1 //===- ThreadSafety.cpp ---------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race 11 // conditions), based off of an annotation system. 12 // 13 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html 14 // for more information. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "clang/Analysis/Analyses/ThreadSafety.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclGroup.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/OperationKinds.h" 26 #include "clang/AST/Stmt.h" 27 #include "clang/AST/StmtVisitor.h" 28 #include "clang/AST/Type.h" 29 #include "clang/Analysis/Analyses/PostOrderCFGView.h" 30 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" 31 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" 32 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" 33 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h" 34 #include "clang/Analysis/AnalysisDeclContext.h" 35 #include "clang/Analysis/CFG.h" 36 #include "clang/Basic/LLVM.h" 37 #include "clang/Basic/OperatorKinds.h" 38 #include "clang/Basic/SourceLocation.h" 39 #include "clang/Basic/Specifiers.h" 40 #include "llvm/ADT/ArrayRef.h" 41 #include "llvm/ADT/DenseMap.h" 42 #include "llvm/ADT/ImmutableMap.h" 43 #include "llvm/ADT/Optional.h" 44 #include "llvm/ADT/STLExtras.h" 45 #include "llvm/ADT/SmallVector.h" 46 #include "llvm/ADT/StringRef.h" 47 #include "llvm/Support/Allocator.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <functional> 54 #include <iterator> 55 #include <memory> 56 #include <string> 57 #include <type_traits> 58 #include <utility> 59 #include <vector> 60 61 using namespace clang; 62 using namespace threadSafety; 63 64 // Key method definition 65 ThreadSafetyHandler::~ThreadSafetyHandler() = default; 66 67 namespace { 68 69 class TILPrinter : 70 public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {}; 71 72 } // namespace 73 74 /// Issue a warning about an invalid lock expression 75 static void warnInvalidLock(ThreadSafetyHandler &Handler, 76 const Expr *MutexExp, const NamedDecl *D, 77 const Expr *DeclExp, StringRef Kind) { 78 SourceLocation Loc; 79 if (DeclExp) 80 Loc = DeclExp->getExprLoc(); 81 82 // FIXME: add a note about the attribute location in MutexExp or D 83 if (Loc.isValid()) 84 Handler.handleInvalidLockExp(Kind, Loc); 85 } 86 87 namespace { 88 89 /// A set of CapabilityInfo objects, which are compiled from the 90 /// requires attributes on a function. 91 class CapExprSet : public SmallVector<CapabilityExpr, 4> { 92 public: 93 /// Push M onto list, but discard duplicates. 94 void push_back_nodup(const CapabilityExpr &CapE) { 95 iterator It = std::find_if(begin(), end(), 96 [=](const CapabilityExpr &CapE2) { 97 return CapE.equals(CapE2); 98 }); 99 if (It == end()) 100 push_back(CapE); 101 } 102 }; 103 104 class FactManager; 105 class FactSet; 106 107 /// This is a helper class that stores a fact that is known at a 108 /// particular point in program execution. Currently, a fact is a capability, 109 /// along with additional information, such as where it was acquired, whether 110 /// it is exclusive or shared, etc. 111 /// 112 /// FIXME: this analysis does not currently support re-entrant locking. 113 class FactEntry : public CapabilityExpr { 114 private: 115 /// Exclusive or shared. 116 LockKind LKind; 117 118 /// Where it was acquired. 119 SourceLocation AcquireLoc; 120 121 /// True if the lock was asserted. 122 bool Asserted; 123 124 /// True if the lock was declared. 125 bool Declared; 126 127 public: 128 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 129 bool Asrt, bool Declrd = false) 130 : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt), 131 Declared(Declrd) {} 132 virtual ~FactEntry() = default; 133 134 LockKind kind() const { return LKind; } 135 SourceLocation loc() const { return AcquireLoc; } 136 bool asserted() const { return Asserted; } 137 bool declared() const { return Declared; } 138 139 void setDeclared(bool D) { Declared = D; } 140 141 virtual void 142 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 143 SourceLocation JoinLoc, LockErrorKind LEK, 144 ThreadSafetyHandler &Handler) const = 0; 145 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, 146 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 147 bool FullyRemove, ThreadSafetyHandler &Handler, 148 StringRef DiagKind) const = 0; 149 150 // Return true if LKind >= LK, where exclusive > shared 151 bool isAtLeast(LockKind LK) { 152 return (LKind == LK_Exclusive) || (LK == LK_Shared); 153 } 154 }; 155 156 using FactID = unsigned short; 157 158 /// FactManager manages the memory for all facts that are created during 159 /// the analysis of a single routine. 160 class FactManager { 161 private: 162 std::vector<std::unique_ptr<FactEntry>> Facts; 163 164 public: 165 FactID newFact(std::unique_ptr<FactEntry> Entry) { 166 Facts.push_back(std::move(Entry)); 167 return static_cast<unsigned short>(Facts.size() - 1); 168 } 169 170 const FactEntry &operator[](FactID F) const { return *Facts[F]; } 171 FactEntry &operator[](FactID F) { return *Facts[F]; } 172 }; 173 174 /// A FactSet is the set of facts that are known to be true at a 175 /// particular program point. FactSets must be small, because they are 176 /// frequently copied, and are thus implemented as a set of indices into a 177 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 178 /// locks, so we can get away with doing a linear search for lookup. Note 179 /// that a hashtable or map is inappropriate in this case, because lookups 180 /// may involve partial pattern matches, rather than exact matches. 181 class FactSet { 182 private: 183 using FactVec = SmallVector<FactID, 4>; 184 185 FactVec FactIDs; 186 187 public: 188 using iterator = FactVec::iterator; 189 using const_iterator = FactVec::const_iterator; 190 191 iterator begin() { return FactIDs.begin(); } 192 const_iterator begin() const { return FactIDs.begin(); } 193 194 iterator end() { return FactIDs.end(); } 195 const_iterator end() const { return FactIDs.end(); } 196 197 bool isEmpty() const { return FactIDs.size() == 0; } 198 199 // Return true if the set contains only negative facts 200 bool isEmpty(FactManager &FactMan) const { 201 for (const auto FID : *this) { 202 if (!FactMan[FID].negative()) 203 return false; 204 } 205 return true; 206 } 207 208 void addLockByID(FactID ID) { FactIDs.push_back(ID); } 209 210 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { 211 FactID F = FM.newFact(std::move(Entry)); 212 FactIDs.push_back(F); 213 return F; 214 } 215 216 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { 217 unsigned n = FactIDs.size(); 218 if (n == 0) 219 return false; 220 221 for (unsigned i = 0; i < n-1; ++i) { 222 if (FM[FactIDs[i]].matches(CapE)) { 223 FactIDs[i] = FactIDs[n-1]; 224 FactIDs.pop_back(); 225 return true; 226 } 227 } 228 if (FM[FactIDs[n-1]].matches(CapE)) { 229 FactIDs.pop_back(); 230 return true; 231 } 232 return false; 233 } 234 235 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { 236 return std::find_if(begin(), end(), [&](FactID ID) { 237 return FM[ID].matches(CapE); 238 }); 239 } 240 241 FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { 242 auto I = std::find_if(begin(), end(), [&](FactID ID) { 243 return FM[ID].matches(CapE); 244 }); 245 return I != end() ? &FM[*I] : nullptr; 246 } 247 248 FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const { 249 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 250 return FM[ID].matchesUniv(CapE); 251 }); 252 return I != end() ? &FM[*I] : nullptr; 253 } 254 255 FactEntry *findPartialMatch(FactManager &FM, 256 const CapabilityExpr &CapE) const { 257 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 258 return FM[ID].partiallyMatches(CapE); 259 }); 260 return I != end() ? &FM[*I] : nullptr; 261 } 262 263 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const { 264 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { 265 return FM[ID].valueDecl() == Vd; 266 }); 267 return I != end(); 268 } 269 }; 270 271 class ThreadSafetyAnalyzer; 272 273 } // namespace 274 275 namespace clang { 276 namespace threadSafety { 277 278 class BeforeSet { 279 private: 280 using BeforeVect = SmallVector<const ValueDecl *, 4>; 281 282 struct BeforeInfo { 283 BeforeVect Vect; 284 int Visited = 0; 285 286 BeforeInfo() = default; 287 BeforeInfo(BeforeInfo &&) = default; 288 }; 289 290 using BeforeMap = 291 llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>; 292 using CycleMap = llvm::DenseMap<const ValueDecl *, bool>; 293 294 public: 295 BeforeSet() = default; 296 297 BeforeInfo* insertAttrExprs(const ValueDecl* Vd, 298 ThreadSafetyAnalyzer& Analyzer); 299 300 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd, 301 ThreadSafetyAnalyzer &Analyzer); 302 303 void checkBeforeAfter(const ValueDecl* Vd, 304 const FactSet& FSet, 305 ThreadSafetyAnalyzer& Analyzer, 306 SourceLocation Loc, StringRef CapKind); 307 308 private: 309 BeforeMap BMap; 310 CycleMap CycMap; 311 }; 312 313 } // namespace threadSafety 314 } // namespace clang 315 316 namespace { 317 318 class LocalVariableMap; 319 320 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>; 321 322 /// A side (entry or exit) of a CFG node. 323 enum CFGBlockSide { CBS_Entry, CBS_Exit }; 324 325 /// CFGBlockInfo is a struct which contains all the information that is 326 /// maintained for each block in the CFG. See LocalVariableMap for more 327 /// information about the contexts. 328 struct CFGBlockInfo { 329 // Lockset held at entry to block 330 FactSet EntrySet; 331 332 // Lockset held at exit from block 333 FactSet ExitSet; 334 335 // Context held at entry to block 336 LocalVarContext EntryContext; 337 338 // Context held at exit from block 339 LocalVarContext ExitContext; 340 341 // Location of first statement in block 342 SourceLocation EntryLoc; 343 344 // Location of last statement in block. 345 SourceLocation ExitLoc; 346 347 // Used to replay contexts later 348 unsigned EntryIndex; 349 350 // Is this block reachable? 351 bool Reachable = false; 352 353 const FactSet &getSet(CFGBlockSide Side) const { 354 return Side == CBS_Entry ? EntrySet : ExitSet; 355 } 356 357 SourceLocation getLocation(CFGBlockSide Side) const { 358 return Side == CBS_Entry ? EntryLoc : ExitLoc; 359 } 360 361 private: 362 CFGBlockInfo(LocalVarContext EmptyCtx) 363 : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {} 364 365 public: 366 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); 367 }; 368 369 // A LocalVariableMap maintains a map from local variables to their currently 370 // valid definitions. It provides SSA-like functionality when traversing the 371 // CFG. Like SSA, each definition or assignment to a variable is assigned a 372 // unique name (an integer), which acts as the SSA name for that definition. 