1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass promotes "by reference" arguments to be "by value" arguments.  In
11 // practice, this means looking for internal functions that have pointer
12 // arguments.  If it can prove, through the use of alias analysis, that an
13 // argument is *only* loaded, then it can pass the value into the function
14 // instead of the address of the value.  This can cause recursive simplification
15 // of code and lead to the elimination of allocas (especially in C++ template
16 // code like the STL).
17 //
18 // This pass also handles aggregate arguments that are passed into a function,
19 // scalarizing them if the elements of the aggregate are only loaded.  Note that
20 // by default it refuses to scalarize aggregates which would require passing in
21 // more than three operands to the function, because passing thousands of
22 // operands for a large array or structure is unprofitable! This limit can be
23 // configured or disabled, however.
24 //
25 // Note that this transformation could also be done for arguments that are only
26 // stored to (returning the value instead), but does not currently.  This case
27 // would be best handled when and if LLVM begins supporting multiple return
28 // values from functions.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
33 #include "llvm/ADT/DepthFirstIterator.h"
34 #include "llvm/ADT/None.h"
35 #include "llvm/ADT/Optional.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/StringExtras.h"
41 #include "llvm/ADT/Twine.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AssumptionCache.h"
44 #include "llvm/Analysis/BasicAliasAnalysis.h"
45 #include "llvm/Analysis/CGSCCPassManager.h"
46 #include "llvm/Analysis/CallGraph.h"
47 #include "llvm/Analysis/CallGraphSCCPass.h"
48 #include "llvm/Analysis/LazyCallGraph.h"
49 #include "llvm/Analysis/Loads.h"
50 #include "llvm/Analysis/MemoryLocation.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/Attributes.h"
54 #include "llvm/IR/BasicBlock.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/Pass.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/IPO.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstdint>
79 #include <functional>
80 #include <iterator>
81 #include <map>
82 #include <set>
83 #include <string>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 #define DEBUG_TYPE "argpromotion"
90 
91 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
92 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
93 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
94 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
95 
96 /// A vector used to hold the indices of a single GEP instruction
97 using IndicesVector = std::vector<uint64_t>;
98 
99 /// DoPromotion - This method actually performs the promotion of the specified
100 /// arguments, and returns the new function.  At this point, we know that it's
101 /// safe to do so.
102 static Function *
doPromotion(Function * F,SmallPtrSetImpl<Argument * > & ArgsToPromote,SmallPtrSetImpl<Argument * > & ByValArgsToTransform,Optional<function_ref<void (CallSite OldCS,CallSite NewCS)>> ReplaceCallSite)103 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
104             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
105             Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
106                 ReplaceCallSite) {
107   // Start by computing a new prototype for the function, which is the same as
108   // the old function, but has modified arguments.
109   FunctionType *FTy = F->getFunctionType();
110   std::vector<Type *> Params;
111 
112   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
113 
114   // ScalarizedElements - If we are promoting a pointer that has elements
115   // accessed out of it, keep track of which elements are accessed so that we
116   // can add one argument for each.
117   //
118   // Arguments that are directly loaded will have a zero element value here, to
119   // handle cases where there are both a direct load and GEP accesses.
120   std::map<Argument *, ScalarizeTable> ScalarizedElements;
121 
122   // OriginalLoads - Keep track of a representative load instruction from the
123   // original function so that we can tell the alias analysis implementation
124   // what the new GEP/Load instructions we are inserting look like.
125   // We need to keep the original loads for each argument and the elements
126   // of the argument that are accessed.
127   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
128 
129   // Attribute - Keep track of the parameter attributes for the arguments
130   // that we are *not* promoting. For the ones that we do promote, the parameter
131   // attributes are lost
132   SmallVector<AttributeSet, 8> ArgAttrVec;
133   AttributeList PAL = F->getAttributes();
134 
135   // First, determine the new argument list
136   unsigned ArgNo = 0;
137   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
138        ++I, ++ArgNo) {
139     if (ByValArgsToTransform.count(&*I)) {
140       // Simple byval argument? Just add all the struct element types.
141       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
142       StructType *STy = cast<StructType>(AgTy);
143       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
144       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
145                         AttributeSet());
146       ++NumByValArgsPromoted;
147     } else if (!ArgsToPromote.count(&*I)) {
148       // Unchanged argument
149       Params.push_back(I->getType());
150       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
151     } else if (I->use_empty()) {
152       // Dead argument (which are always marked as promotable)
153       ++NumArgumentsDead;
154 
155       // There may be remaining metadata uses of the argument for things like
156       // llvm.dbg.value. Replace them with undef.
