencies.
604   if (forceUnitLatencies()) {
605     SU->Latency = 1;
606     return;
607   }
608 
609   if (!InstrItins || InstrItins->isEmpty()) {
610     if (N && N->isMachineOpcode() &&
611         TII->isHighLatencyDef(N->getMachineOpcode()))
612       SU->Latency = HighLatencyCycles;
613     else
614       SU->Latency = 1;
615     return;
616   }
617 
618   // Compute the latency for the node.  We use the sum of the latencies for
619   // all nodes glued together into this SUnit.
620   SU->Latency = 0;
621   for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
622     if (N->isMachineOpcode())
623       SU->Latency += TII->getInstrLatency(InstrItins, N);
624 }
625 
626 void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use,
627                                                unsigned OpIdx, SDep& dep) const{
628   // Check to see if the scheduler cares about latencies.
629   if (forceUnitLatencies())
630     return;
631 
632   if (dep.getKind() != SDep::Data)
633     return;
634 
635   unsigned DefIdx = Use->getOperand(OpIdx).getResNo();
636   if (Use->isMachineOpcode())
637     // Adjust the use operand index by num of defs.
638     OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs();
639   int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx);
640   if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg &&
641       !BB->succ_empty()) {
642     unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
643     if (TargetRegisterInfo::isVirtualRegister(Reg))
644       // This copy is a liveout value. It is likely coalesced, so reduce the
645       // latency so not to penalize the def.
646       // FIXME: need target specific adjustment here?
647       Latency = (Latency > 1) ? Latency - 1 : 1;
648   }
649   if (Latency >= 0)
650     dep.setLatency(Latency);
651 }
652 
653 void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const {
654   // Cannot completely remove virtual function even in release mode.
655 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
656   if (!SU->getNode()) {
657     dbgs() << "PHYS REG COPY\n";
658     return;
659   }
660 
661   SU->getNode()->dump(DAG);
662   dbgs() << "\n";
663   SmallVector<SDNode *, 4> GluedNodes;
664   for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
665     GluedNodes.push_back(N);
666   while (!GluedNodes.empty()) {
667     dbgs() << "    ";
668     GluedNodes.back()->dump(DAG);
669     dbgs() << "\n";
670     GluedNodes.pop_back();
671   }
672 #endif
673 }
674 
675 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
676 void ScheduleDAGSDNodes::dumpSchedule() const {
677   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
678     if (SUnit *SU = Sequence[i])
679       SU->dump(this);
680     else
681       dbgs() << "**** NOOP ****\n";
682   }
683 }
684 #endif
685 
686 #ifndef NDEBUG
687 /// VerifyScheduledSequence - Verify that all SUnits were scheduled and that
688 /// their state is consistent with the nodes listed in Sequence.
689 ///
690 void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) {
691   unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp);
692   unsigned Noops = 0;
693   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
694     if (!Sequence[i])
695       ++Noops;
696   assert(Sequence.size() - Noops == ScheduledNodes &&
697          "The number of nodes scheduled doesn't match the expected number!");
698 }
699 #endif // NDEBUG
700 
701 /// ProcessSDDbgValues - Process SDDbgValues associated with this node.
702 static void
703 ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
704                    SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
705                    DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) {
706   if (!N->getHasDebugValue())
707     return;
708 
709   // Opportunistically insert immediate dbg_value uses, i.e. those with the same
710   // source order number as N.
711   MachineBasicBlock *BB = Emitter.getBlock();
712   MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
713   for (auto DV : DAG->GetDbgValues(N)) {
714     if (DV->isInvalidated())
715       continue;
716     unsigned DVOrder = DV->getOrder();
717     if (!Order || DVOrder == Order) {
718       MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap);
719       if (DbgMI) {
720         Orders.push_back({DVOrder, DbgMI});
721         BB->insert(InsertPos, DbgMI);
722       }
723       DV->setIsInvalidated();
724     }
725   }
726 }
727 
728 // ProcessSourceNode - Process nodes with source order numbers. These are added
729 // to a vector which EmitSchedule uses to determine how to insert dbg_value
730 // instructions in the right order.