373 // The total set of names is shared among all CFG basic blocks. 374 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs 375 // with their SSA-names. Instead, we compute a Context for each point in the 376 // code, which maps local variables to the appropriate SSA-name. This map 377 // changes with each assignment. 378 // 379 // The map is computed in a single pass over the CFG. Subsequent analyses can 380 // then query the map to find the appropriate Context for a statement, and use 381 // that Context to look up the definitions of variables. 382 class LocalVariableMap { 383 public: 384 using Context = LocalVarContext; 385 386 /// A VarDefinition consists of an expression, representing the value of the 387 /// variable, along with the context in which that expression should be 388 /// interpreted. A reference VarDefinition does not itself contain this 389 /// information, but instead contains a pointer to a previous VarDefinition. 390 struct VarDefinition { 391 public: 392 friend class LocalVariableMap; 393 394 // The original declaration for this variable. 395 const NamedDecl *Dec; 396 397 // The expression for this variable, OR 398 const Expr *Exp = nullptr; 399 400 // Reference to another VarDefinition 401 unsigned Ref = 0; 402 403 // The map with which Exp should be interpreted. 404 Context Ctx; 405 406 bool isReference() { return !Exp; } 407 408 private: 409 // Create ordinary variable definition 410 VarDefinition(const NamedDecl *D, const Expr *E, Context C) 411 : Dec(D), Exp(E), Ctx(C) {} 412 413 // Create reference to previous definition 414 VarDefinition(const NamedDecl *D, unsigned R, Context C) 415 : Dec(D), Ref(R), Ctx(C) {} 416 }; 417 418 private: 419 Context::Factory ContextFactory; 420 std::vector<VarDefinition> VarDefinitions; 421 std::vector<unsigned> CtxIndices; 422 std::vector<std::pair<Stmt *, Context>> SavedContexts; 423 424 public: 425 LocalVariableMap() { 426 // index 0 is a placeholder for undefined variables (aka phi-nodes). 427 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); 428 } 429 430 /// Look up a definition, within the given context. 431 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { 432 const unsigned *i = Ctx.lookup(D); 433 if (!i) 434 return nullptr; 435 assert(*i < VarDefinitions.size()); 436 return &VarDefinitions[*i]; 437 } 438 439 /// Look up the definition for D within the given context. Returns 440 /// NULL if the expression is not statically known. If successful, also 441 /// modifies Ctx to hold the context of the return Expr. 442 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { 443 const unsigned *P = Ctx.lookup(D); 444 if (!P) 445 return nullptr; 446 447 unsigned i = *P; 448 while (i > 0) { 449 if (VarDefinitions[i].Exp) { 450 Ctx = VarDefinitions[i].Ctx; 451 return VarDefinitions[i].Exp; 452 } 453 i = VarDefinitions[i].Ref; 454 } 455 return nullptr; 456 } 457 458 Context getEmptyContext() { return ContextFactory.getEmptyMap(); } 459 460 /// Return the next context after processing S. This function is used by 461 /// clients of the class to get the appropriate context when traversing the 462 /// CFG. It must be called for every assignment or DeclStmt. 463 Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) { 464 if (SavedContexts[CtxIndex+1].first == S) { 465 CtxIndex++; 466 Context Result = SavedContexts[CtxIndex].second; 467 return Result; 468 } 469 return C; 470 } 471 472 void dumpVarDefinitionName(unsigned i) { 473 if (i == 0) { 474 llvm::errs() << "Undefined"; 475 return; 476 } 477 const NamedDecl *Dec = VarDefinitions[i].Dec; 478 if (!Dec) { 479 llvm::errs() << "<<NULL>>"; 480 return; 481 } 482 Dec->printName(llvm::errs()); 483 llvm::errs() << "." << i << " " << ((const void*) Dec); 484 } 485 486 /// Dumps an ASCII representation of the variable map to llvm::errs() 487 void dump() { 488 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { 489 const Expr *Exp = VarDefinitions[i].Exp; 490 unsigned Ref = VarDefinitions[i].Ref; 491 492 dumpVarDefinitionName(i); 493 llvm::errs() << " = "; 494 if (Exp) Exp->dump(); 495 else { 496 dumpVarDefinitionName(Ref); 497 llvm::errs() << "\n"; 498 } 499 } 500 } 501 502 /// Dumps an ASCII representation of a Context to llvm::errs() 503 void dumpContext(Context C) { 504 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { 505 const NamedDecl *D = I.getKey(); 506 D->printName(llvm::errs()); 507 const unsigned *i = C.lookup(D); 508 llvm::errs() << " -> "; 509 dumpVarDefinitionName(*i); 510 llvm::errs() << "\n"; 511 } 512 } 513 514 /// Builds the variable map. 515 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, 516 std::vector<CFGBlockInfo> &BlockInfo); 517 518 protected: 519 friend class VarMapBuilder; 520 521 // Get the current context index 522 unsigned getContextIndex() { return SavedContexts.size()-1; } 523 524 // Save the current context for later replay 525 void saveContext(Stmt *S, Context C) { 526 SavedContexts.push_back(std::make_pair(S, C)); 527 } 528 529 // Adds a new definition to the given context, and returns a new context. 530 // This method should be called when declaring a new variable. 531 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { 532 assert(!Ctx.contains(D)); 533 unsigned newID = VarDefinitions.size(); 534 Context NewCtx = ContextFactory.add(Ctx, D, newID); 535 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 536 return NewCtx; 537 } 538 539 // Add a new reference to an existing definition. 540 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { 541 unsigned newID = VarDefinitions.size(); 542 Context NewCtx = ContextFactory.add(Ctx, D, newID); 543 VarDefinitions.push_back(VarDefinition(D, i, Ctx)); 544 return NewCtx; 545 } 546 547 // Updates a definition only if that definition is already in the map. 548 // This method should be called when assigning to an existing variable. 549 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { 550 if (Ctx.contains(D)) { 551 unsigned newID = VarDefinitions.size(); 552 Context NewCtx = ContextFactory.remove(Ctx, D); 553 NewCtx = ContextFactory.add(NewCtx, D, newID); 554 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); 555 return NewCtx; 556 } 557 return Ctx; 558 } 559 560 // Removes a definition from the context, but keeps the variable name 561 // as a valid variable. The index 0 is a placeholder for cleared definitions. 562 Context clearDefinition(const NamedDecl *D, Context Ctx) { 563 Context NewCtx = Ctx; 564 if (NewCtx.contains(D)) { 565 NewCtx = ContextFactory.remove(NewCtx, D); 566 NewCtx = ContextFactory.add(NewCtx, D, 0); 567 } 568 return NewCtx; 569 } 570 571 // Remove a definition entirely frmo the context. 572 Context removeDefinition(const NamedDecl *D, Context Ctx) { 573 Context NewCtx = Ctx; 574 if (NewCtx.contains(D)) { 575 NewCtx = ContextFactory.remove(NewCtx, D); 576 } 577 return NewCtx; 578 } 579 580 Context intersectContexts(Context C1, Context C2); 581 Context createReferenceContext(Context C); 582 void intersectBackEdge(Context C1, Context C2); 583 }; 584 585 } // namespace 586 587 // This has to be defined after LocalVariableMap. 588 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { 589 return CFGBlockInfo(M.getEmptyContext()); 590 } 591 592 namespace { 593 594 /// Visitor which builds a LocalVariableMap 595 class VarMapBuilder : public StmtVisitor<VarMapBuilder> { 596 public: 597 LocalVariableMap* VMap; 598 LocalVariableMap::Context Ctx; 599 600 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) 601 : VMap(VM), Ctx(C) {} 602 603 void VisitDeclStmt(DeclStmt *S); 604 void VisitBinaryOperator(BinaryOperator *BO); 605 }; 606 607 } // namespace 608 609 // Add new local variables to the variable map 610 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) { 611 bool modifiedCtx = false; 612 DeclGroupRef DGrp = S->getDeclGroup(); 613 for (const auto *D : DGrp) { 614 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { 615 const Expr *E = VD->getInit(); 616 617 // Add local variables with trivial type to the variable map 618 QualType T = VD->getType(); 619 if (T.isTrivialType(VD->getASTContext())) { 620 Ctx = VMap->addDefinition(VD, E, Ctx); 621 modifiedCtx = true; 622 } 623 } 624 } 625 if (modifiedCtx) 626 VMap->saveContext(S, Ctx); 627 } 628 629 // Update local variable definitions in variable map 630 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) { 631 if (!BO->isAssignmentOp()) 632 return; 633 634 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); 635 636 // Update the variable map and current context. 637 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { 638 const ValueDecl *VDec = DRE->getDecl(); 639 if (Ctx.lookup(VDec)) { 640 if (BO->getOpcode() == BO_Assign) 641 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); 642 else 643 // FIXME -- handle compound assignment operators 644 Ctx = VMap->clearDefinition(VDec, Ctx); 645 VMap->saveContext(BO, Ctx); 646 } 647 } 648 } 649 650 // Computes the intersection of two contexts. The intersection is the 651 // set of variables which have the same definition in both contexts; 652 // variables with different definitions are discarded. 653 LocalVariableMap::Context 654 LocalVariableMap::intersectContexts(Context C1, Context C2) { 655 Context Result = C1; 656 for (const auto &P : C1) { 657 const NamedDecl *Dec = P.first; 658 const unsigned *i2 = C2.lookup(Dec); 659 if (!i2) // variable doesn't exist on second path 660 Result = removeDefinition(Dec, Result); 661 else if (*i2 != P.second) // variable exists, but has different definition 662 Result = clearDefinition(Dec, Result); 663 } 664 return Result; 665 } 666 667 // For every variable in C, create a new variable that refers to the 668 // definition in C. Return a new context that contains these new variables. 669 // (We use this for a naive implementation of SSA on loop back-edges.) 670 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { 671 Context Result = getEmptyContext(); 672 for (const auto &P : C) 673 Result = addReference(P.first, P.second, Result); 674 return Result; 675 } 676 677 // This routine also takes the intersection of C1 and C2, but it does so by 678 // altering the VarDefinitions. C1 must be the result of an earlier call to 679 // createReferenceContext. 680 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { 681 for (const auto &P : C1) { 682 unsigned i1 = P.second; 683 VarDefinition *VDef = &VarDefinitions[i1]; 684 assert(VDef->isReference()); 685 686 const unsigned *i2 = C2.lookup(P.first); 687 if (!i2 || (*i2 != i1)) 688 VDef->Ref = 0; // Mark this variable as undefined 689 } 690 } 691 692 // Traverse the CFG in topological order, so all predecessors of a block 693 // (excluding back-edges) are visited before the block itself. At 694 // each point in the code, we calculate a Context, which holds the set of 695 // variable definitions which are visible at that point in execution. 