1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the PowerPC-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // PPCGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "MCTargetDesc/PPCPredicates.h"
17 #include "PPC.h"
18 #include "PPCCCState.h"
19 #include "PPCCallingConv.h"
20 #include "PPCISelLowering.h"
21 #include "PPCMachineFunctionInfo.h"
22 #include "PPCSubtarget.h"
23 #include "PPCTargetMachine.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Target/TargetMachine.h"
41 
42 //===----------------------------------------------------------------------===//
43 //
44 // TBD:
45 //   fastLowerArguments: Handle simple cases.
46 //   PPCMaterializeGV: Handle TLS.
47 //   SelectCall: Handle function pointers.
48 //   SelectCall: Handle multi-register return values.
49 //   SelectCall: Optimize away nops for local calls.
50 //   processCallArgs: Handle bit-converted arguments.
51 //   finishCall: Handle multi-register return values.
52 //   PPCComputeAddress: Handle parameter references as FrameIndex's.
53 //   PPCEmitCmp: Handle immediate as operand 1.
54 //   SelectCall: Handle small byval arguments.
55 //   SelectIntrinsicCall: Implement.
56 //   SelectSelect: Implement.
57 //   Consider factoring isTypeLegal into the base class.
58 //   Implement switches and jump tables.
59 //
60 //===----------------------------------------------------------------------===//
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "ppcfastisel"
64 
65 namespace {
66 
67 typedef struct Address {
68   enum {
69     RegBase,
70     FrameIndexBase
71   } BaseType;
72 
73   union {
74     unsigned Reg;
75     int FI;
76   } Base;
77 
78   long Offset;
79 
80   // Innocuous defaults for our address.
Address__anon6bb0ea550111::Address81   Address()
82    : BaseType(RegBase), Offset(0) {
83      Base.Reg = 0;
84    }
85 } Address;
86 
87 class PPCFastISel final : public FastISel {
88 
89   const TargetMachine &TM;
90   const PPCSubtarget *PPCSubTarget;
91   PPCFunctionInfo *PPCFuncInfo;
92   const TargetInstrInfo &TII;
93   const TargetLowering &TLI;
94   LLVMContext *Context;
95 
96   public:
PPCFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)97     explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
98                          const TargetLibraryInfo *LibInfo)
99         : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
100           PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
101           PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
102           TII(*PPCSubTarget->getInstrInfo()),
103           TLI(*PPCSubTarget->getTargetLowering()),
104           Context(&FuncInfo.Fn->getContext()) {}
105 
106   // Backend specific FastISel code.
107   private:
108     bool fastSelectInstruction(const Instruction *I) override;
109     unsigned fastMaterializeConstant(const Constant *C) override;
110     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
111     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
112                              const LoadInst *LI) override;
113     bool fastLowerArguments() override;
114     unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
115     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
116                              const TargetRegisterClass *RC,
117                              unsigned Op0, bool Op0IsKill,
118                              uint64_t Imm);
119     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
120                             const TargetRegisterClass *RC,
121                             unsigned Op0, bool Op0IsKill);
122     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
123                              const TargetRegisterClass *RC,
124                              unsigned Op0, bool Op0IsKill,
125                              unsigned Op1, bool Op1IsKill);
126 
127     bool fastLowerCall(CallLoweringInfo &CLI) override;
128 
129   // Instruction selection routines.
130   private:
131     bool SelectLoad(const Instruction *I);
132     bool SelectStore(const Instruction *I);
133     bool SelectBranch(const Instruction *I);
134     bool SelectIndirectBr(const Instruction *I);
135     bool SelectFPExt(const Instruction *I);
136     bool SelectFPTrunc(const Instruction *I);
137     bool SelectIToFP(const Instruction *I, bool IsSigned);
138     bool SelectFPToI(const Instruction *I, bool IsSigned);
139     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
140     bool SelectRet(const Instruction *I);
141     bool SelectTrunc(const Instruction *I);
142     bool SelectIntExt(const Instruction *I);
143 
144   // Utility routines.
145   private:
146     bool isTypeLegal(Type *Ty, MVT &VT);
147     bool isLoadTypeLegal(Type *Ty, MVT &VT);
148     bool isValueAvailable(const Value *V) const;
isVSFRCRegClass(const TargetRegisterClass * RC) const149     bool isVSFRCRegClass(const TargetRegisterClass *RC) const {
150       return RC->getID() == PPC::VSFRCRegClassID;
151     }
isVSSRCRegClass(const TargetRegisterClass * RC) const152     bool isVSSRCRegClass(const TargetRegisterClass *RC) const {
153       return RC->getID() == PPC::VSSRCRegClassID;
154     }
155     bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
156                     bool isZExt, unsigned DestReg,
157                     const PPC::Predicate Pred);
158     bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
159                      const TargetRegisterClass *RC, bool IsZExt = true,
160                      unsigned FP64LoadOpc = PPC::LFD);
161     bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
162     bool PPCComputeAddress(const Value *Obj, Address &Addr);
163     void PPCSimplifyAddress(Address &Addr, bool &UseOffset,
164                             unsigned &IndexReg);
165     bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
166                            unsigned DestReg, bool IsZExt);
167     unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
168     unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
169     unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT,
170                                bool UseSExt = true);
171     unsigned PPCMaterialize32BitInt(int64_t Imm,
172                                     const TargetRegisterClass *RC);
173     unsigned PPCMaterialize64BitInt(int64_t Imm,
174                                     const TargetRegisterClass *RC);
175     unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
176                              unsigned SrcReg, bool IsSigned);
177     unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
178 
179   // Call handling routines.
180   private:
181     bool processCallArgs(SmallVectorImpl<Value*> &Args,
182                          SmallVectorImpl<unsigned> &ArgRegs,
183                          SmallVectorImpl<MVT> &ArgVTs,
184                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
185                          SmallVectorImpl<unsigned> &RegArgs,
186                          CallingConv::ID CC,
187                          unsigned &NumBytes,
188                          bool IsVarArg);
189     bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
190     LLVM_ATTRIBUTE_UNUSED CCAssignFn *usePPC32CCs(unsigned Flag);
191 
192   private:
193   #include "PPCGenFastISel.inc"
194 
195 };
196 
197 } // end anonymous namespace
198 
199 #include "PPCGenCallingConv.inc"
200 
201 // Function whose sole purpose is to kill compiler warnings
202 // stemming from unused functions included from PPCGenCallingConv.inc.
usePPC32CCs(unsigned Flag)203 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
204   if (Flag == 1)
205     return CC_PPC32_SVR4;
206   else if (Flag == 2)
207     return CC_PPC32_SVR4_ByVal;
208   else if (Flag == 3)
209     return CC_PPC32_SVR4_VarArg;
210   else if (Flag == 4)
211     return RetCC_PPC_Cold;
212   else
213     return RetCC_PPC;
214 }
215 
getComparePred(CmpInst::Predicate Pred)216 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
217   switch (Pred) {
218     // These are not representable with any single compare.
219     case CmpInst::FCMP_FALSE:
220     case CmpInst::FCMP_TRUE:
221     // Major concern about the following 6 cases is NaN result. The comparison
222     // result consists of 4 bits, indicating lt, eq, gt and un (unordered),
223     // only one of which will be set. The result is generated by fcmpu
224     // instruction. However, bc instruction only inspects one of the first 3
225     // bits, so when un is set, bc instruction may jump to an undesired
226     // place.
227     //
228     // More specifically, if we expect an unordered comparison and un is set, we
229     // expect to always go to true branch; in such case UEQ, UGT and ULT still
230     // give false, which are undesired; but UNE, UGE, ULE happen to give true,
231     // since they are tested by inspecting !eq, !lt, !gt, respectively.
232     //
233     // Similarly, for ordered comparison, when un is set, we always expect the
234     // result to be false. In such case OGT, OLT and OEQ is good, since they are
235     // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
236     // and ONE are tested through !lt, !gt and !eq, and these are true.
237     case CmpInst::FCMP_UEQ:
238     case CmpInst::FCMP_UGT:
239     case CmpInst::FCMP_ULT:
240     case CmpInst::FCMP_OGE:
241     case CmpInst::FCMP_OLE:
242     case CmpInst::FCMP_ONE:
243     default:
244       return Optional<PPC::Predicate>();
245 
246     case CmpInst::FCMP_OEQ:
247     case CmpInst::ICMP_EQ:
248       return PPC::PRED_EQ;
249 
250     case CmpInst::FCMP_OGT:
251     case CmpInst::ICMP_UGT:
252     case CmpInst::ICMP_SGT:
253       return PPC::PRED_GT;
254 
255     case CmpInst::FCMP_UGE:
256     case CmpInst::ICMP_UGE:
257     case CmpInst::ICMP_SGE:
258       return PPC::PRED_GE;
259 
260     case CmpInst::FCMP_OLT:
261     case CmpInst::ICMP_ULT:
262     case CmpInst::ICMP_SLT:
263       return PPC::PRED_LT;
264 
265     case CmpInst::FCMP_ULE:
266     case CmpInst::ICMP_ULE:
267     case CmpInst::ICMP_SLE:
268       return PPC::PRED_LE;
269 
270     case CmpInst::FCMP_UNE:
271     case CmpInst::ICMP_NE:
272       return PPC::PRED_NE;
273 
274     case CmpInst::FCMP_ORD:
275       return PPC::PRED_NU;
276 
277     case CmpInst::FCMP_UNO:
278       return PPC::PRED_UN;
279   }
280 }
281 
282 // Determine whether the type Ty is simple enough to be handled by
283 // fast-isel, and return its equivalent machine type in VT.
284 // FIXME: Copied directly from ARM -- factor into base class?
isTypeLegal(Type * Ty,MVT & VT)285 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
286   EVT Evt = TLI.getValueType(DL, Ty, true);
287 
288   // Only handle simple types.
289   if (Evt == MVT::Other || !Evt.isSimple()) return false;
290   VT = Evt.getSimpleVT();
291 
292   // Handle all legal types, i.e. a register that will directly hold this
293   // value.
294   return TLI.isTypeLegal(VT);
295 }
296 
297 // Determine whether the type Ty is simple enough to be handled by
298 // fast-isel as a load target, and return its equivalent machine type in VT.
isLoadTypeLegal(Type * Ty,MVT & VT)299 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
300   if (isTypeLegal(Ty, VT)) return true;
301 
302   // If this is a type than can be sign or zero-extended to a basic operation
303   // go ahead and accept it now.
