1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLoweringBase class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/ISDOpcodes.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RuntimeLibcalls.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetLowering.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/ValueTypes.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/Support/BranchProbability.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MachineValueType.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstddef>
58 #include <cstdint>
59 #include <cstring>
60 #include <iterator>
61 #include <string>
62 #include <tuple>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 static cl::opt<bool> JumpIsExpensiveOverride(
68     "jump-is-expensive", cl::init(false),
69     cl::desc("Do not create extra branches to split comparison logic."),
70     cl::Hidden);
71 
72 static cl::opt<unsigned> MinimumJumpTableEntries
73   ("min-jump-table-entries", cl::init(4), cl::Hidden,
74    cl::desc("Set minimum number of entries to use a jump table."));
75 
76 static cl::opt<unsigned> MaximumJumpTableSize
77   ("max-jump-table-size", cl::init(0), cl::Hidden,
78    cl::desc("Set maximum size of jump tables; zero for no limit."));
79 
80 /// Minimum jump table density for normal functions.
81 static cl::opt<unsigned>
82     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
83                      cl::desc("Minimum density for building a jump table in "
84                               "a normal function"));
85 
86 /// Minimum jump table density for -Os or -Oz functions.
87 static cl::opt<unsigned> OptsizeJumpTableDensity(
88     "optsize-jump-table-density", cl::init(40), cl::Hidden,
89     cl::desc("Minimum density for building a jump table in "
90              "an optsize function"));
91 
darwinHasSinCos(const Triple & TT)92 static bool darwinHasSinCos(const Triple &TT) {
93   assert(TT.isOSDarwin() && "should be called with darwin triple");
94   // Don't bother with 32 bit x86.
95   if (TT.getArch() == Triple::x86)
96     return false;
97   // Macos < 10.9 has no sincos_stret.
98   if (TT.isMacOSX())
99     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
100   // iOS < 7.0 has no sincos_stret.
101   if (TT.isiOS())
102     return !TT.isOSVersionLT(7, 0);
103   // Any other darwin such as WatchOS/TvOS is new enough.
104   return true;
105 }
106 
107 // Although this default value is arbitrary, it is not random. It is assumed
108 // that a condition that evaluates the same way by a higher percentage than this
109 // is best represented as control flow. Therefore, the default value N should be
110 // set such that the win from N% correct executions is greater than the loss
111 // from (100 - N)% mispredicted executions for the majority of intended targets.
112 static cl::opt<int> MinPercentageForPredictableBranch(
113     "min-predictable-branch", cl::init(99),
114     cl::desc("Minimum percentage (0-100) that a condition must be either true "
115              "or false to assume that the condition is predictable"),
116     cl::Hidden);
117 
InitLibcalls(const Triple & TT)118 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
119 #define HANDLE_LIBCALL(code, name) \
120   setLibcallName(RTLIB::code, name);
121 #include "llvm/IR/RuntimeLibcalls.def"
122 #undef HANDLE_LIBCALL
123   // Initialize calling conventions to their default.
124   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
125     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
126 
127   // A few names are different on particular architectures or environments.
128   if (TT.isOSDarwin()) {
129     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
130     // of the gnueabi-style __gnu_*_ieee.
131     // FIXME: What about other targets?
132     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
133     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
134 
135     // Some darwins have an optimized __bzero/bzero function.
136     switch (TT.getArch()) {
137     case Triple::x86:
138     case Triple::x86_64:
139       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
140         setLibcallName(RTLIB::BZERO, "__bzero");
141       break;
142     case Triple::aarch64:
143       setLibcallName(RTLIB::BZERO, "bzero");
144       break;
145     default:
146       break;
147     }
148 
149     if (darwinHasSinCos(TT)) {
150       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
151       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
152       if (TT.isWatchABI()) {
153         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
154                               CallingConv::ARM_AAPCS_VFP);
155         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
156                               CallingConv::ARM_AAPCS_VFP);
157       }
158     }
159   } else {
160     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
161     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
162   }
163 
164   if (TT.isGNUEnvironment() || TT.isOSFuchsia()) {
165     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
166     setLibcallName(RTLIB::SINCOS_F64, "sincos");
167     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
168     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
169     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
170   }
171 
172   if (TT.isOSOpenBSD()) {
173     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
174   }
175 }
176 
177 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
178 /// UNKNOWN_LIBCALL if there is none.
getFPEXT(EVT OpVT,EVT RetVT)179 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
180   if (OpVT == MVT::f16) {
181     if (RetVT == MVT::f32)
182       return FPEXT_F16_F32;
183   } else if (OpVT == MVT::f32) {
184     if (RetVT == MVT::f64)
185       return FPEXT_F32_F64;
186     if (RetVT == MVT::f128)
187       return FPEXT_F32_F128;
188     if (RetVT == MVT::ppcf128)
189       return FPEXT_F32_PPCF128;
190   } else if (OpVT == MVT::f64) {
191     if (RetVT == MVT::f128)
192       return FPEXT_F64_F128;
193     else if (RetVT == MVT::ppcf128)
194       return FPEXT_F64_PPCF128;
195   } else if (OpVT == MVT::f80) {
196     if (RetVT == MVT::f128)
197       return FPEXT_F80_F128;
198   }
199 
200   return UNKNOWN_LIBCALL;
201 }
202 
203 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
204 /// UNKNOWN_LIBCALL if there is none.
getFPROUND(EVT OpVT,EVT RetVT)205 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
206   if (RetVT == MVT::f16) {
207     if (OpVT == MVT::f32)
208       return FPROUND_F32_F16;
209     if (OpVT == MVT::f64)
210       return FPROUND_F64_F16;
211     if (OpVT == MVT::f80)
212       return FPROUND_F80_F16;
213     if (OpVT == MVT::f128)
214       return FPROUND_F128_F16;
215     if (OpVT == MVT::ppcf128)
216       return FPROUND_PPCF128_F16;
217   } else if (RetVT == MVT::f32) {
218     if (OpVT == MVT::f64)
219       return FPROUND_F64_F32;
220     if (OpVT == MVT::f80)
221       return FPROUND_F80_F32;
222     if (OpVT == MVT::f128)
223       return FPROUND_F128_F32;
224     if (OpVT == MVT::ppcf128)
225       return FPROUND_PPCF128_F32;
226   } else if (RetVT == MVT::f64) {
227     if (OpVT == MVT::f80)
228       return FPROUND_F80_F64;
229     if (OpVT == MVT::f128)
230       return FPROUND_F128_F64;
231     if (OpVT == MVT::ppcf128)
232       return FPROUND_PPCF128_F64;
233   } else if (RetVT == MVT::f80) {
234     if (OpVT == MVT::f128)
235       return FPROUND_F128_F80;
236   }
237 
238   return UNKNOWN_LIBCALL;
239 }
240 
241 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
242 /// UNKNOWN_LIBCALL if there is none.
getFPTOSINT(EVT OpVT,EVT RetVT)243 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
244   if (OpVT == MVT::f32) {
245     if (RetVT == MVT::i32)
246       return FPTOSINT_F32_I32;
247     if (RetVT == MVT::i64)
248       return FPTOSINT_F32_I64;
249     if (RetVT == MVT::i128)
250       return FPTOSINT_F32_I128;
251   } else if (OpVT == MVT::f64) {
252     if (RetVT == MVT::i32)
253       return FPTOSINT_F64_I32;
254     if (RetVT == MVT::i64)
255       return FPTOSINT_F64_I64;
256     if (RetVT == MVT::i128)
257       return FPTOSINT_F64_I128;
258   } else if (OpVT == MVT::f80) {
259     if (RetVT == MVT::i32)
260       return FPTOSINT_F80_I32;
261     if (RetVT == MVT::i64)
262       return FPTOSINT_F80_I64;
263     if (RetVT == MVT::i128)
264       return FPTOSINT_F80_I128;
265   } else if (OpVT == MVT::f128) {
266     if (RetVT == MVT::i32)
267       return FPTOSINT_F128_I32;
268     if (RetVT == MVT::i64)
269       return FPTOSINT_F128_I64;
270     if (RetVT == MVT::i128)
271       return FPTOSINT_F128_I128;
272   } else if (OpVT == MVT::ppcf128) {
273     if (RetVT == MVT::i32)
274       return FPTOSINT_PPCF128_I32;
275     if (RetVT == MVT::i64)
276       return FPTOSINT_PPCF128_I64;
277     if (RetVT == MVT::i128)
278       return FPTOSINT_PPCF128_I128;
279   }
280   return UNKNOWN_LIBCALL;
281 }
282 
283 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
284 /// UNKNOWN_LIBCALL if there is none.