696 // Visible variables are mapped to their definitions using an array that 697 // contains all definitions. 698 // 699 // At join points in the CFG, the set is computed as the intersection of 700 // the incoming sets along each edge, E.g. 701 // 702 // { Context | VarDefinitions } 703 // int x = 0; { x -> x1 | x1 = 0 } 704 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 705 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } 706 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } 707 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } 708 // 709 // This is essentially a simpler and more naive version of the standard SSA 710 // algorithm. Those definitions that remain in the intersection are from blocks 711 // that strictly dominate the current block. We do not bother to insert proper 712 // phi nodes, because they are not used in our analysis; instead, wherever 713 // a phi node would be required, we simply remove that definition from the 714 // context (E.g. x above). 715 // 716 // The initial traversal does not capture back-edges, so those need to be 717 // handled on a separate pass. Whenever the first pass encounters an 718 // incoming back edge, it duplicates the context, creating new definitions 719 // that refer back to the originals. (These correspond to places where SSA 720 // might have to insert a phi node.) On the second pass, these definitions are 721 // set to NULL if the variable has changed on the back-edge (i.e. a phi 722 // node was actually required.) E.g. 723 // 724 // { Context | VarDefinitions } 725 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } 726 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } 727 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } 728 // ... { y -> y1 | x3 = 2, x2 = 1, ... } 729 void LocalVariableMap::traverseCFG(CFG *CFGraph, 730 const PostOrderCFGView *SortedGraph, 731 std::vector<CFGBlockInfo> &BlockInfo) { 732 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 733 734 CtxIndices.resize(CFGraph->getNumBlockIDs()); 735 736 for (const auto *CurrBlock : *SortedGraph) { 737 int CurrBlockID = CurrBlock->getBlockID(); 738 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 739 740 VisitedBlocks.insert(CurrBlock); 741 742 // Calculate the entry context for the current block 743 bool HasBackEdges = false; 744 bool CtxInit = true; 745 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 746 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 747 // if *PI -> CurrBlock is a back edge, so skip it 748 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { 749 HasBackEdges = true; 750 continue; 751 } 752 753 int PrevBlockID = (*PI)->getBlockID(); 754 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 755 756 if (CtxInit) { 757 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; 758 CtxInit = false; 759 } 760 else { 761 CurrBlockInfo->EntryContext = 762 intersectContexts(CurrBlockInfo->EntryContext, 763 PrevBlockInfo->ExitContext); 764 } 765 } 766 767 // Duplicate the context if we have back-edges, so we can call 768 // intersectBackEdges later. 769 if (HasBackEdges) 770 CurrBlockInfo->EntryContext = 771 createReferenceContext(CurrBlockInfo->EntryContext); 772 773 // Create a starting context index for the current block 774 saveContext(nullptr, CurrBlockInfo->EntryContext); 775 CurrBlockInfo->EntryIndex = getContextIndex(); 776 777 // Visit all the statements in the basic block. 778 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); 779 for (const auto &BI : *CurrBlock) { 780 switch (BI.getKind()) { 781 case CFGElement::Statement: { 782 CFGStmt CS = BI.castAs<CFGStmt>(); 783 VMapBuilder.Visit(const_cast<Stmt *>(CS.getStmt())); 784 break; 785 } 786 default: 787 break; 788 } 789 } 790 CurrBlockInfo->ExitContext = VMapBuilder.Ctx; 791 792 // Mark variables on back edges as "unknown" if they've been changed. 793 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 794 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 795 // if CurrBlock -> *SI is *not* a back edge 796 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 797 continue; 798 799 CFGBlock *FirstLoopBlock = *SI; 800 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; 801 Context LoopEnd = CurrBlockInfo->ExitContext; 802 intersectBackEdge(LoopBegin, LoopEnd); 803 } 804 } 805 806 // Put an extra entry at the end of the indexed context array 807 unsigned exitID = CFGraph->getExit().getBlockID(); 808 saveContext(nullptr, BlockInfo[exitID].ExitContext); 809 } 810 811 /// Find the appropriate source locations to use when producing diagnostics for 812 /// each block in the CFG. 813 static void findBlockLocations(CFG *CFGraph, 814 const PostOrderCFGView *SortedGraph, 815 std::vector<CFGBlockInfo> &BlockInfo) { 816 for (const auto *CurrBlock : *SortedGraph) { 817 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; 818 819 // Find the source location of the last statement in the block, if the 820 // block is not empty. 821 if (const Stmt *S = CurrBlock->getTerminator()) { 822 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart(); 823 } else { 824 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), 825 BE = CurrBlock->rend(); BI != BE; ++BI) { 826 // FIXME: Handle other CFGElement kinds. 827 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { 828 CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart(); 829 break; 830 } 831 } 832 } 833 834 if (CurrBlockInfo->ExitLoc.isValid()) { 835 // This block contains at least one statement. Find the source location 836 // of the first statement in the block. 837 for (const auto &BI : *CurrBlock) { 838 // FIXME: Handle other CFGElement kinds. 839 if (Optional<CFGStmt> CS = BI.getAs<CFGStmt>()) { 840 CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart(); 841 break; 842 } 843 } 844 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && 845 CurrBlock != &CFGraph->getExit()) { 846 // The block is empty, and has a single predecessor. Use its exit 847 // location. 848 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = 849 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; 850 } 851 } 852 } 853 854 namespace { 855 856 class LockableFactEntry : public FactEntry { 857 private: 858 /// managed by ScopedLockable object 859 bool Managed; 860 861 public: 862 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, 863 bool Mng = false, bool Asrt = false) 864 : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {} 865 866 void 867 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 868 SourceLocation JoinLoc, LockErrorKind LEK, 869 ThreadSafetyHandler &Handler) const override { 870 if (!Managed && !asserted() && !negative() && !isUniversal()) { 871 Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc, 872 LEK); 873 } 874 } 875 876 void handleUnlock(FactSet &FSet, FactManager &FactMan, 877 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 878 bool FullyRemove, ThreadSafetyHandler &Handler, 879 StringRef DiagKind) const override { 880 FSet.removeLock(FactMan, Cp); 881 if (!Cp.negative()) { 882 FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 883 !Cp, LK_Exclusive, UnlockLoc)); 884 } 885 } 886 }; 887 888 class ScopedLockableFactEntry : public FactEntry { 889 private: 890 SmallVector<const til::SExpr *, 4> UnderlyingMutexes; 891 892 public: 893 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc, 894 const CapExprSet &Excl, const CapExprSet &Shrd) 895 : FactEntry(CE, LK_Exclusive, Loc, false) { 896 for (const auto &M : Excl) 897 UnderlyingMutexes.push_back(M.sexpr()); 898 for (const auto &M : Shrd) 899 UnderlyingMutexes.push_back(M.sexpr()); 900 } 901 902 void 903 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, 904 SourceLocation JoinLoc, LockErrorKind LEK, 905 ThreadSafetyHandler &Handler) const override { 906 for (const auto *UnderlyingMutex : UnderlyingMutexes) { 907 if (FSet.findLock(FactMan, CapabilityExpr(UnderlyingMutex, false))) { 908 // If this scoped lock manages another mutex, and if the underlying 909 // mutex is still held, then warn about the underlying mutex. 910 Handler.handleMutexHeldEndOfScope( 911 "mutex", sx::toString(UnderlyingMutex), loc(), JoinLoc, LEK); 912 } 913 } 914 } 915 916 void handleUnlock(FactSet &FSet, FactManager &FactMan, 917 const CapabilityExpr &Cp, SourceLocation UnlockLoc, 918 bool FullyRemove, ThreadSafetyHandler &Handler, 919 StringRef DiagKind) const override { 920 assert(!Cp.negative() && "Managing object cannot be negative."); 921 for (const auto *UnderlyingMutex : UnderlyingMutexes) { 922 CapabilityExpr UnderCp(UnderlyingMutex, false); 923 auto UnderEntry = llvm::make_unique<LockableFactEntry>( 924 !UnderCp, LK_Exclusive, UnlockLoc); 925 926 if (FullyRemove) { 927 // We're destroying the managing object. 928 // Remove the underlying mutex if it exists; but don't warn. 929 if (FSet.findLock(FactMan, UnderCp)) { 930 FSet.removeLock(FactMan, UnderCp); 931 FSet.addLock(FactMan, std::move(UnderEntry)); 932 } 933 } else { 934 // We're releasing the underlying mutex, but not destroying the 935 // managing object. Warn on dual release. 936 if (!FSet.findLock(FactMan, UnderCp)) { 937 Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(), 938 UnlockLoc); 939 } 940 FSet.removeLock(FactMan, UnderCp); 941 FSet.addLock(FactMan, std::move(UnderEntry)); 942 } 943 } 944 if (FullyRemove) 945 FSet.removeLock(FactMan, Cp); 946 } 947 }; 948 949 /// Class which implements the core thread safety analysis routines. 