304   if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
305     return true;
306   }
307 
308   return false;
309 }
310 
isValueAvailable(const Value * V) const311 bool PPCFastISel::isValueAvailable(const Value *V) const {
312   if (!isa<Instruction>(V))
313     return true;
314 
315   const auto *I = cast<Instruction>(V);
316   return FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB;
317 }
318 
319 // Given a value Obj, create an Address object Addr that represents its
320 // address.  Return false if we can't handle it.
PPCComputeAddress(const Value * Obj,Address & Addr)321 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
322   const User *U = nullptr;
323   unsigned Opcode = Instruction::UserOp1;
324   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
325     // Don't walk into other basic blocks unless the object is an alloca from
326     // another block, otherwise it may not have a virtual register assigned.
327     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
328         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
329       Opcode = I->getOpcode();
330       U = I;
331     }
332   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
333     Opcode = C->getOpcode();
334     U = C;
335   }
336 
337   switch (Opcode) {
338     default:
339       break;
340     case Instruction::BitCast:
341       // Look through bitcasts.
342       return PPCComputeAddress(U->getOperand(0), Addr);
343     case Instruction::IntToPtr:
344       // Look past no-op inttoptrs.
345       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
346           TLI.getPointerTy(DL))
347         return PPCComputeAddress(U->getOperand(0), Addr);
348       break;
349     case Instruction::PtrToInt:
350       // Look past no-op ptrtoints.
351       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
352         return PPCComputeAddress(U->getOperand(0), Addr);
353       break;
354     case Instruction::GetElementPtr: {
355       Address SavedAddr = Addr;
356       long TmpOffset = Addr.Offset;
357 
358       // Iterate through the GEP folding the constants into offsets where
359       // we can.
360       gep_type_iterator GTI = gep_type_begin(U);
361       for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
362            II != IE; ++II, ++GTI) {
363         const Value *Op = *II;
364         if (StructType *STy = GTI.getStructTypeOrNull()) {
365           const StructLayout *SL = DL.getStructLayout(STy);
366           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
367           TmpOffset += SL->getElementOffset(Idx);
368         } else {
369           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
370           for (;;) {
371             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
372               // Constant-offset addressing.
373               TmpOffset += CI->getSExtValue() * S;
374               break;
375             }
376             if (canFoldAddIntoGEP(U, Op)) {
377               // A compatible add with a constant operand. Fold the constant.
378               ConstantInt *CI =
379               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
380               TmpOffset += CI->getSExtValue() * S;
381               // Iterate on the other operand.
382               Op = cast<AddOperator>(Op)->getOperand(0);
383               continue;
384             }
385             // Unsupported
386             goto unsupported_gep;
387           }
388         }
389       }
390 
391       // Try to grab the base operand now.
392       Addr.Offset = TmpOffset;
393       if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
394 
395       // We failed, restore everything and try the other options.
396       Addr = SavedAddr;
397 
398       unsupported_gep:
399       break;
400     }
401     case Instruction::Alloca: {
402       const AllocaInst *AI = cast<AllocaInst>(Obj);
403       DenseMap<const AllocaInst*, int>::iterator SI =
404         FuncInfo.StaticAllocaMap.find(AI);
405       if (SI != FuncInfo.StaticAllocaMap.end()) {
406         Addr.BaseType = Address::FrameIndexBase;
407         Addr.Base.FI = SI->second;
408         return true;
409       }
410       break;
411     }
412   }
413 
414   // FIXME: References to parameters fall through to the behavior
415   // below.  They should be able to reference a frame index since
416   // they are stored to the stack, so we can get "ld rx, offset(r1)"
417   // instead of "addi ry, r1, offset / ld rx, 0(ry)".  Obj will
418   // just contain the parameter.  Try to handle this with a FI.
419 
420   // Try to get this in a register if nothing else has worked.
421   if (Addr.Base.Reg == 0)
422     Addr.Base.Reg = getRegForValue(Obj);
423 
424   // Prevent assignment of base register to X0, which is inappropriate
425   // for loads and stores alike.
426   if (Addr.Base.Reg != 0)
427     MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
428 
429   return Addr.Base.Reg != 0;
430 }
431 
432 // Fix up some addresses that can't be used directly.  For example, if
433 // an offset won't fit in an instruction field, we may need to move it
434 // into an index register.
PPCSimplifyAddress(Address & Addr,bool & UseOffset,unsigned & IndexReg)435 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset,
436                                      unsigned &IndexReg) {
437 
438   // Check whether the offset fits in the instruction field.
439   if (!isInt<16>(Addr.Offset))
440     UseOffset = false;
441 
442   // If this is a stack pointer and the offset needs to be simplified then
443   // put the alloca address into a register, set the base type back to
444   // register and continue. This should almost never happen.
445   if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
446     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
447     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
448             ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
449     Addr.Base.Reg = ResultReg;
450     Addr.BaseType = Address::RegBase;
451   }
452 
453   if (!UseOffset) {
454     IntegerType *OffsetTy = Type::getInt64Ty(*Context);
455     const ConstantInt *Offset =
456       ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
457     IndexReg = PPCMaterializeInt(Offset, MVT::i64);
458     assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
459   }
460 }
461 
462 // Emit a load instruction if possible, returning true if we succeeded,
463 // otherwise false.  See commentary below for how the register class of
464 // the load is determined.
PPCEmitLoad(MVT VT,unsigned & ResultReg,Address & Addr,const TargetRegisterClass * RC,bool IsZExt,unsigned FP64LoadOpc)465 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
466                               const TargetRegisterClass *RC,
467                               bool IsZExt, unsigned FP64LoadOpc) {
468   unsigned Opc;
469   bool UseOffset = true;
470   bool HasSPE = PPCSubTarget->hasSPE();
471 
472   // If ResultReg is given, it determines the register class of the load.
473   // Otherwise, RC is the register class to use.  If the result of the
474   // load isn't anticipated in this block, both may be zero, in which
475   // case we must make a conservative guess.  In particular, don't assign
476   // R0 or X0 to the result register, as the result may be used in a load,
477   // store, add-immediate, or isel that won't permit this.  (Though
478   // perhaps the spill and reload of live-exit values would handle this?)
479   const TargetRegisterClass *UseRC =
480     (ResultReg ? MRI.getRegClass(ResultReg) :
481      (RC ? RC :
482       (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) :
483        (VT == MVT::f32 ? (HasSPE ? &PPC::SPE4RCRegClass : &PPC::F4RCRegClass) :
484         (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
485          &PPC::GPRC_and_GPRC_NOR0RegClass)))));
486 
487   bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
488 
489   switch (VT.SimpleTy) {
490     default: // e.g., vector types not handled
491       return false;
492     case MVT::i8:
493       Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
494       break;
495     case MVT::i16:
496       Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8)
497                     : (Is32BitInt ? PPC::LHA : PPC::LHA8));
498       break;
499     case MVT::i32:
500       Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8)
501                     : (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
502       if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
503         UseOffset = false;
504       break;
505     case MVT::i64:
506       Opc = PPC::LD;
507       assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
508              "64-bit load with 32-bit target??");
509       UseOffset = ((Addr.Offset & 3) == 0);
510       break;
511     case MVT::f32:
512       Opc = PPCSubTarget->hasSPE() ? PPC::SPELWZ : PPC::LFS;
513       break;
514     case MVT::f64:
515       Opc = FP64LoadOpc;
516       break;
517   }
518 
519   // If necessary, materialize the offset into a register and use
520   // the indexed form.  Also handle stack pointers with special needs.
521   unsigned IndexReg = 0;
522   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
523 
524   // If this is a potential VSX load with an offset of 0, a VSX indexed load can
525   // be used.
526   bool IsVSSRC = isVSSRCRegClass(UseRC);
527   bool IsVSFRC = isVSFRCRegClass(UseRC);
528   bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
529   bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD;
530   if ((Is32VSXLoad || Is64VSXLoad) &&
531       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
532       (Addr.Offset == 0)) {
533     UseOffset = false;
534   }
535 
536   if (ResultReg == 0)
537     ResultReg = createResultReg(UseRC);
538 
539   // Note: If we still have a frame index here, we know the offset is
540   // in range, as otherwise PPCSimplifyAddress would have converted it
541   // into a RegBase.
542   if (Addr.BaseType == Address::FrameIndexBase) {
543     // VSX only provides an indexed load.
544     if (Is32VSXLoad || Is64VSXLoad) return false;
545 
546     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
547         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
548                                           Addr.Offset),
549         MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
550         MFI.getObjectAlignment(Addr.Base.FI));
551 
552     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
553       .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
554 
555   // Base reg with offset in range.
556   } else if (UseOffset) {
557     // VSX only provides an indexed load.
558     if (Is32VSXLoad || Is64VSXLoad) return false;
559 
560     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
561       .addImm(Addr.Offset).addReg(Addr.Base.Reg);
562 
563   // Indexed form.
564   } else {
565     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
566     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
567     // is hard to get at.
568     switch (Opc) {
569       default:        llvm_unreachable("Unexpected opcode!");
570       case PPC::LBZ:    Opc = PPC::LBZX;    break;
571       case PPC::LBZ8:   Opc = PPC::LBZX8;   break;
572       case PPC::LHZ:    Opc = PPC::LHZX;    break;
573       case PPC::LHZ8:   Opc = PPC::LHZX8;   break;
574       case PPC::LHA:    Opc = PPC::LHAX;    break;
575       case PPC::LHA8:   Opc = PPC::LHAX8;   break;
576       case PPC::LWZ:    Opc = PPC::LWZX;    break;
577       case PPC::LWZ8:   Opc = PPC::LWZX8;   break;
578       case PPC::LWA:    Opc = PPC::LWAX;    break;
579       case PPC::LWA_32: Opc = PPC::LWAX_32; break;
580       case PPC::LD:     Opc = PPC::LDX;     break;
581       case PPC::LFS:    Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break;
582       case PPC::LFD:    Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
583       case PPC::EVLDD:  Opc = PPC::EVLDDX;  break;
584       case PPC::SPELWZ: Opc = PPC::SPELWZX;    break;
585     }
586 
587     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
588                        ResultReg);
589 
590     // If we have an index register defined we use it in the store inst,
591     // otherwise we use X0 as base as it makes the vector instructions to
592     // use zero in the computation of the effective address regardless the
593     // content of the register.
594     if (IndexReg)
595       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
596     else
597       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
598   }
599 
600   return true;
601 }
602 
603 // Attempt to fast-select a load instruction.