getFPTOUINT(EVT OpVT,EVT RetVT)285 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
286   if (OpVT == MVT::f32) {
287     if (RetVT == MVT::i32)
288       return FPTOUINT_F32_I32;
289     if (RetVT == MVT::i64)
290       return FPTOUINT_F32_I64;
291     if (RetVT == MVT::i128)
292       return FPTOUINT_F32_I128;
293   } else if (OpVT == MVT::f64) {
294     if (RetVT == MVT::i32)
295       return FPTOUINT_F64_I32;
296     if (RetVT == MVT::i64)
297       return FPTOUINT_F64_I64;
298     if (RetVT == MVT::i128)
299       return FPTOUINT_F64_I128;
300   } else if (OpVT == MVT::f80) {
301     if (RetVT == MVT::i32)
302       return FPTOUINT_F80_I32;
303     if (RetVT == MVT::i64)
304       return FPTOUINT_F80_I64;
305     if (RetVT == MVT::i128)
306       return FPTOUINT_F80_I128;
307   } else if (OpVT == MVT::f128) {
308     if (RetVT == MVT::i32)
309       return FPTOUINT_F128_I32;
310     if (RetVT == MVT::i64)
311       return FPTOUINT_F128_I64;
312     if (RetVT == MVT::i128)
313       return FPTOUINT_F128_I128;
314   } else if (OpVT == MVT::ppcf128) {
315     if (RetVT == MVT::i32)
316       return FPTOUINT_PPCF128_I32;
317     if (RetVT == MVT::i64)
318       return FPTOUINT_PPCF128_I64;
319     if (RetVT == MVT::i128)
320       return FPTOUINT_PPCF128_I128;
321   }
322   return UNKNOWN_LIBCALL;
323 }
324 
325 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
326 /// UNKNOWN_LIBCALL if there is none.
getSINTTOFP(EVT OpVT,EVT RetVT)327 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
328   if (OpVT == MVT::i32) {
329     if (RetVT == MVT::f32)
330       return SINTTOFP_I32_F32;
331     if (RetVT == MVT::f64)
332       return SINTTOFP_I32_F64;
333     if (RetVT == MVT::f80)
334       return SINTTOFP_I32_F80;
335     if (RetVT == MVT::f128)
336       return SINTTOFP_I32_F128;
337     if (RetVT == MVT::ppcf128)
338       return SINTTOFP_I32_PPCF128;
339   } else if (OpVT == MVT::i64) {
340     if (RetVT == MVT::f32)
341       return SINTTOFP_I64_F32;
342     if (RetVT == MVT::f64)
343       return SINTTOFP_I64_F64;
344     if (RetVT == MVT::f80)
345       return SINTTOFP_I64_F80;
346     if (RetVT == MVT::f128)
347       return SINTTOFP_I64_F128;
348     if (RetVT == MVT::ppcf128)
349       return SINTTOFP_I64_PPCF128;
350   } else if (OpVT == MVT::i128) {
351     if (RetVT == MVT::f32)
352       return SINTTOFP_I128_F32;
353     if (RetVT == MVT::f64)
354       return SINTTOFP_I128_F64;
355     if (RetVT == MVT::f80)
356       return SINTTOFP_I128_F80;
357     if (RetVT == MVT::f128)
358       return SINTTOFP_I128_F128;
359     if (RetVT == MVT::ppcf128)
360       return SINTTOFP_I128_PPCF128;
361   }
362   return UNKNOWN_LIBCALL;
363 }
364 
365 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
366 /// UNKNOWN_LIBCALL if there is none.
getUINTTOFP(EVT OpVT,EVT RetVT)367 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
368   if (OpVT == MVT::i32) {
369     if (RetVT == MVT::f32)
370       return UINTTOFP_I32_F32;
371     if (RetVT == MVT::f64)
372       return UINTTOFP_I32_F64;
373     if (RetVT == MVT::f80)
374       return UINTTOFP_I32_F80;
375     if (RetVT == MVT::f128)
376       return UINTTOFP_I32_F128;
377     if (RetVT == MVT::ppcf128)
378       return UINTTOFP_I32_PPCF128;
379   } else if (OpVT == MVT::i64) {
380     if (RetVT == MVT::f32)
381       return UINTTOFP_I64_F32;
382     if (RetVT == MVT::f64)
383       return UINTTOFP_I64_F64;
384     if (RetVT == MVT::f80)
385       return UINTTOFP_I64_F80;
386     if (RetVT == MVT::f128)
387       return UINTTOFP_I64_F128;
388     if (RetVT == MVT::ppcf128)
389       return UINTTOFP_I64_PPCF128;
390   } else if (OpVT == MVT::i128) {
391     if (RetVT == MVT::f32)
392       return UINTTOFP_I128_F32;
393     if (RetVT == MVT::f64)
394       return UINTTOFP_I128_F64;
395     if (RetVT == MVT::f80)
396       return UINTTOFP_I128_F80;
397     if (RetVT == MVT::f128)
398       return UINTTOFP_I128_F128;
399     if (RetVT == MVT::ppcf128)
400       return UINTTOFP_I128_PPCF128;
401   }
402   return UNKNOWN_LIBCALL;
403 }
404 
getSYNC(unsigned Opc,MVT VT)405 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
406 #define OP_TO_LIBCALL(Name, Enum)                                              \
407   case Name:                                                                   \
408     switch (VT.SimpleTy) {                                                     \
409     default:                                                                   \
410       return UNKNOWN_LIBCALL;                                                  \
411     case MVT::i8:                                                              \
412       return Enum##_1;                                                         \
413     case MVT::i16:                                                             \
414       return Enum##_2;                                                         \
415     case MVT::i32:                                                             \
416       return Enum##_4;                                                         \
417     case MVT::i64:                                                             \
418       return Enum##_8;                                                         \
419     case MVT::i128:                                                            \
420       return Enum##_16;                                                        \
421     }
422 
423   switch (Opc) {
424     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
425     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
426     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
427     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
428     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
429     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
430     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
431     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
432     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
433     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
434     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
435     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
436   }
437 
438 #undef OP_TO_LIBCALL
439 
440   return UNKNOWN_LIBCALL;
441 }
442 
getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)443 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
444   switch (ElementSize) {
445   case 1:
446     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
447   case 2:
448     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
449   case 4:
450     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
451   case 8:
452     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
453   case 16:
454     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
455   default:
456     return UNKNOWN_LIBCALL;
457   }
458 }
459 
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)460 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
461   switch (ElementSize) {
462   case 1:
463     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
464   case 2:
465     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
466   case 4:
467     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
468   case 8:
469     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
470   case 16:
471     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
472   default:
473     return UNKNOWN_LIBCALL;
474   }
475 }
476 
getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)477 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
478   switch (ElementSize) {
479   case 1:
480     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
481   case 2:
482     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
483   case 4:
484     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
485   case 8:
486     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
487   case 16:
488     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
489   default:
490     return UNKNOWN_LIBCALL;
491   }
492 }
493 
494 /// InitCmpLibcallCCs - Set default comparison libcall CC.