950 class ThreadSafetyAnalyzer { 951 friend class BuildLockset; 952 friend class threadSafety::BeforeSet; 953 954 llvm::BumpPtrAllocator Bpa; 955 threadSafety::til::MemRegionRef Arena; 956 threadSafety::SExprBuilder SxBuilder; 957 958 ThreadSafetyHandler &Handler; 959 const CXXMethodDecl *CurrentMethod; 960 LocalVariableMap LocalVarMap; 961 FactManager FactMan; 962 std::vector<CFGBlockInfo> BlockInfo; 963 964 BeforeSet *GlobalBeforeSet; 965 966 public: 967 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset) 968 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {} 969 970 bool inCurrentScope(const CapabilityExpr &CapE); 971 972 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, 973 StringRef DiagKind, bool ReqAttr = false); 974 void removeLock(FactSet &FSet, const CapabilityExpr &CapE, 975 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind, 976 StringRef DiagKind); 977 978 template <typename AttrType> 979 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, 980 const NamedDecl *D, VarDecl *SelfDecl = nullptr); 981 982 template <class AttrType> 983 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, 984 const NamedDecl *D, 985 const CFGBlock *PredBlock, const CFGBlock *CurrBlock, 986 Expr *BrE, bool Neg); 987 988 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, 989 bool &Negate); 990 991 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, 992 const CFGBlock* PredBlock, 993 const CFGBlock *CurrBlock); 994 995 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 996 SourceLocation JoinLoc, 997 LockErrorKind LEK1, LockErrorKind LEK2, 998 bool Modify=true); 999 1000 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, 1001 SourceLocation JoinLoc, LockErrorKind LEK1, 1002 bool Modify=true) { 1003 intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify); 1004 } 1005 1006 void runAnalysis(AnalysisDeclContext &AC); 1007 }; 1008 1009 } // namespace 1010 1011 /// Process acquired_before and acquired_after attributes on Vd. 1012 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd, 1013 ThreadSafetyAnalyzer& Analyzer) { 1014 // Create a new entry for Vd. 1015 BeforeInfo *Info = nullptr; 1016 { 1017 // Keep InfoPtr in its own scope in case BMap is modified later and the 1018 // reference becomes invalid. 1019 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd]; 1020 if (!InfoPtr) 1021 InfoPtr.reset(new BeforeInfo()); 1022 Info = InfoPtr.get(); 1023 } 1024 1025 for (const auto *At : Vd->attrs()) { 1026 switch (At->getKind()) { 1027 case attr::AcquiredBefore: { 1028 const auto *A = cast<AcquiredBeforeAttr>(At); 1029 1030 // Read exprs from the attribute, and add them to BeforeVect. 1031 for (const auto *Arg : A->args()) { 1032 CapabilityExpr Cp = 1033 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1034 if (const ValueDecl *Cpvd = Cp.valueDecl()) { 1035 Info->Vect.push_back(Cpvd); 1036 const auto It = BMap.find(Cpvd); 1037 if (It == BMap.end()) 1038 insertAttrExprs(Cpvd, Analyzer); 1039 } 1040 } 1041 break; 1042 } 1043 case attr::AcquiredAfter: { 1044 const auto *A = cast<AcquiredAfterAttr>(At); 1045 1046 // Read exprs from the attribute, and add them to BeforeVect. 1047 for (const auto *Arg : A->args()) { 1048 CapabilityExpr Cp = 1049 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); 1050 if (const ValueDecl *ArgVd = Cp.valueDecl()) { 1051 // Get entry for mutex listed in attribute 1052 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer); 1053 ArgInfo->Vect.push_back(Vd); 1054 } 1055 } 1056 break; 1057 } 1058 default: 1059 break; 1060 } 1061 } 1062 1063 return Info; 1064 } 1065 1066 BeforeSet::BeforeInfo * 1067 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd, 1068 ThreadSafetyAnalyzer &Analyzer) { 1069 auto It = BMap.find(Vd); 1070 BeforeInfo *Info = nullptr; 1071 if (It == BMap.end()) 1072 Info = insertAttrExprs(Vd, Analyzer); 1073 else 1074 Info = It->second.get(); 1075 assert(Info && "BMap contained nullptr?"); 1076 return Info; 1077 } 1078 1079 /// Return true if any mutexes in FSet are in the acquired_before set of Vd. 1080 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd, 1081 const FactSet& FSet, 1082 ThreadSafetyAnalyzer& Analyzer, 1083 SourceLocation Loc, StringRef CapKind) { 1084 SmallVector<BeforeInfo*, 8> InfoVect; 1085 1086 // Do a depth-first traversal of Vd. 1087 // Return true if there are cycles. 1088 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) { 1089 if (!Vd) 1090 return false; 1091 1092 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer); 1093 1094 if (Info->Visited == 1) 1095 return true; 1096 1097 if (Info->Visited == 2) 1098 return false; 1099 1100 if (Info->Vect.empty()) 1101 return false; 1102 1103 InfoVect.push_back(Info); 1104 Info->Visited = 1; 1105 for (const auto *Vdb : Info->Vect) { 1106 // Exclude mutexes in our immediate before set. 1107 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) { 1108 StringRef L1 = StartVd->getName(); 1109 StringRef L2 = Vdb->getName(); 1110 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc); 1111 } 1112 // Transitively search other before sets, and warn on cycles. 1113 if (traverse(Vdb)) { 1114 if (CycMap.find(Vd) == CycMap.end()) { 1115 CycMap.insert(std::make_pair(Vd, true)); 1116 StringRef L1 = Vd->getName(); 1117 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation()); 1118 } 1119 } 1120 } 1121 Info->Visited = 2; 1122 return false; 1123 }; 1124 1125 traverse(StartVd); 1126 1127 for (auto *Info : InfoVect) 1128 Info->Visited = 0; 1129 } 1130 1131 /// Gets the value decl pointer from DeclRefExprs or MemberExprs. 1132 static const ValueDecl *getValueDecl(const Expr *Exp) { 1133 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) 1134 return getValueDecl(CE->getSubExpr()); 1135 1136 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) 1137 return DR->getDecl(); 1138 1139 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) 1140 return ME->getMemberDecl(); 1141 1142 return nullptr; 1143 } 1144 1145 namespace { 1146 1147 template <typename Ty> 1148 class has_arg_iterator_range { 1149 using yes = char[1]; 1150 using no = char[2]; 1151 1152 template <typename Inner> 1153 static yes& test(Inner *I, decltype(I->args()) * = nullptr); 1154 1155 template <typename> 1156 static no& test(...); 1157 1158 public: 1159 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 1160 }; 1161 1162 } // namespace 1163 1164 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) { 1165 return A->getName(); 1166 } 1167 1168 static StringRef ClassifyDiagnostic(QualType VDT) { 1169 // We need to look at the declaration of the type of the value to determine 1170 // which it is. The type should either be a record or a typedef, or a pointer 1171 // or reference thereof. 1172 if (const auto *RT = VDT->getAs<RecordType>()) { 1173 if (const auto *RD = RT->getDecl()) 1174 if (const auto *CA = RD->getAttr<CapabilityAttr>()) 1175 return ClassifyDiagnostic(CA); 1176 } else if (const auto *TT = VDT->getAs<TypedefType>()) { 1177 if (const auto *TD = TT->getDecl()) 1178 if (const auto *CA = TD->getAttr<CapabilityAttr>()) 1179 return ClassifyDiagnostic(CA); 1180 } else if (VDT->isPointerType() || VDT->isReferenceType()) 1181 return ClassifyDiagnostic(VDT->getPointeeType()); 1182 1183 return "mutex"; 1184 } 1185 1186 static StringRef ClassifyDiagnostic(const ValueDecl *VD) { 1187 assert(VD && "No ValueDecl passed"); 1188 1189 // The ValueDecl is the declaration of a mutex or role (hopefully). 1190 return ClassifyDiagnostic(VD->getType()); 1191 } 1192 1193 template <typename AttrTy> 1194 static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value, 1195 StringRef>::type 1196 ClassifyDiagnostic(const AttrTy *A) { 1197 if (const ValueDecl *VD = getValueDecl(A->getArg())) 1198 return ClassifyDiagnostic(VD); 1199 return "mutex"; 1200 } 1201 1202 template <typename AttrTy> 1203 static typename std::enable_if<has_arg_iterator_range<AttrTy>::value, 1204 StringRef>::type 1205 ClassifyDiagnostic(const AttrTy *A) { 1206 for (const auto *Arg : A->args()) { 1207 if (const ValueDecl *VD = getValueDecl(Arg)) 1208 return ClassifyDiagnostic(VD); 1209 } 1210 return "mutex"; 1211 } 1212 1213 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { 1214 if (!CurrentMethod) 1215 return false; 1216 if (const auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) { 1217 const auto *VD = P->clangDecl(); 1218 if (VD) 1219 return VD->getDeclContext() == CurrentMethod->getDeclContext(); 1220 } 1221 return false; 1222 } 1223 1224 /// Add a new lock to the lockset, warning if the lock is already there. 1225 /// \param ReqAttr -- true if this is part of an initial Requires attribute. 1226 void ThreadSafetyAnalyzer::addLock(FactSet &FSet, 1227 std::unique_ptr<FactEntry> Entry, 1228 StringRef DiagKind, bool ReqAttr) { 1229 if (Entry->shouldIgnore()) 1230 return; 1231 1232 if (!ReqAttr && !Entry->negative()) { 1233 // look for the negative capability, and remove it from the fact set. 1234 CapabilityExpr NegC = !*Entry; 1235 FactEntry *Nen = FSet.findLock(FactMan, NegC); 1236 if (Nen) { 1237 FSet.removeLock(FactMan, NegC); 1238 } 1239 else { 1240 if (inCurrentScope(*Entry) && !Entry->asserted()) 1241 Handler.handleNegativeNotHeld(DiagKind, Entry->toString(), 1242 NegC.toString(), Entry->loc()); 1243 } 1244 } 1245 1246 // Check before/after constraints 1247 if (Handler.issueBetaWarnings() && 1248 !Entry->asserted() && !Entry->declared()) { 1249 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this, 1250 Entry->loc(), DiagKind); 1251 } 1252 1253 // FIXME: Don't always warn when we have support for reentrant locks. 1254 if (FSet.findLock(FactMan, *Entry)) { 1255 if (!Entry->asserted()) 1256 Handler.handleDoubleLock(DiagKind, Entry->toString(), Entry->loc()); 1257 } else { 1258 FSet.addLock(FactMan, std::move(Entry)); 1259 } 1260 } 1261 1262 /// Remove a lock from the lockset, warning if the lock is not there. 1263 /// \param UnlockLoc The source location of the unlock (only used in error msg) 1264 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, 1265 SourceLocation UnlockLoc, 1266 bool FullyRemove, LockKind ReceivedKind, 1267 StringRef DiagKind) { 1268 if (Cp.shouldIgnore()) 1269 return; 1270 1271 const FactEntry *LDat = FSet.findLock(FactMan, Cp); 1272 if (!LDat) { 1273 Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc); 1274 return; 1275 } 1276 1277 // Generic lock removal doesn't care about lock kind mismatches, but 1278 // otherwise diagnose when the lock kinds are mismatched. 1279 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { 1280 Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), 1281 LDat->kind(), ReceivedKind, UnlockLoc); 1282 } 1283 1284 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler, 1285 DiagKind); 1286 } 1287 1288 /// Extract the list of mutexIDs from the attribute on an expression, 1289 /// and push them onto Mtxs, discarding any duplicates. 1290 template <typename AttrType> 1291 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1292 Expr *Exp, const NamedDecl *D, 1293 VarDecl *SelfDecl) { 1294 if (Attr->args_size() == 0) { 1295 // The mutex held is the "this" object. 1296 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl); 1297 if (Cp.isInvalid()) { 1298 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1299 return; 1300 } 1301 //else 1302 if (!Cp.shouldIgnore()) 1303 Mtxs.push_back_nodup(Cp); 1304 return; 1305 } 1306 1307 for (const auto *Arg : Attr->args()) { 1308 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl); 1309 if (Cp.isInvalid()) { 1310 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); 1311 continue; 1312 } 1313 //else 1314 if (!Cp.shouldIgnore()) 1315 Mtxs.push_back_nodup(Cp); 1316 } 1317 } 1318 1319 /// Extract the list of mutexIDs from a trylock attribute. If the 1320 /// trylock applies to the given edge, then push them onto Mtxs, discarding 1321 /// any duplicates. 