SelectLoad(const Instruction * I)604 bool PPCFastISel::SelectLoad(const Instruction *I) {
605   // FIXME: No atomic loads are supported.
606   if (cast<LoadInst>(I)->isAtomic())
607     return false;
608 
609   // Verify we have a legal type before going any further.
610   MVT VT;
611   if (!isLoadTypeLegal(I->getType(), VT))
612     return false;
613 
614   // See if we can handle this address.
615   Address Addr;
616   if (!PPCComputeAddress(I->getOperand(0), Addr))
617     return false;
618 
619   // Look at the currently assigned register for this instruction
620   // to determine the required register class.  This is necessary
621   // to constrain RA from using R0/X0 when this is not legal.
622   unsigned AssignedReg = FuncInfo.ValueMap[I];
623   const TargetRegisterClass *RC =
624     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
625 
626   unsigned ResultReg = 0;
627   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true,
628       PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
629     return false;
630   updateValueMap(I, ResultReg);
631   return true;
632 }
633 
634 // Emit a store instruction to store SrcReg at Addr.
PPCEmitStore(MVT VT,unsigned SrcReg,Address & Addr)635 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
636   assert(SrcReg && "Nothing to store!");
637   unsigned Opc;
638   bool UseOffset = true;
639 
640   const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
641   bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
642 
643   switch (VT.SimpleTy) {
644     default: // e.g., vector types not handled
645       return false;
646     case MVT::i8:
647       Opc = Is32BitInt ? PPC::STB : PPC::STB8;
648       break;
649     case MVT::i16:
650       Opc = Is32BitInt ? PPC::STH : PPC::STH8;
651       break;
652     case MVT::i32:
653       assert(Is32BitInt && "Not GPRC for i32??");
654       Opc = PPC::STW;
655       break;
656     case MVT::i64:
657       Opc = PPC::STD;
658       UseOffset = ((Addr.Offset & 3) == 0);
659       break;
660     case MVT::f32:
661       Opc = PPCSubTarget->hasSPE() ? PPC::SPESTW : PPC::STFS;
662       break;
663     case MVT::f64:
664       Opc = PPCSubTarget->hasSPE() ? PPC::EVSTDD : PPC::STFD;
665       break;
666   }
667 
668   // If necessary, materialize the offset into a register and use
669   // the indexed form.  Also handle stack pointers with special needs.
670   unsigned IndexReg = 0;
671   PPCSimplifyAddress(Addr, UseOffset, IndexReg);
672 
673   // If this is a potential VSX store with an offset of 0, a VSX indexed store
674   // can be used.
675   bool IsVSSRC = isVSSRCRegClass(RC);
676   bool IsVSFRC = isVSFRCRegClass(RC);
677   bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS;
678   bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD;
679   if ((Is32VSXStore || Is64VSXStore) &&
680       (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
681       (Addr.Offset == 0)) {
682     UseOffset = false;
683   }
684 
685   // Note: If we still have a frame index here, we know the offset is
686   // in range, as otherwise PPCSimplifyAddress would have converted it
687   // into a RegBase.
688   if (Addr.BaseType == Address::FrameIndexBase) {
689     // VSX only provides an indexed store.
690     if (Is32VSXStore || Is64VSXStore) return false;
691 
692     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
693         MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI,
694                                           Addr.Offset),
695         MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
696         MFI.getObjectAlignment(Addr.Base.FI));
697 
698     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
699         .addReg(SrcReg)
700         .addImm(Addr.Offset)
701         .addFrameIndex(Addr.Base.FI)
702         .addMemOperand(MMO);
703 
704   // Base reg with offset in range.
705   } else if (UseOffset) {
706     // VSX only provides an indexed store.
707     if (Is32VSXStore || Is64VSXStore)
708       return false;
709 
710     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
711       .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
712 
713   // Indexed form.
714   } else {
715     // Get the RR opcode corresponding to the RI one.  FIXME: It would be
716     // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
717     // is hard to get at.
718     switch (Opc) {
719       default:        llvm_unreachable("Unexpected opcode!");
720       case PPC::STB:  Opc = PPC::STBX;  break;
721       case PPC::STH : Opc = PPC::STHX;  break;
722       case PPC::STW : Opc = PPC::STWX;  break;
723       case PPC::STB8: Opc = PPC::STBX8; break;
724       case PPC::STH8: Opc = PPC::STHX8; break;
725       case PPC::STW8: Opc = PPC::STWX8; break;
726       case PPC::STD:  Opc = PPC::STDX;  break;
727       case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break;
728       case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
729       case PPC::EVSTDD: Opc = PPC::EVSTDDX; break;
730       case PPC::SPESTW: Opc = PPC::SPESTWX; break;
731     }
732 
733     auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
734         .addReg(SrcReg);
735 
736     // If we have an index register defined we use it in the store inst,
737     // otherwise we use X0 as base as it makes the vector instructions to
738     // use zero in the computation of the effective address regardless the
739     // content of the register.
740     if (IndexReg)
741       MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
742     else
743       MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
744   }
745 
746   return true;
747 }
748 
749 // Attempt to fast-select a store instruction.
SelectStore(const Instruction * I)750 bool PPCFastISel::SelectStore(const Instruction *I) {
751   Value *Op0 = I->getOperand(0);
752   unsigned SrcReg = 0;
753 
754   // FIXME: No atomics loads are supported.
755   if (cast<StoreInst>(I)->isAtomic())
756     return false;
757 
758   // Verify we have a legal type before going any further.
759   MVT VT;
760   if (!isLoadTypeLegal(Op0->getType(), VT))
761     return false;
762 
763   // Get the value to be stored into a register.
764   SrcReg = getRegForValue(Op0);
765   if (SrcReg == 0)
766     return false;
767 
768   // See if we can handle this address.
769   Address Addr;
770   if (!PPCComputeAddress(I->getOperand(1), Addr))
771     return false;
772 
773   if (!PPCEmitStore(VT, SrcReg, Addr))
774     return false;
775 
776   return true;
777 }
778 
779 // Attempt to fast-select a branch instruction.
SelectBranch(const Instruction * I)780 bool PPCFastISel::SelectBranch(const Instruction *I) {
781   const BranchInst *BI = cast<BranchInst>(I);
782   MachineBasicBlock *BrBB = FuncInfo.MBB;
783   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
784   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
785 
786   // For now, just try the simplest case where it's fed by a compare.
787   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
788     if (isValueAvailable(CI)) {
789       Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
790       if (!OptPPCPred)
791         return false;
792 
793       PPC::Predicate PPCPred = OptPPCPred.getValue();
794 
795       // Take advantage of fall-through opportunities.
796       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
797         std::swap(TBB, FBB);
798         PPCPred = PPC::InvertPredicate(PPCPred);
799       }
800 
801       unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
802 
803       if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
804                       CondReg, PPCPred))
805         return false;
806 
807       BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
808         .addImm(PPCSubTarget->hasSPE() ? PPC::PRED_SPE : PPCPred)
809         .addReg(CondReg).addMBB(TBB);
810       finishCondBranch(BI->getParent(), TBB, FBB);
811       return true;
812     }
813   } else if (const ConstantInt *CI =
814              dyn_cast<ConstantInt>(BI->getCondition())) {
815     uint64_t Imm = CI->getZExtValue();
816     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
817     fastEmitBranch(Target, DbgLoc);
818     return true;
819   }
820 
821   // FIXME: ARM looks for a case where the block containing the compare
822   // has been split from the block containing the branch.  If this happens,
823   // there is a vreg available containing the result of the compare.  I'm
824   // not sure we can do much, as we've lost the predicate information with
825   // the compare instruction -- we have a 4-bit CR but don't know which bit
826   // to test here.
827   return false;
828 }
829 
830 // Attempt to emit a compare of the two source values.  Signed and unsigned
831 // comparisons are supported.  Return false if we can't handle it.
PPCEmitCmp(const Value * SrcValue1,const Value * SrcValue2,bool IsZExt,unsigned DestReg,const PPC::Predicate Pred)832 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
833                              bool IsZExt, unsigned DestReg,
834                              const PPC::Predicate Pred) {
835   Type *Ty = SrcValue1->getType();
836   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
837   if (!SrcEVT.isSimple())
838     return false;
839   MVT SrcVT = SrcEVT.getSimpleVT();
840 
841   if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits())
842     return false;
843 
844   // See if operand 2 is an immediate encodeable in the compare.
845   // FIXME: Operands are not in canonical order at -O0, so an immediate
846   // operand in position 1 is a lost opportunity for now.  We are
847   // similar to ARM in this regard.
848   long Imm = 0;
849   bool UseImm = false;
850   const bool HasSPE = PPCSubTarget->hasSPE();
851 
852   // Only 16-bit integer constants can be represented in compares for
853   // PowerPC.  Others will be materialized into a register.
854   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
855     if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
856         SrcVT == MVT::i8 || SrcVT == MVT::i1) {
857       const APInt &CIVal = ConstInt->getValue();
858       Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
859       if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
860         UseImm = true;
861     }
862   }
863 
864   unsigned CmpOpc;
865   bool NeedsExt = false;
866   switch (SrcVT.SimpleTy) {
867     default: return false;
868     case MVT::f32:
869       if (HasSPE) {
870         switch (Pred) {
871           default: return false;
872           case PPC::PRED_EQ:
873             CmpOpc = PPC::EFSCMPEQ;
874             break;
875           case PPC::PRED_LT:
876             CmpOpc = PPC::EFSCMPLT;
877             break;
878           case PPC::PRED_GT:
879             CmpOpc = PPC::EFSCMPGT;
880             break;
881         }
882       } else
883         CmpOpc = PPC::FCMPUS;
884       break;
885     case MVT::f64:
886       if (HasSPE) {
887         switch (Pred) {
888           default: return false;
889           case PPC::PRED_EQ:
890             CmpOpc = PPC::EFDCMPEQ;
891             break;
892           case PPC::PRED_LT:
893             CmpOpc = PPC::EFDCMPLT;
894             break;
895           case PPC::PRED_GT:
896             CmpOpc = PPC::EFDCMPGT;
897             break;
898         }
899       } else
900         CmpOpc = PPC::FCMPUD;
901       break;
902     case MVT::i1:
903     case MVT::i8:
904     case MVT::i16:
905       NeedsExt = true;
906       // Intentional fall-through.