InitCmpLibcallCCs(ISD::CondCode * CCs)495 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
496   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
497   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
498   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
499   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
500   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
501   CCs[RTLIB::UNE_F32] = ISD::SETNE;
502   CCs[RTLIB::UNE_F64] = ISD::SETNE;
503   CCs[RTLIB::UNE_F128] = ISD::SETNE;
504   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
505   CCs[RTLIB::OGE_F32] = ISD::SETGE;
506   CCs[RTLIB::OGE_F64] = ISD::SETGE;
507   CCs[RTLIB::OGE_F128] = ISD::SETGE;
508   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
509   CCs[RTLIB::OLT_F32] = ISD::SETLT;
510   CCs[RTLIB::OLT_F64] = ISD::SETLT;
511   CCs[RTLIB::OLT_F128] = ISD::SETLT;
512   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
513   CCs[RTLIB::OLE_F32] = ISD::SETLE;
514   CCs[RTLIB::OLE_F64] = ISD::SETLE;
515   CCs[RTLIB::OLE_F128] = ISD::SETLE;
516   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
517   CCs[RTLIB::OGT_F32] = ISD::SETGT;
518   CCs[RTLIB::OGT_F64] = ISD::SETGT;
519   CCs[RTLIB::OGT_F128] = ISD::SETGT;
520   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
521   CCs[RTLIB::UO_F32] = ISD::SETNE;
522   CCs[RTLIB::UO_F64] = ISD::SETNE;
523   CCs[RTLIB::UO_F128] = ISD::SETNE;
524   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
525   CCs[RTLIB::O_F32] = ISD::SETEQ;
526   CCs[RTLIB::O_F64] = ISD::SETEQ;
527   CCs[RTLIB::O_F128] = ISD::SETEQ;
528   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
529 }
530 
531 /// NOTE: The TargetMachine owns TLOF.
TargetLoweringBase(const TargetMachine & tm)532 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
533   initActions();
534 
535   // Perform these initializations only once.
536   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
537       MaxLoadsPerMemcmp = 8;
538   MaxGluedStoresPerMemcpy = 0;
539   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
540       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
541   UseUnderscoreSetJmp = false;
542   UseUnderscoreLongJmp = false;
543   HasMultipleConditionRegisters = false;
544   HasExtractBitsInsn = false;
545   JumpIsExpensive = JumpIsExpensiveOverride;
546   PredictableSelectIsExpensive = false;
547   EnableExtLdPromotion = false;
548   HasFloatingPointExceptions = true;
549   StackPointerRegisterToSaveRestore = 0;
550   BooleanContents = UndefinedBooleanContent;
551   BooleanFloatContents = UndefinedBooleanContent;
552   BooleanVectorContents = UndefinedBooleanContent;
553   SchedPreferenceInfo = Sched::ILP;
554   JumpBufSize = 0;
555   JumpBufAlignment = 0;
556   MinFunctionAlignment = 0;
557   PrefFunctionAlignment = 0;
558   PrefLoopAlignment = 0;
559   GatherAllAliasesMaxDepth = 18;
560   MinStackArgumentAlignment = 1;
561   // TODO: the default will be switched to 0 in the next commit, along
562   // with the Target-specific changes necessary.
563   MaxAtomicSizeInBitsSupported = 1024;
564 
565   MinCmpXchgSizeInBits = 0;
566   SupportsUnalignedAtomics = false;
567 
568   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
569 
570   InitLibcalls(TM.getTargetTriple());
571   InitCmpLibcallCCs(CmpLibcallCCs);
572 }
573 
initActions()574 void TargetLoweringBase::initActions() {
575   // All operations default to being supported.
576   memset(OpActions, 0, sizeof(OpActions));
577   memset(LoadExtActions, 0, sizeof(LoadExtActions));
578   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
579   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
580   memset(CondCodeActions, 0, sizeof(CondCodeActions));
581   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
582   std::fill(std::begin(TargetDAGCombineArray),
583             std::end(TargetDAGCombineArray), 0);
584 
585   // Set default actions for various operations.
586   for (MVT VT : MVT::all_valuetypes()) {
587     // Default all indexed load / store to expand.
588     for (unsigned IM = (unsigned)ISD::PRE_INC;
589          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
590       setIndexedLoadAction(IM, VT, Expand);
591       setIndexedStoreAction(IM, VT, Expand);
592     }
593 
594     // Most backends expect to see the node which just returns the value loaded.
595     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
596 
597     // These operations default to expand.
598     setOperationAction(ISD::FGETSIGN, VT, Expand);
599     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
600     setOperationAction(ISD::FMINNUM, VT, Expand);
601     setOperationAction(ISD::FMAXNUM, VT, Expand);
602     setOperationAction(ISD::FMINNAN, VT, Expand);
603     setOperationAction(ISD::FMAXNAN, VT, Expand);
604     setOperationAction(ISD::FMAD, VT, Expand);
605     setOperationAction(ISD::SMIN, VT, Expand);
606     setOperationAction(ISD::SMAX, VT, Expand);
607     setOperationAction(ISD::UMIN, VT, Expand);
608     setOperationAction(ISD::UMAX, VT, Expand);
609     setOperationAction(ISD::ABS, VT, Expand);
610 
611     // Overflow operations default to expand
612     setOperationAction(ISD::SADDO, VT, Expand);
613     setOperationAction(ISD::SSUBO, VT, Expand);
614     setOperationAction(ISD::UADDO, VT, Expand);
615     setOperationAction(ISD::USUBO, VT, Expand);
616     setOperationAction(ISD::SMULO, VT, Expand);
617     setOperationAction(ISD::UMULO, VT, Expand);
618 
619     // ADDCARRY operations default to expand
620     setOperationAction(ISD::ADDCARRY, VT, Expand);
621     setOperationAction(ISD::SUBCARRY, VT, Expand);
622     setOperationAction(ISD::SETCCCARRY, VT, Expand);
623 
624     // ADDC/ADDE/SUBC/SUBE default to expand.
625     setOperationAction(ISD::ADDC, VT, Expand);
626     setOperationAction(ISD::ADDE, VT, Expand);
627     setOperationAction(ISD::SUBC, VT, Expand);
628     setOperationAction(ISD::SUBE, VT, Expand);
629 
630     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
631     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
632     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
633 
634     setOperationAction(ISD::BITREVERSE, VT, Expand);
635 
636     // These library functions default to expand.
637     setOperationAction(ISD::FROUND, VT, Expand);
638     setOperationAction(ISD::FPOWI, VT, Expand);
639 
640     // These operations default to expand for vector types.
641     if (VT.isVector()) {
642       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
643       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
644       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
645       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
646     }
647 
648     // For most targets @llvm.get.dynamic.area.offset just returns 0.
649     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
650   }
651 
652   // Most targets ignore the @llvm.prefetch intrinsic.
653   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
654 
655   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
656   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
657 
658   // ConstantFP nodes default to expand.  Targets can either change this to
659   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
660   // to optimize expansions for certain constants.
661   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
662   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
663   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
664   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
665   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
666 
667   // These library functions default to expand.
668   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
669     setOperationAction(ISD::FLOG ,      VT, Expand);
670     setOperationAction(ISD::FLOG2,      VT, Expand);
671     setOperationAction(ISD::FLOG10,     VT, Expand);
672     setOperationAction(ISD::FEXP ,      VT, Expand);
673     setOperationAction(ISD::FEXP2,      VT, Expand);
674     setOperationAction(ISD::FFLOOR,     VT, Expand);
675     setOperationAction(ISD::FNEARBYINT, VT, Expand);
676     setOperationAction(ISD::FCEIL,      VT, Expand);
677     setOperationAction(ISD::FRINT,      VT, Expand);
678     setOperationAction(ISD::FTRUNC,     VT, Expand);
679     setOperationAction(ISD::FROUND,     VT, Expand);
680   }
681 
682   // Default ISD::TRAP to expand (which turns it into abort).
683   setOperationAction(ISD::TRAP, MVT::Other, Expand);
684 
685   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
686   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
687   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
688 }
689 
getScalarShiftAmountTy(const DataLayout & DL,EVT) const690 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
691                                                EVT) const {
692   return MVT::getIntegerVT(8 * DL.getPointerSize(0));
693 }
694 
getShiftAmountTy(EVT LHSTy,const DataLayout & DL,bool LegalTypes) const695 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
696                                          bool LegalTypes) const {
697   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
698   if (LHSTy.isVector())
699     return LHSTy;
700   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
701                     : getPointerTy(DL);
702 }
703 
canOpTrap(unsigned Op,EVT VT) const704 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
705   assert(isTypeLegal(VT));
706   switch (Op) {
707   default:
708     return false;
709   case ISD::SDIV:
710   case ISD::UDIV:
711   case ISD::SREM:
712   case ISD::UREM:
713     return true;
714   }
715 }
716 
setJumpIsExpensive(bool isExpensive)717 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
718   // If the command-line option was specified, ignore this request.