1322 template <class AttrType> 1323 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, 1324 Expr *Exp, const NamedDecl *D, 1325 const CFGBlock *PredBlock, 1326 const CFGBlock *CurrBlock, 1327 Expr *BrE, bool Neg) { 1328 // Find out which branch has the lock 1329 bool branch = false; 1330 if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) 1331 branch = BLE->getValue(); 1332 else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) 1333 branch = ILE->getValue().getBoolValue(); 1334 1335 int branchnum = branch ? 0 : 1; 1336 if (Neg) 1337 branchnum = !branchnum; 1338 1339 // If we've taken the trylock branch, then add the lock 1340 int i = 0; 1341 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), 1342 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { 1343 if (*SI == CurrBlock && i == branchnum) 1344 getMutexIDs(Mtxs, Attr, Exp, D); 1345 } 1346 } 1347 1348 static bool getStaticBooleanValue(Expr *E, bool &TCond) { 1349 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { 1350 TCond = false; 1351 return true; 1352 } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { 1353 TCond = BLE->getValue(); 1354 return true; 1355 } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) { 1356 TCond = ILE->getValue().getBoolValue(); 1357 return true; 1358 } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E)) 1359 return getStaticBooleanValue(CE->getSubExpr(), TCond); 1360 return false; 1361 } 1362 1363 // If Cond can be traced back to a function call, return the call expression. 1364 // The negate variable should be called with false, and will be set to true 1365 // if the function call is negated, e.g. if (!mu.tryLock(...)) 1366 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, 1367 LocalVarContext C, 1368 bool &Negate) { 1369 if (!Cond) 1370 return nullptr; 1371 1372 if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) 1373 return CallExp; 1374 else if (const auto *PE = dyn_cast<ParenExpr>(Cond)) 1375 return getTrylockCallExpr(PE->getSubExpr(), C, Negate); 1376 else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond)) 1377 return getTrylockCallExpr(CE->getSubExpr(), C, Negate); 1378 else if (const auto *EWC = dyn_cast<ExprWithCleanups>(Cond)) 1379 return getTrylockCallExpr(EWC->getSubExpr(), C, Negate); 1380 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) { 1381 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); 1382 return getTrylockCallExpr(E, C, Negate); 1383 } 1384 else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) { 1385 if (UOP->getOpcode() == UO_LNot) { 1386 Negate = !Negate; 1387 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); 1388 } 1389 return nullptr; 1390 } 1391 else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) { 1392 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { 1393 if (BOP->getOpcode() == BO_NE) 1394 Negate = !Negate; 1395 1396 bool TCond = false; 1397 if (getStaticBooleanValue(BOP->getRHS(), TCond)) { 1398 if (!TCond) Negate = !Negate; 1399 return getTrylockCallExpr(BOP->getLHS(), C, Negate); 1400 } 1401 TCond = false; 1402 if (getStaticBooleanValue(BOP->getLHS(), TCond)) { 1403 if (!TCond) Negate = !Negate; 1404 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1405 } 1406 return nullptr; 1407 } 1408 if (BOP->getOpcode() == BO_LAnd) { 1409 // LHS must have been evaluated in a different block. 1410 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1411 } 1412 if (BOP->getOpcode() == BO_LOr) 1413 return getTrylockCallExpr(BOP->getRHS(), C, Negate); 1414 return nullptr; 1415 } 1416 return nullptr; 1417 } 1418 1419 /// Find the lockset that holds on the edge between PredBlock 1420 /// and CurrBlock. The edge set is the exit set of PredBlock (passed 1421 /// as the ExitSet parameter) plus any trylocks, which are conditionally held. 1422 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, 1423 const FactSet &ExitSet, 1424 const CFGBlock *PredBlock, 1425 const CFGBlock *CurrBlock) { 1426 Result = ExitSet; 1427 1428 const Stmt *Cond = PredBlock->getTerminatorCondition(); 1429 if (!Cond) 1430 return; 1431 1432 bool Negate = false; 1433 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; 1434 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; 1435 StringRef CapDiagKind = "mutex"; 1436 1437 auto *Exp = const_cast<CallExpr *>(getTrylockCallExpr(Cond, LVarCtx, Negate)); 1438 if (!Exp) 1439 return; 1440 1441 auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 1442 if(!FunDecl || !FunDecl->hasAttrs()) 1443 return; 1444 1445 CapExprSet ExclusiveLocksToAdd; 1446 CapExprSet SharedLocksToAdd; 1447 1448 // If the condition is a call to a Trylock function, then grab the attributes 1449 for (const auto *Attr : FunDecl->attrs()) { 1450 switch (Attr->getKind()) { 1451 case attr::TryAcquireCapability: { 1452 auto *A = cast<TryAcquireCapabilityAttr>(Attr); 1453 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 1454 Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(), 1455 Negate); 1456 CapDiagKind = ClassifyDiagnostic(A); 1457 break; 1458 }; 1459 case attr::ExclusiveTrylockFunction: { 1460 const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr); 1461 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, 1462 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1463 CapDiagKind = ClassifyDiagnostic(A); 1464 break; 1465 } 1466 case attr::SharedTrylockFunction: { 1467 const auto *A = cast<SharedTrylockFunctionAttr>(Attr); 1468 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, 1469 PredBlock, CurrBlock, A->getSuccessValue(), Negate); 1470 CapDiagKind = ClassifyDiagnostic(A); 1471 break; 1472 } 1473 default: 1474 break; 1475 } 1476 } 1477 1478 // Add and remove locks. 1479 SourceLocation Loc = Exp->getExprLoc(); 1480 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) 1481 addLock(Result, llvm::make_unique<LockableFactEntry>(ExclusiveLockToAdd, 1482 LK_Exclusive, Loc), 1483 CapDiagKind); 1484 for (const auto &SharedLockToAdd : SharedLocksToAdd) 1485 addLock(Result, llvm::make_unique<LockableFactEntry>(SharedLockToAdd, 1486 LK_Shared, Loc), 1487 CapDiagKind); 1488 } 1489 1490 namespace { 1491 1492 /// We use this class to visit different types of expressions in 1493 /// CFGBlocks, and build up the lockset. 1494 /// An expression may cause us to add or remove locks from the lockset, or else 1495 /// output error messages related to missing locks. 1496 /// FIXME: In future, we may be able to not inherit from a visitor. 1497 class BuildLockset : public StmtVisitor<BuildLockset> { 1498 friend class ThreadSafetyAnalyzer; 1499 1500 ThreadSafetyAnalyzer *Analyzer; 1501 FactSet FSet; 1502 LocalVariableMap::Context LVarCtx; 1503 unsigned CtxIndex; 1504 1505 // helper functions 1506 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, 1507 Expr *MutexExp, ProtectedOperationKind POK, 1508 StringRef DiagKind, SourceLocation Loc); 1509 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, 1510 StringRef DiagKind); 1511 1512 void checkAccess(const Expr *Exp, AccessKind AK, 1513 ProtectedOperationKind POK = POK_VarAccess); 1514 void checkPtAccess(const Expr *Exp, AccessKind AK, 1515 ProtectedOperationKind POK = POK_VarAccess); 1516 1517 void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr); 1518 1519 public: 1520 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) 1521 : StmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet), 1522 LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {} 1523 1524 void VisitUnaryOperator(UnaryOperator *UO); 1525 void VisitBinaryOperator(BinaryOperator *BO); 1526 void VisitCastExpr(CastExpr *CE); 1527 void VisitCallExpr(CallExpr *Exp); 1528 void VisitCXXConstructExpr(CXXConstructExpr *Exp); 1529 void VisitDeclStmt(DeclStmt *S); 1530 }; 1531 1532 } // namespace 1533 1534 /// Warn if the LSet does not contain a lock sufficient to protect access 1535 /// of at least the passed in AccessKind. 1536 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, 1537 AccessKind AK, Expr *MutexExp, 1538 ProtectedOperationKind POK, 1539 StringRef DiagKind, SourceLocation Loc) { 1540 LockKind LK = getLockKindFromAccessKind(AK); 1541 1542 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1543 if (Cp.isInvalid()) { 1544 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1545 return; 1546 } else if (Cp.shouldIgnore()) { 1547 return; 1548 } 1549 1550 if (Cp.negative()) { 1551 // Negative capabilities act like locks excluded 1552 FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp); 1553 if (LDat) { 1554 Analyzer->Handler.handleFunExcludesLock( 1555 DiagKind, D->getNameAsString(), (!Cp).toString(), Loc); 1556 return; 1557 } 1558 1559 // If this does not refer to a negative capability in the same class, 1560 // then stop here. 1561 if (!Analyzer->inCurrentScope(Cp)) 1562 return; 1563 1564 // Otherwise the negative requirement must be propagated to the caller. 1565 LDat = FSet.findLock(Analyzer->FactMan, Cp); 1566 if (!LDat) { 1567 Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(), 1568 LK_Shared, Loc); 1569 } 1570 return; 1571 } 1572 1573 FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp); 1574 bool NoError = true; 1575 if (!LDat) { 1576 // No exact match found. Look for a partial match. 1577 LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp); 1578 if (LDat) { 1579 // Warn that there's no precise match. 1580 std::string PartMatchStr = LDat->toString(); 1581 StringRef PartMatchName(PartMatchStr); 1582 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1583 LK, Loc, &PartMatchName); 1584 } else { 1585 // Warn that there's no match at all. 1586 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1587 LK, Loc); 1588 } 1589 NoError = false; 1590 } 1591 // Make sure the mutex we found is the right kind. 1592 if (NoError && LDat && !LDat->isAtLeast(LK)) { 1593 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), 1594 LK, Loc); 1595 } 1596 } 1597 1598 /// Warn if the LSet contains the given lock. 1599 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, 1600 Expr *MutexExp, StringRef DiagKind) { 1601 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); 1602 if (Cp.isInvalid()) { 1603 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); 1604 return; 1605 } else if (Cp.shouldIgnore()) { 1606 return; 1607 } 1608 1609 FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp); 1610 if (LDat) { 1611 Analyzer->Handler.handleFunExcludesLock( 1612 DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc()); 1613 } 1614 } 1615 1616 /// Checks guarded_by and pt_guarded_by attributes. 