907     case MVT::i32:
908       if (!UseImm)
909         CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
910       else
911         CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
912       break;
913     case MVT::i64:
914       if (!UseImm)
915         CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
916       else
917         CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
918       break;
919   }
920 
921   unsigned SrcReg1 = getRegForValue(SrcValue1);
922   if (SrcReg1 == 0)
923     return false;
924 
925   unsigned SrcReg2 = 0;
926   if (!UseImm) {
927     SrcReg2 = getRegForValue(SrcValue2);
928     if (SrcReg2 == 0)
929       return false;
930   }
931 
932   if (NeedsExt) {
933     unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
934     if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
935       return false;
936     SrcReg1 = ExtReg;
937 
938     if (!UseImm) {
939       unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
940       if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
941         return false;
942       SrcReg2 = ExtReg;
943     }
944   }
945 
946   if (!UseImm)
947     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
948       .addReg(SrcReg1).addReg(SrcReg2);
949   else
950     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
951       .addReg(SrcReg1).addImm(Imm);
952 
953   return true;
954 }
955 
956 // Attempt to fast-select a floating-point extend instruction.
SelectFPExt(const Instruction * I)957 bool PPCFastISel::SelectFPExt(const Instruction *I) {
958   Value *Src  = I->getOperand(0);
959   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
960   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
961 
962   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
963     return false;
964 
965   unsigned SrcReg = getRegForValue(Src);
966   if (!SrcReg)
967     return false;
968 
969   // No code is generated for a FP extend.
970   updateValueMap(I, SrcReg);
971   return true;
972 }
973 
974 // Attempt to fast-select a floating-point truncate instruction.
SelectFPTrunc(const Instruction * I)975 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
976   Value *Src  = I->getOperand(0);
977   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
978   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
979 
980   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
981     return false;
982 
983   unsigned SrcReg = getRegForValue(Src);
984   if (!SrcReg)
985     return false;
986 
987   // Round the result to single precision.
988   unsigned DestReg;
989 
990   if (PPCSubTarget->hasSPE()) {
991     DestReg = createResultReg(&PPC::SPE4RCRegClass);
992     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
993       TII.get(PPC::EFSCFD), DestReg)
994       .addReg(SrcReg);
995   } else {
996     DestReg = createResultReg(&PPC::F4RCRegClass);
997     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
998       TII.get(PPC::FRSP), DestReg)
999       .addReg(SrcReg);
1000   }
1001 
1002   updateValueMap(I, DestReg);
1003   return true;
1004 }
1005 
1006 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
1007 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1008 // those should be used instead of moving via a stack slot when the
1009 // subtarget permits.
1010 // FIXME: The code here is sloppy for the 4-byte case.  Can use a 4-byte
1011 // stack slot and 4-byte store/load sequence.  Or just sext the 4-byte
1012 // case to 8 bytes which produces tighter code but wastes stack space.
PPCMoveToFPReg(MVT SrcVT,unsigned SrcReg,bool IsSigned)1013 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
1014                                      bool IsSigned) {
1015 
1016   // If necessary, extend 32-bit int to 64-bit.
1017   if (SrcVT == MVT::i32) {
1018     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1019     if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
1020       return 0;
1021     SrcReg = TmpReg;
1022   }
1023 
1024   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1025   Address Addr;
1026   Addr.BaseType = Address::FrameIndexBase;
1027   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1028 
1029   // Store the value from the GPR.
1030   if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
1031     return 0;
1032 
1033   // Load the integer value into an FPR.  The kind of load used depends
1034   // on a number of conditions.
1035   unsigned LoadOpc = PPC::LFD;
1036 
1037   if (SrcVT == MVT::i32) {
1038     if (!IsSigned) {
1039       LoadOpc = PPC::LFIWZX;
1040       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1041     } else if (PPCSubTarget->hasLFIWAX()) {
1042       LoadOpc = PPC::LFIWAX;
1043       Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1044     }
1045   }
1046 
1047   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1048   unsigned ResultReg = 0;
1049   if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
1050     return 0;
1051 
1052   return ResultReg;
1053 }
1054 
1055 // Attempt to fast-select an integer-to-floating-point conversion.
1056 // FIXME: Once fast-isel has better support for VSX, conversions using
1057 //        direct moves should be implemented.
SelectIToFP(const Instruction * I,bool IsSigned)1058 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
1059   MVT DstVT;
1060   Type *DstTy = I->getType();
1061   if (!isTypeLegal(DstTy, DstVT))
1062     return false;
1063 
1064   if (DstVT != MVT::f32 && DstVT != MVT::f64)
1065     return false;
1066 
1067   Value *Src = I->getOperand(0);
1068   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1069   if (!SrcEVT.isSimple())
1070     return false;
1071 
1072   MVT SrcVT = SrcEVT.getSimpleVT();
1073 
1074   if (SrcVT != MVT::i8  && SrcVT != MVT::i16 &&
1075       SrcVT != MVT::i32 && SrcVT != MVT::i64)
1076     return false;
1077 
1078   unsigned SrcReg = getRegForValue(Src);
1079   if (SrcReg == 0)
1080     return false;
1081 
1082   // Shortcut for SPE.  Doesn't need to store/load, since it's all in the GPRs
1083   if (PPCSubTarget->hasSPE()) {
1084     unsigned Opc;
1085     if (DstVT == MVT::f32)
1086       Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI;
1087     else
1088       Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI;
1089 
1090     unsigned DestReg = createResultReg(&PPC::SPERCRegClass);
1091     // Generate the convert.
1092     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1093       .addReg(SrcReg);
1094     updateValueMap(I, DestReg);
1095     return true;
1096   }
1097 
1098   // We can only lower an unsigned convert if we have the newer
1099   // floating-point conversion operations.
1100   if (!IsSigned && !PPCSubTarget->hasFPCVT())
1101     return false;
1102 
1103   // FIXME: For now we require the newer floating-point conversion operations
1104   // (which are present only on P7 and A2 server models) when converting
1105   // to single-precision float.  Otherwise we have to generate a lot of
1106   // fiddly code to avoid double rounding.  If necessary, the fiddly code
1107   // can be found in PPCTargetLowering::LowerINT_TO_FP().
1108   if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT())
1109     return false;
1110 
1111   // Extend the input if necessary.
1112   if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1113     unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1114     if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1115       return false;
1116     SrcVT = MVT::i64;
1117     SrcReg = TmpReg;
1118   }
1119 
1120   // Move the integer value to an FPR.
1121   unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1122   if (FPReg == 0)
1123     return false;
1124 
1125   // Determine the opcode for the conversion.
1126   const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1127   unsigned DestReg = createResultReg(RC);
1128   unsigned Opc;
1129 
1130   if (DstVT == MVT::f32)
1131     Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1132   else
1133     Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1134 
1135   // Generate the convert.
1136   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1137     .addReg(FPReg);
1138 
1139   updateValueMap(I, DestReg);
1140   return true;
1141 }
1142 
1143 // Move the floating-point value in SrcReg into an integer destination
1144 // register, and return the register (or zero if we can't handle it).
1145 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1146 // those should be used instead of moving via a stack slot when the
1147 // subtarget permits.
PPCMoveToIntReg(const Instruction * I,MVT VT,unsigned SrcReg,bool IsSigned)1148 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1149                                       unsigned SrcReg, bool IsSigned) {
1150   // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1151   // Note that if have STFIWX available, we could use a 4-byte stack
1152   // slot for i32, but this being fast-isel we'll just go with the
1153   // easiest code gen possible.
1154   Address Addr;
1155   Addr.BaseType = Address::FrameIndexBase;
1156   Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1157 
1158   // Store the value from the FPR.
1159   if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1160     return 0;
1161 
1162   // Reload it into a GPR.  If we want an i32 on big endian, modify the
1163   // address to have a 4-byte offset so we load from the right place.
1164   if (VT == MVT::i32)
1165     Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
1166 
1167   // Look at the currently assigned register for this instruction
1168   // to determine the required register class.
1169   unsigned AssignedReg = FuncInfo.ValueMap[I];
1170   const TargetRegisterClass *RC =
1171     AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1172 
1173   unsigned ResultReg = 0;
1174   if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1175     return 0;
1176 
1177   return ResultReg;
1178 }
1179 
1180 // Attempt to fast-select a floating-point-to-integer conversion.
1181 // FIXME: Once fast-isel has better support for VSX, conversions using
1182 //        direct moves should be implemented.
SelectFPToI(const Instruction * I,bool IsSigned)1183 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1184   MVT DstVT, SrcVT;
1185   Type *DstTy = I->getType();
1186   if (!isTypeLegal(DstTy, DstVT))
1187     return false;
1188 
1189   if (DstVT != MVT::i32 && DstVT != MVT::i64)
1190     return false;
1191 
1192   // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG.
1193   if (DstVT == MVT::i64 && !IsSigned &&
1194       !PPCSubTarget->hasFPCVT() && !PPCSubTarget->hasSPE())
1195     return false;
1196 
1197   Value *Src = I->getOperand(0);
1198   Type *SrcTy = Src->getType();
1199   if (!isTypeLegal(SrcTy, SrcVT))
1200     return false;
1201 
1202   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1203     return false;
1204 
1205   unsigned SrcReg = getRegForValue(Src);
1206   if (SrcReg == 0)
1207     return false;
1208 
1209   // Convert f32 to f64 if necessary.  This is just a meaningless copy
1210   // to get the register class right.
1211   const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1212   if (InRC == &PPC::F4RCRegClass) {
1213     unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
1214     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1215             TII.get(TargetOpcode::COPY), TmpReg)
1216       .addReg(SrcReg);
1217     SrcReg = TmpReg;
1218   }
1219 
1220   // Determine the opcode for the conversion, which takes place
1221   // entirely within FPRs.
1222   unsigned DestReg;
1223   unsigned Opc;
1224 
1225   if (PPCSubTarget->hasSPE()) {
1226     DestReg = createResultReg(&PPC::GPRCRegClass);
1227     if (IsSigned)
1228       Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ;
1229     else
1230       Opc = InRC == &PPC::SPE4RCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ;
1231   } else {
1232     DestReg = createResultReg(&PPC::F8RCRegClass);
1233     if (DstVT == MVT::i32)
1234       if (IsSigned)
1235         Opc = PPC::FCTIWZ;
1236       else
1237         Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1238     else
1239       Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1240   }
1241 
1242   // Generate the convert.
1243   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1244     .addReg(SrcReg);
1245 
1246   // Now move the integer value from a float register to an integer register.