157       I->replaceAllUsesWith(UndefValue::get(I->getType()));
158     } else {
159       // Okay, this is being promoted. This means that the only uses are loads
160       // or GEPs which are only used by loads
161 
162       // In this table, we will track which indices are loaded from the argument
163       // (where direct loads are tracked as no indices).
164       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
165       for (User *U : I->users()) {
166         Instruction *UI = cast<Instruction>(U);
167         Type *SrcTy;
168         if (LoadInst *L = dyn_cast<LoadInst>(UI))
169           SrcTy = L->getType();
170         else
171           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
172         IndicesVector Indices;
173         Indices.reserve(UI->getNumOperands() - 1);
174         // Since loads will only have a single operand, and GEPs only a single
175         // non-index operand, this will record direct loads without any indices,
176         // and gep+loads with the GEP indices.
177         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
178              II != IE; ++II)
179           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
180         // GEPs with a single 0 index can be merged with direct loads
181         if (Indices.size() == 1 && Indices.front() == 0)
182           Indices.clear();
183         ArgIndices.insert(std::make_pair(SrcTy, Indices));
184         LoadInst *OrigLoad;
185         if (LoadInst *L = dyn_cast<LoadInst>(UI))
186           OrigLoad = L;
187         else
188           // Take any load, we will use it only to update Alias Analysis
189           OrigLoad = cast<LoadInst>(UI->user_back());
190         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
191       }
192 
193       // Add a parameter to the function for each element passed in.
194       for (const auto &ArgIndex : ArgIndices) {
195         // not allowed to dereference ->begin() if size() is 0
196         Params.push_back(GetElementPtrInst::getIndexedType(
197             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
198             ArgIndex.second));
199         ArgAttrVec.push_back(AttributeSet());
200         assert(Params.back());
201       }
202 
203       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
204         ++NumArgumentsPromoted;
205       else
206         ++NumAggregatesPromoted;
207     }
208   }
209 
210   Type *RetTy = FTy->getReturnType();
211 
212   // Construct the new function type using the new arguments.
213   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
214 
215   // Create the new function body and insert it into the module.
216   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
217   NF->copyAttributesFrom(F);
218 
219   // Patch the pointer to LLVM function in debug info descriptor.
220   NF->setSubprogram(F->getSubprogram());
221   F->setSubprogram(nullptr);
222 
223   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
224                     << "From: " << *F);
225 
226   // Recompute the parameter attributes list based on the new arguments for
227   // the function.
228   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
229                                        PAL.getRetAttributes(), ArgAttrVec));
230   ArgAttrVec.clear();
231 
232   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
233   NF->takeName(F);
234 
235   // Loop over all of the callers of the function, transforming the call sites
236   // to pass in the loaded pointers.
237   //
238   SmallVector<Value *, 16> Args;
239   while (!F->use_empty()) {
240     CallSite CS(F->user_back());
241     assert(CS.getCalledFunction() == F);
242     Instruction *Call = CS.getInstruction();
243     const AttributeList &CallPAL = CS.getAttributes();
244 
245     // Loop over the operands, inserting GEP and loads in the caller as
246     // appropriate.
247     CallSite::arg_iterator AI = CS.arg_begin();
248     ArgNo = 0;
249     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
250          ++I, ++AI, ++ArgNo)
251       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
252         Args.push_back(*AI); // Unmodified argument
253         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
254       } else if (ByValArgsToTransform.count(&*I)) {
255         // Emit a GEP and load for each element of the struct.
256         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
257         StructType *STy = cast<StructType>(AgTy);
258         Value *Idxs[2] = {
259             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
260         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
261           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
262           Value *Idx = GetElementPtrInst::Create(
263               STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call);
264           // TODO: Tell AA about the new values?
265           Args.push_back(new LoadInst(Idx, Idx->getName() + ".val", Call));
266           ArgAttrVec.push_back(AttributeSet());
267         }
268       } else if (!I->use_empty()) {
269         // Non-dead argument: insert GEPs and loads as appropriate.
270         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
271         // Store the Value* version of the indices in here, but declare it now
272         // for reuse.
273         std::vector<Value *> Ops;
274         for (const auto &ArgIndex : ArgIndices) {
275           Value *V = *AI;
276           LoadInst *OrigLoad =
277               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
278           if (!ArgIndex.second.empty()) {
279             Ops.reserve(ArgIndex.second.size());
280             Type *ElTy = V->getType();
281             for (auto II : ArgIndex.second) {
282               // Use i32 to index structs, and i64 for others (pointers/arrays).
283               // This satisfies GEP constraints.
284               Type *IdxTy =
285                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
286                                       : Type::getInt64Ty(F->getContext()));
287               Ops.push_back(ConstantInt::get(IdxTy, II));
288               // Keep track of the type we're currently indexing.