1617 /// Whenever we identify an access (read or write) to a DeclRefExpr that is 1618 /// marked with guarded_by, we must ensure the appropriate mutexes are held. 1619 /// Similarly, we check if the access is to an expression that dereferences 1620 /// a pointer marked with pt_guarded_by. 1621 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK, 1622 ProtectedOperationKind POK) { 1623 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts(); 1624 1625 SourceLocation Loc = Exp->getExprLoc(); 1626 1627 // Local variables of reference type cannot be re-assigned; 1628 // map them to their initializer. 1629 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { 1630 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); 1631 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { 1632 if (const auto *E = VD->getInit()) { 1633 Exp = E; 1634 continue; 1635 } 1636 } 1637 break; 1638 } 1639 1640 if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) { 1641 // For dereferences 1642 if (UO->getOpcode() == UO_Deref) 1643 checkPtAccess(UO->getSubExpr(), AK, POK); 1644 return; 1645 } 1646 1647 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { 1648 checkPtAccess(AE->getLHS(), AK, POK); 1649 return; 1650 } 1651 1652 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) { 1653 if (ME->isArrow()) 1654 checkPtAccess(ME->getBase(), AK, POK); 1655 else 1656 checkAccess(ME->getBase(), AK, POK); 1657 } 1658 1659 const ValueDecl *D = getValueDecl(Exp); 1660 if (!D || !D->hasAttrs()) 1661 return; 1662 1663 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) { 1664 Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc); 1665 } 1666 1667 for (const auto *I : D->specific_attrs<GuardedByAttr>()) 1668 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, 1669 ClassifyDiagnostic(I), Loc); 1670 } 1671 1672 /// Checks pt_guarded_by and pt_guarded_var attributes. 1673 /// POK is the same operationKind that was passed to checkAccess. 1674 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK, 1675 ProtectedOperationKind POK) { 1676 while (true) { 1677 if (const auto *PE = dyn_cast<ParenExpr>(Exp)) { 1678 Exp = PE->getSubExpr(); 1679 continue; 1680 } 1681 if (const auto *CE = dyn_cast<CastExpr>(Exp)) { 1682 if (CE->getCastKind() == CK_ArrayToPointerDecay) { 1683 // If it's an actual array, and not a pointer, then it's elements 1684 // are protected by GUARDED_BY, not PT_GUARDED_BY; 1685 checkAccess(CE->getSubExpr(), AK, POK); 1686 return; 1687 } 1688 Exp = CE->getSubExpr(); 1689 continue; 1690 } 1691 break; 1692 } 1693 1694 // Pass by reference warnings are under a different flag. 1695 ProtectedOperationKind PtPOK = POK_VarDereference; 1696 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; 1697 1698 const ValueDecl *D = getValueDecl(Exp); 1699 if (!D || !D->hasAttrs()) 1700 return; 1701 1702 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) 1703 Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK, 1704 Exp->getExprLoc()); 1705 1706 for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) 1707 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, 1708 ClassifyDiagnostic(I), Exp->getExprLoc()); 1709 } 1710 1711 /// Process a function call, method call, constructor call, 1712 /// or destructor call. This involves looking at the attributes on the 1713 /// corresponding function/method/constructor/destructor, issuing warnings, 1714 /// and updating the locksets accordingly. 1715 /// 1716 /// FIXME: For classes annotated with one of the guarded annotations, we need 1717 /// to treat const method calls as reads and non-const method calls as writes, 1718 /// and check that the appropriate locks are held. Non-const method calls with 1719 /// the same signature as const method calls can be also treated as reads. 1720 /// 1721 void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) { 1722 SourceLocation Loc = Exp->getExprLoc(); 1723 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; 1724 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; 1725 CapExprSet ScopedExclusiveReqs, ScopedSharedReqs; 1726 StringRef CapDiagKind = "mutex"; 1727 1728 // Figure out if we're constructing an object of scoped lockable class 1729 bool isScopedVar = false; 1730 if (VD) { 1731 if (const auto *CD = dyn_cast<const CXXConstructorDecl>(D)) { 1732 const CXXRecordDecl* PD = CD->getParent(); 1733 if (PD && PD->hasAttr<ScopedLockableAttr>()) 1734 isScopedVar = true; 1735 } 1736 } 1737 1738 for(const Attr *At : D->attrs()) { 1739 switch (At->getKind()) { 1740 // When we encounter a lock function, we need to add the lock to our 1741 // lockset. 1742 case attr::AcquireCapability: { 1743 const auto *A = cast<AcquireCapabilityAttr>(At); 1744 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd 1745 : ExclusiveLocksToAdd, 1746 A, Exp, D, VD); 1747 1748 CapDiagKind = ClassifyDiagnostic(A); 1749 break; 1750 } 1751 1752 // An assert will add a lock to the lockset, but will not generate 1753 // a warning if it is already there, and will not generate a warning 1754 // if it is not removed. 1755 case attr::AssertExclusiveLock: { 1756 const auto *A = cast<AssertExclusiveLockAttr>(At); 1757 1758 CapExprSet AssertLocks; 1759 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1760 for (const auto &AssertLock : AssertLocks) 1761 Analyzer->addLock(FSet, 1762 llvm::make_unique<LockableFactEntry>( 1763 AssertLock, LK_Exclusive, Loc, false, true), 1764 ClassifyDiagnostic(A)); 1765 break; 1766 } 1767 case attr::AssertSharedLock: { 1768 const auto *A = cast<AssertSharedLockAttr>(At); 1769 1770 CapExprSet AssertLocks; 1771 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1772 for (const auto &AssertLock : AssertLocks) 1773 Analyzer->addLock(FSet, 1774 llvm::make_unique<LockableFactEntry>( 1775 AssertLock, LK_Shared, Loc, false, true), 1776 ClassifyDiagnostic(A)); 1777 break; 1778 } 1779 1780 case attr::AssertCapability: { 1781 const auto *A = cast<AssertCapabilityAttr>(At); 1782 CapExprSet AssertLocks; 1783 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); 1784 for (const auto &AssertLock : AssertLocks) 1785 Analyzer->addLock(FSet, 1786 llvm::make_unique<LockableFactEntry>( 1787 AssertLock, 1788 A->isShared() ? LK_Shared : LK_Exclusive, Loc, 1789 false, true), 1790 ClassifyDiagnostic(A)); 1791 break; 1792 } 1793 1794 // When we encounter an unlock function, we need to remove unlocked 1795 // mutexes from the lockset, and flag a warning if they are not there. 1796 case attr::ReleaseCapability: { 1797 const auto *A = cast<ReleaseCapabilityAttr>(At); 1798 if (A->isGeneric()) 1799 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD); 1800 else if (A->isShared()) 1801 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD); 1802 else 1803 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD); 1804 1805 CapDiagKind = ClassifyDiagnostic(A); 1806 break; 1807 } 1808 1809 case attr::RequiresCapability: { 1810 const auto *A = cast<RequiresCapabilityAttr>(At); 1811 for (auto *Arg : A->args()) { 1812 warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, 1813 POK_FunctionCall, ClassifyDiagnostic(A), 1814 Exp->getExprLoc()); 1815 // use for adopting a lock 1816 if (isScopedVar) { 1817 Analyzer->getMutexIDs(A->isShared() ? ScopedSharedReqs 1818 : ScopedExclusiveReqs, 1819 A, Exp, D, VD); 1820 } 1821 } 1822 break; 1823 } 1824 1825 case attr::LocksExcluded: { 1826 const auto *A = cast<LocksExcludedAttr>(At); 1827 for (auto *Arg : A->args()) 1828 warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A)); 1829 break; 1830 } 1831 1832 // Ignore attributes unrelated to thread-safety 1833 default: 1834 break; 1835 } 1836 } 1837 1838 // Remove locks first to allow lock upgrading/downgrading. 1839 // FIXME -- should only fully remove if the attribute refers to 'this'. 1840 bool Dtor = isa<CXXDestructorDecl>(D); 1841 for (const auto &M : ExclusiveLocksToRemove) 1842 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind); 1843 for (const auto &M : SharedLocksToRemove) 1844 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind); 1845 for (const auto &M : GenericLocksToRemove) 1846 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind); 1847 1848 // Add locks. 1849 for (const auto &M : ExclusiveLocksToAdd) 1850 Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( 1851 M, LK_Exclusive, Loc, isScopedVar), 1852 CapDiagKind); 1853 for (const auto &M : SharedLocksToAdd) 1854 Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( 1855 M, LK_Shared, Loc, isScopedVar), 1856 CapDiagKind); 1857 1858 if (isScopedVar) { 1859 // Add the managing object as a dummy mutex, mapped to the underlying mutex. 1860 SourceLocation MLoc = VD->getLocation(); 1861 DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation()); 1862 // FIXME: does this store a pointer to DRE? 1863 CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr); 1864 1865 std::copy(ScopedExclusiveReqs.begin(), ScopedExclusiveReqs.end(), 1866 std::back_inserter(ExclusiveLocksToAdd)); 1867 std::copy(ScopedSharedReqs.begin(), ScopedSharedReqs.end(), 1868 std::back_inserter(SharedLocksToAdd)); 1869 Analyzer->addLock(FSet, 1870 llvm::make_unique<ScopedLockableFactEntry>( 1871 Scp, MLoc, ExclusiveLocksToAdd, SharedLocksToAdd), 1872 CapDiagKind); 1873 } 1874 } 1875 1876 /// For unary operations which read and write a variable, we need to 1877 /// check whether we hold any required mutexes. Reads are checked in 1878 /// VisitCastExpr. 1879 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) { 1880 switch (UO->getOpcode()) { 1881 case UO_PostDec: 1882 case UO_PostInc: 1883 case UO_PreDec: 1884 case UO_PreInc: 1885 checkAccess(UO->getSubExpr(), AK_Written); 1886 break; 1887 default: 1888 break; 1889 } 1890 } 1891 1892 /// For binary operations which assign to a variable (writes), we need to check 1893 /// whether we hold any required mutexes. 1894 /// FIXME: Deal with non-primitive types. 1895 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) { 1896 if (!BO->isAssignmentOp()) 1897 return; 1898 1899 // adjust the context 1900 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); 1901 1902 checkAccess(BO->getLHS(), AK_Written); 1903 } 1904 1905 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and 1906 /// need to ensure we hold any required mutexes. 1907 /// FIXME: Deal with non-primitive types. 