1247   unsigned IntReg = PPCSubTarget->hasSPE() ? DestReg :
1248     PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1249 
1250   if (IntReg == 0)
1251     return false;
1252 
1253   updateValueMap(I, IntReg);
1254   return true;
1255 }
1256 
1257 // Attempt to fast-select a binary integer operation that isn't already
1258 // handled automatically.
SelectBinaryIntOp(const Instruction * I,unsigned ISDOpcode)1259 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1260   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1261 
1262   // We can get here in the case when we have a binary operation on a non-legal
1263   // type and the target independent selector doesn't know how to handle it.
1264   if (DestVT != MVT::i16 && DestVT != MVT::i8)
1265     return false;
1266 
1267   // Look at the currently assigned register for this instruction
1268   // to determine the required register class.  If there is no register,
1269   // make a conservative choice (don't assign R0).
1270   unsigned AssignedReg = FuncInfo.ValueMap[I];
1271   const TargetRegisterClass *RC =
1272     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1273      &PPC::GPRC_and_GPRC_NOR0RegClass);
1274   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1275 
1276   unsigned Opc;
1277   switch (ISDOpcode) {
1278     default: return false;
1279     case ISD::ADD:
1280       Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1281       break;
1282     case ISD::OR:
1283       Opc = IsGPRC ? PPC::OR : PPC::OR8;
1284       break;
1285     case ISD::SUB:
1286       Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1287       break;
1288   }
1289 
1290   unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1291   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1292   if (SrcReg1 == 0) return false;
1293 
1294   // Handle case of small immediate operand.
1295   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1296     const APInt &CIVal = ConstInt->getValue();
1297     int Imm = (int)CIVal.getSExtValue();
1298     bool UseImm = true;
1299     if (isInt<16>(Imm)) {
1300       switch (Opc) {
1301         default:
1302           llvm_unreachable("Missing case!");
1303         case PPC::ADD4:
1304           Opc = PPC::ADDI;
1305           MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1306           break;
1307         case PPC::ADD8:
1308           Opc = PPC::ADDI8;
1309           MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1310           break;
1311         case PPC::OR:
1312           Opc = PPC::ORI;
1313           break;
1314         case PPC::OR8:
1315           Opc = PPC::ORI8;
1316           break;
1317         case PPC::SUBF:
1318           if (Imm == -32768)
1319             UseImm = false;
1320           else {
1321             Opc = PPC::ADDI;
1322             MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1323             Imm = -Imm;
1324           }
1325           break;
1326         case PPC::SUBF8:
1327           if (Imm == -32768)
1328             UseImm = false;
1329           else {
1330             Opc = PPC::ADDI8;
1331             MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1332             Imm = -Imm;
1333           }
1334           break;
1335       }
1336 
1337       if (UseImm) {
1338         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1339                 ResultReg)
1340             .addReg(SrcReg1)
1341             .addImm(Imm);
1342         updateValueMap(I, ResultReg);
1343         return true;
1344       }
1345     }
1346   }
1347 
1348   // Reg-reg case.
1349   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1350   if (SrcReg2 == 0) return false;
1351 
1352   // Reverse operands for subtract-from.
1353   if (ISDOpcode == ISD::SUB)
1354     std::swap(SrcReg1, SrcReg2);
1355 
1356   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1357     .addReg(SrcReg1).addReg(SrcReg2);
1358   updateValueMap(I, ResultReg);
1359   return true;
1360 }
1361 
1362 // Handle arguments to a call that we're attempting to fast-select.
1363 // Return false if the arguments are too complex for us at the moment.
processCallArgs(SmallVectorImpl<Value * > & Args,SmallVectorImpl<unsigned> & ArgRegs,SmallVectorImpl<MVT> & ArgVTs,SmallVectorImpl<ISD::ArgFlagsTy> & ArgFlags,SmallVectorImpl<unsigned> & RegArgs,CallingConv::ID CC,unsigned & NumBytes,bool IsVarArg)1364 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1365                                   SmallVectorImpl<unsigned> &ArgRegs,
1366                                   SmallVectorImpl<MVT> &ArgVTs,
1367                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1368                                   SmallVectorImpl<unsigned> &RegArgs,
1369                                   CallingConv::ID CC,
1370                                   unsigned &NumBytes,
1371                                   bool IsVarArg) {
1372   SmallVector<CCValAssign, 16> ArgLocs;
1373   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1374 
1375   // Reserve space for the linkage area on the stack.
1376   unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize();
1377   CCInfo.AllocateStack(LinkageSize, 8);
1378 
1379   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1380 
1381   // Bail out if we can't handle any of the arguments.
1382   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1383     CCValAssign &VA = ArgLocs[I];
1384     MVT ArgVT = ArgVTs[VA.getValNo()];
1385 
1386     // Skip vector arguments for now, as well as long double and
1387     // uint128_t, and anything that isn't passed in a register.
1388     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1389         !VA.isRegLoc() || VA.needsCustom())
1390       return false;
1391 
1392     // Skip bit-converted arguments for now.
1393     if (VA.getLocInfo() == CCValAssign::BCvt)
1394       return false;
1395   }
1396 
1397   // Get a count of how many bytes are to be pushed onto the stack.
1398   NumBytes = CCInfo.getNextStackOffset();
1399 
1400   // The prolog code of the callee may store up to 8 GPR argument registers to
1401   // the stack, allowing va_start to index over them in memory if its varargs.
1402   // Because we cannot tell if this is needed on the caller side, we have to
1403   // conservatively assume that it is needed.  As such, make sure we have at
1404   // least enough stack space for the caller to store the 8 GPRs.
1405   // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1406   NumBytes = std::max(NumBytes, LinkageSize + 64);
1407 
1408   // Issue CALLSEQ_START.
1409   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1410           TII.get(TII.getCallFrameSetupOpcode()))
1411     .addImm(NumBytes).addImm(0);
1412 
1413   // Prepare to assign register arguments.  Every argument uses up a
1414   // GPR protocol register even if it's passed in a floating-point
1415   // register (unless we're using the fast calling convention).
1416   unsigned NextGPR = PPC::X3;
1417   unsigned NextFPR = PPC::F1;
1418 
1419   // Process arguments.
1420   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1421     CCValAssign &VA = ArgLocs[I];
1422     unsigned Arg = ArgRegs[VA.getValNo()];
1423     MVT ArgVT = ArgVTs[VA.getValNo()];
1424 
1425     // Handle argument promotion and bitcasts.
1426     switch (VA.getLocInfo()) {
1427       default:
1428         llvm_unreachable("Unknown loc info!");
1429       case CCValAssign::Full:
1430         break;
1431       case CCValAssign::SExt: {
1432         MVT DestVT = VA.getLocVT();
1433         const TargetRegisterClass *RC =
1434           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1435         unsigned TmpReg = createResultReg(RC);
1436         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1437           llvm_unreachable("Failed to emit a sext!");
1438         ArgVT = DestVT;
1439         Arg = TmpReg;
1440         break;
1441       }
1442       case CCValAssign::AExt:
1443       case CCValAssign::ZExt: {
1444         MVT DestVT = VA.getLocVT();
1445         const TargetRegisterClass *RC =
1446           (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1447         unsigned TmpReg = createResultReg(RC);
1448         if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1449           llvm_unreachable("Failed to emit a zext!");
1450         ArgVT = DestVT;
1451         Arg = TmpReg;
1452         break;
1453       }
1454       case CCValAssign::BCvt: {
1455         // FIXME: Not yet handled.
1456         llvm_unreachable("Should have bailed before getting here!");
1457         break;
1458       }
1459     }
1460 
1461     // Copy this argument to the appropriate register.
1462     unsigned ArgReg;
1463     if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1464       ArgReg = NextFPR++;
1465       if (CC != CallingConv::Fast)
1466         ++NextGPR;
1467     } else
1468       ArgReg = NextGPR++;
1469 
1470     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1471             TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1472     RegArgs.push_back(ArgReg);
1473   }
1474 
1475   return true;
1476 }
1477 
1478 // For a call that we've determined we can fast-select, finish the
1479 // call sequence and generate a copy to obtain the return value (if any).
finishCall(MVT RetVT,CallLoweringInfo & CLI,unsigned & NumBytes)1480 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1481   CallingConv::ID CC = CLI.CallConv;
1482 
1483   // Issue CallSEQ_END.
1484   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1485           TII.get(TII.getCallFrameDestroyOpcode()))
1486     .addImm(NumBytes).addImm(0);
1487 
1488   // Next, generate a copy to obtain the return value.
1489   // FIXME: No multi-register return values yet, though I don't foresee
1490   // any real difficulties there.
1491   if (RetVT != MVT::isVoid) {
1492     SmallVector<CCValAssign, 16> RVLocs;
1493     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1494     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1495     CCValAssign &VA = RVLocs[0];
1496     assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1497     assert(VA.isRegLoc() && "Can only return in registers!");
1498 
1499     MVT DestVT = VA.getValVT();
1500     MVT CopyVT = DestVT;
1501 
1502     // Ints smaller than a register still arrive in a full 64-bit
1503     // register, so make sure we recognize this.
1504     if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1505       CopyVT = MVT::i64;
1506 
1507     unsigned SourcePhysReg = VA.getLocReg();
1508     unsigned ResultReg = 0;
1509 
1510     if (RetVT == CopyVT) {
1511       const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1512       ResultReg = createResultReg(CpyRC);
1513 
1514       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1515               TII.get(TargetOpcode::COPY), ResultReg)
1516         .addReg(SourcePhysReg);
1517 
1518     // If necessary, round the floating result to single precision.
1519     } else if (CopyVT == MVT::f64) {
1520       ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1521       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1522               ResultReg).addReg(SourcePhysReg);
1523 
1524     // If only the low half of a general register is needed, generate
1525     // a GPRC copy instead of a G8RC copy.  (EXTRACT_SUBREG can't be
1526     // used along the fast-isel path (not lowered), and downstream logic
1527     // also doesn't like a direct subreg copy on a physical reg.)
1528     } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1529       ResultReg = createResultReg(&PPC::GPRCRegClass);
1530       // Convert physical register from G8RC to GPRC.