289               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
290                 ElTy = ElPTy->getElementType();
291               else
292                 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
293             }
294             // And create a GEP to extract those indices.
295             V = GetElementPtrInst::Create(ArgIndex.first, V, Ops,
296                                           V->getName() + ".idx", Call);
297             Ops.clear();
298           }
299           // Since we're replacing a load make sure we take the alignment
300           // of the previous load.
301           LoadInst *newLoad = new LoadInst(V, V->getName() + ".val", Call);
302           newLoad->setAlignment(OrigLoad->getAlignment());
303           // Transfer the AA info too.
304           AAMDNodes AAInfo;
305           OrigLoad->getAAMetadata(AAInfo);
306           newLoad->setAAMetadata(AAInfo);
307 
308           Args.push_back(newLoad);
309           ArgAttrVec.push_back(AttributeSet());
310         }
311       }
312 
313     // Push any varargs arguments on the list.
314     for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
315       Args.push_back(*AI);
316       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
317     }
318 
319     SmallVector<OperandBundleDef, 1> OpBundles;
320     CS.getOperandBundlesAsDefs(OpBundles);
321 
322     CallSite NewCS;
323     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
324       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
325                                  Args, OpBundles, "", Call);
326     } else {
327       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
328       NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
329       NewCS = NewCall;
330     }
331     NewCS.setCallingConv(CS.getCallingConv());
332     NewCS.setAttributes(
333         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
334                            CallPAL.getRetAttributes(), ArgAttrVec));
335     NewCS->setDebugLoc(Call->getDebugLoc());
336     uint64_t W;
337     if (Call->extractProfTotalWeight(W))
338       NewCS->setProfWeight(W);
339     Args.clear();
340     ArgAttrVec.clear();
341 
342     // Update the callgraph to know that the callsite has been transformed.
343     if (ReplaceCallSite)
344       (*ReplaceCallSite)(CS, NewCS);
345 
346     if (!Call->use_empty()) {
347       Call->replaceAllUsesWith(NewCS.getInstruction());
348       NewCS->takeName(Call);
349     }
350 
351     // Finally, remove the old call from the program, reducing the use-count of
352     // F.
353     Call->eraseFromParent();
354   }
355 
356   const DataLayout &DL = F->getParent()->getDataLayout();
357 
358   // Since we have now created the new function, splice the body of the old
359   // function right into the new function, leaving the old rotting hulk of the
360   // function empty.
361   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
362 
363   // Loop over the argument list, transferring uses of the old arguments over to
364   // the new arguments, also transferring over the names as well.
365   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
366                               I2 = NF->arg_begin();
367        I != E; ++I) {
368     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
369       // If this is an unmodified argument, move the name and users over to the
370       // new version.
371       I->replaceAllUsesWith(&*I2);
372       I2->takeName(&*I);
373       ++I2;
374       continue;
375     }
376 
377     if (ByValArgsToTransform.count(&*I)) {
378       // In the callee, we create an alloca, and store each of the new incoming
379       // arguments into the alloca.
380       Instruction *InsertPt = &NF->begin()->front();
381 
382       // Just add all the struct element types.
383       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
384       Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
385                                         I->getParamAlignment(), "", InsertPt);
386       StructType *STy = cast<StructType>(AgTy);
387       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
388                         nullptr};
389 
390       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
391         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
392         Value *Idx = GetElementPtrInst::Create(
393             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
394             InsertPt);
395         I2->setName(I->getName() + "." + Twine(i));
396         new StoreInst(&*I2++, Idx, InsertPt);
397       }
398 
399       // Anything that used the arg should now use the alloca.
400       I->replaceAllUsesWith(TheAlloca);
401       TheAlloca->takeName(&*I);
402 
403       // If the alloca is used in a call, we must clear the tail flag since
404       // the callee now uses an alloca from the caller.
405       for (User *U : TheAlloca->users()) {
406         CallInst *Call = dyn_cast<CallInst>(U);
407         if (!Call)
408           continue;
409         Call->setTailCall(false);
410       }
411       continue;
412     }
413 
414     if (I->use_empty())
415       continue;
416 
417     // Otherwise, if we promoted this argument, then all users are load
418     // instructions (or GEPs with only load users), and all loads should be
419     // using the new argument that we added.