719   if (!JumpIsExpensiveOverride.getNumOccurrences())
720     JumpIsExpensive = isExpensive;
721 }
722 
723 TargetLoweringBase::LegalizeKind
getTypeConversion(LLVMContext & Context,EVT VT) const724 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
725   // If this is a simple type, use the ComputeRegisterProp mechanism.
726   if (VT.isSimple()) {
727     MVT SVT = VT.getSimpleVT();
728     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
729     MVT NVT = TransformToType[SVT.SimpleTy];
730     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
731 
732     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
733             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
734            "Promote may not follow Expand or Promote");
735 
736     if (LA == TypeSplitVector)
737       return LegalizeKind(LA,
738                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
739                                            SVT.getVectorNumElements() / 2));
740     if (LA == TypeScalarizeVector)
741       return LegalizeKind(LA, SVT.getVectorElementType());
742     return LegalizeKind(LA, NVT);
743   }
744 
745   // Handle Extended Scalar Types.
746   if (!VT.isVector()) {
747     assert(VT.isInteger() && "Float types must be simple");
748     unsigned BitSize = VT.getSizeInBits();
749     // First promote to a power-of-two size, then expand if necessary.
750     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
751       EVT NVT = VT.getRoundIntegerType(Context);
752       assert(NVT != VT && "Unable to round integer VT");
753       LegalizeKind NextStep = getTypeConversion(Context, NVT);
754       // Avoid multi-step promotion.
755       if (NextStep.first == TypePromoteInteger)
756         return NextStep;
757       // Return rounded integer type.
758       return LegalizeKind(TypePromoteInteger, NVT);
759     }
760 
761     return LegalizeKind(TypeExpandInteger,
762                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
763   }
764 
765   // Handle vector types.
766   unsigned NumElts = VT.getVectorNumElements();
767   EVT EltVT = VT.getVectorElementType();
768 
769   // Vectors with only one element are always scalarized.
770   if (NumElts == 1)
771     return LegalizeKind(TypeScalarizeVector, EltVT);
772 
773   // Try to widen vector elements until the element type is a power of two and
774   // promote it to a legal type later on, for example:
775   // <3 x i8> -> <4 x i8> -> <4 x i32>
776   if (EltVT.isInteger()) {
777     // Vectors with a number of elements that is not a power of two are always
778     // widened, for example <3 x i8> -> <4 x i8>.
779     if (!VT.isPow2VectorType()) {
780       NumElts = (unsigned)NextPowerOf2(NumElts);
781       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
782       return LegalizeKind(TypeWidenVector, NVT);
783     }
784 
785     // Examine the element type.
786     LegalizeKind LK = getTypeConversion(Context, EltVT);
787 
788     // If type is to be expanded, split the vector.
789     //  <4 x i140> -> <2 x i140>
790     if (LK.first == TypeExpandInteger)
791       return LegalizeKind(TypeSplitVector,
792                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
793 
794     // Promote the integer element types until a legal vector type is found
795     // or until the element integer type is too big. If a legal type was not
796     // found, fallback to the usual mechanism of widening/splitting the
797     // vector.
798     EVT OldEltVT = EltVT;
799     while (true) {
800       // Increase the bitwidth of the element to the next pow-of-two
801       // (which is greater than 8 bits).
802       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
803                   .getRoundIntegerType(Context);
804 
805       // Stop trying when getting a non-simple element type.
806       // Note that vector elements may be greater than legal vector element
807       // types. Example: X86 XMM registers hold 64bit element on 32bit
808       // systems.
809       if (!EltVT.isSimple())
810         break;
811 
812       // Build a new vector type and check if it is legal.
813       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
814       // Found a legal promoted vector type.
815       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
816         return LegalizeKind(TypePromoteInteger,
817                             EVT::getVectorVT(Context, EltVT, NumElts));
818     }
819 
820     // Reset the type to the unexpanded type if we did not find a legal vector
821     // type with a promoted vector element type.
822     EltVT = OldEltVT;
823   }
824 
825   // Try to widen the vector until a legal type is found.
826   // If there is no wider legal type, split the vector.
827   while (true) {
828     // Round up to the next power of 2.
829     NumElts = (unsigned)NextPowerOf2(NumElts);
830 
831     // If there is no simple vector type with this many elements then there
832     // cannot be a larger legal vector type.  Note that this assumes that
833     // there are no skipped intermediate vector types in the simple types.
834     if (!EltVT.isSimple())
835       break;
836     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
837     if (LargerVector == MVT())
838       break;
839 
840     // If this type is legal then widen the vector.
841     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
842       return LegalizeKind(TypeWidenVector, LargerVector);
843   }
844 
845   // Widen odd vectors to next power of two.
846   if (!VT.isPow2VectorType()) {
847     EVT NVT = VT.getPow2VectorType(Context);
848     return LegalizeKind(TypeWidenVector, NVT);
849   }
850 
851   // Vectors with illegal element types are expanded.
852   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
853   return LegalizeKind(TypeSplitVector, NVT);
854 }
855 
getVectorTypeBreakdownMVT(MVT VT,MVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT,TargetLoweringBase * TLI)856 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
857                                           unsigned &NumIntermediates,
858                                           MVT &RegisterVT,
859                                           TargetLoweringBase *TLI) {
860   // Figure out the right, legal destination reg to copy into.
861   unsigned NumElts = VT.getVectorNumElements();
862   MVT EltTy = VT.getVectorElementType();
863 
864   unsigned NumVectorRegs = 1;
865 
866   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
867   // could break down into LHS/RHS like LegalizeDAG does.
868   if (!isPowerOf2_32(NumElts)) {
869     NumVectorRegs = NumElts;
870     NumElts = 1;
871   }
872 
873   // Divide the input until we get to a supported size.  This will always
874   // end with a scalar if the target doesn't support vectors.
875   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
876     NumElts >>= 1;
877     NumVectorRegs <<= 1;
878   }
879 
880   NumIntermediates = NumVectorRegs;
881 
882   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
883   if (!TLI->isTypeLegal(NewVT))
884     NewVT = EltTy;
885   IntermediateVT = NewVT;
886 
887   unsigned NewVTSize = NewVT.getSizeInBits();
888 
889   // Convert sizes such as i33 to i64.
890   if (!isPowerOf2_32(NewVTSize))
891     NewVTSize = NextPowerOf2(NewVTSize);
892 
893   MVT DestVT = TLI->getRegisterType(NewVT);
894   RegisterVT = DestVT;
895   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
896     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
897 
898   // Otherwise, promotion or legal types use the same number of registers as
899   // the vector decimated to the appropriate level.
900   return NumVectorRegs;
901 }
902 
903 /// isLegalRC - Return true if the value types that can be represented by the
904 /// specified register class are all legal.
isLegalRC(const TargetRegisterInfo & TRI,const TargetRegisterClass & RC) const905 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
906                                    const TargetRegisterClass &RC) const {
907   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
908     if (isTypeLegal(*I))
909       return true;
910   return false;
911 }
912 
913 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
914 /// sequence of memory operands that is recognized by PrologEpilogInserter.
915 MachineBasicBlock *
emitPatchPoint(MachineInstr & InitialMI,MachineBasicBlock * MBB) const916 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
917                                    MachineBasicBlock *MBB) const {
918   MachineInstr *MI = &InitialMI;
919   MachineFunction &MF = *MI->getMF();
920   MachineFrameInfo &MFI = MF.getFrameInfo();
921 
922   // We're handling multiple types of operands here:
923   // PATCHPOINT MetaArgs - live-in, read only, direct
924   // STATEPOINT Deopt Spill - live-through, read only, indirect
925   // STATEPOINT Deopt Alloca - live-through, read only, direct
926   // (We're currently conservative and mark the deopt slots read/write in
927   // practice.)
928   // STATEPOINT GC Spill - live-through, read/write, indirect
929   // STATEPOINT GC Alloca - live-through, read/write, direct
930   // The live-in vs live-through is handled already (the live through ones are
931   // all stack slots), but we need to handle the different type of stackmap
932   // operands and memory effects here.
933 
934   // MI changes inside this loop as we grow operands.