1531       SourcePhysReg -= PPC::X0 - PPC::R0;
1532       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1533               TII.get(TargetOpcode::COPY), ResultReg)
1534         .addReg(SourcePhysReg);
1535     }
1536 
1537     assert(ResultReg && "ResultReg unset!");
1538     CLI.InRegs.push_back(SourcePhysReg);
1539     CLI.ResultReg = ResultReg;
1540     CLI.NumResultRegs = 1;
1541   }
1542 
1543   return true;
1544 }
1545 
fastLowerCall(CallLoweringInfo & CLI)1546 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1547   CallingConv::ID CC  = CLI.CallConv;
1548   bool IsTailCall     = CLI.IsTailCall;
1549   bool IsVarArg       = CLI.IsVarArg;
1550   const Value *Callee = CLI.Callee;
1551   const MCSymbol *Symbol = CLI.Symbol;
1552 
1553   if (!Callee && !Symbol)
1554     return false;
1555 
1556   // Allow SelectionDAG isel to handle tail calls.
1557   if (IsTailCall)
1558     return false;
1559 
1560   // Let SDISel handle vararg functions.
1561   if (IsVarArg)
1562     return false;
1563 
1564   // Handle simple calls for now, with legal return types and
1565   // those that can be extended.
1566   Type *RetTy = CLI.RetTy;
1567   MVT RetVT;
1568   if (RetTy->isVoidTy())
1569     RetVT = MVT::isVoid;
1570   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1571            RetVT != MVT::i8)
1572     return false;
1573   else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits())
1574     // We can't handle boolean returns when CR bits are in use.
1575     return false;
1576 
1577   // FIXME: No multi-register return values yet.
1578   if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1579       RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1580       RetVT != MVT::f64) {
1581     SmallVector<CCValAssign, 16> RVLocs;
1582     CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1583     CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1584     if (RVLocs.size() > 1)
1585       return false;
1586   }
1587 
1588   // Bail early if more than 8 arguments, as we only currently
1589   // handle arguments passed in registers.
1590   unsigned NumArgs = CLI.OutVals.size();
1591   if (NumArgs > 8)
1592     return false;
1593 
1594   // Set up the argument vectors.
1595   SmallVector<Value*, 8> Args;
1596   SmallVector<unsigned, 8> ArgRegs;
1597   SmallVector<MVT, 8> ArgVTs;
1598   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1599 
1600   Args.reserve(NumArgs);
1601   ArgRegs.reserve(NumArgs);
1602   ArgVTs.reserve(NumArgs);
1603   ArgFlags.reserve(NumArgs);
1604 
1605   for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1606     // Only handle easy calls for now.  It would be reasonably easy
1607     // to handle <= 8-byte structures passed ByVal in registers, but we
1608     // have to ensure they are right-justified in the register.
1609     ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1610     if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1611       return false;
1612 
1613     Value *ArgValue = CLI.OutVals[i];
1614     Type *ArgTy = ArgValue->getType();
1615     MVT ArgVT;
1616     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1617       return false;
1618 
1619     if (ArgVT.isVector())
1620       return false;
1621 
1622     unsigned Arg = getRegForValue(ArgValue);
1623     if (Arg == 0)
1624       return false;
1625 
1626     Args.push_back(ArgValue);
1627     ArgRegs.push_back(Arg);
1628     ArgVTs.push_back(ArgVT);
1629     ArgFlags.push_back(Flags);
1630   }
1631 
1632   // Process the arguments.
1633   SmallVector<unsigned, 8> RegArgs;
1634   unsigned NumBytes;
1635 
1636   if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1637                        RegArgs, CC, NumBytes, IsVarArg))
1638     return false;
1639 
1640   MachineInstrBuilder MIB;
1641   // FIXME: No handling for function pointers yet.  This requires
1642   // implementing the function descriptor (OPD) setup.
1643   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1644   if (!GV) {
1645     // patchpoints are a special case; they always dispatch to a pointer value.
1646     // However, we don't actually want to generate the indirect call sequence
1647     // here (that will be generated, as necessary, during asm printing), and
1648     // the call we generate here will be erased by FastISel::selectPatchpoint,
1649     // so don't try very hard...
1650     if (CLI.IsPatchPoint)
1651       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1652     else
1653       return false;
1654   } else {
1655     // Build direct call with NOP for TOC restore.
1656     // FIXME: We can and should optimize away the NOP for local calls.
1657     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1658                   TII.get(PPC::BL8_NOP));
1659     // Add callee.
1660     MIB.addGlobalAddress(GV);
1661   }
1662 
1663   // Add implicit physical register uses to the call.
1664   for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1665     MIB.addReg(RegArgs[II], RegState::Implicit);
1666 
1667   // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1668   // into the call.
1669   PPCFuncInfo->setUsesTOCBasePtr();
1670   MIB.addReg(PPC::X2, RegState::Implicit);
1671 
1672   // Add a register mask with the call-preserved registers.  Proper
1673   // defs for return values will be added by setPhysRegsDeadExcept().
1674   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1675 
1676   CLI.Call = MIB;
1677 
1678   // Finish off the call including any return values.
1679   return finishCall(RetVT, CLI, NumBytes);
1680 }
1681 
1682 // Attempt to fast-select a return instruction.
SelectRet(const Instruction * I)1683 bool PPCFastISel::SelectRet(const Instruction *I) {
1684 
1685   if (!FuncInfo.CanLowerReturn)
1686     return false;
1687 
1688   if (TLI.supportSplitCSR(FuncInfo.MF))
1689     return false;
1690 
1691   const ReturnInst *Ret = cast<ReturnInst>(I);
1692   const Function &F = *I->getParent()->getParent();
1693 
1694   // Build a list of return value registers.
1695   SmallVector<unsigned, 4> RetRegs;
1696   CallingConv::ID CC = F.getCallingConv();
1697 
1698   if (Ret->getNumOperands() > 0) {
1699     SmallVector<ISD::OutputArg, 4> Outs;
1700     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1701 
1702     // Analyze operands of the call, assigning locations to each operand.
1703     SmallVector<CCValAssign, 16> ValLocs;
1704     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1705     CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1706     const Value *RV = Ret->getOperand(0);
1707 
1708     // FIXME: Only one output register for now.
1709     if (ValLocs.size() > 1)
1710       return false;
1711 
1712     // Special case for returning a constant integer of any size - materialize
1713     // the constant as an i64 and copy it to the return register.
1714     if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) {
1715       CCValAssign &VA = ValLocs[0];
1716 
1717       unsigned RetReg = VA.getLocReg();
1718       // We still need to worry about properly extending the sign. For example,
1719       // we could have only a single bit or a constant that needs zero
1720       // extension rather than sign extension. Make sure we pass the return
1721       // value extension property to integer materialization.
1722       unsigned SrcReg =
1723           PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt);
1724 
1725       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1726             TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1727 
1728       RetRegs.push_back(RetReg);
1729 
1730     } else {
1731       unsigned Reg = getRegForValue(RV);
1732 
1733       if (Reg == 0)
1734         return false;
1735 
1736       // Copy the result values into the output registers.
1737       for (unsigned i = 0; i < ValLocs.size(); ++i) {
1738 
1739         CCValAssign &VA = ValLocs[i];
1740         assert(VA.isRegLoc() && "Can only return in registers!");
1741         RetRegs.push_back(VA.getLocReg());
1742         unsigned SrcReg = Reg + VA.getValNo();
1743 
1744         EVT RVEVT = TLI.getValueType(DL, RV->getType());
1745         if (!RVEVT.isSimple())
1746           return false;
1747         MVT RVVT = RVEVT.getSimpleVT();
1748         MVT DestVT = VA.getLocVT();
1749 
1750         if (RVVT != DestVT && RVVT != MVT::i8 &&
1751             RVVT != MVT::i16 && RVVT != MVT::i32)
1752           return false;
1753 
1754         if (RVVT != DestVT) {
1755           switch (VA.getLocInfo()) {
1756             default:
1757               llvm_unreachable("Unknown loc info!");
1758             case CCValAssign::Full:
1759               llvm_unreachable("Full value assign but types don't match?");
1760             case CCValAssign::AExt:
1761             case CCValAssign::ZExt: {
1762               const TargetRegisterClass *RC =
1763                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1764               unsigned TmpReg = createResultReg(RC);
1765               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1766                 return false;
1767               SrcReg = TmpReg;
1768               break;
1769             }
1770             case CCValAssign::SExt: {
1771               const TargetRegisterClass *RC =
1772                 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1773               unsigned TmpReg = createResultReg(RC);
1774               if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1775                 return false;
1776               SrcReg = TmpReg;
1777               break;
1778             }
1779           }
1780         }
1781 
1782         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1783                 TII.get(TargetOpcode::COPY), RetRegs[i])
1784           .addReg(SrcReg);
1785       }
1786     }
1787   }
1788 
1789   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1790                                     TII.get(PPC::BLR8));
1791 
1792   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1793     MIB.addReg(RetRegs[i], RegState::Implicit);
1794 
1795   return true;
1796 }
1797 
1798 // Attempt to emit an integer extend of SrcReg into DestReg.  Both
1799 // signed and zero extensions are supported.  Return false if we
1800 // can't handle it.
PPCEmitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg,bool IsZExt)1801 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1802                                 unsigned DestReg, bool IsZExt) {
1803   if (DestVT != MVT::i32 && DestVT != MVT::i64)
1804     return false;
1805   if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1806     return false;
1807 
1808   // Signed extensions use EXTSB, EXTSH, EXTSW.
1809   if (!IsZExt) {
1810     unsigned Opc;
1811     if (SrcVT == MVT::i8)
1812       Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1813     else if (SrcVT == MVT::i16)
1814       Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1815     else {
1816       assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1817       Opc = PPC::EXTSW_32_64;
1818     }
1819     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1820       .addReg(SrcReg);
1821 
1822   // Unsigned 32-bit extensions use RLWINM.
1823   } else if (DestVT == MVT::i32) {
1824     unsigned MB;
1825     if (SrcVT == MVT::i8)
1826       MB = 24;
1827     else {
1828       assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1829       MB = 16;
1830     }
1831     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1832             DestReg)
1833       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1834 
1835   // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1836   } else {
1837     unsigned MB;
1838     if (SrcVT == MVT::i8)
1839       MB = 56;
1840     else if (SrcVT == MVT::i16)
1841       MB = 48;
1842     else
1843       MB = 32;
1844     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1845             TII.get(PPC::RLDICL_32_64), DestReg)
1846       .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1847   }
1848 
1849   return true;
1850 }
1851 
1852 // Attempt to fast-select an indirect branch instruction.