420     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
421 
422     while (!I->use_empty()) {
423       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
424         assert(ArgIndices.begin()->second.empty() &&
425                "Load element should sort to front!");
426         I2->setName(I->getName() + ".val");
427         LI->replaceAllUsesWith(&*I2);
428         LI->eraseFromParent();
429         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
430                           << "' in function '" << F->getName() << "'\n");
431       } else {
432         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
433         IndicesVector Operands;
434         Operands.reserve(GEP->getNumIndices());
435         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
436              II != IE; ++II)
437           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
438 
439         // GEPs with a single 0 index can be merged with direct loads
440         if (Operands.size() == 1 && Operands.front() == 0)
441           Operands.clear();
442 
443         Function::arg_iterator TheArg = I2;
444         for (ScalarizeTable::iterator It = ArgIndices.begin();
445              It->second != Operands; ++It, ++TheArg) {
446           assert(It != ArgIndices.end() && "GEP not handled??");
447         }
448 
449         std::string NewName = I->getName();
450         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
451           NewName += "." + utostr(Operands[i]);
452         }
453         NewName += ".val";
454         TheArg->setName(NewName);
455 
456         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
457                           << "' of function '" << NF->getName() << "'\n");
458 
459         // All of the uses must be load instructions.  Replace them all with
460         // the argument specified by ArgNo.
461         while (!GEP->use_empty()) {
462           LoadInst *L = cast<LoadInst>(GEP->user_back());
463           L->replaceAllUsesWith(&*TheArg);
464           L->eraseFromParent();
465         }
466         GEP->eraseFromParent();
467       }
468     }
469 
470     // Increment I2 past all of the arguments added for this promoted pointer.
471     std::advance(I2, ArgIndices.size());
472   }
473 
474   return NF;
475 }
476 
477 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
478 /// all callees pass in a valid pointer for the specified function argument.
allCallersPassInValidPointerForArgument(Argument * Arg)479 static bool allCallersPassInValidPointerForArgument(Argument *Arg) {
480   Function *Callee = Arg->getParent();
481   const DataLayout &DL = Callee->getParent()->getDataLayout();
482 
483   unsigned ArgNo = Arg->getArgNo();
484 
485   // Look at all call sites of the function.  At this point we know we only have
486   // direct callees.
487   for (User *U : Callee->users()) {
488     CallSite CS(U);
489     assert(CS && "Should only have direct calls!");
490 
491     if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL))
492       return false;
493   }
494   return true;
495 }
496 
497 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
498 /// that is greater than or equal to the size of prefix, and each of the
499 /// elements in Prefix is the same as the corresponding elements in Longer.
500 ///
501 /// This means it also returns true when Prefix and Longer are equal!
isPrefix(const IndicesVector & Prefix,const IndicesVector & Longer)502 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
503   if (Prefix.size() > Longer.size())
504     return false;
505   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
506 }
507 
508 /// Checks if Indices, or a prefix of Indices, is in Set.
prefixIn(const IndicesVector & Indices,std::set<IndicesVector> & Set)509 static bool prefixIn(const IndicesVector &Indices,
510                      std::set<IndicesVector> &Set) {
511   std::set<IndicesVector>::iterator Low;
512   Low = Set.upper_bound(Indices);
513   if (Low != Set.begin())
514     Low--;
515   // Low is now the last element smaller than or equal to Indices. This means
516   // it points to a prefix of Indices (possibly Indices itself), if such
517   // prefix exists.
518   //
519   // This load is safe if any prefix of its operands is safe to load.
520   return Low != Set.end() && isPrefix(*Low, Indices);
521 }
522 
523 /// Mark the given indices (ToMark) as safe in the given set of indices
524 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
525 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
526 /// already. Furthermore, any indices that Indices is itself a prefix of, are
527 /// removed from Safe (since they are implicitely safe because of Indices now).
markIndicesSafe(const IndicesVector & ToMark,std::set<IndicesVector> & Safe)528 static void markIndicesSafe(const IndicesVector &ToMark,
529                             std::set<IndicesVector> &Safe) {
530   std::set<IndicesVector>::iterator Low;
531   Low = Safe.upper_bound(ToMark);
532   // Guard against the case where Safe is empty
533   if (Low != Safe.begin())
534     Low--;
535   // Low is now the last element smaller than or equal to Indices. This
536   // means it points to a prefix of Indices (possibly Indices itself), if
537   // such prefix exists.
538   if (Low != Safe.end()) {
539     if (isPrefix(*Low, ToMark))
540       // If there is already a prefix of these indices (or exactly these
541       // indices) marked a safe, don't bother adding these indices
542       return;
543 
544     // Increment Low, so we can use it as a "insert before" hint
545     ++Low;
546   }
547   // Insert
548   Low = Safe.insert(Low, ToMark);
549   ++Low;
550   // If there we're a prefix of longer index list(s), remove those
551   std::set<IndicesVector>::iterator End = Safe.end();
552   while (Low != End && isPrefix(ToMark, *Low)) {
553     std::set<IndicesVector>::iterator Remove = Low;
554     ++Low;
555     Safe.erase(Remove);
556   }
557 }
558 
559 /// isSafeToPromoteArgument - As you might guess from the name of this method,
560 /// it checks to see if it is both safe and useful to promote the argument.