731 static void
732 ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter,
733                   DenseMap<SDValue, unsigned> &VRBaseMap,
734                   SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders,
735                   SmallSet<unsigned, 8> &Seen) {
736   unsigned Order = N->getIROrder();
737   if (!Order || !Seen.insert(Order).second) {
738     // Process any valid SDDbgValues even if node does not have any order
739     // assigned.
740     ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0);
741     return;
742   }
743 
744   MachineBasicBlock *BB = Emitter.getBlock();
745   auto IP = Emitter.getInsertPos();
746   if (IP == BB->begin() || BB->back().isPHI() ||
747       // Fast-isel may have inserted some instructions, in which case the
748       // BB->back().isPHI() test will not fire when we want it to.
749       std::prev(IP)->isPHI()) {
750     // Did not insert any instruction.
751     Orders.push_back({Order, (MachineInstr *)nullptr});
752     return;
753   }
754 
755   Orders.push_back({Order, &*std::prev(IP)});
756   ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order);
757 }
758 
759 void ScheduleDAGSDNodes::
760 EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap,
761                 MachineBasicBlock::iterator InsertPos) {
762   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
763        I != E; ++I) {
764     if (I->isCtrl()) continue;  // ignore chain preds
765     if (I->getSUnit()->CopyDstRC) {
766       // Copy to physical register.
767       DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
768       assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
769       // Find the destination physical register.
770       unsigned Reg = 0;
771       for (SUnit::const_succ_iterator II = SU->Succs.begin(),
772              EE = SU->Succs.end(); II != EE; ++II) {
773         if (II->isCtrl()) continue;  // ignore chain preds
774         if (II->getReg()) {
775           Reg = II->getReg();
776           break;
777         }
778       }
779       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg)
780         .addReg(VRI->second);
781     } else {
782       // Copy from physical register.
783       assert(I->getReg() && "Unknown physical register!");
784       unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
785       bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
786       (void)isNew; // Silence compiler warning.
787       assert(isNew && "Node emitted out of order - early");
788       BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
789         .addReg(I->getReg());
790     }
791     break;
792   }
793 }
794 
795 /// EmitSchedule - Emit the machine code in scheduled order. Return the new
796 /// InsertPos and MachineBasicBlock that contains this insertion
797 /// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does
798 /// not necessarily refer to returned BB. The emitter may split blocks.
799 MachineBasicBlock *ScheduleDAGSDNodes::
800 EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
801   InstrEmitter Emitter(BB, InsertPos);
802   DenseMap<SDValue, unsigned> VRBaseMap;
803   DenseMap<SUnit*, unsigned> CopyVRBaseMap;
804   SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders;
805   SmallSet<unsigned, 8> Seen;
806   bool HasDbg = DAG->hasDebugValues();
807 
808   // If this is the first BB, emit byval parameter dbg_value's.
809   if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) {
810     SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin();
811     SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd();
812     for (; PDI != PDE; ++PDI) {
813       MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
814       if (DbgMI)
815         BB->insert(InsertPos, DbgMI);
816     }
817   }
818 
819   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
820     SUnit *SU = Sequence[i];
821     if (!SU) {
822       // Null SUnit* is a noop.
823       TII->insertNoop(*Emitter.getBlock(), InsertPos);
824       continue;
825     }
826 
827     // For pre-regalloc scheduling, create instructions corresponding to the
828     // SDNode and any glued SDNodes and append them to the block.
829     if (!SU->getNode()) {
830       // Emit a copy.
831       EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos);
832       continue;
833     }
834 
835     SmallVector<SDNode *, 4> GluedNodes;
836     for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode())
837       GluedNodes.push_back(N);
838     while (!GluedNodes.empty()) {
839       SDNode *N = GluedNodes.back();
840       Emitter.EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap);
841       // Remember the source order of the inserted instruction.