SelectIndirectBr(const Instruction * I)1853 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1854   unsigned AddrReg = getRegForValue(I->getOperand(0));
1855   if (AddrReg == 0)
1856     return false;
1857 
1858   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1859     .addReg(AddrReg);
1860   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1861 
1862   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1863   for (const BasicBlock *SuccBB : IB->successors())
1864     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1865 
1866   return true;
1867 }
1868 
1869 // Attempt to fast-select an integer truncate instruction.
SelectTrunc(const Instruction * I)1870 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1871   Value *Src  = I->getOperand(0);
1872   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1873   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1874 
1875   if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1876     return false;
1877 
1878   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1879     return false;
1880 
1881   unsigned SrcReg = getRegForValue(Src);
1882   if (!SrcReg)
1883     return false;
1884 
1885   // The only interesting case is when we need to switch register classes.
1886   if (SrcVT == MVT::i64) {
1887     unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
1888     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1889             TII.get(TargetOpcode::COPY),
1890             ResultReg).addReg(SrcReg, 0, PPC::sub_32);
1891     SrcReg = ResultReg;
1892   }
1893 
1894   updateValueMap(I, SrcReg);
1895   return true;
1896 }
1897 
1898 // Attempt to fast-select an integer extend instruction.
SelectIntExt(const Instruction * I)1899 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1900   Type *DestTy = I->getType();
1901   Value *Src = I->getOperand(0);
1902   Type *SrcTy = Src->getType();
1903 
1904   bool IsZExt = isa<ZExtInst>(I);
1905   unsigned SrcReg = getRegForValue(Src);
1906   if (!SrcReg) return false;
1907 
1908   EVT SrcEVT, DestEVT;
1909   SrcEVT = TLI.getValueType(DL, SrcTy, true);
1910   DestEVT = TLI.getValueType(DL, DestTy, true);
1911   if (!SrcEVT.isSimple())
1912     return false;
1913   if (!DestEVT.isSimple())
1914     return false;
1915 
1916   MVT SrcVT = SrcEVT.getSimpleVT();
1917   MVT DestVT = DestEVT.getSimpleVT();
1918 
1919   // If we know the register class needed for the result of this
1920   // instruction, use it.  Otherwise pick the register class of the
1921   // correct size that does not contain X0/R0, since we don't know
1922   // whether downstream uses permit that assignment.
1923   unsigned AssignedReg = FuncInfo.ValueMap[I];
1924   const TargetRegisterClass *RC =
1925     (AssignedReg ? MRI.getRegClass(AssignedReg) :
1926      (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1927       &PPC::GPRC_and_GPRC_NOR0RegClass));
1928   unsigned ResultReg = createResultReg(RC);
1929 
1930   if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1931     return false;
1932 
1933   updateValueMap(I, ResultReg);
1934   return true;
1935 }
1936 
1937 // Attempt to fast-select an instruction that wasn't handled by
1938 // the table-generated machinery.
fastSelectInstruction(const Instruction * I)1939 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1940 
1941   switch (I->getOpcode()) {
1942     case Instruction::Load:
1943       return SelectLoad(I);
1944     case Instruction::Store:
1945       return SelectStore(I);
1946     case Instruction::Br:
1947       return SelectBranch(I);
1948     case Instruction::IndirectBr:
1949       return SelectIndirectBr(I);
1950     case Instruction::FPExt:
1951       return SelectFPExt(I);
1952     case Instruction::FPTrunc:
1953       return SelectFPTrunc(I);
1954     case Instruction::SIToFP:
1955       return SelectIToFP(I, /*IsSigned*/ true);
1956     case Instruction::UIToFP:
1957       return SelectIToFP(I, /*IsSigned*/ false);
1958     case Instruction::FPToSI:
1959       return SelectFPToI(I, /*IsSigned*/ true);
1960     case Instruction::FPToUI:
1961       return SelectFPToI(I, /*IsSigned*/ false);
1962     case Instruction::Add:
1963       return SelectBinaryIntOp(I, ISD::ADD);
1964     case Instruction::Or:
1965       return SelectBinaryIntOp(I, ISD::OR);
1966     case Instruction::Sub:
1967       return SelectBinaryIntOp(I, ISD::SUB);
1968     case Instruction::Call:
1969       return selectCall(I);
1970     case Instruction::Ret:
1971       return SelectRet(I);
1972     case Instruction::Trunc:
1973       return SelectTrunc(I);
1974     case Instruction::ZExt:
1975     case Instruction::SExt:
1976       return SelectIntExt(I);
1977     // Here add other flavors of Instruction::XXX that automated
1978     // cases don't catch.  For example, switches are terminators
1979     // that aren't yet handled.
1980     default:
1981       break;
1982   }
1983   return false;
1984 }
1985 
1986 // Materialize a floating-point constant into a register, and return
1987 // the register number (or zero if we failed to handle it).
PPCMaterializeFP(const ConstantFP * CFP,MVT VT)1988 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1989   // No plans to handle long double here.
1990   if (VT != MVT::f32 && VT != MVT::f64)
1991     return 0;
1992 
1993   // All FP constants are loaded from the constant pool.
1994   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
1995   assert(Align > 0 && "Unexpectedly missing alignment information!");
1996   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
1997   const bool HasSPE = PPCSubTarget->hasSPE();
1998   const TargetRegisterClass *RC;
1999   if (HasSPE)
2000     RC = ((VT == MVT::f32) ? &PPC::SPE4RCRegClass : &PPC::SPERCRegClass);
2001   else
2002     RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass);
2003 
2004   unsigned DestReg = createResultReg(RC);
2005   CodeModel::Model CModel = TM.getCodeModel();
2006 
2007   MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
2008       MachinePointerInfo::getConstantPool(*FuncInfo.MF),
2009       MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align);
2010 
2011   unsigned Opc;
2012 
2013   if (HasSPE)
2014     Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD);
2015   else
2016     Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD);
2017 
2018   unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2019 
2020   PPCFuncInfo->setUsesTOCBasePtr();
2021   // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
2022   if (CModel == CodeModel::Small) {
2023     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
2024             TmpReg)
2025       .addConstantPoolIndex(Idx).addReg(PPC::X2);
2026     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2027       .addImm(0).addReg(TmpReg).addMemOperand(MMO);
2028   } else {
2029     // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
2030     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
2031             TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
2032     // But for large code model, we must generate a LDtocL followed
2033     // by the LF[SD].
2034     if (CModel == CodeModel::Large) {
2035       unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2036       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2037               TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
2038       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2039           .addImm(0)
2040           .addReg(TmpReg2);
2041     } else
2042       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2043         .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
2044         .addReg(TmpReg)
2045         .addMemOperand(MMO);
2046   }
2047 
2048   return DestReg;
2049 }
2050 
2051 // Materialize the address of a global value into a register, and return
2052 // the register number (or zero if we failed to handle it).
PPCMaterializeGV(const GlobalValue * GV,MVT VT)2053 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
2054   assert(VT == MVT::i64 && "Non-address!");
2055   const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
2056   unsigned DestReg = createResultReg(RC);
2057 
2058   // Global values may be plain old object addresses, TLS object
2059   // addresses, constant pool entries, or jump tables.  How we generate
2060   // code for these may depend on small, medium, or large code model.
2061   CodeModel::Model CModel = TM.getCodeModel();
2062 
2063   // FIXME: Jump tables are not yet required because fast-isel doesn't
2064   // handle switches; if that changes, we need them as well.  For now,
2065   // what follows assumes everything's a generic (or TLS) global address.
2066 
2067   // FIXME: We don't yet handle the complexity of TLS.
2068   if (GV->isThreadLocal())
2069     return 0;
2070 
2071   PPCFuncInfo->setUsesTOCBasePtr();
2072   // For small code model, generate a simple TOC load.
2073   if (CModel == CodeModel::Small)
2074     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
2075             DestReg)
2076         .addGlobalAddress(GV)
2077         .addReg(PPC::X2);
2078   else {
2079     // If the address is an externally defined symbol, a symbol with common
2080     // or externally available linkage, a non-local function address, or a
2081     // jump table address (not yet needed), or if we are generating code
2082     // for large code model, we generate:
2083     //       LDtocL(GV, ADDIStocHA(%x2, GV))
2084     // Otherwise we generate:
2085     //       ADDItocL(ADDIStocHA(%x2, GV), GV)
2086     // Either way, start with the ADDIStocHA:
2087     unsigned HighPartReg = createResultReg(RC);
2088     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
2089             HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
2090 
2091     unsigned char GVFlags = PPCSubTarget->classifyGlobalReference(GV);
2092     if (GVFlags & PPCII::MO_NLP_FLAG) {
2093       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
2094               DestReg).addGlobalAddress(GV).addReg(HighPartReg);
2095     } else {
2096       // Otherwise generate the ADDItocL.
2097       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
2098               DestReg).addReg(HighPartReg).addGlobalAddress(GV);
2099     }
2100   }
2101 
2102   return DestReg;
2103 }
2104 
2105 // Materialize a 32-bit integer constant into a register, and return
2106 // the register number (or zero if we failed to handle it).
PPCMaterialize32BitInt(int64_t Imm,const TargetRegisterClass * RC)2107 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
2108                                              const TargetRegisterClass *RC) {
2109   unsigned Lo = Imm & 0xFFFF;
2110   unsigned Hi = (Imm >> 16) & 0xFFFF;
2111 
2112   unsigned ResultReg = createResultReg(RC);
2113   bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
2114 
2115   if (isInt<16>(Imm))
2116     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2117             TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
2118       .addImm(Imm);
2119   else if (Lo) {
2120     // Both Lo and Hi have nonzero bits.
2121     unsigned TmpReg = createResultReg(RC);
2122     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2123             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
2124       .addImm(Hi);
2125     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2126             TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
2127       .addReg(TmpReg).addImm(Lo);
2128   } else
2129     // Just Hi bits.
2130     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2131             TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2132         .addImm(Hi);
2133 
2134   return ResultReg;
2135 }
2136 
2137 // Materialize a 64-bit integer constant into a register, and return
2138 // the register number (or zero if we failed to handle it).
PPCMaterialize64BitInt(int64_t Imm,const TargetRegisterClass * RC)2139 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2140                                              const TargetRegisterClass *RC) {
2141   unsigned Remainder = 0;
2142   unsigned Shift = 0;
2143 
2144   // If the value doesn't fit in 32 bits, see if we can shift it
2145   // so that it fits in 32 bits.