1908 void BuildLockset::VisitCastExpr(CastExpr *CE) { 1909 if (CE->getCastKind() != CK_LValueToRValue) 1910 return; 1911 checkAccess(CE->getSubExpr(), AK_Read); 1912 } 1913 1914 void BuildLockset::VisitCallExpr(CallExpr *Exp) { 1915 bool ExamineArgs = true; 1916 bool OperatorFun = false; 1917 1918 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { 1919 const auto *ME = dyn_cast<MemberExpr>(CE->getCallee()); 1920 // ME can be null when calling a method pointer 1921 const CXXMethodDecl *MD = CE->getMethodDecl(); 1922 1923 if (ME && MD) { 1924 if (ME->isArrow()) { 1925 if (MD->isConst()) 1926 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 1927 else // FIXME -- should be AK_Written 1928 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); 1929 } else { 1930 if (MD->isConst()) 1931 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 1932 else // FIXME -- should be AK_Written 1933 checkAccess(CE->getImplicitObjectArgument(), AK_Read); 1934 } 1935 } 1936 } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { 1937 OperatorFun = true; 1938 1939 auto OEop = OE->getOperator(); 1940 switch (OEop) { 1941 case OO_Equal: { 1942 ExamineArgs = false; 1943 const Expr *Target = OE->getArg(0); 1944 const Expr *Source = OE->getArg(1); 1945 checkAccess(Target, AK_Written); 1946 checkAccess(Source, AK_Read); 1947 break; 1948 } 1949 case OO_Star: 1950 case OO_Arrow: 1951 case OO_Subscript: { 1952 const Expr *Obj = OE->getArg(0); 1953 checkAccess(Obj, AK_Read); 1954 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { 1955 // Grrr. operator* can be multiplication... 1956 checkPtAccess(Obj, AK_Read); 1957 } 1958 break; 1959 } 1960 default: { 1961 // TODO: get rid of this, and rely on pass-by-ref instead. 1962 const Expr *Obj = OE->getArg(0); 1963 checkAccess(Obj, AK_Read); 1964 break; 1965 } 1966 } 1967 } 1968 1969 if (ExamineArgs) { 1970 if (FunctionDecl *FD = Exp->getDirectCallee()) { 1971 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it 1972 // only turns off checking within the body of a function, but we also 1973 // use it to turn off checking in arguments to the function. This 1974 // could result in some false negatives, but the alternative is to 1975 // create yet another attribute. 1976 if (!FD->hasAttr<NoThreadSafetyAnalysisAttr>()) { 1977 unsigned Fn = FD->getNumParams(); 1978 unsigned Cn = Exp->getNumArgs(); 1979 unsigned Skip = 0; 1980 1981 unsigned i = 0; 1982 if (OperatorFun) { 1983 if (isa<CXXMethodDecl>(FD)) { 1984 // First arg in operator call is implicit self argument, 1985 // and doesn't appear in the FunctionDecl. 1986 Skip = 1; 1987 Cn--; 1988 } else { 1989 // Ignore the first argument of operators; it's been checked above. 1990 i = 1; 1991 } 1992 } 1993 // Ignore default arguments 1994 unsigned n = (Fn < Cn) ? Fn : Cn; 1995 1996 for (; i < n; ++i) { 1997 ParmVarDecl* Pvd = FD->getParamDecl(i); 1998 Expr* Arg = Exp->getArg(i+Skip); 1999 QualType Qt = Pvd->getType(); 2000 if (Qt->isReferenceType()) 2001 checkAccess(Arg, AK_Read, POK_PassByRef); 2002 } 2003 } 2004 } 2005 } 2006 2007 auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); 2008 if(!D || !D->hasAttrs()) 2009 return; 2010 handleCall(Exp, D); 2011 } 2012 2013 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) { 2014 const CXXConstructorDecl *D = Exp->getConstructor(); 2015 if (D && D->isCopyConstructor()) { 2016 const Expr* Source = Exp->getArg(0); 2017 checkAccess(Source, AK_Read); 2018 } 2019 // FIXME -- only handles constructors in DeclStmt below. 2020 } 2021 2022 static CXXConstructorDecl * 2023 findConstructorForByValueReturn(const CXXRecordDecl *RD) { 2024 // Prefer a move constructor over a copy constructor. If there's more than 2025 // one copy constructor or more than one move constructor, we arbitrarily 2026 // pick the first declared such constructor rather than trying to guess which 2027 // one is more appropriate. 2028 CXXConstructorDecl *CopyCtor = nullptr; 2029 for (auto *Ctor : RD->ctors()) { 2030 if (Ctor->isDeleted()) 2031 continue; 2032 if (Ctor->isMoveConstructor()) 2033 return Ctor; 2034 if (!CopyCtor && Ctor->isCopyConstructor()) 2035 CopyCtor = Ctor; 2036 } 2037 return CopyCtor; 2038 } 2039 2040 static Expr *buildFakeCtorCall(CXXConstructorDecl *CD, ArrayRef<Expr *> Args, 2041 SourceLocation Loc) { 2042 ASTContext &Ctx = CD->getASTContext(); 2043 return CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CD->getParent()), Loc, 2044 CD, true, Args, false, false, false, false, 2045 CXXConstructExpr::CK_Complete, 2046 SourceRange(Loc, Loc)); 2047 } 2048 2049 void BuildLockset::VisitDeclStmt(DeclStmt *S) { 2050 // adjust the context 2051 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); 2052 2053 for (auto *D : S->getDeclGroup()) { 2054 if (auto *VD = dyn_cast_or_null<VarDecl>(D)) { 2055 Expr *E = VD->getInit(); 2056 if (!E) 2057 continue; 2058 E = E->IgnoreParens(); 2059 2060 // handle constructors that involve temporaries 2061 if (auto *EWC = dyn_cast<ExprWithCleanups>(E)) 2062 E = EWC->getSubExpr(); 2063 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E)) 2064 E = BTE->getSubExpr(); 2065 2066 if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) { 2067 const auto *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); 2068 if (!CtorD || !CtorD->hasAttrs()) 2069 continue; 2070 handleCall(E, CtorD, VD); 2071 } else if (isa<CallExpr>(E) && E->isRValue()) { 2072 // If the object is initialized by a function call that returns a 2073 // scoped lockable by value, use the attributes on the copy or move 2074 // constructor to figure out what effect that should have on the 2075 // lockset. 2076 // FIXME: Is this really the best way to handle this situation? 2077 auto *RD = E->getType()->getAsCXXRecordDecl(); 2078 if (!RD || !RD->hasAttr<ScopedLockableAttr>()) 2079 continue; 2080 CXXConstructorDecl *CtorD = findConstructorForByValueReturn(RD); 2081 if (!CtorD || !CtorD->hasAttrs()) 2082 continue; 2083 handleCall(buildFakeCtorCall(CtorD, {E}, E->getLocStart()), CtorD, VD); 2084 } 2085 } 2086 } 2087 } 2088 2089 /// Compute the intersection of two locksets and issue warnings for any 2090 /// locks in the symmetric difference. 2091 /// 2092 /// This function is used at a merge point in the CFG when comparing the lockset 2093 /// of each branch being merged. For example, given the following sequence: 2094 /// A; if () then B; else C; D; we need to check that the lockset after B and C 2095 /// are the same. In the event of a difference, we use the intersection of these 2096 /// two locksets at the start of D. 2097 /// 2098 /// \param FSet1 The first lockset. 2099 /// \param FSet2 The second lockset. 2100 /// \param JoinLoc The location of the join point for error reporting 2101 /// \param LEK1 The error message to report if a mutex is missing from LSet1 2102 /// \param LEK2 The error message to report if a mutex is missing from Lset2 2103 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1, 2104 const FactSet &FSet2, 2105 SourceLocation JoinLoc, 2106 LockErrorKind LEK1, 2107 LockErrorKind LEK2, 2108 bool Modify) { 2109 FactSet FSet1Orig = FSet1; 2110 2111 // Find locks in FSet2 that conflict or are not in FSet1, and warn. 2112 for (const auto &Fact : FSet2) { 2113 const FactEntry *LDat1 = nullptr; 2114 const FactEntry *LDat2 = &FactMan[Fact]; 2115 FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, *LDat2); 2116 if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1]; 2117 2118 if (LDat1) { 2119 if (LDat1->kind() != LDat2->kind()) { 2120 Handler.handleExclusiveAndShared("mutex", LDat2->toString(), 2121 LDat2->loc(), LDat1->loc()); 2122 if (Modify && LDat1->kind() != LK_Exclusive) { 2123 // Take the exclusive lock, which is the one in FSet2. 2124 *Iter1 = Fact; 2125 } 2126 } 2127 else if (Modify && LDat1->asserted() && !LDat2->asserted()) { 2128 // The non-asserted lock in FSet2 is the one we want to track. 2129 *Iter1 = Fact; 2130 } 2131 } else { 2132 LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1, 2133 Handler); 2134 } 2135 } 2136 2137 // Find locks in FSet1 that are not in FSet2, and remove them. 2138 for (const auto &Fact : FSet1Orig) { 2139 const FactEntry *LDat1 = &FactMan[Fact]; 2140 const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1); 2141 2142 if (!LDat2) { 2143 LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2, 2144 Handler); 2145 if (Modify) 2146 FSet1.removeLock(FactMan, *LDat1); 2147 } 2148 } 2149 } 2150 2151 // Return true if block B never continues to its successors. 2152 static bool neverReturns(const CFGBlock *B) { 2153 if (B->hasNoReturnElement()) 2154 return true; 2155 if (B->empty()) 2156 return false; 2157 2158 CFGElement Last = B->back(); 2159 if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) { 2160 if (isa<CXXThrowExpr>(S->getStmt())) 2161 return true; 2162 } 2163 return false; 2164 } 2165 2166 /// Check a function's CFG for thread-safety violations. 2167 /// 2168 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2169 /// at the end of each block, and issue warnings for thread safety violations. 2170 /// Each block in the CFG is traversed exactly once. 2171 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { 2172 // TODO: this whole function needs be rewritten as a visitor for CFGWalker. 2173 // For now, we just use the walker to set things up. 2174 threadSafety::CFGWalker walker; 2175 if (!walker.init(AC)) 2176 return; 2177 2178 // AC.dumpCFG(true); 2179 // threadSafety::printSCFG(walker); 2180 2181 CFG *CFGraph = walker.getGraph(); 2182 const NamedDecl *D = walker.getDecl(); 2183 const auto *CurrentFunction = dyn_cast<FunctionDecl>(D); 2184 CurrentMethod = dyn_cast<CXXMethodDecl>(D); 2185 2186 if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) 2187 return; 2188 2189 // FIXME: Do something a bit more intelligent inside constructor and 2190 // destructor code. Constructors and destructors must assume unique access 2191 // to 'this', so checks on member variable access is disabled, but we should 2192 // still enable checks on other objects. 2193 if (isa<CXXConstructorDecl>(D)) 2194 return; // Don't check inside constructors. 2195 if (isa<CXXDestructorDecl>(D)) 2196 return; // Don't check inside destructors. 2197 2198 Handler.enterFunction(CurrentFunction); 2199 2200 BlockInfo.resize(CFGraph->getNumBlockIDs(), 2201 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); 2202 2203 // We need to explore the CFG via a "topological" ordering. 2204 // That way, we will be guaranteed to have information about required 2205 // predecessor locksets when exploring a new block. 2206 const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); 2207 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); 2208 2209 // Mark entry block as reachable 2210 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; 2211 2212 // Compute SSA names for local variables 2213 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); 2214 2215 // Fill in source locations for all CFGBlocks. 