935   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
936     MachineOperand &MO = MI->getOperand(OperIdx);
937     if (!MO.isFI())
938       continue;
939 
940     // foldMemoryOperand builds a new MI after replacing a single FI operand
941     // with the canonical set of five x86 addressing-mode operands.
942     int FI = MO.getIndex();
943     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
944 
945     // Copy operands before the frame-index.
946     for (unsigned i = 0; i < OperIdx; ++i)
947       MIB.add(MI->getOperand(i));
948     // Add frame index operands recognized by stackmaps.cpp
949     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
950       // indirect-mem-ref tag, size, #FI, offset.
951       // Used for spills inserted by StatepointLowering.  This codepath is not
952       // used for patchpoints/stackmaps at all, for these spilling is done via
953       // foldMemoryOperand callback only.
954       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
955       MIB.addImm(StackMaps::IndirectMemRefOp);
956       MIB.addImm(MFI.getObjectSize(FI));
957       MIB.add(MI->getOperand(OperIdx));
958       MIB.addImm(0);
959     } else {
960       // direct-mem-ref tag, #FI, offset.
961       // Used by patchpoint, and direct alloca arguments to statepoints
962       MIB.addImm(StackMaps::DirectMemRefOp);
963       MIB.add(MI->getOperand(OperIdx));
964       MIB.addImm(0);
965     }
966     // Copy the operands after the frame index.
967     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
968       MIB.add(MI->getOperand(i));
969 
970     // Inherit previous memory operands.
971     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
972     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
973 
974     // Add a new memory operand for this FI.
975     assert(MFI.getObjectOffset(FI) != -1);
976 
977     auto Flags = MachineMemOperand::MOLoad;
978     if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
979       Flags |= MachineMemOperand::MOStore;
980       Flags |= MachineMemOperand::MOVolatile;
981     }
982     MachineMemOperand *MMO = MF.getMachineMemOperand(
983         MachinePointerInfo::getFixedStack(MF, FI), Flags,
984         MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
985     MIB->addMemOperand(MF, MMO);
986 
987     // Replace the instruction and update the operand index.
988     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
989     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
990     MI->eraseFromParent();
991     MI = MIB;
992   }
993   return MBB;
994 }
995 
996 MachineBasicBlock *
emitXRayCustomEvent(MachineInstr & MI,MachineBasicBlock * MBB) const997 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
998                                         MachineBasicBlock *MBB) const {
999   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1000          "Called emitXRayCustomEvent on the wrong MI!");
1001   auto &MF = *MI.getMF();
1002   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1003   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1004     MIB.add(MI.getOperand(OpIdx));
1005 
1006   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1007   MI.eraseFromParent();
1008   return MBB;
1009 }
1010 
1011 MachineBasicBlock *
emitXRayTypedEvent(MachineInstr & MI,MachineBasicBlock * MBB) const1012 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1013                                        MachineBasicBlock *MBB) const {
1014   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1015          "Called emitXRayTypedEvent on the wrong MI!");
1016   auto &MF = *MI.getMF();
1017   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1018   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1019     MIB.add(MI.getOperand(OpIdx));
1020 
1021   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1022   MI.eraseFromParent();
1023   return MBB;
1024 }
1025 
1026 /// findRepresentativeClass - Return the largest legal super-reg register class
1027 /// of the register class for the specified type and its associated "cost".
1028 // This function is in TargetLowering because it uses RegClassForVT which would
1029 // need to be moved to TargetRegisterInfo and would necessitate moving
1030 // isTypeLegal over as well - a massive change that would just require
1031 // TargetLowering having a TargetRegisterInfo class member that it would use.
1032 std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const1033 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1034                                             MVT VT) const {
1035   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1036   if (!RC)
1037     return std::make_pair(RC, 0);
1038 
1039   // Compute the set of all super-register classes.
1040   BitVector SuperRegRC(TRI->getNumRegClasses());
1041   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1042     SuperRegRC.setBitsInMask(RCI.getMask());
1043 
1044   // Find the first legal register class with the largest spill size.
1045   const TargetRegisterClass *BestRC = RC;
1046   for (unsigned i : SuperRegRC.set_bits()) {
1047     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1048     // We want the largest possible spill size.
1049     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1050       continue;
1051     if (!isLegalRC(*TRI, *SuperRC))
1052       continue;
1053     BestRC = SuperRC;
1054   }
1055   return std::make_pair(BestRC, 1);
1056 }
1057 
1058 /// computeRegisterProperties - Once all of the register classes are added,
1059 /// this allows us to compute derived properties we expose.
computeRegisterProperties(const TargetRegisterInfo * TRI)1060 void TargetLoweringBase::computeRegisterProperties(
1061     const TargetRegisterInfo *TRI) {
1062   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1063                 "Too many value types for ValueTypeActions to hold!");
1064 
1065   // Everything defaults to needing one register.
1066   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1067     NumRegistersForVT[i] = 1;
1068     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1069   }
1070   // ...except isVoid, which doesn't need any registers.
1071   NumRegistersForVT[MVT::isVoid] = 0;
1072 
1073   // Find the largest integer register class.
1074   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1075   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1076     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1077 
1078   // Every integer value type larger than this largest register takes twice as
1079   // many registers to represent as the previous ValueType.
1080   for (unsigned ExpandedReg = LargestIntReg + 1;
1081        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1082     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1083     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1084     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1085     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1086                                    TypeExpandInteger);
1087   }
1088 
1089   // Inspect all of the ValueType's smaller than the largest integer
1090   // register to see which ones need promotion.
1091   unsigned LegalIntReg = LargestIntReg;
1092   for (unsigned IntReg = LargestIntReg - 1;
1093        IntReg >= (unsigned)MVT::i1; --IntReg) {
1094     MVT IVT = (MVT::SimpleValueType)IntReg;
1095     if (isTypeLegal(IVT)) {
1096       LegalIntReg = IntReg;
1097     } else {
1098       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1099         (const MVT::SimpleValueType)LegalIntReg;
1100       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1101     }
1102   }
1103 
1104   // ppcf128 type is really two f64's.
1105   if (!isTypeLegal(MVT::ppcf128)) {
1106     if (isTypeLegal(MVT::f64)) {
1107       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1108       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1109       TransformToType[MVT::ppcf128] = MVT::f64;
1110       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1111     } else {
1112       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1113       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1114       TransformToType[MVT::ppcf128] = MVT::i128;
1115       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1116     }
1117   }
1118 
1119   // Decide how to handle f128. If the target does not have native f128 support,
1120   // expand it to i128 and we will be generating soft float library calls.
1121   if (!isTypeLegal(MVT::f128)) {
1122     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1123     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1124     TransformToType[MVT::f128] = MVT::i128;
1125     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1126   }
1127 
1128   // Decide how to handle f64. If the target does not have native f64 support,
1129   // expand it to i64 and we will be generating soft float library calls.
1130   if (!isTypeLegal(MVT::f64)) {
1131     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1132     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1133     TransformToType[MVT::f64] = MVT::i64;
1134     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1135   }
1136 
1137   // Decide how to handle f32. If the target does not have native f32 support,
1138   // expand it to i32 and we will be generating soft float library calls.
1139   if (!isTypeLegal(MVT::f32)) {
1140     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1141     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1142     TransformToType[MVT::f32] = MVT::i32;
1143     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1144   }
1145 
1146   // Decide how to handle f16. If the target does not have native f16 support,
1147   // promote it to f32, because there are no f16 library calls (except for
1148   // conversions).
1149   if (!isTypeLegal(MVT::f16)) {
1150     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1151     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1152     TransformToType[MVT::f16] = MVT::f32;
1153     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1154   }
1155 
1156   // Loop over all of the vector value types to see which need transformations.
1157   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1158        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1159     MVT VT = (MVT::SimpleValueType) i;
1160     if (isTypeLegal(VT))
1161       continue;
1162 
1163     MVT EltVT = VT.getVectorElementType();
1164     unsigned NElts = VT.getVectorNumElements();
1165     bool IsLegalWiderType = false;
1166     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1167     switch (PreferredAction) {
1168     case TypePromoteInteger:
1169       // Try to promote the elements of integer vectors. If no legal
1170       // promotion was found, fall through to the widen-vector method.