2146   if (!isInt<32>(Imm)) {
2147     Shift = countTrailingZeros<uint64_t>(Imm);
2148     int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2149 
2150     if (isInt<32>(ImmSh))
2151       Imm = ImmSh;
2152     else {
2153       Remainder = Imm;
2154       Shift = 32;
2155       Imm >>= 32;
2156     }
2157   }
2158 
2159   // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2160   // (if not shifted).
2161   unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2162   if (!Shift)
2163     return TmpReg1;
2164 
2165   // If upper 32 bits were not zero, we've built them and need to shift
2166   // them into place.
2167   unsigned TmpReg2;
2168   if (Imm) {
2169     TmpReg2 = createResultReg(RC);
2170     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2171             TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2172   } else
2173     TmpReg2 = TmpReg1;
2174 
2175   unsigned TmpReg3, Hi, Lo;
2176   if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2177     TmpReg3 = createResultReg(RC);
2178     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2179             TmpReg3).addReg(TmpReg2).addImm(Hi);
2180   } else
2181     TmpReg3 = TmpReg2;
2182 
2183   if ((Lo = Remainder & 0xFFFF)) {
2184     unsigned ResultReg = createResultReg(RC);
2185     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2186             ResultReg).addReg(TmpReg3).addImm(Lo);
2187     return ResultReg;
2188   }
2189 
2190   return TmpReg3;
2191 }
2192 
2193 // Materialize an integer constant into a register, and return
2194 // the register number (or zero if we failed to handle it).
PPCMaterializeInt(const ConstantInt * CI,MVT VT,bool UseSExt)2195 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT,
2196                                         bool UseSExt) {
2197   // If we're using CR bit registers for i1 values, handle that as a special
2198   // case first.
2199   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2200     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2201     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2202             TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2203     return ImmReg;
2204   }
2205 
2206   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2207       VT != MVT::i1)
2208     return 0;
2209 
2210   const TargetRegisterClass *RC =
2211       ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass);
2212   int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue();
2213 
2214   // If the constant is in range, use a load-immediate.
2215   // Since LI will sign extend the constant we need to make sure that for
2216   // our zeroext constants that the sign extended constant fits into 16-bits -
2217   // a range of 0..0x7fff.
2218   if (isInt<16>(Imm)) {
2219     unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2220     unsigned ImmReg = createResultReg(RC);
2221     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2222         .addImm(Imm);
2223     return ImmReg;
2224   }
2225 
2226   // Construct the constant piecewise.
2227   if (VT == MVT::i64)
2228     return PPCMaterialize64BitInt(Imm, RC);
2229   else if (VT == MVT::i32)
2230     return PPCMaterialize32BitInt(Imm, RC);
2231 
2232   return 0;
2233 }
2234 
2235 // Materialize a constant into a register, and return the register
2236 // number (or zero if we failed to handle it).
fastMaterializeConstant(const Constant * C)2237 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2238   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
2239 
2240   // Only handle simple types.
2241   if (!CEVT.isSimple()) return 0;
2242   MVT VT = CEVT.getSimpleVT();
2243 
2244   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2245     return PPCMaterializeFP(CFP, VT);
2246   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2247     return PPCMaterializeGV(GV, VT);
2248   else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
2249     // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo
2250     // assumes that constant PHI operands will be zero extended, and failure to
2251     // match that assumption will cause problems if we sign extend here but
2252     // some user of a PHI is in a block for which we fall back to full SDAG
2253     // instruction selection.
2254     return PPCMaterializeInt(CI, VT, false);
2255 
2256   return 0;
2257 }
2258 
2259 // Materialize the address created by an alloca into a register, and
2260 // return the register number (or zero if we failed to handle it).
fastMaterializeAlloca(const AllocaInst * AI)2261 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2262   // Don't handle dynamic allocas.
2263   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2264 
2265   MVT VT;
2266   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2267 
2268   DenseMap<const AllocaInst*, int>::iterator SI =
2269     FuncInfo.StaticAllocaMap.find(AI);
2270 
2271   if (SI != FuncInfo.StaticAllocaMap.end()) {
2272     unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2273     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2274             ResultReg).addFrameIndex(SI->second).addImm(0);
2275     return ResultReg;
2276   }
2277 
2278   return 0;
2279 }
2280 
2281 // Fold loads into extends when possible.
2282 // FIXME: We can have multiple redundant extend/trunc instructions
2283 // following a load.  The folding only picks up one.  Extend this
2284 // to check subsequent instructions for the same pattern and remove
2285 // them.  Thus ResultReg should be the def reg for the last redundant
2286 // instruction in a chain, and all intervening instructions can be
2287 // removed from parent.  Change test/CodeGen/PowerPC/fast-isel-fold.ll
2288 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)2289 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2290                                       const LoadInst *LI) {
2291   // Verify we have a legal type before going any further.
2292   MVT VT;
2293   if (!isLoadTypeLegal(LI->getType(), VT))
2294     return false;
2295 
2296   // Combine load followed by zero- or sign-extend.
2297   bool IsZExt = false;
2298   switch(MI->getOpcode()) {
2299     default:
2300       return false;
2301 
2302     case PPC::RLDICL:
2303     case PPC::RLDICL_32_64: {
2304       IsZExt = true;
2305       unsigned MB = MI->getOperand(3).getImm();
2306       if ((VT == MVT::i8 && MB <= 56) ||
2307           (VT == MVT::i16 && MB <= 48) ||
2308           (VT == MVT::i32 && MB <= 32))
2309         break;
2310       return false;
2311     }
2312 
2313     case PPC::RLWINM:
2314     case PPC::RLWINM8: {
2315       IsZExt = true;
2316       unsigned MB = MI->getOperand(3).getImm();
2317       if ((VT == MVT::i8 && MB <= 24) ||
2318           (VT == MVT::i16 && MB <= 16))
2319         break;
2320       return false;
2321     }
2322 
2323     case PPC::EXTSB:
2324     case PPC::EXTSB8:
2325     case PPC::EXTSB8_32_64:
2326       /* There is no sign-extending load-byte instruction. */
2327       return false;
2328 
2329     case PPC::EXTSH:
2330     case PPC::EXTSH8:
2331     case PPC::EXTSH8_32_64: {
2332       if (VT != MVT::i16 && VT != MVT::i8)
2333         return false;
2334       break;
2335     }
2336 
2337     case PPC::EXTSW:
2338     case PPC::EXTSW_32:
2339     case PPC::EXTSW_32_64: {
2340       if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2341         return false;
2342       break;
2343     }
2344   }
2345 
2346   // See if we can handle this address.
2347   Address Addr;
2348   if (!PPCComputeAddress(LI->getOperand(0), Addr))
2349     return false;
2350 
2351   unsigned ResultReg = MI->getOperand(0).getReg();
2352 
2353   if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt,
2354         PPCSubTarget->hasSPE() ? PPC::EVLDD : PPC::LFD))
2355     return false;
2356 
2357   MI->eraseFromParent();
2358   return true;
2359 }
2360 
2361 // Attempt to lower call arguments in a faster way than done by
2362 // the selection DAG code.
fastLowerArguments()2363 bool PPCFastISel::fastLowerArguments() {
2364   // Defer to normal argument lowering for now.  It's reasonably
2365   // efficient.  Consider doing something like ARM to handle the
2366   // case where all args fit in registers, no varargs, no float
2367   // or vector args.
2368   return false;
2369 }
2370 
2371 // Handle materializing integer constants into a register.  This is not
2372 // automatically generated for PowerPC, so must be explicitly created here.
fastEmit_i(MVT Ty,MVT VT,unsigned Opc,uint64_t Imm)2373 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2374 
2375   if (Opc != ISD::Constant)
2376     return 0;
2377 
2378   // If we're using CR bit registers for i1 values, handle that as a special
2379   // case first.
2380   if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2381     unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2382     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2383             TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2384     return ImmReg;
2385   }
2386 
2387   if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 &&
2388       VT != MVT::i1)
2389     return 0;
2390 
2391   const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2392                                    &PPC::GPRCRegClass);
2393   if (VT == MVT::i64)
2394     return PPCMaterialize64BitInt(Imm, RC);
2395   else
2396     return PPCMaterialize32BitInt(Imm, RC);
2397 }
2398 
2399 // Override for ADDI and ADDI8 to set the correct register class
2400 // on RHS operand 0.  The automatic infrastructure naively assumes
2401 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2402 // for these cases.  At the moment, none of the other automatically
2403 // generated RI instructions require special treatment.  However, once
2404 // SelectSelect is implemented, "isel" requires similar handling.
2405 //
2406 // Also be conservative about the output register class.  Avoid
2407 // assigning R0 or X0 to the output register for GPRC and G8RC
2408 // register classes, as any such result could be used in ADDI, etc.,
2409 // where those regs have another meaning.
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm)2410 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2411                                       const TargetRegisterClass *RC,
2412                                       unsigned Op0, bool Op0IsKill,
2413                                       uint64_t Imm) {
2414   if (MachineInstOpcode == PPC::ADDI)
2415     MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2416   else if (MachineInstOpcode == PPC::ADDI8)
2417     MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2418 
2419   const TargetRegisterClass *UseRC =
2420     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2421      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2422 
2423   return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
2424                                    Op0, Op0IsKill, Imm);
2425 }
2426 
2427 // Override for instructions with one register operand to avoid use of
2428 // R0/X0.  The automatic infrastructure isn't aware of the context so
2429 // we must be conservative.
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill)2430 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2431                                      const TargetRegisterClass* RC,
2432                                      unsigned Op0, bool Op0IsKill) {
2433   const TargetRegisterClass *UseRC =
2434     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2435      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2436 
2437   return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2438 }
2439 
2440 // Override for instructions with two register operands to avoid use
2441 // of R0/X0.  The automatic infrastructure isn't aware of the context
2442 // so we must be conservative.
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)2443 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2444                                       const TargetRegisterClass* RC,
2445                                       unsigned Op0, bool Op0IsKill,
2446                                       unsigned Op1, bool Op1IsKill) {
2447   const TargetRegisterClass *UseRC =
2448     (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2449      (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2450 
2451   return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2452                                    Op1, Op1IsKill);
2453 }
2454 
2455 namespace llvm {
2456   // Create the fast instruction selector for PowerPC64 ELF.
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)2457   FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2458                                 const TargetLibraryInfo *LibInfo) {
2459     // Only available on 64-bit ELF for now.
2460     const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2461     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI())
2462       return new PPCFastISel(FuncInfo, LibInfo);
2463     return nullptr;
2464   }
2465 }
2466