561 /// This method limits promotion of aggregates to only promote up to three
562 /// elements of the aggregate in order to avoid exploding the number of
563 /// arguments passed in.
isSafeToPromoteArgument(Argument * Arg,bool isByValOrInAlloca,AAResults & AAR,unsigned MaxElements)564 static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca,
565                                     AAResults &AAR, unsigned MaxElements) {
566   using GEPIndicesSet = std::set<IndicesVector>;
567 
568   // Quick exit for unused arguments
569   if (Arg->use_empty())
570     return true;
571 
572   // We can only promote this argument if all of the uses are loads, or are GEP
573   // instructions (with constant indices) that are subsequently loaded.
574   //
575   // Promoting the argument causes it to be loaded in the caller
576   // unconditionally. This is only safe if we can prove that either the load
577   // would have happened in the callee anyway (ie, there is a load in the entry
578   // block) or the pointer passed in at every call site is guaranteed to be
579   // valid.
580   // In the former case, invalid loads can happen, but would have happened
581   // anyway, in the latter case, invalid loads won't happen. This prevents us
582   // from introducing an invalid load that wouldn't have happened in the
583   // original code.
584   //
585   // This set will contain all sets of indices that are loaded in the entry
586   // block, and thus are safe to unconditionally load in the caller.
587   //
588   // This optimization is also safe for InAlloca parameters, because it verifies
589   // that the address isn't captured.
590   GEPIndicesSet SafeToUnconditionallyLoad;
591 
592   // This set contains all the sets of indices that we are planning to promote.
593   // This makes it possible to limit the number of arguments added.
594   GEPIndicesSet ToPromote;
595 
596   // If the pointer is always valid, any load with first index 0 is valid.
597   if (isByValOrInAlloca || allCallersPassInValidPointerForArgument(Arg))
598     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
599 
600   // First, iterate the entry block and mark loads of (geps of) arguments as
601   // safe.
602   BasicBlock &EntryBlock = Arg->getParent()->front();
603   // Declare this here so we can reuse it
604   IndicesVector Indices;
605   for (Instruction &I : EntryBlock)
606     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
607       Value *V = LI->getPointerOperand();
608       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
609         V = GEP->getPointerOperand();
610         if (V == Arg) {
611           // This load actually loads (part of) Arg? Check the indices then.
612           Indices.reserve(GEP->getNumIndices());
613           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
614                II != IE; ++II)
615             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
616               Indices.push_back(CI->getSExtValue());
617             else
618               // We found a non-constant GEP index for this argument? Bail out
619               // right away, can't promote this argument at all.
620               return false;
621 
622           // Indices checked out, mark them as safe
623           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
624           Indices.clear();
625         }
626       } else if (V == Arg) {
627         // Direct loads are equivalent to a GEP with a single 0 index.
628         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
629       }
630     }
631 
632   // Now, iterate all uses of the argument to see if there are any uses that are
633   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
634   SmallVector<LoadInst *, 16> Loads;
635   IndicesVector Operands;
636   for (Use &U : Arg->uses()) {
637     User *UR = U.getUser();
638     Operands.clear();
639     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
640       // Don't hack volatile/atomic loads
641       if (!LI->isSimple())
642         return false;
643       Loads.push_back(LI);
644       // Direct loads are equivalent to a GEP with a zero index and then a load.
645       Operands.push_back(0);
646     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
647       if (GEP->use_empty()) {
648         // Dead GEP's cause trouble later.  Just remove them if we run into
649         // them.
650         GEP->eraseFromParent();
651         // TODO: This runs the above loop over and over again for dead GEPs
652         // Couldn't we just do increment the UI iterator earlier and erase the
653         // use?
654         return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR,
655                                        MaxElements);
656       }
657 
658       // Ensure that all of the indices are constants.
659       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
660            ++i)
661         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
662           Operands.push_back(C->getSExtValue());
663         else
664           return false; // Not a constant operand GEP!
665 
666       // Ensure that the only users of the GEP are load instructions.
667       for (User *GEPU : GEP->users())
668         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
669           // Don't hack volatile/atomic loads
670           if (!LI->isSimple())
671             return false;
672           Loads.push_back(LI);
673         } else {
674           // Other uses than load?
675           return false;
676         }
677     } else {
678       return false; // Not a load or a GEP.
679     }
680 
681     // Now, see if it is safe to promote this load / loads of this GEP. Loading
682     // is safe if Operands, or a prefix of Operands, is marked as safe.
683     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
684       return false;
685 
686     // See if we are already promoting a load with these indices. If not, check
687     // to make sure that we aren't promoting too many elements.  If so, nothing
688     // to do.