1171       for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
1172         MVT SVT = (MVT::SimpleValueType) nVT;
1173         // Promote vectors of integers to vectors with the same number
1174         // of elements, with a wider element type.
1175         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1176             SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
1177           TransformToType[i] = SVT;
1178           RegisterTypeForVT[i] = SVT;
1179           NumRegistersForVT[i] = 1;
1180           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1181           IsLegalWiderType = true;
1182           break;
1183         }
1184       }
1185       if (IsLegalWiderType)
1186         break;
1187       LLVM_FALLTHROUGH;
1188 
1189     case TypeWidenVector:
1190       // Try to widen the vector.
1191       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1192         MVT SVT = (MVT::SimpleValueType) nVT;
1193         if (SVT.getVectorElementType() == EltVT
1194             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1195           TransformToType[i] = SVT;
1196           RegisterTypeForVT[i] = SVT;
1197           NumRegistersForVT[i] = 1;
1198           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1199           IsLegalWiderType = true;
1200           break;
1201         }
1202       }
1203       if (IsLegalWiderType)
1204         break;
1205       LLVM_FALLTHROUGH;
1206 
1207     case TypeSplitVector:
1208     case TypeScalarizeVector: {
1209       MVT IntermediateVT;
1210       MVT RegisterVT;
1211       unsigned NumIntermediates;
1212       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1213           NumIntermediates, RegisterVT, this);
1214       RegisterTypeForVT[i] = RegisterVT;
1215 
1216       MVT NVT = VT.getPow2VectorType();
1217       if (NVT == VT) {
1218         // Type is already a power of 2.  The default action is to split.
1219         TransformToType[i] = MVT::Other;
1220         if (PreferredAction == TypeScalarizeVector)
1221           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1222         else if (PreferredAction == TypeSplitVector)
1223           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1224         else
1225           // Set type action according to the number of elements.
1226           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1227                                                         : TypeSplitVector);
1228       } else {
1229         TransformToType[i] = NVT;
1230         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1231       }
1232       break;
1233     }
1234     default:
1235       llvm_unreachable("Unknown vector legalization action!");
1236     }
1237   }
1238 
1239   // Determine the 'representative' register class for each value type.
1240   // An representative register class is the largest (meaning one which is
1241   // not a sub-register class / subreg register class) legal register class for
1242   // a group of value types. For example, on i386, i8, i16, and i32
1243   // representative would be GR32; while on x86_64 it's GR64.
1244   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1245     const TargetRegisterClass* RRC;
1246     uint8_t Cost;
1247     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1248     RepRegClassForVT[i] = RRC;
1249     RepRegClassCostForVT[i] = Cost;
1250   }
1251 }
1252 
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const1253 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1254                                            EVT VT) const {
1255   assert(!VT.isVector() && "No default SetCC type for vectors!");
1256   return getPointerTy(DL).SimpleTy;
1257 }
1258 
getCmpLibcallReturnType() const1259 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1260   return MVT::i32; // return the default value
1261 }
1262 
1263 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1264 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1265 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1266 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1267 ///
1268 /// This method returns the number of registers needed, and the VT for each
1269 /// register.  It also returns the VT and quantity of the intermediate values
1270 /// before they are promoted/expanded.
getVectorTypeBreakdown(LLVMContext & Context,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT) const1271 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1272                                                 EVT &IntermediateVT,
1273                                                 unsigned &NumIntermediates,
1274                                                 MVT &RegisterVT) const {
1275   unsigned NumElts = VT.getVectorNumElements();
1276 
1277   // If there is a wider vector type with the same element type as this one,
1278   // or a promoted vector type that has the same number of elements which
1279   // are wider, then we should convert to that legal vector type.
1280   // This handles things like <2 x float> -> <4 x float> and
1281   // <4 x i1> -> <4 x i32>.
1282   LegalizeTypeAction TA = getTypeAction(Context, VT);
1283   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1284     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1285     if (isTypeLegal(RegisterEVT)) {
1286       IntermediateVT = RegisterEVT;
1287       RegisterVT = RegisterEVT.getSimpleVT();
1288       NumIntermediates = 1;
1289       return 1;
1290     }
1291   }
1292 
1293   // Figure out the right, legal destination reg to copy into.
1294   EVT EltTy = VT.getVectorElementType();
1295 
1296   unsigned NumVectorRegs = 1;
1297 
1298   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1299   // could break down into LHS/RHS like LegalizeDAG does.
1300   if (!isPowerOf2_32(NumElts)) {
1301     NumVectorRegs = NumElts;
1302     NumElts = 1;
1303   }
1304 
1305   // Divide the input until we get to a supported size.  This will always
1306   // end with a scalar if the target doesn't support vectors.
1307   while (NumElts > 1 && !isTypeLegal(
1308                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1309     NumElts >>= 1;
1310     NumVectorRegs <<= 1;
1311   }
1312 
1313   NumIntermediates = NumVectorRegs;
1314 
1315   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1316   if (!isTypeLegal(NewVT))
1317     NewVT = EltTy;
1318   IntermediateVT = NewVT;
1319 
1320   MVT DestVT = getRegisterType(Context, NewVT);
1321   RegisterVT = DestVT;
1322   unsigned NewVTSize = NewVT.getSizeInBits();
1323 
1324   // Convert sizes such as i33 to i64.
1325   if (!isPowerOf2_32(NewVTSize))
1326     NewVTSize = NextPowerOf2(NewVTSize);
1327 
1328   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1329     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1330 
1331   // Otherwise, promotion or legal types use the same number of registers as
1332   // the vector decimated to the appropriate level.
1333   return NumVectorRegs;
1334 }
1335 
1336 /// Get the EVTs and ArgFlags collections that represent the legalized return
1337 /// type of the given function.  This does not require a DAG or a return value,
1338 /// and is suitable for use before any DAGs for the function are constructed.
1339 /// TODO: Move this out of TargetLowering.cpp.
GetReturnInfo(CallingConv::ID CC,Type * ReturnType,AttributeList attr,SmallVectorImpl<ISD::OutputArg> & Outs,const TargetLowering & TLI,const DataLayout & DL)1340 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1341                          AttributeList attr,
1342                          SmallVectorImpl<ISD::OutputArg> &Outs,
1343                          const TargetLowering &TLI, const DataLayout &DL) {
1344   SmallVector<EVT, 4> ValueVTs;
1345   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1346   unsigned NumValues = ValueVTs.size();
1347   if (NumValues == 0) return;
1348 
1349   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1350     EVT VT = ValueVTs[j];
1351     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1352 
1353     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1354       ExtendKind = ISD::SIGN_EXTEND;
1355     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1356       ExtendKind = ISD::ZERO_EXTEND;
1357 
1358     // FIXME: C calling convention requires the return type to be promoted to
1359     // at least 32-bit. But this is not necessary for non-C calling
1360     // conventions. The frontend should mark functions whose return values
1361     // require promoting with signext or zeroext attributes.
1362     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1363       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1364       if (VT.bitsLT(MinVT))
1365         VT = MinVT;
1366     }
1367 
1368     unsigned NumParts =
1369         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1370     MVT PartVT =
1371         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1372 
1373     // 'inreg' on function refers to return value
1374     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1375     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1376       Flags.setInReg();
1377 
1378     // Propagate extension type if any
1379     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1380       Flags.setSExt();
1381     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1382       Flags.setZExt();
1383 
1384     for (unsigned i = 0; i < NumParts; ++i)
1385       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1386   }
1387 }
1388 
1389 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1390 /// function arguments in the caller parameter area.  This is the actual
1391 /// alignment, not its logarithm.
getByValTypeAlignment(Type * Ty,const DataLayout & DL) const1392 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1393                                                    const DataLayout &DL) const {
1394   return DL.getABITypeAlignment(Ty);
1395 }
1396 
allowsMemoryAccess(LLVMContext & Context,const DataLayout & DL,EVT VT,unsigned AddrSpace,unsigned Alignment,bool * Fast) const1397 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1398                                             const DataLayout &DL, EVT VT,
1399                                             unsigned AddrSpace,
1400                                             unsigned Alignment,
1401                                             bool *Fast) const {
1402   // Check if the specified alignment is sufficient based on the data layout.