842       if (HasDbg)
843         ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen);
844       GluedNodes.pop_back();
845     }
846     Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned,
847                      VRBaseMap);
848     // Remember the source order of the inserted instruction.
849     if (HasDbg)
850       ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders,
851                         Seen);
852   }
853 
854   // Insert all the dbg_values which have not already been inserted in source
855   // order sequence.
856   if (HasDbg) {
857     MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
858 
859     // Sort the source order instructions and use the order to insert debug
860     // values. Use stable_sort so that DBG_VALUEs are inserted in the same order
861     // regardless of the host's implementation fo std::sort.
862     std::stable_sort(Orders.begin(), Orders.end(), less_first());
863     std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(),
864                      [](const SDDbgValue *LHS, const SDDbgValue *RHS) {
865                        return LHS->getOrder() < RHS->getOrder();
866                      });
867 
868     SDDbgInfo::DbgIterator DI = DAG->DbgBegin();
869     SDDbgInfo::DbgIterator DE = DAG->DbgEnd();
870     // Now emit the rest according to source order.
871     unsigned LastOrder = 0;
872     for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) {
873       unsigned Order = Orders[i].first;
874       MachineInstr *MI = Orders[i].second;
875       // Insert all SDDbgValue's whose order(s) are before "Order".
876       if (!MI)
877         continue;
878       for (; DI != DE; ++DI) {
879         if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order)
880           break;
881         if ((*DI)->isInvalidated())
882           continue;
883 
884         MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap);
885         if (DbgMI) {
886           if (!LastOrder)
887             // Insert to start of the BB (after PHIs).
888             BB->insert(BBBegin, DbgMI);
889           else {
890             // Insert at the instruction, which may be in a different
891             // block, if the block was split by a custom inserter.
892             MachineBasicBlock::iterator Pos = MI;
893             MI->getParent()->insert(Pos, DbgMI);
894           }
895         }
896       }
897       LastOrder = Order;
898     }
899     // Add trailing DbgValue's before the terminator. FIXME: May want to add
900     // some of them before one or more conditional branches?
901     SmallVector<MachineInstr*, 8> DbgMIs;
902     for (; DI != DE; ++DI) {
903       if ((*DI)->isInvalidated())
904         continue;
905       assert((*DI)->getOrder() >= LastOrder &&
906              "emitting DBG_VALUE out of order");
907       if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap))
908         DbgMIs.push_back(DbgMI);
909     }
910 
911     MachineBasicBlock *InsertBB = Emitter.getBlock();
912     MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator();
913     InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end());
914 
915     SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin();
916     SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd();
917     // Now emit the rest according to source order.
918     LastOrder = 0;
919     for (const auto &InstrOrder : Orders) {
920       unsigned Order = InstrOrder.first;
921       MachineInstr *MI = InstrOrder.second;
922       if (!MI)
923         continue;
924 
925       // Insert all SDDbgLabel's whose order(s) are before "Order".
926       for (; DLI != DLE &&
927              (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order;
928              ++DLI) {
929         MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI);
930         if (DbgMI) {
931           if (!LastOrder)
932             // Insert to start of the BB (after PHIs).
933             BB->insert(BBBegin, DbgMI);
934           else {
935             // Insert at the instruction, which may be in a different
936             // block, if the block was split by a custom inserter.
937             MachineBasicBlock::iterator Pos = MI;
938             MI->getParent()->insert(Pos, DbgMI);
939           }
940         }
941       }
942       if (DLI == DLE)
943         break;
944 
945       LastOrder = Order;
946     }
947   }
948 
949   InsertPos = Emitter.getInsertPos();
950   return Emitter.getBlock();
951 }
952 
953 /// Return the basic block label.
954 std::string ScheduleDAGSDNodes::getDAGName() const {
955   return "sunit-dag." + BB->getFullName();
956 }
957