689     if (ToPromote.find(Operands) == ToPromote.end()) {
690       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
691         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
692                           << Arg->getName()
693                           << "' because it would require adding more "
694                           << "than " << MaxElements
695                           << " arguments to the function.\n");
696         // We limit aggregate promotion to only promoting up to a fixed number
697         // of elements of the aggregate.
698         return false;
699       }
700       ToPromote.insert(std::move(Operands));
701     }
702   }
703 
704   if (Loads.empty())
705     return true; // No users, this is a dead argument.
706 
707   // Okay, now we know that the argument is only used by load instructions and
708   // it is safe to unconditionally perform all of them. Use alias analysis to
709   // check to see if the pointer is guaranteed to not be modified from entry of
710   // the function to each of the load instructions.
711 
712   // Because there could be several/many load instructions, remember which
713   // blocks we know to be transparent to the load.
714   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
715 
716   for (LoadInst *Load : Loads) {
717     // Check to see if the load is invalidated from the start of the block to
718     // the load itself.
719     BasicBlock *BB = Load->getParent();
720 
721     MemoryLocation Loc = MemoryLocation::get(Load);
722     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
723       return false; // Pointer is invalidated!
724 
725     // Now check every path from the entry block to the load for transparency.
726     // To do this, we perform a depth first search on the inverse CFG from the
727     // loading block.
728     for (BasicBlock *P : predecessors(BB)) {
729       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
730         if (AAR.canBasicBlockModify(*TranspBB, Loc))
731           return false;
732     }
733   }
734 
735   // If the path from the entry of the function to each load is free of
736   // instructions that potentially invalidate the load, we can make the
737   // transformation!
738   return true;
739 }
740 
741 /// Checks if a type could have padding bytes.
isDenselyPacked(Type * type,const DataLayout & DL)742 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
743   // There is no size information, so be conservative.
744   if (!type->isSized())
745     return false;
746 
747   // If the alloc size is not equal to the storage size, then there are padding
748   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
749   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
750     return false;
751 
752   if (!isa<CompositeType>(type))
753     return true;
754 
755   // For homogenous sequential types, check for padding within members.
756   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
757     return isDenselyPacked(seqTy->getElementType(), DL);
758 
759   // Check for padding within and between elements of a struct.
760   StructType *StructTy = cast<StructType>(type);
761   const StructLayout *Layout = DL.getStructLayout(StructTy);
762   uint64_t StartPos = 0;
763   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
764     Type *ElTy = StructTy->getElementType(i);
765     if (!isDenselyPacked(ElTy, DL))
766       return false;
767     if (StartPos != Layout->getElementOffsetInBits(i))
768       return false;
769     StartPos += DL.getTypeAllocSizeInBits(ElTy);
770   }
771 
772   return true;
773 }
774 
775 /// Checks if the padding bytes of an argument could be accessed.
canPaddingBeAccessed(Argument * arg)776 static bool canPaddingBeAccessed(Argument *arg) {
777   assert(arg->hasByValAttr());
778 
779   // Track all the pointers to the argument to make sure they are not captured.
780   SmallPtrSet<Value *, 16> PtrValues;
781   PtrValues.insert(arg);
782 
783   // Track all of the stores.
784   SmallVector<StoreInst *, 16> Stores;
785 
786   // Scan through the uses recursively to make sure the pointer is always used
787   // sanely.
788   SmallVector<Value *, 16> WorkList;
789   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
790   while (!WorkList.empty()) {
791     Value *V = WorkList.back();
792     WorkList.pop_back();
793     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
794       if (PtrValues.insert(V).second)
795         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
796     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
797       Stores.push_back(Store);
798     } else if (!isa<LoadInst>(V)) {
799       return true;
800     }
801   }
802 
803   // Check to make sure the pointers aren't captured
804   for (StoreInst *Store : Stores)
805     if (PtrValues.count(Store->getValueOperand()))
806       return true;
807 
808   return false;
809 }
810 
811 /// PromoteArguments - This method checks the specified function to see if there
812 /// are any promotable arguments and if it is safe to promote the function (for
813 /// example, all callers are direct).  If safe to promote some arguments, it
814 /// calls the DoPromotion method.
815 static Function *
promoteArguments(Function * F,function_ref<AAResults & (Function & F)> AARGetter,unsigned MaxElements,Optional<function_ref<void (CallSite OldCS,CallSite NewCS)>> ReplaceCallSite)816 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
817                  unsigned MaxElements,
818                  Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
819                      ReplaceCallSite) {
820   // Don't perform argument promotion for naked functions; otherwise we can end
821   // up removing parameters that are seemingly 'not used' as they are referred
822   // to in the assembly.
823   if(F->hasFnAttribute(Attribute::Naked))
824     return nullptr;
825 
826   // Make sure that it is local to this module.