1403   // TODO: While using the data layout works in practice, a better solution
1404   // would be to implement this check directly (make this a virtual function).
1405   // For example, the ABI alignment may change based on software platform while
1406   // this function should only be affected by hardware implementation.
1407   Type *Ty = VT.getTypeForEVT(Context);
1408   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1409     // Assume that an access that meets the ABI-specified alignment is fast.
1410     if (Fast != nullptr)
1411       *Fast = true;
1412     return true;
1413   }
1414 
1415   // This is a misaligned access.
1416   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
1417 }
1418 
getPredictableBranchThreshold() const1419 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1420   return BranchProbability(MinPercentageForPredictableBranch, 100);
1421 }
1422 
1423 //===----------------------------------------------------------------------===//
1424 //  TargetTransformInfo Helpers
1425 //===----------------------------------------------------------------------===//
1426 
InstructionOpcodeToISD(unsigned Opcode) const1427 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1428   enum InstructionOpcodes {
1429 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1430 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1431 #include "llvm/IR/Instruction.def"
1432   };
1433   switch (static_cast<InstructionOpcodes>(Opcode)) {
1434   case Ret:            return 0;
1435   case Br:             return 0;
1436   case Switch:         return 0;
1437   case IndirectBr:     return 0;
1438   case Invoke:         return 0;
1439   case Resume:         return 0;
1440   case Unreachable:    return 0;
1441   case CleanupRet:     return 0;
1442   case CatchRet:       return 0;
1443   case CatchPad:       return 0;
1444   case CatchSwitch:    return 0;
1445   case CleanupPad:     return 0;
1446   case Add:            return ISD::ADD;
1447   case FAdd:           return ISD::FADD;
1448   case Sub:            return ISD::SUB;
1449   case FSub:           return ISD::FSUB;
1450   case Mul:            return ISD::MUL;
1451   case FMul:           return ISD::FMUL;
1452   case UDiv:           return ISD::UDIV;
1453   case SDiv:           return ISD::SDIV;
1454   case FDiv:           return ISD::FDIV;
1455   case URem:           return ISD::UREM;
1456   case SRem:           return ISD::SREM;
1457   case FRem:           return ISD::FREM;
1458   case Shl:            return ISD::SHL;
1459   case LShr:           return ISD::SRL;
1460   case AShr:           return ISD::SRA;
1461   case And:            return ISD::AND;
1462   case Or:             return ISD::OR;
1463   case Xor:            return ISD::XOR;
1464   case Alloca:         return 0;
1465   case Load:           return ISD::LOAD;
1466   case Store:          return ISD::STORE;
1467   case GetElementPtr:  return 0;
1468   case Fence:          return 0;
1469   case AtomicCmpXchg:  return 0;
1470   case AtomicRMW:      return 0;
1471   case Trunc:          return ISD::TRUNCATE;
1472   case ZExt:           return ISD::ZERO_EXTEND;
1473   case SExt:           return ISD::SIGN_EXTEND;
1474   case FPToUI:         return ISD::FP_TO_UINT;
1475   case FPToSI:         return ISD::FP_TO_SINT;
1476   case UIToFP:         return ISD::UINT_TO_FP;
1477   case SIToFP:         return ISD::SINT_TO_FP;
1478   case FPTrunc:        return ISD::FP_ROUND;
1479   case FPExt:          return ISD::FP_EXTEND;
1480   case PtrToInt:       return ISD::BITCAST;
1481   case IntToPtr:       return ISD::BITCAST;
1482   case BitCast:        return ISD::BITCAST;
1483   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1484   case ICmp:           return ISD::SETCC;
1485   case FCmp:           return ISD::SETCC;
1486   case PHI:            return 0;
1487   case Call:           return 0;
1488   case Select:         return ISD::SELECT;
1489   case UserOp1:        return 0;
1490   case UserOp2:        return 0;
1491   case VAArg:          return 0;
1492   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1493   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1494   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1495   case ExtractValue:   return ISD::MERGE_VALUES;
1496   case InsertValue:    return ISD::MERGE_VALUES;
1497   case LandingPad:     return 0;
1498   }
1499 
1500   llvm_unreachable("Unknown instruction type encountered!");
1501 }
1502 
1503 std::pair<int, MVT>
getTypeLegalizationCost(const DataLayout & DL,Type * Ty) const1504 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1505                                             Type *Ty) const {
1506   LLVMContext &C = Ty->getContext();
1507   EVT MTy = getValueType(DL, Ty);
1508 
1509   int Cost = 1;
1510   // We keep legalizing the type until we find a legal kind. We assume that
1511   // the only operation that costs anything is the split. After splitting
1512   // we need to handle two types.
1513   while (true) {
1514     LegalizeKind LK = getTypeConversion(C, MTy);
1515 
1516     if (LK.first == TypeLegal)
1517       return std::make_pair(Cost, MTy.getSimpleVT());
1518 
1519     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1520       Cost *= 2;
1521 
1522     // Do not loop with f128 type.
1523     if (MTy == LK.second)
1524       return std::make_pair(Cost, MTy.getSimpleVT());
1525 
1526     // Keep legalizing the type.
1527     MTy = LK.second;
1528   }
1529 }
1530 
getDefaultSafeStackPointerLocation(IRBuilder<> & IRB,bool UseTLS) const1531 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1532                                                               bool UseTLS) const {
1533   // compiler-rt provides a variable with a magic name.  Targets that do not
1534   // link with compiler-rt may also provide such a variable.
1535   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1536   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1537   auto UnsafeStackPtr =
1538       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1539 
1540   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1541 
1542   if (!UnsafeStackPtr) {
1543     auto TLSModel = UseTLS ?
1544         GlobalValue::InitialExecTLSModel :
1545         GlobalValue::NotThreadLocal;
1546     // The global variable is not defined yet, define it ourselves.
1547     // We use the initial-exec TLS model because we do not support the
1548     // variable living anywhere other than in the main executable.
1549     UnsafeStackPtr = new GlobalVariable(
1550         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1551         UnsafeStackPtrVar, nullptr, TLSModel);
1552   } else {
1553     // The variable exists, check its type and attributes.
1554     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1555       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1556     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1557       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1558                          (UseTLS ? "" : "not ") + "be thread-local");
1559   }
1560   return UnsafeStackPtr;
1561 }
1562 
getSafeStackPointerLocation(IRBuilder<> & IRB) const1563 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1564   if (!TM.getTargetTriple().isAndroid())
1565     return getDefaultSafeStackPointerLocation(IRB, true);
1566 
1567   // Android provides a libc function to retrieve the address of the current
1568   // thread's unsafe stack pointer.
1569   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1570   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1571   Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
1572                                      StackPtrTy->getPointerTo(0));
1573   return IRB.CreateCall(Fn);
1574 }
1575 
1576 //===----------------------------------------------------------------------===//
1577 //  Loop Strength Reduction hooks
1578 //===----------------------------------------------------------------------===//
1579 
1580 /// isLegalAddressingMode - Return true if the addressing mode represented
1581 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const1582 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1583                                                const AddrMode &AM, Type *Ty,
1584                                                unsigned AS, Instruction *I) const {
1585   // The default implementation of this implements a conservative RISCy, r+r and
1586   // r+i addr mode.
1587 
1588   // Allows a sign-extended 16-bit immediate field.
1589   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1590     return false;
1591 
1592   // No global is ever allowed as a base.
1593   if (AM.BaseGV)
1594     return false;
1595 
1596   // Only support r+r,
1597   switch (AM.Scale) {
1598   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1599     break;
1600   case 1:
1601     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1602       return false;
1603     // Otherwise we have r+r or r+i.
1604     break;
1605   case 2:
1606     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1607       return false;
1608     // Allow 2*r as r+r.
1609     break;
1610   default: // Don't allow n * r
1611     return false;
1612   }
1613 
1614   return true;
1615 }
1616 
1617 //===----------------------------------------------------------------------===//
1618 //  Stack Protector
1619 //===----------------------------------------------------------------------===//
1620 
1621 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1622 // so that SelectionDAG handle SSP.
getIRStackGuard(IRBuilder<> & IRB) const1623 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1624   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1625     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1626     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1627     return M.getOrInsertGlobal("__guard_local", PtrTy);
1628   }
1629   return nullptr;
1630 }
1631 
1632 // Currently only support "standard" __stack_chk_guard.