2216 findBlockLocations(CFGraph, SortedGraph, BlockInfo); 2217 2218 CapExprSet ExclusiveLocksAcquired; 2219 CapExprSet SharedLocksAcquired; 2220 CapExprSet LocksReleased; 2221 2222 // Add locks from exclusive_locks_required and shared_locks_required 2223 // to initial lockset. Also turn off checking for lock and unlock functions. 2224 // FIXME: is there a more intelligent way to check lock/unlock functions? 2225 if (!SortedGraph->empty() && D->hasAttrs()) { 2226 const CFGBlock *FirstBlock = *SortedGraph->begin(); 2227 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; 2228 2229 CapExprSet ExclusiveLocksToAdd; 2230 CapExprSet SharedLocksToAdd; 2231 StringRef CapDiagKind = "mutex"; 2232 2233 SourceLocation Loc = D->getLocation(); 2234 for (const auto *Attr : D->attrs()) { 2235 Loc = Attr->getLocation(); 2236 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { 2237 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, 2238 nullptr, D); 2239 CapDiagKind = ClassifyDiagnostic(A); 2240 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { 2241 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. 2242 // We must ignore such methods. 2243 if (A->args_size() == 0) 2244 return; 2245 // FIXME -- deal with exclusive vs. shared unlock functions? 2246 getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D); 2247 getMutexIDs(LocksReleased, A, nullptr, D); 2248 CapDiagKind = ClassifyDiagnostic(A); 2249 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { 2250 if (A->args_size() == 0) 2251 return; 2252 getMutexIDs(A->isShared() ? SharedLocksAcquired 2253 : ExclusiveLocksAcquired, 2254 A, nullptr, D); 2255 CapDiagKind = ClassifyDiagnostic(A); 2256 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { 2257 // Don't try to check trylock functions for now. 2258 return; 2259 } else if (isa<SharedTrylockFunctionAttr>(Attr)) { 2260 // Don't try to check trylock functions for now. 2261 return; 2262 } else if (isa<TryAcquireCapabilityAttr>(Attr)) { 2263 // Don't try to check trylock functions for now. 2264 return; 2265 } 2266 } 2267 2268 // FIXME -- Loc can be wrong here. 2269 for (const auto &Mu : ExclusiveLocksToAdd) { 2270 auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc); 2271 Entry->setDeclared(true); 2272 addLock(InitialLockset, std::move(Entry), CapDiagKind, true); 2273 } 2274 for (const auto &Mu : SharedLocksToAdd) { 2275 auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc); 2276 Entry->setDeclared(true); 2277 addLock(InitialLockset, std::move(Entry), CapDiagKind, true); 2278 } 2279 } 2280 2281 for (const auto *CurrBlock : *SortedGraph) { 2282 int CurrBlockID = CurrBlock->getBlockID(); 2283 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; 2284 2285 // Use the default initial lockset in case there are no predecessors. 2286 VisitedBlocks.insert(CurrBlock); 2287 2288 // Iterate through the predecessor blocks and warn if the lockset for all 2289 // predecessors is not the same. We take the entry lockset of the current 2290 // block to be the intersection of all previous locksets. 2291 // FIXME: By keeping the intersection, we may output more errors in future 2292 // for a lock which is not in the intersection, but was in the union. We 2293 // may want to also keep the union in future. As an example, let's say 2294 // the intersection contains Mutex L, and the union contains L and M. 2295 // Later we unlock M. At this point, we would output an error because we 2296 // never locked M; although the real error is probably that we forgot to 2297 // lock M on all code paths. Conversely, let's say that later we lock M. 2298 // In this case, we should compare against the intersection instead of the 2299 // union because the real error is probably that we forgot to unlock M on 2300 // all code paths. 2301 bool LocksetInitialized = false; 2302 SmallVector<CFGBlock *, 8> SpecialBlocks; 2303 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), 2304 PE = CurrBlock->pred_end(); PI != PE; ++PI) { 2305 // if *PI -> CurrBlock is a back edge 2306 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) 2307 continue; 2308 2309 int PrevBlockID = (*PI)->getBlockID(); 2310 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2311 2312 // Ignore edges from blocks that can't return. 2313 if (neverReturns(*PI) || !PrevBlockInfo->Reachable) 2314 continue; 2315 2316 // Okay, we can reach this block from the entry. 2317 CurrBlockInfo->Reachable = true; 2318 2319 // If the previous block ended in a 'continue' or 'break' statement, then 2320 // a difference in locksets is probably due to a bug in that block, rather 2321 // than in some other predecessor. In that case, keep the other 2322 // predecessor's lockset. 2323 if (const Stmt *Terminator = (*PI)->getTerminator()) { 2324 if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) { 2325 SpecialBlocks.push_back(*PI); 2326 continue; 2327 } 2328 } 2329 2330 FactSet PrevLockset; 2331 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); 2332 2333 if (!LocksetInitialized) { 2334 CurrBlockInfo->EntrySet = PrevLockset; 2335 LocksetInitialized = true; 2336 } else { 2337 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 2338 CurrBlockInfo->EntryLoc, 2339 LEK_LockedSomePredecessors); 2340 } 2341 } 2342 2343 // Skip rest of block if it's not reachable. 2344 if (!CurrBlockInfo->Reachable) 2345 continue; 2346 2347 // Process continue and break blocks. Assume that the lockset for the 2348 // resulting block is unaffected by any discrepancies in them. 2349 for (const auto *PrevBlock : SpecialBlocks) { 2350 int PrevBlockID = PrevBlock->getBlockID(); 2351 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; 2352 2353 if (!LocksetInitialized) { 2354 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; 2355 LocksetInitialized = true; 2356 } else { 2357 // Determine whether this edge is a loop terminator for diagnostic 2358 // purposes. FIXME: A 'break' statement might be a loop terminator, but 2359 // it might also be part of a switch. Also, a subsequent destructor 2360 // might add to the lockset, in which case the real issue might be a 2361 // double lock on the other path. 2362 const Stmt *Terminator = PrevBlock->getTerminator(); 2363 bool IsLoop = Terminator && isa<ContinueStmt>(Terminator); 2364 2365 FactSet PrevLockset; 2366 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, 2367 PrevBlock, CurrBlock); 2368 2369 // Do not update EntrySet. 2370 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, 2371 PrevBlockInfo->ExitLoc, 2372 IsLoop ? LEK_LockedSomeLoopIterations 2373 : LEK_LockedSomePredecessors, 2374 false); 2375 } 2376 } 2377 2378 BuildLockset LocksetBuilder(this, *CurrBlockInfo); 2379 2380 // Visit all the statements in the basic block. 2381 for (const auto &BI : *CurrBlock) { 2382 switch (BI.getKind()) { 2383 case CFGElement::Statement: { 2384 CFGStmt CS = BI.castAs<CFGStmt>(); 2385 LocksetBuilder.Visit(const_cast<Stmt *>(CS.getStmt())); 2386 break; 2387 } 2388 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. 2389 case CFGElement::AutomaticObjectDtor: { 2390 CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>(); 2391 auto *DD = const_cast<CXXDestructorDecl *>( 2392 AD.getDestructorDecl(AC.getASTContext())); 2393 if (!DD->hasAttrs()) 2394 break; 2395 2396 // Create a dummy expression, 2397 auto *VD = const_cast<VarDecl *>(AD.getVarDecl()); 2398 DeclRefExpr DRE(VD, false, VD->getType().getNonReferenceType(), 2399 VK_LValue, AD.getTriggerStmt()->getLocEnd()); 2400 LocksetBuilder.handleCall(&DRE, DD); 2401 break; 2402 } 2403 default: 2404 break; 2405 } 2406 } 2407 CurrBlockInfo->ExitSet = LocksetBuilder.FSet; 2408 2409 // For every back edge from CurrBlock (the end of the loop) to another block 2410 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to 2411 // the one held at the beginning of FirstLoopBlock. We can look up the 2412 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. 2413 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), 2414 SE = CurrBlock->succ_end(); SI != SE; ++SI) { 2415 // if CurrBlock -> *SI is *not* a back edge 2416 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) 2417 continue; 2418 2419 CFGBlock *FirstLoopBlock = *SI; 2420 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; 2421 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; 2422 intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, 2423 PreLoop->EntryLoc, 2424 LEK_LockedSomeLoopIterations, 2425 false); 2426 } 2427 } 2428 2429 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; 2430 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; 2431 2432 // Skip the final check if the exit block is unreachable. 2433 if (!Final->Reachable) 2434 return; 2435 2436 // By default, we expect all locks held on entry to be held on exit. 2437 FactSet ExpectedExitSet = Initial->EntrySet; 2438 2439 // Adjust the expected exit set by adding or removing locks, as declared 2440 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then 2441 // issue the appropriate warning. 2442 // FIXME: the location here is not quite right. 2443 for (const auto &Lock : ExclusiveLocksAcquired) 2444 ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 2445 Lock, LK_Exclusive, D->getLocation())); 2446 for (const auto &Lock : SharedLocksAcquired) 2447 ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( 2448 Lock, LK_Shared, D->getLocation())); 2449 for (const auto &Lock : LocksReleased) 2450 ExpectedExitSet.removeLock(FactMan, Lock); 2451 2452 // FIXME: Should we call this function for all blocks which exit the function? 2453 intersectAndWarn(ExpectedExitSet, Final->ExitSet, 2454 Final->ExitLoc, 2455 LEK_LockedAtEndOfFunction, 2456 LEK_NotLockedAtEndOfFunction, 2457 false); 2458 2459 Handler.leaveFunction(CurrentFunction); 2460 } 2461 2462 /// Check a function's CFG for thread-safety violations. 2463 /// 2464 /// We traverse the blocks in the CFG, compute the set of mutexes that are held 2465 /// at the end of each block, and issue warnings for thread safety violations. 2466 /// Each block in the CFG is traversed exactly once. 2467 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC, 2468 ThreadSafetyHandler &Handler, 2469 BeforeSet **BSet) { 2470 if (!*BSet) 2471 *BSet = new BeforeSet; 2472 ThreadSafetyAnalyzer Analyzer(Handler, *BSet); 2473 Analyzer.runAnalysis(AC); 2474 } 2475 2476 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; } 2477 2478 /// Helper function that returns a LockKind required for the given level 2479 /// of access. 2480 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) { 2481 switch (AK) { 2482 case AK_Read : 2483 return LK_Shared; 2484 case AK_Written : 2485 return LK_Exclusive; 2486 } 2487 llvm_unreachable("Unknown AccessKind"); 2488 } 2489