827   if (!F->hasLocalLinkage())
828     return nullptr;
829 
830   // Don't promote arguments for variadic functions. Adding, removing, or
831   // changing non-pack parameters can change the classification of pack
832   // parameters. Frontends encode that classification at the call site in the
833   // IR, while in the callee the classification is determined dynamically based
834   // on the number of registers consumed so far.
835   if (F->isVarArg())
836     return nullptr;
837 
838   // First check: see if there are any pointer arguments!  If not, quick exit.
839   SmallVector<Argument *, 16> PointerArgs;
840   for (Argument &I : F->args())
841     if (I.getType()->isPointerTy())
842       PointerArgs.push_back(&I);
843   if (PointerArgs.empty())
844     return nullptr;
845 
846   // Second check: make sure that all callers are direct callers.  We can't
847   // transform functions that have indirect callers.  Also see if the function
848   // is self-recursive.
849   bool isSelfRecursive = false;
850   for (Use &U : F->uses()) {
851     CallSite CS(U.getUser());
852     // Must be a direct call.
853     if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
854       return nullptr;
855 
856     // Can't change signature of musttail callee
857     if (CS.isMustTailCall())
858       return nullptr;
859 
860     if (CS.getInstruction()->getParent()->getParent() == F)
861       isSelfRecursive = true;
862   }
863 
864   // Can't change signature of musttail caller
865   // FIXME: Support promoting whole chain of musttail functions
866   for (BasicBlock &BB : *F)
867     if (BB.getTerminatingMustTailCall())
868       return nullptr;
869 
870   const DataLayout &DL = F->getParent()->getDataLayout();
871 
872   AAResults &AAR = AARGetter(*F);
873 
874   // Check to see which arguments are promotable.  If an argument is promotable,
875   // add it to ArgsToPromote.
876   SmallPtrSet<Argument *, 8> ArgsToPromote;
877   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
878   for (Argument *PtrArg : PointerArgs) {
879     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
880 
881     // Replace sret attribute with noalias. This reduces register pressure by
882     // avoiding a register copy.
883     if (PtrArg->hasStructRetAttr()) {
884       unsigned ArgNo = PtrArg->getArgNo();
885       F->removeParamAttr(ArgNo, Attribute::StructRet);
886       F->addParamAttr(ArgNo, Attribute::NoAlias);
887       for (Use &U : F->uses()) {
888         CallSite CS(U.getUser());
889         CS.removeParamAttr(ArgNo, Attribute::StructRet);
890         CS.addParamAttr(ArgNo, Attribute::NoAlias);
891       }
892     }
893 
894     // If this is a byval argument, and if the aggregate type is small, just
895     // pass the elements, which is always safe, if the passed value is densely
896     // packed or if we can prove the padding bytes are never accessed. This does
897     // not apply to inalloca.
898     bool isSafeToPromote =
899         PtrArg->hasByValAttr() &&
900         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
901     if (isSafeToPromote) {
902       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
903         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
904           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
905                             << PtrArg->getName()
906                             << "' because it would require adding more"
907                             << " than " << MaxElements
908                             << " arguments to the function.\n");
909           continue;
910         }
911 
912         // If all the elements are single-value types, we can promote it.
913         bool AllSimple = true;
914         for (const auto *EltTy : STy->elements()) {
915           if (!EltTy->isSingleValueType()) {
916             AllSimple = false;
917             break;
918           }
919         }
920 
921         // Safe to transform, don't even bother trying to "promote" it.
922         // Passing the elements as a scalar will allow sroa to hack on
923         // the new alloca we introduce.
924         if (AllSimple) {
925           ByValArgsToTransform.insert(PtrArg);
926           continue;
927         }
928       }
929     }
930 
931     // If the argument is a recursive type and we're in a recursive
932     // function, we could end up infinitely peeling the function argument.
933     if (isSelfRecursive) {
934       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
935         bool RecursiveType = false;
936         for (const auto *EltTy : STy->elements()) {
937           if (EltTy == PtrArg->getType()) {
938             RecursiveType = true;
939             break;
940           }
941         }
942         if (RecursiveType)
943           continue;
944       }
945     }
946 
947     // Otherwise, see if we can promote the pointer to its value.
948     if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR,
949                                 MaxElements))
950       ArgsToPromote.insert(PtrArg);
951   }
952 
953   // No promotable pointer arguments.
954   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
955     return nullptr;
956 
957   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
958 }
959 
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)960 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
961                                              CGSCCAnalysisManager &AM,
962                                              LazyCallGraph &CG,
963                                              CGSCCUpdateResult &UR) {
964   bool Changed = false, LocalChange;
965 
966   // Iterate until we stop promoting from this SCC.