1633 // TODO: add LOAD_STACK_GUARD support.
insertSSPDeclarations(Module & M) const1634 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1635   if (!M.getNamedValue("__stack_chk_guard"))
1636     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1637                        GlobalVariable::ExternalLinkage,
1638                        nullptr, "__stack_chk_guard");
1639 }
1640 
1641 // Currently only support "standard" __stack_chk_guard.
1642 // TODO: add LOAD_STACK_GUARD support.
getSDagStackGuard(const Module & M) const1643 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1644   return M.getNamedValue("__stack_chk_guard");
1645 }
1646 
getSSPStackGuardCheck(const Module & M) const1647 Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1648   return nullptr;
1649 }
1650 
getMinimumJumpTableEntries() const1651 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1652   return MinimumJumpTableEntries;
1653 }
1654 
setMinimumJumpTableEntries(unsigned Val)1655 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1656   MinimumJumpTableEntries = Val;
1657 }
1658 
getMinimumJumpTableDensity(bool OptForSize) const1659 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1660   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1661 }
1662 
getMaximumJumpTableSize() const1663 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1664   return MaximumJumpTableSize;
1665 }
1666 
setMaximumJumpTableSize(unsigned Val)1667 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1668   MaximumJumpTableSize = Val;
1669 }
1670 
1671 //===----------------------------------------------------------------------===//
1672 //  Reciprocal Estimates
1673 //===----------------------------------------------------------------------===//
1674 
1675 /// Get the reciprocal estimate attribute string for a function that will
1676 /// override the target defaults.
getRecipEstimateForFunc(MachineFunction & MF)1677 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1678   const Function &F = MF.getFunction();
1679   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1680 }
1681 
1682 /// Construct a string for the given reciprocal operation of the given type.
1683 /// This string should match the corresponding option to the front-end's
1684 /// "-mrecip" flag assuming those strings have been passed through in an
1685 /// attribute string. For example, "vec-divf" for a division of a vXf32.
getReciprocalOpName(bool IsSqrt,EVT VT)1686 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1687   std::string Name = VT.isVector() ? "vec-" : "";
1688 
1689   Name += IsSqrt ? "sqrt" : "div";
1690 
1691   // TODO: Handle "half" or other float types?
1692   if (VT.getScalarType() == MVT::f64) {
1693     Name += "d";
1694   } else {
1695     assert(VT.getScalarType() == MVT::f32 &&
1696            "Unexpected FP type for reciprocal estimate");
1697     Name += "f";
1698   }
1699 
1700   return Name;
1701 }
1702 
1703 /// Return the character position and value (a single numeric character) of a
1704 /// customized refinement operation in the input string if it exists. Return
1705 /// false if there is no customized refinement step count.
parseRefinementStep(StringRef In,size_t & Position,uint8_t & Value)1706 static bool parseRefinementStep(StringRef In, size_t &Position,
1707                                 uint8_t &Value) {
1708   const char RefStepToken = ':';
1709   Position = In.find(RefStepToken);
1710   if (Position == StringRef::npos)
1711     return false;
1712 
1713   StringRef RefStepString = In.substr(Position + 1);
1714   // Allow exactly one numeric character for the additional refinement
1715   // step parameter.
1716   if (RefStepString.size() == 1) {
1717     char RefStepChar = RefStepString[0];
1718     if (RefStepChar >= '0' && RefStepChar <= '9') {
1719       Value = RefStepChar - '0';
1720       return true;
1721     }
1722   }
1723   report_fatal_error("Invalid refinement step for -recip.");
1724 }
1725 
1726 /// For the input attribute string, return one of the ReciprocalEstimate enum
1727 /// status values (enabled, disabled, or not specified) for this operation on
1728 /// the specified data type.
getOpEnabled(bool IsSqrt,EVT VT,StringRef Override)1729 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1730   if (Override.empty())
1731     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1732 
1733   SmallVector<StringRef, 4> OverrideVector;
1734   Override.split(OverrideVector, ',');
1735   unsigned NumArgs = OverrideVector.size();
1736 
1737   // Check if "all", "none", or "default" was specified.
1738   if (NumArgs == 1) {
1739     // Look for an optional setting of the number of refinement steps needed
1740     // for this type of reciprocal operation.
1741     size_t RefPos;
1742     uint8_t RefSteps;
1743     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1744       // Split the string for further processing.
1745       Override = Override.substr(0, RefPos);
1746     }
1747 
1748     // All reciprocal types are enabled.
1749     if (Override == "all")
1750       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1751 
1752     // All reciprocal types are disabled.
1753     if (Override == "none")
1754       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1755 
1756     // Target defaults for enablement are used.
1757     if (Override == "default")
1758       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1759   }
1760 
1761   // The attribute string may omit the size suffix ('f'/'d').
1762   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1763   std::string VTNameNoSize = VTName;
1764   VTNameNoSize.pop_back();
1765   static const char DisabledPrefix = '!';
1766 
1767   for (StringRef RecipType : OverrideVector) {
1768     size_t RefPos;
1769     uint8_t RefSteps;
1770     if (parseRefinementStep(RecipType, RefPos, RefSteps))
1771       RecipType = RecipType.substr(0, RefPos);
1772 
1773     // Ignore the disablement token for string matching.
1774     bool IsDisabled = RecipType[0] == DisabledPrefix;
1775     if (IsDisabled)
1776       RecipType = RecipType.substr(1);
1777 
1778     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1779       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1780                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
1781   }
1782 
1783   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1784 }
1785 
1786 /// For the input attribute string, return the customized refinement step count
1787 /// for this operation on the specified data type. If the step count does not
1788 /// exist, return the ReciprocalEstimate enum value for unspecified.
getOpRefinementSteps(bool IsSqrt,EVT VT,StringRef Override)1789 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1790   if (Override.empty())
1791     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1792 
1793   SmallVector<StringRef, 4> OverrideVector;
1794   Override.split(OverrideVector, ',');
1795   unsigned NumArgs = OverrideVector.size();
1796 
1797   // Check if "all", "default", or "none" was specified.
1798   if (NumArgs == 1) {
1799     // Look for an optional setting of the number of refinement steps needed
1800     // for this type of reciprocal operation.
1801     size_t RefPos;
1802     uint8_t RefSteps;
1803     if (!parseRefinementStep(Override, RefPos, RefSteps))
1804       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1805 
1806     // Split the string for further processing.
1807     Override = Override.substr(0, RefPos);
1808     assert(Override != "none" &&
1809            "Disabled reciprocals, but specifed refinement steps?");
1810 
1811     // If this is a general override, return the specified number of steps.
1812     if (Override == "all" || Override == "default")
1813       return RefSteps;
1814   }
1815 
1816   // The attribute string may omit the size suffix ('f'/'d').
1817   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1818   std::string VTNameNoSize = VTName;
1819   VTNameNoSize.pop_back();
1820 
1821   for (StringRef RecipType : OverrideVector) {
1822     size_t RefPos;
1823     uint8_t RefSteps;
1824     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1825       continue;
1826 
1827     RecipType = RecipType.substr(0, RefPos);
1828     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1829       return RefSteps;
1830   }
1831 
1832   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1833 }
1834 
getRecipEstimateSqrtEnabled(EVT VT,MachineFunction & MF) const1835 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1836                                                     MachineFunction &MF) const {
1837   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1838 }
1839 
getRecipEstimateDivEnabled(EVT VT,MachineFunction & MF) const1840 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1841                                                    MachineFunction &MF) const {
1842   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1843 }
1844 
getSqrtRefinementSteps(EVT VT,MachineFunction & MF) const1845 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
1846                                                MachineFunction &MF) const {
1847   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
1848 }
1849 
getDivRefinementSteps(EVT VT,MachineFunction & MF) const1850 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
1851                                               MachineFunction &MF) const {
1852   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
1853 }
1854 
finalizeLowering(MachineFunction & MF) const1855 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
1856   MF.getRegInfo().freezeReservedRegs(MF);
1857 }
1858