967   do {
968     LocalChange = false;
969 
970     for (LazyCallGraph::Node &N : C) {
971       Function &OldF = N.getFunction();
972 
973       FunctionAnalysisManager &FAM =
974           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
975       // FIXME: This lambda must only be used with this function. We should
976       // skip the lambda and just get the AA results directly.
977       auto AARGetter = [&](Function &F) -> AAResults & {
978         assert(&F == &OldF && "Called with an unexpected function!");
979         return FAM.getResult<AAManager>(F);
980       };
981 
982       Function *NewF = promoteArguments(&OldF, AARGetter, MaxElements, None);
983       if (!NewF)
984         continue;
985       LocalChange = true;
986 
987       // Directly substitute the functions in the call graph. Note that this
988       // requires the old function to be completely dead and completely
989       // replaced by the new function. It does no call graph updates, it merely
990       // swaps out the particular function mapped to a particular node in the
991       // graph.
992       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
993       OldF.eraseFromParent();
994     }
995 
996     Changed |= LocalChange;
997   } while (LocalChange);
998 
999   if (!Changed)
1000     return PreservedAnalyses::all();
1001 
1002   return PreservedAnalyses::none();
1003 }
1004 
1005 namespace {
1006 
1007 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1008 struct ArgPromotion : public CallGraphSCCPass {
1009   // Pass identification, replacement for typeid
1010   static char ID;
1011 
ArgPromotion__anond372bd910211::ArgPromotion1012   explicit ArgPromotion(unsigned MaxElements = 3)
1013       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1014     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1015   }
1016 
getAnalysisUsage__anond372bd910211::ArgPromotion1017   void getAnalysisUsage(AnalysisUsage &AU) const override {
1018     AU.addRequired<AssumptionCacheTracker>();
1019     AU.addRequired<TargetLibraryInfoWrapperPass>();
1020     getAAResultsAnalysisUsage(AU);
1021     CallGraphSCCPass::getAnalysisUsage(AU);
1022   }
1023 
1024   bool runOnSCC(CallGraphSCC &SCC) override;
1025 
1026 private:
1027   using llvm::Pass::doInitialization;
1028 
1029   bool doInitialization(CallGraph &CG) override;
1030 
1031   /// The maximum number of elements to expand, or 0 for unlimited.
1032   unsigned MaxElements;
1033 };
1034 
1035 } // end anonymous namespace
1036 
1037 char ArgPromotion::ID = 0;
1038 
1039 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1040                       "Promote 'by reference' arguments to scalars", false,
1041                       false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1042 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1043 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1044 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1045 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1046                     "Promote 'by reference' arguments to scalars", false, false)
1047 
1048 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1049   return new ArgPromotion(MaxElements);
1050 }
1051 
runOnSCC(CallGraphSCC & SCC)1052 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1053   if (skipSCC(SCC))
1054     return false;
1055 
1056   // Get the callgraph information that we need to update to reflect our
1057   // changes.
1058   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1059 
1060   LegacyAARGetter AARGetter(*this);
1061 
1062   bool Changed = false, LocalChange;
1063 
1064   // Iterate until we stop promoting from this SCC.
1065   do {
1066     LocalChange = false;
1067     // Attempt to promote arguments from all functions in this SCC.
1068     for (CallGraphNode *OldNode : SCC) {
1069       Function *OldF = OldNode->getFunction();
1070       if (!OldF)
1071         continue;
1072 
1073       auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
1074         Function *Caller = OldCS.getInstruction()->getParent()->getParent();
1075         CallGraphNode *NewCalleeNode =
1076             CG.getOrInsertFunction(NewCS.getCalledFunction());
1077         CallGraphNode *CallerNode = CG[Caller];
1078         CallerNode->replaceCallEdge(OldCS, NewCS, NewCalleeNode);
1079       };
1080 
1081       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1082                                             {ReplaceCallSite})) {
1083         LocalChange = true;
1084 
1085         // Update the call graph for the newly promoted function.
1086         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1087         NewNode->stealCalledFunctionsFrom(OldNode);
1088         if (OldNode->getNumReferences() == 0)
1089           delete CG.removeFunctionFromModule(OldNode);
1090         else
1091           OldF->setLinkage(Function::ExternalLinkage);
1092 
1093         // And updat ethe SCC we're iterating as well.
1094         SCC.ReplaceNode(OldNode, NewNode);
1095       }
1096     }
1097     // Remember that we changed something.
1098     Changed |= LocalChange;
1099   } while (LocalChange);
1100 
1101   return Changed;
1102 }
1103 
doInitialization(CallGraph & CG)1104 bool ArgPromotion::doInitialization(CallGraph &CG) {
1105   return CallGraphSCCPass::doInitialization(CG);
1106 }
1107